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Abstract 

 

Drug self-association can hinder percutaneous penetration. The aim of this study was 

to investigate if disrupting drug-drug interactions using charged nanoparticle surfaces 

could promote delivery of a pharmaceutically active agent into the skin. Tetracaine 

was chosen as a model drug. It was presented to the skin as a hydroxyl 

methylcellulose (HPMC) gel and Ametop gel™ with and without the addition of –ve 

charged silica nanoparticles (NanoSiO2
). When the nanoparticles were added to the 

topical formulations it resulted in the fastest drug permeation (109.95 ± 28.63 

µg/cm2/h), highest accumulative mass at 45 min (76.83 ± 18.92 µg) and shortest lag 

time (2.02 ± 0.79 min) in porcine skin. NanoSiO2
 disrupted the tetracaine aggregates 

in the HPMC gel whilst not interacting with the polymer to increase the formulation 

macroviscosity. When NanoSiO2
were added to the commercial Ametop gel they also 

enhanced penetration through the skin. Despite the very different composition of the 

Ametop system compared to the HPMC the nanoparticles appeared to function in a 

very similar manner, i.e., they broke up the tetracaine aggregates without interacting 

the formulation. The similar results for both the gel systems suggested that, provided 

the drug-nanoparticle interactions were optimised to facilitate drug aggregate break 

up, the addition of solid nanomaterials to semi-solid topical preparations could be a 

novel penetration enhancement method in a number of different types of skin product. 

 

Key words: Tetracaine, nanoparticles, skin, aggregation, gel, skin, permeation. 
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Introduction 

 

Topical drug delivery of a therapeutic agent to the skin presents an attractive alternative 

to other routes of administration by providing a non-invasive strategy that bypasses the 

first pass metabolism, reduces the adverse side-effects of systemic toxicity and improves 

patient compliance [1]. However, efficient topical delivery of therapeutic agents can be 

problematic to achieve due to the relative impermeability of the stratum corneum [2]. If a 

molecule applied topically to the surface of the skin does not have desirable 

physicochemical properties to allow it to move easily into the tissue, the skin barrier can 

reduce or slow the pharmacological response to the administered molecule. A good 

example of a therapeutic agent that is slowed down due to the barrier properties of the 

skin is the topical anaesthetic tetracaine.  

 

Tetracaine is commercially available as Ametop, a 4 % gel that has an onset of action of 

30 – 45 minutes. However, this is too slow for optimal clinical action and this has driven 

formulators to design of a number of strategies to try and improve the clinical use of this 

agent [3-5]. However, it has proven difficult to enhance the permeation of this molecule 

into the skin without the non-reversible modification to the cutaneous tissue. Recent 

studies have shown that one reason for this may be that tetracaine is an amphiphilic drug 

that aggregates in aqueous vehicles [6, 7]. When the drug aggregates it exhibits different 

physiochemical properties in solution compared to the non-aggregated form of the 

molecule [8-11] and at the high tetracaine drug concentrations, i.e., those typically found 

in topical preparations, this physical aggregation can hinder penetration into the skin after 

topical application [12, 13]. Although it has been shown that formulating tetracaine at 



 4 

lower concentrations reduces the aggregation and improves drug transport, using a low 

drug concentration in vivo would reduce its clinical effect [12]. A more clinically viable 

penetration enhancement strategy would be to use a formulation excipient that could 

break up tetracaine aggregation even at high drug concentrations. 

 

Employing nanomaterials in topical products can enhance the percutaneous penetration of 

therapeutic agents [14-16]. Nanomaterials can act as drug carriers, but in addition if solid 

nanomaterials (> 10 nm in size) are added to topical formulations, they can also break up 

drug aggregates without penetrating into the skin through their powerful surface 

interactions. Using nanomaterials to modify drug-drug interactions could be an attractive 

drug delivery approach to improve the action of tetracaine because they may control the 

detrimental effects of this molecules aggregation on the surface of the skin and if the 

added nanomaterials are > 50 nm they are unlikely to enter the body and hence raise 

additional toxicity concerns [17-19].  

 

There have been a number of different mechanisms of action proposed for the penetration 

enhancement properties of nanoparticles include barrier disruption [20, 21], drug 

supersaturation [22, 23], skin occlusion [24, 25] and the provision of a drug reservoir to 

prevent drug depletion [26, 27]. However, there is only one reported study that focuses on 

the ability of nanomaterials to enhance skin penetration through the modification of drug 

aggregation [28]. The drug-nanoparticle surface interactions are probably more important 

when attempting to deliver amphiphilic drugs topically to the skin than the other potential 

penetration enhancing effects aforementioned because the drug nanoparticle surface 
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interactions may alter the drug-drug interaction equilibrium [29-32]. According to Ueda 

et al. (2011) [28], the physical interactions between formulation excipients and drug 

aggregates can be a powerful means to enhanced drug penetration through barriers. In 

addition, it has been shown that drug-nanomaterial interactions can be manipulated 

through varying the properties of the nanomaterials [33]. However, to date a topical 

formulation has not been designed with the purpose of enhancing percutaneous 

penetration simply by the addition of nanomaterials to the preparation in a manner that 

encourages the drug to interact physically with the particle surfaces.  

 

It is also important, if attempting to include nanomaterials in a topical semi-solid product, 

to consider the nanoparticle-vehicle interactions [34]. The vehicle can influence drug 

percutaneous penetration by controlling the drugs thermodynamic activity [35], 

modifying the membrane structure [36, 37] and influencing the diffusion coefficient of 

the drug through the vehicle viscosity [38, 39]. Although a solvent matrix must interact 

with a drug to solubilise it, strong interactions with the solvent should generally be 

avoided because they can have a detrimental effect on skin permeation through changes 

in drug diffusion [40]. This is especially true if trying to increase the penetration of a drug 

from a vehicle using nanoparticles because strong drug-vehicle interactions may 

influence the nanoparticle-drug interactions. 

 

The aim of this study was investigate if percutaneous drug delivery could be enhanced 

from topical gels by disrupting drug-drug interactions using charged nanoparticle 

surfaces. Tetracaine was selected as a model drug as it has previously been shown to 
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aggregate [6, 7], it has a slow onset of action clinically [41] and nanoparticles with a 

negative surface charge have been shown to interact with the drug and modify its 

behaviour [33]. The experiments were conducted in pH 8 because Ametop, the 

commercially marketed gel, was formulated at pH 8 and the aggregation properties of 

tetracaine had been previously studied in this pH [12, 33]. Hydroxypropyl methycellulose 

(HPMC) was chosen as the excipient to produce the novel nanoparticle containing topical 

product due to its inert nature and ability to form a gel with a large pore size which 

usually does not hinder diffusion [42]. A spray formulation was used to apply the HPMC 

system because it was thought to be important to provide the option to apply the 

nanoparticles and gel from different storage reservoirs in order to prevent thickening of 

the gel upon storage with the nanoparticles if strong interactions between the components 

did exist. The sprays were optimised in terms of evaporation kinetics, spray 

characterization, spray recovery and viscosity to ensure accurate dosing. The tetracaine 

permeation from the different formulations was assessed using porcine epidermis as a 

skin model using methods established in previous work [12,13]. Comparisons of the 

HPMC system with the commercially available Ametop were conducted to assess the 

potential for the developed formulation to provide superior drug deposition into the skin 

and to determine if the nanoparticle addition could influence the permeation from 

different types of formulation. Two drug application protocols were used to dose the drug 

to the skin: infinite dose studies were performed to understand the effects of vehicle 

composition on tetracaine delivery; finite dose studies were performed to assess to 

clinical relevance of any differences observed when nanoparticle were added to the 

formulations. Silica nanoparticles (NanoSiO2
) were used to represent the nanoparticle 
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surfaces with which the model drug tetracaine could interact. NanoSiO2
 were co-

administered to the skin with the drug and no drug was encapsulated into the particles or 

adsorbed onto their surface prior to administration. The semi-solid dosage form’s 

macroviscosity were measured using traditional ‘cone and plate’ rheometry to have a 

better understanding of the interactions taking place in the system, i.e., between the drug, 

nanoparticle and formulation. 

 

Materials and Methods 

 

Materials 

 

HPMC powder (grade 65SH viscosity 400 cP and 50 cP, brand name Metolose) was 

provided by Shin-Etsu Chemical Ltd, Japan. Tetracaine free base (≥ 98%), hydrochloric 

acid, acetic acid and sodium acetate were purchased from Sigma Aldrich, UK. 

Commercially available Ametop gels were supplied by AAH Pharmaceuticals, UK. Silica 

nanoparticles (NanoSiO2
), with a diameter of 200 nm (Psi-0.2), were obtained from 

Kisker Biotech GmbH and Co., Germany. Ultrapure water (18.2 M) was used 

throughout this study unless stated otherwise. Phosphate-buffered saline tablets were 

supplied by Oxoid Limited, UK. Acetonitrile, methanol and water (high-performance 

liquid chromatography (HPLC grade) were obtained from Fisher Scientific International, 

UK. 
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Spray formulation preparation 

 

The HPMC solutions were prepared by stirring HPMC powder slowly into pH 8 water at 

70 °C and allowing the system to hydrate for 24 h at 5 °C. The formulations were then 

transferred into 50 mL plastic spray bottles (Boots, UK). Three HPMC formulations were 

produced with polymer concentrations of 1 % and 2 % of Grade 65 (viscosity 400 cP, 

65SH400) and 3 % of Grade 65 (viscosity 50 cP, 65SH50) because concentrations above 

these levels were unable to spray through the nozzle of the dosing system used to apply 

them to the skin in the permeation studies. 

 

Evaporation kinetics 

 

Thirty actuations from each spray formulation (i.e. 1 % 65SH400, 2 % 65SH400, 3 % 

65SH50) were applied to a tared weighing boat on an analytical balance and monitored 

for weight loss after application. Weight of the formulation (g) was plotted against time 

(min). The rate of solvent evaporation was calculated using a line of best fit. The study 

lasted for 48 h to ensure the applied formulations were completely dry and no further 

weight loss occurred.  Triplicate experiments were performed. 

 

Spray characterisation 

 

The spray formulation placed at a distance of 5 cm vertically above a piece of filter paper 

and two shots was actuated from the spray canister holding the formulation onto the filter 
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paper. The spray was allowed to dry and the film residue shape was outlined using a 

marker. The shortest diameter and the longest diameter of film residue shape were 

measured. The measurements were used to calculate the area covered by the product 

based on a perfect circle (Eqs, (1) and (2)) and the aspect ratio (AR, Eq. (3))). Triplicate 

measurements were performed for each formulation. 

 

Dmean =  
Dmin+ Dmax

2
 (1) 

Area =  π (
Dmean

2
)

2

   (2) 

AR =  
Dmin

Dmax
     (3) 

 

Spray recovery 

 

Ten actuations from the spray were applied to a tared weighing boat on an analytical 

balance and individually measured. The recovery was calculated as a percentage of the 

sum of the mass of the formulation in the container (Cfinal) and on the tared weighing boat 

(s) at the end of 10 actuations to the initial mass of formulation in the container (Cinitial) 

for each sample, n=3 (Eq. 4). In addition, the amount of formulation recovered in the 

nozzle (nrecover) was measured by the subtraction of the initial mass of nozzle (ninitial) from 

the final mass of the nozzle (nfinal) (Eq. 5).  

 

Recovery (%) =  
Cfinal+s

Cinitial
 ×  100 % (4) 

nrecovery =  nfinal − ninitial  (5)  
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Viscosity of formulation 

 

The rheological measurements were performed using CSL a cone and plate rheometer 

(Carri-med, USA) with plate diameter of 4.0 cm and cone angle of 1.5° at a 100 mm 

fixed gap. The test was performed over a 1-10 Hz frequency range at constant stress 

amplitude of 0.798 Pa. All the measurements were carried out at 20°C. Twenty data 

points were recorded for each rheogram and triplicates were performed for each 

formulation. 

 

Tetracaine transport studies 

 

Fresh white adult porcine ears were obtained from a local abattoir (Evans and Sons, UK). 

Damaged ears were discarded. After cleaning with deionized water and wiping the 

residue with clean wipes, visible hairs were trimmed carefully. The preparation of 

epidermal porcine skin was carried out by heat separation [43]. Porcine skin was 

immersed and gently stirred in deionised water at 60C for 1 min. After removal from the 

deionized water, the skin as put on a corkboard with the dermal side down and the 

epidermis was carefully separated from the dermis with tweezers. The separated 

epidermis was washed with deionized water and floated on filter paper (Whatman no. 1, 

UK) to act as a support before it is dried with clean wipes. The samples were wrapped in 

aluminium foil and stored at - 20C for a maximum of up to 1 month [44]. The samples 

were thawed before use.  

 



 11 

The transport studies were carried out using upright individually calibrated Franz 

diffusion cells with an average of 2.1 ± 0.1 cm2 surface areas and 9.2 ± 0.5 mL receptor 

compartment volume. The porcine skin was cut, mounted and sealed with parafilm 

between two chambers of the glass diffusion cell with a 13 mm magnetic flea in the 

receiver chamber. The cell was inverted and filled with previously filtered and sonicated 

receiver fluid. Phosphate buffered saline (pH 7.4) was employed as a receiver fluid for 

the porcine epidermis transport studies to mimic the skin environment. The transport 

studies were performed on a submergible magnetic stirrer plate in a pre-heated water bath 

set at 37°C to provide a membrane surface temperature of 32°C. After cell equilibration 

for 1 h, the cells were checked for leaks by inversion and visual inspection for back 

diffusion. The tetracaine test systems were prepared and adjusted to 8.0 using 

hydrochloric acid and equilibrated at 32°C unless stated otherwise. Solutions were stirred 

for at least 24 h and the pH rechecked prior to analysis to ensure they were at 

equilibrium. The vehicle containing the nanoparticles was corrected to the necessary pH 

using hydrochloric acid prior to addition to the tetracaine solutions. The infinite dosing 

studies used 1 mL of tetracaine formulations, which were applied uniformly to the 

surface of the test membrane and the donor compartment was covered with a parafilm to 

minimise donor phase evaporation. In the infinite studies, a saturated tetracaine solution 

of pH 8 was compared to a HPMC formulation (developed in the study) and the 

commercial preparation Ametop. None of the systems contained nanoparticles as the 

objective was to understand the drug-vehicle interactions. The finite dosing tested the 

addition of nanoparticles on the formulations ability to deliver tetracaine in to the skin. 

The nanoparticles were added at a concentration of 50 mg/mL to the tetracaine 
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formulations immediately prior to application to the skin to avoid any potential problems 

induced by chemical or physical instability. The finite dosing transport study used 10 L, 

of Ametop or 3% HPMC formulation. The exact weight of the donor solution applied 

corresponded to 4.87 and 4.85 mg/cm2 respectively. To these two 151 mM drug-loaded 

gels (drug loading was matched across the two formulations) an equal amount (10 L) of 

with silica nanoparticles (NanoSiO2
) or water (control) were added to the formulation at 

the 0 h time point after correcting the suspension medium pH to 8. At predetermined time 

intervals, 1 mL aliquots were removed from the Franz cell receiver phases and replaced 

with fresh receiver fluid to keep the liquid volume in the receiver compartment constant. 

The collected receiver fluid samples were analysed by HPLC. A total of 5 replicates of 

each experiment were performed.  

 

Cumulative amounts of drug (ng) penetrating the unit surface of the membrane area (cm2) 

were corrected for sample removal and plotted against time (h). The steady-state flux (J) 

was calculated from the slope of the linear portion of the curve (R2 ≥ 0.98), using at least 

3 points with values above the assay limit of detection (LOQ). The permeability 

coefficient of tetracaine was calculated using equation 6 [45]: 

 

J =  
kp

Cv
                                                            (6)               

 

where J represents the flux, kp is the permeability coefficient of the permeant across the 

membrane and Cv is the concentration of the drug in the vehicle. The flux enhancement 

ratio (ER) of the different formulations was determined using the following equation:  
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ER =  
J2

J1
                                             (7) 

 

where J1 and J2 are the steady-state transmembrane transport rate of tetracaine from the 

tetracaine solutions and tetracaine-nanoparticle gel mixtures respectively. The 

accumulative mass of tetracaine transported through the skin at 45 min was recorded as 

this was the usual onset of action time for this agent. The permeation lag time was 

estimated from the X-axis intercept from the linear regression of the model applied to the 

permeation data in order to determine the flux. 

 

Tetracaine quantification 

 

The quantification of tetracaine was performed using a reverse-phase HPLC system 

consisting of a pump with autosampler (Hewett-Packard series 1050, Agilent 

Technologies UK Ltd., UK) connected to a fluorescence detector (Shimadzu detector RF-

551, Shimadzu corp., Japan). The system was controlled via a computer with Chromeleon 

software (Dionex Corp., USA), which was also used to record and interpret the analytical 

data. The HPLC mobile phase comprised acetonitrile-methanol-acetate buffer (0.1 M) 

(25:25:50 (v/v), pH 5.1) set at a flow rate of 1.0 mL.min-1. Tetracaine was separated 

using a Luna 3 m C18(2) (150 X 4.6 mm) stationary phase (Phenomenex, UK) at room 

temperature with a 100 μL injection volume and the fluorescence detection at an 

excitation wavelength of 310 nm and an emission wavelength of 372 nm. The retention 

time for tetracaine was 4.2 min. The calibration curves were constructed on the basis of 
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the peak area measurements using standard solutions of known tetracaine concentrations 

dissolved in an identical fluid as the receiver phase for the transport studies, 10-4 HCl (pH 

4 water). The assay was shown to be “fit for purpose” in terms of sensitivity (LOD – 4.08 

ng/mL, LOQ – 74 ng/mL, n=25), precision (6% CV), and linearity (R2
 ≥ 0.99).  

 

Statistical Analysis 

 

All values were expressed as their mean ± standard deviation (SD). The statistical 

analysis of data was performed using the statistical package for social sciences, SPSS 

version 21, (IBM Corp., USA) with a significance level of 0.05. The normality (Sapiro-

Wilk) and homogeneity of variances (Levene’s test) of the data were assessed prior to 

statistical analysis. Transport data were analysed statistically using one-way analysis of 

variance (ANOVA) tests for normally distributed data and a non-parametric Kruskal-

Wallis tests for non-Gaussian distributed data. Post hoc comparisons of the means of 

individual groups were performed when appropriate using Dunnet’s test for normal 

distributed data and Games Howell test for non-Gaussian distributed data.  For all pair-

wise comparison of means, Student’s independent t-test or Mann-Whitney test was 

applied. Data were presented using OriginPro software (OriginPro version 8.6, OriginLab 

Corporation, US). 
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Results 

 

Formulation optimization and characterization 

 

A high spray volume, a high percentage of spray recovery, a low amount of residual in 

the nozzle, a large spray deposit area and a moderately high viscosity were all thought to 

be desirable product characteristics for the spray systems. The rate of evaporation did not 

discriminate between the three formulations (Table 1, p > 0.05, 0.2426 ± 0.0350 g/h), but 

the 2% 65SH400 was thought not to be ideal because it had the lowest spray actuation 

mass (66.7 ± 43.7 mg), lowest percentage spray recovery (99.72 ± 0.09%), highest 

residual nozzle mass after spray actuation (66.0 ± 15.3 mg), lowest mean spray deposit 

diameter (2.4 ± 0.3 cm), lowest mean spray deposit area (4.5 ± 1.1 cm2) and highest 

viscosity (Fig. 1).  

 

The 1% 65SH400 and 3% 65SH50 formulations were not significantly different (p > 

0.05) in terms of the amount of spray actuated (157.7 ± 14.1 mg) and the recovery from 

the spray container (99.83 ± 0.05 %). However, 3% 65SH50 system was chosen for 

further investigation rather than 1% 65SH400 because, although it covered a relatively 

small area (5.9 ± 0.5 cm2), it showed appropriate viscosity to remain on the skin (Fig. 1) 

and it deposited 104-fold less residue on the spray nozzle (p < 0.05). Furthermore, the 3% 

65SH50 gel was the most efficient in terms of ejecting the dose of the three spray 

formulations.  
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Infinite transport studies 

 

Infinite doses of tetracaine were used to understand the effect of vehicle composition on 

tetracaine transport (Table 2, Fig. S2 for permeation profiles). According to 

manufacturer’s data, the commercially available Ametop gel consisted of saturated 

concentrations of tetracaine with sodium hydroxide, sodium methyl-o-hydroxybenzoate, 

sodium propyl-p-hydroxybenzoate, monoboasic potassium phosphate, xanthan gum, 

sodium chloride and purified water. The HPMC formulation consisted of saturated 

concentrations of tetracaine with 3% HPMC. No nanoparticles were added to these 

systems. There was no significant difference (p > 0.05) in steady-state tetracaine transport 

rate ((110.23 ± 40.93 µg/cm2/h) and lag time (9.15 ± 2.05 min) when infinite doses of 

tetracaine were delivered by Ametop and the HPMC formulation compared to a simple 

saturated tetracaine solution, i.e. with no formulation additives. 

 

Finite transport studies 

 

Finite studies were performed to study the transport of tetracaine from the semi-solid 

formulations using a dosing regime that matched clinical conditions (Table 3, Fig S3 and 

S4 for permeation profiles of Ametop and HPMC formulations respectively). Based on 

manufacturer’s data, the  NanoSiO2
, which were added to the formulations, only consisted 

of amorphous silica and water. Thus, water acted as a control to mimic the drug dilution 

effects that were experienced upon addition of the nanoparticles to the formulations. 

Calculation of the lag time showed that the HPMC spray, with the added NanoSiO2
, had 
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the shortest permeation lag time (2.02 ± 0.79 min). In addition, the tetracaine permeation 

rate (109.95 ± 28.63 µg/cm2/h) and the amount of tetracaine permeating at the 45 min 

time point (76.83 ± 18.92 µg) were the highest when the drug was formulated as the 

HPMC spray containing the NanoSiO2
. The addition of water to the HPMC semi-solid 

formulation did not induce a significant change in tetracaine steady-state flux (30.51 ± 

12.16 µg/cm2/h) and accumulative mass permeating the skin at 45 min (21.99 ± 10.48 

µg), but it did induce a 1.7 times reduction in lag time from 7.09 ± 1.80 min to 3.97 ± 

1.07 min. (Table 3). Compared with the water control, the NanoSiO2
 significantly 

enhanced (p<0.05) percutaneous tetracaine transport 3.6 fold when added to the HPMC 

formulation (Table 3). In addition, the NanoSiO2
significantly increased the accumulative 

mass at 45 min (m45min) by ca. 3 times and reduced the lag time (tlag) by ca. 2-fold (Table 

3).  

 

In contrast to the HPMC formulation, the addition of water to the Ametop formulations 

significantly enhanced tetracaine permeation rates by 5-fold, increased accumulative 

mass by 10-fold and reduced lag time by 1.5 times (Table 3). Compared to the water 

control, the NanoSiO2
 addition to the Ametop formulation increased the skin permeation 

by 2.7. However, of the two formulations tested the HPMC formulation was superior, it 

significantly enhanced the tetracaine flux (46.99 ± 7.96 µg/cm2/h) by 40-fold, increased 

accumulative mass (31.13 ± 4.04 g) by 124-fold and reduced lag time (7.09 ± 1.80 min) 

by 8-fold compared to the Ametop formulation.  
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Rheology measurements 

 

The rheological characteristics of the semi-solid formulations were examined to try and 

further understand the observed differences in the tetracaine permeation profiles (Table 

3). All the Ametop formulations were significantly (p < 0.05) more viscous (higher 

storage and loss modulus) than the HPMC formulations. The addition of water in both 

formulations significantly decreased (p < 0.05) the viscoelasticity of the formulations. 

However, there were no significant changes (p>0.05) in rheological behaviour when the 

additions of water and NanoSiO2
 to the gels were compared. 

 

Discussion 

 

Loading tetracaine into a two very different semi solid formulation and applying an 

infinite dose of the systems to the surface of the skin showed no important differences in 

terms of the drug permeation. The data demonstrated that neither the xanthan gum or 

HPMC had a large effect on tetracaine permeation behaviour, i.e. the excipients were 

considered to be relatively inert, when the drug was presented to the skin as in its 

aggregated state (the drug concentration in the formulation was above its measured 

critical aggregation concentration at pH 8 [12]). Similar observations were observed by 

Kim [46] and Charoo [47]. However, HPMC is not inert in all circumstances. In 

supersaturated conditions, HPMC has been shown to interact with a drug and act as an 

anti-nucleating agent [48-50]. To some extent the influence of HPMC on drug 

permeability is dependent on its viscosity and the nature of the drug with which the 
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polymer is formulated with. In the infinite dose studies without nanoparticles tetracaine 

would show strong intermolecular interactions and this may why the interactions with the 

HPMC were limited [12, 13]. The specificity of the drug-vehicle interactions in semi-

solid preparations is one reason why constructing a semi-solid system that facilitates 

efficient release of a drug from a topically applied formulation is not a trivial task. Not 

optimising the drug-vehicle interactions can lead to inefficient delivery. For example, an 

investigation by Shah et al. [51] demonstrated that only 5 – 10 % of the applied 

hydrocortisone was released from commercial creams. To circumvent this problem the 

type of formulation must be matched to the issues presented by the drug. For example, 

Reid et al. [52] showed that EtOH/PEG HFA spray could generate a 6-fold enhancement 

of BMV delivery through the skin as compared to commercial cream, but not one 

approach works for all systems. For example, Fiala et al. [53] used a similar approach to 

Reid et al. [47] when trying to improve the skin penetration of lidocaine, but this was not 

successful. It should be noted that although HPMC did not show the ability to hider the 

delivery of the aggregated tetracaine in the current study viscosity modifiers do generally 

have the potential to hinder drug diffusion from the formulation into the skin. For 

example, the addition of a 7 % gelling agent to thicken a Transcutol:isopropyl myristate 

binary mixture resulted in a four-fold decrease in clebopride diffusion [54].  

 

In the finite dosing studies the –ve charged nanomaterials suspended in water were added 

on the skin just after application of the tetracaine formulations. These systems were 

compared to equivalent semi-solid formulations applied to the skin with an equal amount 

of pH-adjusted water in order to account for the drug dilution effects upon dosing. When 
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the systems with and without nanomaterials were compared across both types of semi-

solid vehicles used in this work, the nanomaterials enhanced drug permeation into the 

skin. It has previously been shown in simple aqueous solvents that NanoSiO2
 breaks up 

the tetracaine aggregates due to weak surface interactions between -ve charged NanoSiO2
 

surfaces and the + ve charged tetracaine molecules [33]. Although it was likely that the 

same mechanism of action was responsible for the changes in drug permeation shown in 

this study it was thought necessary to further investigate the nature of the drug-vehicle-

nanoparticles interactions in the gels using rheology measurements. 

 

It was interesting that the infinite and finite dosing studies did not show the same results. 

The lack of discrimination between the formulation types in the infinite dosing studies 

was not replicated in the finite dosing studies where the HPMC formulation showed a far 

superior penetration rate into the skin. There is often a significant difference between 

infinite finite dose studies. For example, in a study by Cross et al. [55], thickening agents 

were shown to retard drug penetration through the skin in infinite dose studies but the 

opposite effect was observed in finite dose studies. The authors attributed the different 

results to the increased hydration due to less water evaporation and enhanced drug 

diffusivity through the stratum corneum when using finite doses. It seemed reasonable 

that the same reasons for the differences in the infinite and finite doses from Cross et al.’s 

work [55] could be applied to the current study results.  

 

According to the rheological data, there was no difference between the viscoelasticity of 

the semi-solid formulations when either water or silica particles in water were added to 
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the semi-solid systems. This was unlike the results obtained by Moddaresi et al. [56], 

where an increase in viscoelasticity was observed when lipid nanoparticles were added to 

hyaluronic acid vehicle. This previous work attributed the change in rheological 

behaviour to the presence of strong interactions between the nanoparticles and the 

hyaluronic acid. In the current study the rheology data implied that the formulation 

excipients and the nanoparticles did not display a strong interaction because the addition 

of water and the addition of the nanoparticles suspended in water had the same effect on 

the gel rheology. These results suggested that the superior tetracaine permeation upon the 

addition of nanoparticles was largely due to the other interactions taking place in the 

system, i.e., tetracaine-nanoparticle and/or tetracaine-formulation interactions. The fact 

that the enhanced permeation was observed both in the in-house manufactured HPMC 

formulation and the commercially available Ametop preparation, even though the two 

preparations exhibited very different rheological behaviour, indicated that the tetracaine-

nanoparticle influenced the drug permeation to a greater extent compared to the 

tetracaine-formulation interactions. If the reverse was true then a much larger difference 

in the effects of adding nanoparticles to the gels would be expected. 

 

The addition of water to the tetracaine formulations, regardless of whether or not the 

liquid contained nanoparticles, altered the drug permeation through the skin. This type of 

viscosity dependant permeation behaviour is usually a consequence of the drug forming 

hydrogen bonds with the thickening agent in the topical formulation [59] which reduces 

the drug permeation. The data from the current study showed the opposite effect, i.e. the 

permeation of the drug increased upon the addition of water. As mentioned previously 
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this may have been because of the relatively strong drug-drug affinity of the tetracaine 

molecules (CAC – 7.38 µM [12]) and the weak interactions between the drug on the 

formulation vehicles (as shown by the infinite dosing studies). Alternatively it is also 

possible that the semi-solid system to showed viscosity-independent permeation 

behaviour and the dilution of the system reduced the drug aggregation [57, 58]. 

 

Conclusions 

 

In this study, an efficient tetracaine topical spray formulation with superior drug 

permeability and a more rapid onset of action compared to commercial Ametop was 

generated. This was obtained through the addition of nanoparticles to a semi-solid 

preparation that was sprayed onto the skin. Evidence was gathered to suggest that the 

added nanoparticles primarily interacted with the drug and disrupted the tetracaine 

aggregates, released more free drug to improve drug permeation and lead to a shorter lag 

time. The HPMC spray formulation was thought to be superior to the commercial 

preparation due to the lower macroviscosity, which made tetracaine more readily 

available to permeate through the skin. However, the nanoparticle addition to the 

commercial formulation was also effective in improving the delivery of tetracaine, which 

suggested that this novel drug delivery strategy could even be applied to currently 

marketed products to enhance their performance. 
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Fig. 1 Storage modulus (G’, solid) and loss modulus (G’’, open) measured as a function 

of frequency (Hz) for various 1 % 65SH400 (■), 2 % 65SH400 (●) and 3 % 65SH50 (▲) 

HPMC formulations. Data points represent mean ± standard deviation, n=3. 
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Fig. 2 Storage modulus (G’, top) and loss modulus (G’’, bottom) measured as a function 

of frequency (Hz) for Ametop (■), Ametop with the addition of water (), Ametop with 

the addition of silica nanoparticles, NanoSiO2
 ( ), HPMC formulations (▼), HPMC 

formulation with the addition of water (◇), formulation with the addition of NanoSiO2
 

( ). Data points represent mean ± standard deviation, n=3. 
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Table 1. Characteristics of various HPMC formulations. Data represent mean ± 

standard deviation of 3 independent tetracaine samples. * Significant differences were 

observed based on one-way ANOVA test. 

 

 
1 % 65SH400 2% 65SH400 3% 65SH50 

Evaporation rate (g/h) 0.24 ± 0.04 0.27 ± 0.03 0.25 ± 0.04 

Spray mass (mg) 157.7 ± 14.1  66.7 ± 43.7* 145.5 ± 27.5 

Spray recovery (%) 99.83 ± 0.05 99.72 ± 0.09* 99.92 ± 0.02 

Nozzle recovery (mg) 31.4 ± 18.2* 66.0 ± 15.3* 0.3 ± 0.1 

Dmean (cm) 3.5 ± 0.1* 2.4 ± 0.3 2.7 ± 0.1 

Area (cm2) 9.8 ± 0.6* 4.5 ± 1.1 5.9 ± 0.5 

Aspect ratio 1.0 ± 0.0 0.9 ± 0.1 0.7 ± 0.1 
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Table 2. Steady state flux and permeability constants, kp, accumulative mass at 45 

minutes, m45min, and lag time, tlag, of infinite dosages of Ametop and tetracaine HPMC 

in the presence of different additives in pH 8 across porcine epidermis membrane. 

Data represent mean ± standard deviation of 3 independent tetracaine samples. 

 

 Flux  

(µg/cm2/h) 

kp  

(10-3 cm/h) 

m45min 

(µg) 

tlag 

(min) 

Saturated solution 110.23 ± 40.93 66.20 ± 24.58 64.5 ±  9.15 ± 2.05 

Ametop formulation 105.36 ± 21.97 63.27 ± 13.19 59.80 ± 9.31 10.10 ± 1.50 

HPMC formulation 107.28 ± 28.31 64.43 ± 17.00 67.19 ± 18.21 8.79 ± 2.43 
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Table 3. Steady state flux, flux enhancement ratio, ER, accumulative mass at 45 min, 

m45min, and lag time, tlag, of finite dosages of Ametop and tetracaine HPMC in the 

presence of different additives in pH 8 across porcine epidermis membrane. Data 

represent mean ± standard deviation of 3 independent tetracaine samples. * Significant 

differences were observed based on one-way ANOVA. 

 

 

 

Flux  

(µg/cm2/h) 

ER m45min 

(µg) 

tlag 

(min) 

Ametop  1.16 ± 0.14 - 0.25 ± 0.06 31.60 ± 3.00 

Ametop + water 5.62 ± 2.25 4.71 ± 1.40* 2.53 ± 1.77* 20.20 ± 1.34* 

Ametop + NanoSiO2
 14.19 ± 2.27 12.86 ± 3.16* 8.12 ± 1.21* 10.69 ± 1.98* 

HPMC 46.99 ± 7.96 - 31.13 ± 4.04 7.09 ± 1.80 

HPMC + water 30.51 ± 12.16 0.69 ± 0.35 21.99 ± 10.48 3.97 ± 1.07* 

HPMC + NanoSiO2  109.95 ± 28.63 2.48 ± 1.08* 76.83 ± 18.92 * 2.02 ± 0.79* 

 

 

 

 


