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Abstract 

The submucosal glands (SMGs) of the respiratory system are specialized structures 

essential for maintaining airway homeostasis. The significance of SMGs is 

highlighted by their involvement in respiratory diseases such as cystic fibrosis, 

asthma and chronic bronchitis, where their phenotype and function are severely 

altered. Uncovering the normal development of the airway SMGs is essential to 

elucidate their role in these disorders, however, very little is known about the cellular 

mechanisms and intracellular signals involved in their morphogenesis. This review 

describes in detail the embryonic developmental journey of the nasal SMGs and the 

postnatal development of the tracheal SMGs in the mouse. We also review the current 

knowledge of the genes involved in SMG organogenesis, in the hope of stimulating 

further research into the mechanisms required for successful SMG patterning and 

function.  
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Introduction 

Airway mucus plays a vital role in maintaining respiratory homeostasis as it provides 

the first line of defence against airborne irritants in the nasal cavity, and is essential in 

the mucociliary process, ensuring no foreign particles reach the lungs. Not only does 

its thick consistency trap foreign particles; its protein constitution additionally 

contains bactericidal enzymes, reducing the risk of infection. In humans, 5% of the 

respiratory mucus is secreted by goblet cells, which are simple columnar cells found 

scattered within the respiratory epithelium (RE) (Reid, 1960). The nucleus of these 

cells is found basally, while the apex of the cell is rich in mucin secretory granules 

(Freeman, 1962). The remaining 95% of the mucus secretion is released by the nasal 

and tracheal submucosal glands (SMGs) that lie in the underlying submucosal layer 

beneath the RE (Reid, 1960).  

The importance of understanding SMG development and function is increasingly 

emphasised as more and more evidence shows their involvement in an array of severe 

and life threatening respiratory diseases, with SMG hyperplasia and mucus hyper-

secretion common to most (Aikawa et al., 1992; Oppenheimer & Esterly, 1975; Reid, 

1960). The most common hyper-secretory diseases in which SMGs play a role are 

cystic fibrosis (CF), asthma and chronic bronchitis. One of the earliest steps in CF 

pathophysiology is the occlusion and dilation of SMG ducts, evident in third trimester 

neonates with CF (Ornoy et al., 1987). Infants of CF then show early onset of 

hyperplasia and hypertrophy of SMGs (Oppenheimer & Esterly, 1975; Sturgess & 

Imrie, 1982). Cystic fibrosis Transmembrane conductance regulator (CFTR), the 

defected gene in patients suffering from cystic fibrosis (CF), is primarily expressed in 

the serous cells and some of the ductal cells of the SMGs (Engelhardt et al., 1992).  

While this suggests a functional defect in the glands of CF patients, defects in the 

developmental patterning of the SMGs in a CF mouse model have also been reported, 

suggesting an additional role during gland initiation (Borthwick et al., 1999).  

Hyperplasia of the bronchial SMGs is a well defined feature of asthma airways with 

gland:bronchial wall area ratio being significantly increased in both chronic asthma 

sufferers and those that die of sudden attack, compared to control patients (Aikawa et 

al., 1992; Rogers, 2004). In sufferers of chronic bronchitis, the bronchial SMGs are 

hypertrophic, displaying mucus hyper-secretion and an increase in mucous cells 

compared to serous cell counterparts (Reid, 1960; Rogers, 2008). 
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Considering the critical involvement of SMGs in the above respiratory conditions, 

little is known about the developmental and homeostatic mechanisms of the 

respiratory glands. To understand disease states, it is first important to have a good 

understanding of normal SMG development and the signalling factors, modulators 

and pathways involved in gland morphogenesis. 

Temporal Localisation of the SMGs 
The SMGs are hidden in the submucosal connective tissue running along the 

conductive airways of the respiratory system. Nasal SMGs are organised into various 

groups with names according to their location in the medial and lateral nasal cavity 

walls (Cuschieri & Bannister, 1974; Grüneberg, 1971), while in the trachea, SMGs lie 

in the submucosal layer between the cartilage rings and smooth muscle (Finkbeiner, 

1999). In the mouse, SMGS are found in the upper trachea with the highest volume of 

tracheal glands found at the anterior boundary between the cricoid cartilage (CC) of 

the larynx and the first tracheal cartilage ring (C1) and extending no further than the 

sixth cartilaginous ring (C6) (Borthwick et al., 1999; Rawlins & Hogan, 2005). In 

humans these glands are also found at higher density in the anterior trachea, but are 

known to spread entirely through the tracheal tube all the way down to the 

submucosal layer of the bronchi (Borthwick et al., 1999; Sturgess & Imrie, 1982). In 

the mouse, nasal SMGs begin to develop on embryonic day (E) 12.5 with the 

appearance of the first lateral nasal gland (or Steno’s gland) in the form of a single 

tube. The remaining subgroups of nasal SMGs then start to initiate, from different 

locations of the medial and lateral walls (Grüneberg, 1971). The tracheal SMGs 

appear postnatally as initial gland buds that then undergo morphogenesis with all 

tracheal SMGs initiated by postnatal day P21 (Borthwick et al., 1999; Rawlins & 

Hogan, 2005). 

Cellular Composition of the SMGs 
The SMGs boast a typical tree-like structure common to all branched organs such as 

the mammalian lungs, kidney, mammary glands, lacrimal glands and salivary glands. 

Research has shown that tracheobronchial SMGs in humans consist of three distinct 

domains in relation to the overlying RE: (A) the secretory region of the distal gland, 

(B) the medial collecting region and (C) the proximal ciliated duct (Meyrick et al., 

1969; Wine & Joo, 2004) (Figure 1). The secretory region is made up of two main 
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secretory cell types: serous cells and mucous cells. Glandular acini, “acinus” meaning 

“berry” in Latin, describes the cluster of serous secretory cells found at the distal 

gland that surrounds a central lumen (Meyrick & Reid, 1970) (Figure 1). In the 

trachea, the distal serous cells make up 61% of the overall secretory cell volume, 

forming a liquid rich in bactericidal enzymes, making it the primary defensive cell of 

the airway mucosa (Basbaum et al., 1990). Serous cells produce a watery solution 

primarily made up of proteoglycans and bactericidal proteins such as lactoferrin and 

lysozyme and some mucins (MUC2, MUC7) (Finkbeiner, 1999; Klockars & Reitamo, 

1975; Masson et al., 1966). Serous tubules then lead into more proximal mucous 

tubules with mucous cells making up 39% of the remaining secretory gland volume 

(Basbaum et al., 1990) (Figure 1). Mucous cells produce a thick gel containing 

mucins MUC2 and MUC5 and antimicrobial peptide cathelicidin (Finkbeiner, 1999). 

The protein consistency of mucus provides ideal lubrication and acts as a chemical 

barrier to the exposed epithelium. The serum and mucus secreted by these specialized 

cells accumulates in a non-ciliated collecting duct and is then passed through a 

ciliated duct into the airway lumen (Figure 1). It is generally believed that mucus is 

expelled into the airway through the movement of the cilia within the ducts, however 

no concrete evidence indicates this is the case and it is suggested that the fluid is 

rather moved through a means of bulk flow (Ballard & Spadafora, 2007). Once 

secreted into the airway, mucus is swept away from the lungs to the pharynx by 

respiratory epithelial cilia movement where it is either swallowed and ingested, or is 

removed from the body by sneezing or coughing. 

 
The Nasal SMGs and Their Secretions 
The nose is one of the initial entry points of inhaled air into the respiratory system. 

Therefore, the epithelial lining cells of the upper respiratory tract are exposed to the 

highest concentrations of inhaled toxins and debris. It is the anterior nasal SMGs, 

along with the goblet cells of the RE that provide the first line of defence within the 

airway. The function of these respiratory glands is to secrete mucus into the nasal 

cavity where it traps airborne pathogens within inspired air, preventing them from 

progressing to the lower airway tubes and lungs. These mucous secretions also play 

an important role in warming and humidifying air, preventing the drying out of the 

delicate respiratory tissue. The nose is the principal organ for sense of smell, and it is 

also believed that the mucus produced by the nasal SMGs dissolves odorant 
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molecules to help them be picked up by olfactory receptors (Getchell & Getchell, 

1992). Unlike humans, mice are obligate nasal breathers, therefore the nose and nasal 

environment of these animals are critical in maintaining respiratory health and 

homeostasis. For that reason, they provide an ideal model to study respiratory nasal 

gland development and function. 

The Nose 
In order to understand the developmental locations and progressions of the anterior 

nasal glands, the structure of the nose must be understood. In humans and rodents, the 

nose can be divided into three main areas known as the vestibule, the respiratory 

region and the olfactory region (Figure 2). The nasal vestibule is the opening site of 

the nose and is lined with a stratified squamous epithelium. Moving into the nasal 

cavity a transition into a RE occurs (Figure 2). Gross et al. (1982) showed that in mice 

the RE accounts for 47.5% and 45% of the total surface area of the nasal cavity in 7 

week and 16 week old mice respectively. The periphery of the RE stops suddenly and 

the epithelium becomes olfactory in nature. In the same study the olfactory epithelium 

(OE) accounted for 45% and 47% of the nasal surface area in 7 week and 16 week old 

mice respectively (Gross et al., 1982). The primary function of the RE is to moisten 

and protect the cavity while the OE houses an enrichment of olfactory receptor 

neurons, required for the sense of smell (Popp & Martin, 1984; Purves et al., 2004). 

The RE and OE are supplied with mucosal secretions by goblet cells and the 

respiratory SMGs, and the Bowman’s glands respectively (Bojsen-Moller, 1964; 

Frisch, 1967). 

 

To appreciate the morphology of the nasal cavity, the capsule can be divided into the 

medial and lateral walls (Figure 2, B and C). The medial wall of the cavity is a simple 

plane of tissue that covers either side of the cartilaginous nasal septum (Figure 2, C). 

Shelves of bone known as conchae or turbinates curve the lateral wall of the cavity 

(Figure 2, B and C). The most anterior shelf is referred to as the superior concha, the 

middle shelf as the medial concha while the lower shelf is called the inferior concha 

(Figure 2, B and C). By protruding from the lateral wall, these conchae create 

channels within the nasal chamber over which air can flow. These channels are 

known as meatuses and adopt the same name as their overlying concha (Figure 2, B 

and C). Additionally, there are four pairs of connected air filled cavities found in the 
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nose, known as the paranasal sinuses (Figure 2, C). The lining of these spaces is 

continuous with the nasal RE and OE and secretions are drained directly or indirectly 

into the nose (Figure 2, C, black dotted line).  The maxillary sinus is the largest of the 

sinuses and is located lateral to the main nasal chamber (Figure 2, C). The frontal 

sinuses are the second largest of the group and are found above the eyes, and between 

the eyes lie the ethmoidal sinuses (Figure 2, C). A fourth pair of sphenoid sinuses is 

found behind the eyes and nasal cavity. The function of the paranasal sinuses is 

disputable however it is believed they decrease the weight of the skull as well as 

warming and humidifying inspired air with their mucosal secretions. In contrast to 

humans, mice have been reported to have only anterior and posterior ethmoidal 

sinuses, a true maxillary sinus, a secondary maxillary sinus, as well as observable 

sphenoid sinuses (Jacob & Chole, 2006). SMGs are only found to drain into the true 

maxillary sinus in mice (Jacob & Chole, 2006), and unlike humans, this cavity is not 

completely closed off by the maxillary bones (Phillips et al., 2009). Despite these 

anatomical differences however, the rodent maxillary sinus provides a useful tool in 

investigating sinus SMG development and function. 

Morphology and Development of the Anterior Nasal SMGs 
In the mid-twentieth century, researchers analysed and delineated anterior nasal SMG 

topography and physiology (Bojsen-Moller, 1964; Brunner, 1942), however modern 

investigation of these respiratory glands is severely lacking. It has been referenced in 

the literature that Broman (1921) first described the topography of the anterior nasal 

glands and created plastic reconstructions of the glands and ducts of rodents (Bojsen-

Moller, 1964; Grüneberg, 1971). According to the manuscripts published in the mid-

twentieth century, it was Broman (1921) who categorised and named the nasal glands 

into different groups based on their location and timing of when they first arose 

(Bojsen-Moller, 1964; Grüneberg, 1971). Although mentioned and reviewed in these 

early anatomical studies, the work of Broman has been described as “lost in recent 

literature” (Bojsen-Moller, 1964). Despite this, his primary names and descriptions of 

the glands have continued throughout the years and his work undoubtedly provided 

the backbone of future research on anterior respiratory gland development. While 

previous studies have named and described the temporal location of the glands in 

mice, and other mammals (Brunner 1942; Bojsen-Moller 1967; Moe & Bojsen-Moller 

1971; Bojsen-Moller 1964), these manuscripts fail to give descriptive explanations 
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and illustrative aids to help the researcher locate and differentiate all groups of glands. 

The aim of this review was to thoroughly investigate and describe the patterning of 

the anterior nasal glands and the tracheal SMGs in a mouse model, in the hope of 

clarifying the development and arrangement of the glands and encourage future 

research into their cellular and molecular behaviours. 

Lateral Nasal Gland 1 or the Steno’s Gland 
The lateral nasal gland 1, more commonly called the Steno’s Gland, is the largest of 

the nasal glands (Grüneberg, 1971). The gland is located beneath the wall of the 

maxillary sinus and releases its product into an extremely long excretory duct, which 

opens into the nasal cavity near the nasal vestibule. The Steno’s gland, analogous to 

the anterior nasal gland in humans, is classified in some animals as solely serous in 

nature however in others it is seromucous (Moe & Bojsen-Moller, 1971; Bojsen-

Moller, 1967). In dogs the Steno’s gland is considered to play a principal role in 

thermoregulation while in marine birds it is primarily a salt gland (Butler, 2002; 

Wells & Widdicombe, 1986). Studies in rodents have elucidated that its secretion 

contains bactericidal proteins indicating an essential role in airway protection (Moe & 

Bojsen-Moller, 1971).  

Between E12.0 and E12.5 the Steno’s duct buds from the anterior respiratory 

epithelium (REA) on the septal side at the nasal vestibule (Figure 3, A-D). The 

budding of the duct occurs as the pseudostratified REA dips inwards and invaginates 

into the underlying mesenchyme (Figure 3, A-D). As the bud arises, an indentation in 

the REA is formed (Figure 3, C-D). At E13.5 duct elongation proceeds over the 

superior nasal meatus and distally extends through the mesenchyme of the middle 

concha (Figure 3, E-H). The REA indentation continues as the Steno’s duct lumen, 

simultaneously with the growing duct. This was described by Grüneberg (1971) 

however no histological or illustrative description was provided. A day later at E14.5, 

the distal tip of the duct has reached the mesenchyme below the RE of the maxillary 

sinus cavity (Figure 3, I-L). At this location, duct elongation ceases and the Steno’s 

gland begins to branch distally over the next 24 hours (Figure 3, J - red brackets). At 

E15.5, the extending gland branches and end buds are apparent (Figure 3, M-N). 

Branching of the Steno’s gland continues over the next few days of embryonic 

development. The first sign of acinar cell differentiation is observed at E16.5 by 

Alcian Blue stained mucus within acini. Continual branching proceeds at E17.5, when 
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the gland expands (Figure 3. O-P). At this stage the majority of acinar cells are 

producing mucus as indicated by Alcian Blue staining in the gland (Figure 3, O-P). 

 
The Lateral Nasal Glands 

The lateral nasal glands (LNGs) are found throughout the lateral wall of the nasal 

chamber. Similar to the Steno’s gland they have long ducts that open into the airway 

lumen close to the nasal vestibule, however, these glands are found within the 

submucosa of the lateral wall at more caudal locations. Up to 40 lateral nasal glands 

have been described in rabbits while approximately 20 have been reported in adult 

mice (Bojsen-Moller, 1964; Broman, 1921), however, it is unclear in this report how 

the glands were counted. From our studies, we observe five LNGs (Steno’s gland and 

LNG2-5), which bud and elongate during embryonic murine development. This 

suggests that either additional LNGs initiate postnatally, or that the large number of 

glands previously described in adults represent branches associated with the same 

gland. All of these LNGs bud from the posterior respiratory epithelium (REP) that 

covers a lip of tissue that protrudes from the rostral end of the middle concha (Figure 

4). LNG2 is the first to undergo bud initiation between E13.5 and E14.0 from the REP 

at the nasal vestibule closest to the nares (Figure 4 and Figure 5, B-D). Unlike the 

Steno’s gland duct, which dips into the underlying mesenchyme forming a dent in the 

REA, the budding of LNG2, and all the other LNGs, involves the invagination of a 

solid swelling of cells from the REP into the mesenchyme. At E14.5, LNG2 caudally 

extends as a solid cord of cells through the mesenchyme of the middle concha (Figure 

5, F-H). At this stage LNG3 is observed to be at the late bud stage, having extended 

slightly from the REP at a location anterior to the distal tip of the extending LNG2 

duct, and lies just beneath the opening of the Steno’s duct into the airway lumen 

through the REA (Figure 4 and Figure 5, F-H). Additionally at E14.5, LNG4 and 

LNG5 are observed budding from the REP covering the most rostral side of the 

middle concha lip, and caudal to the distal end of the LNG2 duct respectively (Figure 

5, F-J).  

By E15.5, the duct of LNG2 reaches its final destination beneath the maxillary sinus, 

above the branching Steno’s gland (Figure 5, K-M). The duct of LNG3 elongates 

parallel to that of LNG2, with its distal tip found rostral to the end of the arrested 

LNG2 duct (Figure 5, K-M). LNG4 elongates posteriorly through the middle concha 
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and its distal tip emerges in the mesenchyme below the enclosing cartilage of the 

nasal capsule (Figure 5, N-O). This suggests that LNG4, although structurally similar 

to the other LNGs, could be following a different molecular signal that attracts its 

elongating gland duct in a posterior direction, compared to a caudal attractant guiding 

the other LNGs. Regardless of this difference in spatial-temporal development, all the 

LNGs appeared to follow the same pattern of cavitation and branching 

morphogenesis. The LNG5 duct elongates caudally through the middle concha and 

arrests rostral to the ends of LNG2 and LNG3 (Figure 5, K).  

By E16.5, LNG2 has branched distally above the Steno’s gland, showing the 

formation of end buds (Figure 6, A-B). The beginning of lumen formation within the 

acini of LNG2 is apparent at this stage (Figure 6, B – white arrows). No mucus 

production is evident in acinar cells of LNG2 at this stage. The distal tip of LNG3 

duct has reached the caudal end of the middle concha, where it was found lying 

rostral to the branching LNG2 (Figure 6, A-B). LNG3 has begun branching 

morphogenesis as the first signs of end buds are observed (Figure 6, B – green 

arrows). LNG4 is at a similar stage of development with the formation of end buds 

noted at its distal end below the nasal cartilage capsule (Figure 6, E-F). The duct of 

LNG5 has elongated through the middle concha beneath the RE, parallel to the ducts 

of LNG2 and LNG3, where it begins branching over the next 24 hours (Figure 6, I-J).  

By E17.5, LNG2 has undergone extensive branching and cells have arranged into 

distinct acini (Figure 6, C-D). The distal gland of LNG3 has also undergone similar 

branching and clear lumens are identified within acini (Figure 6, C-D). No mucus 

staining by Alcian Blue is evident at E17.5 in both the LNG2 and LNG3. LNG4 has 

formed numerous branches and terminal end buds and cavitation has begun within 

acini (Figure 6, G-H). LNG5 has begun to form distal epithelial gland buds and lumen 

formation has progressed from the duct to acini (Figure 6, K-L) 

 
The Medial Nasal Glands 

The medial nasal glands (MNGs) are found within the submucosa of the medial wall 

on either side of the septum. Their long ducts open at rostral locations while their 

glands progress caudally and are seen anterior to the vomeronasal organ in rodents. 

These glands have been previously described in the rat, which can have four to five 

MNGs that project into the septal mesenchyme (Bojsen-Moller, 1964). The MNGs 
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have been reported as having serous acini by light microscopy (Kerjaschki, 1974). 

The rat MNGs do not stain with Periodic-Acid Schiff (PAS) or Alcian Blue staining 

(Bojsen-Moller, 1964). Analysis of the four MNGs of the mouse have also been 

carried out (Broman, 1921; Kerjaschki, 1974). These glands have previously been 

reported to be exclusively made up of serous cells (Bojsen-Moller, 1964; Kerjaschki, 

1974) and in our studies, no Alcian Blue staining is seen within their acini during 

embryonic stages, suggesting these glands are exclusively serous in nature. While all 

the MNGs look similar and undergo comparable developmental strategies, 

investigation into their ultrastructure has delineated distinguishable differences 

between these glands (Kerjaschki, 1974). It has been shown that MNG4, shows 

homologous characteristics to serous salivary glands, with its gland cells having 

common characteristics as serous cells, however MNG1-3 stand alone as their own 

distinct gland type (Kerjaschki, 1974). What differentiates MNG1-3 from the fourth is 

that they possess “light” and “dark” endpiece cells within their glandular acini when 

analysed by electron microscopy (Kerjaschki, 1974). These “light” and “dark” cells 

have been described in the Bowman’s glands of the olfactory epithelium, where 

“light” cells contain electron-dense serous secreting vesicles while the “dark” cells 

contain electron-lucent mucous secreting vesicles (Getchell & Getchell, 1992). These 

compositional differences of these glands may also explain why in this study we see 

MNG1-3 elongate and branch in the same plane and at similar time points, when 

MNG4 arises in the more rostral septum and develops slightly later. While all are 

considered ‘Medial Nasal Glands’, for future studies it is advised to be aware of their 

differences.  

Development of the MNGs is relatively simple to follow as their ducts elongate and 

branch through the clear plane of mesenchymal tissue on either side of the nasal 

septum. All MNGs bud from the RE covering either side of the nasal septum of the 

medial wall and elongate and branch within the mesenchyme of the septum (Figure 7, 

A-L). MNG1 and MNG2 are the first to bud between E14.0 and E14.5. At E14.5 

ducts of these two medial glands have elongated (Figure 7, A-D). By E15.5 these 

ducts have elongated into the central area of the septum while MNG3 has budded and 

elongated to the midline of MNG1 and MNG2 (Figure 7, E-H). Through another 

plane of mesenchyme it is clear that branching of MNG1 begins by E15.5 (Figure 7, 

inset image H). Branching progresses by E16.5 in MNG1 and end bud formation is 
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also underway in MNG2 (Figure 7, I-J). MNG3 elongates adjacent to the ducts of 

MNG1 and MNG2 at E16.5 (Figure 7, I-J) and begins branching over the next 24 

hours. At E17.5, MNG1, 2 and 3 are all branching, with branches and terminal end 

buds all crossing over one another (Figure 7, K-L). MNG4 has also elongated and 

begun its branching at E17.5, indicated by the presence of end buds (Figure 7, K-L). 

The Maxillary Sinus Glands 
The maxillary sinus glands (MSGs) bud and branch from the RE at both the anterior 

and posterior walls of the maxillary sinus. They do not have long gland ducts like the 

other anterior nasal glands but rather branch within the mesenchyme close to the 

epithelium. Research on the MSG in rat found it to be an exclusively serous gland 

(Vidić & Greditzer, 1971) and begins its development at E16 (Vidić, 1971). In the 

mouse, we show that the MSGs undergo a similar method of development as in the 

rat, however, is first seen to bud from the epithelium of the maxillary sinus at 

approximately E15.0. The anterior and posterior sinus glands undergo the same 

developmental patterning so for expediency the development of only the posterior 

MSG will be explained. At E14.5, no evidence of a MSG is observed (Figure 8, A-B) 

however by E15.5 branching of the MSG is apparent close to the RE (Figure 8, C-D). 

At this stage the MSG is observed to invaginate into the mesenchyme with preformed 

lumens within the branching epithelium. Branching of the MSG epithelium continues 

over the next two days of embryonic development with lumens constantly present 

within the end buds (Figure 8, E-H). 

Signalling During Nasal SMG Development 

The Wnt signalling pathway is an evolutionary conserved pathway, critical for 

controlling the development of an organism. Many developmental processes such as 

cell proliferation, migration, polarity and fate determination rely on the regulation of 

Wnt signalling (Komiya & Habas, 2008). Two categories of Wnt transduction 

pathways are known, the canonical Wnt/β-catenin cascade, and the non-canonical 

Wnt/β-catenin-independent cascades, which include the Wnt/Planar Cell Polarity 

pathway and the Wnt/Calcium pathway. The former of these, the canonical Wnt 

signalling pathway, is the most studied and involves the binding of extracellular Wnt 

ligands to transmembrane bound Frizzled receptors and a co-receptor, low-density 

lipoprotein receptor related protein 5 (LRP5) or LRP6. In the absence of Wnt ligand 

binding, cytoplasmic β-catenin is constantly broken down by the Axin complex, 
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consisting of Axin, glycogen synthase kinase 3 (GSK3), casein kinase 1 (CK1) and 

the adenomatous polyposis coli gene product (APC). Together, GSK3 and CK1 

phosphorylate β-catenin, rendering it recognisable to the E3 ubiquitin ligase subunit 

β-Trcp (Davidson et al., 2005; Liu et al., 2002; Zeng et al., 2005). Subsequent 

ubiquitin of β-catenin occurs, followed by its proteosomal degradation (He et al., 

2004). Upon Wnt ligand-receptor binding, the Axin complex is recruited to the cell 

membrane bound receptor complex, preventing the β-catenin inhibitory effects of 

these proteins, and thus β-catenin degradation (He et al., 2004). This permits β-

catenin translocation into the nucleus where it can activate Wnt-responsive genes. The 

most studied nuclear mediators targeted by Wnt signalling belong to the lymphoid 

enhancer factor 1/T-cell factor (LEF-1/TCF) family (Arce et al., 2006; Eastman & 

Grosschedl, 1999). 

 

Wnt signalling negatively regulates branching morphogenesis in other branching 

organs (Dean et al., 2005; Patel et al., 2011). Ex vivo culture of lung, lacrimal and the 

submandibular salivary gland (SMDG) with WNT3A, leads to an inhibition of 

clefting and a reduction in the number of epithelial branches (Dean et al., 2005; Patel 

et al., 2011). Using the Axin2lacz reporter, it has been shown that Wnt/β-catenin 

signalling is restricted to the ductal structures of the developing SMDG, with its 

localisation seen at E14.5, during the late Pseudoglandular stage, in the main gland 

duct and by E15.5 spreading into the smaller ducts (Patel et al., 2011). Wnt activity 

may be maintained in the ductal epithelial cells to ensure their long-range elongation 

before the branching of a distal gland occurs. Wnt activity is maintained in the 

intercalated ducts of the SMDG during postnatal development, however, reduces as 

mice age (Hai et al., 2010). Enhanced Wnt activity is observed in ductal cells 

following SMDG duct ligation, indicating a role of this pathway in SMDG 

regeneration (Hai et al., 2010). Using the Lef1 -/- mouse to study the biological role of 

this gene, it was shown that knockout mice failed to develop organs such as teeth, hair 

follicles and mammary glands (van Genderen et al., 1994).  

 

Using the β-catenin/Tcf-βgal reporter (TOPGAL) mouse, it has been shown that the 

canonical Wnt pathway is active during early nasal gland bud formation (Driskell et 

al., 2007). Additionally, the transcription factor Lef1, has been shown to be highly 
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expressed in progenitor cells of early SMG buds in the mouse nose and trachea, and 

the ferret trachea, and in Lef1 knockout mice, amorphous aggregates of cells develop 

where nasal SMGs are seen in wild types (Driskell et al., 2004; Duan et al., 1999, 

1998). Lef1 promoter expression has been shown to be regulated by Wnt-3a during 

SMG morphogenesis, and in the Wnt3-a knockout mouse, SMG Lef1 expression was 

lost and cell proliferation of epithelial gland cells was reduced in SMG buds (Driskell 

et al., 2007). While these studies have given insight into the necessity of Wnt 

signalling for early SMG bud formation, the involvement of Wnt molecules in later 

stages of respiratory gland development has not been investigated.  

 

The role of the Ectodysplasin A (EDA) pathway has been investigated in the 

development of a number of ectodermal derived organs (Mikkola, 2009). Mutations in 

the Eda pathway genes in both humans and mice leads to hypohidrotic ectodermal 

dysplasia (HED) which gives rise to congenital defects in salivary glands, hair, teeth 

and sweat glands (Clarke et al., 1987).  Signalling through this pathway involves the 

binding of EDA A1, a member of the tumor necrosis factor (TNF) family, to a death 

domain transmembrane receptor, EDAR (Headon & Overbeek, 1999; Srivastava et 

al., 1997). EDA ligand binding to EDAR leads to the recruitment of the intracellular 

adaptor protein EDAR Associated Death Domain (EDARADD). Recruitment of 

EDARADD to the receptor leads to the formation of a complex containing the 

cytoplasmic proteins TNF Receptor Associated Factor 6 (TRAF6), TGF-β Activated 

Kinase 1 (TAK1) and TAK Binding Protein 2 (TAB2) (Morlon et al., 2005). This 

leads to the activation of the IκB kinase complex (IKK), which is a compound of two 

kinase sub-units, IKK1 and IKK2, as well as the regulatory component NF-kappaB 

essential modulator (NEMO) (Döffinger et al., 2001; Morlon et al., 2005). Activation 

of the IKK complex triggers recruitment and the phosphorylation of inhibitor kappa-B 

(IκB), a nuclear factor-kappaB (NFκB) inhibitor. Phosphorylation of IkB leads to its 

degradation, and NFκB translocates into the nucleus where it acts as a transcription 

factor, regulating target genes involved in cell proliferation, differentiation and 

survival (Gilmore, 2006; Oeckinghaus & Ghosh, 2009). 

A number of reports using the mouse model have shown the importance of Eda 

signalling in both major and minor salivary gland morphogenesis. Analysis of the 

Tabby mouse, a model of a naturally occurring mutation in the gene required for EDA 
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(Srivastava et al., 1997), gave rise to hypoplastic SMDGs with reduced numbers of 

convoluted tubules and a reduction in mucin immunolocalization (Blecher et al., 

1983; Jaskoll et al., 2003). In contrast to this, the knockout mouse of the Edar 

receptor gene, known as downless, developed dysplastic SMDGs, showing a severe 

lack of ducts and acini, and virtually no detection of mucus (Jaskoll et al., 2003). 

Furthermore, addition of exogenous EDA protein addition to developing SMDGs in 

culture, as well as elevated expression of EDAR signalling in adult mice, gave rise to 

an increase in SMDG epithelial branches (Chang et al., 2009; Jaskoll et al., 2003). 

Addition of EDA protein to cultured Eda hemizygous (Tabby) SMDGs in vitro can 

also rescue branching in these mutant glands (Wells et al., 2010). Investigation of the 

minor salivary glands additionally emphasised the role of Eda signalling in gland 

branching morphogenesis as these glands of the tongue do not develop in Tabby and 

downless mice (Wells et al., 2011). 

Analysis of the Tabby mouse in a classical study revealed that specific groups of the 

anterior nasal SMGs were completely absent while others developed normally 

(Grüneberg, 1971). It was reported that the Steno’s gland and MSG develop in the 

Tabby, while some, but not all of the LNGs were completely absent (Grüneberg, 

1971). Furthermore, all of the MNGs were reported missing (Grüneberg, 1971). Of 

the LNGs that did develop in the Tabby, these glands were described as rudimentary 

from the beginning, and their distal branched glands were also defective (Grüneberg, 

1971). Defects in nasal glands have also been reported in HED patients, with patients 

suffering from dryness of the nasal mucosa, severe nasal crusting and foul smelling 

nasal discharge (Al-Jassim & Swift, 1996; Dietz et al., 2013). 

 

Morphology and Development of the Tracheal SMGs 

Developmental of the tracheal SMGs observed from animals models can be described 

in four distinct stages (Keswani et al., 2011; Thurlbeck et al., 1961). Stage 1 of 

development is the initial bud stage where an epithelium swelling is seen to immerge 

from the RE (Error! Reference source not found., A). Stage 2 is characterised by 

the epithelial bud elongating into the underlying mesenchyme and cavitation occurs 

within this stalk to form a lumen (Error! Reference source not found., B). This is 

followed by Stage 3 where canalized stalks begin to branch within the underlying 

mesenchyme (Error! Reference source not found., C), while Stage 4 is classified as 

Page 15 of 46

John Wiley & Sons, Inc.

Developmental Dynamics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

the cellular differentiation stage, indicated by mucus production within the gland 

(Error! Reference source not found., D). Unlike the nasal glands that develop for 

approximately two days as a long gland duct, followed by the branching of a distal 

gland the tracheal SMGs bud, elongate with a short stem, cavitate and begin 

branching. This developmental mechanism is similar to that seen in the branching of 

both the major and minor salivary glands, however in these structures branching 

occurs before lumen formation (Melnick & Jaskoll, 2000; Teshima et al., 2011). 

In CD1 mice, the first signs of tracheal bud initiation can be identified adjacent to the 

cricoid cartilage in the ventral trachea at late E18.5. At P0 some ventral glands were 

observed at Stage 1 of budding, while others had extended and branched and had 

already begun Stage 3 of lumen formation and branching (Figure 10, C). At birth, 

some gland buds were also found in more dorsolateral planes, with a wave of 

initiation starting in the ventral regions and spreading more dorsally (Figure 10, D). 

Initiation before birth is earlier than previously described for the tracheal SMGs 

(Rawlins % Hogan, 2005) and may represent differences in genetic background 

(Borthwick et al., 1999; Innes & Dorin, 2001). Different inbred strains of mice show 

different posterior extensions of the SMGs between cartilage rings, while CFTR 

knockout mice have an increase in posterior extension with mutants showing glands 

as far as the eighth cartilage ring compared to the fourth ring in WT littermates 

(Borthwick et al., 1999; Innes & Dorin, 2001) 

By P1, branching continues in both the ventral and dorsal glands, as well as continued 

induction of new buds throughout the dorsolateral walls. By P2, more newly forming 

SMGs arose in the anterior tracheal mesenchyme in dorsolateral positions (Figure 10, 

F), while ventral glands progressed to the branching and mucus producing (Figure 10, 

E). By P4, the ventral and dorsolateral glands continued to undergo extensive 

branching and cellular differentiation (Figure 10, G and H). The first signs of SMG 

formation in a posterior direction between the first and second cartilage rings was 

observed in the ventral trachea at approximately P4 (Figure 10, G). By P8, established 

anterior glands were continuing their branching as well as new glands appearing 

between C2 and C3 and progressively at P12 glands were found between C3 and C4 

in ventral cross-sections. At P15 glands had developed between C4 and C5 and were 

producing mucus. During postnatal development, glands arose in a gradient from the 

ventral to dorsal areas of the trachea, in conjunction with their posterior development. 
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By P22, glands were well established and observed as posterior as C6 and initiation of 

new glands appeared to cease (Borthwick et al., 1999; Rawlins & Hogan, 2005).  

 

Signalling During Tracheal SMG Development 

To date, no investigation into the role of the canonical Wnt signalling pathway has 

been carried out on the tracheal SMGs. Similar to the nasal glands however, tracheal 

SMGs have been reported to be completely absent in the adult Tabby mouse, as well 

as in the early crinkled mice, the model of Edaradd mutation, at P7, indicating that 

EDA signalling is required for early SMG initiation and budding (Rawlins & Hogan, 

2005). Complimentary to these findings, human patients with HED have been 

reported to have reduced numbers of seromucous respiratory glands, asthma like 

symptoms and respiratory tract infections (Callea et al. 2013). Furthermore, allergic 

response is increased in those with HED (Vanselow et al. 1970). 

 

The bone morphogenetic proteins (BMPs) belong to the transforming growth factor β  

(TGFβ) superfamily (Miyazono et al., 2010). The BMPs play a multitude of roles 

during early embryonic patterning and morphogenesis such as the regulation of cell 

proliferation, differentiation, apoptosis and cell-fate determinations (Hogan, 1996; 

Kishigami & Mishina, 2005). Twenty BMPs have been identified, all having 

heterogeneous functions during developmental processes such as neurogenesis, bone 

and cartilage formation, and organogenesis (Hogan, 1996; Zhao, 2003). 

  

In general, the BMP pathway involves the extracellular BMP ligands binding to the 

cell membrane bound BMP receptors (BMPR). These receptors are serine-threonine 

kinase receptors that belong to two groups, Type I and Type II (Massagué et al., 

1994). BMPs bind to the Type I BMPR with higher affinity to that of Type II (Kirsch 

et al., 2000; Wrana et al., 1994). In order for ligand binding to stimulate an 

intracellular signal, heterodimerization of one Type I and one Type II BMPR is 

required. Upon BMP ligand binding to the Type I receptor, the Type II receptor is 

recruited (Carreira et al., 2014; Kirsch et al., 2000). The Type II BMPR then catalyses 

the phosphorylation of the intracellular serine-threonine domain of the Type 1 BMPR, 

recruiting a cytoplasmic receptor-activated Smad protein (either Smad1, 5 or 8).  

(Wrana et al., 1994). Phosphorylation of one of these Smads triggers the recruitment 
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of another cytoplasmic Smad, Smad4 (Whitman, 1998). This dimeric Smad complex 

can now translocate into the nucleus where BMP target genes can be activated. A 

number of extracellular antagonists also function in regulating the pathway. These 

include such soluble proteins as Noggin, Gremlin and Chordin, which form 

complexes with BMP ligands, preventing them from binding to their cell receptors 

(Walsh et al., 2010; Yanagita, 2005).  

It has been previously shown that BMP signalling is critical for the development and 

patterning of the trachea and lungs (Eblaghie et al., 2006; Li et al., 2008; Weaver et 

al., 1999). During SMDG development, Bmp4 is mesenchymally expressed and 

addition of BMP4 protein to developing SMDGs in vitro SMDG inhibits gland 

budding (Hoffman et al., 2002), indicating an antagonizing role in the control of the 

number of gland branches. Furthermore, when SMDGs are cultured with BMP 

antagonist sFRP1, branching of SMDGs is induced with a 26% increase observed in 

the amount of gland buds in treated glands compared to controls (Patel et al., 2011). 

In contrast BMP7 seems to enhance gland branching. In the Bmp7 knockout mouse, a 

reduction in epithelial branches of the SMDG as well as disorganized mesenchyme 

surrounding the gland was observed (Jaskoll et al., 2002). 

The only investigation into the roles of BMP signalling in respiratory gland 

development have been shown during that of the tracheal SMGs (Rawlins & Hogan, 

2005). Using the Bmp4lacz reporter mouse, it was reported that at P2 when tracheal 

buds were initiating from the RE, Bmp4 was expressed throughout the underlying 

mesenchyme. During later development at P7, Bmp4 detection was reduced and found 

only in the mesenchyme close to the newly formed gland branches (Rawlins & 

Hogan, 2005). By P28, Bmp4 expression had reduced even further, and was only 

detected in a few mesenchymal cells (Rawlins & Hogan, 2005). The exact role of 

BMP4, or other BMPs, during respiratory gland development has not been elucidated. 

 

Fibroblast growths factors (FGFs) make up one of the largest family of polypeptide 

proteins critical for tissue patterning and development of branching organs. Today, 22 

members (FGF1-FGF22) of the FGF family are known within the human genome 

(Ornitz & Itoh, 2001). Four cell membrane-bound FGF receptors (FGFRs) have been 

identified in vertebrates, each having different affinities for different FGF ligands. 
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The four receptors, FGFR1-FGFR4, are composed of the common protein structure of 

most tyrosine kinase (TK) receptors (Johnson et al., 1990). The initiation of an 

intracellular signalling transduction pathway relies on extracellular binding of FGF 

ligands its target receptor, leading to receptor dimerization and intracellular 

phosphorylation of the TK domains of each receptor (Jiang & Hunter, 1999; 

Schlessinger, 1988). Following TK phosphorylation, a number of intracellular 

signalling cascades are triggered that are required for a multitude of developmental 

processes. These include the phospholipase C gamma (PLC-ϒ) pathway which 

initiates calcium release and activates protein kinase C to influence cell motility 

(Burgess et al., 1990; Mohammadi et al., 1991), and the phosphatidylinositol-3 kinase 

(PI3K) which activates Akt/protein kinase B needed for the mediation of cell survival 

(Ong et al., 2001). The most common route of FGF signalling during developmental 

processes is through the activation of the rat sarcoma homologue (RAS)/mitogen-

activated protein kinase (MAPK) cascade. This pathway functions in activating target 

genes involved in cellular differentiation and proliferation. 

The roles of a number FGFs have been shown to be critical for gland morphogenesis. 

Fgf10 is expressed in the mesenchyme underlying the presumptive salivary gland 

epithelium from E11.5 (Wells et al., 2013). Jaskoll et al. (2005) showed in Fgf10 null 

mice, as well as the Fgfr2b knockouts, that the SMDG initiated to the Initial Bud 

stage at E12.5 however it was unable to develop further, and at E13.5 any epithelial 

evidence of the SMDG was absent. Culture of SMDGs with FGF7 gave rise to 

moderate stalk extension and induced epithelial bud enlargement (Koyama et al., 

2008). Inhibition of salivary gland branching by FGFR2b antisense oligonucleotides 

was also rescued by the addition of exogenous FGF7 which stimulated cell 

proliferation and end bud formation (Steinberg et al., 2005). Using Fgf8 hypomorphic 

embryos, as well as Fgf8 conditional knockout mutants, it has also been described that 

SMDG bud initiation is independent of Fgf8, however expression is required for 

continued SMDG branching morphogenesis and survival (Jaskoll et al., 2004a). At 

approximately E13.5 when the lacrimal gland bud arises on the temporal side of the 

eye, Fgf10 expression is seen in the periocular mesenchyme adjacent to the budding 

gland and distal to the tip of the gland as it is elongating at E14.5 (Makarenkova et al., 

2000). Investigation of Fgf10 -/- mice at E18.5 also showed the complete absence of 

the lacrimal gland (Makarenkova et al., 2000). While Fgf7 expression was not as 
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evident as that of Fgf10 in the periocular mesenchyme during normal in vivo lacrimal 

gland development, application of an FGF7 bead to lacrimal gland explant cultures 

induced ectopic gland bud formation, similarly to FGF10 protein application, 

however not at as high a rate (Makarenkova et al., 2000). The respiratory gland 

phenotype has not been investigated in any Fgf homozygous knockout mice, however, 

Rawlins and Hogan (2005) established that in Fgf10 heterozygous mice at P20 fewer 

tracheal SMGs developed. Of the glands that did develop, they were only located 

anteriorly by the CC and C1 and had not undergone full branching while no glands 

were seen between the more posterior cartilaginous rings (Rawlins & Hogan, 2005). 

The role of FGF signalling during nasal and tracheal SMG development has not been 

investigated. It has also been shown that tracheal cartilage ring defects occur in Fgf10 

homozygous mice, which may also have a secondary affect on tracheal SMG 

development (Sala et al., 2011). It is therefore possible that in addition to a direct 

defect of FGFs on gland elongation and branching, a tracheal ring defect might 

compromise the arrangement of the tracheal SMG development. 

 

Future Directions 
In this review we describe a detailed account of anterior nasal and tracheal SMG 

development. We highlight that the SMGs show distinct morphological stages of 

development, beginning with bud formation, followed by duct elongation, distal gland 

branching and acinar differentiation (Table 1). Now that the morphology of these 

glands has been elucidated, further research into the mechanisms involved in their 

budding and arborisation is encouraged. As we report here, studies have looked at 

early bud induction of the nasal glands, and the roles played by the canonical Wnt 

signalling pathway (Driskell et al., 2007; Duan et al., 1999) (Figure 11). The 

involvement of Wnt activity during later duct elongation and distal gland branching 

stages of the nasal SMGs is however unknown. In addition, the role of Wnt signalling 

during tracheal SMG development has not been analysed (Figure 11). Requirement 

for Ectodysplasin A signalling has been emphasised by the absence of some nasal and 

all tracheal SMGs in the Tabby mutant (Grüneberg, 1971; Rawlins & Hogan, 2005) 

(Figure 11). In keeping with this mouse data, human patients of HED also develop 

airway obstruction and pulmonary infection (Dietz et al., 2013). The nasal gland 

phenotype observed in the Tabby mouse indicates that different subsets of nasal 

SMGs utilise different cues, with the Steno’s gland and the MSG developing normally 
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in the absence of Eda signalling, while the medial nasal glands are completely absent 

(Grüneberg 1971). Thus glands with similar morphology may develop using different 

signalling pathways. This is also emphasised by the difference in lumen formation 

used to create a final hollow duct. The Steno’s gland develops with a preformed 

lumen, similar to the lung, while the other LNGs and MNGs develop as solid cords of 

cells that are cavitated at later stages to create a lumen, similar to salivary glands 

(Figure 11). Thus there are different mechanisms at play to form anatomically similar 

structures. Further down the respiratory tree, participation of Fgf10 during trachea 

SMG development has been shown to be essential for successful gland branching 

morphogenesis (Rawlins & Hogan, 2005) (Figure 11). Analysis of the role of Fgf10 

during nasal SMG development, or its requirement for early tracheal SMG bud 

initiation has not been explained however. Furthermore, while previous studies have 

hinted at roles played by the signalling factors mentioned above, other 

developmentally important pathways during SMG organogenesis have not been 

touched upon. For example, Sonic hedgehog (Shh) expression is localised to ducts 

and terminal end buds of the developing SMDG (Jaskoll et al. 2004b). In the Shh -/- 

mouse at E18.5, an undifferentiated dysplastic gland forms, suggesting that during 

SMDG development Shh is required for gland growth and cellular differentiation 

(Jaskoll et al. 2004b). Interestingly, mammary gland branching morphogenesis is 

independent of SHH signalling, as glands in the Shh -/- mouse are indistinguishable of 

those observed in wild type littermates (Michno et al., 2003). This data collectively 

poses interesting questions for the role and regulatory functions of Shh in SMG 

development. Additionally, epidermal growth factors (EGFs) have been described to 

be essential for successful development of both SMDGs and mammary glands 

(Kashimata et al., 2000; Luetteke et al., 1999), however this pathway has not been 

studied in any of the respiratory SMGs. To this end, continual investigation is 

imperative to delineate the cellular mechanisms and intracellular cues that are 

required for successful SMG morphogenesis. This will provide insight into how 

development of SMGs influences function, and thus help clarify their role in 

pulmonary diseases.  
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Figure Legends 
 
Figure 1. Schematic illustration outlining the cellular composition of the 

treacheobronchial SMGs. 

The tracheal glands are composed of sacs of serous cells, which form acini. Serous 

cells secrete a watery like secretion rich in bactericidal enzymes. Acini run into 

tubules of mucous cells, which secrete a thicker gel like substance rich in 

glycosylated proteins. These two types of secretions are then combined in a collecting 

duct, whose wall is composed of non-ciliated columnar epithelial cells. The collecting 

duct runs into a ciliated duct made of more respiratory epithelial-like cells that 

possess beating cilia on their apical surfaces. Mucus is secreted through this ciliated 

duct into the airway lumen where it covers the surface epithelium. 

 

Figure 2. Anatomy of the nose and paranasal sinuses in humans. 

(A) Sagittal view of the three distinct areas of the nose; vestibule, respiratory and 

olfactory regions. (B) Sagittal view of the lateral wall showing the curved concha and 

the inter-conchal meatuses. (C) Frontal section through the nasal chamber showing 

the position of the medial walls (yellow) on either side of the septum (S). Image 

shows the location of the superior concha (SC), the medial concha (MC) and the 

inferior concha (IC) of the lateral wall (orange) and their underlying meatuses. The 

frontal image also delineates the location the paranasal sinuses. SM=superior meatus; 

MM=middle meatus; IM=inferior meatus; FS=frontal sinus; ES=ethmoidal sinus; 

MS=maxillary sinus. Dotted black lines indicate opening of sinuses into nasal cavity 

found at a more caudal plane. 

 

Figure 3. Steno’s duct elongation and branching morphogenesis. 

(A-D) The epithelial budding of the Steno’s duct is seen between E12.0 and E12.5 

from the REA. (E-H) By E13.5, the Steno’s duct elongates over the nasal cavity and 

caudally extends through the mesenchyme of the medial concha. (I-L) By E14.5 the 

distal tip of the Steno’s duct has reached the mesenchyme beneath the maxillary sinus 

to the location of where the Steno’s gland will branch (J, red bracket). (M-N) The 

Steno’s gland begins to branch from the Steno’s duct between E15.0 and E15.5. The 

first signs of end buds are seen at E15.5. (O-P) By E17.5 the Steno’s gland is 

continually branching and acinus differentiation is well established with most acinar 
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cells producing mucus (blue arrows). Maxillary sinus cavity (MS); Steno’s gland 

(yellow arrows and dotted line); Division of RE to OE shown by pink arrows. C,G,K 

scale bar= 300µm, D,H,L scale bar = 500Mµm, M & O scale bar = 500µm; N & P 

scale bar = 250µm. 

 

Figure 4. Budding locations of the LNGs from the protruding lip of the 

middle concha. 

The LNG2 bud is first seen at E13.5 arising from the REP at the most rostral area of 

the conchal lip. It will extend caudally though the middle concha as development 

continues. At E14.5, LNG3 arises from the anterior area of the lip, underneath the 

opening of the Steno’s duct through the REA, and will extend caudally adjacent to the 

duct of LNG2. At E15.5, LNG4 initiates below the origin of the LNG2 and extends 

posteriorly through the mesenchyme of the concha where it will eventually branch 

beneath the nasal cartilage capsule, anterior to the palatal shelf. LNG5 also initiates at 

E15.5, where it will elongate adjacent to the ducts of LNG2 and LNG3. Gland buds 

(2-5) shown in green, direction of future extending duct shown by red arrows. 

Schematic is taken at a sagittal view. Axis describes anterior (A), posterior (P), rostral 

(R) and caudal (C). 

 

Figure 5. LNG duct elongation. 

(A) Sagittal (S) and horizontal (H) planes through an E13.5 mouse head showing the 

location of the LNG2 bud. (B) Horizontal representation of LNG2 budding from the 

middle conchal lip. (C) Sagittal histological section showing the location of the 

middle conchal lip and the LNG2 bud in the nasal region. (D) The epithelial bud of 

LNG2 at E13.5. (E-F) Schematics showing location and appearance of the elongated 

LNG2 and the budding LNG3-5 at E14.5. (G-H) At E14.5 the LNG2 has elongated 

caudally as a solid stem. LNG3 has budded and begun to elongate and LNG4 is seen 

at a slightly earlier budding stage. (I-J) LNG5 is at its initial bud formation stage at 

E14.5. (K) Schematic showing the progression of the LNGs by E15.5. (L-M) A 

sagittal section shows the distal tips of LNG2 and LNG3 ending within the 

mesenchyme above the branching Steno’s gland (yellow). The distal tip of LNG5 is 

found at a more rostral location adjacent to these ducts (shown in K). (N-O) LNG4 

has elongated posteriorly with its distal tip emerging below the nasal cartilage 
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capsule. Left column of sagittal sections scale bar = 500µm; right column scale bar = 

100µm. 

 
Figure 6. Branching morphogenesis of the LNGs. 

At E16.5 the LNGs begin branching of their distal glands. (A-B) LNG2 is the first to 

undergo branching between E15.5 and E16.5. At E16.5 many end buds are apparent 

and cavitation has begun within the gland acini (B - white arrows). LNG3 has also 

begun to branch at E16.5 as seen by the appearance of end buds (B – green arrows). 

(C-D) At E17.5, LNG2 and LNG3 have branched and formed distinctive acini with 

lumens. (E-F) At E16.5 the onset of branching of the LNG4 beneath the nasal capsule 

is evident (F – green arrows). (G-H) By E17.5, LNG4 has formed branches and end 

buds, and lumen formation has begun within acini (H – white arrows). (I-J) LNG5 is 

seen close to the ducts of LNG2 and LNG3, whit possible lumen formation beginning. 

A clear lumen is seen in the ducts of LNG2 and LNG3 at this stage (J – white 

arrows). (K-L) By E17.5, LNG5 has begun to branch with a clear lumen seen within 

its duct and lumen formation at its initial stages within acini. Left column of each age 

scale bar = 500µm; right column scale bar = 250µm. 

 

Figure 7. MNG development. 

(A-D) The development of the MNGs begins between E14.0-E14.5 with the budding 

and elongation of the ducts of MNG1 and MNG2. (E-H) The MNG1 and MNG2 

ducts elongate to the central septal area by E15.5 and branching has initiated at the 

distal tip of MNG1 (inset image H). MNG3 has also budded and elongated, with its 

distal end adjacent to the midline of the MNG1 and MNG2 ducts (E-F). (I-J) 

Branching of MNG1 has progressed by E16.5 with an array of branches and terminal 

end buds apparent at this stage. MNG2 has also begun branching. The distal tip of 

MNG3 has extended close the branching ends of the other MNGs. (K-L) By E17.5, 

branching continues in all the MNGs in the central region of the septum. MNG4 has 

emerged by E17.5 as an elongated duct and the onset of branching has begun. Image 

A scale bar = 500µm; image B scale bar = 250µm. 

 

Figure 8. MSG development. 

The maxillary sinus gland initiates between E14.5 and E15.5. (A-B) No MSG 

primordium is evident at E14.5. (C-D) At E15.5 the MSG is seen to have invaginated 
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and branched into the mesenchyme close to its opening in the RE. The MSG 

continues to branch and grow at E16.5 (E-F) and E17.5 (G-H). MSG = red, Steno’s 

gland = yellow, LNG2 = green. MS = maxillary sinus cavity. Image A scale bar = 

500µm; Image B scale bar = 250µm. 

 

Figure 9. Stages of tracheal SMG development 

(A) Stage 1: Tracheal SMG buds are first seen to invaginate from the RE into the 

underlying mesenchyme. (B) Stage 2: Elongation of the bud and cavitation of the 

epithelial stalk occurs. (C) Stage 3: Epithelial stalk undergoes clefting and branching 

(D) Stage 4: Cellular differentiation is observed indicated by mucus staining within 

the glands by Alcian Blue. AL= airway lumen, L= lumen, M= mucus. Scale bar = 

25µm. 

 

Figure 10. Normal postnatal tracheal SMG development. 

(A-B) Schematic representations of the ventral (A) and more dorsal (B) tissue 

sections cut through postnatal tracheal tissue. (C) Glands are seen to have reached the 

lumen formation stage in the ventral trachea by P0, while more dorsally they are seen 

at the branching stage (D). (E) At P2 ventral glands have continued to branch and 

cellular differentiation is indicated by mucus staining within gland lumens. Continued 

budding of new glands is seen in more anterior dorsal positions (F). (G-H) By P4 

glands have branched extensively in the ventral mesenchyme as well as in the dorsal 

trachea. Glands are also seen at the branching stage between C1 and C2 in the ventral 

trachea (G). CC=cricoid cartilage, C1=first cartilage ring, C2=second cartilage ring 

etc. Black arrow = developing gland, green arrow = lumen formation, blue arrow = 

mucus production. Scale bar=100µm. 

 

Figure 11. Possible paracrine factors required for early respiratory gland 

development. 

(A) Steno’s gland bud induction does not require EDA signalling, however the roles 

of other developmental molecules such as FGFs, BMPs, and WNTs have not been 

investigated during Steno’s gland development. (B) The medial nasal glands have 

been reported to be absent in the Tabby mouse, indicating EDA signalling is 

imperative for their development. Lef-1 expression has also been described in early 

nasal gland buds, indicating the involvement of WNT signalling. Requirement for 
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FGF or BMP signalling has not been investigated in the medial nasal glands. (C) 

Tracheal SMG investigation has shown the expression of Edar in the tracheal RE, and 

the absence of tracheal SMGs in the Tabby mouse, emphasising the role of EDA 

signalling during SMG bud induction. Branching morphogenesis of tracheal SMGs is 

also reduced in Fgf10 +/- adult mouse, indicating its need for successful 

development. While Bmp4 is expressed surrounding development tracheal SMGs, the 

exact role of this molecule or the BMP pathway has not been investigated. Finally, 

WNT signalling has not been analysed during tracheal SMG development. 
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Tables 
 
Table 1. Approximate stages of the distinct morphological events of anterior 
nasal gland development. 

 
Gland Name Approx. age of 

budding 
Approx. age of 
initial lumen 

formation 

Approx. age of 
onset of branching 

Steno’s Gland E12.0 - E15.5 

LNG2 E13.5 E14.5-E15.0 E16.5 

LNG3 E14.0-14.5 E15.0 E16.5 

LNG4 E14.5 E15.5 E16.5 

LNG5 E14.5 E15.5 E17.0 

MNG1 E14.0 E14.5 E15.5 

MNG2 E14.5 E15.5 E16.5 

MNG3 E15.5 E16.5 E17.0 

MNG4 E16.0 E17.5 E17.5 

MSG E14.5-E15.0 - E15.0 
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Figure 3.  
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Figure 4. 
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Figure 6. 
 
 
 

 
Figure 7. 
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Figure 9. 
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Figure 11. 
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