

King’s Research Portal

Link to publication record in King's Research Portal

Citation for published version (APA):
Krivic, S., Cashmore, M., Ridder, B. C., & Piater, J. (2016). Initial State Prediction in Planning. In Proceedings of
the 31st Workshop of the UK Planning and Scheduling Special Interest Group (PlanSIG 2016)

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 06. Jan. 2025

https://kclpure.kcl.ac.uk/portal/en/publications/00357734-b16d-4c4a-a28f-bce43b01075e

Initial State Prediction in Planning

Michael Cashmore and Bram Ridder
firstname.lastname@kcl.ac.uk

King’s College London

Senka Krivic and Justus Piater
firstname.lastname@uibk.ac.at

University of Innsbruck

Abstract
Offline reasoning techniques and online execution
strategies have made planning under uncertainty
more robust. However, the application of plans in
partially-known environments is still a difficult and
important topic. In this paper we describe our work
using Maximum-Margin Multi-Valued Regression
to predict new information about a partially-known
initial state, represented as a multigraph of rela-
tions. We evaluate this approach in a robotics do-
main, demonstrating high recall and accuracy, lead-
ing to more robust plans.

1 Introduction
Planning in the domain of robotics means planning with in-
complete and uncertain information. In such domains plans
generated can be fragile. Contingency planning with belief
states [Bonet and Geffner, 2000; Hoffmann and Brafman,
2005], conformant planning [Smith and Weld, 1998; Palacios
and Geffner, 2006], and replanning techniques [Brafman and
Shani, 2014] work to make execution more robust, for an ac-
ceptable cost of computational difficulty or plan quality.

In this paper we focus on the problem of planning with
incomplete information in a deterministic domain. We de-
scribe a preprocessing step that predicts new information
about a partially-known initial state represented as a multi-
graph of relations. We pose the problem of prediction as that
of learning missing edges in a graph. The learned edges are
analogous to assumptions about facts within the initial state.
The problem is similar to a restricted class of contingency
planning problems with deterministic actions, deterministic
POMDPs [Bonet, 2009].

To solve our prediction problem we use a kernel-based ap-
proach to learn missing edges in a partially-given multigraph
[Krivic et al., 2015]. This involves propagating knowledge
from existing to unknown relations.

The method is a version of Maximum Margin Multi-Valued
Regression (M3VM) [Ghazanfar, Prügel-Bennett, and Szed-
mak, 2012; Szedmak, Ugur, and Piater, 2014] extended to the
class of learning problems where item-item relations might
be given by different attributes. This learning framework
was used at the core of a recommender system [Ghazan-
far, Prügel-Bennett, and Szedmak, 2012] and for predicting

the effects of an action on pairs of objects in an affordance
learning problem [Ghazanfar, Prügel-Bennett, and Szedmak,
2012]. They have shown that it can deal with sparse, incom-
plete, and noisy information.

Krivic et al. [2015] use this method to refine a world model
for planning to tidy up a child’s room with a robotic agent.
We build on this, describing how the approach can be gen-
eralised for use in any planning domain, learning edges that
correspond to generic propositions in the initial state. In par-
ticular we describe: how the initial state is represented as
a partially-known multigraph; the kernel-based approach to
learning missing edges; how the results of the learning tool
are translated back into the planning domain; and finally, how
they can be used in the planning process.

We demonstrate its efficacy on an extension of the tidy-
room domain proposed by Krivic et al. performing an empir-
ical evaluation on a range of problems.

In Section 2 we describe our problem formulation for
learning new relations in partially-known initial states. We
describe the learning tool in Section 3, and explain how the
learning tool is used to solve the formulated problem. In Sec-
tion 4 we perform an evaluation. We conclude in Section 5

2 Predicting in the Planning Problem
In this section we describe in detail our preprocessing step,
which predicts new information about a partially-known ini-
tial state.

Definition 1 (Planning Problem) A planning instance Π is
a pair 〈Dom,Prob〉, where Dom = 〈Ps,As, arity〉 is a
tuple consisting of a finite set of predicate symbols Ps, a finite
set of (durative) actions As, and a function arity mapping all
symbols in Ps to their respective arities. The triple Prob =
〈Ob, Init,G〉 consists of a finite set of domain objects Ob,
the partial initial state Init, and the goal specification G.

The atoms of the planning instance are the (finitely many)
expressions formed by applying the predicate symbols Ps to
the objects in Os (respecting arities). The resultant expres-
sions are the set of propositions P .

A state s is described by a set of literals formed from the
propositions in P , {lp,¬lp,∀p ∈ P}. If every proposition
from P is represented by a literal in the state, then we say
that s is a complete state. A partial state is a set of literals
s′ ⊂ s, where s is a complete state.

The initial state init is a partial state. A partial state can be
extended into a complete state.

Definition 2 (Extending a Partial State) Let s′ be a partial
state of planning problem Π. Extending the state s′ is a func-
tion Extend(Π, s′) : s′ → s where s is a complete state and
s′ ⊂ s.

We describe a pre-processing step implementing Extend.
All unknown propositional values in a partially-known initial
state are predicted, producing a complete initial state. Briefly,
the function Extend(Π, s′) is implemented as follows: the
initial state init is converted into a multigraph; edges in the
multigraph are learned using a relational learner; then the new
edges are added as literals to the initial state.

First we describe the construction of the multigraph, then
in Section 3 we describe the relational learner, and then how
the learned relations are inserted back into the initial state.
Finally, the complete initial state can be used by a classical
planner to generate a plan.

Constructing the Multigraph
We represent a partially-known initial state init as a partially-
known multigraph M .

Definition 3 (Partially-known Multigraph) A partially-
known Multigraph M is a pair 〈V,E′〉, where V is a set of
vertices, and E′ a set of labelled, directed edges.

We useE′ denote a set of edges in a partially-known multi-
graph, while a complete set of edges is E. The partial state
init is described as a multigraph with edges for any proposi-
tion that is unknown, or known to be true. That is:

V ↔ Ob
E′ := {e,∀p|¬lp /∈ init}

The existence of a directed edge between two vertices for a
predicate pred is described by the function Lpred : V ×V →
{0, 1, ?}. For example, let b and u be two vertices in set V . For
proposition p involving objects b and u, Lpred(b, u) = 0 if
¬lp ∈ init, Lpred(b, u) = 1 if lp ∈ init, and Lpred(b, u) =?
otherwise. Edges are directed in the parameter order from the
domain.

Example
Consider the planning problem in figures 1 and 2. The prob-
lem describes a robot that is able to move between waypoints,
pickup and manipulate objects, and put them in boxes. The
predicates: pickup, push, stack-on, fit-inside de-
scribe whether it is possible to perform certain actions upon
objects in the environment. In this problem we restrict our at-
tention to three objects: cup01, box01, and block01. In
general literals that are absent from the initial state are as-
sumed to be false. However, in this initial state those literals
are assumed to be unknown. It is also possible in PDDL2.1
to specify propositions that are initially false using statement
(not p), in which case Lpred(b, u) = 0.

A graph M is generated, the vertices of which are Ob :=
{rob, cup01, box01, block01}. The graph is shown in fig-
ure 3.

(define (domain toy-domain)
(:requirements :strips :typing ...)
(:types
waypoint
vehicle
interactable
box toy - interactable
block - toy
gripper)

(:predicates
(pickup ?r ?interactable)
(push ?r ?interactable)
(stack-on ?interactable ?interactable)
(fit-inside ?interactable ?box)
...)

(:durative-action goto ...
(:durative-action pickup ...
(:durative-action putdown ...
(:durative-action stack ...
(:durative-action unstack ...
(:durative-action put_in_box ...
)

Figure 1: A fragment of the toy-domain. Some predicates
and the body of operators are omitted for space.

(define (problem toy-example-problem)
(:domain toy-domain)
(:objects
wp1 wp2 wp3 ... - waypoint
robot - vehicle
cup01 ... - interactable
box01 ... - box
block01 ... - block

)
(:init
(pickup robot cup01)
(push robot block01)
(push robot cup01)
(stack-on box01 block01)
(stack-on block01 cup01)
...)

(:goal ...)
)

Figure 2: A fragment of an example problem from the
toy-domain. Some objects, part of the initial state, and the
goal are omitted for both space and readability. In this exam-
ple problem we restrict our attention to three objects (cup01,
box01, and block01) and the five propositions over these
objects that are known in the partial initial state.

3 Predicting Missing Edges in a Multigraph
In this section we describe the procedure of predicting miss-
ing edges in a partially-known multigraph. We are using
(M3VM) framework to extract similarities among nodes
based on known edges and to estimate missing edges.

The goal is to predict directed edges between all vertices in
the same set V . Generalized, this is a problem of predicting
connections from the vertices in a set B to the vertices in a
set U . In our problem B = U = V . In the following we
use B and U to differentiate between vertices of outgoing
and incoming edges respectively. Edges between the vertices
are describing a relation between the sets B and U . In order
to capture structure of this relation we reconstruct a function
F : B × U → E from knowledge on existing edges. The
functionF is describing the mapping of vertices to a complete

block01

robot

box01

cup01

 on

on?

pickup, push

in, on?
on?

pickup, push?

on?

on

pickup?

push

on?

on?

in, on?

 in?

 in?

Figure 3: The graph M representing the initial state in the
example problem. Solid edges correspond to propositions
known to be true, Lpred(b, u) = 1. Dashed edges correspond
to propositions whose value is unknown in the initial state,
Lpred(b, u) =?. In this figure, for space, we use in, and on in
place of fit-inside, and stack-on respectively.

set of edges E.
The function F is indirectly and partially given by the sub-

set E′. Reconstructing F can be done by finding a vector val-
ued function that extends E′ to all possible pairs of vertices.

For vertices b and u, we define the vector

ebu = {Lpred(b, u),∀pred}
For example, in the graph given in figure 3 there will be the
vector:

erobot,block01
= [Lfit−inside(robot, block01),

Lstack−on(robot, block01),
Lpush(robot, block01),
Lpickup(robot, block01)]

= [0, 0, 1, ?]

Then, we define the projections of known edges E′ into a
set containing start vertices B and end vertices U by

B′ = {b ∈ B|Lpred(b, u) 6=?,∀pred,∀u ∈ U}
U ′ = {u ∈ U |Lpred(b, u) 6=?,∀pred,∀b ∈ B}

Finally, the learning problem is given by a set of sample
items consisting of three elements (b, u, ebu) where: (b, u) ∈
B′ × U ′, and ebu ∈ E′. To realize this learning task we set
up an optimization routine for maximum margin regression.

To express the connection between the known instances
and their subsets we assume that:
Condition 1 There exists a mapping φ from V into a Hilbert
space Hφ, with the kernel function κvertice defined on all
possible pairs B′ and U ′ of all subsets of B × U such that
κvertice(B

′, U ′) = 〈φ(B′), φ(U ′)〉.
Condition 2 Similarly there is another mapping ψ of E into
a Hilbert space Hψ equipped by a kernel function κedge de-
fined for all pairs e1, e2 ∈ E such that κedge(e1, e2) =
〈ψ(e1), ψ(e2)〉.

Hilbert spaces Hφ and Hψ are feature representations of
the domains of B, U , and E. This allows us to use the inner
product as a measure of similarity. A rigorous description of
the mapping into Hilbert spaces, and the construction of the
optimisation problem can be found in Krivic et al. [2015].

After mapping, and solving the joint optimization prob-
lems that we have constructed, have for all b ∈ B

Wb =
∑
u∈B′

αbu(ψ(ebu)⊗ φ(u)) (1)

where (αbu) are the optimal Lagrange multipliers and Wb

is a linear vector used to produce a prediction over a given
edge. The prediction to a given edge e(b̂, û) ∈ E/E′ can be
derived by

e∗
b̂,û

= maxb̂u∈E′ ψ(eb̂û)Wb̂φ(û)

We can expand Wb̂φ(û) using (1) to obtain:∑
u∈U ′

αb̂u 〈ψ(eb̂û), ψ(eb̂u)〉︸ ︷︷ ︸
κedge(eb̂û,eb̂u)

〈φ(u), φ(û)〉︸ ︷︷ ︸
κvertice(u,û)

where κedge(eb̂û, eb̂u) and κvertice(u, û) are the kernel ma-
trices built on the inner product between the corresponding
elements.

For each prediction, e∗bu, we update the existence of the
directed edges:

Lpred(b, u) = e∗bu
Thus, the graph is completed.

Extending a Partial State with Predictions
Given a complete multigraph, we extend the partially-known
initial state init by adding literals to the state:

(lp ∈ init)↔ (Lpred(b, u) = 1)

where lp is the positive literal of proposition p, formed
from predicate pred between objects b and u. For exam-
ple, figure 3 contains an edge representing the proposition
pickup(robot, block01).

Initially, Lpickup(robot, block01) =?. After prediction,
Lpickup(robot, block01) = 1 Therefore, we add to the initial
state the literal

(pickup robot block01)

4 Evaluation
To evaluate the approach, we generated randomised problem
instances of the example domain, varying the initial knowl-
edge between 1% and 95%, in 1% increments. This was done
by removing literals at random. For each increment five ini-
tial states were generated, and the results were averaged. In
every case the learning process took less than two seconds.

Figure 4 illustrates results for problems with 80 objects. In
this graph we separate propositions that are between two ob-
jects (stack-on, fit-inside) and propositions between
the agent and the object (pickup, push).

Figure 4: Prediction as fraction of the total real proposi-
tions, against initial knowledge. As the initial knowledge is
increased (left to right) the number of predicted edges in-
creases. Results are separated into propostions between two
objects (stack-on, fit-inside) and relations between
the robot and the object (pickup, push).

The number of learned relations is large: for a small
amount of initial knowledge (30%) the recall of the process
is almost 90%. Furthermore, with 80 objects, there were no
propositions whose values were predicted with error.

In order to determine a minimum number of objects re-
quired for learning meaningful edges, we generated problems
with 8, 16, 32, and 72 objects (still with a single robot) in the
same way. The number of learned relations are shown in fig-
ure 5.

Figure 5: Prediction evaluated as fraction of total real propo-
sitions against initial knowledge. As the initial knowledge is
increased (left to right) the number of predicted edges in-
creases. Results are shown for instances with varying num-
bers of objects (|Ob| = 8, 16, 32, 72). Data points for which
predicted edges are greater than 1 indicate that propositions
were predicted erroneously.

Data points for which the predicted fraction is greater than

1 indicate that some erroneous edges were learned. For other
data points, there were no errors. These inaccurately pre-
dicted propositions appear when there are fewer objects (8
and 16). With 32 objects and greater, the learning approach
proved robust. In general, a greater number of objects, and
therefore known relations between them, will provide a bet-
ter source for the learner.

The graphs show that in each set, as the initial knowledge
increases the initial state is improved dramatically. With only
8 objects and 30% of the initial state, 60% of the complete
initial state can be retrieved. Below 30%, performance drops
off dramatically.

This combination of accuracy and recall allows us to solve
many otherwise unsolvable instances, while maintaining a
high degree of robustness. Table 1 shows the number of valid
plans generated for problems (with 80 objects) after prepro-
cessing. Without preprocessing, no problems could be solved.

We used an optimistic approach to solve the same prob-
lems. As this approach suggests, unknown relations were as-
sumed to be true. This means that the planner expects all ob-
jects of the same PDDL type to possess the same qualities,
and that the executive can manipulate these objects in full.
This comparison shows a naive approach to completing a par-
tially known initial state, which often produces invalid plans.
The purpose of this comparison is to show a base improve-
ment in robustness against a pure replanning approach.

Initial knowledge 10 15 20 25 30 35 40 45
Optimistic 2 1 2 3 2 5 3 2
Prediction 0 0 0 4 5 5 5 5

Initial 50 55 60 65 70 75 80 90
Optimistic 2 2 5 3 5 3 5 5
Prediction 5 5 5 5 5 5 5 5

Table 1: Number of problems for which valid plans were gen-
erated, for varying percentages of initial knowledge. For each
column, we tested five problems. Results are shown for ini-
tial states after prediction, and initial states after an optimistic
prediction. Initial states with no prediction did not produce
valid plans.

5 Conclusion
We have shown how an initial state with uncertainty can be
represented as a partially-known multigraph, how the M3VM
framework can be used to predict edges in such a graph, and
how these edges can then be reintroduced into the initial state
as predicted propositions.

This approach is performed offline and is not an execution
strategy in itself. It is orthogonal to other approaches in deal-
ing with uncertainty in the initial state, and can be combined.
Without integration into a more sophisticated execution strat-
egy, our evaluation has shown that this approach accurately
predicts a surprisingly large number of facts in a structured
domain, even with few objects.

References
[Bonet and Geffner, 2000] Bonet, B., and Geffner, H. 2000.

Planning with incomplete information as heuristic search
in belief space. In Proceedings of the 5th International
Conference on Artificial Intelligence Planning Systems
(AIPS’00), 52–61.

[Bonet, 2009] Bonet, B. 2009. Deterministic POMDPs re-
visited. In Proceedings of the 25th Conference on Uncer-
tainty in Artificial Intelligence (UAI’09), 5966.

[Brafman and Shani, 2014] Brafman, R. I., and Shani, G.
2014. Replanning in domains with partial information and
sensing actions. CoRR.

[Ghazanfar, Prügel-Bennett, and Szedmak, 2012]
Ghazanfar, M. A.; Prügel-Bennett, A.; and Szedmak,
S. 2012. Kernel-mapping recommender system algo-
rithms. Information Sciences 208:81–104.

[Hoffmann and Brafman, 2005] Hoffmann, J., and Brafman,
R. I. 2005. Contingent planning via heuristic forward
search witn implicit belief states. In Proceedings of the
15th International Conference on AutomatedPlanning and
Scheduling (ICAPS’05), 71–80.

[Krivic et al., 2015] Krivic, S.; Szedmak, S.; Xiong, H.; and
Piater, J. 2015. Learning missing edges via kernels in
partially-known graphs. In European Symposium on Ar-
tificial Neural Networks, Computational Intelligence and
Machine Learning.

[Palacios and Geffner, 2006] Palacios, H., and Geffner, H.
2006. Compiling uncertainty away: Solving conformant
planning problems using a classical planner (sometimes).
In Proceedings of the 21st Conference on Artificial Intelli-
gence (AAAI’06).

[Smith and Weld, 1998] Smith, D. E., and Weld, D. S. 1998.
Conformant graphplan. In Paper presented at the meeting
of the AAAI/IAAI (AAAI’98), 889–896.

[Szedmak, Ugur, and Piater, 2014] Szedmak, S.; Ugur, E.;
and Piater, J. 2014. Knowledge propagation and relation
learning for predicting action effects. In Intelligent Robots
and Systems (IROS’14), 623–629.

