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Axion Cosmology

David J. E. Marsh1

King’s College London, Strand, London, WC2R 2LS, United Kingdom

Abstract

Axions comprise a broad class of particles that can play a major role in explain-

ing the unknown aspects of cosmology. They are also well-motivated within high

energy physics, appearing in theories related to CP -violation in the standard

model, supersymmetric theories, and theories with extra-dimensions, including

string theory, and so axion cosmology offers us a unique view onto these the-

ories. I review the motivation and models for axions in particle physics and

string theory. I then present a comprehensive and pedagogical view on the

cosmology and astrophysics of axion-like particles, starting from inflation and

progressing via BBN, the CMB, reionization and structure formation, up to the

present-day Universe. Topics covered include: axion dark matter (DM); direct

and indirect detection of axions, reviewing existing and future experiments; ax-

ions as dark radiation; axions and the cosmological constant problem; decays of

heavy axions; axions and stellar astrophysics; black hole superradiance; axions

and astrophysical magnetic fields; axion inflation, and axion DM as an indirect

probe of inflation. A major focus is on the population of ultralight axions cre-

ated via vacuum realignment, and its role as a DM candidate with distinctive

phenomenology. Cosmological observations place robust constraints on the ax-

ion mass and relic density in this scenario, and I review where such constraints

come from. I next cover aspects of galaxy formation with axion DM, and ways

this can be used to further search for evidence of axions. An absolute lower

bound on DM particle mass is established. It is ma > 10−24 eV from linear

observables, extending to ma & 10−22 eV from non-linear observables, and has

the potential to reach ma & 10−18 eV in the future. These bounds are weaker

Preprint submitted to Elsevier June 15, 2016
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if the axion is not all of the DM, giving rise to limits on the relic density at

low mass. This leads to the exciting possibility that the effects of axion DM

on structure formation could one day be detected, and the axion mass and relic

density measured from cosmological observables.
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1. Introduction

As Weinberg said, “physics thrives on crisis” [1]. In 1989 when Weinberg

wrote that famous review, he said that physics was short on crises. Happily,

these days, thanks in large part to the advent of precision cosmology, it is full

of them.

The standard cosmological model is described by just six numbers: two for

initial conditions, one for dark matter (DM), one for the baryons, one for cosmic

structure formation and reionization, and one for the cosmological constant

(c.c.). Each of these numbers presents a problem for our understanding of

fundamental physics. The initial conditions appear close to scale invariant:

producing such initial conditions requires a period of rapid acceleration (or slow

deceleration) in the early Universe, a state of affairs that cannot be realised in

the usual hot big bang. Dark matter constitutes the vast majority of matter

in the Universe, and no particle in the standard model of particle physics can

fit the role of being stable, cold, and weakly coupled. The standard model also

provides no obvious way to tip the matter-anti-matter asymmetry in favour

of baryons instead of anti-baryons. Structure formation and reionization are

sensitive to the initial conditions, matter content, and complex astrophysical

processes in ways that we are only just learning. And then finally there is

Weinberg’s problem of the c.c..

In 1989 Weinberg selected just the c.c. as a major problem: even without

precision cosmology, it was clear that the theoretical expectations about this

number were wildly off the mark. All of the other problems were known at that

time, but without the precision measurements we have today their importance

could easily be debated and there was no need to call “crisis.” We are no

longer in that position of blissful ignorance: all the numbers in the standard

cosmological model need to be considered and their theoretical implications

taken seriously.

In seeking a unified view of the problems presented by precision cosmology,

we will focus in this review on a class of particles known as axions. Ever since the

6



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

earliest days of the QCD axion it has been realised that it offers an exceptionally

good DM candidate. With the advent of string theory and the corresponding

profusion of axion-like particles (ALPs), axions have come to play important

roles in inflation and the generation of cosmological initial conditions, and in

the solution of the c.c. problem. String axions also offer the posisbility to

resolve problems of structure formation inherent in more vanilla models of DM.

Axions can even assist in baryogenesis thanks to their role in CP -violation. A

summary of constraints and probes of axion cosmology, as a function of axion

mass, is shown in Fig. 1.

A large portion of this review will focus on ALPs in the mass range

10−33 eV . ma . 10−18 eV . (1)

I will refer to axions in this mass range as ultralight axions, or ULAs. The

lower bound is of order the present day Hubble constant, H0/h = MH = 2.13×
10−33 eV = 100 km s−1 Mpc−1, and reflects constraints on axion dark energy

(DE). The upper bound is related to the baryon Jeans scale, and reflects a

distinctive role of ULAs in cosmological structure formation and reionization.

This vast range of axion masses can be probed using the tools that led us to our

crises in the first place, i.e. those of precision cosmology: the cosmic microwave

background (CMB), large scale structure (LSS), galaxy formation in the local

Universe and at high redshift, and by the epoch of reionization (EOR).

It is worth noting here, for clarity, that the word “axion” can take on a variety

of meanings. It was first coined by Wilczek [2] to name the particle associated

to the axial anomaly in QCD and the Peccei-Quinn [3] solution to the strong-

CP problem. It is so named after the eponymous American laundry detergent,

using the axial anomaly to clean up the mess of CP symmetry in the strong

interactions [4]. The QCD axion acquires mass from QCD chiral symmetry

breaking, giving a one parameter model described by the axion decay constant,

fa. In quantum field theory, the term can apply generally to any pseudoscalar

Goldstone bosons of spontaneously broken global chiral symmetries, typically

giving a two parameter model with (ma, fa). In string theory and supergravity,

7
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the term “axion” is more general and can refer either to such matter fields, or to

pseudoscalar fields associated to the geometry of compact spatial dimensions [5].

In these theories there are typically many axion fields, each with a number of

free parameters in their potentials and kinetic terms. In this review, we will use

the term in its most general sense for a light pseudoscalar field (indeed in some

cosmological cases, apart from naturalness considerations, even the distinction

between scalar and pseudoscalar will be irrelevant).

Since the QCD axion was first proposed in 1977-1978, there have been many

reviews written on axion physics. Many such reviews and published lecture notes

focus on the QCD axion and its role in solving the strong-CP problem [6, 7], as

well as its important cosmological role [8]. Of ALPs, there are technical reviews

of axions in field theory and string theory [9, 5], as well as reviews of axions

in astrophysics [10], and of axion inflation [11]. There is also a vast number of

reviews in the field of axion direct detection [12, 13, 14, 15, 16]. It is the purpose

of this review firstly to focus on ULAs, the cosmology of which has not been

reviewed before, and with a particular emphasis on methods of modern precision

cosmology, including computational aspects both analytic and numerical, and

with an eye to data. Secondly, it is to bring together the disparate topics of

other axion reviews into one place, expressing the unity of axion particle physics

and cosmology: a task, which, to my knowledge, has not been fully addressed

since the review of Ref. [9], more than 30 years ago in this very journal.

Notes

Useful notation and equations for cosmology are defined in the Appendix.

I (mostly) use units where c = ~ = kB = 1 and express everything in terms

of either electronvolts, eV, solar masses, M�, parsecs, pc, or Kelvin, K, de-

pending on the context. The Fourier conjugate variable to x is k and my

Fourier convention puts the 2π’s under the dk’s. I use the reduced Planck mass,

Mpl = 1/
√

8πG = 2.435× 1027 eV, and a “mostly positive” metric signature.

8
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2. Models

A classic review of models for axions in particle physics and string theory

is Ref. [9], where many more details are given. A modern review of axions in

string theory is Ref. [5], and for pedagogical introductions and phenomenology

see e.g. Refs. [17, 14]. This section is intended only as an overview: we will

wave our hands through the particle physics computations, and wave them even

more wildly through the string theory. This section is also self-contained, and

can be skipped for those interested only in cosmology and astrophysics. The

salient points for cosmology are repeated in Section 3.1.

2.1. The QCD Axion

2.1.1. The Strong-CP Problem and the PQ Solution

QCD suffers from the “strong-CP problem.” A topological (total derivative)

term is allowed in the Lagrangian:

LθQCD =
θQCD

32π2
Tr GµνG̃µν , (2)

where Gµν is the gluon field strength tensor, G̃µν = εµναβGαβ/2 is its dual, and

the trace is over the adjoint representation of SU(3) (a notation I drop from

now on).1 This term arises due to the so-called “θ-vacua” of QCD [18], which

are discussed in Appendix A.

The θ term is CP violating and gives rise to an electric dipole moment

(EDM) for the neutron [19]:

dn ≈ 3.6× 10−16θQCD e cm , (3)

where e is the charge on the electron. The (permanent, static) dipole moment is

constrained to |dn| < 2.9× 10−26 e cm (90% C.L.) [20], implying θQCD . 10−10.

1I have chosen the normalization for the gluon field, Aµ, appropriate for the vacuum

topological term, which takes θQCD ∈ [0, 2π]. In this normalization the gluon kinetic term is

−GµνGµν/4g2
3 , where g3 is the SU(3) gauge coupling constant.

10
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This is a true fine tuning problem, since θQCD could obtain an O(1) contribu-

tion from the observed CP -violation in the electroweak (EW) sector [21], which

must be cancelled to high precision by the (unrelated) gluon term. Specifically,

the measurable quantity is

θQCD = θ̃QCD + arg detMuMd , (4)

where θ̃ is the bare quantity and Mu, Md are the quark mass matrices.2

The QCD axion is the dynamical pseudoscalar field coupling to GG̃, pro-

posed by Peccei and Quinnn (PQ) [3], which dynamically sets θQCD = 0 via

QCD non-perturbative effects (instantons) [23]. The simple idea is that there is

a field, φ, which enjoys a shift symmetry, with only derivatives of φ appearing in

the action. Taking θQCD = Cφ/fa, where φ is the canonically normalized axion

field, fa is the axion decay constant and C is the “colour anomaly” (discussed

in Section 2.2), this is a symmetry under φ → φ + const. Then, as long as

shift symmetry violation is induced only by quantum effects as (Cφ/fa)GG̃, any

contribution to θQCD can be absorbed in a shift of φ. The action, and thus

the potential induced by QCD non-perturbative effects, only depends on the

overall field multiplying GG̃. If the potential for the shifted field is minimized

at Cφ/fa = 0 mod 2π, then the strong CP problem is solved. In fact, a theorem

of Vafa and Witten [23] guarantees that the instanton potential is minimized at

the CP conserving value. We will discuss the instanton potential in more detail

in Section 2.2.

The axion mass, ma, induced by QCD instantons can be calculated in chiral

perturbation theory [24, 2]. It is given by

ma,QCD ≈ 6× 10−6 eV
(

1012 GeV
fa/C

)
. (5)

This is a (largely) model-independent statement, and the approximate symbol,

“≈,” takes model and QCD uncertainties into account. If fa is large, the QCD

2The phase of the quark mass matrix is not measured, but could be O(1). CP -violation

in the standard model leads to a calculable minimum value for θQCD even in the axion model

(e.g. Ref. [22]).
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axion can be extremely light and stable, and is thus an excellent DM candi-

date [25, 26, 27].

We will consider three general types of QCD axion model:3

• The Peccei-Quinn-Weinberg-Wilczek (PQWW) [3, 24, 2] axion, which in-

troduces one additional complex scalar field only, tied to the EW Higgs

sector. It is excluded by experiment.

• The Kim-Shifman-Vainshtein-Zakharov (KSVZ) [28, 29] axion, which in-

troduces heavy quarks as well as the PQ scalar.

• The Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) [30, 31] axion, which in-

troduces an additional Higgs field as well as the PQ scalar.

2.1.2. PQWW axion

The PQWW model introduces a single additional complex scalar field, ϕ, to

the standard model as a second Higgs doublet. One Higgs field gives mass to

the u-type quarks, while the other gives mass to the d-type quarks (a freedom

of the model is the choice of which doublet, if not a third field, gives mass to

the leptons). This fixes the representation of ϕ in SU(2) × U(1). The whole

Lagrangian is then taken to be invariant under a global U(1)PQ symmetry, which

acts with chiral rotations, i.e. with a factor of γ5. These chiral rotations shift

the angular part of ϕ by a constant. The PQ field couples to the standard

model via the Yukawa interactions which give mass to the fermions as in the

usual Higgs model. The invariance of these terms under global U(1)PQ rotations

fixes the PQ charges of the fermions.

Just like the Higgs, ϕ has a symmetry breaking potential (see Fig. 2):

V (ϕ) = λ

(
|ϕ|2 − f2

a

2

)2

, (6)

3One can also construct more general particle physics models along these lines with multiple

ALPs as well as the QCD axion, but we will not discuss such models in detail. We consider

all ALPs within a string theory context in Section 2.4.
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Figure 2: A symmetry breaking potential in the complex ϕ plane. The vev of the radial mode

is fa/
√

2 and the axion is the massless angular degree of freedom at the potential minimum.

and takes a vacuum expectation value (vev), 〈ϕ〉 = fa/
√

2 at the EW phase

transition. Just as for the Higgs, this fixes the scale of the vev fa ≈ 250 GeV.

There are four real, electromagnetically (EM) neutral scalars left after EW

symmetry breaking: one gives the Z-boson mass, one is the standard model

Higgs [32, 33], one is the heavy radial ϕ field, and one is the angular ϕ field. The

angular degree of freedom appears as 〈ϕ〉eiφ/fa after canonically normlaizing

the kinetic term. The field φ is the axion and is the Goldstone boson of the

spontaneously broken U(1)PQ symmetry.

The axion couples to the standard model via the chiral rotations and the

PQ charges of the standard model fermions, e.g. expanding in powers of 1/fa

the quark coupling is mq(φ/fa)iq̄γ5q. The chiral anomaly [34] then induces

couplings to gauge bosons via fermion loops4 ∝ φGG̃/fa and ∝ φFF̃/fa, where

F is the EM field strength. The gluon term is the desired term and leads to the

PQ solution of the strong-CP problem. Notice that all axion couplings come

4See Appendix B for a heuristic description of effective field theory (EFT).
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suppressed by the scale fa, which in the PQWW model is fixed to be the EW

vev. In the PQWW model fa is too small, the axion couplings are too large,

and it is excluded, e.g. by beam-dump experiments [9]. The PQWW axion is

also excluded by collider experiments such as LEP (see the recent compilation

of collider constraints in Ref. [35], and Section 9.6).

In the KSVZ and DFSZ models, which we now turn to, the PQ field, ϕ, is

introduced independently of the EW scale. The decay constant is thus a free

parameter in these models, and can be made large enough such that they are

not excluded. For this reason, both the KSVZ and the DFSZ axions are known

as invisible axions. On the plus side, in these models the axion is stable and is

an excellent DM candidate with its own phenomenology.

2.1.3. KSVZ axion

The KSVZ axion model introduces a heavy quark doublet, QL, QR, each of

which is an SU(3) triplet, and the subscripts represent the charge under chiral

rotations. The PQ scalar field, ϕ, has charge 2 under chiral rotations, but is

now a standard model singlet. The PQ field and the heavy quarks interact via

the PQ-invariant Yukawa term, which provides the heavy quark mass:

LY = −λQϕQ̄LQR + h.c. , (7)

where the Yukawa coupling λQ is a free parameter of the model. As in the

PQWW model, there is a global U(1)PQ symmetry which acts as a chiral rota-

tion with angle α = φ/fa, shifting the axion field. Global U(1)PQ symmetry is

spontaneously broken by the potential, Eq. 6.

At the classical level, the Lagrangian is unaffected by chiral rotations, and

ϕ is not coupled to the standard model. However at the quantum level, chiral

rotations on Q affect the G̃G term via the chiral anomaly [34]:

L → L+
α

32π2
GG̃ , (8)

where I have used that in the KSVZ model the colour anomaly is equal to unity

(see Section 2.2).
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At low energies, after PQ symmetry breaking, ϕ takes a vev and the Q fields

obtain a large mass, mQ ∼ λQfa. The Q fields can then be integrated out. The

chiral anomaly induces the axion coupling to G̃G as a “memory” of the chiral

rotation applied at high energy. At the level of EFT, the induced topological

term is the only modification to the standard model Lagrangian: the KSVZ

axion has no unsuppressed tree-level couplings to standard model matter fields.

There is an axion-photon coupling in this model that can be calculated via

loops giving the EM anomaly. It’s value depends on the electromagnetic charges

assigned to the Q fields. The canonical choice is that they are uncharged and

the axion-photon coupling is induced solely by the longitudinal mode of the

Z-boson (see e.g. Ref. [36]). Other couplings can also be induced by loops and

mixing, since Q must be charged under SU(3). Couplings will be listed and

discussed further in Section 2.3.

2.1.4. DFSZ axion

The DFSZ axion couples to the standard model via the Higgs sector. It

contains two Higgs doublets, Hu, Hd, like in the PQWW model, however the

complex scalar, ϕ, which contains the axion as its angular degree of freedom,

is introduced as a standard model singlet. Again, global U(1)PQ symmetry is

imposed and spontaneously broken by the potential, Eq. (6).

The PQ and Higgs fields interact via the scalar potential:

V = λHϕ
2HuHd . (9)

This term is PQ invariant for ϕ with U(1)PQ charge +1, and the Higgs fields each

with charge -1. As in the KSVZ model, PQ rotations act by shifting the axion

by φ/fa → φ/fa + α. When the PQ symmetry is broken and ϕ obtains a vev,

the parameters in the Higgs potential, and the coupling constant, λH , must be

chosen such that the Higgs fields remain light, consistent with the observed 125

GeV standard model Higgs [32, 33], and the EW vev, vEW =
√
〈Hu〉2 + 〈Hd〉2.

The Higgs must also couple to all the standard model fermions, providing

15
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their mass through Yukawa terms as usual, e.g.

LY ⊃ λuq̄LuRHu . (10)

In order for this to be PQ invariant the standard model fermions must be charged

under U(1)PQ. After EW symmetry breaking, H is replaced by its vev, inducing

axial current couplings between the axion and standard model fermions from

the chiral term in the fermion mass matrix: mu(φ/fa)iūγ5u. This axial current

in turn induces the coupling between the axion and GG̃ via the colour anomaly.

The difference between KSVZ and DFSZ is that for DFSZ this term is induced

by light quark loops calculated at low energy, rather than via the integrating

out of a heavy quark. In the DFSZ model all of the standard model quarks are

charged under the PQ symmetry, giving rise to a larger colour anomaly, C = 6.

The same fermion loops induce the axion-photon coupling, φFF̃ , which is

computed via the electromagnetic anomaly. Freedom in this model appears

through the lepton charges: we are free to choose whether it is Hu or Hd that

gives mass to the electron via Hu,d
¯̀
LeR. The axion-photon coupling is the sum

of quark and lepton loops, and the different lepton PQ charges give different

values for the anomaly, and thus the coupling (see Section 2.3).

The use of the Higgs in DFSZ leads to a number of important consequences

that differentiate it from KSVZ. Firstly, in the DFSZ model there are tree-level

couplings between the axion and standard model fermions, via the chiral terms

in the mass matrix. Secondly, the EW sector is modified by the addition of an

extra axial Higgs field, A, with mass of order the EW scale. This is constrained

by collider data, and could potentially be discovered at the LHC, just like the

additional Higgs fields of supersymmetry (SUSY, see e.g. Refs. [37, 38]).

2.2. Anomalies, Instantons, and the Axion Potential

A PQ rotation on a field xi with PQ charge QPQ,i acts as

xi → eiQPQ,iφ/faxi . (11)

16
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The rotation is chiral, meaning that, if xi is a spinor, left and right handed

components of xi have opposite charges (for the two-component spinor ψ =

(ψL, ψR) one introduces a factor of γ5 to achieve this).

The axion model is set up so that at the classical level the Lagrangian is

invariant under such transformations, which leads to the shift symmetry of the

axion field, φ → φ + const. At the quantum level, however, PQ rotations of

quarks are anomalous, meaning that the quantum theory violates the classical

symmetry. This affects the QCD topological term, and shifts it by an amount

∝ (φ/fa)GG̃. The question we now wish to answer is: what is the constant of

proportionality?

The constant of proportionality is called the colour anomaly of the PQ sym-

metry, and is given by (e.g. Ref. [39]):

Cδab = 2Tr QPQTaTb , (12)

where the trace is over all the fermions in the theory, and Ta are the generators

of the SU(3) representations of the fermions (e.g. for the triplet these are the

Gell-Mann matrices). A PQ rotation now shows up in the action as

S → S +
∫
d4x

C
32π2

φ

fa
TrGµνG̃µν . (13)

Although the topological term in the QCD action, Eq. (2), does not af-

fect the classical equations of motion, it does affect the vacuum structure, and

the vacuum energy depends on θQCD. This is because of the existence of in-

stantons and the so-called θ-vacua of QCD (for more details, see Ref. [18] and

Appendix A). These emerge because the non-Abelian gauge group, SU(3), can

be mapped onto the symmetry group of the space-time boundary, allowing for

topologically-distinct field configurations [18]. The different vacua of QCD are

labelled by the value of θQCD. The vacuum energy is [40, 41]:

Evac ∝ cos θQCD ∼ θ2
QCD . (14)

However, because the θ-vacua are topologically distinct, no process allows for

17



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

transitions between them, and the energy cannot be minimized.5 Introducing a

field that couples to GG̃, as the axion does, means that the vacuum energy now

depends on the linear combination Evac(θQCD + Cφ/fa).

Using the shift symmetry on φ to absorb any contribution to θQCD, the

vacuum energy is

Evac ∝ cos
(Cφ
fa

)
. (15)

The vacuum energy now depends on a dynamical field, and so can be minimized

by the equations of motion.

The colour anomaly sets the number of vacua that φ has in the range

[0, 2πfa]. Because φ is an angular variable, we must have a symmetry under

φ → φ + 2πfa. This implies that the colour anomaly must be an integer (this

can always be achieved by normalization [39]). Because it sets the number of

vacua, the colour anomaly is also known as the domain wall number, C = NDW

(see Section 3.3.2). Dynamics of φ send it to one of these vacua, which is the

essence of the PQ mechanism.

In this way, the instantons are said to induce a mass for the axion. Let’s

investigate this in the DFSZ model, though the argument is more general. The

relevant terms in the Lagrangian are:

mq q̄q +
NDWφ

32π2fa
GG̃ . (16)

Applying a chiral rotation to the quarks by an angle α = NDWφ/fa shows up

as an interaction between the axion and the quarks:

cos(NDWφ/fa)m∗(ūu+ d̄d) + sin(NDWφ/fa)m∗(ūiγ5u+ d̄iγ5d) , (17)

where m∗ = mumd/(mu +md).

After the QCD confinement transition at T ∼ ΛQCD we can replace the

quark bilinears with their condensates, 〈qq̄〉. Expanding for large fa we see that

the cosine term introduces a mass (i.e. φ2 term) for the axion proportional to

5There is a “superselection rule” such that 〈θ|Anything|θ′〉 = δθθ′ .
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−(mu +md)〈qq̄〉/f2
a = m2

πf
2
π/f

2
a , where mπ is the pion mass and fπ is the pion

decay constant.

At lowest order the sine term introduces a Yukawa-like interaction between

axions and quarks, and renormalizes the axion mass. The interaction allows for

the quark condensate to appear in the axion two-point function. The structure

of the interaction is such that the η′ meson dominates this effect and the axion

mass is renormalized to

m2
a =

m2
πf

2
π

(fa/NDW)2

mumd

(mu +md)2

{
1 +

m2
π

m2
η

[
−1 +O

(
1− mπ

mη

)]}
. (18)

The masses of the mesons are known [42], and the η′ is substantially heavier

than the π. If the masses were the same, the quantum effects would cancel, and

the axion would be massless. QCD non-perturbative effects are responsible for

lifting the η′ above the π. Any non-perturbative physics will do the job, but it

happens that the lifting is due to the same instantons that are responsible for

the θ-vacua. This is why we say that QCD instantons give mass to the axion

for T < ΛQCD. The non-perturbative effects break the axion shift symmetry

down to the discrete shift symmetry, φ → φ + 2πfa/NDW, and the axion is a

pseudo Nambu-Goldstone boson (pNGB).

The axion potential generated by QCD instantons is

V (φ) = muΛ3
QCD

[
1− cos

(
NDWφ

fa

)]
. (19)

The cosine form comes from the dependence of the vacuum energy on θQCD

in the lowest order instanton calculation [40], and I have applied a constant

shift such that V is minimized at zero, i.e. I have assumed a solution to the

cosmological constant problem. The instanton potential given here is the zero

temperature potential: we will discuss temperature dependence in Section 4.3.2,

as it is important when computing the axion relic abundance.

QCD is not the only non-abelian gauge theory in the standard model, there

is also SU(2) in the EW sector, and SU(2) instantons also contribute to the

axion potential. The weak force breaks CP , and the SU(2) instantons lead to a

shift in the minimum of the axion potential away from the CP -conserving value.
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The instanton action for a gauge group with coupling gi is (this is typical of non-

perturbative effects, and can be seen e.g. via dimensional transmutation [40])

Sinst. =
8π2

g2
i

. (20)

This action sets the co-efficient in front the axion potential from a given sector

as Vi(θ) ∝ cos θe−Sinst.(gi). Taking g = gEW � g3 we see that the potential

from W-bosons only weakly breaks CP compared to the QCD term. For more

details, see Ref. [9].

We have so far discussed instantons and non-perturbative physics in the

standard model, but the story can be extended to encompass general pNGBs,

including ALPs. The steps are:

• There is a global U(1) symmetry respected by the classical action.

• Spontaneous breaking at scale fa leads to an angular degree of freedom,

φ/fa, with a shift symmetry.

• The U(1) symmetry is anomalous and explicit breaking is generated by

quantum effects (instantons etc.), which emerge with some particular

scale, Λa. Because of the classical shift symmetry, these effects must be

non-perturbative.

• Since φ is an angular degree of freedom, the quantum effects must respect

the residual shift symmetry φ→ φ+ 2nπfa.

In this picture a pNGB or ALP obtains a periodic potential U(φ/fa) when

the non-perturbative quantum effects “switch on.” The mass induced by these

effects is ma ∼ Λ2
a/fa.

2.3. Couplings to the Standard Model

The couplings of the QCD axion are computed in Ref. [39]. Other references

include Refs. [9, 36, 43].

The QCD axion is defined to have coupling strength unity to GG̃, via the

term in Eq. (2), replacing θQCD → φ/(fa/NDW). Any ALP must couple more
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weakly to QCD (e.g. Ref [44]), and in any case a field redefinition can often

define the QCD axion to be the linear combination that couples to QCD, leaving

ALPs free of the QCD anomaly.

Axion couplings to the rest of the standard model are defined by symmetry,

and in specific models can be computed in EFT. The axion is a pseudoscalar

Goldstone boson with a shift symmetry, so all couplings to fermions must be of

the form

∂µ(φ/fa)(ψ̄γµγ5ψ) . (21)

The form of this coupling, as an axial current, means that the force mediated

by axions is spin-dependent and only acts between spin-polarised sources (see

Section 9.4). Thus no matter how light the axion, it transmits no long-range

scalar forces between macroscopic bodies. This has the important implication

that, in an astrophysical setting, ULAs are not subject to the simplest fifth-force

constraints like light scalars such as (non-axion) quintessence are.

For example, in the DFSZ model, a coupling of the form Eq. (21) is obtained

from the Hψ̄ψ term after symmetry breaking and a PQ rotation, with the value

of the co-efficient set by the PQ charge of the fermions. Such a term is generated

at one loop in the KSVZ model.

A coupling to EM of the form:

φ~E · ~B = −φFµν F̃µν/4 (22)

is generated if there is an EM anomaly (see below).

On symmetry grounds we can write a general interaction Lagrangian, appli-

cable at low energies (after PQ symmetry breaking and non-perturbative effects

have switched on):

Lint = −gφγ
4
φFµν F̃

µν+
gφN
2mN

∂µφ(N̄γµγ5N)+
gφe
2me

∂µφ(ēγµγ5e)−
i

2
gdφN̄σµνγ5NF

µν ,

(23)

where σµν = i
2 [γµ, γν ], and here N is a nucleon (proton or neutron). The

coupling gφγ has mass-dimension −1 and is proportional to 1/fa; the coupling

gd has mass dimension −2 and is also proportional to 1/fa. The couplings
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gφe and gφN are dimensionless in the above conventions, but are related to

commonly-used dimensionful couplings g̃φe,N = gφe,N/(2me,N ) ∝ 1/fa. Notice

how all dimensionful couplings are suppressed by 1/fa, which is a large energy

scale. This is why axions are weakly coupled, and evade detection. Note the

similarity to the suppression of quantum-gravitational effects by 1/Mpl.

In generic ALP models the couplings to the standard model are taken as free

parameters that and can be very much less than they are in the QCD case if,

e.g., they are loop suppressed, or forbidden on symmetry grounds. In specific

models, the couplings of ALPs can be computed (e.g. Refs. [45, 46]).

Expressions for all standard model couplings of the QCD axion can be found

in, e.g. Ref. [43] (though the notation differs slightly). The EDM coupling, gd,

is discussed in Ref. [47]. In this section, we will only discuss the two-photon

coupling in detail, following Ref. [36]. We define:

gφγ =
αEM

2π(fa/C)
cφγ , (24)

where αEM ≈ 1/137 is the EM coupling constant and cφγ is dimensionless. The

dimensionless coupling obtains contributions from above the chiral symmetry

breaking scale, via the EM anomaly, and below the chiral-symmetry breaking

scale, by mixing with the longitudinal component of the Z-boson [39]:

cφγ =
E
C −

2
3
· 4 +mu/md

1 +mu/md
, (25)

where E is the EM anomaly:

E = 2Tr QPQQ2
EM , (26)

and QEM are the EM charges

We see clearly here how the KSVZ and DFSZ models differ. In KSVZ we

only have the heavy Q fields with PQ charge, and so the value of cφγ is fixed

by the EM charge assigned to this field. Model dependence in KSVZ occurs if

we introduce additional heavy quarks with PQ and EM charges. In the DFSZ

model, all the standard model fermions carry PQ charges. Model dependence

in DFSZ occurs because the coupling depends on the lepton PQ charges, i.e.
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whether Hu or Hd gives mass to the leptons. If Hu gives mass to the leptons,

cφγ also depends on the ratio of Higgs vevs, tanβ = 〈Hu〉/〈Hd〉.
The QCD axion has certain canonical choices for the model dependence. For

KSVZ one takes a single EM neutral Q field. For DFSZ the Hd gives mass to

the leptons, allowing for SU(5) unification. For mu/md = 0.6, the couplings

are then:

cφγ = −1.92 (KSVZ); cφγ = 0.75 (DFSZ). (27)

2.4. Axions in String Theory

As is well known, string theory requires the existence of more spacetime

dimensions than our usual four: 10 in the case of the critical superstring, and

11 in the case of M-theory [48, 49, 50]. The additional spacetime dimensions

must be “compactified,” that is, rolled up and made compact, with a small size.

Typically, for appropriate phenomenology containing some unbroken SUSY and

chiral matter, the compact manifold must be “Calabi-Yau” [51]. The super-

gravity description of string theory contains antisymmetric tensor fields: for

example, the antisymmetric partner of the metric, BMN , is present in all string

theories.

Axions arise as the Kaluza-Klein (KK) zero modes of the antisymmetric

tensors on the Calabi-Yau [52]. The number of axions present depends on the

topology of the compact manifold, and in particular is determined by its Hodge

numbers. Many Calabi-Yau manifolds are known to exist, and the distribution

peaks for Hodge numbers in the dozens [53], as shown in Fig. 3 for the Kreuzer-

Skarke [54] list. Furthermore, axions arising in this way are massless to all orders

in perturbation theory thanks to the higher-dimensional gauge invariance. The

axions then obtain mass by non-perturbative effects, such as instantons. Thus

axions, with symmetry properties similar to those axions in field theory that we

have already discussed, are an extremely generic prediction of string theory, in

the low-energy four-dimensional limit [5]. This scenario has come to be known
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h
1
,1

h1,2

Figure 3: The distribution of Hodge numbers h1,1 and h1,2 for the known Calabi-Yau mani-

folds in the Kreuzer-Skarke [54] list. Note that the frequency (=number of occurrences) color

scale is logarithmic. There is a huge peak in the distribution at h1,1 ≈ h1,2 ≈ 30, which

implies that a compactification picked at random from this list is most likely to contain of the

order of 30 axions.

as the string axiverse [17].6

Let’s flesh out the discussion above with some simple examples and obser-

vations. I will use notation for forms, which can be found in e.g. Ref. [55].

A (p+ 1)-form field strength Fp+1 appears in the action as:

S ⊃ −1
2

∫
Fp+1 ∧ ?Fp+1 = − 1

2(p+ 1)!

∫
dDx
√−gDFµ1···µp+1F

µ1···µp+1 , (28)

where D is the number of spacetime dimensions, and gD is the D-dimensional

metric determinant. The equation of motion is dF = 0, implying Fp+1 can be

written as Fp+1 = dAp, since d2 = 0 (this is just like the EM field strength

and the usual vector potential). A general solution which is homogeneous and

isotropic in the large dimensions is found by decomposing the potential A into

6Of course, there are many subtleties, and not all the axions present in the spectrum may

survive to low energies. I defer to the references for discussion of this topic.
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the basis of harmonic p-forms, ωp,i, on the compact manifold:

Ap =
1

2π

∑
ai(x)ωp,i(y) ⇒ ai =

∫

Cp,i

Ap , (29)

where Cp,i are p-cycles in the compact space, x are co-ordinates in the large

3 + 1 dimensions, y are co-ordinates in the compact space, and for symmetry

under CP , ai(x) is a pseudoscalar.

The sum in Eq. (29) runs over the number of harmonic forms, and expresses

the topologically distinct ways that F can be “wrapped” on the compact space.

The number of basis p-forms is determined by the number of homologically non-

equivalent p-cycles, i.e. by the pth Betty number, bp. For example, taking the

decomposition Eq. (29) for the two-form B mentioned above, we would count

the number of two-cycles, and for the C4 four-form of Type IIB theory, we would

count the number of four-cycles.7 For a Calabi-Yau three-fold (three complex

dimensions, six real dimensions), all the bp are determined by the two Hodge

numbers h1,1 and h1,2 (see, e.g., Chapter 9 of Ref. [50], and Fig. 3 above).

The axions of Eq. (29) are closed string axions. Each closed string axion is

partnered into a complex field zi = σi+iai where σi is a scalar modulus (saxion)

field controlling the size of the corresponding p-cycle. The moduli come from

KK reduction of the Ricci scalar as usual, and their pairing with axions is a

consequence of SUSY, which demands the existence of the appropriate form

fields in supergravity. Open string axions also exist in string theory, and are

more like the field theory axions we discussed previously. Open string axions

live on spacetime filling branes supporting gauge theories and are the phases of

7Take a simple example in non-string theory jargon. Imagine a vector field, Aµ with field

strength Fµν in 3+1 large dimensions, and a two dimensional compact space in the shape of a

doughnut (or two-torus). There are two distinct ways the vector field can wrap the doughnut:

along the tube, or all the way around. These are the distinct one-cycles of the torus. The

vector field has co-ordinates in the large dimensions also, but if these are to be homogeneous

and isotropic, the only dependence can be as a (pseudo)scalar expressing how wrapping varies

from place to place. The two fields necessary are the axions: the KK zero-modes of the A

field wrapped on the one-cycles.
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matter fields, ϕ, which break global PQ symmetries. Open string axions might

be related to closed string axions by gauge/gravity duality [56, 57].

We have just seen the basics of how string theory gives rise to axions and

moduli, the number of which is determined by the topology of the compact

space. Next we must ask what determines the spectrum of axion masses and

decay constants.

After KK reduction of Eq. (28) the ai(x) fields are found to be massless, i.e.

there are only kinetic terms for them in the action, implying a shift symmetry.

The shift symmetry descends from the higher-dimensional gauge invariance of

F , and so is protected to all orders in perturbation theory.

In Type IIB theory, the axion kinetic term resulting from KK reduction of

the action for the C4 four-form potential is (for the full axion action in Type

IIB theory, see e.g. Ref. [14])

S ⊃ −1
8

∫
daiKij ∧ ?daj , (30)

where Kij is the Kähler metric,

Kij =
∂2K

∂σi∂σj
, (31)

and K is the Kähler potential, which depends on the moduli. KK reduction

kinetically mixes the axions and couples them to the moduli via the Kähler

metric. Canonically normalizing the kinetic terms and diagonalizing the Kähler

metric, we see that it is the moduli that determine the axion decay constants,

since the canonical kinetic term is Lkin. = −f2
a,i(∂ai)

2/2. In particular we have

that, parametrically,8

fa,i ∼
Mpl

σi
.Mpl , (32)

where the dimensionless modulus σi measures the volume of the corresponding

p-cycle in string units, i.e. σi = Voli/lps , for string length ls. The volume should

be larger than the string scale in order for the effective field theory description

8I have assumed that the size of the cycle is of order the size of the manifold. See Refs. [5, 58]

for more details.
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to be valid, giving the inequality. This may be related to be a general feature,

known as the “weak gravity conjecture,” following from properties of black

holes [59].9 We return to this question in the context of inflation in Section 7.2.

Axions in string theory can obtain potentials from a variety of non-perturbative

effects (see e.g. Refs. [5, 17, 58, 63]). In general, instantons provide a contribu-

tion to the superpotential, W for the axion field a = φ/fa:

W = M3e−Sinst.+ia , (33)

where Sinst. is the instanton action and M is the scale of instanton physics,

which in string theory may be the Planck scale. If SUSY is broken at a scale

mSUSY then the axion potential at low energies is

V (φ) = Λ4
a[1− cos(φ/fa)] with Λ4

a = m2
SUSYM

2
ple
−Sinst. . (34)

A non-Abelian gauge group has instantons with action given by Eq. (20).

In string theory, the moduli couple to the gauge kinetic term for a non-Abelian

group realized by a stack of D-branes wrapping the corresponding cycle, and

the gauge coupling g2 ∝ 1/σ (this occurs e.g. in Type IIB theory for gauge

theory on a stack of D7 branes filling 3+1 spacetime and wrapped on the same

four-cycles as C4). Thus, if an axion obtains mass from these instantons as

above, we find that the axion mass scales exponentially with the cycle volumes:

m2
a ∼

µ4

f2
a

e−#σi , (35)

where µ is a hard scale. In general, from the above, we expect µ =
√
mSUSYMpl.

If the moduli are stabilised by perturbative SUSY breaking effects giving mσ ∼
mSUSY � ma then the moduli can be set to constant values at late times in

cosmology and the axion mass will be a constant (for dynamical moduli as dark

energy, see Refs. [64, 65]).

9The relation of the conjecture to axion decay constants is only well formulated in the case

of a single axion. Consider, for example, the two axion model of Ref. [60] has a decay constant

∼ 3.25Mpl. Our simplistic description here has ignored the phenomenon of alignment [61, 62].
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The two observations, Eqs. (32,35), form the key basis for the phenomenology

of the axiverse. Thanks to the exponential scaling of the potential energy scale

with respect to the moduli, string axions will have masses spanning many orders

of magnitude. The axion decay constants will (generally) be parametrically

smaller than the Planck scale, and are expected to span only a small range of

scales due to the power-law scaling with the moduli.

Let’s end this discussion with a few examples of explicit string theory con-

structions displaying the above properties. The so-called “model independent

axion” in heterotic string theory emerges from compactification of BMN on two-

cycles. It has decay constant fa = αGUTMpl/2
√

2π and the shift symmetry of

the axions is broken by wrapped NS-5 branes with Sinst. = 2π/αGUT [5]. Gauge

coupling unification at αGUT = 1/25 gives fa ∼ 1.1× 1016 GeV.

The M-theory axiverse [66] is realized as a compactification of M-theory on

a G2 manifold, with axions arising from the number of three-cycles. The G2

volume is small, fixing one heavy string-scale axion by leading non-perturbative

effects, and giving fa ≈ 1016 GeV. The remaining axions obtain potentials

from higher order effects, and are hierarchically lighter. Fixing the GUT cou-

pling requires that an additional axion take a mass ma,GUT ≈ 10−15 eV. The

other axions in the theory will be distributed around these characteristic values

according to the scalings we have discussed.

The Type IIB axiverse [67] is a LARGE volume Calabi-Yau compactifica-

tion [68, 69], with axions arising from C4 as discussed above. At least two axions

are required in this scenario, one of which is the almost-massless volume-axion

associated to the exponentially large volume-modulus, and the other is again

associated to the GUT coupling. The volume, V, is exponentially large in string

units and gives the decay constant of the volume-axion as fa ≈ 1010 GeV. Other

light axions are associated to perturbatively fixed moduli, since they must ob-

tain masses only from higher order effects. Larger values of the effective decay

constant for very light axions with ma ∼ H0 can be achieved in this scenario by

alignment [70].
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3. Production and Initial Conditions

3.1. Symmetry Breaking and Non-Perturbative Physics

Let’s briefly review the general picture for axions given in the previous sec-

tion, highlighting how this is relevant to axion cosmology in the very early

Universe. Two important physical processes determine this behaviour. Sym-

metry breaking occurs at some high scale, fa, and establishes the axion as a

Goldstone boson. Next, non-perturbative physics becomes relevant, at some

temperature TNP � fa, and provides a potential for the axion.

Giving substance to this chain of events: the axion field, φ, is related to the

angular degree of freedom of a complex scalar, ϕ = χeiφ/fa . The radial field,

χ, obtains the vev 〈χ〉 = fa/
√

2 when a global U(1) symmetry is broken (see

Fig. 2). The field χ is heavy, and fa is the PQ symmetry breaking scale. The

axion is the Goldstone boson of this broken symmetry , and possesses a shift

symmetry, φ → φ + const., making it massless to all orders in perturbation

theory. Non-perturbative effects, for example instantons, “switch on” at some

particular energy scale and break this shift symmetry, inducing a potential for

the axion, V (φ). The potential must, however, respect the residual discrete shift

symmetry, φ→ φ+2nπfa/NDW, for some integer n, which remains because the

axion is still the angular degree of freedom of a complex field. The potential is

therefore periodic.

The scale of non-perturbative physics is Λa and the potential can be written

as V (φ) = Λ4
aU(φ/fa), where U(x) is periodic, and therefore possesses at least

one minimum and one maximum on the interval x ∈ [−π, π]. We can choose the

origin in field space such that U(x) has its minimum at x = 0.10 It is common

practice to assume a solution to the cosmological constant problem such that the

minimum is also obtained at U(0) = 0 (see Section 7.1 for further discussion).

10When x 6= 0 is associated to the breaking of CP symmetry, as is the case for the QCD

axion, a theorem of Vafa and Witten [23] guarantees that the induced potential has a minimum

at the CP -conserving value x = 0.
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A particularly simple choice for the potential is then

V (φ) = Λ4
a

[
1− cos

(
NDWφ

fa

)]
, (36)

where NDW is an integer, which unless otherwise stated I will set equal to

unity. I stress that the potential Eq. (36) is not unique and without detailed

knowledge of the non-perturbative physics it cannot be predicted. For example,

so-called “higher order instanton corrections” might appear, as cosn φ/fa (see

e.g. Ref. [71]). The form of the potential given by Eq. (36) is, however, a useful

benchmark for considering the form of axion self-interactions.

We can study axions in a model-independent way if we consider only small,

φ < fa, displacements from the potential minimum. In this case, the potential

can be expanded as a Taylor series. The dominant term is the mass term:

V (φ) ≈ 1
2
m2
aφ

2 , (37)

where m2
a = Λ4

a/f
2
a . The symmetry breaking scale is typically rather high, while

the non-perturbative scale is lower. The axion mass is thus parametrically small.

Let’s consider some possible values for these scales. The QCD axion (see

Section 2.1) is the canonical example, where we have that Λ4
a ≈ Λ3

QCDmu with

ΛQCD ≈ 200 MeV and mu the u-quark mass, and 109 Gev . fa . 1017 GeV.

The lower limit on fa comes from supernova cooling [72, 73] (see Section 9.1),

while the upper limit comes from black hole superradiance [74] (BHSR, see

Section 8.1). This leads to an axion mass in the range 4×10−10 eV . ma,QCD .
4× 10−2 eV.

In string theory models (see Section 2.4), things are much more uncer-

tain. The decay constant typically takes values near the GUT scale, fa ∼
1016 GeV [5], though lower values of fa ∼ 1010−12 GeV are possible [67]. In

specific, controlled, examples one always finds fa . Mpl for individual axion

fields. The “weak gravity conjecture” places some constraints on realising super-

Planckian decay constants within quantum gravity [59].11 The potential energy

11Collective behaviour of multiple axion fields further complicates matters. We will return
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scale in string models depends exponentially on details of the compactification,

and large hierarchies between the non-perturbative scale and the string scale can

easily be achieved. Explicitly, Λa ∼ µe−σ, where µ is the hard non-perturbative

scale (e.g. SUSY breaking), and σ is a modulus field describing the size of the

compact dimensions in string units: small changes in σ produce large changes in

Λa for fixed µ. String models are expected to possess a large number of axions,

with each axion associated to a different modulus. String axions thus have a

mass spectrum spanning a vast number of orders of magnitude from the string

scale down to zero. In particular, string models can realise a spectrum such as

Eq. (1).

The axion mass is protected from quantum corrections, since these all break

the underlying shift symmetry and must come suppressed by powers of fa. For

the same reason, self-interactions and interactions with standard model fields are

also suppressed by powers of fa (for the self-interactions, we can see this easily

by expanding the cosine potential to higher orders). This renders the axion

a light, weakly interacting, long-lived particle. These properties are protected

by a symmetry and as such the axion provides a natural candidate to address

cosmological problems that can be solved using a light scalar field. Axions can

be used to drive inflation, to provide DM, and to provide DE.

Taking only the mass term from the potential for simplicity, the homogeneous

component of the axion field obeys the equation

φ̈+ 3Hφ̇+m2
aφ = 0 . (38)

This is the equation of a simple harmonic oscillator with time dependent friction

determined by the Friedmann equations, Eqs. (B2). In general, the axion mass

will be temperature dependent, as the non-perturbative effects switch on. We

will study this equation in detail in Section 4. An important stage in the

evolution of the axion field is the transition form over-damped to under-damped

to this topic in Section 7.2. A large literature surrounds the question of super-Planckian

axions in string theory, see e.g. Refs. [75, 71, 76, 77, 78, 79, 80], and references therein.
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motion, which occurs when H ∼ ma, and the axion field begins oscillating.

3.2. The Axion Field During Inflation

This section refers explicitly to DM axions as a spectator fields during infla-

tion.12 Inflation driven by an axion field is discussed in Sec. 7.2.

The temperature of the Universe during inflation is given by the Gibbons-

Hawking [81] temperature (Hawking radiation emitted from the de-Sitter hori-

zon):

TI =
HI

2π
, (39)

where HI is the inflationary Hubble scale. This temperature determines whether

the PQ symmetry is broken or unbroken during inflation, with each scenario

giving rise to a different cosmology.

The inflationary Hubble scale is tied to the value of the tensor-to-scalar ratio,

rT :
HI

2π
= Mpl

√
AsrT /8 . (40)

where As is the scalar amplitude. Ever since the observation of the first acoustic

peak in the CMB [82, 83, 84], we have known that rT < 1 and that cosmological

fluctuations are dominantly scalar and adiabatic, with
√
As ∼ 10−5 first mea-

sured by COBE [85]. This sets, very roughly, HI . 1014 GeV. The most up-to-

date constraints come from the combined analysis of Planck and BICEP2 [86],

which give As = 2.20× 10−9, rT < 0.12 and thus

HI

2π
< 1.4× 1013 GeV . (41)

12I assume a standard, single-field, slow-roll inflationary model throughout these notes, as

it gives us a concrete setting for performing calculations and comparing to data. I further

assume (for the most part) that the Universe is radiation dominated from the end of inflation,

and in particular when V (φ) switches on. The general principles, however, can be used as

a guide for computing in non-standard cosmologies. The important aspects to consider are:

when does symmetry breaking occur with respect to the epoch when initial conditions are

set; what is the energy scale at which initial conditions are set; what dominates the energy

density when the non-perturbative physics giving rise to V (φ) becomes relevant?

32



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

High scale single-field slow-roll inflation has observably large tensor modes, rT &
10−3, and requires super-Planckian motion of the inflaton [87]. We will discuss

the importance of CMB tensor modes to axion phenomenology in more detail

in Section 5.4.

3.2.1. PQ symmetry unbroken during inflation, fa < HI/2π

This scenario occurs when fa < HI/2π. A large misalignment population

of ULA DM (our main focus in these notes) requires fa ∼ 1016 GeV, and so

this scenario is irrelevant to that model. This is an important scenario for the

QCD axion, however, since it applies to the ADMX [88] sensitivity range of

fa ∼ 1012 GeV in the case of high scale standard inflation.

During inflation, fluctuations induced by the Gibbons-Hawking temperature

are large enough that the U(1) symmetry is unbroken and ϕ has zero vev. After

inflation, the symmetry breaks when the radiation temperature drops below fa.

At this point, χ obtains a vev and each causally disconnected patch picks a

different value for φ/fa = θPQ. Since the decay constant is larger than the scale

of non-perturbative physics, the axion has no potential at this time, and θPQ

thus has no preferred value. Therefore, in each Hubble patch θPQ is drawn at

random from a uniform distribution on [−π, π]. The horizon size R ∼ 1/H when

the PQ symmetry is broken. The symmetry is broken in the early Universe, and

the present day Universe is made up of many patches that had different initial

values of θPQ.

Given the θPQ distribution, it is possible to compute the average value of the

square of the axion field, 〈φ2〉. As we will see later, this value fixes the axion relic

density produced by vacuum realignment in this scenario (see Sections 3.3 and

4.3). However, it is clear that there are O(1) fluctuations in the axion field from

place to place on scales of order the horizon size when non-perturbative effects

switch on (R ∼ 10 pc today for the QCD axion). These large fluctuations have

been conjectured to give rise to so-called “axion miniclusters” [89]. Fluctuations

of this type are non-adiabatic, but are not scale invariant and give rise to

additional power only on scales sub-horizon at PQ symmetry breaking.
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The breaking of global symmetries gives rise to topological defects. A broken

U(1) creates axion strings, while having NDW > 1 in Eq. (36), as in the DFSZ

QCD axion model, gives rise to domain walls. When the PQ symmetry breaks

after inflation, a number of such defects will remain in the present Universe.

Domain walls, if stable, are phenomenologically disastrous, since their energy

density scales like 1/a2 and they can quickly dominate the energy density of the

Universe [90]. They can be avoided if NDW = 1 in Eq. (36), which is possible

in the KSVZ axion model, although other mechanisms to avoid their disastrous

consequences exist (e.g. Ref. [91]). Cosmic strings have a host of additional

phenomenology. Perturbations seeded by strings and the decay of domain walls

may lead to the existence of heavy axion clumps [92]. For our purposes, the most

important impact of axion strings is that their decay can source a population

of relic axions, which is discussed below.

The important phenomenological aspects of the unbroken PQ scenario are:

• The average (background) initial misalignment angle is not a free param-

eter: 〈θ2
a,i〉 = π2/3.

• Phase transition relics are present. Their consequences must be dealt with.

• Existence of axion miniclusters?

3.2.2. PQ symmetry broken during inflation, fa > HI/2π

This scenario occurs when fa > HI/2π. It is particularly relevant for GUT

scale axions, and all axion DM models combined with low-scale inflation.

As in the previous scenario, PQ symmetry breaking establishes causally

disconnected patches with different values of θPQ, and produces topological

defects. However, the rapid expansion during inflation dilutes all the phase

transition relics away.13 It also stretches out each patch of θPQ, so that our

current Hubble volume began life at the end of inflation with a single uniform

13Recall that one of the original motivations for inflation was as a solution to the monopoloe

problem of GUT theories [93, 94, 95].
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value of θPQ everywhere. This initial value of θPQ is completely random. It is

again drawn from a uniform distribution, but the existence of many different

Hubble patches means that values of θPQ arbitrarily close to zero or π cannot

be excluded, except on grounds of taste or anthropics.

Fluctuations in θPQ, which later seed structure formation with axion DM,

are generated in two different ways in this scenario. Firstly, as we will show in

Section 4.4, the axion field has a gravitational Jeans instability. Axion DM will

fall into the potential wells established by photons in the radiation era (which

were in turn established by quantum fluctuations during inflation). This leads

to adiabatic fluctuations.

The second source of axion fluctuations are inflationary isocurvature modes.

When the PQ symmetry is broken during inflation, the axion exists as a massless

field (or in any case, one with ma � HI). All massless fields in de Sitter space

undergo quantum fluctuations with amplitude

δφ =
HI

2π
. (42)

The amplitude of the power spectrum of these perturbations is proportional

to rT . In de Sitter space, the power spectrum would be scale invariant. Slow

roll inflation imparts a red tilt. The isocurvature spectral index is the same as

the tensor spectral index, and is also fixed by HI via inflationary consistency

conditions.

Just like tensor modes, DM isocurvature perturbations of this type do not

give rise to a large first acoustic peak in the CMB, and are thus constrained to

be sub-dominant. The latest Planck constraints give AI/As < 0.038 [96]. As

we will discuss in detail in Section 5.4, this typically forbids the compatibility

of fa & 1011 GeV axion DM and an observably large rT .

Isocurvature perturbations also give rise to a backreaction contribution to

the homogeneous field displacement (see e.g. Ref. [97])

〈φ2
i 〉 = f2

aθ
2
a,i + 〈δφ2〉 ,

= f2
aθ

2
a,i + (HI/2π)2 . (43)
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The backreaction sets a minimum value to the misalignment population of ax-

ions that can be significant in high scale inflation for heavier ALPs, ma &
10−12 eV, and the QCD axion.

The important phenomenological aspects of the broken PQ scenario are:

• The average (background) initial misalignment angle is a free parameter,

with a minimum value fixed by backreaction.

• Isocurvature perturbations are produced. Their consequences must be dealt

with.

• Use as a probe of inflation?

3.3. Cosmological Populations of Axions

The relic density of axions is ρa = Ωaρcrit. In cosmology we often discuss the

physical density, Ωah2, by factoring out the dimensionless Hubble parameter,

h, from the critical density. This gives ρa = Ωah2 × (3.0× 10−3 eV)4.

A relic axion population can be produced in a number of different ways. The

four principle mechanisms are:

• Decay product of parent particle.

• Decay product of topological defect.

• Thermal population from the radiation bath.

• Vacuum Realignment.

I will discuss the first three briefly here, but leave most of the details to the

references. Vacuum realignment is discussed in detail in Section 4.3.

3.3.1. Decay Product of Parent Particle

A massive particle, X, with mX > ma, is coupled to the axion field, and

decays, producing a population of relativistic axions. If the decay occurs after

the axions have decoupled from the standard model then they remain relativistic

throughout the history of the Universe. In this case, axions are dark radiation
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(DR). In cosmology, DR is parameterised via the “effective number of relativistic

neutrinos,” Neff , defined as:

ρr = ργ

[
1 +

7
8

(
4
11

)4/3

Neff

]
. (44)

Recall that three species of massless neutrinos in the standard model of particle

physics contribute Neff = 3.04, the additional 0.04 being contributed by heating

after e+e− annihilation [98].

Assuming instantaneous decay of the parent particle when it dominates the

energy density of the Universe gives:14

∆Neff =
43
7

(
10.75
g?S(Tr)

)1/3
Ba

1−Ba
, (45)

where Tr is the reheating temperature of the decay of the parent particle, Ba

is the branching ratio to axions, and g?S(T ) is the entropic degrees of freedom.

The evolution of g?,S(T ) in the standard model can be computed or can be

looked up, e.g. in the Review of Particle Physics [21].

DR can affect the CMB in a number of ways; for a concise description, see

Ref. [103]. If we hold the angular size of the sound horizon fixed (compensat-

ing the change in matter radiation equality with a different Hubble constant or

DE density), the main effect of DR is to cause additional damping of the high-

multipole acoustic peaks in the CMB.15 This damping tail is well measured by

Planck, ACT and SPT, giving Neff = 3.15 ± 0.23 from a representative combi-

nation of CMB data [105]. Neff is also constrained by big bang nucleosynthesis

(BBN, again see Ref. [105]). Whether this should be combined with the CMB

constraint depends on whether the decay producing the axions occurred before

or after BBN. An important point to note about neutrino constraints form the

14If the parent particle does not dominate the energy density of the Universe when it decays,

then under certain circumstances it may act as a curvaton [99, 100, 101] and sources correlated

isocurvature perturbations, which are also constrained by the CMB. See, e.g., Ref. [102].
15Recent constraints on Neff in Ref. [104] have separated the damping tail effect from the

neutrino anisotropic stress, which changes the angular scale of the higher acoustic peaks (see

also constraints on neutrino viscosity in Ref. [105]).
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CMB is that they do not care whether the DR is a boson or a fermion. We

discuss more consequences of axionic dark radiation in Section 9.7.

A scenario in which axions are produced in this way arises in models with

SUSY and extra dimensions. The DR “cosmic axion background” is thus con-

sidered a generic prediction of many string and M-theory compactifications,

and it has a rich phenomenology (see e.g. Refs. [66, 106, 107, 108] and Sec-

tions 9.7 and 9.8.2 of this review). In these models, a Kähler modulus, σ, of

the compact space comes to dominate the energy density of the Universe after

inflation, leading to an additional matter dominated era and a non-thermal his-

tory. The modulus must decay and reheat the Universe to a temperature above

TBBN ∼ 3 MeV, since BBN does not occur successfully in a matter dominated

universe.16 Moduli are gravitationally coupled and are therfore expected to

have comparable branching ratios to hidden and visible sectors, and in particu-

lar have a large branching ratio to axions, since axions are partnered to moduli

by SUSY. The modulus decay rate is given by its mass, Γσ ∼ m3
σ/M

2
pl and it

decays when H ∼ Γσ. Decay before BBN requires mσ & 10 TeV. Moduli are

thus much heavier than axions, and their decay produces a sizeable relativistic

axion population, surviving from before BBN until today.

3.3.2. Decay Product of Topological Defect

The breaking of global symmetries leads to the formation of topological

defects. In the case of a global U(1) symmetry, like the PQ symmetry, this

means global (axionic) strings and (if NDW > 1) domain walls. In the broken

PQ scenario, topological defects and their decay products are inflated away, and

can be ignored, so here we focus on the unbroken PQ scenario. Axion strings

decay, producing a population of cold axions, which we discuss below. The

energy density in domain walls scales like ρDW ∼ a−2 and can quickly dominate

the energy density of the Universe, with phenomenologically disastrous results.

Thus NDW > 1 models (like the DFSZ model) typically require the broken PQ

16This is the “cosmological moduli problem,” see e.g. Refs. [109, 110].
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scenario, or some other mechanism to remove the domain walls (see e.g. Ref. [91]

and references therein). In this Section I give only the briefest overview of axion

production from topological defects: see e.g. Refs. [43, 8, 111] for more details.

Let’s focus on strings. Strings are formed by the “winding” of the θ angle.

The value of the θ angle is set independently at each point in space when the

PQ symmetry breaks. The Goldstone nature of θ homogenizes this value in each

horizon volume. As the horizon grows, the homogenized area grows. However,

in different horizon volumes, θ will be different. Then, if the θ angle undergoes

a winding around any given point in space, the mapping between θ and the

spatial co-ordinates does not allow a continuous unwinding, leading to a string-

like topological defect along the length of the region enclosed by the winding.

Formation of topological defects in cosmology in this manner is known as the

Kibble mechanism [112].

Strings in cosmology enter into a “scaling solution,” caused by strings within

any horizon volume cutting themselves into loops. During the radiation domi-

nated epoch, this requires the string energy density to scale as:

ρstring ∝ µstring/t
2 , µstring ∼ f2

a ln(fad) , (46)

where µstring is the energy per unit length of the axion string, and d the char-

acteristic distance between strings. For global strings, this scaling symmetry is

maintained by the continuous emission of axions. The change in the number

density of axions, na, per entropy density, s, per Hubble time, required for this

is [43]:

∆(na/s) ∼
µstringt

2

ωT 3
∆(Ht) (47)

where ω is the average energy of the radiated axion.

Recall from Eq. (38) that the axion field begins oscillating when ma ∼ H,

which occurs at a temperature Tosc., and depends on the temperature evolution

of the axion mass (we discuss this in more detail for the misalignment population

of axions in Section 4). When oscillations commence, axion strings become the

boundaries of domain walls connected by strings. For NDW = 1, these walls can

be “unzipped” by the strings (as explained in Ref. [8]), and the decay of the
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topological defects is complete. Therefore, the total number of axions produced

by string decay in a comoving volume is given by the integral of Eq. (47) from

the time of the PQ phase transition at T = fa up to Tosc:

na
s
∼
∫ fa

Tosc

µstringdT

ω(T )M2
pl

. (48)

Axions produced by string decay are dominated by the low-frequency modes,

making them non-relativistic and contributing as CDM to the cosmic energy

budget. Accurate computation of the relic density requires numerical simulation

of the PQ phase transition and decay of axion strings in order to determine the

energy spectrum, ω(T ). Results of such simulations are commonly expressed as

the ratio of axion energy density produced by topological defect decay compared

to that produced by misalignment:

Ωah2 = Ωa,mish
2(1 + αdec.) . (49)

For the specific case of the QCD axion, with known temperature dependence

of the mass, the value of αdec is calculated.17 There is a long-standing contro-

versy over what the value of αdec. should be, with quoted values ranging from

0.16 to 186 [114, 115, 116, 117], with the true value possibly lying somewhere

in between [111].

The uncertainty arises from the form of the spectrum ω. If the radiated

axions have the longest wavelengths possible, of order the horizon, then ω(t) ∼
t−1 [114], while if the spectrum ∼ 1/k (cut off at the horizon and the string

size) then ω(t) ∼ ln(fat)t−1 [115]. These stem from different assumptions about

simulating strings. For the QCD axion mass-temperature relation, this factor

of ln(fatosc) ∼ 70, with the enhancement occurring for the case where ω ∼ t−1

17As we will show shortly, the contribution from misalignment, Ωa,mish
2, has a particular

scaling with fa for the QCD axion. Quoting a constant value for αdec. in the parameterisation

Eq. (49) assumes the same scaling with fa for the population produced by topological defect

decay. Ref. [113] show slightly different scalings, but argue that the uncertainty due to mass-

dependence is sub-dominant to other uncertainties in the string calculation.
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(accounting for the t dependence of µ with d ∼ t). The modern direct simulation

of the PQ field yields the somewhat intermediate result of Ref [111].

This is clearly a very important area of uncertainty in models of high scale

inflation and intermediate scale axions that could have consequences for direct

detection of the QCD axion. If decay products from topological defects can

produce a relic density larger than misalignment (αdec. � 1), then axions with

fa as low as 109 GeV could be relevant DM candidates (see Section 4.3.2 for

quantitative details). Ultimately, if αdec. were too large, then QCD axion DM

would be excluded by stellar astrophysics (see Section 9.1). Direct detection

of low-fa axions is outside the reach of ADMX, but may be possible with e.g.

open resonator searches (see Section 9.5.1).

Topological defects also source CMB fluctuations (e.g. Ref. [118]). A cosmic

string network generates power on all sub-horizon scales [119]. Therefore, axion

strings only generate power on scales of order the horizon size at string decay.

This scale is small, and is not constrained by the CMB power spectrum, but

axion strings may source additional power on minicluster scales.

3.3.3. Thermal Production

If axions are in thermal contact with the standard model radiation, then

mutual production and annihilation can lead to a thermal relic population of

axions, just as for massive standard model neutrinos and WIMPs. The cou-

plings of an axion to the standard model are only specified in the case of the

QCD axion. Furthermore, generic ALPs are often more weakly coupled to the

standard model, or at least to QCD, than the QCD axion. For these reasons,

we will consider only the thermal population of the QCD axion.

Axions are produced from the standard model plasma by pion scattering, and

decouple when the rate for the π + π → π + a process drops below the Hubble

rate. The thermal axion abundance is fixed by freeze-out at the decoupling

temperature (see, e.g. Ref. [43]), with a larger relic density for lower decoupling

temperatures. The number density in thermal axions, na, relative to the photon
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number density, nγ is given by

na =
nγ
2
g?,S(T0)
g?,S(TD)

, (50)

with TD the decoupling temperature, and T0 the CMB temperature today. See

Ref. [120] for a more complete formula and a computation involving all relevant

standard model production channels. Thermal axions contribute to the effective

number of neutrinos as ∆Neff ≈ 0.0264na/na,eq ≈ 10na, with na,eq the thermal

equilibrium number density.

Since axion couplings scale inversely with fa, only low fa (higher mass) ther-

mally produced axions can contribute a significant amount to the energy budget

of the Universe. Thermal populations are significant for ma & 0.15 eV, when

decoupling occurs after the QCD phase transition (recall that g?,S reduces dra-

matically after the QCD phase transition, diluting the abundance of particles

produced before it). For the QCD axion respecting fa & 109 GeV, as sug-

gested by stellar cooling constraints (ses Section 9.1), the thermal population is

negligible.

Thermal axions produced in this way are relativistic as long as TD > ma.

Once decoupled the axion temperature, Ta, redshifts independently from the

standard model temperature, and the axions become non-relativistic when Ta <

ma. Thermal axions behave cosmologically in a manner similar to massive

neutrinos, and contribute as hot DM, suppressing cosmological structure for-

mation below the free-streaming scale (see Section 4.4.5). Assuming a stan-

dard thermal history, current CMB limits from Planck on axion hot DM con-

strain ma < 0.529 → 0.67 eV at 95% confidence [121, 122, 123] (for older

limits from different datasets including large scale structure and WMAP, see

Refs. [124, 125, 126, 127]). AFuture galaxy redshift surveys will be sensitive

enough to detect a thermal axion population for all ma ≥ 0.15 eV [128]. Re-

laxing the assumption of a standard thermal history and introducing an early

matter-dominated phase and low temperature reheating relaxes the bound on

thermal axions, allowing masses as large as a keV [129].
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3.3.4. Vacuum Realignment

The process of vacuum realignment is a model independent production mode

for axions, also known as the misalignment mechanism. It relies only on their

defining properties (being associated to spontaneous symmetry breaking, and

being a pNGB), and depends only on gravitational (and to some extent self-)

interactions. This production mode is our primary focus, and is discussed in

detail in Section 4.3.

4. The Cosmological Axion Field

If axions are to have observable effects on cosmology, they must contribute

an appreciable amount to the energy density of the Universe. Since the axion

mass is so small, this implies large occupation numbers. In this case, axions

can be modelled by solving the classical field equations of a condensate. This

condensate can have excited states carrying energy and momentum, and indeed

it will. There is nothing more mysterious here than using Maxwell’s equations

to describe the behaviour of electric and magnetic fields. It is also the standard

way that scalar field models of inflation and DE are treated.

It is a separate question to ask whether axions form a Bose-Einstein conden-

sate (BEC), and even to define a “BEC” in a cosmological context, where we

are certainly not in the ground state. I comment briefly on this in Section 4.7.

The results I present below are valid whenever the classical field equations hold,

and do not assume BEC occurs (except to the extent that it is captured by

the classical field equations). Many of the results below also apply to other

models of scalar field DM at late times (when oscillations about a quadratic

minimum are the only important aspect), though the early time cosmology can

be markedly different (e.g. complex fields in Ref. [130], which have equation of

state w = 1 at early times).
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4.1. Action and Energy Momentum Tensor

The action for a minimally coupled real scalar field in General Relativity is:

Sφ =
∫
d4x
√−g

[
−1

2
(∂φ)2 − V (φ)

]
. (51)

For an axion, this action is only valid after symmetry breaking, and after non-

perturbative effects have switched on. Before non-perturbative effects have

switched on, the axion is massless. Non-perturbative effects do not switch on

instantaneously, either, and time (temperature) dependence of the potential can

be important. We discuss this shortly, in Section 4.3.

Varying the action with respect to φ gives the equation of motion

�φ− ∂V

∂φ
= 0 , (52)

where the D’Alembertian is

� =
1√−g ∂µ(

√−ggµν∂ν) . (53)

Varying the action with respect to the metric gives the energy momentum tensor

Tµν = gµα∂αφ∂νφ−
δµν
2

[gαβ∂αφ∂βφ+ 2V (φ)] . (54)

As we will show below, there are certain limits in which the axion field

behaves as a fluid. See Appendix D for useful definitions for the components of

the energy momentum tensor in the fluid case.

4.2. Background Evolution

The background cosmology is defined in Appendix C. Computing the D’Alembertian

for the FRW metric and taking V = m2
aφ

2/2, the axion equation of motion is:

φ̈+ 3Hφ̇+m2
aφ = 0 . (55)

The background energy density and pressure of the axion field are:

ρ̄a =
1
2
φ̇2 +

1
2
m2
aφ

2 , (56)

P̄a =
1
2
φ̇2 − 1

2
m2
aφ

2 . (57)
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When the universe is matter or radiation dominated the scale factor evolves

as a power law, a ∝ tp. In this case, Eq. (55) has an exact solution:

φ = a−3/2(t/ti)1/2[C1Jn(mat) + C2Yn(mat)] , (58)

where n = (3p− 1)/2, Jn(x), Yn(x) are Bessel functions of the first and second

kind, and ti is the initial time. The dimensionful coefficients C1 and C2 are

determined by the initial conditions. For axions in the vacuum realigment mode,

the initial conditions are well defined when H(ti)� ma:

φ(ti) = faθa,i , φ̇(ti) = 0 . (59)

When matter and radiation are both important, such as near matter-radiation

equality,18 or when the axion field can itself dominate the energy density,

Eq. (55) must be solved either by approximation or numerically. In the case of

axion DM produced by the misalignment mechanism, the most useful approxi-

mation to solve Eq. (55) is the WKB approximation.

4.3. Misalignment Production of DM Axions

The misalignment production of DM axions can be computed given the initial

conditions of Eq. (59). At symmetry breaking the Hubble rate is much larger

than the axion mass, and the field is overdamped. This sets φ̇ = 0 initially. The

homogeneous value of the field is specified by the scenario for when symmetry

breaking occurs with respect to inflation. The term “misalignment” refers to

this scenario where there is a coherent initial displacement of the axion field,

and “vacuum realignment” to the process by which this value relaxes to the

potential minimum.

An important buzz-word to remember about the misalignment production

of DM axions is that it is non-thermal.

18Recall that in ΛCDM equality occurs at zeq ≈ 3000, while the CMB is formed at decou-

pling, zdec ≈ 1020. The contribution of radiation to the expansion rate at decoupling cannot

be neglected.

45



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

4.3.1. Axion-Like Particles

Let’s begin with the simple case of an ALP. Given ignorance of the non-

perturbative physics, I will describe such an axion only by its mass, which I

take to be constant in time. The general picture described here applies to the

QCD axion also. The validity of the constant mass assumption will be discussed

later in this subsection.

The initial condition φ̇ = 0 fixes the relative values of C1 and C2 in the

exact solution to the background evolution, Eq. (58). The equation of motion is

linear, and so the initial field value can be scaled out. Fig. 4 shows the evolution

of the axion field, Hubble rate, axion equation of state, and the axion energy

density for the solution Eq. (58) in a radiation-dominated universe (p = 1/2),

with arbitrary normalization of all dimensionful parameters. The scale factor is

shown relative to the initial value, ai.

At early times when H > ma, the axion field is overdamped and is frozen

at its initial value by Hubble friction. The equation of state at early times is

wa = −1, and the axion behaves as a contribution to the vacuum energy. This

is why axions can serve as models for DE and inflation. All other components

of the Universe scale as a to some negative power. If the axion can come to

dominate the energy density while it is still overdamped with wa < −1/3, it can

drive a period of accelerated expansion. The length of this period depends on

the ratio H/ma when the axion comes to dominate the energy density, which is

in turn fixed by the initial displacement of the field (in inflation, this fixes the

values of the slow-roll parameters).

Later, when H < ma, the axion field is underdamped and oscillations begin.

The equation of state oscillates around wa = 0, and the energy density scales as

ρa ∝ a−3. This is the same behaviour as ordinary matter, and is why misalign-

ment axions are a valid DM candidate. The Hubble rate at matter-radiation

equality in ΛCDM is approximately H(aeq) ∼ 10−28 eV. Axions heavier than

this begin oscillations in the radiation dominated era and are suitable candidates

to compose all the DM.
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Figure 4: Evolution of various quantities in the exact solution to the background evolution

of an ALP, Eq. (58), for a radiation-dominated universe (p = 1/2). Dimensionful quantities

have arbitrary normalization. Vertical dashed lines show the condition defining aosc.. Further

discussion of this choice, and the approximate solution for the energy density, is given in the

text.
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The transition in the axion equation of state can be approximated if we

define a fixed value of the scale factor, aosc, and simply fix the behaviour of

ρa(a) at late times to be

ρa(a) ≈ ρa(aosc)(aosc/a)3 ; (a > aosc) . (60)

Furthermore, the energy density is approximately constant up until aosc and so

we can further approximate ρa(aosc) ≈ m2
aφ

2
i /2. This gives the usual approxi-

mation used to calculate axion DM energy density. The energy density in the

misalignment population is fixed by the initial field displacement and the mass

alone.

How shall we define aosc? Roughly, it is when ma & H, so we can let

AH(aosc) = ma for some constant A > 1. The larger we set A to be, the better

the approximation (assuming we compute ρa(aosc) from the exact solution).

However, we must also play this off against the expense of following oscillations

in a numerical solution. The equation of motion, Eq. (38), suggests A = 3 is as

a sensible-looking choice. In the example with a radiation dominated universe,

I found A = 3 leads to a 40% error in the energy density at late times, with

A = 2 giving a better approximation.19 The approximation Eq. (60) and the

location of aosc for A = 2 are also shown in Fig. 4.

In real-Universe examples with a matter-to-radiation transition and late time

Λ domination, we found in Ref. [131] that A = 3 works well in most cases.

Using the known solutions in matter and radiation domination for H(t) to fix

aosc in terms of other cosmological parameters, this gives the following useful

approximation to the ULA fractional energy density as a function of the initial

19As already stated, the approximation in general improves as A gets larger. The poor

performance at A = 3 is just because the energy density is falling rapidly at this point and

errors are amplified. In this case, 3 is not a lucky number. In numerical solutions including

perturbations, taking a larger A will always be better, as the improvement shown here for

A = 2 applies only to the exact background solution.
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displacement [132]:

Ωa ≈





1
6 (9Ωr)3/4

(
ma
H0

)1/2
〈(

φi
Mpl

)2
〉

if aosc < aeq ,

9
6Ωm

〈(
φi
Mpl

)2
〉

if aeq < aosc . 1 ,

1
6

(
ma
H0

)2
〈(

φi
Mpl

)2
〉

if aosc & 1 ,

, (61)

where I have used angle brackets to denote the average homogeneous value, to

remind us of the consequences when the PQ symmetry is broken or unbroken

during inflation.

Let’s use the WKB approximation to understand the background evolution

further. The WKB approximation for H � ma consists of the ansatz solution

φ(t) = A(t) cos(mat+ ϑ) , (62)

where ϑ is an arbitrary phase, and A is slowly varying such that Ȧ/ma ∼
H/ma ∼ ε � 1. Plugging this into Eq. (38) and working to leading order

in ε gives the solution A(a) ∝ a−3/2. Using this solution we find that the

energy density simply scales as ρa ∝ A2 ∝ a−3, while wa has rapid oscillations

with frequency 2ma. Consequently, the average equation of state on time scales

t� 1/ma is 〈wa〉t = 0. This gives a general proof as to why wa oscillates around

zero and ρa ∝ a−3 at late times when H � ma, independent of any assumptions

about the background evolution being matter or radiation dominated.20

The solution for φ and ρa in the WKB approximation sheds light on the

constant-mass assumption we made at the beginning of this section. The mag-

nitude of non-perturbative effects generally varies with temperature, and so the

axion mass varies with cosmological time, approaching an asymptotic value for

T � TNP. If the asymptotic value of the mass has been reached before the axion

becomes relevant in the energy density and when a < aosc then cosmology will

proceed as if we simply take ma = ma(T = 0) everywhere. Only the quantities

20This applies to fields oscillating in a harmonic potential, V (φ) ∼ φ2. Turner [133] proved

the more general result for fields oscillating in an anharmonic potential, V (φ) ∼ φα, giving

ρ ∝ a−6α/(α+2).
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Figure 5: ULA relic density from vacuum realignment in the broken PQ scenario with high

scale inflation, HI ≈ 1014 GeV. ULAs require φi > 1014 GeV in order to contribute more

than a few percent to the DM density. Even with high scale inflation, the contribution

of isocurvature backreaction is less than a percent of the total DM across the entire ULA

parameter space. See Fig. 15 for more details on the allowed region at lower mass.

evaluated at a = aosc matter. In string models, non-perturbative effects stabilise

moduli and break SUSY at high energies, while ULAs oscillate in the post-BBN

Universe, with TBBN � TSUSY. In that context, i.e. ULAs from string theory,

constant mass is an excellent approximation.

Fig. 5 shows Ωah2 in the broken PQ scenario, for ULAs in the range 10−24 eV ≤
ma ≤ 10−12 eV (where aosc < aeq and ULAs are safe from linear cosmological

constraints, see Section 5), with HI = 7.8 × 1013 GeV (the maximum allowed

value with rT = 0.1) for varying φi = faθa,i. The contribution from HI back-

reaction to Ωah2 is less than 10−4 across the entire range of masses shown:

backreaction of isocurvature perturbations can safely be neglected for all ULAs

and 〈φ2
i 〉 ≈ φ2

i can be taken as a completely free parameter. All ULAs require

φi > 1014 GeV in order to contribute more than a few percent to the DM den-

sity. Since φi . fa and HI,max < 1014 GeV this implies that ULAs should

50



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

always be considered in the broken PQ scenario.

The “anthropic boundary” for ULAs in string theory is defined as the min-

imum mass where Ωah2 = 0.12 [105] can be obtained with fa ≤ 1016 GeV [17].

Plugging φi = 1016 GeV into Eq. 61 gives:

ma = 5.3× 10−19 eV
(

fa
1016 GeV

)−4

(string anthropic boundary) , (63)

where I have used zeq = 3400, Ωch2 = 0.12, Ωbh2 = 0.022 and h = 0.67 to

fix the radiation density. ULAs heavier than this require (anthropic) tuning of

φi if fa ∼ 1016 GeV. ULAs lighter than this require larger decay constants,

a large number of individual axions, or some other production mechanism, to

contribute a significant amount to the DM density. Since fa ≤ 1016 GeV is by

no means a hard prediction of string theory, it is worth considering the limit of

the anthropic boundary for DM-like axions with ma = 10−24 eV. This is visible

in Fig. 5, and from the fa scaling of Eq. (63). We find fa ≤ 4×1017 GeV: ULA

DM is natural for comfortably sub-Planckian values of the decay constant.

4.3.2. The QCD Axion

QCD non-perturbative effects switch on at T ∼ ΛQCD ∼ 200 MeV, precisely

when the QCD axion with intermediate fa begins oscillations. The temperature

dependence of the axion mass in QCD is given by:

m2
a(T )f2

a = χtop.(T ) , (64)

where χtop.(T ) is the QCD topological susceptibility, which must be calculated.

The original calculation is due to Ref. [41] and is reviewed in e.g. Ref. [134],

while a modern calculation in the ‘interacting instanton liquid model’ (IILM)

is given in Ref. [113]. A simple power-law dependence of the axion mass on

temperature applies at high temperatures, T > 1 GeV:

m2
a(T ) = αa

Λ3
QCDmu

f2
a

(
T

ΛQCD

)−n
. (65)

This should be matched to the zero temperature value, Eq. (5), at low T .
ΛQCD.
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The standard [41] value for the power-law from the dilute instanton gas

model (DIGM) is n = 7 + nf/3 + · · · ≈ 8 (where nf is the number of fermions

active at a given temperature). The fits of Ref. [113] from the IILM give n = 6.68

and αa = 1.68 × 10−7 (which also agrees with Ref. [135]). The temperature

dependence can also be computed non-perturbatively on the lattice in the pure

Yang-Mills limit (e.g. Refs. [136, 137, 138, 139]), and at low temperatures from

chiral perturbation theory (for a recent calculation, see Ref. [140] and references

therein). The lattice calculations of Ref. [136] find n = 5.64 (compare to the

pure Yang-Mills, nf = 0, DIGM). Ref. [140] consider a range between n = 2

and n = 8 from lattice and instanton calculations respectively.

The temperature of the Universe in the radiation dominated era is deter-

mined by the Friedmann equation in the form

3H2M2
pl =

π2

30
g?T

4 . (66)

Taking the standard n = 8 result, using that g? = 61.75 for tempertaures just

above the QCD phase transition, and defining 3H(Tosc) = ma, the QCD axion

with fa < 2 × 1015 GeV begins oscillating when T > 1 GeV [134]. From this

point on, axion energy density scales as a−3 independently of the behaviour

of ma(T ). The relic density can thus be reliably computed from the high-

temperature power-law behaviour of ma(T ), scaled as a−3 from Tosc. The relic

density is fixed by the initial misalignment angle and fa. For fa < 2×1015 GeV

it is given by [134]

Ωah2 ∼ 2× 104

(
fa

1016 GeV

)7/6

〈θ2
a,i〉 . (67)

For fa & 2 × 1017 GeV oscillations begin when T < ΛQCD, such that the mass

has reached its zero-temperature value. In this case the relic density is

Ωah2 ≈ 5× 103

(
fa

1016 GeV

)3/2

〈θ2
a,i〉 . (68)

Note that there is not an overlapping region of validity for Eqs. (67) and (68).

For 2 × 1015 GeV . fa . 2 × 1017 GeV oscillations begin during the QCD

epoch, the dilute instanton gas approximation breaks down and the relic density
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calculation is more complicated (see e.g. Refs. [134, 113, 141]). However, it is

argued in Ref. [134] that Eq. (67) is a good approximation for fa < 6×1017 GeV.

For our simple purposes of illustration, we use Eq. (67) for all fa < Mpl.

So far, we have computed the relic density using the harmonic potential,

V (φ) = m2
aφ

2/2. For large initial displacements, θi & 1, anharmonic corrections

caused by axion self-interactions become important. The potential becomes flat-

ter at increased θPQ, causing the axion field to spend more time with wa ≈ −1,

thus delaying aosc and increasing the relic abundance relative to the harmonic

approximation. Anharmonic effects can be taken into account with a correction

factor by replacing

〈θ2
a,i〉 → 〈θ2

a,iFanh.(θa,i)〉 , (69)

where Fanh.(x) → 1 for small x and monotonically increases as x → π. An

analytic approximation to Fanh.(x) for the cosine potential is [142]

Fanh.(x) =
[
ln
(

e

1− x2/π2

)]7/6

. (70)

Note that the use of Eqs. (69) and (70) breaks down if the axion field comes

to dominate the energy density, driving a period of inflation, since they rely on

the assumption that oscillations begin in a radiation-dominated background.

A full numerical computation of the relic abundance valid for all fa in the

IILM, taking into account the temperature dependence of g? in the standard

model and all anharmonic effects, is given in Ref. [113].

Axions produced by misalignment behave as DM, and we know that the DM

density is Ωch2 ≈ 0.12. Axions may not be all the DM, but they had better

not produce too much of it, so we must have Ωah2 < 0.12.21 Eq. (67), and its

anharmonic corrections Eqs. (69) and (70), inform the classic discussions on the

QCD axion and “natural” values for fa [25, 27, 26, 143].

21Violating this constraint is sometimes, misleadingly, called “overclosing the Universe,”

a phrase which dates from before the precision cosmology era, when one simply demanded

ρa < ρcrit for some approximate value of H0.
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First, let’s just take 〈θ2
a,i〉 to be a free parameter, and work out the con-

sequences. High fa axions produce too much DM unless θa,i � 1. On the

other hand, low fa axions can only produce a fraction of the DM unless θa,i

is tuned very close to π such that anharmonic corrections can boost the relic

density. The “sweet spot” where Ωah2 = 0.12 is achieved for θa,i ≈ 1 is at

fa ≈ 3 × 1011 GeV. The range of fa where Ωah2 ≈ 0.12 can be achieved with

minimal tuning of θa,i towards zero or π is the region where broken PQ axions

are “natural.” It’s boundaries clearly depend on taste, but allowing for tuning

at the level 10−2 it is:

8× 109 GeV . fa . 1× 1015 GeV (no tuning, broken PQ) . (71)

In the unbroken PQ scenario the relic abundance is fixed by taking 〈θ2
a,i〉 = π2/3.

Keeping Ωah2 < 0.12 and satisfying bounds from stellar cooling and supernovae

defines the classic axion window :

1× 109 GeV . fa . 8.5× 1010 GeV (classic axion window, unbroken PQ) .

(72)

Axions with fa & 1015 GeV are sometimes referred to as living in the an-

thropic axion window [144, 145, 146]. It is so-called because although θa,i must

be tuned small, if it was not small and the DM density was too large, the Uni-

verse would not be conducive to the formation of galaxies and life.22 Note that

the anthropic window is automatically open to high fa axions, since for rT < 1,

fa & 1015 GeV is always in the broken PQ scenario where θa,i is a free param-

eter, although the backreaction contribution may be important depending on

the value of HI .

Let’s bring together everything we know about the QCD axion DM relic

22Refs. [147, 148] discuss the interesting case of anthropic selection with multiple axion

fields. An additional fine-tuning measure is also applied based on isocurvature perturbations

(see Section 5.4). However, when applied to iscourvature, the measure used in Refs. [147, 148]

assumes that the inflationary parameter εinf has a flat prior. A least information (Jeffreys)

prior on the unknown physical scale HI would yield very different conclusions.
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Figure 6: QCD axion DM relic density from vacuum realignment in the broken PQ scenario.

Isocurvature constraints are ignored, see Fig. 17. Left panel : Low scale inflation, HI =

2π × 109 GeV. All of the allowed range of fa has PQ symmetry unbroken during inflation.

Large fa requires tuning θa,i in order not to produce too much DM. Right Panel: High scale

inflation, HI = 1014 GeV. Backreaction produces too much DM for all fa . 3× 1015 GeV.

density from vacuum realignment into two equations:

Ωah2 ≈





2× 104
(

fa
1016 GeV

)7/6
π2

3 Fanh.(π/
√

3)(1 + αdec) (unbroken PQ) ,

2× 104
(

fa
1016 GeV

)7/6

(θ2
a,i +H2

I /(2πfa)2)Fanh.

(√
θ2
a,i +H2

I /(2πfa)2
)

(broken PQ) .
(73)

For simplicity, as stated above, I am going to assume that Eq. (67) holds for all

fa (see the discussion below Eq. 68). See Section 3.3.2 and 4.7 for discussion on

the difference between the misalignment and topological defect populations.

Fig. 6 is a contour plot of Ωah2 as a function of fa and θa,i for the broken PQ

scenario in two different inflation models. The first takes HI = 2π×109 GeV, so

that all of the allowed range of fa has the PQ symmetry broken during inflation.

The second scenario takes HI = 1014 GeV, i.e. about as large as it can be

without violating current tensor constraints. In the case of low scale inflation,

the entire allowed range of fa can produce the required DM density by vacuum

realignment. Large fa requires tuning of θa,i in order to satisfy Ωah2 < 0.12.

In the high scale inflation case, backreaction of isocurvature perturbations leads
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Figure 7: QCD axion DM relic density from vacuum realignment in the unbroken PQ scenario.

The fixed value of 〈θ2
a,i〉 = π2/3 excludes all axions with fa & 9×1010 GeV for producing too

much DM. The uncertainty in axion production from string decay, reflected in the range for

αdec, means that all axions with lower fa can produce a significant contribution to the DM.
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to too much DM production for fa . 5 × 1016 GeV. Large fa & 5 × 1016 GeV

anthropic axions appear compatible with high scale inflation if we allow θa,i

to be tuned, however we have so far only considered constraints from the relic

density, and not from the isocurvature amplitude. We will see in Section 5.4 that

isocurvature constraints imply that high-fa axions are essentially incompatible

with high-scale inflation.

Fig. 7 is a contour plot of Ωah2 as a function of fa and αdec. in the unbroken

PQ scenario. Based on constraints from rT , the largest possible value of fa

in this scenario is fa ≈ 1014 GeV/2π, and I allow αdec ∈ [0.16, 186]. In the

unbroken PQ scenario, the fixed value of 〈θ2
a,i〉 = π2/3 excludes all axions with

fa & 9 × 1010 GeV for producing too much DM. The possible range of αdec

values means that all axions with lower fa than this have the possibility of

providing the correct DM abundance. This defines the classic axion window.

Note that if αdec & 200 then the QCD axion in the unbroken PQ scenario,

satisfying astrophysical constraints, would be completely excluded unless the

excess DM abundance could be diluted (e.g. by late-time entropy production).

This possibility is the source of the controversy over the axion abundance by

string decay discussed in Section 3.3.2.

4.4. Cosmological Perturbation Theory

All specific results here assume that cosmological history begins in the radia-

tion dominated universe after reheating. I work in two gauges: the synchronous

gauge and the Newtonian gauge. These gauges, the gauge transformations be-

tween them and the equations of motion for matter and radiation, are given in

the classic, and endlessly useful, Ref. [149] (see also Ref. [150]).23 The New-

tonian gauge is useful (obviously) for the Newtonian limit (discussed in more

detail in the following subsection). The Newtonian potentials Ψ and Φ are

23As usual in cosmology, note that the adage “the Russians did it first” holds very well

here. If you are so inclined, you can find everything you need in Landau and Lifschitz [151].

Another useful early reference is Ref. [152]. I refer explicitly to Ref. [149] as it addresses

specifically the CMB computation.
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also transparently related to the gauge invariant curvature perturbation, and to

the integrated Sachs-Wolfe (ISW) source terms for the CMB. The synchronous

gauge, with potentials h (not to be confused with the reduced Hubble rate, also

denoted h) and η, on the other hand, makes the CDM evolution particularly

simple, as θc ≡ 0. The synchronous gauge is also used by the popular CMB

Boltzmann solver camb [153]. The full treatment of ULAs in the synchronous

gauge has been implemented in axionCAMB, described in Ref. [131], and soon

to be publicly released. Another popular Boltzmann solver is class [154, 155],

with a ULA model implemented in Ref. [156].

In this section I work primarily in the fluid treatment of axion perturbations.

This can be derived from the perturbed field equation. In Fourier space in

synchronous gauge this is

δφ′′ + 2Hδφ′ + (k2 +m2
aa

2)δφ = −1
2
φ′h′ , (74)

while in Newtonian gauge it is

δφ′′ + 2Hδφ′ + (k2 +m2
aa

2)δφ = (Ψ′ + 3Φ′)φ′ − 2m2
aa

2φΨ , (75)

where primes denote derivatives with respect to conformal time, adτ = dt (not

to be confused with the optical depth, also denoted τ), and the conformal Hubble

rate is H = aH. The perturbed axion field is δφ; the background field is φ.

4.4.1. Initial Conditions

Initial conditions are set for all modes, k, when they are super-horizon k �
aH and at early times during the radiation era. I present the simplest, zeroth

order initial conditions. Corrections to these results can be derived order-by-

order in the super-horizon/early-time limit. The computation is described in

Ref. [157], with results specific to axions given in Ref. [131].

If all cosmological perturbations are seeded by single field inflation, the ini-

tial conditions are adiabatic. Radiation is the dominant component at early

times, and carries the inflationary curvature perturbation. The adiabatic con-

dition relates the overdensity in photons to the overdensity in any other fluid
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component, i:

δi =
3
4

(1 + wi)δγ . (76)

At early times, the axion equation of state is wa ≈ −1 and so δa = δφ = 0 in

the adiabatic mode in the early-time, super-horizon perturbative-expansion.

This adiabatic initial condition seems very different from the standard CDM

adiabatic initial condition where δc = 3δγ/4. That is because we are beginning

when axions are not behaving as CDM. As the axion field rolls and begins

oscillating around wa = 0, the axions begin to cluster and fall into the potential

wells set up by the photons. At late times, a > aosc, this evolution “locks on”

to the standard CDM behaviour on large scales, as we will show from numerical

results shortly.

Isocurvature initial conditions can be thought of in a number of ways. Com-

monly, they are thought of as entropy perturbations: i.e. perturbations in

relative number density of particles of different species that leave the total cur-

vature unperturbed. An isocurvature perturbation between two species, i and

j, can be written in a gauge invariant way as (e.g. Ref. [158] and references

therein)

Sij = 3(ζi − ζj) (77)

where ζi is the curvature perturbation due to a single species:

ζi = −Ψ−H δρi
ρ̇i

. (78)

The total curvature perturbation is

ζ =
∑
i(ρi + Pi)ζi∑
i(ρi + Pi)

. (79)

The most useful practical definition for all cosmological initial conditions is

to think of them as simply the different normal (eigen) modes of the energy

momentum tensor [157]. One then finds the early time, τ � 1, super horizon,

kτ � 1, expansion for each mode. In the synchronous gauge each mode can be

identified by the leading, zeroth order, behaviour of the fluid variables and the
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metric potentials:

η = 1 (adiabatic mode) , (80)

δi = 1 (density isocurvature in species i) , (81)

θi = k (velocity isocurvature in species i) , (82)

with all other components unperturbed. At higher orders one then selects the

growing mode for each component. The correct selection of this is crucial. For

example the adiabatic mode has (e.g. Refs. [149, 157])

δγ = −1
3

(kτ)2 , (83)

and from the equations of motion one finds the condition Eq. (76) relates this to

the other species at each order in the perturbative-expansion, and also accounts

for possible evolution of wi (as is the case for the slowly rolling axion field at

early times [131]).

In the axion iscocurvature mode, relevant for the broken PQ scenario, the ini-

tial condition is δa = 1, with all other species unperturbed at zeroth order. The

normalization and spectrum can be multiplied afterwards since the equations

are linear. The spectrum is a power law, with spectral index (1 − nI) = 2εinf

(for inflationary slow-roll parameter εinf , see Section 7.2).

4.4.2. Early Time Treatment

At early times, the background equation of motion should be solved numer-

ically to find the evolution of the axion equation of state, wa(τ). With this in

hand, the background energy density evolves as

ρ′a = −3Hρa(1 + wa) . (84)

The equation of state also specifies the evolution of the adiabatic background

sound speed:

c2ad = wa −
w′a

3H(1 + wa)
. (85)

The second order perturbed equations of motion can be rewritten as two first

order equations for the axion overdensity, δa and dimensionless perturbed heat
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flux, ua = (1 +wa)va. The equation of state and adiabatic sound speed specify

the background evolution-dependent co-efficients in the equations of motion for

the fluid components. Using the result that the sound speed in perturbations,

c2s = δPa/δρa = 1 in the δφ = 0 axion comoving gauge, the transformation to

fluid variables can be performed exactly [159]. Performing a gauge transforma-

tion to the synchronous gauge, the equations of motion read [131]:

δ′a = −kua − (1 + wa)h′/2− 3H(1− wa)δa − 9H2(1− c2ad)ua/k , (86)

u′a = 2Hua + kδa + 3H(wa − c2ad)ua . (87)

I stress that at this stage no approximations have been made. Given the evo-

lution of wa(τ) (or equivalently φ(τ)) the evolution of δa and ua specify the

evolution of δφ (with metric potentials sourced by all species).

Note that if φ′ = 0 then wa = −1 and w′a = 0. In this case, an adiabatic

fluctuation with δφ = δφ′ = 0 in Eq. (74) has no source and will not grow. The

same holds in the fluid variables: wa = −1 leads to vanishing metric source in

the fluid equations, and so if δa = ua = 0 initially then this remains so, and no

growth occurs.

In this picture, the axions source the Einstein equations with density, pres-

sure and velocity perturbations as

δρa = ρaδa , (88)

δPa = ρa[δa + 3H(1− c2ad)(1 + wa)ua/k] , (89)

ρa(1 + wa)va = ρaua . (90)

4.4.3. The Axion Effective Sound Speed

When a > aosc, wa and c2ad oscillate rapidly in time compared to the Hubble

scale and all other quantities of interest (e.g. the curvature perturbation evolves

on time scales of order H). The exact fluid equations now become numerically

expensive to solve, and an approximation for the perturbed fluid equations,

akin to the wa = 0 approximation in the background equations of motion, is

necessary.
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Consider the general equation of motion for fluids in synchronous gauge

[149]:

δ′ = −(1 + w)(θ + h′/2)− 3H(c2s − w)δ ,

θ′ = −H(1− 3w)θ − w′

1 + w
θ +

c2s
1 + w

k2δ , (91)

where I have only assumed the vanishing of anisotropic stress, which is valid at

first order in perturbation theory for a scalar field. The evolution is specified by

two quantites: the equation of state, w, and the sound speed in perturbations:24

c2s =
δP

δρ
. (92)

For an axion at late times, a > aosc, we know how to approximate the time

averaged equation of state: 〈wa〉t = 〈w′a〉t = 0 (see Section 4.3.1). If we can

simply find a similar expression for 〈c2s〉t evaluated in the appropriate gauge,

then we can use Eqs. (91) to specify the evolution of the axion overdensity. The

pressure source of the Einstein equations due to axions will then be given by

δPa = 〈c2s〉tρaδa.

Just as for the background, we can use the WKB approximation by writing

the background field and field perturbation as

φ = a−3/2[φ+ cosmt+ φ− sinmt] , (93)

δφ = δφ+ cosmt+ δφ− sinmt , (94)

where the functions δφ± depend on wavenumber k as well as time. It is now

possible to find the effective sound sound speed in the gauge comoving with the

time-averaged axion fluid (see e.g. Refs. [160, 161] for the derivation):

〈c2s〉t = c2s,eff =
k2/4m2

aa
2

1 + k2/4m2
aa

2
. (95)

This effective sound speed is the key to understanding the difference between

ULAs and CDM in terms of structure formation.

24See Appendix D for discussion of different definitions of the scalar field sound speed and

the relations between them.

62



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

The metric potentials in the axion comoving gauge are defined in the same

way as the synchronous gauge. The gauge transformation between the two

gauges induces additional terms to Eqs. (91) that decay on sub-horizon scales [131].

The axion fluid equations of motion in the synchronous gauge are:

δ′a = −kua −
h′

2
− 3Hc2s,effδa − 9H2c2s,effua/k, (96)

u′a = −Hua + c2s,effkδa + 3c2s,effH2ua. (97)

4.4.4. Growth of Perturbations and the Axion Jeans Scale

So far, we’ve been very precise and set up the equations of motion and initial

conditions as they would be used in numerical Boltzmann equation solver to

compute cosmological observables in the real Universe.

Let’s take a step back for a moment to a simplified situation, and consider

a Universe dominated by axion DM, and work in the Newtonian gauge. Let’s

take the sub-horizon limit, so that we can use the Poisson equation in its usual

form:

k2Ψ2 = −4πGa2ρδ (98)

Gauge transformations on the effective sound speed between the synchronous

and Newtonian gauge also vanish in this limit. Combining the equations for

δ̇a and θ̇a into a single second order equation for δa, and using the Poisson

equation to eliminate the Netwonian potential, gives the equation of motion for

δa in physical time:

δ̈a + 2Hδ̇a + (k2c2s,eff/a
2 − 4πGρa)δa = 0 . (99)

This is the equation for an oscillator with time-dependent mass and friction.

The mass term in this equation expresses the competition between density and

pressure during gravitational collapse. The origin of the effective sound speed

and pressure in the axion equation of motion is scalar field gradient energy.

On large scales, k2c2s → 0, density wins and axion DM has a Jeans instabil-

ity [162].25 The equation of motion is exactly the same as for CDM, with the

25The growth of perturbations for small k, despite positive mass-squared for the perturba-
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Figure 8: The exact scale-dependent linear growth for an axion DM dominated universe,

Eq. (102), at three values of k̃ = k/
√
maH0, as a function of a/ai. Normalization is arbitrary.

Note that the initial scale factor in this case must obey ai > aosc for the solutions to hold. Left

panel : The growing mode, D+(k, a), Eq. (103). Right Panel: The decaying mode, D−(k, a),

Eq. (104).

usual growing, δa ∝ a, and decaying, δa ∝ a−3/2, modes. On small scales, the

pressure term dominates over the density, and δa oscillates without growing.

The scale where density and pressure are in equilibrium and 4πGρa = k2c2s

is known as a the axion Jeans scale, and it defines a particular wavenumber, kJ .

Modes with k < kJ grow, while modes with k > kJ oscillate. The buzz-phrase

to remember referring to axion perturbations is that there is scale-dependent

growth, and that axion DM differs from CDM on scales below the axion Jeans

scale.

In the limit k/maa < 1 the sound speed has the approximate form:

c2s,eff ≈
k2

4m2
aa

2
. (100)

tions in Eqs. (74) and (75), can be understood from the rapid oscillations in φ′ causing the

system to act as a driven oscillator [159, 163].
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The Jeans scale is given by

kJ = (16πGaρa,0)1/4m1/2
a = 66.5a1/4

(
Ωah2

0.12

)1/4 ( ma

10−22 eV

)1/2

Mpc−1 .

(101)

With ρa = ρcrita
−3 giving the matter-dominated solution for H, and using

the approximation Eq. (100) for the sound speed, there is an exact solution to

Eq. (99) given by:

δa = C1D+(k, a) + C2D−(k, a) . (102)

The closed-form expressions for D±(k, a) are:

D+(k, a) =
3
√
a

k̃2
sin

(
k̃2

√
a

)
+
[

3a
k̃4
− 1
]

cos

(
k̃2

√
a

)
, (103)

D−(k, a) =
[

3a
k̃4
− 1
]

sin

(
k̃2

√
a

)
− 3
√
a

k̃2
cos

(
k̃2

√
a

)
, (104)

where k̃ = k/
√
maH0 ∝ k/kJ . The solutions D±(k, a) are plotted in Fig. 8 at

three different values of k̃. For low k̃, D+(k, a) ∼ a is the usual growing mode,

and D−(k, a) ∼ a−3/2 is the usual decaying mode. For intermediate k̃ there are

some oscillations at early times while the mode is below the Jeans scale. At late

times, it moves above the Jeans scale and picks up the same growing/decaying

behaviour as the low k̃ mode. For high k̃ the mode is always below the Jeans

scale, and both D+ and D− oscillate, retaining constant amplitude.

Finally, let’s return to the real Universe. Fig. 9 shows the evolution of the

axion overdensity computed using axionCAMB, in a realistic model. The axion

mass is ma = 10−26 eV, and axions compose all the DM (we will see shortly

that this combination of mass and energy density contribution are actually

ruled out precisely because of the effects shown here). During the radiation

era, before aosc, the adiabatic axion perturbation is small. As the axion field

begins to roll, the overdensity grows, approaching the CDM value. At low k

(large scales), the overdensity locks on to the standard CDM adiabatic evolution,

despite the different initial conditions between axions and CDM. This occurs

before matter-radiation-equality (a ∼ 10−3), and today (a = 1) the CDM and

axion models have the same amplitude of density perturbations on large scales.
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Figure 9: Evolution of the axion overdensity, for a ULA mass of ma = 10−26 eV and a series

of wave-numbers k (as shown in the figure), compared to standard CDM (dashed). Axions

compose all the DM in this model. Normalization is arbitrary. All cosmological parameters

take realistic values. Reproduced (with permission) from Ref. [131]. Copyright (2015) by The

American Physical Society.
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At intermediate k, growth is suppressed relative to CDM for some time after

equality, and at a = 1 the axion amplitude is slightly suppressed relative to

CDM. The highest k mode has k > kJ initially, and oscillates for some time,

leading to a greatly suppressed axion amplitude relative to CDM on small scales.

4.4.5. Transfer Functions: Relation to WDM and Neutrinos

Thermal DM that was relativistic at freeze-out leads to suppressed clustering

power compared to CDM on scales that were sub-horizon while the particles were

still relativistic. This gives rise to the free-streaming scale, kfs [43], which is of

cosmological size in models of hot dark matter (HDM, including mν . 1 eV

standard model neutrinos, see e.g. Refs. [164, 165, 166]) and warm dark matter

(WDM, including sterile neutrinos and thermal gravitinos with mX ∼ 1 keV,

see e.g. Refs. [167, 168, 169, 170]). Suppression of clustering power below the

axion Jeans scale (large wavenumbers, k > kJ) bears a qualitative similarity to

the effects of these low-mass thermal DM models [171, 172].

In linear theory, modifications to the power spectrum relative to ΛCDM can

always be expressed by the use of a transfer function:

PX(k, z) = T 2
X(k, z)PΛCDM(k, z) . (105)

The function TX(k, z) accounts for both scale and redshift dependence. In

ΛCDM, growth is scale-independent for z . O(100), after the baryon acoustic

oscillations (BAO) have frozen-in, and radiation ceases to be relevant in the

expansion rate. Therefore, the linear-theory ΛCDM power spectrum at any

redshift z . 100 can be obtained from the one at z = 0 by use of the linear

growth factor, D(z):26

PΛCDM(k, z) =
(
D(z)
D(0)

)2

PΛCDM(k) . (106)

26The z = 0 power spectrum must in general be computed numerically. It is itself a product

of the primordial power spectrum with some transfer function. Some useful fits for this transfer

function can be found in Refs. [173, 174].
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The linear growth factor is [175]:

D(z) =
5Ωm

2H(z)

∫ a(z)

0

da′

(a′H(a′)/H0)3
. (107)

Axions and thermal DM induce scale-dependent growth, which causes the

suppression of power relative to ΛCDM. However, if this can be neglected on

the scales and redshifts of interest, then a redshift-independent transfer func-

tion, T (k), can be used to describe the effects of the alternative DM model on

structure formation.

Over a range of scales, the redshift-independent transfer function is a useful

description of WDM, for mX & 0.1 keV, and for ULAs with ma & 10−24 eV.

For lighter ULAs and for HDM, scale-dependent growth remains relevant at late

times and the transfer function is redshift-dependent. These lightest ULAs and

HDM require their own detailed treatment, and physics other than the power

suppression currently drives constraints. We will discuss them independently

when the time comes.

WDM and ULAs with ma & 10−24 eV can be described by the transfer

functions [170, 176]:27

TW(k) = (1 + (αk)2µ)−5/µ , (108)

TF(k) =
cosx3

J(k)
1 + x8

J(k)
, (109)

where I have used “F” standing for “Fuzzy CDM” for ULAs described by this

transfer function. These transfer functions assume that all of the DM is com-

posed of ULAs or WDM, and cannot be used for mixed DM models. The fitting

27The WDM transfer function can be computed exactly in the Boltzmann code class [155].
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parameters are

µ = 1.12 , (110)

α = 0.074
(mX

keV

)−1.15
(

0.7
h

)
Mpc , (111)

xJ(k) = 1.61
( ma

10−22 eV

)1/18 k

kJ,eq
, (112)

kJ,eq = 9
( ma

10−22 eV

)1/2

Mpc−1 . (113)

The WDM transfer function falls off as a power-law in wavenumber. In-

tuitively, this is because it is caused by thermal velocities, with temperature

scaling as T ∼ 1/a, and is related to the comoving wavenumber of order the

horizon size when T ∼ mX . This wavenumber, and the scale factor, evolve as

power laws in cosmic time during matter or radiation domination. The ULA

transfer function falls off more rapidly, as a cosine. Intuitively, this can be un-

derstood from the Jeans scale: solutions to a harmonic equation transition from

exponential growth to harmonic oscillations when the growth exponent changes

from real to imaginary.

Note that the WDM mass used here, and throughout this review, mX , is

the “thermal relic mass,” which can be mapped to the larger mass of a sterile

neutrino with the same free streaming scale [169, 177]:

mν,sterile = 4.43 keV
( mX

keV

)4/3
(

0.12
ΩW

)1/3

. (114)

The characteristic scale in the WDM transfer function is fixed by α−1, while

in the axion transfer function it is fixed by the Jeans scale at equality, kJ,eq. Note

that for axions scale-dependent growth is still important on scales k > kJ(z),

and the transfer function Eq. (109) is only valid for smaller wavenumbers. The

mild redshift dependence of kJ ∝ a1/4 means that the current Jeans scale is not

so far separated from kJ,eq (see Eq. 101).

A very rough estimate for when structure suppression is relevant on the same

scales for WDM and ULAs can be obtained in the following way. For ULAs,

assume that structure is suppressed for modes inside the horizon at aosc, while
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for WDM assume the same for the temperature at which particles became non-

relativistic, Tnon. rel.. Furthermore, assume for both that this happened during

the radiation dominated epoch. If these transitions happened at the same time

for WDM and ULAs, they will each suppress structure on the same scale relative

to CDM. Taking Tnon. rel. ∼ mX and H(aosc.) ∼ ma, and using that during the

radiation dominated epoch T ∼
√
HMpl gives that WDM suppresses structure

on the same scales as a ULA if:

mX ∼
√
maMpl = 0.5

( ma

10−22 eV

)0.5

keV (approximate match) . (115)

We see that it is the large value of Mpl that generates the huge separation of

mass scales between ULAs and WDM in their effects on structure formation.

A more precise relation between mX and ma can be obtained using the

transfer functions Eqs. (108) and (109). The FCDM transfer function falls off

more rapidly than the WDM transfer function, so first we must define a scale

at which to match them. We can take this to be the half-mode, k1/2, defined

by T (k1/2) = 0.5. For the FCDM transfer function the half-mode is [176]:28

k1/2 ≈ 5.1
( ma

10−22 eV

)4/9

Mpc−1 . (116)

Matching this to the WDM half-mode gives:

mX = 0.84
( ma

10−22 eV

)0.39

keV (half-mode matching) . (117)

This agrees with the fit found using ULA transfer functions computed from

axionCAMB in Ref. [178], and also agrees surprisingly well with the simple

estimate of Eq. (115).

Transfer functions for WDM and ULAs, with the WDM mass computed us-

ing Eq. (117), are shown in Fig. 10. The lowest mass shown is ma = 10−23eV→
mX = 0.34 keV, and has k1/2 = 1.6 Mpc−1. The non-linear scale is knl ∼ 0.1→
1 Mpc−1, and so we see that power suppression by ma ≥ 10−23 eV cannot be

constrained by linear LSS observables.

28We define the half mode using T (k) rather than T 2(k) as Ref. [176] does, which explains

the different co-efficient. Thanks to H. Y. Schive for noticing this.
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Figure 10: ULA (solid) and WDM (dashed) transfer functions, Eqs. (108) and (109). WDM

mass is computed to give the same value of k1/2, using Eq. (117).

As a common reference, CDM composed of a neutralino with mass mX =

100 GeV and decoupling temperature T = 33 MeV cuts off power due to free

streaming at k ≈ 106 Mpc−1 (e.g. Ref. [179]). Using Eq. (117) this is approx-

imately the same scale as an axion with ma ≈ 10−10 eV, and the QCD axion

with fa ≈ 1016 GeV. Thus, low-fa QCD axions in the classic window suppress

structure formation on scales smaller than standard WIMPs.

4.5. Non-linearities and the Schrödinger Picture

To study the clustering of axions on non-linear scales, we need to make some

approximations. Axions that cluster on galactic scales began oscillating in the

very early Universe, with aosc � 1, so we can take the WKB approximation.

The virial velocity in a typical galaxy is vvir ∼ 100 km s−1 � c, and galaxies are

much smaller than the horizon, so we can take the non-relativistic approxima-

tion. Overdensities in galaxies are δ & O(105), so perturbation theory on δa or

φ is no good. However, except in the vicinity of black holes, the Newtonian po-
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tential is small, Ψ� 1. Thus the Newtonian limit is appropriate, and Ψ obeys

the Poisson equation. We will also only be concerned with scales above the

axion Compton wavelength (which is on relativistic scales in the Klein-Gordon

equation).

To leading order in Ψ the D’Alembertian is

� = −(1− 2Ψ)(∂2
t + 3H∂t) + a−2(1 + 2Ψ)∇2 − 4Ψ̇∂t , (118)

and the axion energy density is

ρa =
1
2

[(1− 2Ψ)φ̇2 +m2
aφ

2 + a−2(1 + 2Ψ)∂iφ∂iφ] . (119)

We take the WKB approximation in the form

φ = (ma

√
2)−1(ψe−imat + ψ∗eimat) , (120)

where ψ is a complex field, which can be written in polar co-ordinates as

ψ = ReiS . (121)

We take our limits as Ψ ∼ ε2NR, and k/ma ∼ εNR and H/ma ∼ εWKB, and

work to quadratic order in ε ∼ εNR ∼ εWKB. In this limit, the energy density

contains the leading order piece:

ρa = |ψ|2 = R2 , (122)

and the equation of motion for ψ is the Schrödinger equation:

iψ̇ − 3iHψ/2 + (2maa
2)−1∇2ψ −maΨψ = 0 . (123)

This is a non-linear Schrödinger equation, with Ψ sourced by |ψ|2 via the Poisson

equation. The form shown here, including the Hubble friction explicitly, can be

found from the usual form by going to comoving coordinates.

While the Schrödinger equation is interesting and can provide insight into

structure formation with axion DM, wave equations don’t fit the bill as standard

cosmologist’s tools. We can make contact with standard perturbation theory

[180] and non-linear simulation tools such as smoothed-particle hydrodynamics
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(SPH) using, as before, a fluid description. Substituting the polar form of the

wavefunction, we can find conservation and Euler equations for an effective fluid

described by ψ. The fluid velocity is

~va ≡ (maa)−1∇S . (124)

We can now perform a background-fluctuation split and find the equations of

motion in terms of the overdensity, δa (e.g. Refs. [181, 182]):

δ̇a + a−1~va · ∇δa = −a−1(1 + δa)∇ · ~va , (125)

~̇va + a−1 (~va · ∇)~va = −a−1∇(Ψ +Q)−H~v , (126)

Q ≡ − 1
2m2

aa
2

∇2
√

1 + δa√
1 + δa

, (127)

where I have defined the “quantum potential” Q.29 The quantum potential is all

we need to model the axion gradient energy and Jeans scale in the full non-linear

dynamics as a simple modification to the force on a fluid element [182, 184]:

F = −a−1∇(Ψ +Q) . (128)

Eqs. (125) and (126) can also be used as the basis for a modified perturbation

theory of axion DM, which takes into account the differences to CDM near the

Jeans scale. Expanding Eq. (127) to first order in δa and going to Fourier space

provides a simple derivation of the asymptotic form of the effective sound speed,

Eq. (100).

The Schrödinger form of the field equations is useful and interesting in and of

itself. It is a fundamental (though approximate) equation governing axion DM

on non-linear scales. We will use the Schrödinger equation to discuss axion halo

density profiles in Section 6.3. Above the de-Broglie wavelength Schrödinger

29We have used the Schrödinger equation as an intermediate step to get a fluid form for the

axion equations without needing to perform the background-fluctuation split on φ first. We

were thus able to retain canonical equations of motion for ρ and ~v beyond linear perturbation

theory. For discussion on the use of hydrodynamics to describe quantum mechanics in the

“synthetic” view of Bohmian mechanics, see Ref. [183].
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equation also accurately models CDM, and is an alternative to standard N-body

simulation techniques [185]. The wave properties below the de Broglie scale and

the introduction of the quantum force in the fluid equations are a particular

regularization and softening of the Vlasov equation [186]. They also provide

a setting to study modifications to the Zel’dovich approximation [187, 181],

which is the basis of Lagrangian perturbation theory. Perhaps most importantly,

however, the Schrödinger equation provides the best method currently available

to accurately simulate axion and scalar field DM on small scales, which we will

now discuss.

4.6. Simulating axion DM

A full description of DM clustering in any model can only truly be provided

by non-pertrubative numerical simulations. Since the earliest days of computa-

tional cosmology, this been studied in N -body simulations, which simulate the

dynamics of collisionless point particles interacting via Newton’s gravitational

law. The “particles” are not fundamental particles, but simulations particles,

the mass of which is fixed by the simulations resolution. Newton’s law is “soft-

ened” on small scales to prevent unphysical two-body pairs of these particles

dominating the dynamics. These classic N -body simulations are the perfect

picture of CDM, and their conceptual simplicity provides some explanation for

the popularity of its study.

A simulation of CDM is defined by two properties: initial conditions, and

dynamics. The initial conditions are provided by the matter power spectrum

from linear theory, with higher order effects to deal with transients [180]; the

dynamics is that of collisionless particles. Axions, particularly ULAs, modify

both of these properties:

• Modified initial conditions: The initial power spectrum is suppressed rel-

ative to CDM. Modes below the Jeans scale at matter-radiation equality

have the power erased.

• Modified dynamics: On scales of order the axion de Broglie wavelength,
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wavelike effects must be included. The dynamics is not that of collisionless

point particles.

Modified initial conditions are easily implemented in an N -body simulation,

as long as the correct power spectrum is provided from a Boltzmann code. Such

simulations provide an accurate description of axions above the de Broglie wave-

length, and have been performed in Refs. [188, 189]. These simulations are very

similar to those of WDM in the case that streaming velocities are irrelevant

(e.g. Refs. [170, 190]). Special care must be taken, however, due to the appear-

ance of “spurious structures” caused by discreteness effects [191]. Such spurious

structures can be removed based on the shape of the protohalos [190] or on the

functional shape of the halo mass function [192]. Removal of spurious structure

for ULAs was carried out using the protohalo shape condition in Ref. [188]. We

will discuss the halo mass function in more detail in Section 6.1.

Modified dynamics are somewhat less trivial to implement, in particular

those relevant to ULAs. Modern simulations add new dynamics to the simplest

CDM model such as hydrodynamics of the baryons (e.g. Ref. [193]), parame-

terised force law modifications for variants of SIDM [194], neutrino models with

streaming velocities [195, 196], and even general relativistic effects [197] or mod-

ified gravity [198]. At their core, all these methods are based, to some degree,

on the N -body paradigm.

As long as the objects to be simulated are non-relativistic (as galactic halos

are), the Schrödinger equation provides the correct model of axion DM on small

scales. A cosmological simulation of the Schrödinger equation is a fundamen-

tal departure from N -body simulations. The first high-resolution cosmological

simulations of the Schrödinger form were recently performed in Ref. [199]. The

modified dynamics caused by wavelike effects for ma ≈ 10−22 eV appear in

dwarf galaxy-sized objects on scales of order 1 kpc. The modified dynamics can

be seen to introduce effects including smooth halo density profiles and interfer-

ence fringes (see Section 6.3 and Fig. 20), which would be completely absent in

a CDM-like N -body simulation. Resolving these features accurately in a cos-
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mological simulation involves many computational technicalities, including e.g.

the use of adaptive mesh refinement to solve the scalar field equation over a

wide range of length scales.

An alternative way to model the modified dynamics of ULAs and other

scalar fields in cosmological simulations, which fits more easily into the N -body

paradigm, is suggested by the modified force law in the fluid description, Eq. 128.

This modified force law could be implemented in a hydrodynamic model (as

suggested in Refs [182, 184]), or indeed in any method where the local density

and its derivatives can be accurately determined. This method was employed in

toy models in Ref. [184], but has yet to be applied to a cosmological simulation.

The Schrödinger equation in this context models more than just axions. It is

applicable to any model of scalar field DM, real or complex-valued, so long as the

field is oscillating about a quadratic potential minimum, and self-interactions

can be neglected. The simulations of Ref. [199] represent the state-of-the-art

for simulations of these models. There is still much to be done in this area,

however. For example, some of the many things not covered in Ref. [199]:

• Initial conditions. Use of full Boltzmann equation power spectra. Modified

perturbation theory and Zel’dovich approximation.

• Hydrodynamics. Modelling of baryonic effects in tandem with scalar field

dynamics to assess complementary roles.

• Zoom-in simulations. Dwarf galaxies and sub-structure modelled in Milky-

Way and Local Group analogs from larger N -body simulations.

This shopping list is not meant to detract from the achievements of Ref. [199]:

the field of study of such simulations is simply young compared to that of CDM

N -body simulations.

4.7. My Two Cents on BEC

In this section we discuss only DM axions. There is some debate in the

literature as to whether axion DM forms a Bose-Einstein condensate (BEC),
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and over what scales such a BEC differs from CDM. For more discussion on this

topic, see Refs. [200, 201, 202, 203]. The original discussions of the link between

quantum theory and classical fields for the axion are in Refs. [204, 205].30

Davidson [202] defines a BEC as

BEC = condensed regime = classical field . (129)

This chimes with our usual notion form undergraduate statistical mechanics: the

macroscopically-occupied ground-state obeys the classical equations of motion.

The important characteristic, however, is not the ground-state, which is only

accessible to a homogeneous system (which cosmology certainly is not), but it

is that the Fourier modes are concentrated at a particular value and that the

particles in this state are coherent.

Let’s define some of these notions: we will not use these formal definitions,

but it helps to be precise. QFT decomposes a field operator into modes of

creation, â, and annihilation, â†, operators as

φ̂(x) =
∫

d3p

(2π)3

1√
2Ep

(
âpe
−~p·~x + â†pe

−i~p·~x) , (130)

where ~p is the three-momentum, and Ep is the energy. The ground state is

defined by âp|0〉 = 0. The classical field is defined by the coherent state [207]

|φ〉 =
1
N

exp
[∫

d3q

(2π)3
φ̃(~q)â†q

]
|0〉 , (131)

where φ̃(~q) is the Fourier transform of the classical field, andN is a normalisation

such that 〈φ|φ〉 = 1. The expectation value of the field operator in this state is

the classical field:

〈φ|φ̂(x)|φ〉 =
∫

d3p

(2π)3

1√
2Ep

φ̃(~p)e−i~p·~x = φ(x) , (132)

30There is a vast literature on so-called “BEC dark matter”: as far as I can tell, for all

practical purposes this simply maps to general scalar field models. Since the early Universe

physics is often less well defined than in the case of axions, questions of condensate formation

are also less clear. For a good source of references and history, see Ref. [206].
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i.e. this expectation value obeys the classical equations of motion as we have

been discussing in the preceding subsections, and will continue to discuss through-

out this review.

The questions now are: over what timescales do axions enter the state |φ〉,
how does this state evolve, and, crucially, what is its coherence length? The

“controversy” of axion BEC is over what role gravity plays in this process, par-

ticularly at late times, and over the coherence length this induces for structures

with vorticity, ~∇× ~v 6= 0, within galaxies.

Recall that there are two populations of DM axions: those formed from

vacuum realignment, and those formed from decay of topological defects. The

vacuum realignment population begins life already in the state |φ〉. In the

broken PQ scenario, the state |φ〉 is formed by inflation, which super-cools and

homgenises the axion field over the entire visible Universe. In the unbroken PQ

scenario, the parent PQ field, ϕ, is in it is classical field state, |ϕ〉, and thus the

axion field created after SSB is also coherent in the state |φ〉 over the horizon

size at SSB (leading to the classical field configurations of strings, domain walls,

and miniclusters, as discussed above).

Thus, for either the broken or unbroken PQ scenario, axions from the vacuum

realignment mechanism are described entirely by the classical field equations, as

presented in the preceding parts of this section. Thermalisation at early times

is irrelevant, as coherence is established by initial conditions. The gravitational

interactions lead to the usual structure formation on large scales: as perturba-

tions grow, the field effectively loses some coherence. The Jeans scale supports

the field against gravitational collapse and maintains total coherence on smaller

scales. The characteristic size of collapsed objects is given by the soliton solu-

tions to the Schroödinger-Possion equation (see Section 6.3).

For the population of cold axion particles produced by topological defect

decay in the unbroken PQ scenario, axions can enter the state |φ〉 via thermal-

isation. The condition for thermalisation due to any interactions is that the

relaxation rate, Γ, is of order the Hubble rate.

Consider the QCD axion for concreteness. The self interactions are computed
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by Taylor expanding the cosine potential, giving:

Vint =
λ

4!
φ4 , λ =

m2
a

f2
a

m3
d +m3

u

(md +mu)3
≈ 0.35

m2
a

f2
a

. (133)

Note that these interactions are attractive. The relaxation rate is [200]

Γλ ∼ nσ0δvN . (134)

where n is the number density of particles, σ0 is the cross section for two-to-two

axion scattering in vacuum, σ0 = λ2/(64πm2
a), δv is the velocity dispersion, and

N is the average state occupation number. The number density is computed

from the relic density, the velocity dispersion at time t is computed by redshifting

the initial momentum, p(tosc) ≈ H(tosc) (recall that topological defects decay

when the classical field begins oscillating), and the occupation number is given

by

N =
(2π)3n

Vcoh.
, (135)

where Vcoh. is the spherical volume of a coherence patch: Vcoh. = 4π(mδv)3/3.

By taking matosc ∼ 1 we find that Γλ(tosc)/H(tosc) ∼ O(1): self interactions

thermalise the cold population of axions, with an initial coherence length of order

1/H(tosc).31 Thus, for the cold population of axions produced by topological

defect decay, on all times later that tosc we can also describe the axions as being

in the state |φ〉 obeying the classical equations of motion. This is as we expect:

occupation numbers for axion DM from any production mechanism are so huge

that classical field equations ought to be adequate. So far, so uncontroversial.

The question now arises as to whether axions can “re-thermalise” at later

times. The two-to-two rate, Γλ, redshifts faster than H, such that at times after

tosc self-interactions are not sufficient for this purpose [200]. Now the controver-

sial part: can gravitational interactions re-thermalise the axion condensate? If

re-thermalisation at times t > tosc occurs, then a larger coherence length will be

established, and axion DM will differ from CDM on scales larger than those set

by the Jeans scale and quantum pressure in the classical equations of motion.

31The general scalings of these arguments hold also for generic ALPs with λ ∼ m2
a/f

2
a .

79



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Sikivie and Yang [200] propose that gravitational scattering of axions can

lead to re-thermalisation of the QCD axion at a temperature Tre. ∼ 100 eV(fa/1012 GeV)1/2.

This is argued based on the gravitational relaxation rate:

ΓG =
GNnm

2
a

(mδv)2
. (136)

If Sikivie and Yang are correct, this effect will induce a larger coherence length

for the axion field, absent in the classical equations of motion. In particular,

the claim is that re-thermalization due to ΓG is not captured by the classical

equations of motion.

However, this claim has been countered by Davidson and Elmer [201], David-

son [202], and Guth, Hertzberg and Prescod-Weinstein [203], who show that the

effects of the relaxation rate ΓG are already present in the classical equations of

motion (the relevant case being the Schrödinger-Poisson equation), and thus by

solving them alone on times t > tosc we miss nothing: there is no coherence on

scales larger than the Jeans scale. The rate ΓG is the interaction rate between

axions already in the condensate with one another, hence being linear in GN .

Davidson [202] also estimated the quadratic in GN scattering between cold ax-

ion particles and the condensate, concluding that this interaction is negligible

for fa . Mpl.32 In the end, Davidson notes, all such questions can ultimately

be answered by the Path Integral, using the Closed Time Path 2PI action in

curved space. Further treatment of this is far beyond the scope of this review.

A final note here is on the possible formation of vortices in the axion field

(a well-known phenomenon in BEC in the laboratory [208]), and their possible

phenomenological role in galactic haloes. A net overall rotation of the axion

field caused by tidal torques leading to ∇ × ~v 6= 0 would augment our sys-

tem of classical equations due to anomalous stresses, and could lead to vortex

formation. Sikivie and Yang (see also Ref. [209]) argued that this could be a dis-

tinctive feature of axion DM, and may explain the structure of caustics in DM

32Recall that it is folk-wisdom that super-Planckian fa violates “gravity as the weakest

force”
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haloes. This was explored in more detail by Rindler-Daller and Shapiro [210],

who found that the axion self-interactions are of the wrong type (attractive

rather than repulsive) to support vortex formation. Vortex formation depends

on having self-interactions, and so goes beyond the m2
aφ

2 simplified model we

study mostly in this review. In any case, it is clearly a model-dependent effect,

and one that appears not to occur for the QCD axion.

5. Constraints from the CMB and LSS

This section reviews work presented in Refs. [131, 172, 211, 212]. Bayes

theorem is briefly reviewed in Appendix E. Issues related to sampling the axion

parameter space are discussed in Appendix F.

5.1. The Primary CMB

The CMB temperature auto-power, CTT` , is the data product at the disposal

of the precision cosmologist. We use CMB data from Planck (2013 release) [213,

214] and WMAP [215], ACT [216] and SPT [217].

ULAs affect the primary (adiabatic, unlensed, no secondaries) CMB primar-

ily via the expansion rate. The first acoustic peak of the CMB temperature

power occurs at ` ≈ 200 and is fixed by the angular size of the BAO at recombi-

nation, zrec ≈ 1100. ULAs with zosc & 1100 affect higher acoustic peaks, while

those with zosc . 1100 affect the Sachs-Wolfe (SW) plateau.

The CMB acoustic peaks constrain the relative matter-to-radiation density

at different epochs, fixing the DM to baryon ratio and the redshift of matter-

radiation equality. Axions with wa ≈ −1 at any particular epoch alter the

expansion rate relative to that in a pure CDM cosmology. The higher acoustic

peaks probe successively higher order effects on the expansion at earlier times,

however radiation is increasingly dominant at early times, and the higher acous-

tic peaks also Silk-damp away. Thus, there is some maximum zosc for heavy

ULAs beyond which the effects on the higher acoustic peaks vanish and ULAs

become indistinguishable from CDM. If we demand that ULAs compose all the
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Figure 11: Effect of ULAs on the CMB as a function of ULA mass. Here we demand that ULAs

compose all the DM, with no CDM. The early-time expansion rate is altered, changing the

relative heights of the higher acoustic peaks. Reproduced (with permission) from Ref. [131].

Copyright (2015) by The American Physical Society.

DM, the effects on the CMB are more dramatic for low mass ULAs, where the ex-

pansion rate is significantly altered near matter-radiation equality. These effects

are illustrated in Fig. 11. The lightest ULA model shown has ma = 10−27 eV.

The mass is just large enough that matter-radiation equality and recombina-

tion are barely changed, leaving the first peak at the same location, and the SW

plateau unchanged. Higher acoustic peaks depart significantly from the CDM

case. Increasingly higher masses lead to increasingly smaller effects away from

CDM, with the effects moving to higher acoustic peaks. By eye, it is impossible

to distinguish ma = 10−25 eV from CDM.

Lighter ULAs differ significantly from CDM in the post-recombination Uni-

verse. Getting matter-radiation equality right requires us to keep the CDM

density at Ωch2 = 0.12. Introducing light ULAs at fixed H0 thus reduces ΩΛ.

The Universe is now younger, with reduced distance to the CMB. This moves

the first acoustic peak to lower `. The ULAs have wa = −1 transitioning to
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Figure 12: Effect of the lightest ULAs on the CMB. Left Panel: I hold Ωch2 = 0.12 fixed and

introduce successively heavier axions as a fraction of the DE at fixed H0. The first acoustic

peak moves and the ISW effect more pronounced compared to ΛCDM. Right Panel: Here we

demand that the location of the first peak remains fixed, which requires reducing H0 compared

to ΛCDM, isolating the ISW effect. Reproduced (with permission) from Ref. [131]. Copyright

(2015) by The American Physical Society.

wa = 0 in the late Universe, and imprint this on the low ` CMB via the inte-

grated (I)SW effect. Both of these effects are shown for varying ULA masses

in Fig. 12 (Left Panel). Notice that ma = 10−33 eV is indistinguishable from

ΛCDM: axions this light have wa ≈ −1 today, and contribute to the effective

cosmological constant and DE.

The low ` CMB measurement is cosmic variance limited, leading to large

uncertainties, while the first acoustic peak is measured exquisitely well. We can

isolate the ISW effect of ULAs by changing the value of H0 to leave the location

of the first peak unchanged. Such a cosmology is shown in Fig. 12 (Right Panel).

With Ωa/Ωd = 0.1 and ma = 10−32 eV the ULA model is indistinguishable from

ΛCDM (except in the quadrupole, ` = 2, which is poorly measured).

83



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

5.2. The Matter Power Spectrum

The matter power spectrum, P (k, z), contains a wealth of cosmological in-

formation. The BAO imprint a fixed physical scale on the power spectrum, and

this is used as a measurement of the expansion rate (e.g. Ref. [218]). The BAO

measure a single number, the angular size of the sound horizon, as a function

of redshift. The full shape of the matter power spectrum contains more infor-

mation than just the BAO, and is our focus here. The matter power spectrum

can be measured from the two-point correlation function of some tracer of the

DM. Here we focus on the galaxy power spectrum, Pgal(k, z) = b2P (k, z), where

b is the galaxy bias. It is measured by a number of surveys, of which we choose

to use the WiggleZ survey [219], which measures the galaxy power spectrum in

four redshift bins centred on z = 0.22, 0.41, 0.60 and 0.78. We further restrict

to only linear scales, k . 0.2hMpc−1.

The effect of axions on the matter power spectrum probes both the expansion

rate (via the BAO) and the growth of structure, via the transfer and growth

functions. The most well-known effect that we have already discussed is the

suppression of power caused by the existence of the axion Jeans scale. This

effect is shown in Fig. 13, where the left panel shows the idealized scenario with

P (k), and the right panel the effect convolved with the WiggleZ survey window

function and marginalized over galaxy bias.

In the idealized case, we see how reducing the axion contribution to the DM

density reduces the amount of structure suppression compared to CDM [132,

171]. For ma = 10−27 eV structure suppression kicks in at k ≈ 0.02hMpc−1,

and has a sub-percent effect on the power relative to CDM for Ωa/Ωd = 0.01

(ULAs contributing ∼ 1% to the total DM). The galaxy bias, b, changes the

character of the effect. Galaxy bias is measured by the survey by allowing b

to float as a free parameter. When it varies, it can compensate, in a scale-

independent manner, for suppression of power. The preferred value of b, and

so the normalization of the power spectrum, is thus different for the ULA cos-

mologies than for ΛCDM, and this partial degeneracy reduces the constraining

power of the galaxy survey.
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Figure 13: Effect of the lightest ULAs on the matter power spectrum, with fixed mass and

varying contribution to the DM density. Left Panel: The matter power spectrum. Right

Panel: After convolution with the WiggleZ survey window function and marginalization over

galaxy bias at z = 0.60. Reproduced (with permission) from Ref. [131]. Copyright (2015) by

The American Physical Society.

The scale-dependent clustering of ULAs tells us that a full treatment of

bias in these cosmologies should involve computing a scale-dependent bias, b(k),

and its dependence on the ULA transfer function and growth rate. Scale-

dependent bias in mixed DM cosmologies is a poorly understood problem, and

it has particular relevance to studies of massive neutrinos (see e.g. Ref. [220]).

Scale-dependent bias can be studied through numerical simulation, or semi-

analytically via the halo model [221]. Ref. [131] proposed an approximate treat-

ment of scale-dependent bias for ULAs, motivated by treatments of DE and

neutrinos, and by the data, which we now outline.

Bias relates the galaxy power spectrum to the matter distribution. On scales

where ULAs do not cluster (below the Jeans scale), we do not expect any corre-

lation between the galaxies and the ULAs. Galaxy surveys only observe out to

some smallest wavenumber (largest scale), kobs. The scale of the observations

defines an epoch, kobs = abiasH(abias): ULAs which only begin to behave like

matter after this epoch will not be correlated with the galaxy distribution on
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observable scales. We can approximate the scale of structure suppression for

ULAs as kosc = aoscH(aosc) and impose scale-dependent bias as a hard cut by

excluding ULAs from the matter density if aosc > abias:

δρm = Θ(aosc − abias)(δρc + δρb) + Θ(abias − aosc)(δρc + δρb + δρa) , (137)

where Θ(x) is the Heaviside function, and ρm in the overdensity is defined in

the same manner. Because no current galaxy surveys observe on scales larger

than the horizon size at equality, Ref. [131] made the simplification abias = aeq,

which effectively removes ULAs from the matter distribution used to compute

the galaxy power spectrum for ma . 10−27 eV.

An unbiased tracer of the matter distribution is provided by gravitational

lensing. Upcoming surveys such as Euclid propose to measure the galaxy shear

power spectrum [222], and could improve constraints on DM models consider-

ably [172, 223, 224] if systematics can be controlled. The forecasted sensitivity

to Ωa of the lightest ULAs for a Euclid -like survey is shown in Fig. 14.33 These

optimistic forecasts for weak lensing show an increase in sensitivity of around a

factor of ten compared to the galaxy redshift survey alone.

The effect of axions on the expansion rate is also seen in the power spectrum,

and is particularly evident if axions replace Λ (although now the issue of bias

becomes more complicated [131]). This changes the age of the Universe relative

to ΛCDM, with a younger Universe having less time to grow structures, reducing

the amplitude of P (k). In the CMB the effect of a younger Universe could be

largely compensated by reducing H0; in P (k) it can be compensated by changing

the amplitude of primordial fluctuations, As. However, as both the CMB and

P (k) share common parameters, no choice of As and H0 can completely remove

the effects of this change, demonstrating the complementarity of CMB and LSS

measurements. See Ref. [131] for further discussion.
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Figure 14: Forecasted sensitivity of a Euclid-like galaxy redshift (GRS) and weak lensing

(WL) survey to axion DM fraction, Ωa/Ωd, as a function of mass. WL increases sensitivity

to Ωa by a factor of around ten compared to GRS alone. Reproduced and modified (with

permission) from Ref. [172]. Copyright (2012) by The American Physical Society.
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Figure 15: Constraints to the axion dark sector energy fraction, Ωa/Ωd, as a function of axion

mass from linear cosmological probes. Left Panel: Contours show 2 and 3 σ allowed regions

comparing CMB and CMB+WiggleZ. Right Panel: CMB constraints, with sample points

from chains colour-coded by axion initial displacement in Planck units. Reproduced (with

permission) from Ref. [131]. Copyright (2015) by The American Physical Society.

5.3. Combined Constraints

Fig. 15 (left panel) shows the constraints on the axion dark sector density

fraction, Ωa/Ωd, as a function of axion mass for CMB and CMB+WiggleZ data

set combinations, taken from Ref. [131]. Including LSS data from WiggleZ as

well as the CMB loosens constraints slightly at low mass, and tightens them

slightly at high mass. The looser constraint at low mass is possibly being driven

by the CMB/LSS tension in measurements of the power spectrum amplitude

(commonly expressed as the “σ8 tension”). The tighter constraint at high mass

is due to the WiggleZ data points with small error bars at k ∼ 0.1hMpc−1.

The normalization is Ωd = Ωa+Ωc, i.e. we consider a mixed DM model with

CDM and ULAs. The allowed value at the lowest ULA masses, ma ≈ 10−33 eV,

is Ωa/Ωd = 0.6 implying Ωa ≈ 0.6, with the CDM density held fixed at close to

33In this figure, neutrino parameters are included and marginalized over, lowering the CMB

sensitivity compared to that found in Ref. [131] (see next section, and Appendix F).
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its usual value. These ULAs are DE and drive the current period of accelerated

expansion. At high mass, we see that in order for axions to be all the DM, with

Ωa/Ωd = 1, requires ma ≥ 10−24eV at 95% C.L. This is the lower bound on

DM particle mass from linear cosmological probes, as promised in the abstract.

The constraint in the central, intermediate mass, region of 10−32 eV ≤ ma ≤
10−25.5 eV is Ωa/Ωd ≤ 0.05 and Ωah2 ≤ 0.006 at 95%-confidence. That is,

intermediate mass axions must make up less then 5% of the total DM.

It is important to note that the constraints of Ref. [131] apply to a cosmology

with CDM plus a single light axion, and not to CDM plus multiple axions. It

might be a good guess to assume that the constraint on the energy density in

the intermediate mass regime applies to the sum total energy density for all such

axions (because the constraint is independent of mass). A dedicated study is

necessary, but degeneracies will be even more problematic and a prudent choice

of priors and sampling will be required (see Appendix F).

Fig. 15 (right panel) shows the CMB only constraints, with sample points

from Multinest [225] chains colour-coded by the initial axion field displace-

ment in Planck units (and re-sampled such that point density is proportional to

probability as in a Markov chain Monte Carlo, MCMC).34 The field displace-

ment is always φi < πMpl, and is thus consistent with a quadratic potential

and sub-Planckian fa. Axion DE requires fa ∼ Mpl. For ma = 10−22 eV to

be all the DM requires φi ∼ O(few)× 1016 GeV. This shows that a ULA with

fa ≤ 1016 GeV will satisfy all current constraints on Ωa without fine tuning.

These conclusions from numerical computation and full comparison with CMB

data agree with the discussion in Section 4.3.1 based on Eq. 61.

34The field displacement is found by using Eq. (61) as the initial guess in a shooting method

to obtain the desired Ωa. We solve the Klein-Gordon equation at early times, switching to

ρa ∝ a−3 when 3H = ma.
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Figure 16: CMB adiabatic and isocurvature spectra. ΛCDM adiabatic (dashed), CDM isocur-

vature with Ωa/Ωd = AI/As = 1 (dot dashed), ULA isocurvature with Ωa/Ωd = 0.01 and

increaing ma from left to right (solid, colour). Reproduced (with permission) from Ref. [211].

Copyright (2013) by The American Physical Society.

5.4. Isocurvature and Axions as a Probe of Inflation

Axions in the broken PQ scenario pick up isocurvature perturbations. The

amplitude of these perturbations is proportional to the energy scale of infla-

tion. The CMB places strong constraints on the allowed amplitude of such

perturbations. Therefore, if axions compose the DM, constraints on isocur-

vature constrain the energy scale of inflation, and a detection of both would

uniquely probe inflation. An independent measurement of the energy scale of

inflation can be used to place strong constraints on axion cosmology.

Let’s flesh these ideas out and quantify the possibilities. All of this Section

assumes standard, single-field, slow-roll inflation. We’ll focus on the QCD axion,

which is also covered in detail in Refs. [134, 226, 141]. The case of ALPs is

slightly more complicated than for the QCD axion, as the parameter space has

more dimensions. ALPs are covered by Refs. [211, 212, 66].

Axion isocurvature density perturbations are of uncorrelated CDM type, as
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long as the Jeans scale can be neglected, which is the case for the QCD axion.

The isocurvature CMB spectrum is shown in Fig. 16, where the effect of non-

negligible ULA Jeans scale is also shown. The isocurvature power spectrum

generated by Eq. (42) is:

PI = AI

(
k

k0

)1−nI
, (138)

with amplitude

AI =
(

Ωa
Ωd

)2 (HI/Mpl)2

π2(φi/Mpl)2
. (139)

The scalar power is:

Pζ = As

(
k

k0

)1−ns
, (140)

with amplitude

As =
1

2εinf

(
HI

2πMpl

)2

= 2.20× 10−9 . (141)

The measured value of As is taken from Planck (2015), and the scalar spectral

index is measured to be ns = 0.96 [105]. Uncorrelated CDM isocurvature is

constrained to35

AI
As

< 0.038 . (142)

The tensor-to-scalar ratio, rT = 16εinf , provides an independent constraint

on the energy scale of inflation. Planck and BICEP2 [86] provide the limit rT <

0.12. The projected sensitivity of CMB-S4 experiments is rT ∼ 10−3 [229], while

futuristic sensitivity from 21cm lensing could be as low as rT ∼ 10−9 [230, 231].

All of these results are collected together for the QCD axion in Fig. 17.

I plot contours for AI/As = 0.04 and Ωah2 = 0.12 as functions of (fa, HI)

35This assumes scale invariance of the isocurvature power, ε � 1, which is consistent with

the implied value of HI and rT . Compare this to the isocurvature power generated in the

unbroken PQ scenario. In this case the amplitude is huge, AI ∼ 〈(δθ/θ)2〉 ∼ O(1)� As, but

power is only generated on very small scales, k � k0, that are not constrained by the CMB

power spectrum. Spectral distortions and miniclusters may impose interesting additional

constraints [227, 228].
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Figure 17: The QCD axion and CMB tensor modes. The unbroken PQ scenario produces

no isocurvature, and is allowed as long as the limits on rT and relic density (see Fig. 7)

are satisfied, requiring low fa. In the broken PQ scenario, we show various levels of tuning:

θa,i = 1 (solid lines), θa,i = 10−2 (dashed lines), θa,i = 10−4 (dotted lines). Constraints

are shown for relic density Ωdh
2 < 0.12 (blue, lie below-left) and isocurvature amplitude

AI/As < 0.04 (red, lie below). The observable range of 10−9 < rT < 0.1 is shown in purple,

with a realistic near-future limit of rT = 10−3 given by the solid line at HI ∼ 1013 GeV. The

allowed regime if the QCD axion in the broken PQ scenario is to be all the DM is given by

the intersections of the red and blue lines (black), which always lies below a detectable tensor

mode.
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at fixed levels of fine tuning on θa,i. Satisfying relic density and isocurvature

constraints requires being below the intersections of these curves. For example,

having θa,i = 1 and Ωah2 = 0.12, requires fa ≈ 3× 1011 GeV. The isocurvature

constraint then enforces HI . 107 GeV. The intersection of the AI and Ωa

constraints traces out, approximately, HI . 1010(fa/Mpl)1/2 GeV if axions are

to be all the DM. The constraint quoted by Planck [96] in this scenario is

HI < 0.86× 107 GeV(fa/1011 GeV)0.408 (95% C.L.), consistent with our rough

estimates.

A range of measurably-large values of rT are shown shaded purple, corre-

sponding to a range 1010 GeV . HI . 1014 GeV. There is nowhere on the

(fa, HI) plane where the QCD axion in the broken PQ scenario can be all of

the DM, satisfy iscourvature bounds, and produce rT > 10−9 (a realistically

observable value, shown by the dark purple line). Note that such small values

of r can be obtained, consistent with As and ns observations, in string inflation

scenarios such as KKLT [232] or brane inflation (see Ref. [233] for details).

Relaxing the assumption that the QCD axion is all the DM, Fig. 17 shows

that with θa,i . 10−4 a range of large fa starts to become consistent with

rT > 10−9. By trial and error, we find the maximum value of rT consistent

with isocurvature constraints and fa < Mpl occurs for θa,i ≈ 10−7 where we

have Ωah2 < 10−6 and rT ≈ 10−4. There is no amount of tuning that can make

the QCD axion in the broken PQ scenario consistent with tensor modes as large

as rT = 10−3, the CMB-S4 target.

CDM-type isocurvature modes are avoided completely in the unbroken PQ

scenario. Thus, if tensor modes are observed, the QCD axion must live in the

parameter space of Fig. 7 contained within the grey shaded region of Fig. 17,

implying fa < 1011 GeV.

These conclusions can be avoided if some of our cosmological assumptions

are relaxed. An example non-minimal inflation model producing rT > 10−3

consistent with the broken PQ scenario and high fa, uses the radial PQ field,

χ, as the inflaton, non-minimally coupled to gravity (similarly to Higgs infla-

tion) [234]. Such a scenario can allow for simultaneous detection of DM axions
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by CASPEr [235] (see Section 9.5.2), and detection of rT by, e.g., spider [236].

There are many other possibilities to avoid the isocurvature problem of high-

scale axions by modifying inflation, particle physics, or the thermal history, for

example Ref. [237], and related works.

We conclude our discussion of the QCD axion and isocurvature in summary:

• The QCD axion in the broken PQ scenario is incompatible with observably-

large tensor modes from standard inflation.36

• In the broken PQ scenario with standard inflation, axion isocurvature

modes could probe HI as low as 107 GeV, offering a unique probe of low-

scale inflation.

• Simultaneously detecting a high fa & 1013 GeV QCD axion and tensor

modes at rT = 10−3 would falsify minimally coupled, single-field, slow-roll

inflation with a standard thermal history.

6. Galaxy Formation

This section reviews work presented in Refs. [178, 238, 239].

6.1. The Halo Mass Function

The halo mass function (HMF) gives the expected number of halos per loga-

rithmic mass bin, per unit volume, for a given cosmology. It depends fundamen-

tally on two quantities, both of which can depend on halo mass and redshift: the

variance of fluctuations, σ2(M, z), and the linearly extrapolated critical density

required for such fluctuations to collapse, δcrit(M, z). The relevant standard

formulae are given in Appendix G.

36It is, in fact, possible to make the QCD axion in the broken PQ scenario compatible

with observable tensors if we allow fa & 1010Mpl and tune the initial misalignment angle at

a level θa,i � 10−10. I exclude such a scenario as unreasonable. The tuning is worse than

the strong-CP problem, and the existence of a scale so much larger than the Planck scale is

considered highly problematic in theories of quantum gravity.
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We can compute σ(M, z) given the linear power spectrum, P (k, z). The cut-

off in power caused by the axion Jeans scale leads to a suppression of σ(M, z)

compared to CDM at low halo mass, with σ(M, z) going to a constant as M → 0.

The reduced value of σ(M, z) reduces the abundance of low mass halos.

In an Einstein-de Sitter universe (CDM with Λ = 0), spherical collapse can

be solved exactly. Scale-independent growth gives a constant, mass-independent,

value for δcrit, which can be scaled to any redshift using the linear growth factor

(the result also works well for ΛCDM on not-too-large scales):

δcrit,EdS(z) =
1.686D0

D(z)
. (143)

The collapse barrier is mass-independent for CDM because the growth equa-

tion is scale-invariant. In DM models with an effective pressure, the Jeans scale

introduces scale-dependence into the collapse threshold. In spherical collapse

simulations with WDM, where free-streaming was modelled by an effective pres-

sure [240], a mass-dependent critical barrier is found, with δcrit increasing below

the WDM Jeans scale. This barrier can then be used in a full excursion set

model of WDM halo formation, dramatically suppressing halo formation below

the effective Jeans mass [241]. Spherical collapse and the excursion set have not

been studied for axion DM. Instead, Ref. [178] proposed a simple model where

D(z) in Eq. (143) is simply replaced by an appropriately normalized (in both

scale and redshift relative to ΛCDM) scale-dependent growth factor, G. The

mass can be assigned from the wavenumber using the enclosed mean density in

a sphere of radius R = π/k giving:

δcrit(M, z) = 1.686G(M, z) . (144)

We define G as the relative amount of growth between axion DM and CDM,

normalized to unity on large scales, k0, and at early times, zearly:

G(k, z) =
δa(k0, z)δa(k, zearly)
δa(k, z)δa(k0, zearly)

δc(k, z)δc(k0, zearly)
δc(k0, z)δc(k, zearly)

, (145)

where δa is computed in the axion cosmology, and δc is computed in the CDM

cosmology, with Ωah2 = Ωch2. In practice, k0 should be chosen such that
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Figure 18: Right Panel: Critical overdensity for collapse, δcrit(M, z) for ma = 10−22 eV

computed from scale-dependent growth using Eq. (144), normalizing for the growth in ΛCDM

using D(z). Left Panel: Resultant halo mass function, compared to CDM. Modified from

Ref. [238], Figs. 1 and 2.

k0 < kJ(zearly), but not so small such that scale dependent growth in ΛCDM due

to Λ domination becomes relevant. Similarly, zearly should be chosen such that

the power spectrum shape in ΛCDM has frozen in, i.e. after BAO formation.

For DM axions in a close-to-ΛCDM cosmology, reasonable choices are k0 =

0.002hMpc−1 and zearly ≈ 300.37

The critical overdensity appears in the HMF in the argument of a Gaussian.

Thus, even a modest increase in δcrit causes a sharp cut-off in the HMF: this is

shown in Fig. 18.38 The cut-off makes physical sense: there are no seed density

perturbations on scales below the Jeans scale, and even if there were, growth

is so suppressed there that density perturbations cannot collapse into virialized

37An interesting recent discussion of the relative importance of scale dependent growth to

LSS simulations of axion DM is given in Ref. [188], where a similar quantity to G is used to

measure this.
38The fact that the barrier appears in a Gaussian also renders the details of the barrier

function, such as the acoustic features and smoothing scheme at masses much below the axion

Jeans scale, largely irrelevant for halo statistics.
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objects. At higher redshifts, when density perturbations are smaller, and the

Jeans scale is larger, the effect is more pronounced. We learn that: ULAs

dramatically suppress halo formation compared to CDM at low halo masses and

at high redshifts.39

For the QCD axion, the cut-off in the HMF induced by the Jeans scale

is on extremely small scales M < 10−9M� (c.f. the standard WIMP, where

the smallest halos have mass M ≈ 10−6M� [179]). These smallest halos will

certainly be tidally disrupted today, but are interesting to study the very first

moments of structure formation at z ≈ 60 in CDM models. Axion miniclusters

produced in the unbroken PQ scenario for the QCD axion in the classic window

have Mmc ≈ 10−9M� [242]. Miniclusters of ALPs may be more, or less, massive.

Being denser than ordinary halos, axion miniclusters survive to the present day

and are relevant to observational searches for minihalos (e.g. Refs. [227, 243,

244]).

6.2. Constraints from High-z and the EOR

There is accumulating data about the high-z Universe. We see a number of

very high redshift galaxies with Hubble Ultra Deep Field (HUDF, e.g. Ref. [245]).

We also know that the intergalactic medium (IGM) is reionized by star forma-

tion. Reionization is known to be essentially complete by z ∼ 6 (e.g. observation

of Gunn-Peterson trough [246] in quasar spectra [247]). Furthermore, reioniza-

tion of the IGM produces an optical depth to the CMB, which is constrained by

a combination of large angle temperature and polarization correlation functions

to be τ = 0.07–0.08 ± 0.02 (central value depends on dataset combinations in

Ref. [105]).

39There is some discussion and debate concerning the location and origin of the HMF cut-

off in both WDM (filtering, spurious structure [191]) and CDM (baryonic effects) that I will

not go into here. For axions, numerical simulations such as those of Ref. [199, 188], with the

addition of hydrodynamics and star formation, are necessary in order to be more precise. For

basic, semi-analytic results, the intuitive notion of a cut-off at the Jeans scale provided by

scale-dependent growth is sufficient.

97



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

The suppression of halo formation at high-z by ULAs cannot be too severe,

or else it would be inconsistent with these observations, producing too few high-

z galaxies to match HUDF and to efficiently reionize the IGM. Getting these

things right places a lower bound on ma if ULAs are to contribute significantly

to the DM density. Ref. [238] investigated these bounds, following similar work

on WDM in Ref. [248].

In order to obtain constraints from the HMF, one needs to relate the halo

mass to the UV magnitude of the galaxy, MUV. This can be done by abundance

matching [249, 250]. The luminosity function, φlum(MUV, z), is fit and matched

to the low-z observations. The integrated (cumulative) luminosity function is

then matched by number count to the cumulative halo mass function: Φlum(<

MUV, z) = n(> Mh, z). This chain of relations fixes Mh(MUV). Therefore, once

the low redshift data are fixed, the high redshift value of Φlum(MUV, z) can be

predicted for a given DM model, and itself compared to observation. The cut-off

in the HMF induced by the axion Jeans scale cuts off the Mh(MUV) relation at

some brightest magnitude, leaving the function Φlum(MUV, z) with no support

at the faint end.

Fig. 19 (Left Panel) shows the predicted cumulative luminosity function

for axion DM at z = 8. If ULAs are too light, or make up too much of the

DM, it is impossible to match the observed HUDF UV luminosity. The model

ma = 10−23 eV with Ωah2 > 0.06 is ruled out at > 8σ by HUDF. The model

ma = 10−22 eV with Ωah2 = 0.12 is consistent with HUDF, but only just: the

UV luminosity function cuts off at MUV ≈ −18, right where the constraint

is. This model could be excluded by a JWST measurement of the faint-end

luminosity function at MUV ≈ −16 [251] if it were found to be consistent with

the larger CDM value of Φlum(MUV, z).

The UV luminosity function can also be used to predict the evolution of the

ionization fraction, Q(z) (not to be confused with the quantum potential, also

denoted Q). This involves a fair amount of astrophysical modelling, as described

in e.g. Refs. [252, 238, 188]. The results are shown in Fig. 19 (Right Panel),

with shaded regions showing modelling uncertainty. These results are broadly
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Figure 19: Left Panel: Cumulative UV luminosity at z = 8, here denoted Φ, in axion models

using the abundance matching technique. Data: HUDF [245]. Dashed line: JWST reach [251].

Model numbers are different abundance matching procedures and DM composition. Models

1, 2, ULAs are all the DM. Models 3, 4, ULAs are half of the DM. Right Panel: Ionization

fraction. Shaded regions cover model uncertainties. Only extreme edges shown for CDM.

Reproduced from Ref. [238], Figs. 4 and 6.

consistent with the studies of Refs. [188, 189], where the underlying halo mass

function was computed from N -body simulations with modified initial power

spectra. Ref. [189] also used different methods to model the reionization field.

The ionization fraction gives the optical depth to redshift, τ(z), from the

integral along the line of sight:

τ(z) =
∫ z

0

dz′
(1 + z′)2

H(z′)
Q(z′)σT n̄H(1 + ηHeY/4X) , (146)

where σT is the Thompson optical depth, n̄H is the mean comoving Hydrogen

number density, Y = (1−X) is the Helium fraction, X is the Hydrogen fraction,

and ηHe is the ionization state of Helium (see Ref. [238] for references and more

details on these parameters). The optical depth to the CMB is τ(zrec ≈ 1100).

Ref. [238] found that, within the modelling uncertainty, all axion DM mod-

els with ma ≥ 10−22 eV can reproduce a CMB optical depth consistent with

observations, while ma = 10−23 eV cannot (though the tension for the lightest

masses is slightly less with the revised, Planck 2015, value for the optical depth).
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Thus the CMB optical depth excludes the lightest ULAs with ma . 10−23 eV

from being all of the DM.

There is the opportunity in future to constrain axion DM with ma ∼ 10−22–

10−21 eV from the evolution of Q(z). The cut off in the HMF delays the for-

mation of the first galaxies, and thus reionization occurs at lower redshift than

in CDM. Once collapse has begun, structure builds up more rapidly for ULAs,

and reionization completes in a smaller redshift window. These different reion-

ization histories distinguish ULAs and CDM. For example, the amplitude of the

kinetic Sunyaev-Zel’dovich effect [253] in the CMB is sensitive to the duration

of reionization (e.g. Ref. [254]). This will be measured in the near future by

Advanced ACTPol [255] and could distinguish ma . 10−21 eV from CDM [238].

The bottom line is that high-z constraints currently exclude ma = 10−23 eV

from being all of the DM at high confidence, and ma = 10−22 eV is right on the

edge of acceptability. The bounds are only approximate, as a lot of uncertain

astrophysics is involved, but Ref. [238] covered a range of models and the lower

limit on ma & 10−22 eV is reliable by order of magnitude. Similar results were

also found by Ref. [188], giving ma ≥ 1.2 × 10−22 eV (2σ). This is the current

lower limit on DM particle mass from non-linear clustering. Future constraints

on high-z galaxies, and on the mean redshift and duration of reionization, could

improve this limit by some two or more orders of magnitude. A measurement

of the large scale 21cm power spectrum could constrain ULA mass as high as

ma ≈ 10−18 eV [182].

6.3. Halo Density Profiles

N -body simulations of pure CDM indicate that halo density profiles have a

universal shape, known as the Navarro-Frenk-White (NFW) profile [256]:

ρNFW(r)
ρcrit.

=
δNFW

r/rs(1 + r/rs)2
, (147)

where δNFW is a function of the “halo concentration,” commonly denoted as

c, and rs is the scale radius. The concentration is defined such that the virial
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radius is rvir = crs.40 Notice that the NFW halo is a smoothly varying power

law, with ρ ∼ r−1 in the centre: the so-called ‘cusp.’

A dwarf galaxy in ΛCDM with M ∼ 1010M� has peak circular velocity on

the order of 50 km s−1 at a radius of around 10 kpc. The de Broglie wavelength,

λdB = 1/mv, of a particle inside such galaxy is then

λdB ≥ 4× 10−2
( ma

10−22 eV

)−1

kpc , (148)

and for a ULA is non-negligible in terms of the galaxy size. Using that v ∼M/r

and M ∼ ρr3, setting λdB = r we find that λdB ∼ m
−1/2
a ρ−1/4 ∼ rJ where rJ

is the Jeans scale.

Let’s work directly with the Jeans scale. Taking rJ = 2π/kJ and simply

scaling Eq. (101) to the halo density gives

rJ = 94.5
( ma

10−22 eV

)−1/2
(
ρ(rJ)
ρcrit.

)−1/4(Ωah2

0.12

)−1/4

kpc . (149)

This is a polynomial equation to be solved for rJ . Plugging in a typical over-

density of 106 with ma = 10−22 eV gives rJ ∼ 3 kpc. The ULA Jeans scale

inside a dwarf halo can be very large.

The wavelike effects of ULAs (the de Broglie and Jeans scales) affect the

halo density profile, and it cannot be completely described by the CDM result.

How is the NFW profile modified by the presence of a ULA and what forms on

small scales? Clearly there should be some granularity and a smoothing of the

central cusp, each caused by the wave-mechanical uncertainty principle. When

the density is smoothed over many Jeans scales, the profile should return to

being NFW-like. These effects are observed in simple one-dimensional [176] and

full cosmological [199] simulations. Both the core and the granularity [257] can

be understood by considering a certain class of soliton solution [258, 259] of the

40The virial radius is taken to be the radius where the density is 200 times the critical

density, and the virial velocity is the circular velocity at this radius. The mass of a halo

is often defined as M200 = M(< rvir). One can use this to derive δNFW(c). A typical

concentration is c ∼ 10.
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axion equations of motion.41

We work in the non-relativistic Schrödinger picture of Section 4.5. Stationary

wave, constant energy solutions take the form

ψ = X (r)e−iγt , (150)

where γ is the energy eigenvalue. The system possesses a very useful scaling

symmetry [258]:

(r,X ,Ψ, γ,M(< r), ρ)→ (r/λ, λ2X , λ2Ψ, λ2γ, λM(< r), λ4ρ) , (151)

where the scale factor is λ, ρ = X 2 is the soliton density, and M(< r) is the

soliton mass enclosed within radius r. Imposing the correct boundary con-

ditions [239, 262] one can numerically solve the resulting system of ordinary

differential equations to find X (r) and γ. Thanks to the scaling symmetry, this

solution need only be found once. The solution with X (0) = 1 gives γ = −0.692

for the zero node groundstate. The ground state solution for an isolated soliton

is reached rapidly by a process of “gravitational cooling” [263, 262]. The ground

state also provides a good description of the cores in virialised DM halos found

in the simulations of Ref. [199].

The groundstate soliton solution possess a single characteristic radius, rsol,

fixed entirely by the choice of units, which in turn is fixed by the axion mass.

The scaling symmetry then uniquely fixes the relationship between the central

density, ρsol, and the characteristic radius:

rsol ∝ m−1/2
a ρ

−1/4
sol . (152)

The soliton characteristic radius has the same scaling properties as the Jeans

scale! This is no surprise: the scalings are derived on dimensional grounds in

41Technically, these solutions are pseudo-solitons since the field is time-dependent, and they

are not absolutely stable. This is a distinct difference between axions, which are real-valued

fields, and complex scalar field DM. Complex fields have a conserved U(1) charge and true

soliton solutions known as boson stars [260]. See e.g. Ref. [261], the Appendix of Ref. [239],

and references therein, for more discussion.
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Figure 20: Left Panel: Halo density profiles from cosmological simulations of structure forma-

tion with a non-relativistic scalar field of mass ma = 8.1× 10−23 eV (equivalent to a ULA).

There is a central soliton core, transitioning to an NFW profile at large radius, as Eq. (155).

Right Panel: Understanding halo formation from soliton collision. The solitons virialize and

leave behind a small, dense core, and a granular outer halo: (d) is a close up of (c) detail-

ing this. Reproduced (with permission) from Ref. [257]. Copyright (2015) by The American

Physical Society.

the non-relativistic limit. The Jeans scale is found from Eq. (100), which as we

showed can be derived from perturbation theory on the Schrödinger equation

via the quantum potential.

A good fit to the soliton density profile is provided by:

ρsol(r) =
ρsol(0)

(1 + (r/rsol)2)8
, (153)

with

rsol = 22
(
ρsol(0)
ρcrit

)−1/4 ( ma

10−22 eV

)−1/2

kpc . (154)

The soliton density has dropped to ρsol(0)/2 at r1/2 ≈ 0.3rsol, which might be

said to be the ‘core radius.’ For a central overdensity of 106 and ma = 10−22 eV

we have r1/2 = 0.2 kpc, which is smaller than the naive halo Jeans scale, but

is of order the de Broglie scale solved for via the circular velocity in the soliton

profile [239].

A complete model for the axion halo density profile must match the soliton

and NFW profiles continuously at some radius. An exact description of the
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matching is currently lacking (though of course, by order of magnitude it must

be at the Jeans/ de Broglie scale), so we can simply parameterize it to occur at

rε and write

ρ(r) = Θ(rε − r)ρsol(r) + Θ(r − rε)ρNFW(r) . (155)

This profile can be used to compare to galactic rotation curves and stellar kine-

matical data, either to fix the ULA mass, or to make predictions for a given

mass. Similar profiles occur in other models of scalar field DM, such as self-

interacting real or complex fields, and can also be used to fit density cores (see

Section 6.4) and constrain the parameters of these models [264, 265].

Fig. 20 shows results from numerical simulation of structure formation with

a massive scalar field in the non-relativistic regime, taken from Ref. [257], and

discussed in Section 4.6. The left panel shows density profiles taken from a

full cosmological simulation at various redshifts, for ma = 8.1× 10−23 eV [199].

The profiles show a central soliton matching to NFW when the density has

dropped to O(10−2) of the central density. The soliton profile is well fit by

Eq. (153). The right panel shows a numerical experiment of halo formation

from collision of multiple solitons. The solitons virialize and leave behind a

dense core, with a granular structure in the outer halo on the scale of the core

size. The density profile from the soliton collision experiments is also shown in

the left panel (arbitrarily normalized to show on the cosmological scale), and

also has the same general form as Eq. (155). The formation of solitons during

structure formation with ULAs seems an established numerical fact, but many

consequences of this have yet to be fully explored.

6.4. ULAs and the CDM Small Scale Crises

The main CDM “small scale crises” are [266]:

• The missing satellites problem [267, 268]: CDM predicts more small Milky

Way satellites than are observed.

• The too-big-to-fail problem [269]: CDM predicts more massive satellites

that should contain stars than are observed.
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• The cusp-core problem [270]: many observed low-mass systems contain

flat central density profiles, not NFW cusps.

All of these problems, and variants of them, are essentially related to the over-

abundance of structure on small-scales in CDM, which itself is caused by the

cold, collisionless, scale-free nature of CDM clustering.

Methods to address the small-scale problems come in two varieties: bary-

onic/astrophysical solutions, and dark matter solutions. A recent set of state-

of-the-art simulations discussing the baryonic solutions based on feedback from

star formation is Ref. [271], while a review of the relevant issues if Ref. [272].

Dark matter based solutions are interesting, as they attempt to solve the

problems by the introduction of a small number of universal parameters. The

extent to which these models offer a solution can in principle point to specific

values of these parameters. Because of this, we should not only demand solutions

to the small-scale crises, but also a complete and consistent cosmological history,

which gives the models some predictive power. They also offer us a framework

for parameterizing our uncertainty about DM. In the absence of a fundamental

theory of DM, as Bayesians we should allow for varying DM properties at the

same time as we vary the baryonic physics. Moving away from CDM in this

way may allow for a mixed baryon-DM solution with more reasonable priors on

astrophysical parameters. Finally, a range of parameters will also be excluded,

e.g. providing too few satellites, and independent of offering a solution to the

small-scale crises we have learned something new about DM.

So what do DM solutions to the small-scale crises look like? Two popular

models are self-interacting (SI)DM [273], and WDM [170]. I will only discuss

WDM in detail, as it is interesting to contrast with ULAs. For further discussion

of SIDM and other interacting models with relation to the small-scale crises and

other areas of galaxy formation, see e.g. Refs. [274, 275, 276, 277].

WDM suppresses structure formation by free-streaming and a cut-off in the

matter power, as we discussed in Section 4.4.5. This has the ability to ad-

dress the missing satellites and too-big-to-fail problems for 1.5 keV . mX .
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Figure 21: Core size in a WDM halo of mass M = 5× 108M� as a function of WDM thermal

relic mass, with uncertainties given by the shaded region. A representative constraint of

mX > 2 keV is shown by the vertical dashed line, which leads to small, O(10 pc) cores and

imposes the WDM Catch 22. Reproduced (with permission) from Ref. [278, 279], Fig. 2.
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2.3 keV [190], while still producing enough satellites and passing constraints on

phase space density [280]. Fermion degeneracy pressure and thermal velocities

also allow WDM to form density cores [281]. The core-size-WDM mass rela-

tion is plotted in Fig. 21, with rc ∼ m
−1/2
X . Herein lies a problem known as

the Catch 22 of WDM [278]: core sizes in dwarf galaxies are too small if con-

straints from satellite abundance and LSS are accounted for. Specifically, the

N-body simulations of Ref. [278] found that masses mX ∼1-2 keV gives a core

of size rc ∼ 10(20) pc in a dwarf galaxy of mass 1010(8)M�, far smaller than the

O(kpc) cores required in e.g. Fornax and Sculptor [282]. Ref. [283] computed

the WDM phase space density from N-body simulations and used this to derive

the core size expected from free-streaming. A mass mX ≈ 0.5 keV can provide

cores to the Milky Way dSphs, which is too light to be consistent with structure

formation.

That an ultralight scalar field, such as an axion, could potentially also resolve

the small-scale crises has been known for some time [284, 285, 176, 286]: the

Jeans scale suppresses the formation of low mass halos, and at the same time

leads to density cores in the form of solitons, as we have already discussed. Here

we will address one issue: do ULAs suffer a Catch 22 like WDM does? The

answer, in short, is “no,” or more accurately “not as severely.”

Fig. 22 shows the one dimensional likelihood for ULA mass from fitting

stellar velocity dispersion data of Ref. [282]. This simplified data uses two

stellar populations and measures only the slopes of the density profiles within

a given radius, in principle allowing an arbitrarily large core outside of this

(and hence arbitrarily low axion mass). However, this would allow arbitrarily

large dSph mass, while masses M & O(few) × 1010M� are forbidden by their

long dynamical friction time scales [287].42 In Fig. 22 the dynamical friction

constraint is imposed as a hard prior, supplementing the density profile slope

analysis [282] of Ref. [239].

42I compute the maximum mass for each dSph individually from the formula in Ref. [287]

using their co-ordinates [288] and an approximate circular velocity vc ≈ 200 km s−1.
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Figure 22: One dimensional posterior of ULA mass required to provide soliton cores to Fornax

and Sculptor velocity dispersion data [282, 239], including a hard priorMvir < Mfric [287]. The

95% C.L. limit is 0.1×10−22 eV < ma < 1.4×10−22 eV, the upper half of which is consistent

with dedicated studies of structure formation and reionization with ULAs [238, 188]. Also

shown is the 95% C.L. limit for a Jeans analysis of Fornax [199, 188], and the range required

for Ursa Minor (UMi) cold clump longevity and long Fornax globular cluster (GC) orbital

decay times [289].

Matching the Fornax and Sculptor data with ULAs alone, i.e. with the

halo profile Eq. (155), requires 0.1 × 10−22 eV < ma < 1.4 × 10−22 eV at

95% C.L. The best fit using a simplified Jeans analysis on Fornax alone is

ma = 8.1+1.6
−1.7 × 10−23 eV [199] (1σ errors). Ref. [289] found that a range 0.3×

10−22 eV < ma < 1 × 10−22 eV can explain the cold clump longevity in Ursa

Minor, and the distribution of globular clusters in Fornax, while respecting

some constraints on the maximum dSph mass. All of these limits hint at a mass

ma ∼ 10−22 eV to solve CDM small-scale problems. Recall that this mass is

allowed by constraints from halo formation and reionization [238, 188], reviewed

in Section 6.2, i.e. ULAs do not suffer from the Catch 22 like WDM does.

Eq. (117) translates the lower bound on ULA mass from high-z galaxies,

ma & 10−22 eV, into an equivalent WDM mass of mX & 0.8 keV, which from
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Fig. 21 gives a minuscule core size of O(30 pc). A harder constraint on mX >

2 keV implies, by scaling of the half-mode, ma > 10−21 eV. Scaling the core

size (from the 1 kpc core in Fornax with ma = 10−22 eV) as m−1/2
a still provides

a significant O(300 pc) core even for this hypothetically stronger constraint.

Translating bounds from WDM to ULAs using Eq. (117) is good for order-

of-magnitude estimates only. The exact constraints from structure formation

depend sensitively on the slope of the transfer function and mass function near

the cut off (e.g. Ref. [188]), which distinguishes WDM and ULAs, such that

dedicated studies are necessary. There are tantalizing hints for ma = 10−22 eV

as a solution to the small-scale crises. It is on the edge of current constraints,

and of detectability in the EOR. Dedicated studies of this model, including full

simulations with star formation and feedback (such as those comparing WDM

and CDM including feedback in Ref. [290]), are necessary to explore this further.

7. Axions and Accelerated Expansion

7.1. Axions and the Cosmological Constant Problem

Our discussion in this review began with one of the greatest unsolved prob-

lems in modern physics: the cosmological constant (c.c.) problem [1], one of

the most notoriously hard problems to solve in high energy physics [291]. One

particularly attractive solution to this problem is anthropic tuning, which can

be realized by eternal inflation populating a large number of vacua in the string

landscape [292, 293] (the original idea dates back to Ref. [294]). In this picture,

four-form fluxes and topologically complex compact spaces with O(100) or more

cycles both play important roles.43 Recall from Section 2.4 that axions arise

from the wrapping of such fluxes on cycles. Furthermore, the canonical axion

potential V (φ) ∝ cosφ/fa can provide positive and negative contributions to

43This “100” is one origin of the famous statement that the string theory landscape contains

10500 vacua. In this context it arises from demanding that the number of vacua is densely

enough distributed near the observed value of the c.c. to make a universe in this region

sufficiently likely.
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the vacuum energy, allowing axions to cancel contributions to the c.c. from

other sources in a cosmologically dynamical manner.

The above observations suggest that:

• Axions may play a central role in the solution of the c.c. problem.

• The anthropic solution of the c.c. problem in the string landscape provides

good motivation for the existence of the axiverse.

In this section we will briefly discuss a few ideas relating axions to the c.c.

problem.

We begin with the simplest model of axion quintessence. As we already saw

in Section 5, ULAs with ma ∼ H0 ∼ 10−33 eV can act as DE, with the axion

potential energy providing an effective cosmological constant and driving accel-

erated expansion as a form of quintessence. Since the axion mass is protected by

a shift symmetry and can easily remain so light, the idea of axion and general

pNGB [295] quintessence is natural, and has a long history [296].44

The model is specified by the potential

V (φ) = Λ4
a

[
1 + cos

(
φ

fa

)]
, (156)

(note the phase shift from our previous definition). The most recent constraints

on this scenario using Planck data can be found in Ref. [298] and are summarized

in Fig. 23. Since the vacuum in this potential has zero energy, the quintessence

contribution to the energy budget, Ωφ, is controlled by the initial field displace-

ment, φi. The value of Ωφ ≈ 0.69 is well constrained by the requirement of

driving accelerated expansion, and just as we saw in Fig. 15 (right panel) large

field displacements and decay constants are required to achieve this. There is

a degeneracy between the energy density and the decay constant caused by the

requirement of keeping the potential roughly flat compared to H0: increasing

Λa requires increasing fa to retain flatness.

44For a review of DE and quintessence models, see Ref. [297].
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Figure 23: Constraints on axion DE from Planck. Left Panel: Potential mass scale in units

of the critical density, versus decay constant. Note that here M rather than Λa is used. Right

Panel: Field displacement versus density fraction. The density fraction is well constrained

by the demand that the axion cause accelerated expansion with zero overall vacuum energy.

Reproduced (with permission) from Ref. [298].

A simple generalization of this quintessence model goes along the lines of

N -flation (see Section 7.2.1), and was discussed in Ref. [58]. Taking the string

theory-inspired potential in Eq. (34) for N axions of almost degenerate mass,

and assuming a fixed decay constant:

fa =
Mpl

Sinst.
, (157)

it can be shown that axion quintessence requires

Sinst. ∼ 200− 300 and N & S2
inst. , (158)

if the axion contribution to DE is to be non-negligible.

Alternatively, successful quintessence can occur for sub-Planckian decay con-

stants if the initial displacement φi/fa ∼ π. This idea was considered in

Ref. [299] for the case of multiple axions. Taking constant fa ≈ 1017 GeV,

potential energy scale Λa = 1012 GeVe−Sinst and assuming that the instanton

action changes by O(10) for each axion, then with 24 axions the probability

that one axion is close enough to the top of the cosine potential to drive suc-
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cessful quintessence occurs in approximately 1% of cases. This relatively modest

number of axions can achieve successful quintessence with sub-Planckian fa and

minimal fine-tuning. However, the limiting case in this study was the assump-

tion of constant fa, rather than considering the variation of fa with Sinst.. The

heavier axions in this scenario will be subject to all the phenomenology and

constraints discussed elsewhere in this review. In Ref. [299] it was proposed

to avoid unwanted impacts on cosmology by having the heavy axions decay, or

evolve in a modified potential.

The models of Refs. [298, 58, 299] simply require that axions provide suc-

cessful quintessence, and assume that the bare c.c. is of an acceptably small

value, due to some unknown physical mechanism, or due to anthropics. This is

a solution to the “new c.c.” or “why now?” problem of obtaining small masses

and potential energies of order the present critical density. Let us now turn to

the role of axions in solving the “old c.c.” problem, i.e. the much more taxing

problem that

ρΛ,obs. ∼ 10−120M4
pl , while ρΛ,theory ∼M4

pl . (159)

Ref. [300] considered the possibility of using subleading instanton correc-

tions in a multi-axion model to generate a field space with an exponentially

large number of vacua. The potential for the N axion fields θi charged under

instantons labelled by j with charge Qji has the form

V (~θ) =
∑

j

Λ4
j

[
1− cos(2πQjiθi + δj)

]
+ V0 , (160)

where where δj is an arbitrary phase. The leading potential is split into bands of

width Λ4
sub. by the subleading pieces, with each band containing Nsub. different

vacua. This splitting leads to vacua within Λ4
sub./Nsub. of zero, as illustrated in

Fig. 24. Therefore, if we take Λ4
sub. ∼ M4

pl one requires Nsub. ∼ 10120 distinct

vacua to solve the c.c. problem.

For a random matrix model of the instanton charges, Ref. [300] showed that
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Figure 24: The axionic band structure of the cosmological constant. A multi-axion theory

with sub-leading instanton contributions can give rise to an exponentially large number of

vacua, with energy splittings inversely proportional to the number of vacua. This mechanism

may provide a solution to the cosmological constant problem. Reproduced, with permission,

from Ref. [300]. Copyright (2016) by The American Physical Society.
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Figure 25: Constraints on inflationary models from Planck [96], showing 1 and 2σ marginalized

confidence regions. Note that the potentials ∼ φ2/3, ∼ φ, and ∼ φ4/3 are the approximate

predictions of axion monodromy models if power spectrum oscillations are ignored.

that expected number of vacua in a theory with N axions obeys the bound

〈N 2
sub.〉 &

√
2πN

(
3
e

)N
. (161)

Thus there is an exponentially large number of vacua. An example with 500

axions suffices to obtain the desired factor if 10120. In this model, the expected

mass distribution of the axions was not computed, but the logarithmic distri-

bution of Λj was invoked. It is thus not clear at this stage what the role of

these axions would be in terms of a DM model. Some evidence suggests that

this model could incorporate successful axion inflation, a topic to which we now

turn.

7.2. Axion Inflation

In Section 3.2 we discussed the role of stable axion DM fields as spectators

during inflation. Here, we discuss the scenario where an unstable axion field

itself drives inflation.
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Inflation [93, 94, 95] is a hypothetical period of accelerated expansion in

the early Universe, invoked to explain certain cosmological puzzles relating to

initial conditions.45 The simplest inflationary models involve a single, minimally

coupled, scalar field (“the inflaton”), driving the expansion by the existence of

a potential, V (φ), on which the field is slowly rolling. Inflation ends when this

field reaches the minimum of its potential, oscillates, and decays into radiation:

a process known as “reheating.” This reheating must occur in order to produce

a hot big bang cosmology and all its successful predictions, from BBN to the

CMB.

The inflaton potential must be very flat compared to the other scales in

play, namely the Hubble scale. The expansion is driven by the potential, and

so 3H2
IM

2
pl ≈ V (φ). This defines the inflationary “slow roll parameters,” which

depend on the flatness of the potential. The first two slow roll parameters are:

εinf =
M2
pl

2

(
V ′

V

)2

, ηinf = M2
pl

V ′′

V
, (162)

and inflation requires each of these be very much less than unity over a large,

relative to HI , field range. Axions are extraordinarily good inflaton candidates

because the shift symmetry protects the flatness of the potential from quantum

corrections. It is important to note that, because the inflaton must decay, the

axion driving inflation is not a dark matter (or dark energy) axion. In particular,

therefore, the inflaton is not the QCD axion!

The standard view of constraints on inflationary models is shown in Fig. 25,

taken from Ref. [96]. These simple constraints allow the cosmological initial

conditions two degrees of freedom after normalization by As. These are the

tilt, ns, and the tensor-to-scalar ratio, rT . These numbers are determined by

the parameters of the inflaton potential. Additional freedom is afforded to the

45It is not my purpose here to give a review of inflation, and I defer all detailed calculations

and notation. For a general review of inflation, see Ref. [301], for inflation in string theory, see

Ref. [302], and for specifics of axion inflation, see Ref. [11]. The state of the art in constraints

on inflation can be found in Refs. [96, 303], while an exhaustive list of single-field-slow-roll

models can be found in Ref. [233].
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model by the number of e-folds of observable inflation, N∗, which takes into

account uncertainty about the reheating epoch [304, 305, 306] and the initial

conditions of the inflaton itself [307, 308]. The constraints shown assume that

the primordial power spectra are described by power laws. We will briefly discuss

spectra with features later.

7.2.1. Natural Inflation and Variants

So-called “Natural Inflation” [309] is the simplest example of inflation with

an axion. It simply takes our usual potential

V (φ) = Λ4
a

[
1± cos

(
φ

fa

)]
. (163)

Natural Inflation is a standard single field slow roll model, giving power law

scalar and tensor power spectra.

In its original incarnation, Natural Inflation takes Λa ∼ mGUT and fa ∼
Mpl. One combination of these parameters is fixed by normalizing As, and so,

including N∗, the model has two additional parameters specifying its location

on the (ns, rT ) plane. Thus, in Fig. 25, Natural Inflation sweeps out a broad

region, a portion of which is consistent with the observational constraints. In

the limit fa → ∞ with Λ2
a/fa held fixed, Natural Inflation approaches m2φ2

“chaotic” inflation. Furthermore, we see that Natural Inflation consistent with

the observed value of ns predicts a measurably large value of rT & 10−2. This is

a reasonable sensitivity to expect for near-future CMB experiments [236, 229],

and so Natural Inflation makes testable predictions.46

The value of the tensor-to-scalar ratio in single field slow roll inflation is

closely tied to the field range, ∆φ, over which the potential is flat, and for

which inflation occurs. The “Lyth bound” [87] states:

∆φ = 0.46Mpl(rT /0.07)1/2 . (164)

It is generally held that over such large field excursions one loses perturbative

control over quantum mechanical corrections to the potential (in particular,

46Up to the usual caveats made by notable detractors.
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those of quantum gravity 47), and so achieving large amplitude tensor modes is

hard to achieve in a theoretically consistent manner.

The natural field range in the potential Eq. 163 is fa, and so for Natural

Inflation the Lyth bound implies that fa must be of order the Planck scale. The

potential is protected from other corrections by the axion shift symmetry, which

is restored in the limit Λa → 0, making the the theory technically natural. This

is where the “natural” in Natural Inflation comes from: the axion potential is

flat over scales ∆φ ∼ fa, and is immune to radiative corrections. “Standard”

inflation at the GUT scale, with observably large rT , can be achieved with a

Planckian decay constant.

As we have already mentioned, however, the weak gravity conjecture [59]

places some constraints on fa & Mpl in theories of quantum gravity, in partic-

ular forbidding it in the case of a single canonically normalised axion field. We

have also seen that in string theory one finds fa < Mpl in our simple exam-

ple. One should therefore worry about embedding Natural Inflation in a UV

complete theory. The simplest models, which remain quasi-single field and pro-

duce power-law initial power spectra, are based on the general idea of “Assisted

Inflation” [75] (or even more generally, on “kinetic alignment” [62]).

In Assisted Inflation, one uses the frictional coupling of multiple fields in-

duced by the Hubble expansion to provide extra damping to the collective mo-

tion in field space. This slows the collective motion down, effectively flattening

the potential of the quasi-single field trajectory. A simple example of Assisted

Inflation applied to axion models is “N-flation” [71]. N-flation takes N axions

with identical potentials:

V (~φ) =
N∑

n=1

Vn(φn) , (165)

where Vn = Λ4
n cos(φn/fn) is the familiar cosine potential.48 One now simply

47See also Ref. [310], which suggests that large field inflation in general might be forbidden

by entropy bounds in quantum gravity.
48I drop the higher order instanton corrections discussed in Ref. [71]. The radiative stability

of N-flation in field theory and in string theory was also established in Ref. [71], and so it fits
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applies Pythagoras theorem to the N -dimensional field space.

For simplicity, consider the case of all equal decay constants, fn = fa, and

scales Λn = Λa. Now displace each field from the origin by an equal amount,49

φn = αMpl, with α2 < 2πf2
a/M

2
pl. The total radial displacement is φr =

√
NαMpl and the mass of the radial field is m = Λ2

a/fa. It is clear that we can

arrange for super-Planckian displacement of φr, with fa < Mpl and α2 � 1, if

N is large enough. As in Assisted Inflation, each individual φn feels the friction

of all its brothers and sisters, and it is the collective radial motion in field space

that acts as the inflaton.

Finally, the Kim-Nilles-Peloso model [61] generalizes the multi-axion poten-

tial allowing rotations between the fields. This occurs if multiple axions, i, each

obtain potentials from multiple non-perturbative sources, j, but with different

strengths, fij . “Decay constant alignment” then allows to create a flat-direction

on the potential with a large effective value of fa,eff > Mpl even is each indi-

vidual fij < Mpl, so long as sufficient degeneracy between the decay constants

occurs.

7.2.2. Axion Monodromy

Axion Monodromy [312, 313]50 is another model within the pantheon of

UV completions of axion inflation allowing for large field excursions, and thus

measurably-large rT . It differs from the examples discussed above, however, in

that it does not produce power-law initial power spectra, but instead modulates

the power law spectra with periodic features.

In string theory, a monodromy occurs when an axion field winds around a

particular location in moduli space, like the Riemann sheets of log z winding

around the origin in the complex plane. The monodromy provides an explicit

the maxims of a natural theory.
49The equal displacement trajectory is an attractor of Assisted Inflation [75]. N-flation also

takes initial conditions with zero angular momentum in field space. For a discussion of the

dynamics with angular motion, see Ref. [311].
50For some possible issues in explicit realisations of this model, see e.g. Refs. [314, 315].
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breaking of the periodicity of the axion potential, and lifts it at large field

values. The extra potential energy is supplied by the wrapping of branes around

compact dimensions. It has been described colloquially as a “wind up toy.”

Over large field excursions ∆φ � fa the potential is on average described

as V ∝ φp for some p, while on small scales the potential is modulated by the

usual, instanton-induced, axion cosine. The potential is of the form

V (φ) = µ4−pφp + Λ4
a

[
1− cos

(
φ

fa

)]
. (166)

As inflation proceeds along the φ direction, one has slow roll on the φp piece.

From Fig. 25 we see that the predictions of large-field φp models of inflation,

with p = 2/3, 1, 4/3, motivated by axion monodromy, are consistent with the

observations, and predict measurably large tensor modes.

The cosine part of the potential, however, modulates the slow-roll trajectory

with oscillations. This leads to an oscillatory power spectrum for the primordial

curvature perturbations of the form [316]

Pζ(k) = As

(
k

k0

)ns−1+ δns
ln k/k0

cos(φk/fa)

, (167)

with φk =
√
φ2

0 − 2 ln(k/k0), φ0 the value of the field at horizon crossing of the

pivot scale, and δns ∝ Λ4
a/µ

3fa for p = 1.

The axion monodromy power spectrum undergoes rapid oscillations in log k,

and constraining it properly using CMB data requires special care (e.g. Refs. [317,

318]). The latest Planck data show no statistically significant evidence for

the presence of power spectrum oscillations, though there are various low-

significance hints [96]. Axion monodromy also predicts “resonant non-Gaussianity” [316].

Current data cannot reach the sensitivity to confirm hints of oscillations in the

power spectrum through resonant non-Gaussianity in the bispectrum, though

this may be possible in future.

8. Gravitational Interactions with Black Holes and Pulsars

In this section we consider two astrophysical probes of axion DM that arise

purely from gravitational interactions, and are quite distinct from any signatures
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we have considered so far.

8.1. Black Hole Superradiance

BHSR is a very general way to search for light bosonic fields. It relies only

on their gravitational interaction and assumes nothing about couplings to the

standard model or their cosmological energy density.

Massive bosonic fields can form bound states around astrophysical black

holes (BHs), just like the energy levels of electrons in the hydrogen atom. In-

falling scalar waves extract energy and angular momentum from a spinning

Kerr BH and emerge with more energy than they went in with; this is known

as the Penrose process [319]. Being bosons, the energy levels in the “gravita-

tional atom” can be filled exponentially via this superradiant instability (see

Ref. [320] for a review). The boson mass leads to the existence of stable orbits,

like the energy levels of an atom. These stable orbits lead to a barrier in the

effective potential, and act like the mirror in Press and Teukolsky’s “black hole

bomb” [321, 322]. The energy levels then fill up via the superrandiant instability

until they eventually radiate away the extracted energy, for example as gravita-

tional waves. The bosons do not even need to be present initially (i.e. they do

not have to be the DM) for this process to occur: superradiance can start from a

quantum mechanical fluctuation. It is thus a completely generic feature of mas-

sive bosonic fields in astrophysics, and turns astrophysical BHs into sensitive

detectors of bosons in the mass range 10−20 to 10−10 eV [74, 17, 323, 324, 325].

The instability leads to the spin down of BHs. The spin-down rate is con-

trolled by the effective coupling of the gravitational atom:

αG = rGma , rG ≡ GM , (168)

where M is the BH mass. The size of the “cloud” formed around the BH is

fixed by the orbital velocity v ∼ αG/` to be rc ∼ n2rG/α
2
G (where ` is the

orbital quantum number and n is the energy level). This is approximately the
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Figure 26: Constraints on axions from BHSR. Left Panel: Solar mass black holes, 2σ. Right

Panel: Supermassive black holes, 1σ. Reproduced (with permission) from Ref. [74]. Copyright

(2015) by The American Physical Society.

de Broglie scale for a circular orbit of radius rc, and we observe the link to our

previous discussions of density profiles and the Jeans scale.

With αG = 0.3 the superradiance time-scale is short (∼ years) for both

stellar mass (M = 10M�) and super-massive (M = 107M�) BHs, which sets

the characteristic axion mass for spin-down. A number of BHs are observed,

and their masses and spins have been measured (data are given with citations

in Ref. [74]). Since the spinning BHs would be spun-down in the presence of a

light boson, these observations can be used to exclude various axion masses.

The exclusions are shown in Fig. 26. Stellar mass BHs exclude a range of

masses 6× 10−13 eV < ma < 2× 10−11 eV at 2σ, which for the QCD axion ex-

cludes 3×1017 GeV < fa < 1×1019 GeV. The supermassive BH measurements

are more uncertain: there are fewer measurements excluding a narrower range

of masses at 1σ only. The range probed is roughly 10−18 eV < ma < 10−16 eV.

Higher precision measurements in future could improve these bounds.

Finally, transitions and annihilations within the axion cloud predict the emis-

sion of monochromatic gravitational waves. The detection prospects for such

a signal with advanced LIGO [326] and eLISA [327] are discussed in Ref. [74].

Advanced LIGO has the potential to discover evidence for the QCD axion with
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ma ∼ 10−10 eV in the not-too-distant future. Further in the future, eLISA may

be sensitive to the lower-frequency emission for ULAs with ma ∼ 10−17 eV,

with the possibility to detect ∼ 10’s of events from axion annihilations out to a

radius of ∼ 100 Mpc.

8.2. Pressure Oscillations and Pulsar Timing

The pressure, Pa = waρa, in the axion energy momentum tensor undergoes

rapid oscillations as cos 2mat, leading to the 〈wa〉 = 0 DM-like properties of the

axion. Local pressure perturbations, δPa, also undergo such oscillations. Such

pressure oscillations induce oscillations of the gravitational potential, which in

turn induce a time-dependent frequency shift and a time delay for any propa-

gating signal. If the DM in the Milky Way is composed of ULAs, then the am-

plitude of the signal is fixed by the local DM abundance, ρDM ≈ 0.3 GeV cm−3.

Ref. [328] considered the effect of such oscillations on pulsar timing experiments.

Consider the energy momentum tensor, Eq. (54). The local axion field can

be described as

φ(~x, t) = φ0(~x) cos[mt+ ξ(~x)] , (169)

where φ0 is the local amplitude and ξ is a local phase. To leading order, the

energy density is static, but the pressure oscillates. The local amplitude is fixed

by the DM density as:

φ0(~x) =
√

2ρDM

ma
, (170)

which in turn fixes the local pressure:

P (~x, t) = −1
2
m2
aφ

2
0 cos(2mat+ 2ξ) . (171)

The Newtonian potentials, Ψ and Φ, are sourced by the density and the pres-

sure. They have dominant time-independent pieces, and sub-dominant oscillat-

ing pieces, found from the Einstein equations.

The oscillating potential induces an oscillating delay in arrival time of pulsar

signals, with frequency 2ma and amplitude [328]:

∆tφ =
πGNρDM

m3
a

sin [maD + ξ(~x0)− ξ(~xp)] , (172)
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Figure 27: Current and forecasted constraints on axion/scalar DM from the effect of pressure

oscillations on pulsar timing. The green line shows the expected level of signal if axions

compose the local DM. SKA will be sensitive to masses ma . 2.3 × 10−23 eV. Reproduced

(with permission) from Ref. [328].

where D is the distance to the pulsar, ~xp is the pulsar location, and ~x0 is the

position of the Earth. In the variance of this signal the unknown local phases,

ξ, and the pulsar distance, D, drop out. The amplitude of the signal decreases

for heavier axions, and has a maximum at a given mass set by the DM density.

Ref. [328] considered the sensitivity of pulsar timing arrays to this signal by

comparing the amplitude ∆tφ to the corresponding time delay from a stochastic

gravitational wave background. Fig. 27 shows the current constraints from

Parkes Pulsar Timing Array (PPTA) [329], forecasts for a 5 year observation

with PPTA, and forecasts for ten years with the Square Kilometre Array (SKA).

Current limits do not reach the level of the expected signal from ULAs, however

SKA will be sensitive to masses ma . 2.3× 10−23 eV and DM fractions as low

as one percent. This is a powerful probe complementary to the constraints from

structure formation discussed in Sections 5 and 6.

The best current limits from pulsar timing come from the analysis of Ref. [330]
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from the NANOGrav PTA. The limits are an order of magnitude higher than the

expected signal at ma = 10−23 eV, consistent with the rougher bounds shown

in Fig. 27. Uncertainties in the analysis of PTA data relevant for constraining

pressure oscillations include characteristics of the partner in binary pulsars, and

modelling of radio wave propagation through the ionized interstellar medium.

In the Bayesian analysis of Ref. [330], the unknown pulsar parameters were

marginalized over, following Ref. [331].

As already mentioned, the pulsar timing signal from pressure oscillations

depends only on gravitational interactions. Recently, Ref. [332] considered the

pulsar timing signal from interactions between scalar DM and the standard

model. For typical coupling strengths, these model-dependent signals are much

stronger than the pressure oscillation signal. For m . 10−22 eV the PTA limits

from interactions can be stronger than e.g. torsion balance or atom interferom-

etry constraints.

9. Non-Gravitational Interactions

Two classic methods for detecting the QCD axion were proposed by Sikivie

in Ref. [333] and are known as haloscopes and helioscopes. Another archetypal

axion experiment is “light shining through a wall” (LSW) [334]. In recent years

there has been a flurry of new ideas in axion (and scalar) direct detection (see,

for example, Refs. [47, 15]). Some of the most important bounds on axions, in

particular establishing the lower limit on fa & 109 GeV for the QCD axion, come

from considering stellar processes (e.g. Ref. [10]). Many bounds on axions from

their interactions exploit the two-photon coupling in the presence of magnetic

fields (the Primakoff [335] process, see Fig. 28), though we will also discuss the

fermion and GG̃ couplings. A recent review of constraints on the axion-photon

coupling is given in Ref. [16], and shown in Fig. 29. We do not discuss collider

signatures of axions in any detail. A recent discussion of existing constraints

and future prospects is given in Ref. [35].
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Figure 28: Axion-photon interaction via the Primakoff process. In the presence of an external

magnetic field, B, axions can convert into photons, and vice versa. This basic process, arising

from the electromagnetic anomaly and expressed in the effective interaction with co-efficient

gφγ in Eq. (23), underpins many constraints on axions and efforts to detect them.

9.1. Stellar Astrophysics

Axion emission is an energy-loss channel for stars and supernovae. The

observed properties of stars can be used to limit the existence of such a channel,

and the emitted stellar axions can be searched for. The stellar astrophysics

limits apply regardless of whether the axion is DM, because we are producing

axions directly, and not relying on a cosmic population.

The solar luminosity in axions is

La = 1.85× 10−3
( gφγ

1010 GeV

)2

L� , (173)

where L� is the photon luminosity. The maximum luminosity is at 3 keV,

and the average is 4.2 keV [10]. Axion production occurs as long as ma is

less than the cental temperature of the sun, T� ≈ 1 keV and leads the sun to

consume nuclear fuel faster. A very crude bound can be found by demanding

that the axion luminosity is less than the photon luminosity. Equating gφγ ∼
(αEM/2πfa) for the QCD axion gives fQCD & 5× 105 GeV.

The strongest bound on solar axions can be derived from direct searches for

them. The helioscope converts solar axions back to photons in a macroscopic
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Figure 29: Summary of constraints on the axion-photon coupling gφγ , Eq. (23) (here la-

belled gaγ) as a function of axion mass. The line “ALP CDM” corresponds to setting

gφγ = αEM/2πfa and requiring fa to be large enough such that Ωah2 ≈ 0.12 (c.f. Fig. 5).

Reproduced (with permission) from Ref. [16].
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B field on earth, and observes the photons in the X-ray. The state-of-the-art

helioscope is the CERN Axion Solar Telescope (CAST) [336, 337, 338]. The

95% C.L. bounds are:

gφγ < 8.8× 10−11 GeV−1 (ma . 0.02 eV) , (174)

gφγ < 3.3× 10−10 GeV−1 (ma . 1.17 eV) , (175)

where the two bounds refer to two different experimental configurations (low

mass, vacuum; high mass, 3He). The proposed International AXion Observatory

(IAXO) [339] could improve the bound on gφγ by an order of magnitude (see

Fig. 29).

The ratio of horizontal branch (HB) stars to red giants in galactic globular

clusters is altered by axion-photon conversion inside stars, and places a com-

petitive constraint on gφγ for axions with masses less than the stellar internal

temperatures, T . 100 keV. In Fig. 29, this is shown as gφγ < 1×10−10 GeV−1

(this constraint is also shown in terms of the axion lifetime in Fig. 32.). The

most up-to-date constraint using 39 galactic globular clusters and state-of-the-

art stellar modelling is that of Ref. [340], which gives:

gφγ < 6.6× 10−11 GeV−1 (95%C.L.) (ma . 100 keV) . (176)

Supernova SN1987a places the strongest limit on gφγ for low mass axions

from the lack of observation of a gamma ray signal coincident with the neutrino

burst due to axion-photon conversion within the Milky Way. The most up-to-

date limit from Ref. [341] is

gφγ < 5.3× 10−12 GeV−1 (ma < 4.4× 10−10 eV) . (177)

Note that this limit is not shown on Fig. 29, which does not extend to such low

mass axions. SN1987A also places bounds on heavier axions with masses less

than the SNe internal temperature, T ≈ 50 MeV, where axion emission leads

to additional cooling. An approximate bound is (e.g. Ref [342]):

gφγ < 10−9 GeV−1 (ma < 50 MeV) . (178)
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Energy loss in globular cluster stars and white dwarfs sets limits on the axion-

electron coupling, gφe. The strongest constraint comes from axion bremsstrahlung

in globular cluster red giants [343]:

gφe < 3.3× 10−13 . (179)

Finally, the duration of the neutrino burst from SN1987a can be used to

constrain the axion-nucleon interaction, gφN . If axions interact strongly enough

with nuclei, then axion emission via nuclear bremsstrahlung, N+N → N+N+φ,

is a more efficient energy-loss channel than neutrino emission, shortening the ob-

served neutrino burst [344]. The theoretical calculation of supernova energy loss

involves many uncertainties, but approximate bounds can be obtained. For a

KSVZ type axion with no tree-level fermion couplings the bound is (see Ref. [10]

for discussion)

fa & 4× 108 GeV (KSVZ) . (180)

9.2. “Light Shining Through a Wall”

LSW is based on a very simple idea: shine a laser beam at a wall; apply a

magnetic field so that it converts into axions, which travel freely through the

wall; on the other side of the wall apply another magnetic field to convert the

axions back to observable photons (for a review, see Ref. [13]). Just like the

stellar astrophysics limits, this is direct axion production and applies regardless

of whether the axion is DM.

The conversion probability, P (γ → φ), for photons of energy ω into axions

in the presence of a coherent magnetic field, B, of length L is

P (γ → φ) = 4
g2
φγB

2ω2

m4
a

sin2

(
m2
aL

4ω

)
. (181)

The conversion probability can also be affected by using a medium with a re-

fractive index nr 6= 1, and by use of resonant cavities to enhance conversion and

reconversion on either side of the wall.

The constraints from current LSW experiments are not particularly strong

compared to astrophysical constraints, and do not appear on the scale of Fig. 29.
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The strongest bounds come from the Any Light Particle Search (ALPS) exper-

iment [345] and are roughly

gφγ . 7× 10−8 GeV−1 (ma . 10−3 eV) . (182)

The planned experiment ALPS-II [346] will improve these limits by more than

three orders of magnitude, sensitive to gφγ ∼ 2 × 10−11 GeV−1 over a similar

range of masses. The projected reach is shown in Fig. 29 and will be competitive

with astrophysical and helioscope limits discussed in Sec. 9.1.

9.3. Vacuum Birefringence and Dichroism

In the presence of a magnetic field, the Primakoff interaction between axions

and photons allows for the vacuum to become birefringent and dichroic [333].

These effects cause the polarization plane of linearly polarized light to be rotated

as it propagates. With no external magnetic field, we simply have birefringence

(rotation with no absorption, we consider this effect in a cosmological context

in Section 9.9), while in the presence of a magnetic field, there is absorption of

one polarization state, i.e. dichroism. The amplitude of the dichroism is given

by [347]

ε = sin 2θ
(
BLgφγ

4

)2 [ sin(m2
aL/4ω)

m2
aL/4ω

]2

, (183)

where θ is the angle between the magnetic field, B, and the polarization direc-

tion, L is the length of the magnetic region, and ω is the photon energy. The

effect can be enhanced in a Fabrey-Perot cavity by increasing the number of

passes the light makes in the cavity. Measuring the dichroism of the vacuum in

the presence of a B-field can thus be used to place constraints on the existence

of axions possessing the two-photon coupling.

Using this technique, in 2006 PVLAS reported evidence for a polarization ro-

tation in the presence in a B ≈ 5 T field of α = (3.9±0.5)×10−12 rad/pass (3σ

uncertainties). This was interpreted as evidence for an axion with ma ≈ 1 meV

and gφγ ≈ 10−5 GeV−1 [347]. Although this signal was already in tension

with results from helioscopes, considerable interest was generated. The relevant
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parameter space was later directly excluded by the LSW experiment, Gam-

meV [348]. Furthermore, reruns of PVLAS at different field strengths [349]

showed that the signal of Ref. [347] was in fact due to instrumental artefacts.

Nevertheless, this remains an interesting part of the story of axion constraints.

9.4. Axion Mediated Forces

The couplings gφe and gφN of Eq. (23) cause the axion to mediate spin-

dependent forces. Such force exists independently of whether the axion is DM.

The resulting dipole-dipole interaction in the non-relativistic limit gives rise to

the following potential [350]:

V (r) =
gφigφj

16πMiMj

[
(σ̂i · σ̂j)

(
ma

r2
+

1
r3

)
− (σ̂i · r̂)(σ̂j · r̂)

(
m2
a

r
+

3ma

r2
+

3
r3

)]
e−mar ,

(184)

where i, j labels the electron or nucleon with mass M , σ̂ is a unit vector in the

direction of the spin, and r̂ is a unit vector along the line of centres.

The interaction is of Yukawa-type and its range is suppressed by e−mar.

Even though this force can be long-range for ULAs, they are not subject to

standard fifth-force constraints since the macropscopic sources must be spin-

polarized. The dipole-dipole interactions between nucleons and electrons are

only weakly constrained by current experiments, and the resulting bounds on

gφe and gφN are not as strong as those from stellar astrophysics. They are [351]

gφN < 0.85× 10−4 (ma . 10−7 eV) , (185)

gφe < 3× 10−8 (ma . 10−6 eV) . (186)

(187)

If the axion also has scalar interactions of the form gsφψ̄ψ, then monopole-

monopole and monopole-dipole potentials are induced [350]. For a general ALP,

gs should be very small on symmetry grounds. The limits on the scalar interac-

tion strength for the QCD axion are given by the limits on dn and by the amount

of CP violation in the standard model. Current bounds are weaker than the as-

trophysical limits and do not reach the level of sensitivity to constrain the QCD
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axion-induced nucleon-nucelon monopole-dipole and monopole-monopole inter-

actions. However, the proposed method of Ref. [352] using Nuclear Magnetic

Resonance to probe the monopole-dipole interaction could cover a wide range

corresponding to the entire classic axion window, 109 GeV . fa . 1012 GeV.

Despite its tiny value, the scalar coupling of the QCD axion offers a very promis-

ing avenue for discovery.

9.5. Direct Detection of Axion DM

9.5.1. Haloscopes and ADMX

Let’s begin with the classic haloscope experiments [333], which search for

DM axions using the gφγ coupling. A haloscope currently in operation is the

Axion Dark Matter eXperiment (ADMX) [88].

A DM axion enters a microwave cavity, where it interacts with an applied

magnetic field, converting into a photon which is then detected. The cavity ge-

ometry is tuned such that this conversion is resonant, enhancing the conversion

rate. The power generated in the cavity is

P = g2
φγ

V B0ρaC

ma
min (Q,Qa) , (188)

where ρa is the local DM density in axions, V is the cavity volume, B0 is the

applied magnetic field strength, Q is the quality factor of the cavity, Qa is the

ratio of the halo axion energy to energy spread, and C is a mode dependent

form factor for the cavity. For approximate ADMX parameters V = 500 L,

B0 = 7 T, Q = 105, in the classic QCD axion window with fa ≈ 1012 GeV, the

power is P ≈ 10−21 W.

Since ADMX is a DM detector, it also relies on ρa being large, and quoted

constraints assume that axions in its sensitivity range compose all the DM.

Because of the resonant tuning required, ADMX is very precise, but is only able

to probe a narrow range in the mass-coupling plane (see Fig. 29). ADMX is

sensitive to axions with ma ≈ 10−6 eV. Current constraints exclude ALPs of

this mass more strongly coupled to photons than the QCD axion. In the near
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Figure 30: Future reach of axion DM direct detection experiments using the two-photon

coupling. The classic window of the QCD axion can be completely covered. Reproduced,

with permission, from “Resonant Dark Matter Detectors Beyond 10 GHz,” Gray Rybka,

PATRAS10 (2014).

future ADMX will able to probe most of the model space (KSVZ and DFSZ)

for the QCD axion with 10−6 eV . ma . 10−5 eV, i.e. fa ∼ 1012 GeV.

Other upgrades and new proposals for axion DM direct detection experi-

ments in the classic QCD axion window using the two-photon coupling include

the use of open resonators (the ORPHEUS experiment) [353], LC-circuits [354]

and broadband searches with SQUIDs [355]. Projections for some of these tech-

niques are shown in Fig. 30, and could cover the mass range 10−8 eV . ma .
10−2 eV of the QCD axion.

9.5.2. Nuclear Magnetic Resonance and CASPEr

The Cosmic Axion Spin Precession Experiment (CASPEr) [235], comes in

two varieties. Both strategies are novel, as they do not rely on the “standard”

two-photon coupling. Each CASPEr experiment uses the property that the

axion couplings to nucleons are spin dependent. The interactions can be de-

tected by spin-polarizing a sample in an applied magnetic field, and searching
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Figure 31: Sensitivity of the CASPEr experiments, assuming the DM is contained exclusively

in a single ALP. CASPEr is a resonant experiment and sensitivity assumes a 3 year operation

of scanning. Left Panel: CASPEr-Electric and the nucleon EDM coupling. Orange shaded:

phase 1. Red shaded: phase 2. Dashed red: magnetometer noise limit in phase 2. Right Panel:

CASPEr-Wind and the axial nucleon moment (note their gN is our g̃N ). Red: Xe sample.

Blue: 3He sample. Dashed lines: magnetization noise limits. Reproduced (with permission)

from Refs. [235, 47]. Copyright (2014,2013) by The American Physical Society.
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for spin-precession using nuclear magnetic resonance techniques. The induced

magnetization is resonant at the Larmour frequency of the applied magnetic

field, 2µmBext = ma (where µm is the nuclear magnetic dipole moment) and is

detected using a SQUID magnetometer. For reasons that will become appar-

ent, we refer to the two distinct experiments as “CASPEr-Electric” [235] and

“CASPEr-Wind” [47]. Just like with ADMX, CASPEr is a DM detector and

the sensitivity to axions scales with the DM abundance. CASPEr has not yet

been constructed, and we discuss projected sensitivities.

CASPEr-Electric exploits the axion coupling to (φ/fa)TrGG̃, which gives

rise to the EDM coupling, gd. CASPEr-Electric thus explores the defining prop-

erty of the QCD axion. The dipole moment induced by an axion is dn = gdφ.

Recall that the QCD axion solves the strong-CP problem by setting the time-

average of the nucleon EDM to zero, as required by experiments constrain-

ing the static EDM [20]. The same oscillations in the axion field that al-

low it to function as a DM candidate, however, lead to EDM oscillations,

dn ∼ 10−16(φ/fa) cos(mat) e cm, where φ is the local value of the axion field

amplitude. CASPEr-Electric applies an electric field to a spin-polarized sample

and detects the precession of the nuclear spins about the ~E field axis caused by

the non-zero EDM.

The projected sensitivity of CASPEr-Electric is shown in Fig. 31, Left Panel.

In phase 2 CASPEr-Electric will be able to detect the QCD axion for fa &
1016 GeV, with ultimate limits from magnetization noise able to reach fa &
3 × 1013 GeV. CASPEr-Electric is thus highly complementary to ADMX and

astrophysical bounds.

CASPEr-Wind exploits the axion coupling to the axial nuclear current, gφN ,

and the induced spin-dependent force. As the earth moves relative to the DM

halo of our galaxy, so we experience a “DM wind” of axions. The effective

coupling in the nucleon Hamiltonian is HN ⊃ g̃φNmaφ cos(mat)~v · ~σ, where

~σ is the nuclear spin, and ~v is the DM wind velocity. The spin-dependent

force creates a torque around the direction of the DM wind and leads to spin

precession of nuclei without the need for an applied electric field. CASPEr-Wind
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is thus somewhat simpler to implement than CASPEr-Electric.

The projected sensitivity of CASPEr-Wind is shown in Fig. 31, Right Panel.

While CASPEr-Wind is not sensitive to the QCD axion (except in the noise-

limited regime), it is sensitive to the ULA model of Ref. [46], and is comple-

mentary to cosmological axion searches.

9.6. Heavy Axions and Axion Decays

In this section we consider constraints on axions with masses ma � 1 eV.

Note that the constraints summarised in Fig. 29 (and much of the phenomenol-

ogy discussed elsewhere in this review) typically do not apply to such high

masses, as they rely on the coherence of the axion field. The bounds from stel-

lar astrophysics in Section 9.1 can apply for ma as large as 1 keV. We consider

primarily the astrophysical and cosmological consequences of axion decay, but

mention some other constraints in passing.

Consider the axion-photon coupling, gφγ , defined in Eq. (23), which we recall

has mass-dimension −1, and is in general a free parameter for ALP models, with

approximate scale 1/fa. This coupling allows axions to decay into two photons,

with a lifetime:

τφγ =
64π
m3
ag

2
φγ

≈ 130 s
(

GeV
ma

)3(10−12 GeV−1

gφγ

)2

. (189)

Consider the KSVZ axion, with the photon coupling fixed by Eq. (27). Taking

the age of the Universe to be τuniv. ≈ 1010 years we find that the QCD axion is

stable on the lifetime of the Universe for fa & 1.9 × 106 GeV. Thus, the QCD

in the allowed range of fa is stable on the lifetime of the Universe, and hence is

a DM candidate.

ALPs, on the other hand, may decay on much shorter time scales. The

coupling of ALPs is in general proportional to the mass, since couplings go as

1/fa and ma = Λ2
a/fa. Thus heavier ALPs can be unstable on cosmological

timescales and will decay to standard model particles (or light dark sector par-

ticles). The decay of such a population of ALPs injects additional relativistic

energy density into the Universe, which is constrained by a number of probes.
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We will closely follow the recent compilation of constraints in Ref. [356], as

shown in Fig. 32. Some early constraints on ALPs from decays can be found

in Refs. [342, 357], while further reading can be found in Ref. [358] (for general

physics and consequences of decaying particles, see Ref. [359]).

The presence and later decay of ALPs in the early Universe can change the

effective number of relativistic species, Neff (Eq. 44), and the baryon-to-photon

ratio, ηb ≡ nb/nγ , at different times in cosmological history. A lower value

of NCMB
eff affects the CMB power spectrum, as discussed in Section 3.3.1. The

baryon ratio at the CMB is well measured, fixind ηCMB
b = 2.74×10−8Ωbh2. The

photon energy density is also fixed by the equally well measured TCMB. There-

fore ALP decays can actually reduce Neff and increase ηb. An ALP decaying

between BBN and the CMB reduces NCMB
eff if the decay occurs after neutrino

decoupling, by heating of the plasma.51 Decay before BBN also reduces NBBN
eff .

On the other hand, if the ALPs are themselves relativistic at BBN, NBBN
eff is

increased. ALP decay between BBN and the CMB leads to a relative increase

ηBBN
b compared to ηCMB

b .

Changes of the expansion rate , via Neff , and baryon abundance during

BBN affect the light element abundances. The standard model predictions of

the BBN light element abundances are extremely well verified (with the famous

exception of Lithium): see Refs. [42, 360] for reviews. The helium abundance, Yp

and the deuterium-to-hydrogen ratio, D/H, place strong constraints on ALPs,

both from decays and from the contribution of thermally produced axions with

ma . 1 MeV to the radiation density at BBN.

Energy injections at different epochs can also change the shape of the CMB

frequency power spectrum, such that it is no longer a perfect black body. Such

effects are known as CMB spectral distortions, and are strongly constrained by

51It is interesting to note the opposite effects of different ALPs on Neff : decay of a heavy

particle to an ALP leads to an increase, while decay of a heavy ALP to photons leads to a

decrease. The effects of light and heavy ALPs and moduli could conspire to hide them from

our view.
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Figure 32: Constraints on heavy ALPs from decays, in the mass-lifetime plane. The axion

mass is here labelled mφ. The CMB, D/H, and Yp regions are excluded at 3σ, the Collider

and Beam Dump regions are excluded at 2σ, and the SN1987a and HB Stars regions are less

formal. Reproduced (with permission) from Ref. [356].
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the COBE-FIRAS measurements (for a review, see Ref. [228]). Early decays of

axions heat the plasma leading to distortions of “µ-type” (chemical potential)

for decays between 105 . z . 106, or “y-type” (Compton scattering) for decays

between 1100 . z . 105. These effects are computed in e.g. Refs. [356, 358,

357].

In the life-time range of relevance to cosmological axion decays, the axion-

photon coupling also has collider signatures, allowing, for example, single-photon

final states in electron-positron colliders. The constraint from LEP [361, 362,

363] is [35]

gφγ < 4.5× 10−4 GeV−1 (LEP: ma . GeV) . (190)

In fact, a stronger bound due to the single photon final state was derived much

earlier, using ASP data [364] in Ref. [342]: gφγ ≤ 5.5× 10−4 GeV−1 for ma �
29 GeV. Anomalous decays of heavy quark states lead to similar bounds.

The summary of these constraints is shown in Fig. 32. The DFSZ and KSVZ

axion models are excluded for ma in the keV to MeV range, as are most ALPs

with

1 keV .ma . 1 GeV , (191)

10−4 s .τφγ . 106 s . (192)

There is an open window for short-lived, τφγ < 0.01 s, heavy, ma & 1 GeV,

ALPs that decay early enough and are sufficiently non-relativistic at BBN to

not alter the light element abundances.

9.7. Axion Dark Radiation

We discussed in Section 3.3.1 how a population of relativistic axions can be

created by decay of a modulus. The CMB power spectrum and other cosmologi-

cal observables constrain the simplest consequence of this: the relativistic axion

energy density, parameterized by ∆Neff . This population of axions, if coupled

to the standard model, can also be probed by axion scattering.

If the modulus decay that produced the axion DR also reheats the Universe,

then the axion energy is E ∼ mσ ∼ Tγ
√
Mpl/mσ � Tγ . Because the energy is
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Figure 33: Constraints on axion DR from the primordial helium abundance [365]. The fermion

interaction is taken to have strength cf = 1, and here mφ is the modulus mass. Final states

to bb̄ (solid), cc̄ (dashed) and ss̄ (dot-dashed) are considered, with varying amounts of DR,

∆Neff = 0.1, 0.5, 1 (green, black, red; corrected labelling from typo in original). Areas below

curves are excluded. Reproduced (with permission) from Ref. [108].

much higher than the plasma temperature, this gives access to processes that

are otherwise kinematically forbidden. This leads to interesting constraints and

phenomenology despite the fa-suppressed axion couplings. Ref. [108] discussed

the phenomenology in detail.

An axion-fermion coupling of the form Lf = cfmfφψ̄γ
5ψ/fa (this form can

be obtained from the axial current interaction in Eq. 23 by use of the equations

of motion) allows for production of heavy fermions via the process a+γ → f+f̄ .

The secondary decay of the fermions can alter the proton to neutron ratio during

BBN, and thus the primordial helium abundance. Each axion scattering process

can be mapped onto an “effective decay process” [108] for which constraints can

readily be found in the literature (e.g. Ref. [365]). The constraints are shown

in Fig. 33. Taking cf = 1, BBN constraints rule out values of fa . 109 GeV

over a wide range of modulus masses.

Axion DR also has a flux at Earth and, if the axion-photon coupling is non-
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vanishing, could be detected by helioscopes like CAST. The axion DR flux is

distinct from the solar flux in two important ways: firstly, because of its cosmo-

logical origin, it is isotropic; secondly, the DR flux is not suppressed by as many

powers of gφγ , due to the different production mechanism compared to solar ax-

ions. Taking gφγ ∼ f−1
a , the DR signal in a heliscope is thus suppressed as only

f−2
a , compared to the f−4

a suppression for solar axions. For a modulus mass of

mσ = 5× 106 GeV and ∆Neff ≈ 0.6 the flux is Φa ≈ 1.09× 106 cm−2s−1 [108],

which is of order the solar QCD axion flux for fa = 1010 GeV. The DR back-

ground in this model is thus in reach of IAXO. For these same parameters, the

energy spectrum peaks in the keV range, and has a form characteristic of the

axion DR background from modulus decay.

9.8. Axions and Astrophysical Magnetic Fields

Let’s further consider the Primakoff process, but now for the case of ULAs in

the presence of astrophysical magnetic fields. Gamma rays from blazars suggest

that the cosmic background field exceeds B ∼ 10−16 G in large voids [366, 367],

while it could be large as nG, with Mpc coherence length. Larger magnetic

fields are present in clusters of galaxies, with strength B ∼ µG and coherence

length of order kpc.

9.8.1. CMB Spectral Distortions

In the presence of a background magnetic field axion photon mixing occurs

and, just like in the case of massive neutrinos, propagation and interaction

eigenstates are not the same. Furthermore, plasma effects lead to an effective

photon mass:

m2
γ = ω2

p(z)− 2ω2(nH − 1) , (193)

where ω is the photon frequency, and the refractive index of neutral hydrogen

is nH . The plasma frequency, ωp, depends on the free electron density, and is

thus a function of redshift determined by recombination and reionization. At

ω = TCMB the photon plasma mass at z = 0 is mγ ∼ 10−14 eV. Resonant axion-

photon conversion occurs when mγ = ma. Since for high frequency photons m2
γ
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Figure 34: Constraints on ULAs from CMB spectral distortions from FIRAS, and projected

for PIXIE/PRISM. The axion mass is labelled mφ in this plot. The dark band shows masses

where multiple resonant conversions effectively exclude such axions entirely, for gφγ 6= 0.

Reproduced (with permission) from Ref. [371]. Copyright (2013) by The American Physical

Society.

passes through zero, resonant conversion can occur for arbitrarily low axion

mass, and can occur multiple times as m2
γ changes sign.

The frequency dependence of the resonant conversion epoch leads to a spec-

tral distortion [368]. COBE-FIRAS [369, 370] measured the CMB to be a black

body to high precision. This constrains the resonant conversion probability,

which in turn leads to a constraint on the product gφγB0, where B0 is the

spatially averaged magnetic field strength today.

The constraints have been addressed in detail in Refs. [372, 371]. Fig. 34

shows the constraints on ULAs from FIRAS, and projected constraints from a

PIXIE [373]/PRISM [374]-like mission. Multiple resonant conversions occur for

10−14 eV . ma . 10−12 eV, effectively excluding any gφγ 6= 0 for this mass

range. While constraints are only on the product gφγB0, they are stronger than

the product of current upper limits on gφγ and B0 individually.
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9.8.2. X-ray Production

As discussed a number of times, axion DR can be produced by the decay

of a modulus, and the axion DR energy today is E0 ∼ TCMB

√
Mpl/mσ. For a

modulus mass mσ ∼ 106 GeV (suggested by string theory solutions to the EW

hierarchy problem) this gives rise to a cosmic axion background (CAB) with

energy E ∼ 0.1 - 1 keV. The energy density in the CAB is

ρCAB = 1.6× 1060 erg Mpc−3

(
∆Neff

0.57

)
, (194)

Conversion of the CAB to photons in the presence of magnetic fields leads to

production of X-rays.

Clusters of galaxies are permeated by magnetic fields with B ∼ µG and

coherence lengths L ∼ kpc. Axion-photon conversion in this environment is

predicted to lead to excess X-ray emission from clusters [108, 375]. The X-

ray luminosity of a typical Mpc sized cluster is Lcluster ∼ 1044 erg s−1. The

excess soft X-ray luminosity in Coma is 1.6 × 1042 erg s−1 [376], which could

plausibly be explained with an axion-photon coupling gφγ ∼ 10−14 GeV−1 [375],

depending on the axion mass and the photon plasma mass in the intra-cluster

medium. This emission has fixed redshift scalings, since the CAB is cosmological

in origin. It is also predicted to correlate with cluster magnetic fields, unlike an

annihilating DM signal.

Ref. [377] considered X-ray production within galactic magnetic fields. For

the strength of coupling required to explain the soft X-ray excess in Coma,

conversion within the Milky Way is negligible. Star burst galaxies, with larger

magnetic fields, may produce an observable signal, in particular if the inhomo-

geneous free electron density is accounted for in modelling the emission.

Conversion in cosmological magnetic fields could contribute to an unre-

solved cosmic X-ray background. This is essentially the inverse of the spectral

distortion effect discussed in the previous subsection, with a different energy

spectrum. A diffuse cosmic X-ray background in the keV energy range is ob-

served [378], with diffuse intensity that could be explained by the CAB with

gφγ ∼ 10−13 GeV−1, assuming nG strength cosmological magnetic fields [375].
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From Fig. 34 we see that this explanation for the X-ray background will in

addition produce a CMB spectral distortion close to the FIRAS bound, and

observable with PIXIE/PRISM.

9.9. Cosmological Birefringence

CMB polarization comes in E-modes and B-modes. E-modes are generated

from temperature fluctuations at last scattering by the quadrupole anisotropy,

and the E spectrum can be predicted from the measurement of the adiabatic

temperature fluctuations. B-modes can be generated in three ways: primor-

dially, by tensor fluctuations with relative amplitude rT ; by gravitational lens-

ing along the line of sight; and finally by the birefringent effect, rotating of E

into B.

In the presence of the axion-photon coupling in Eq. (23), the fields satisfying

free wave equations are ~D = ~E+ gφγ
2 φ~B and ~H = ~B− gφγ

2 φ~E [380] (note ~E and

~B are the fields of electromagnetism, and are not the same as E and B mode

polarization). Therefore, if the axion field φ varies in time or space it can cause

rotation of the plane of polarization of the CMB [381]:

∆β =
gφγ
2

∫
dτφ′ , (195)

where it is reminded that τ is conformal time, and primes denote derivatives

with respect to this. The integral is performed along the line of sight from

the surface of last scattering at zdec to today. When the axion is oscillating,

the integral vanishes. Therefore, significant rotation only occurs for ULAs that

begin oscillations after photon decoupling. Using zdec = 1020, Ωm = 0.31,

ΩΛ = 0.69, h = 0.67, we find that ULAs with a mass ma . 3Hdec = 1×10−28 eV

can cause significant cosmological birefringence.

The uniform misalignment of ULAs in the broken PQ scenario (see Sec-

tion 3.2.2) leads to a uniform rotation of the plane of CMB polarization. Such

a uniform rotation is constrained to be |∆β| < 1.4 × 10−2 [382]. If we assume

φ(τ0) = 0, this gives the approximate constraint φigφγ < 2.8 × 10−3. Taking

gφγ ∼ αEMf
−1
a , CMB polarization rotation imposes a constraint on the (φi, fa)
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Figure 35: CMB B-mode power from birefringence caused by ULAs coupled to magnetic fields

with (HIgφγ)2 ≈ 0.17 (red, solid). The large angle signal can mimic tensor modes with r ∼ 0.1

(blue, short dashed), while the small angle signal contains distinctive BAO from the E-modes

(green, dot-dashed) and, for this choice of parameters, dominates over lensing power (cyan,

long dashed). Reproduced (with permission) from Ref. [379] (where the data are described).

Copyright (2009) by The American Physical Society.
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plane. For ULAs, and using Eq. (61) for aeq < aosc, the birefringence constraint

is of order the constraint on the DM abundance from temperature anisotropies

(Fig. 15, right panel), assuming fa < Mpl and ma . 1 × 10−28 eV (excluding

also the lightest DE like axions where φ(τ0) 6= 0). Thus, if a sub-dominant

population of such ULAs is detected in LSS in future, e.g. by Euclid (Fig. 14),

then this may well be accompanied by birefringence in the CMB.

Anisotropies in the axion field cause anisotropic rotation. This leads to

generation of BB anisotropy power from EE, and thus EB cross-correlations,

and can be significantly sourced by ULA isocurvature pertrubations: see e.g.

Refs. [383, 382, 379, 384, 385]. The resulting CMB power spectra are shown in

Fig. 35. The amplitude of the power spectrum scales as (HIgφγ)2. This effect

is particularly interesting as it can generate B-modes that dominate over those

produced by tensor perturbations. This could source large angle B-mode power

in low-scale inflation if HIgφγ ∼ 0.1. Since the power is generated from the

E-modes, there is also oscillating, large amplitude, small-angle B-power in this

scenario. This would be present even after de-lensing and is distinct from the

tensor mode power, which falls rapidly on small angular scales.

The most recent constraints on anisotropic birefringence come from the B-

mode power and 4-point function measured by Polarbear [386]. These con-

straints are consistent with zero signal.

10. Concluding Remarks

In this review we have presented the vast cornucopia of axion physics. We

have considered the motivations and models for axions coming from particle

physics and string theory. We have seen how axions can be produced in the

early Universe by a variety of mechanisms. Axions can play important roles

in all of the unsolved mysteries of cosmology: inflation, dark matter, and dark

energy. They also lead to novel phenomena, such as fuzzy dark matter, and

dark radiation. Axion couplings to the standard model are fixed by symmetry

considerations, and can be computed in specific models. We studied the tai-
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lored direct and indirect searches for axions, which are quite different to more

“standard” searches for new particle physics.

I hope, dear reader, that you have come away from this review with a sense

for the fascinating progress that has been made in axion physics over the last

years and decades. I also hope that you can see the places on the horizon where

new opportunities are arising. Let me briefly reiterate some of these:

• The dark sector and large scale structure: Soon, large scale structure mea-

surements will reach the precision to test in detail aspects of standard

neutrino physics, such as the neutrino mass, and number of neutrinos.

Axions share many degeneracies with the neutrino sector. Misalignment-

produced ULAs suppress structure formation on cluster scales; hot axions

contribute to dark radiation either via thermal production or via modu-

lus decay. Improved measurements and studies of CMB polarization and

gravitational lensing of galaxies could easily discover these effects at the

same time as testing neutrino physics. Breaking degeneracies via multiple

probes is an important endeavour for both axion and neutrino physics.

• Axions with ma ∼ 10−22 eV and the CDM small-scale crises: The CDM

small-scale crises, if they are indeed crises, can be solved by ULAs. Obser-

vational and simulation techniques on these scales are always improving,

and axion physics must keep up. There are some simulations on the mar-

ket, but the field has not been studied in anywhere near as much depth

as competing models, such as WDM. The tantalizing prospect to see ev-

idence for axions on these scales, in galactic dynamics and in the epoch

of reionization, must not be overlooked, and much work is necessary to

exploit this opportunity.

• Progress in string theory model building and the axiverse: A large part of

the motivation to study axions comes from their apparent prevalence in

string theory. In principle, therefore, constraints on axions can be inter-

preted as constraints on string theory. There is already a large program
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of model building in this direction. The focus has largely been on infla-

tion, but extensions to other parts of cosmology are slowly being made.

This model building should also be done holistically, with emphasis on

the many different facets of axion physics that combine and provide the

opportunity to make unique and verifiable predictions.

• Novel experiments for axion direct detection: Axion direct detection has,

for many years, focused on the ~E · ~B coupling and the QCD axion. Recent

years have seen an upsurge in interest in searching for the other possible

axion couplings in terrestrial experiments. These searches are more gener-

ally applicable to ALPs, which may only possess a fraction of the couplings

allowed by symmetry, for example having no coupling to photons. All di-

rect searches for axions provide vital information to cosmology, not least

by limiting the decay constant in specific models, but also by allowing

the possibility to actually identify the DM as axion-like by the form of its

couplings.

This summary is not the end. Axion physics is alive and well, and growing:

long may it be so.
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A. Theta Vacua of Gauge Theories

I will simply state some relevant results to give you a feel for this topic:

see the wonderful book by Coleman, Ref. [18], for the gory details. I follow

Coleman’s notation and normalisation in this discussion.

Quantum theory depends on the Euclidean functional integral, with the

path integral being dominated by field configurations of finite Euclidean action.

These dominant contributions to the semi-classical approximation are known as

instantons. The action for a gauge field theory with gauge group G (for definite-

ness, take G = SU(N)) and gauge coupling gG in 4 flat Euclidean dimensions

is

S =
1

4g2
G

∫
d4x(Fµν , Fµν) (A1)

A field configuration of finite action must have F ∼ O(1/r3) as r → ∞ and so

the gauge field must be of the form

Aµ = g∂µg
−1 +O(1/r2) , (A2)

for some gauge transformation g(x), which is a function mapping G to the

variables of Euclidean 4-space. In order not to alter the asymptotic baheviour

in r we must have that g(x) maps G to only the angular vairables. That is, the

field configurations are defined up to a mapping of G to the space-time boundary,

which in this case is topologically the three-dimensional hypersphere, S3.

How many different mappings are there, and how can we classify them?

Firstly, we can always make a gauge transformation by some other element
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h, which is a continuous function, and continuously deform one into another.

That means that all homotopoically equivalent mappings are equivalent field

configurations.52 We now need to classify the homotopically distinct mappings.

A theorem [387] states that we need only consider the SU(2) subgroups of

our group G. SU(2) is topologically S3, and so one such mapping is the trivial

mapping

g(1)(x) = (x4 + i~x · ~σ)/r , (A3)

where σ1,2,3 are the Pauli matrices. It is then also possible to prove (Coleman

does not prove it, and I certainly won’t) that all mappings from S3 to S3 are

homotopic to a family of mappings

g(ν)(x) = [g(1)(x)]ν , (A4)

where ν is an integer called the winding number. For the simple example of

wrapping U(1) round a circle, this is easy to visualise, and ν labels the repre-

sentations of U(1) as eiνθ, with θ the angle on S1.

Finally, it is possible to show that the winding number of a field configuration

is given by the integral

ν =
1

32π2

∫
d4x(F, F̃ ) , (A5)

where F̃ is the dual field strength as defined below Eq. (2). The winding number

is a topological invariant of the field configuration, providing a finite contribution

to the Euclidean action proportional to the integral of Eq. (2).

The winding number describes the boundary conditions of the gauge fields

with ν = n in some state |n〉. The vacuum of the theory is given by a superpo-

sition of states

|θ〉 =
∑

n

einθ|n〉 . (A6)

such that

〈θ|e−HT |θ〉 ∝
∫

[dA]e−Seiνθ . (A7)

52An important consequence of this is the fact that U(1) gauge theory has no instantons in

3+1 dimensions. U(1) is topologically the circle, S1, which, when wrapped around S3, can

be continuously deformed to a single point: the trivial mapping.
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A θ-vacuum is thus described by a term in the action

Sθ =
θ

32π2

∫
d4x(F, F̃ ) . (A8)

All the θ-vacua are topologically distinct, and transitions between them are

forbidden as they involve discontinuous changes in the gauge field boundary

conditions.

By considering a gas of n instantons and n̄ anti-instantons, such that ν =

n− n̄, Coleman goes on to show that

〈θ|e−HT |θ〉 ∝ exp[e−S0 cos θ] , (A9)

so that the energy of the θ-vacuum is

E(θ) ∝ e−S0 cos θ , (A10)

with the one-instanton action

S0 =
8π2

g2
G

. (A11)

B. EFT for Cosmologists

This is an extremely heuristic description of EFT. For a rigorous treatment,

see e.g. Ref. [388].

The general notion of EFT is based on the idea that at low energies, q,

we can replace a “fundamental” action, S, with an effective action, Seff(q). In

the jargon, this is thought of in terms of the Wilsonian picture of the renor-

malization group: we define an action in the UV at a scale ΛUV and then use

the renormalization group equations to “run” down to q < ΛUV. This is re-

ferred to as “integrating out” fields with masses m > q. Quantum field theory

(e.g. Refs. [389, 390]) allows for interactions mediated by virtual particles, and

when these particles are integrated out this leads to effective interactions in the

low-energy theory that were not present in the UV theory.

Consider the case of the Fermi interaction, represented in Fig. B.36 for muon

decay. In the EW theory we know that, at a fundamental level, charged lepton-

neutrino interactions are governed by a term in the action S ⊃ ig2Wµ
¯̀
iγ
µνi +
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Figure B.36: Muon decay and the Fermi interaction as an example of EFT. The fundamental

theory involves exchange of virtual W bosons with momentum qµ. At low-momentum transfer,

q2 � m2
W , the interaction can be replaced with the effective 4-fermion interaction proportional

to GF .

h.c., where g2 is the EW coupling constant, `i is the charged lepton field, νi

its corresponding neutrino, and Wµ is a charged W boson. This allows for W±

particles to mediate muon decay (recall that a similar process involving quarks

and the CKM matrix elements mediates nuclear β-decay, and was the original

use of the Fermi interaction). The exchanged 4-momentum is qµ, and the W -

boson propagator is proportional to 1/(q2 + m2
W ), where mW = 80.4 GeV [42]

is the mass of the W . At small momentum transfer, q2 � m2
W (corresponding

via the uncertainty principle to large distances) the propagator can be replaced

by an effective 4-fermion interaction proportional to g2
2/m

2
W . Higher order in-

teractions come suppressed by higher powers of mW . In the low-energy EFT

we replace the EW gauge invariant interaction with the Fermi interaction using

GF =
√

2g2
2/8m

2
W . For muon decay, the low energy theory has a term in the

effective action Seff(q < mW ) ⊃ GF (ēνe)(ν̄µµ) + h.c.

The situation with axions and the chiral anomaly is more complicated to

compute, but is easy to represent in pictures. The case of the KSVZ axion model

is shown in Fig. B.37. The fundamental action contains Yukawa interactions
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�
qµ

g

g
�
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g

1/fa
q2 ⌧ m2

Q

Q

Q

Q

Figure B.37: The colour anomaly in the KSVZ axion model. Heavy quarks, Q, run in a loop

with momentum qµ. At low-momentum transfer, q2 � m2
Q, the interaction can be replaced

with the effective φGG̃/fa interaction.

between the axion and the heavy quark fields, Q. The Q fields also interact with

gluons. Virtual Q-particles then induce an effective axion-gluon interaction at

loop-level. At low momentum transfer, q2 � m2
Q, the heavy quarks can be

integrated out and the effective action has a term Seff(q < mQ) ⊃ φGG̃/32π2fa.

This is the dominant term in the expansion in powers of 1/mQ. It gives the

largest contribution to the explicit breaking of U(1)PQ, and thus the axion

potential, and also generates the necessaryGG̃ interaction required for a solution

to the strong-CP problem. EFT can also be applied to light quarks after chiral

symmetry breaking. This gives rise to the second term in Eq. (25), which gives

a contribution to the axion-photon coupling from the colour anomaly.

C. Friedmann Equations

Consider the line element for the flat Friedmann-Robertson-Walker (FRW)

Universe:

ds2 = −dt2 + a(t)2d~x2 , (B1)
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where a(t) is the cosmic scale factor. The scale factor obeys the Friedmann

equations:

3H2M2
pl = ρ̄ ,

6(Ḣ +H2)M2
pl = ρ̄+ 3P̄ , (B2)

where H = ȧ/a is the Hubble rate, ρ̄ and P̄ are the homogeneous back-

ground values of the components of the energy momentum tensor as defined

in Eqs. (C1), and homogeneity and isotropy of the FRW metric demand the

vanishing of velocity and anisotropic stress at the background level. The cur-

rent cosmic time is t = t0, and the current Hubble rate is H(t0) ≡ H0 =

100h km s−1 Mpc−1 = 2.13h × 10−33 eV = hMH . Normalising a(t0) = 1, the

redshift is given by z = 1/a − 1. The scale factor and redshift can both serve

as useful time co-ordinates.

Cold (C)DM, baryons and non-relativistic massive-neutrinos have zero pres-

sure, and the energy density in matter scales as ρ̄m = ρ̄m,0a
−3. Radiation,

including photons and relativistic neutrinos, has pressure P̄r = ρ̄r/3 and the

energy density scales as ρ̄r = ρ̄r,0a
−4

The first of Eqs. (B2) is commonly known as the Friedmann equation, while

the second is known as the Raychaudhuri equation. The Friedmann equation is

a first order constraint, and is sufficient to solve the background evolution in the

case of a flat or open universe with positive energy density. The Raychaudhuri

equation is only necessary to solve for collapsing universes (closed, or an AdS

scalar field potential), although there are occasions when it is more numerically

stable than the Friedmann equation.

D. Cosmological Fluids

Useful references for this section include Refs. [149, 131, 159, 150]. The

components of the energy momentum tensor can be identified with the energy-
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density, ρ, pressure, P , velocity, vi, and anisotropic stress, Σij of a perfect fluid:

T 0
0 = −ρ ,

T 0
i = (ρ+ P )vi ,

T ij = Pδij + Σi j . (C1)

In full General Relativity this decomposition holds for linear perturbations,

where T = T̄ +δT , and helps identify the physical meaning of the sources of the

Einstein equation. Perturbations are defined such that T̄ has the symmetries of

the FRW metric. Perturbations in fluid components are defined as ρ = ρ̄+δρ =

ρ̄(1 + δ), P = P̄ + δP . Homogeneity and isotropy at the background level imply

that vi and Σij are (at least) first order. The related variables θ and σ and are

defined by

θ = ikjvj , (C2)

(ρ̄+ P̄ )σ = −
(
k̂j k̂i −

1
3
δji

)
Σi j , (C3)

where k̂ is a unit vector in Fourier space.

The continuity equation for the energy density is

˙̄ρ = −3H(1 + w)ρ̄ , (C4)

where the equation of state is w = P̄ /ρ̄. Matter and radiation have constant

equations of state, wm = 0, wr = 1/3. The cosmological constant has equation

of state wΛ = −1. In the general, the equation of state can evolve in time. It’s

equation of motion is

ẇ = −3H(1 + w)(w − c2ad) , (C5)

where the adiabatic (background) sound speed is

c2ad =
˙̄P
˙̄ρ

= c2s −
w

δ
Γ . (C6)

The sound speed in fluctuations is

c2s =
δP

δρ
, (C7)
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and Γ is the non-adiabatic pressure perturbation.

It is important to note that definitions of “sound speed” are not universal,

and that the sound speed itself is not gauge invariant. I adopt the definitions

above, and apply them in whatever gauge we happen to be working in (syn-

chronous or Newtonian). This is in keeping with the treatment of Ref. [149],

and is convenient and intuitive for standard cosmological perturbation theory

as applied to the post-inflationary universe.

Some authors define the sound speed as the co-efficient in the equation of

motion of the gauge invariant “Mukhanov-Sasaki” variable, ν. This is common

in inflationary theory, and among relativists. For a scalar field, let’s denote

this particular sound speed c2φ. One can prove that c2φ = 1: i.e. it is the

sound speed in the gauge in which δφ = 0 (flat scalar field slicing). The non-

trivial growth and scalar field Jeans scale in this formulation can be understood

from the behaviour of the background (anti-)friction terms induced by gauge

transformations from, e.g., the Newtonian gauge to the δφ = 0 gauge [163].

This is consistent with the time-averaged effective sound-speed we employed in

Section 4.4.3, and the driven nature of Eqs. (74) and Eqs. (75) in the oscillating

regime [159].

E. Bayes Theorem and Priors

All cosmologists worth their salt are Bayesians. This happy state of affairs

is forced upon us by the unavoidably one-shot nature of observing the cosmos.

An introduction to Bayesian methods in cosmology can be found in Ref. [391],

with a more advanced specific treatment in Ref. [392].

We are interested in the probability of our theory, specifed by a vector of

parameters ~θ, given the data D: P (~θ|D). What we have access to is the like-

lihood, L, i.e. the probability of the data given the theory: P (D|~θ) = L(D, ~θ).

Bayes theorem relates these for us:

P (~θ|D) =
P (D|~θ)P (~θ)

P (D)
; posterior =

likelihood × prior
evidence

. (D1)
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The probability of the theory, P (~θ), is the all-important prior. In an MCMC

setting, the prior can be thought of as the distribution from which we draw

sample theory curves to compare to the data (although it can also be imposed

later on top of uniform sampling). The probability of the data, P (D), can be

computed as a normalization. It can often be ignored, since we are interested

in ratios of probabilities, although it is important for model comparison and

Bayesian evidence.

The likelihood reflects our uncertainty on the data. A very simple assump-

tion is to weight data points individually, and assume Gaussian errors, so that

a model has a likelihood as a product of Gaussians given by the distance of the

theory curve from each data point. In many real-world examples, the likelihood

is much more complicated. For example, the Planck likelihood is discussed in

Ref. [214].

The prior reflects our degree of belief in a model, and is often where physics

can be put in. See Ref. [393] for an example in dark energy theory, and the

formalism for treating information gain over the prior in a Bayesian context.

An “uniformative” prior is the Jeffreys prior, which for most practical pur-

poses is flat in log space. It is a suitable prior for unknown energy scales, for

example the axion mass and decay constant. The log-flat prior on axion mass

is also physically motivated: in string theory the mass scales exponentially with

some modulus, σ, of the compact space: ma,i ∝ e−cσi , where i labels the axion

species. The moduli are expected to have a uniform distribution in real space

(since the scale is set by the compactification volume), leading to a log-flat ax-

ion mass distribution. String theory predicitions for the fa distribution are in

general not log-flat, since fa,i ∝Mpl/σi [5]. The distribution can be calculated

from random matrix theory, which selects some preferred scale somewhat below

the Planck scale (e.g. Refs. [66, 394]).

The axion initial misalignment angle, on the other hand, is a compact vari-

able, and so the natural prior is a uniform prior. For the QCD axion, holding

fa fixed and using that Ωah2 ∝ θ2
a,i this gives the prior distribution for the relic
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density (e.g. Ref. [145]):

P (Ωah2) ∝ 1√
Ωah2

. (D2)

This fixed prior from theory makes axions uniquely predictive in landscape

and multiverse scenarios (e.g. Refs. [144, 395, 396]). Incorporating additional

information such as the prior on fa for the QCD axion, or on ma for ALPs, has

not yet been fully explored in the literature.

F. Degeneracies and Sampling with ULAs

On scales much larger than the Jeans scale, axion DM is degenerate with

CDM. For very low mass axions with ma ∼ H0, the axion equation of state is

wa ≈ −1 even today, and axions are degenerate with the cosmological constant

and DE. Our goal is to use precision cosmology to map out the range of axion

masses in between, i.e. those masses constrained by cosmology because such

axions are neither equivalent to CDM nor DE. This leads to a very challeng-

ing degeneracy structure for Ωah2 as a function of ma, which is illustrated in

Fig. F.38.

Standard cosmological parameter estimation is carried out using MCMC

analysis (the industry standard used by Planck is cosmomc [397]; see e.g.

Ref. [398] for a description of the methodology). The chain is begun at some

location close to the maximum likelihood, and then randomly (and ergodically)

explores this likelihood, with the density of samples reflecting the value of the

likelihood. With infinite computing time, the process is guaranteed to explore

the entire likelihood. Allowing for a wide prior on ma makes the convergence

of this process very slow, and the chain can get “stuck” in particular regions

(modes) of the likelihood. For example, we might get stuck in a high-likelihood

region with large ma, and Ωah2 ≈ Ωch2. What we really want to know is the

constraint on Ωah2 at intermediate masses, and what the range of “intermedi-

ate” really is for a given observable.

Working around this bottleneck requires using different tools to estimate the

likelihood than a standard “out-of-the-box” MCMC. The method employed in
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Figure F.38: Degeneracy of Ωah2 and Ωch2. Sample points for an MCMC chain are shown,

binned by axion mass, ma. High axion mass leads to a one-to-one degeneracy, with Ωah2 +

Ωch2 ≈ 0.12. Low mass axions behave as DE, allowing for large Ωah2 and fixing Ωch2 = 0.12.

Intermediate masses are constrained to have Ωah2 < 0.12. Reproduced (with permission)

from Ref. [131]. Copyright (2015) by The American Physical Society.
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Ref. [131] used nested sampling with multinest [225], an algorithm designed for

multi-modal likelihoods, instead of MCMC. However, it still proved prohibitively

expensive to have enough sample points to achieve accurate limits on Ωah2

across the full range of ma in the two dimensional (ma,Ωa) plane. A two-

step procedure was used to overcome this. Three separate mass ranges ran

independently. A more coarse global chain was then ran, and the information

from this was used to importance-sample the individual chains together on the

(ma,Ωa) plane.53

The procedure described above was able to deal with the degeneracies be-

tween CDM, DE and axions that occur for high and low ULA masses respec-

tively. A separate issue that has yet to be addressed fully is the degeneracy

between ULAs and neutrinos at intermediate ULA mass. Cosmology is ap-

proaching the required precision to detect the effects of
∑
mν = 0.06 eV, the

minimum consistent with oscillation experiments. It is crucially important to

address all possible degeneracies so that a future detection can be considered ro-

bust. Ref. [171] used a grid-based likelihood, where convergence is not an issue,

but only constrained ma and mν independently. Grids scale poorly for large

numbers of parameters, and are unsuitable for precision analysis. Ref. [172]

performed a preliminary investigation using a Fisher matrix formalism to per-

form forecasts. At the level of the study, degeneracies were not too severe: the

difference in behaviour between axions and neutrinos during the radiation era

breaks the degeneracy in the effect on structure formation. However, Ref. [172]

looked at individual ULA masses independently, and did not study the degen-

eracies as a function of ULA mass. Including ULAs, CDM and neutrinos in

a full parameter estimation pipeline will likely require further tricks like those

described here to be employed when sampling the likelihood.

In general, when considering degeneracies, it is important to break the ef-

53A similar procedure using a ‘hot’ MCMC chain as the global sample could also have been

used, but multinest was found to be more efficient. Another alternative would be to use an

ensemble sampler, such as emcee [399].
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fects of axion DM up into two parts: effects on the background expansion, and

effects on the perturbations. Axion cosmology coming purely from the misalign-

ment production is a well defined model where all effects on the expansion rate,

clustering and initial conditions come packaged together. As we saw in Sec-

tion 4.4.5, and has been discussed extensively elsewhere in the literature, the

axion transfer function is similar to the WDM and neutrino transfer functions.

However, these thermal and non-thermal components behave quite differently in

their effects on the background expansion, leading to, for example, very differ-

ent CMB signatures for similar transfer functions. It also might naively appear

that any effect on the transfer function can be mimicked by a change in the

primordial power. However, the primordial power affects radiation and DM,

and so its effects show up in the CMB as well as in the matter power spectrum.

The DM transfer function will only show up at leading order in the matter

power spectrum. Multiple measurements can thus break that possible degener-

acy. Similarly, axion effects on the background expansion could be mimicked by

some particular model for the DE equation of state or modified gravity (MG).

However, the particular physical DE/MG model may have different clustering

or early Universe behaviour from the corresponding axion model, allowing the

two to be distinguished.

G. Sheth-Tormen Halo Mass Function

The HMF is given by

dn

d lnM
= −1

2
ρm
M
f(ν)

d lnσ2

d lnM
, (F1)

ν ≡ δcrit

σ
. (F2)

For f(ν) we use the Sheth-Tormen function [400]:

f(ν) = A

√
2
π

√
qν(1 + (

√
qν)−2p) exp

[
−qν

2

2

]
, (F3)

with parameters {A = 0.3222, p = 0.3, q = 0.707}. This is a semi-analytic result

for the HMF derived in ellipsoidal collapse, which fits results from CDM N-body
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simulations reasonably well. Other fits for f(ν) can be found by fitting directly

to N-body simulations, but the Sheth-Tormen result will do for us.

The variance is defined by smoothing the power spectrum with some window

function, W (k|R), of radius R and assigning a mass using the enclosed matter

density:

σ2(M, z) =
1

2π2

∫ ∞

0

dk

k
∆2(k, z)W 2(k|R(M)) , (F4)

where ∆2(k, z) = k3P (k, z). A real-space spherical top-hat window function

assigns mass unambiguously:

W (k|R) =
3

(kR)3
(sin kR− kR cos kR) , (F5)

M =
4
3
πρmR

3 . (F6)
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[255] E. Calabrese, R. Hložek, N. Battaglia, J. R. Bond, F. de Bernardis,

M. J. Devlin, A. Hajian, S. Henderson, J. C. Hil, A. Kosowsky, T. Louis,

J. McMahon, K. Moodley, L. Newburgh, M. D. Niemack, L. A. Page,

B. Partridge, N. Sehgal, J. L. Sievers, D. N. Spergel, S. T. Staggs,

E. R. Switzer, H. Trac, E. J. Wollack, Precision epoch of reioniza-

tion studies with next-generation CMB experiments, JCAP8 (2014) 10.

arXiv:1406.4794, doi:10.1088/1475-7516/2014/08/010.

[256] J. F. Navarro, C. S. Frenk, S. D. White, A Universal density profile

from hierarchical clustering, ApJ490 (1997) 493–508. arXiv:astro-ph/

9611107, doi:10.1086/304888.

[257] H.-Y. Schive, M.-H. Liao, T.-P. Woo, S.-K. Wong, T. Chiueh, T. Broad-

hurst, W.-Y. P. Hwang, Understanding the Core-Halo Relation of Quan-

tum Wave Dark Matter from 3D Simulations, Phys. Rev. Lett.113 (26)

(2014) 261302. arXiv:1407.7762, doi:10.1103/PhysRevLett.113.

261302.

[258] R. Ruffini, S. Bonazzola, Systems of Self-Gravitating Particles in General

Relativity and the Concept of an Equation of State, Physical Review 187

(1969) 1767–1783. doi:10.1103/PhysRev.187.1767.

[259] E. Seidel, W.-M. Suen, Oscillating soliton stars, Physical Review Letters

66 (1991) 1659–1662. doi:10.1103/PhysRevLett.66.1659.

[260] A. R. Liddle, M. S. Madsen, The Structure and formation of boson stars,

Int.J.Mod.Phys. D1 (1992) 101–144. doi:10.1142/S0218271892000057.

[261] A. Diez-Tejedor, A. X. Gonzalez-Morales, No-go theorem for static scalar

field dark matter halos with no Noether charges, Phys. Rev. D88 (6) (2013)

067302. arXiv:1306.4400, doi:10.1103/PhysRevD.88.067302.

191



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[262] F. S. Guzmán, L. A. Ureña-López, Gravitational Cooling of Self-
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[264] A. X. González-Morales, A. Diez-Tejedor, L. A. Ureña-López, O. Valen-
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[306] R. Easther, R. Galvez, O. Özsoy, S. Watson, Supersymmetry, nonthermal

dark matter, and precision cosmology, Phys. Rev. D89 (2) (2014) 023522.

arXiv:1307.2453, doi:10.1103/PhysRevD.89.023522.

[307] J. Martin, R. H. Brandenberger, Trans-Planckian problem of inflationary

cosmology, Phys. Rev. D63 (12) (2001) 123501. arXiv:hep-th/0005209,

doi:10.1103/PhysRevD.63.123501.

[308] N. Kaloper, M. Kleban, A. Lawrence, S. Shenker, L. Susskind, Initial

Conditions for Inflation, Journal of High Energy Physics 11 (2002) 037.

arXiv:hep-th/0209231, doi:10.1088/1126-6708/2002/11/037.

[309] K. Freese, J. A. Frieman, A. V. Olinto, Natural inflation with pseudo

Nambu-Goldstone bosons, Physical Review Letters 65 (1990) 3233–3236.

doi:10.1103/PhysRevLett.65.3233.

[310] J. P. Conlon, Quantum gravity constraints on inflation, JCAP9 (2012) 19.

arXiv:1203.5476, doi:10.1088/1475-7516/2012/09/019.

[311] L. A. Boyle, R. R. Caldwell, M. Kamionkowski, Spintessence! New models

for dark matter and dark energy, Physics Letters B 545 (2002) 17–22.

arXiv:astro-ph/0105318, doi:10.1016/S0370-2693(02)02590-X.

[312] E. Silverstein, A. Westphal, Monodromy in the CMB: Gravity waves and

string inflation, Phys. Rev. D78 (10) (2008) 106003. arXiv:0803.3085,

doi:10.1103/PhysRevD.78.106003.

[313] L. McAllister, E. Silverstein, A. Westphal, Gravity waves and linear

inflation from axion monodromy, Phys. Rev. D82 (4) (2010) 046003.

arXiv:0808.0706, doi:10.1103/PhysRevD.82.046003.

[314] G. Gur-Ari, Brane inflation and moduli stabilization on twisted tori,

Journal of High Energy Physics 1 (2014) 179. arXiv:1310.6787, doi:

10.1007/JHEP01(2014)179.

197



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[315] D. Andriot, A no-go theorem for monodromy inflation, ArXiv e-

printsarXiv:1510.02005.

[316] R. Flauger, L. McAllister, E. Pajer, A. Westphal, G. Xu, Oscillations

in the CMB from axion monodromy inflation, JCAP6 (2010) 9. arXiv:

0907.2916, doi:10.1088/1475-7516/2010/06/009.

[317] P. D. Meerburg, D. N. Spergel, B. D. Wandelt, Searching for oscillations

in the primordial power spectrum. I. Perturbative approach, Phys. Rev.

D89 (6) (2014) 063536. arXiv:1308.3704, doi:10.1103/PhysRevD.89.

063536.

[318] P. D. Meerburg, D. N. Spergel, B. D. Wandelt, Searching for oscillations

in the primordial power spectrum. II. Constraints from Planck data, Phys.

Rev. D89 (6) (2014) 063537. arXiv:1308.3705, doi:10.1103/PhysRevD.

89.063537.

[319] R. Penrose, Gravitational Collapse: the Role of General Relativity, Nuovo

Cimento Rivista Serie 1 (1969) 252.

[320] R. Brito, V. Cardoso, P. Pani (Eds.), Superradiance, Vol. 906 of Lecture

Notes in Physics, Berlin Springer Verlag, 2015. arXiv:1501.06570.

[321] W. H. Press, S. A. Teukolsky, Floating Orbits, Superradiant Scatter-

ing and the Black-hole Bomb, Nature238 (1972) 211–212. doi:10.1038/

238211a0.

[322] W. H. Press, S. A. Teukolsky, Perturbations of a Rotating Black Hole.

II. Dynamical Stability of the Kerr Metric, ApJ185 (1973) 649–674. doi:

10.1086/152445.

[323] A. Arvanitaki, S. Dubovsky, Exploring the string axiverse with precision

black hole physics, Phys. Rev. D83 (4) (2011) 044026. arXiv:1004.3558,

doi:10.1103/PhysRevD.83.044026.

198



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[324] P. Pani, V. Cardoso, L. Gualtieri, E. Berti, A. Ishibashi, Black-Hole

Bombs and Photon-Mass Bounds, Phys. Rev. Lett.109 (13) (2012) 131102.

arXiv:1209.0465, doi:10.1103/PhysRevLett.109.131102.

[325] R. Brito, V. Cardoso, P. Pani, Black holes as particle detectors: evo-

lution of superradiant instabilities, Classical and Quantum Gravity

32 (13) (2015) 134001. arXiv:1411.0686, doi:10.1088/0264-9381/32/

13/134001.

[326] G. M. Harry, LIGO Scientific Collaboration, Advanced LIGO: the next

generation of gravitational wave detectors, Classical and Quantum Grav-

ity 27 (8) (2010) 084006. doi:10.1088/0264-9381/27/8/084006.

[327] P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binétruy, E. Berti, A. Bohé,
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