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Opportunistic Planning for Increased Plan Utility

Michael Cashmore, Maria Fox, Derek Long, Daniele Magazzeni, and Bram Ridder∗

Abstract

This paper explores the execution of planned missions in sit-
uations in which opportunities to achieve additional utility
can arise during execution. The missions are represented as
temporal planning problems, with hard goals and time con-
straints. Opportunities are soft goals with high utility. The
probability distributions for the occurrences of these oppor-
tunities are not known, but it is known that they are unlikely
so it is not worth trying to anticipate their occurrence prior to
plan execution. However, as they are high utility, it is worth
trying to address them dynamically when they are encoun-
tered, as long as this can be done without sacrificing the
achievement of the hard goals of the problem. We formally
characterise the opportunistic planning problem, introduce a
novel approach to opportunistic planning and compare it to
an on-board replanning approach in an example domain in-
volving autonomous underwater vehicles.

1 Introduction
There are many examples of long-horizon control prob-
lems in which the goal is to complete specific tasks un-
der time and resource constraints. To do so requires goal-
achieving activities to be planned. An executive system
then executes the resulting plan in the physical world to
bring about the desired goals. This picture is complicated
by the fact that most physical environments are dynamic,
leading to uncertainty about the effects of actions (Pau-
los et al. 2015). One way to handle this uncertainty is to
build a plan as a policy (a mapping from states to ac-
tions), allowing reactive control during execution, but the
current Reinforcement Learning-based approaches to pol-
icy construction (Kaelbling, Littman, and Cassandra 1995a;
Pineau, Gordon, and Thrun 2006a; Sanner and Boutilier
2009; Ong et al. 2009) do not scale to handle long-horizon
tasks. It is computationally most efficient to plan without
taking uncertainty into account. When large parts of a plan
can be expected to execute without incident, it is more effi-
cient to exploit the strategy of replanning on failure, rather
than to try to plan ahead for contingencies. During the exe-
cution of a plan, execution activity will divert from the origi-
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nal plan when failures occur and actions to achieve the orig-
inal goals are replanned from the resulting unexpected state.

Another motivation for diverting from an original plan
arises when unforeseen opportunities to achieve additional
utility present themselves. Replanning on failure is a widely
recognised technique, but responding to opportunities de-
mands a different behaviour. In contexts in which these op-
portunities are unlikely, and might arise without warning
during execution of a plan, the construction of a policy or
a contingent plan that can exploit them is generally im-
practical. An example of a domain in which opportunities
can arise is in the pursuit of planetary space science, where
an unexpected high-value science phenomenon might occur
during the execution of a long traverse. Instead of missing
the phenomenon and having to be directed back by human
experts (as was the case when the Mars rover, Opportunity,
missed Block Island in 2009), the intelligent vehicle should
autonomously detect the phenomenon and determine, with-
out recourse to human advice, whether there are resources
available to devote to it.

The domain we consider in this paper is the autonomous
inspection and maintenance of underwater installations. We
begin, in Section 2, by briefly introducing the field of Auto-
mated Planning, the technology we have exploited to address
opportunistic planning. In Section 3, we then describe the
operational context, introducing the relevant concepts and
explaining the planning problem. In Section 4 we explain
what we mean by opportunistic planning, and in Section 5
we formalise this problem. In Section 6 we discuss proba-
bilistic approaches to similar problems. In Section 7 we ex-
plain how we have addressed opportunistic planning within
a deterministic planning framework. We then present results
for a number of experiments and discuss future work direc-
tions.

2 Automated Planning
Planning is the process of considering and organising ac-
tions to achieve goals, before starting to execute them. In
planning, the actions that must be performed are not pre-
determined by the goals, but are selected, from amongst a
typically large number of alternative actions. The choice is
guided by an effort to achieve the goals whilst optimising
various metrics. Ordering choices and resource allocations
are made, and evaluated, as part of the selection process.



The selection of a particular action affects choices that can
be made subsequently, so has an important impact on the
quality of the eventual plan. The consequence of this ap-
proach is that neither the number of actions in a plan, nor
the makespan or resource allocation of the plan, are predeter-
mined. This distinguishes planning from scheduling, where
the actions to be performed are predetermined but the timing
of actions, and the allocation of resources to them, are not.

Planning relies on the use of a model of the available ac-
tions to support both prediction of their effects on a state
and the identification of states from which the actions are
applicable. A standard modelling language used to repre-
sent actions for this purpose is the Planning Domain De-
scription Language (PDDL), originally developed in 1998
by a committee led by Drew McDermott (McDermott et al.
1998), but later extended through several variants, includ-
ing PDDL2.1 (Fox and Long 2003), PDDL2.2 (Edelkamp
and Hoffmann 2004), PDDL3 (Gerevini et al. 2009) and
PDDL+ (Fox and Long 2006). The extensions of most rele-
vance to us here are PDDL2.1 and PDDL2.2, which intro-
duced actions with duration and the opportunity for con-
currency and management of deadlines. In this language, a
planning problem is formally described by providing two
files: the domain and the problem. The problem file consists
of two parts: the initial state and the goals.

Definition 1 A state is a set of known true facts consist-
ing of boolean and numeric variables. A Boolean variable
is expressed as a proposition consisting of a predicate and a
vector of typed arguments, which is assigned the value True
or False. A numeric variable is expressed as a function ap-
plied to a vector of typed variables, which is assigned to a
numeric value.

Definition 2 An action is a tuple 〈P,A,D〉, representing a
function from state to state, described in terms of its pre-
conditions, P , and effects, A ∪D. The Boolean effects in A
are the facts that are added by the action, while the Boolean
effects in D are the facts that are removed by the action.
The numeric effects in A ∪ D are to increase or decrease a
numeric variable by some numeric quantity, or to assign a
value to a numeric variable. An action may be applied in any
state in which the preconditions are true, and it produces a
state in which the effects are true.

Definition 3 A planning problem is a tuple, 〈D, I,G〉,
where D is the domain file specifying the types, functions
and predicates required to describe the problem, and con-
taining the set of action schemas available to the planner. I
is the initial state, consisting of all the facts that are known
to be true when planning begins. G is the goal state, consist-
ing of the hard goal conditions that must be achieved by the
planner. The problem instance description varies, depend-
ing on the problem to be solved, while the domain is a fixed
description of what the planner can do to change the state
of the world.

A temporal planning problem is an extension of a plan-
ning problem in which actions have duration. An action, A,
is specified as having a start and an end, and the temporal
constraint, that the start precedes the end (Astart < Aend),

is always enforced. The duration of an action might be flex-
ible, so that the planner can choose it dynamically. Durative
actions can specify invariant conditions that must hold over
their entire interval. When durative actions are present, the
planner must maintain a simple temporal network (Dechter,
Meiri, and Pearl 1991) to enable the enforcement of tempo-
ral consistency during planning.

The actions used to model a domain usually encapsulate
a behaviour that is managed, in execution, by one or more
controllers, handling sensing and actuation to achieve a spe-
cific effect. The planner is concerned not with the execution
of actions, but their organisation into larger collections in
order to efficiently achieve a collection of goals. Thus, an
action to navigate between waypoints will be implemented
by controllers that attempt to use motors and localise via
sensing, while the planner is concerned with deciding which
locations to visit, for what purpose and in what order.

3 The Operational Context: Underwater
Maintenance and Inspection Tasks

In this paper, we focus on long-term maintenance and in-
spection of underwater installations, using an Autonomous
Underwater Vehicle (AUV). This work was carried out in
the EU FP7 project, PANDORA1. The PANDORA project
explored the achievement of persistent autonomy, through
planning, task learning, plan execution within resource lim-
its and adaptive response to unanticipated events.

The PANDORA project considers an underwater oil in-
stallation, consisting of manifolds, pipelines, valves and
welds, requiring regular inspection and maintenance. The
installation must be maintained over long periods, such as
days or weeks, without human intervention. Because of en-
ergy and time constraints, mission plans must ensure that the
best use is made of limited resources such as on-board en-
ergy. The situation is complicated by the fact that environ-
mental conditions (such as currents and marine life) might
affect how long tasks take to complete, and when they are
available for completion. There is also uncertainty, both in
the layout of the installation and the condition of its compo-
nents (both of which might have changed since the construc-
tion of the installation).

The overall objective of the PANDORA project is for a
suitably equipped AUV to: (i) construct long-term mission
plans to ensure an effective monitoring of the site over time,
and (ii) to execute the operations in these mission plans
whilst managing uncertainty and responding to unexpected
events. The AUV is equipped with a retractable gripper for
turning valves, and a water jet for cleaning.

The daily operations to be performed by the AUV in-
clude: inspecting pillars, manifolds, welds and pipelines,
reading valve-sensors, turning valves, cleaning components
exposed to bio-fouling, and updating the mapped layout of
the site. This latter task involves investigating objects that
appear in unexpected locations, such as collapsed pillars,
buried chains and pipeline segments, and other phenomena
that could affect the welfare of the installation.

1http://persistentautonomy.com/



4 Opportunistic Planning
During the execution of a plan by an AUV, unexpected
events might occur that provide opportunities for the vehi-
cle to increase the overall utility of its operations. An ex-
ample is that a part-submerged section of an anchor chain,
or other structure, might be spotted during the execution of
a mission. This event provides an opportunity to perform
an unplanned inspection, or chain-following activity, pro-
vided that resources permit the execution of the necessary
extra actions. Opportunities are not modelled or anticipated
by the planner, and they can be managed without requiring
the planner to reason with probabilities. They can be treated
as dynamically occurring soft goals. These are distinguished
from the goals specified in the problem instance description,
which are treated as hard goals that must be satisfied.

To manage unexpected opportunities within a determin-
istic planning framework, we use a conservative planning
approach. Conservative planning is a method that seeks to
exploit the classical planning framework, while simultane-
ously recognising the underlying, but unknown, stochastic
behaviour of the execution environment. This means that
well-researched methods in temporal-metric planning can be
exploited. In this approach, rather than seeking to produce a
plan with optimal utility, we seek to produce a robust plan,
in which we can have very high confidence that the goals
will be achieved within the time and energy budget of the
vehicle. We then use opportunities to increase the utility of
the plan during its execution.

To construct the mission plans, we use the POPF
planner (Coles et al. 2010), which takes planning do-
main models written in the temporal planning language
PDDL2.2 (Edelkamp and Hoffmann 2004). A temporal
planner is required because the valve-turning tasks impose
temporal constraints. They are constrained to be turned
within specified time windows. For example, in a given mis-
sion it might be necessary to reset a valve within a one-
hour window timed to occur six hours into the future from
the start of the plan. These constraints necessitate reasoning
with deadlines and synchronisation of activities. Thus, al-
though we consider only a single AUV executing actions in
sequence, and therefore no concurrent activity, these dead-
lines raise synchronisation issues which make online meth-
ods such as the online receding horizon approach (Burns et
al. 2012; Ross et al. 2008) impractical.

We assume that opportunities are rare, but offer high util-
ity gain when they are spotted and exploited. Thus, op-
portunities in this framework are somewhat similar to high
impact, low probability events (HILPs) (Lee, Preston, and
Green 2011), although in this setting we are considering
rare events with a positive value, while HILPs are typically
treated as risks that threaten execution. We further assume
that the probability density function governing the distribu-
tion of these opportunities in the physical space is unknown,
so we cannot plan to anticipate them or determine their ex-
pected utility.

Our conservative planning strategy is based on the as-
sumption that, when executed, the actions in a plan will have
durations that are normally distributed around their means,
and that actions will in fact take much longer than their mean

durations. To build a robust plan we therefore use estimated
durations for the actions that are longer than the means. For
example, to have 95% confidence, we use 1.65 standard de-
viations from their means as the estimated durations of the
actions. 1.65 standard deviations from the mean is the 95th
percentile of the Gaussian distribution.

As a plan containing multiple actions is executed, the use
of the 95th percentile as an estimate for the nominal ex-
ecution time of each action leads to an accumulating ex-
pected error. So, if k actions all with independently dis-
tributed mean execution times m and standard deviations s
are executed in sequence, the sum of the estimated durations
will yield a total time for execution of k(m + 1.65s). The
time actually required to achieve the 95th percentile for the
combined sequence of actions is only km+1.65s

√
k, show-

ing that the estimate based on individual 95th percentiles
yields a 1.65s(k −

√
k) over-estimate of the time required

for 95% confidence in execution of the entire sequence. Our
proposed opportunistic planning method is designed to ex-
ploit this over-estimate for other tasks that arise opportunis-
tically.

As a practical example, suppose that navigating the tra-
verse between two waypoints on the installation has a mean
time of 11,507 seconds (3.2 hours), and a standard devia-
tion of 925 seconds (about 15 minutes). If 5 successive tra-
verses between waypoints are to be executed, the use of the
nominal time estimates will yield an estimated duration of
65,166 seconds (about 18 hours). The 95th percentile for the
estimated duration of the combined sequence is 60,948 sec-
onds, so using the 95th percentile for nominalisation will
lead to an expected overestimate for the execution time of
4,218 seconds: just over an hour, which is about 7% of the
95th percentile time for the execution of the complete se-
quence.

Opportunities can only be spotted and exploited during
the execution of preemptible actions, or at points between
the execution of actions. In our application, the only pre-
emptible actions are the navigation actions (of different
types, corresponding to different modes of movement). We
consider opportunities that are physically located in space,
so it is generally the case that they will arise during move-
ment between locations, when large areas are scanned as part
of the navigation action.

With these points in mind, the opportunistic planning
problem is as follows:

• The problem is a temporal planning problem, with deter-
ministic actions and a collection of hard goals specified in
the problem instance description.

• The problem exists in a 3-dimensional space, with tasks
requiring the executive to perform actions at particular lo-
cations and actions allowing the executive to move be-
tween locations (possibly in more than one way).

• The initial state is uncertain in a limited way: there is
a possibility that, at random locations, instances of ob-
jects exist that offer high reward if certain actions are per-
formed at their locations, but their existence and locations
are not known to the planner. There is also uncertainty



about whether these objects will be observed, even if the
executive passes close to them.

• Although the probability distribution of opportunities is
unknown, it is assumed that they are rare and it is there-
fore entirely likely that the plan for the original goals will
be completely executed without an opportunity ever being
encountered.

• The executive is required to satisfy the hard goals of the
original problem, and to collect as much reward as pos-
sible from opportunities, given that the hard goals are
achieved.

Since the durations of actions can be longer than ex-
pected, the goals might not be achieved when executing a
plan that is expected to satisfy them, due to failure to meet
deadlines. In fact, during execution actions can fail for var-
ious reasons and the goals might become unachievable as a
consequence. In this paper we do not focus on what happens
when actions fail. Instead, we are interested in the possibil-
ity that a conservative assumption about the time required to
execute actions used in the original plan might lead to slack
time that can be used to pursue opportunities.

In this paper we formalise the opportunistic planning
problem, we propose a way to obtain good quality solutions
to it and we compare the proposed approach with the simple
alternative to replan whenever the observed state diverges
from the predicted state during execution.

5 The Opportunistic Planning Model
We present a formal description of the opportunistic plan-
ning problem. We assume that P is a temporal planning
problem, consisting of a domain and a problem instance, ex-
pressible in PDDL2.2 (Edelkamp and Hoffmann 2004). The
domain provides a finite, enumerated type representing lo-
cations, W , in a 3-dimensional space. In the PDDL family of
languages, the members of this type are all explicitly named
in the definition of the planning problem instance. We sup-
pose that P represents a problem in which goals are associ-
ated with locations (for example, pillars are located at way-
points), so that the executive must visit those locations in
order to complete the achievement of the goals. We further
suppose that the domain file of P contains at least one ac-
tion schema that allows an executive to move between loca-
tions (possibly subject to accessibility constraints, restrict-
ing which pairs of locations are directly connected).

Definition 4 An opportunity is a tuple, 〈T,Og, U〉, where
T is the name of a PDDL enumerated type in P , (x, y, z);
Og is a goal, with one free variable, v of type T ; and U is a
utility value in R. The goal Og[v] is called an opportunistic
goal.

An opportunity is a soft goal schema that is associated
with objects of a particular type, T , appearing in the domain
of P . The idea is that instances of T can be discovered and
added to the world during plan execution, each leading to
the creation of a new soft goal by instantiation of free vari-
able v in the opportunistic goal, Og. For example, Og might
be an inspection goal, and v might be instantiated by the
object “pillarA” of type Pillar, resulting in a new soft goal

to have inspected pillarA. In this work, we assume that soft
goals always correspond to performing operations on single
objects. An opportunistic planning domain consists of the
original domain, P , and a collection of opportunities.

In a real world situation, opportunities are distributed in
some way around the physical area being explored. In a sim-
ulation, they can be placed randomly around in the space. In
both cases, they exist to be discovered, but are not modelled
by the planner. They arise when new objects are identified
at locations that may have been previously unmapped and
inaccessible. If an opportunity is present, it can only be dis-
covered if the executive passes within sensing distance of its
location (a distance dependent on the type and effectiveness
of sensors available) and with some associated probability,
which is unknown.

The modelling language PDDL2.2 provides a feature
called Timed initial literals (TILs) which record, in the prob-
lem instance description, time windows during which goals
are achievable.

Definition 5 An opportunistic planning problem is a tu-
ple 〈P, I,G,A,Opps,R〉, where P is a temporal planning
problem (as described above), I is the initial state (including
timed initial literals that determine deadlines for goals), G
is a set of hard goals (they must all be achieved in any goal
state), A is a distinguished subset of actions in P that are
preemptible, Opps is a set of opportunities, and R is a func-
tion giving the mean and standard deviation of the duration
of any grounded instance of an action in P . The durations
of action instances are specified at the 95th percentile of the
distributions whose parameters R reports.

If an opportunity is discovered, replanning is initiated and
an extended initial state is constructed. If the opportunity is
discovered at time t, the TILs in the extended initial state
must be displaced by t (to allow for the time that has passed
since the start of execution). Any TIL with time earlier than t
are discarded and those later than t have their times reduced
by t. We call these time-corrected TILs. For example, con-
sider a TIL with an original time of t, when replanning is
initiated 30 minutes into the execution of the plan. The TIL
t occurs at (t − 30) minutes from the extended initial state.
Hence, the time of the time-corrected TIL is (t− 30).

Definition 6 A monotonic extension of an initial state de-
scription, I , extends I with a new collection of objects and
waypoints, O = {o : T} ∪ {w : W} and facts F , such that
each f ∈ F includes at least one object in O, and new soft
goals Og, formed by grounding the opportunities associated
with type T using objects in O. Connectivity is added, link-
ing the new waypoints so that the newly added opportunity
can be reached. The extended initial state, I ′, adds O to the
objects in I and records the opportunity utility as a reward
for actions achieving goals in Og. I ′ contains all the facts
and time-corrected TILs in I as well as facts F .

The extended initial state will locate discovered opportu-
nities at new locations and new paths will be available by
which they can be accessed. According to the topography of
the space, some paths might require additional intermediate
locations to have been added to the state.



Definition 7 An opportunistic plan fragment in state S is
a plan constructed to achieve a grounded opportunistic goal
from state S.

Our approach integrates opportunistic plan fragments
with the original plan, in order to exploit an opportunity
within the context of achieving the hard goal set. Oppor-
tunistic plan fragments, once integrated with a plan, can be
visualised as sub-plans (which might be long chains of ac-
tions) that branch off from the main plan trajectory, finally
returning to the main plan at a point enabling its continued
execution to result in the achievement of the hard goal set.
The means by which this integration is achieved is discussed
in Section 7.

6 Relationship to other Probabilistic Models
Earlier work (Fox and Long 2002; Gough, Fox, and Long
2004) explores a different model of opportunities in which
the opportunities and their locations are known in advance
of starting the execution of the plan. Opportunistic plan frag-
ments are computed offline, and executed online if their re-
source requirements are met. Woods et al. (Woods et al.
2009) assume that the types of opportunities that can arise
are known, and that all opportunities of the same type can
be exploited by the same opportunistic plan fragment. Plan
fragments are precomputed and stored in a plan library. The
relevant plan fragment is then inserted into the plan when-
ever an opportunity of its type is identified, and resources
allow.

The opportunistic planning problem can be seen as a spe-
cial case of a Partially-Observable Markov Decision Prob-
lem (POMDP), with an infinite state space (due to the con-
tinuous 3-dimensional distribution of locations of possible
opportunities). A general solution to such a problem is a pol-
icy, mapping each possible state to an action. If the probabil-
ity distribution over the opportunity space were known, the
problem could be modelled as an explicit POMDP (Kael-
bling, Littman, and Cassandra 1995b). Whether or not to
pursue an opportunity in a certain belief state amounts to
whether the expected utility of pursuing the opportunity, in
addition to achieving the hard goal set, all within the re-
source envelope available, exceeds the expected utility of
completing the current plan under execution with lower re-
source pressure. The problem can be modelled but, even
with recent work on improving efficiency (Ong et al. 2009;
Pineau, Gordon, and Thrun 2006b; Ross et al. 2008), the
decision-theoretic approach will not scale to the sizes of
problems that arise in practical applications. Moreover, the
offline decision-theoretic reasoning cannot be done at all in
the absence of knowledge about the probability distribution
over the opportunity space. A further problem in creating
a POMDP model is that states must record histories in or-
der to capture the fact that repeated observations of a part of
the physical space do not have independent probabilities of
leading to discovery of an opportunity: if nothing is seen on
one observation, then the probability that there is anything
there to be seen is much lower. Finally, the continuous space
presents a very significant challenge in representing the state
space, since we cannot know in advance which locations are

of interest, or, therefore, which areas of the space might be
observed or even become accessible.

Although a POMDP model appears very difficult to re-
alise and a full policy impossible to achieve with current ap-
proaches, a partial policy might be more tractable. One pos-
sible partial policy structure is a contingent plan in which
alternative branches are built explicitly into the plan struc-
ture (Pryor and Collins 1996; Drummond, Bresina, and
Swanson 1994). Contingent planning is very expensive, so
various methods have attempted to limit the number of con-
tingent branches constructed. In particular, Coles (Coles
2012) considers over-subscription planning with resource
uncertainty. In her approach, the configuration of the world
and all goals, including opportunities and their locations, are
known in the initial state, which makes it unsuitable for tack-
ling the problem we have characterised.

Burns et al (Burns et al. 2012) use an online receding hori-
zon approach to consider anticipatory on-line planning in
which plans take into account goals that are likely to arise,
in order to be better prepared for achieving them efficiently.
This is a relevant idea, but the difficulty in applying it to the
problem we present is that, in our model, opportunities are
assumed to be rare, making it unlikely that investment of re-
source in searching for an opportunity, rather than in simply
completing the main mission goals, will pay dividends.

All of these approaches rely on some knowledge of the
PDF over opportunities. By contrast, replanning does not re-
quire any knowledge about probability distributions, either
over the opportunity space or over the use of resources by
actions. In a reactive online method, a replanning strategy
responds to an opportunity by throwing away the plan un-
der execution, and building a new, conservative, plan for the
union of the hard goal set and the opportunity. It then exe-
cutes this plan instead, whenever its available resources are
sufficient to achieve the new goal set.

Replanning is therefore a plausible approach to our prob-
lem. However, we hypothesise that replanning will be un-
necessarily expensive, because it will replan parts of the
problem for which there is already a detailed, and resource-
valid, plan structure in place.

7 The Proposed Approach
We propose an approach to solving the opportunistic plan-
ning problem (Definition 5) as described in Section 5. Our
approach tackles opportunities (Definition 4) by inserting
opportunistic plan fragments (Definition 7) into an existing
robust plan, generated using conservative planning.

In our implementation of opportunistic planning, we con-
sider the distributions of the action durations and plan at the
95th percentiles of these distributions. This provides a sta-
ble baseline for robust confidence in the completion of the
plan. Conservative planning seems an inefficient way of al-
locating time to tasks, but this apparent inefficiency is offset
by the fact that plan utility is likely to be improved upon
at execution time. The executive may decide to use any re-
source gained during execution to carry out extra tasks, such
as pursuing opportunities, on top of the basic plan.

We manage execution of an opportunistic plan via the use
of an execution stack. When a decision is made to pursue



an opportunity, the tail of the executing plan is pushed onto
the stack. The initial state is monotonically extended (Defi-
nition 6) and replanning is initiated so that an opportunistic
plan fragment is constructed. As long as this successfully
completes within the planning time bound, and the resulting
plan fragment can be executed within allocated resources,
execution of the opportunistic plan fragment begins. When
the opportunistic plan fragment has finished executing, the
remainder of the main plan is popped off the stack, and its
execution is then resumed. With this execution method, it is
possible for an opportunistic plan fragment under execution
to be suspended and stacked, if a new opportunity is detected
during its execution. This is illustrated in figure 2.

When an opportunistic plan fragment is incorporated,
some steps from the main plan might become redundant.
In this case, some reasoning is needed to return to the
latest possible state on the main plan trajectory (obviat-
ing as many redundant steps as possible). There is much
work on the task of plan merging, e.g. (Alami et al. 1998;
Alami, Ingrand, and Qutub 1998). In our approach we sim-
ply prune redundant steps and insert the plan fragment. In
particular, when an opportunity is planned, the main plan
suffix is pruned by removing all of the navigation actions at
the front of the suffix. Figure 1, part (a), shows an oppor-
tunistic plan fragment that has been inserted into the plan,
while part (b) shows the structure of a contingent branching
plan. It can be seen that, in principle, opportunistic planning
explores many fewer states.

(a)

(b)

Figure 1: (a) The main plan with an opportunistic plan frag-
ment attached. The fragment rejoins the plan suffix at the
first necessary point for completion of the hard goal set. (b)
The structure of a contingent plan. Each branch leads to a
different goal set, depending on resource availability at the
branch nodes.

7.1 The Implementation
In our implementation, the types of opportunities that can
be identified are inspections and investigations. In particu-

Figure 2: Plan execution with opportunity insertion. Actions
2, 3, and 4 of the main plan are navigation actions (or more
generally ”support actions”) which are subsumed by the op-
portunistic plan fragment, and may be skipped. The oppor-
tunistic plan achieves the ”weakest preconditions” of the tail
end of the main plan, while adhering to the deadline con-
straints.

lar, we restrict our attention to pillar inspections and a par-
ticular kind of investigation called chain-following. New ob-
jects of types Chain and Pillar are detected during AUV op-
erations. When a new object is spotted, a new opportunity
is created, by instantiating the corresponding opportunistic
goal, as described in definition 4. The consequent construc-
tion processes, by which the extended initial state and the
new soft goal are set up, are described in Definition 6. Our
implementation of the Opportunistic Planning method be-
haves as follows, and is detailed in Algorithm 1:

• construct a sequential strategic plan to achieve the goal set
(top level missions) within a conservative resource bound;

• start executing that plan under operational control, keep-
ing track of unspent resources;

• branch off the plan to handle an opportunity within the
unspent resource bound, storing the plan suffix (this is re-
cursive);

• return to the plan suffix as soon as possible.

The execution of this algorithm, showing the management
of the plan stack, is shown in Figure 3.

A limitation of our approach so far is that we treat navi-
gation actions as different from any other actions. They are
only needed to move the AUV to places where tasks can be
done, and are never in the plan to achieve top-level goals.
They can therefore always be safely removed from the suf-
fix as long as we can reach the next interesting waypoint
after completion of an opportunistic plan fragment. Integrat-



Figure 3: The execution of the algorithm, showing how plan suffixes are stacked. We start at the currently executing plan. When
an opportunity is detected, the support actions are pruned and the plan suffix is stacked. Then we plan for the opportunity. If
the opportunistic planning is successful, then the opportunistic plan becomes the new currently executing plan, otherwise the
support actions are executed.

ing opportunistic plan fragments becomes more complex if
other actions are preemptible, and we will consider such ex-
tensions in our further work.

In Algorithm 1:

• input: time limit in seconds, missionID identifies the mis-
sion goals;

• line 1: now() is the current time. (at AUV MissionEnd-
Point) is included as a goal;

• line 3: replanRequested can be set true by external pro-
cesses;

• line 12: We set by hand which actions can dispatch early
(all except for turn valve);

• line 16: AUVs are busy while still executing an action;
• line 18: An action’s default timeout can be chosen per op-

erator, either as duration*T for some T, or duration+T for
some other T;

• line 22: opportunistic plan requested is a communication
variable that is declared and initialised externally, and
then set true by an external process;

• lines 26-29: These lines find the finishing location for the
opportunistic plan, and remove the “goto” actions from
the parent plan;

• line 32: If the opportunistic mission was not possible, then
the “goto” actions are reinserted at the start.

A final point about the implementation is that we do not
currently use the utility component of an opportunity. This is
because we have restricted the system to detecting and con-
sidering only one opportunity at a time, and an opportunity
will always be pursued if time and resources allow. However,
in general there might be several opportunities available, in
which case a means is required for distinguishing them. Util-
ity provides a way in which opportunities can be ranked for
consideration. One approach would be to rank the opportu-
nities by utility, then execute the first one in the ranking that

fits into the available time and resources. Again, this is a
topic for future work.

8 Experiments
Our hypothesis is that the opportunistic planning approach,
just described, is more efficient than replanning the entire
hard and soft goal set every time a new soft goal is identified.
This might seem to be a “straw man” comparison, because
it might seem obvious that replanning is apparently facing
a much harder challenge than that oof planning to achieve
a local opportunity within a well-defined context. However,
this is not always the case. When replanning, the planner
throws away all of the constraints of the defunct plan and has
complete freedom about the timing of activities, as long as
they fit within their respective time windows. This allows the
planner to optimise activity around deadlines. By contrast,
opportunistic planning has to fit all activity into the local
time and resource envelopes of the global plan, which neces-
sitates a myopic approach to opportunities (now or never),
and might be over-constraining.

We therefore contrast our approach with a replanning
method, to identify whether we gain any significant advan-
tage, in terms of overall plan utility and resources spent plan-
ning, from the opportunistic approach.

In the case where no opportunity is observed during exe-
cution, the replanning strategy and the opportunistic plan-
ning strategy will both simply execute the main plan to
achieve the hard goals, with no deviation (except in response
to plan failure, which we ignore here). Therefore, the differ-
ences lie only at the point where an opportunity is discov-
ered. In the replanning case, we construct a new initial state
and replan for the entire goal set. In the opportunistic plan-
ning case, we plan only for the opportunity, together with a
goal to return to the start of the plan suffix. Both approaches
begin by constructing the monotonically extended initial and
goal states. The opportunistic approach benefits from what
is usually a simpler planning problem in exchange for los-



Algorithm 1: opportunisticPlanningMethod
input : timelimit : Int, missionID : Int, missionEndPoint :

Waypoint
output : boolean

1 problem← generateProblemFile(now(), missionID,
missionEndPoint);

2 plan← makePlan(problem);
3 replanRequested← false;
4 freeTime← 0;
5 if plan.length() > timelimit then
6 return false;
7 end
8 else
9 while plan.length() > 0 do

10 currentAction← plan.pop();
11 dispatchTime← currentAction.dispatchTime;
12 if !canDispatchEarly(currentAction) and

now() < dispatchTime and !replanRequested then
13 wait();
14 end
15 currentAUV← currentAction.AUV;
16 while AUV.isBusy() and !replanRequested do
17 wait();
18 if now() > currentAction.timeout then
19 dispatch(cancelAction);
20 replanRequested← true;
21 end
22 if opportunistic plan requested then
23 opportunistic plan requested← false;
24 currentEndPoint←

currentLocation();
25 prunedActions← {};
26 while plan.first() == ”goto” do
27 currentEndPoint←

plan.first().destination;
28 prunedActions.push back(plan.pop());

29 end
30 plans.push back(plan);
31 if

!opportunisticPlanningMethod(freeTime,
opportunisticMissionID, currentEndPoint)
then

32 plans.insert(prunedActions, 0);
33 end
34 plans.pop(plan);
35 end
36 end
37 if !replanRequested then
38 dispatch(currentAction);
39 freeTime← now() - dispatchTime;
40 end
41 else
42 replanRequested← false;
43 problem←

generateProblemFile(now());
44 plan← makePlan(problem)
45 end
46 end
47 end
48 return true

ing the possibility of finding a better plan by exploiting the
remaining resources to achieve the opportunity and original
goals together. Our experiments consider the situation at a
point at which an opportunity has been discovered.

We perform the comparison by setting up a main mission,
with hard goals, and an opportunity. The main mission is
taken to be a valve-turning mission, possibly involving many
valves, and the opportunity mission is an inspection (we do
not consider investigations in this experiment). In the valve-
turning mission, the AUV is required to approach and set
two valves within a deadline. The effect of setting a dead-
line is to bound the resource available for exploiting oppor-
tunities. The inspection mission is not time-limited. When it
arises as an opportunity, a plan to exploit it must fit within
the available resource envelope. Inspection missions are of
several sizes, ranging between 2 and 32 inspection points.

In our simulation, the main mission elements and the op-
portunities are located within an area 50m by 50m and set at
least 5m apart. They are positioned successively, with uni-
form probability over the available area. The deadlines for
valves are set to different values, making the planning prob-
lems harder as the deadlines are tightened. The opportunistic
planning strategy requires the opportunity to be exploited
within the free resource window, before the completion of
other mission components. The replanning strategy does not
require this, but both strategies require the overall plan to be
completed by the mission deadline.

In Table 1 we report our results for a collection of ran-
domly generated problem instances. The opportunistic plan-
ner is given 10 seconds to solve the problem. In general, the
window of opportunity is short, partly because it is most of-
ten the case that we will discover an opportunity while navi-
gating, in which case we do not want to stop the vehicle un-
less we decide to pursue the opportunity, and partly because
the energy and computational resources on board the AUV
is limited. It is also important that the time taken evaluat-
ing an opportunity should not be significant compared with
execution time of actions, otherwise we endanger the main
mission itself by wasting resources on multiple opportunity
evaluations. This latter problem arises if the signal process-
ing that leads to recognition of an opportunity is unable to
determine that multiple sightings of the same object are ac-
tually not distinct opportunities.

The replanning strategy was allowed 30 minutes of CPU
time to generate a best possible plan. We report the best plan
found in that time, with the time it took to find that plan
(POPF2 uses an anytime strategy of plan improvement, re-
porting plans as they are found).

The bolded results are the cases in which the combined
mission is solvable with a higher quality solution within the
30 minute bound. In four of these cases, the replanning strat-
egy would outperform the opportunistic strategy, but in the
bold and italicised case, the plan takes so long to find that
the combined planning and execution time exceeds the time
available for the complete plan. Indeed, in almost all cases,
the complete plan is so much longer than the opportunistic
plan that it would not be possible to complete within the du-
ration of the intended mission time for the whole problem.

Part of the difficulty for the replanning strategy arises



from the forward search paradigm of POPF2. The existence
of deadlines leads to the planner pushing activity later along
the time line than is appropriate and it fails to search the parts
of the search space in which the short plans exist. In future
work we will explore alternative temporal planning strate-
gies in order to better understand the impact of this planning
artefact on the qualit of the plans.

In one of our test cases the opportunistic planner failed to
find a plan within 10 seconds, so the plan reverts to the main
mission plan. In this case, the replanning strategy takes 3
minutes to find a plan that is far too long to be used in place
of the main mission plan, so this represents a waste of the
time spent in this attempt.

These results show very clearly that the cost of a com-
plete replan is much higher than the cost of planning for an
opportunity alone. Even though planning for the combined
mission should offer, in principle, a chance to find a better
quality solution than the one found by simply linking the
opportunistic plan fragment to the front of the existing plan,
the reality is that it is very hard to achieve this. A more ca-
pable planning strategy might be more successful in finding
better plans, but the time taken to do so would certainly be
far greater than the time required to find the opportunistic
plan. Each such plan construction attempt spends the very
resource that is required to exploit the opportunity itself, so
it is an impractical approach to repeatedly evaluate opportu-
nities by using a full replanning approach.

9 Conclusions and Future Work
In this paper we have defined the concept of opportunistic
planning, a method for robust planning and plan execution
under limited uncertainty. We have presented a fully imple-
mented method for opportunistic planning of missions and
the interleaving of mission execution with utility-increasing
opportunities. The results of our experiments show that op-
portunistic planning is a good compromise between scala-
bility and robustness, allowing the practical management of
uncertainty. We have demonstrated that, in terms of time to
plan and resulting plan utility, opportunistic planning signif-
icantly outperforms a replanning method.

In this paper we focus on long-term maintenance and in-
spection of underwater installations, using an Autonomous
Underwater Vehicle (AUV). The locality of goals and the
presence of low probability/high-reward opportunities make
this domain an ideal target for the opportunistic planning
technique. These aspects are also present in many other
robotics domains (e.g. ground robots for disaster recovery).
One avenue of future work is to investigate other types of
scenario, to discover how the opportunistic planning ap-
proach could be generalised to other planning domains.

Our current approach to opportunistic planning demon-
strates improvements over a replanning strategy, but has
some limitations. In particular: we do not evaluate the ex-
pected gain, in terms of accumulated resource, of reducing
our confidence in achievement of the hard goal set. For ex-
ample if, at some point p, into the execution of a plan, we
are willing to reduce our confidence in successful execution
of the plan suffix to the 94th percentile, how much resource
could we save for spending on an opportunity spotted at p?

As an alternative to allowing the expected accumulation
of resources following the execution of a sequence of ac-
tions it would be possible to adjust the sum of the nominal
durations to account for the length of the sequence. So, for k
actions each with identical mean and standard deviation, the
nominal durations can be reduced to m+ 1.65s√

k
.

More generally, where several actions are sequenced to
achieve a goal it is possible to discount the sum of the nomi-
nal durations to allow for the expected accumulated benefits
of using the 95th percentile as the nominal durations of the
individual components.

In our future work we intend to experiment with trading
off confidence against utility, by doing this reasoning online
at the point at which we have evaluated an opportunity. The
actions in the plan suffix are not changed, but the confidence
in completing it successfully is traded for the benefits of the
opportunity. For a very high value opportunity it might even
be worth, in order to free up more resource, requesting the
sacrifice of a component mission from the command level
planner.
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Mission Opp plan Full replan Plan duration
Main Opp time time Opp Mission Complete Opp Plan Replanned plan
V2 400 I 16 0.36 38.18 851.384 1265.032 2437.496
V2 500 I 16 5.54 7.46 1541.168 2076.155 2596.156
V2 600 I 16 5.34 7.28 1541.168 2117.136 2269.701
V2 700 I 16 5.32 9.56 1541.168 2117.136 2283.134
V2 800 I 16 5.38 6.24 1541.168 2117.136 2048.833
V2 900 I 16 5.4 9.16 1541.168 2117.136 1900.069
V2 1000 I 16 0.38 21.42 851.384 1265.032 2615.245
V2 1100 I 16 0.34 7.28 888.554 1302.202 2048.833
V2 1200 I 16 2.4 11.9 1440.568 1854.216 2511.960
V2 1300 I 16 0.36 6.34 851.384 1265.032 2772.985
V2 1400 I 16 0.42 6.28 851.384 1265.032 2772.985
V2 1500 I 16 0.34 7.82 851.384 1265.032 2946.391
V2 1600 I 16 0.38 14.54 851.384 1265.032 2175.901
V2 1700 I 16 0.4 15.6 851.384 1265.032 2897.665
V2 1800 I 16 0.42 6.24 851.384 1265.032 2772.985
V2 1900 I 16 0.38 6.44 851.384 1265.032 2772.985
V2 2000 I 16 0.36 2.62 851.384 1265.032 2490.490
V2 400 I 32 5.08 148.17 2233.961 2564.254 3531.784
V2 500 I 32 2.2 165.62 1768.98 2129.213 5332.514
V2 600 I 32 3.7 78.19 1777.177 2137.41 3623.974
V2 700 I 32 4.08 272.84 1815.849 2176.082 4877.45
V2 1000 I 32 4.66 104.04 2686.638 3093.992 4263.605
V2 2000 I 32 4.32 100.16 2457.922 2865.276 3778.601
V2 2500 I 32 4.67 68.78 2457.922 2865.276 4212.37
V2 3000 I 32 4.36 132.32 2469.124 2876.478 3948.493
V2 3500 I 32 4.21 119.14 1861.244 2191.537 4925.07
V2 5000 I 32 5.16 81.04 1997.34 2327.633 5460.531
V2 1000 I 2 0.02 3.36 141.138 678.167 580.58
V2 1000 I 6 0.06 182.02 374.415 911.444 774.337
V2 1000 I 8 0.06 4.82 504.346 863.481 977.001
V2 1000 I 10 0.1 135.62 582.795 1017.846 1383.791
V2 2000 I 10 0.1 7.44 700.198 1294.007 1585.303
V2 2000 I 12 0.14 3.38 772.926 1545.852 1414.551
V2 2000 I 14 0.14 3.70 675.458 1141.406 2040.448
V2 2000 I 16 0.14 2.60 676.458 1142.406 2490.490
V2 2000 I 18 0.18 44.68 878.395 1470.264 3116.591
V2 2000 I 20 0.44 15.18 1231.22 1767.021 3358.226
V2 2000 I 22 1.08 17.42 1752.10 2152.423 4114.774
V2 2000 I 24 0.98 34.48 1643.92 2017.172 2914.554
V2 2000 I 26 2.6 289.40 2141.87 2485.068 6029.480
V2 2000 I 28 3.38 265.72 3088.31 3667.984 5987.822
V2 2000 I 30 - 179.76 - 398.45 4187.185
V2 2000 I 32 4.14 218.74 2689.84 3057.283 4475.005
V2 2000 I 34 5.24 89.32 3125.49 3621.695 4615.062

Table 1: Table of experimental results. Planning time and plan durations are measured in seconds.


