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Abstract—The efficient and highly accurate channel state in-
formation (CSI) at the base station is essential to achieve the
potential benefits of massive multiple input multiple output
(MIMO) orthogonal frequency division multiplexing (OFDM)
systems, due to limitations of the pilot contamination problem. It
has recently been shown that compressed sensing (CS) techniques
can address the pilot contamination problem, however, the CS-
based channel estimation requires prior knowledge of channel
sparsity. To solve this problem, in this paper, an efficient channel
estimation approach based on Bayesian compressed sensing (BCS)
that based on prior knowledge of statistical information about the
channel sparsity is therefore proposed for the uplink of multi-user
massive MIMO systems. Simulation results show that the proposed
method can reconstruct the original channel coefficient effectively
when compared to conventional based channel estimation.

Index Terms—Massive MIMO, Bayesian Compressed Sensing
(BCS), Channel Estimation, Pilot Contamination.

I. INTRODUCTION

MASSIVE MIMO is a promising technique to achieve 5th
generation targets of peak data rates up to 10Gbit/s [1],

and can be defined as a system using a large number of antennas
at the base station, which enables the systems capacity to serve
a large number of users [2].

When comparing massive MIMO to the conventional MIMO
systems, massive MIMO show several advantageous aspects.
Firstly, as the number of the antennas at the base station goes to
high values, the simplest coherent combiner and linear precoder
turn out to be optimal. Secondly, by exploiting the features
of the channel reciprocity, additional antennas increase the
network capacity significantly without the need for additional
feedback overhead. Thirdly, enabling the power reduction in
the uplink and in the downlink can provide the potential for
small-cell size shrinking [3].

The major limiting factor in massive MIMO is the availabil-
ity of accurate, instantaneous channel state information (CSI)
at the base station, regardless of whether the CSI is used for the
uplink detection process or for the downlink precoding process.
The CSI is typically acquired by transmitting predefined pilot
signals and estimating the channel coefficients from the re-
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ceived signals by applying an appropriate estimation algorithm
[1]-[3].

The channel estimation accuracy depends on having perfect
orthogonal pilots allocated to the users; however, to achieve a
high spectral efficiency, the same carrier frequency is to be used
in the neighbouring cells by following a specific reuse pattern.
This leads to the creation of a spatially correlated inter-cell
interference, known as pilot contamination, which reduces the
estimation performance and spectral efficiency [1]-[3].

The pilot contamination problem was analyzed in [4] and
it has shown that the precoding downlink signal of the base
station in the serving cell contaminated the received signal of
the users roaming in other cells. The authors of [5] analyzed
the pilot contamination problems in multi-cell massive MIMO
systems relying on a large antennas at the base station, and
demonstrated that the pilot contamination problem persisted in
large-scale MIMO [6].

Compressed sensing (CS) is an advanced theory that has
important applications in many areas of engineering. Using
CS, sparse or compressible signals can be recovered from
incoherent measurements with far fewer samples than possible
via the conventional Nyquist rate. CS has found its charm in the
communications field, and the premise here is that CS allows
for accurate system parameter estimation with less training,
resulting in addressing the pilot contamination problem and
improving the bandwidth efficiency [7]. However, the classical
CS algorithms require prior knowledge of channel sparsity
which is usually unknown in practical scenarios.

To make the CS-based channel estimation more practical
for massive MIMO systems, in this paper, we propose an
improved channel estimation scheme based on the theory of
BCS (Bayesian compressed sensing) that introduces relevance
vector machines (RVM) and statistical Learning Information
(SLI) into standard CS, whereby a priori information regarding
the channel sparsity can be exploited for more reliable channel
recovery [8]-[10].

The goal of this paper is to mitigate the pilot contamination
problem through practical usage of CS theory using BCS algo-
rithm. Compared to the classical based scheme, the simulation
results indicate that the proposed channel estimation method
provides an improved estimation accuracy and can address the



Fig. 1. Illustration of the system model of a multi-cell multi-user massive
MIMO that consists of 19 cells; each cell contains eight UEs that are equally
spaced on a circle with a radius of 100 m [5].

pilot contamination problem.
The remainder of this paper is organized as follows. The

multi-cell massive MIMO system model is presented in Section
II. The BSC-based channel estimation details are addressed in
Section III, and the final conclusions are drawn in Section V.

The following notation is adopted throughout the letter: for
any matrix A, Ai,j denotes the (i,j)th element, the superscripts
(.)H and (.)−1 denote the conjugate transpose and the inverse
operation, respectively,(.)H is the conjugate transpose and I
denotes a diagonal matrix. The Frobenius and spectral norms
of a matrix x are denoted by ‖x‖F and ‖x‖2 respectively.E{.}
has been employed to denote expectation with regard to all
random variables within the brackets. A Gaussian stochastic
variable o is the denoted by o ∼ CN(r, q), where r is
the mean and q is the variance. Also, a random vector x
having the prober complex Gaussian distribution of mean µ
and covariance Σ is indicated by x ∼ N(x;µ,Σ), where,
N(x;µ,Σ) = 1

det(πΣ)e
−(x−µ)Σ−1(x−µ), for simplicity we

refer to N(x;µ,Σ) as x ∼ N(µ,Σ).

II. MASSIVE MIMO SYSTEM MODEL

Following the system model of [11] and [6] with modifica-
tion, we consider a multi-cell massive MIMO-OFDM system
with C cells. Each cell is comprised of M antennas at the base
station and N single antenna users spaced equally on a circle
with a radius of 100 m. The system applies a time division
duplex (TDD) mode to exploit channel reciprocity, as shown
in Fig.1. The uplink channel is used for the pilot-based channel
estimation, and the received signal at the base station in cell
c∗ can be mathematically modelled as

yc∗ = xc∗Fhc∗,c∗ +

C∑
c=1,c 6=c∗

xcFhc∗,c + n (1)

where xc∗ ∈ CK×M consists of the pilot signal that is used
for channel estimation sent by the users to the base station at

the cell under study c∗, xc ∈ CK×M consists of the pilot signal
received at the base station at c∗ from the other C cells, K is
the number of the subcarrier, F ∈ CL×K represents the matrix
consisting the Discrete Fourier Transform (DFT) matrix and
can easily given by 1√

K
∗ [0, e−j2π∗k/K , ..., e−j2π∗k(L−1)/K ],

the L length of the number of the path, the term hc∗,c∗

is the channel impulse response (CIR) between users and
the base station at cell under study c∗ given by hc∗,c∗ =
[hc∗,c∗(1),hc∗,c∗(2)...hc∗,c∗(L)], while the term hc∗,c is
the (CIR) between users from the other C cells and base
station at the c∗. The channel coefficient is modelled as
hc∗,c∗ =

√
βc∗,c∗gc∗,c∗ , where βc∗,c∗ model the path-loss

and shadowing (large-scale fading) that are assumed to be
known at the base station, while the term gc∗,c∗ are assumed
to be independently identically distribution(i.i.d) (small-scale
fading). The term n ∈ CK×1 is an ergodic process that
consists of independent receiver noise n ∼ CN(0, σ2

noiseI).
We defined the variance interference as σ2

interf caused during
pilot transmission, we define the overall covariance matrix
given as σ = σ2

noise + σ2
interf , and the average power is

PUE = {|xc∗ |2}.

III. CHANNEL ESTIMATION BASED ON BCS VIA AN
RVM ALGORITHM

In this section, an RVM algorithm is presented in the context
of massive MIMO channel estimation. The channel response in
massive MIMO can be considered to be sparse, since it depends
on a few dominant taps. Based on Bayes’ rule, the full posterior
distribution over unknown areas of interest for the problem at
hand can be given as

P (h|y, β, σ2) =
P (y|h, σ2)P (h|β)

P (y|β, σ2)
∼ N(µ,Σ) (2)

where β represents the hyperparameters that control the
inverse variance of each channel coefficient, where the mean µ
and the covariance Σ are given by

µ = βΣxpfy (3)

Σ = (A+ βxp
Hxpf

Hf)−1 (4)

where A = diag(β0, β1, β2, ..., βN ).
Based on the assumption of the RVM approach in [12]-[14]

the term P (h|β) follows zero- mean Gaussian distribution and
can be expressed as

P (h|β) =

N∏
i=1

(hi|0, β−1
i ) = (2π)

−N
2

N∏
i=1

β
1
2
i exp[

−1

2
hT βih]

(5)

= (2π)
−N
2

N∏
i=1

β
1
2
i exp[

−1

2
hT βih] (6)



Based on the structured model of BCS in [12], β follows
gamma distribution Γ with the shape parameter α and scale
parameter a and b, that is

P (h|a, b) =

N∏
i=1

N(ωl|0, α−1
l ), (7)

and the conditional distribution of h can be expressed as

P (h|a, b) =

N∏
i=1

∞∫
0

N(hi|0, α−1
i ).Γ(αi|a, b)dαi (8)

where N(hi|0, α−1
i ) represents the likelihood function

To compute the full distribution approximately, the term of
the marginal likelihood P (h|β, σ2) needs to be approximated
using a type−II maximum likelihood procedure by integrating
over the channel coefficients h as

P (h|β, σ2) =

∞∫
−∞

P (y|h, σ2)P (h|β)dh (9)

According to the probability theory, the Gaussian likelihood
function of y can be written as

P (y|h, σ2) = (
2π

β
)

−N
2 exp(

−β
2
||y − xpfh||22) (10)

By substituting (6) and (10) into (9), marginal likelihood
P (h|β, σ2) can be expressed as

P (h|β, σ2) =(
β

2π
)

N
2 (

1

2π
)

N
2

N∏
i=1

β
1
2
i

∞∫
−∞

exp(
−β
2
||y − xpfh||22)

+
1

2
hT βih) (11)

assuming

E(h) =
β

2
||y − xpfh||22) +

1

2
hHβih (12)

E(h) =
1

2
(βyHy−2βyHxpfh+βxHp f

HhHxpfh+hHβh)

using Σ = (A+ βxHp xpf
Hf)−1 and I = Σ−1Σ

E(h) =
1

2
(βyHy − 2βyHxpfhΣ−1Σ + hHhΣ−1) (13)

substituting (3) into (14) yield

E(h) =
1

2
(βyHy−µHµΣ−1)+

1

2
(h−µ)HΣ−1(h−µ) (14)

the integration can then be given as
∞∫
−∞

exp(−E(h))dh =exp[−(
1

2
(βyHy − µHµΣ−1)]

∗ (2π)
N
2 |Σ| 12 (15)

Thus, the marginal likelihood can be given as

P (h|β, σ2) =(
β

2π
)

N
2 (

1

2π
)

N
2

N∏
i=1

β
1
2
i

∞∫
−∞

exp(βyHy − µHµΣ−1)

∗ (2π)
N
2 |Σ| 12 (16)

Then, µ and Σ (which are the mean and the variance
estimation of the original channel coefficient, respectively.To
get the estimation of the original signal, β and σ2 should be
estimated iteratively until the convergence criteria has been
satisfied.

Algorithm 1: Relevance Vector Machine
INPUTS:
1) Pilot Signal xp
2) Observation Matrix φ = f
OUTPUTS: σ, β
Initial Configuration:
1: Select a suitable value for convergence δ.
2: Select a start value for σ2 and β
3: repeat
4:Update βi = I−βiΣii

µ2
i

and σ2
i = (N−I+ΣiAi)

||y−xpfh||22
5: Until δ < Σi=1σ

2n+1
i − σ2n

i

OUTPUTS:Obtain βi and σ2
i

Algorithm 2: Bayesian Channel Estimator
INPUTS: xc,y∗

c

Initial Configuration:
1: Select a suitable value for RVM as step 1-2 in
Algorithm 1.

3: repeat
4: RVM Algorithm: Generate P (h|β, σ2) using steps 4-6
in Algorithm 1.

5: Until δ < Σi=1σ
2n+1
i − σ2n

i

6: Compute µ = βΣxpfy
7: Compute Σ = (A+ βxp

Hxpf
Hf)−1

8: Bayes’ Rule: Generate P (h|y, β, σ2) ∼ N(µ,Σ)
9: Compute ĥ = E(P (h|y, β, σ2))
OUTPUTS: Return the Estimated Channel ĥ

β can be obtained by differentiating the log marginal likeli-
hood with regard to β and α, and equating it to zero as follows

∂

∂βi
lnP (y|β, σ2) =

1

2βi
− 1

2
Σi −

1

2
m2
i = 0

βi =
I − βiΣii

µ2
i

(17)



While σ.2 is obtained by differentiate (17) with regard to β
and set these derivations to zero

∂

∂βi
lnP (y|β, σ2) = 1

2 (Nβ − ||y − xpfh||
2
2)

−tr(ΣxHp fHhHxpfh) = 0

The argument of the tr(.) can be simplified

ΣxHp f
HhHxpfh =ΣxHp f

HhHxpfh+ β−1ΣA

−β−1ΣA = (I − ΣA)β−1

then,

σ2
i =

(N − I + ΣiAi)

||y − xpfh||22
(18)

Then the estimated channel based on Bayesian estimation
approaches to minimize the mean square error (MSE) can be
given as [15]

ĥ = E(P (h|y, β, σ2)) (19)

Further details of the BCS algorithm can be found in [12]-
[14].

IV. NUMERICAL RESULTS

To verify the accuracy of our analytical results, the simu-
lation parameters can be summarized as follows: the number
of antennas is 100, the number of users is 10, the number
of the paths is 10 and the number of subcarrier K is 100.
The simulation results are obtained by averaging over 1000
realizations.

Fig. 2. MSE performance comparison between BSC and LS versus SNR.

To compare the accuracy of the channel estimation tech-
niques, the normalized (MSE) is used for performance eval-
uation and is computed as

Fig. 3. MSE of BSC for different values of the number of antennas at the
base station versus SNR.

Fig. 4. MSE of BSC for different values of the number of subcarrier

MSE =
1

M ∗N

M∗N∑
i=1

||ĥ− h||22
||h||

(20)

Fig. 2 shows the MSE performance comparison between a
BCS-based channel estimation of three scenarios of small pilot
contamination (βc∗,c∗ = 1 and βc∗,c = 0.1), strong pilot
contamination (βc∗,c∗ = 1 and βc∗,c = 0.5), very strong
pilot contamination (βc∗,c∗ = 1 and βc∗,c = 0.9) and a
regularized least square (RLS)-based estimator with no pilot
contamination as a benchmark. The results have shown signif-
icant improvement of estimation accuracy and addressing the
pilot contamination problem for SNR values of -40dB to 100
dB, furthermore, the results still shown enhanced estimation
performance for high SNR.



Fig. 3 demonstrates the MSE of the BSC-based channel
estimation versus SNR for three scenario of different setting to
the number of antennas at the base station (which is the number
of measurements of CS) of 100, 150 and 200, (βc∗,c∗ = 1 and
βc∗,c = 0.1), it can be seen that the estimation accuracy of the
proposed algorithm is enhanced by increasing the number of
the number of measurements.

Fig. 4. shows the (MSE) performance versus SNR with dif-
ferent value of setting to the number of subcarrier (K=100,200
and 300), (βc∗,c∗ = 1 and βc∗,c = 0.1), the results prove that
the estimation accuracy is performed better with low values of
the number of subcarrier.

V. CONCLUSION

In this paper, we proposed a BCS-based channel estima-
tion algorithm for multi-cell multi-user massive MIMO. The
simulation results has revealed that the BCS-based channel
estimation algorithm has tremendous improvement over the
conventional-based channel estimation algorithms and can ad-
dress the pilot contamination problem. In addition, the number
of measurements should be selected wisely to achieve the
optimum estimation accuracy.
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