

King’s Research Portal

Document Version
Publisher's PDF, also known as Version of record

Link to publication record in King's Research Portal

Citation for published version (APA):
Cashmore, M., Fox, M., Long, D., Magazzeni, D., Ridder, B. C., & Maurelli, F. (2015). Dynamically Extending
Planning Models using an Ontology. In Proceedings of the 2nd ICAPS Workshop on Planning and Robotics
(PlanRob-15) (pp. 79-85) https://www.cs.bgu.ac.il/~icaps15/workshops/PlanRob%202015%20-
%20Proceedings%20v5.pdf

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 06. Jan. 2025

https://kclpure.kcl.ac.uk/portal/en/publications/755f7048-f99b-4e2d-a69c-35ad83a4dda7
https://www.cs.bgu.ac.il/~icaps15/workshops/PlanRob%202015%20-%20Proceedings%20v5.pdf
https://www.cs.bgu.ac.il/~icaps15/workshops/PlanRob%202015%20-%20Proceedings%20v5.pdf

Research	 Workshop	 of	 the	
Israel	 Science	 Foundation

	 	 	 	 	 	 	 	 	

	

Proceedings of the 3rd Workshop on

Planning and Robotics
(PlanRob-15)

Edited By:

Alberto Finzi, Felix Ingrand, AndreA Orlandini

Jerusalem, Israel 7-8/6/2015

Organizing Commitee

Alberto Finzi
Federico II University, Naples, Italy

Felix Ingrand
LAAS-CNRS, Toulouse, France

AndreA Orlandini
National Research Council (CNR-ISTC), Rome, Italy

Program committee

Rachid Alami, LAAS-CNRS, France
Sara Bernardini, King's College, UK
Amedeo Cesta, CNR-ISTC, Italy
Marcelo Cirillo, Orebro University, Sweden
Alberto Finzi, Federico II University, Italy
Robert Fitch, University of Sydney, Australia
Maria Fox, King's College, UK
Malik Ghallab, LAAS-CNRS, France
Joachim Hertzberg, University of Osnabrueck, Germany
Felix Ingrand, LAAS-CNRS, France
Luca Iocchi, Sapienza University, Italy
Gal Kaminka, Bar Ilan University, Israel
Sven Koenig, University of Southern California, USA
Jonas Kvarnstrom, Linköpings University, Sweden
Daniele Magazzeni, King's College, UK
Daniele Nardi, Sapienza University, Italy
Goldie Nejat, Toronto University, Canada
AndreA Orlandini, CNR-ISTC, Italy
Federico Pecora, Orebro University, Sweden
Frederic Py, MBARI, USA
Maria Dolores Rodriguez Moreno, Alcala University, Spain
Enrico Scala, ANU Research School in Computer Science, Australia
Siddarth Srivastava, Berkeley University, USA
Florent Teichteil, Onera, France

Additional Reviewers:
Guglielmo Gemignani, Sapienza University, Italy
Uwe Köckemann, Orebro University, Sweden
Stefan Konecny, Orebro University, Sweden
Francesco Riccio, Sapienza University, Italy
Tansel Uras, University of South California, USA
	 	

Foreword

Robotics is one of the most appealing and natural applicative area for the
Planning and Scheduling (P&S) research activity, however, this potential
interest seems not reflected in an equally important research production for the
robotics community. On the other hand, the fast development of field and social
robotics applications poses planning as a central issue in the robotic research
with several real-world challenges for the planning community.

In this perspective, the goal of the PlanRob workshop is twofold. From one side,
it aims at providing a fresh impulse for the ICAPS community to recast its
interests towards robotics problems and applications. On the other side, its goal
is to attract representatives from the robotics community to discuss their
challenges related to planning for autonomous robots as well as their
expectations from the P&S community.

The workshop aims at constituting a stable, long-term establishment of a forum
on relevant topics concerned with the interactions between Robotics and P&S
communities presenting a stimulating environment where researchers could
discuss about the opportunities and challenges for P&S when applied to
Robotics.

Started during ICAPS 2013 in Rome (Italy) and followed by the second edition
at ICAPS 2014 in Portsmouth (NH, USA), the PlanRob WS series
(http://pst.istc.cnr.it/planrob/) has gathered very good feedback from the P&S
community which is also confirmed by the organization of a specific Robotics
Track at both ICAPS 2014 and ICAPS 2015 (this year chaired by Reid
Simmons and Micheal Beetz). This third edition of the PlanRob workshop has
been proposed again in synergy with this track to further enforce the original
goal and to maintain a more informal forum where also more
preliminary/visionary work can be discussed as well as more direct and open
interactions/discussions may find the right place.

In our opinion, PlanRob’15 succeeded in achieving these objectives. Indeed, 17
papers have been accepted for oral presentation covering many relevant topics
such as high-level task planning, task and motion planning, planning and
execution for robots, multi-robot framework, human-robot interaction,
benchmarking, etc. This seems to us a really good result for the workshop and,
overall, it confirms a good feedback from the ICAPS community (but not only)
on PlanRob topics.

Finally, two notable researchers have accepted our invitation to provide a
keynote talk and complete an already rich and interesting program: Reid
Simmons (Carnegie Mellon University - CMU) talking about multi-robot
coordination and robust autonomy and Steve Chien (Jet Propulsion Laboratory
NASA – JPL-NASA) talking about the use of constraint-based reasoning in the
Rosetta mission.

Alberto Finzi, Felix Ingrand and AndreA Orlandini

The PlanRob’15 Chairs

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

PlanRob 2015 is partially supported by the FourByThree project
(http://www.fourbythree.eu - EU H2020 G.A. FoF- 637095) and the SHERPA

project (http://www.sherpa-project.eu EU FP7 G.A. ICT-600958).

PlanRob 2015 Table of Contents

Table of Contents

Context and Constraint Reasoning

Estimating the Probability of Meeting a Deadline in Hierarchical Plans 1

Solomon Eyal Shimony, Gera Weiss and Liat Cohen

Task, motion and path planning

Planning with State Constraints and its Application to Combined Task and Motion
Planning . 13

Jonathan Ferrer-Mestres, Guillem Francès and Hector Geffner

Continuous Arvand: Motion Planning with Monte Carlo Random Walks 23

Weifeng Chen and Martin Müller

Motion Planning for Arrival Time and Velocity Requirements on Non-homogeneous Roads 35

Ty Nguyen and Tsz-Chiu Au

Frontier-Based RTDP: A New Approach to Solving the Robotic Adversarial Coverage
Problem . 44

Roi Yehoshua, Noa Agmon and Gal Kaminka

Benchmarking

A Framework for Performance Assessment of Autonomous Robotic Controllers 53

Pablo Muñoz, Amedeo Cesta, Andrea Orlandini and Maria D. R-Moreno

The RoboCup Logistics League as a Benchmark for Planning in Robotics 63

Tim Niemueller, Gerhard Lakemeyer and Alexander Ferrein

Context and Constraint Reasoning

Active Perception: Using Goal Context to Guide Sensing and Other Actions. 67

Andreas Hofmann and Paul Robertson

Dynamically Extending Planning Models using an Ontology . 79

Michael Cashmore, Maria Fox, Derek Long, Daniele Magazzeni, Bram Ridder and
Francesco Maurelli

Planning and Execution

Metareasoning for Concurrent Planning and Execution . 86

Dylan O’Ceallaigh and Wheeler Ruml

Robust Efficient Robot Planning through Varying Model Fidelity . 96

Breelyn Kane Styler and Reid Simmons

Mixed Discrete-Continuous Heuristic Generative Planning based on Flow Tubes
(extended version) . 106

Enrique Fernandez-Gonzalez, Erez Karpas and Brian Williams

Multi Robot framework

1

PlanRob 2015 Table of Contents

No robot is an island, no team an archipelago: Plan execution for cooperative
multi-robot teams . 116

Gal Kaminka

Goal Reasoning to Coordinate Robotic Teams for Disaster Relief . 127

Mark Roberts, Swaroop Vattam, Ron Alford, Bryan Auslander, Tom Apker, Benjamin
Johnson and David Aha

Human-Robot Interaction

Planning for Serendipity - Altruism in Human-Robot Cohabitation . 139

Tathagata Chakraborti, Gordon Briggs, Kartik Talamadupula, Matthias Scheutz,
David Smith and Subbarao Kambhampati

Planning with Stochastic Resource Profiles: An Application to Human-Robot
Co-habitation . 146

Tathagata Chakraborti, Yu Zhang, David Smith and Subbarao Kambhampati

Handling Advice in MDPs for Semi-Autonomous Systems . 153

Mouaddib Abdel-Illah, Laurent Jeanpierre and Shlomo Zilberstein

2

Estimating the Probability of Meeting a Deadline
in Hierarchical Plans

Liat Cohen and Solomon Eyal Shimony and Gera Weiss
Computer Science Department

Ben Gurion University of The Negev
Beer-Sheva, Israel 84105

{liati,shimony,geraw}@cs.bgu.ac.il

Abstract

Given a hierarchical plan with uncertain task times, or other
resource consumption, it is frequently of interest to compute
the probability that a given plan will satisfy a given deadline,
or resource limits. We show that this problem is NP-hard,
and provide a polynomial-time approximation algorithm for
it. We also show that computing the expected time of a task
network is NP-hard even though this problem is easy for both
sequence nodes and for parallel nodes. We examine the ap-
proximation bounds empirically and demonstrate where our
scheme is superior to sampling and to exact computation.

Introduction
Robotics systems typically have tasks that are described
hierarchically, and which can run concurrently. A com-
mon approach to describe the tasks is by using a Hier-
archical Task Network (HTN), and there exist planners
that automatically operate on such descriptions and gen-
erate hierarchical plans (Erol, Hendler, and Nau 1994;
Nau et al. 1998; 2003; Kelly, Botea, and Koenig 2008).
The work on the last DARPA Robotics Challenge (DRC,
www.darpa.mil/NewsEvents/Releases/2012/10/24.aspx) in
the ROBIL team highlighted the need for evaluating the de-
sirability of hierarchical plans in terms of resource consump-
tion, such as fuel, cost, or time. Once computed, these values
can be used to decide which of a set of plans, all of which are
valid as far as achieving the goal(s) are concerned, is better
given a user-specified utility function.

In the DRC and other semi-automated robotics tasks, this
information can be used to support runtime monitoring of
the resources. Then one can generate alerts to the execu-
tion software or human operator if resource consumption in
practice is far from the expected value, or has a high prob-
ability of surpassing a given threshold. Our ROBIL team
system had manually generated hierarchical plans. For ex-
ample, Figure 1, is a plan from DRC task description for the
(simulation phase) “pick-up” scenario. This plan describes
the steps needed to be taken by the robot in order to pick
up an object. In the figure, arrow-shaped boxes stand for
sequential tasks, parallelograms for parallel tasks, and rect-
angles for primitive tasks. A scheme for monitoring was
implemented using a simple sampling algorithm, which de-
livered answers on questions such as: “what is the probabil-
ity that this plan will complete execution in 5 minutes?” in

real-time. Due to the stochastic nature of the algorithm, the
results were unstable, and the question of whether this can
be done deterministically, the focus of this paper, was raised.

We assume here that a hierarchical plan is given, where
the resource consumption of the primitive actions in the net-
work is uncertain and provided as a probability distribution.
The problem is to compute a property of interest of the distri-
bution for the entire task network, such as expected resource
consumption of the entire plan, or the probability that the en-
tire plan’s execution can be completed before a given dead-
line. While most tools aim at good average performance of
the plan, in which case one may ignore the full distribution
and consider only the expected resource consumption (Bon-
fietti, Lombardi, and Milano 2014), our paper focuses on
providing guarantees for the probability of meeting dead-
lines. Since in the above-mentioned applications for these
computations, one needs results in real-time (for monitor-
ing) or multiple such computations (in comparing candidate
plans), efficient computation here is crucial, and more im-
portant than in, e.g. off-line planning.

Task descriptions may contain various parameters and
other complications (Erol, Hendler, and Nau 1994; Nau et al.
1998). For the sake of simplicity, we will assume that there
is only one resource of interest, such as execution time; and
that we are given a fully instantiated plan, abstracting away
from the complex task descriptions. Distributions over the
execution time of each primitive task are provided as input.
We allow tasks to be run either in sequence, or in parallel
(also called “concurrent” tasks (Gabaldon 2002)). Under
the simplifying assumptions we make (see problem state-
ment section), the problems we need to solve entail comput-
ing a representation of the distribution for a sum of random
variables (due to the tasks in sequence), as well as that of a
maximum of random variables (due to the tasks in parallel).

In this paper, we focus on the issue of probability of sat-
isfying a deadline. We show that computing this probability
is NP-hard even for the simple sum of independent random
variables, the first contribution of this paper. A determin-
istic polynomial-time approximation scheme for this prob-
lem is proposed, the second contribution of this paper. Error
bounds are analyzed and are shown to be tight. For discrete
random variables with finite support, finding the distribution
of the maximum can be done in low-order polynomial time.
However, when compounded with errors generated due to

PlanRob 2015

1

Figure 1: A plan for Pick-Up challenge task, 18 nodes

approximation in subtrees, handling this case requires care-
ful analysis of the resulting error. The approximations devel-
oped for both sequence and parallel nodes are combined into
an overall algorithm for task trees, with an analysis of the
resulting error bounds, yielding a polynomial-time (additive
error) approximation scheme for computing the probability
of satisfying a deadline for the complete network, another
contribution of this paper.

We also briefly consider computing expected completion
time. Since for discrete random variables, in parallel nodes
one can compute an exact distribution efficiently, it is easy to
compute an expected completion time in this case as well as
for sequence nodes. Despite that, we show that for trees with
both parallel and sequence nodes, computing the expected
completion time is NP-hard.

Finally, we provide some supporting experiments in or-
der to examine the quality of approximation in practice
when compared to the theoretical error bounds. A sim-
ple sampling scheme (Mainprice et al. 2011) is also pro-
vided as a yardstick, even though the sampling does not
come with error guarantees, but only bounds in probabil-
ity. This is done for randomly generated task networks, as
well as some task networks taken from the ROBIL team
task (http://in.bgu.ac.il/en/Pages/news/dar pa.aspx) descrip-
tions implementation for some of the DARPA robotics (sim-
ulation phase) challenge scenarios.

Problem statement
We are given a hierarchical plan represented as a task tree
τ , consisting of three types of nodes: primitive actions as
leaves, sequence nodes, and parallel nodes. Primitive action
nodes contain distributions over their resource consumption.
Although any other resource can be represented, we will as-
sume henceforth in order to be more concrete that the only
resource of interest is time. A sequence node vs denotes a
task that has been decomposed into subtasks, represented by
the children of vs, and which must be executed in sequence
in order to execute vs. We assume that a subtask of vs begins
as soon as its predecessor in the sequence terminates. Task
vs terminates when its last subtask terminates. A parallel
node vp also denotes a decomposed task, but here the sub-

tasks begin execution in parallel immediately when task vp
begins execution; vp terminates as soon as all of the children
of vp terminate.

Resource consumptions are uncertain, and are described
as probability distributions in the leaf nodes. Although in
principle we can allow statistical dependencies, we assume
in this paper that these distributions are described by inde-
pendent (but not identically distributed) random variables.
We will also assume initially that the random variables are
discrete and have finite support (i.e. the number of values for
which the probability is non-zero is finite), although later on
we will relax this assumption. As the resource of interest
is assumed to be completion time, we assume that each leaf
node v is associated with a completion-time distribution Pv ,
in some cases represented as a cumulative distribution func-
tion form (CDF) Fv .

The main computation problem that we tackle in this pa-
per is: Given a task tree τ and a deadline T , compute the
probability that τ will satisfy the deadline T (i.e. termi-
nate in time not greater than T). We show that this problem
is NP-hard and provide an approximation algorithm for it.
The above deadline problem reflects a step utility function:
a constant positive utility U for all t less than or equal to a
deadline time T , and 0 for all t > T . We also briefly con-
sider a linear utility function, requiring computation of the
expected completion time of τ and show that this expecta-
tion problem is also NP-hard.

Sequence nodes
Since the completion time of a sequence node is the sum of
the completion time of its components, the deadline prob-
lem on sequence nodes entails computation of (part of) the
CDF of a sum of random variables. As the latter problem is
NP-hard (shown later on), sequence nodes are the main chal-
lenge, and we thus begin with an approximation algorithm
for sequence nodes.

The main ingredient in our approximation scheme is the
Trim operator specified as follows:

Definition 1 (The Trim operator). For a discrete random
variable X and a parameter ε > 0, consider the sequence
of elements in the support ofX defined recursively by: x1 =
min support(X) and, if the set {x > xi : Pr(xi < X ≤
x) > ε} is not empty,

xi+1 = min{x > xi : Pr(xi < X ≤ x) > ε}.

Let l be the length of this sequence, i.e., let l be the first
index for which the set above is empty. For notational con-
venience, define xl+1 = ∞. Now, define X ′ = Trim(X, ε)
to be the random variable specified by:

Pr(X ′=x):=

{
Pr(xi≤X<xi+1) if x=xi∈{x1, . . . , xl};
0 otherwise.

where x1, . . . , xl is the sequence defined above for the given
ε.

For example, if X is a random variable such
that Pr(X=1)=0.1, P r(X=2)=0.1 and Pr(X=4)=0.8,
the random variable X ′=Trim(X, 0.5) is given by

PlanRob 2015

2

Pr(X ′=1)=0.2 and Pr(X ′=4)=0.8. Intuitively, the Trim
operator removes consecutive domain values whose accu-
mulated probability is less than ε and adds their probability
mass to the element in the support that precedes them.

Using the Trim operator, we are now ready to introduce
the main operator of this section:
Definition 2 (The Sequence operator).
Sequence(X1, . . . , Xn, ε) :=

Trim(Sequence(X1, . . . , Xn−1, ε) +Xn, ε)

and Sequence(X1, ε) = Trim(X1, ε).
This operator takes a set of random variables and com-

putes a random variable that represents an approximation of
their sum by applying the Trim operator after adding each of
the variables. The parameter ε, as shown later on, specifies
the accuracy of approximation.

The Sequence operator can be implemented by the pro-
cedure outlined in Algorithm 1. In essence, the algorithm
computes the distribution

∑n
i=0Xi using convolution (the

Convolve() operator in line 3) in a straightforward manner.
Computing the convolution in the case of discrete random
variables is itself straightforward and not further discussed
here. However, since the support of the resulting distribution
may be exponential in the number of convolution operations,
the algorithm must trim the distribution representation to
avoid this exponential blow-up. This decreases the support
size, while introducing error. The trick is to keep the sup-
port size under control, while making sure that the error does
not increase beyond a desired tolerance. Note that the size
of the support can also be decreased by simple “binning”
schemes, but these do not provide the desired guarantees.
In the algorithm, the PDF of a random variable Xi is repre-
sented by the listDXi , which consists of (x, p′) pairs, where
x ∈ support(Xi) and p′ is the probability Pr(Xi=x), the
latter denoted by DXi

[x] in the algorithm. We assume that
DXi

is always kept sorted in increasing order of x.
We proceed to show that Algorithm 1 indeed approxi-

mates the sum of the random variables, and analyze its ac-
curacy/efficiency trade-off. A notion of approximation rele-
vant to deadlines is as follows:
Definition 3. For random variables X ′, X , and 0 ≤ ε ≤ 1
we write X ′ ≈ε X if 0 ≤ Pr(X ′ ≤ T)− Pr(X ≤ T) ≤ ε
for all T > 0.

Note that this definition is asymmetric, because, as shown
below, our algorithm for the deadline problem, never under-
estimates the exact value. We, of course, considered also the
option to define the Trim operator such that the weight is
shifted to the closest value (not always to the lower bound or
always to the upper bound) or maybe to the expected value.
This is a viable option, but it is not clear to us how to device
guarantees with such an operator. Perhaps further research
may reveal similar properties of other notions of approxima-
tions that apply to the symmetric operator.

For the proof of the next lemma we will establish the fol-
lowing technical claim:
Claim 1. Let (ai)ni=1 and (bi)

n
i=1 be sequences of real num-

bers such that
∑k
i=1 ai ≥ 0 for all 1 ≤ k ≤ n and

b1 ≥ b2 ≥ · · · ≥ bn ≥ 0. Then we have:
∑n
i=1 aibi ≥ 0

Algorithm 1: Sequence (X1, . . . , Xn , ε)
1 D = ((0, 1)) // Dummy random var.: 0 with prob. 1
2 for i = 1 to n do
3 D=Convolve(D,DXi

)
4 D=Trim(D, ε)
5 return D
6 Procedure Trim(D,ε)
7 D′ = ()
8 d0 = dprev = min support(D)
9 p = 0

10 foreach d ∈ support(D) \ {d0} in ascending order
do

11 if p+D[d] ≤ ε then
12 p = p+D[d]
13 else
14 Append (dprev, D[dprev] + p) to D′
15 dprev = d
16 p = 0

17 Append (dprev, D[dprev] + p) to D′
18 return D′

Proof. By induction on the length of the sequence, n. If
n = 1 the claim is trivial. For n > 1,

n∑
i=1

aibi =
n−1∑
i=1

aibi + anbn

≥
n−1∑
i=1

aibi −
n−1∑
i=1

aibn

=

n−1∑
i=1

ai(bi − bn).

The sequence b′i = bi − bn satisfies the condition so, by
the induction hypothesis, we get that

∑n−1
i=1 aib

′
i ≥ 0, and

therefore,
∑
aibi ≥ 0.

The following lemma bounds the approximation error of
sums of random variables. For technical reasons, we will fo-
cus from now on random variables with integer values. This
restriction is only to simplify the analysis. One can reduce
an instance of the deadline problem on general discrete ran-
dom variables to a problem on integer random variables.

Lemma 1. For discrete integer random variables
X1, X

′
1, X2, X

′
2 and ε1, ε2 ∈ [0, 1], if X ′1 ≈ε1 X1

and X ′2 ≈ε2 X2 then X ′1 +X ′2 ≈ε1+ε2 X1 +X2.

PlanRob 2015

3

Proof.

Pr(X ′1 +X ′2 ≤ T)− Pr(X1 +X2 ≤ T)

=

T∑
j=1

Pr(X ′1=j)Pr(X ′2≤T−j)︸ ︷︷ ︸
≤Pr(X2≤T−j)+ε2

−
T∑

j=1

Pr(X1=j)Pr(X2≤T−j)

≤
T∑

j=1

Pr(X ′1=j)(Pr(X2≤T−j)+ε2)−Pr(X1=j)Pr(X2≤T−j)

=

T∑
j=1

(Pr(X ′1=j)−Pr(X1=j))Pr(X2≤T−j)︸ ︷︷ ︸
∈[0,1]

+ε2

T∑
j=1

Pr(X ′1=j)

≤
T∑

j=1

(Pr(X ′1 = j)− Pr(X1 = j))︸ ︷︷ ︸
≤ε1

+ε2

T∑
j=1

Pr(X ′1 = j)︸ ︷︷ ︸
∈[0,1]

≤ε1 + ε2.

Finally, we show that the difference between Pr(X ′1 +
X ′2 ≤ T) and Pr(X1 +X2 ≤ T) is nonnegative:

Pr(X ′1 +X ′2 ≤ T)− Pr(X1 +X2 ≤ T)

=

T∑
j=1

Pr(X ′1=j)Pr(X ′2≤T−j)−
T∑

j=1

Pr(X1=j)Pr(X2≤T−j)

=

T∑
j=1

(Pr(X ′1=j)− Pr(X1=j))Pr(X2≤T−j)

+

T∑
j=1

Pr(X ′1=j)(Pr(X ′2≤T−j)− Pr(X2≤T−j))

The first term in this expression is non-negative by Claim 1
and the second is nonnegative because it is a sum of nonneg-
ative numbers.

The next lemma shows that Trim(X, ε) is an ε-
approximation of X .
Lemma 2. Trim(X, ε) ≈ε X

Proof. LetX ′ = Trim(X, ε). Let x1< · · ·<xm be the sup-
port of X ′ and let l = max{i : xi ≤ T}. We have,

Pr(X ′ = xi) = Pr(xi ≤ X < xi+1) (1)

because, after Trim, the probabilities of elements that were
removed from the support are assigned to the element that
precedes them. From Equation (1) we get:

Pr(X ′ ≤ T)− Pr(X ≤ T)

=
l−1∑
i=0

(Pr(X ′=xi)− Pr(xi ≤ X < xi+1))

+ (Pr(X ′=xl)− Pr(xl ≤ X ≤ T))

= Pr(X ′=xl)−(Pr(xl≤X<xl+1)−Pr(T<X<xl+1))

= Pr(T < X < xl+1) ∈ (0, ε]

The inequality Pr(T < X < xl+1) ≤ ε follows from the
observation that, for all i, Pr(xi < X < xi+1) < ε, be-
cause p is never greater than ε in Algorithm 1.

For bounding the amount of memory needed for an imple-
mentation of our approximation algorithm, we also, in the
next lemma, bound the size of the support of the trimmed
random variable. The size of the support is a key factor be-
cause it reflects the size of the representation of the random
variable.
Lemma 3. | support(Trim(X, ε))| ≤ 1/ε

Proof. Let X ′ = Trim(X, ε) and let x1 < · · · < xm
be the support of X ′. And, for notational convenience, let
xm+1 = ∞. Let pi =

∑
xi<x<xi+1

Pr(X=x). Then,

1 =
∑m
i=1 Pr(X

′=xi) = Pr(X=x1) +
∑m−1
i=1 (pi +

Pr(X=xi+1))+pm. According to algorithm 1, lines 11-12,
pi ≤ ε and pi+Pr(X=xi+1) > ε for all 0 ≤ i < m. There-
fore, 1 =

∑m
i=1 Pr(X

′=xi) > Pr(X ′=x1)+(m−1) ·ε+
pm. Using the fact Pr(X ′=x1) > 0, we get: (m−1)·ε < 1,
therefore m ≤ 1/ε.

The last two lemmas highlight the main idea behind our
approximation algorithm: the Trim operator trades off ap-
proximation error for a reduced size of the support. The fact
that this trade-off is linear allows us to get a linear approxi-
mation error in polynomial time, as shown in the following
two theorems:
Theorem 1. If X ′i ≈εi Xi for all i ∈ {1, . . . , n} and X̂ =

Sequence(X ′1, . . . , X
′
n, ε) then X̂ ≈e

∑n
i=1Xi, where e =∑n

i=1 εi + nε.

Proof. (outline) For n iterations, according to Lemma 1, we
get an accumulated error of ε1 + · · ·+ εn. In addition, from
Lemma 2, we get an additional error of at most nε due to the
trimming process.

Theorem 2. Assuming that m ≤ 1/ε, the proce-
dure Sequence(X ′1, . . . , X

′
n, ε) can be computed in time

O((nm/ε) log(m/ε)) using O(m/ε) memory, where m is
the size of the largest support of any of the X ′is.

Proof. From Lemma 3, the size of the list D in Algo-
rithm 1 is at most m/ε immediately after the convolu-
tion, after which it is trimmed, and thus the space com-
plexity is O(m/ε). The operator Convolve thus takes
time O((m/ε) log(m/ε)), where the logarithmic factor
is required internally for sorting. Since the runtime of
the Trim operator is linear, and the outer loop iter-
ates n times, the overall run-time of the algorithm is
O((nm/ε) log(m/ε)).

To show that the error bound provided in Theorem 1
is tight, we demonstrate by the following example that
there are n random variables X1, . . . , Xn for which
Sequence(X1, . . . , Xn, ε/n) indeed results in error ε.
Example 1. Let 0≤ε<1 and n∈N such that 1−ε>ε/n, i.e.,
ε is small or n is large. Consider, for δ > 0 that we will
choose to be very small, the random variable X1 defined by

Pr(X1=x)=

δ x = 0,

ε/(n(1− δ)x) x ∈ {1, . . . , n},
1−δ−

∑n
x=1

ε
n(1−δ)x x = n+ 1,

0 otherwise

PlanRob 2015

4

and, for i ∈ {2, . . . , n}, let the random variables Xi be:

Pr(Xi=x) =

1− δ x = 0,

δ x = n2,

0 otherwise

The distribution of X = X1 +X2 is

Pr(X=x)=

δ(1− δ) x = 0,

ε/n x = 1,

ε/(n(1− δ)x−1) x ∈ {2, . . . , n},
(1−δ)Pr(X1=n+1) x = n+ 1,

δPr(X1=x−n2) n2≤x≤n2+n+1

0 otherwise

The idea here is that the convolution with X2 results in a
random variable that is similar in “shape” to X1, if we ig-
nore numbers that tend to zero as δ approaches zero. The
convolution also modifies the probability Pr(X=1) from
slightly greater than ε/n to precisely ε/n, which will then
allow it to be trimmed.

Then, if we apply Trim(X1 +X2, ε/n), when δ is suffi-
ciently small, we get the random variable X ′ whose proba-
bility distribution is:

Pr(X ′=x)=

δ(1− δ) + ε/n x = 0,

ε/(n(1− δ)x−1) x ∈ {2, . . . , n},
1− Pr(X ′<n+ 1) x = n+ 1,

0 otherwise.

Note that indeed trimming shifts the mass from
Pr(X = 1) = ε/n to Pr(X ′ = 0). This repeats
in all steps so, after n steps, we get a random vari-
able X ′ such that Pr(X ′=0)

δ→0−−−−→ ε. Therefore,
Pr(Sequence(X1, . . ., Xn, ε/n)≤0)−Pr(X1+. . .+Xn≤0)
approaches ε as δ approaches zero which means that there
exist no ε′<ε such that Sequence(X1, . . . , Xn, ε/n) ≈ε′
X1 + · · ·+Xn for all δ > 0.

Parallel nodes
Unlike sequence composition, the deadline problem for par-
allel composition is easy to compute, since the execution
time of a parallel composition is the maximum of the dura-
tions of the subtasks. Thus we have:

Pr(max{X1, . . . , Xn} ≤ T) =

= Pr(X1 ≤ T ∧ · · · ∧Xn ≤ T) =
n∏
i=1

Pr(Xi ≤ T) (2)

where the last equality follows from independence of the
random variables. We denote the construction of the
CDF using Equation (2) by Parallel(X1, . . . , Xn). If
the random variables are all discrete with finite support,
Parallel(X1, . . . , Xn) incurs space linear in the size of
the input, and the computation time is O(nmlog(n)).

If the task tree consists only of parallel nodes, one can
compute the exact CDF, with the same overall runtime.
However, when the task tree contain both sequence and par-
allel nodes we may get only approximate CDFs as input, and

now the above straightforward computation can compound
the errors. When the input CDFs are themselves approxima-
tions, we bound the resulting error by the following lemma.

Lemma 4. For discrete random variables X ′1, . . . X
′
n,

X1, . . . , Xn, if for all i = 1, . . . , n, X ′i ≈εi Xi and
0 ≤ εi ≤ 1

n(Kn+1) for K > 0, then, for any ε ≥ εi,
we have: max{X ′1, . . . , X ′n} ≈e max{X1, . . . , Xn} where
e =

∑n
i=1 εi + ε/K.

Proof.

Pr(max{X ′1, . . . , X ′n}≤T)− Pr(max{X1, . . . , Xn}≤T)

=
n∏
i=1

Pr(X ′i ≤ T)−
n∏
i=1

Pr(Xi ≤ T)

≤
n∏
i=1

(Pr(Xi ≤ T) + εi)−
n∏
i=1

Pr(Xi ≤ T)

≤
n∏
i=1

(1 + εi)− 1 ≤ 1 +
n∑
i=1

εi +
n∑
k=2

(
n

k

)
εk − 1

≤
n∑
i=1

εi +

n∑
k=2

nkεk︸ ︷︷ ︸
sum of a geo. series

≤
n∑
i=1

εi +
n2ε2

1− nε

≤
n∑
i=1

εi + ε/K

Since Pr(X ′i ≤ T) > Pr(Xi ≤ T) for each i, this expres-
sion is nonnegative.

Task networks: mixed sequence and parallel
Given a task tree τ and an accuracy requirement 0 < ε < 1,
we generate a distribution for a random variable X ′τ which
represents an approximation of the random variable Xτ

which represents the duration for the entire task tree. We
introduce the algorithm and prove that the algorithm indeed
returns an ε-approximation of the completion time of the
plan. For a node v, let τv be the sub tree with v as root and
let childv be the set of children of v. We use the notation |τ |
to denote the total number of nodes in τ .

Note that given a task tree τ , we can assume, without
loss of generality, that there are no parallel nodes as chil-
dren of parallel nodes, and no sequence nodes as children of
sequence nodes, otherwise, we can easily merge them.

Algorithm 2 is a straightforward postorder traversal of the
tree τ . The only non-trivial issue is handling the error as a
“budget”, in an amortized approach, as seen in the proof of
the following theorem.

Theorem 3. Given a task tree τ , let Xτ be a random vari-
able representing the true distribution of the completion time
for the network. Then Network(τ, ε) ≈ε Xτ .

Proof. We prove by (strong) induction on the size of τ that
Network(τ, ε) ≈ε Xτ . Induction base: |τ | = 1, the node

PlanRob 2015

5

Algorithm 2: Network(τ , ε)
1 Let v be the root of τ // Hence, τv = τ
2 nv = |childv|
3 if v is a Primitive node then
4 return the distribution of v
5 if v is a Sequence node then
6 for all c ∈ childv do
7 X ′τc = Network (τc,

|τc|ε
|τv|)

8 return Sequence ({X ′τc}c∈childv , ε
nv|τv|)

9 if v is a Parallel node then
10 for all c ∈ childv do
11 X ′τc = Network (τc, min(|τc|ε|τv| ,

1
nv(|τv|nv+1)))

12 return Parallel ({X ′τc}c∈childv)

must be primitive, and Network will just return the dis-
tribution unchanged which is obviously an ε-approximation
of itself. Suppose the claim is true for 1 ≤ |τ | < n. Let
τ be a task tree of size n and let v be the root of τ . If
v is a Sequence node, then for each child c of v we call
Network recursively to compute a |τc|ε/|τv|-approximation.
By the induction hypothesis that X ′τc ≈|τc|ε/|τv| Xτc , and
by Theorem 1, we get a maximum accumulated error of∑
c∈childv |τc|ε/|τv| + ε/|τv| = (n − 1)ε/|τv| + ε/|τv| =

ε for v, therefore, Sequence({X ′τc}c∈childv , ε/n) ≈ε
Xτ as required. If v is a Parallel node, then for each
child c of v we call Network recursively to compute a ec-
approximation, where ec = min(|τc|ε|τv| ,

1
nv(|τv|nv+1)). We

have, by the induction hypothesis, that X ′τc ≈ec Xτc , so∑
c∈childv ec ≤

∑
c∈childv

|τc|ε
|τv| ≤ ε − ε/|τv|. Then, by

Lemma 4, using K = |τv| and n = nv , we get that
Parallel({X ′τc}c∈childv) ≈ε Xτ as required.

Theorem 4. Let N be the size of the task tree τ , and
M the size of the maximal support of each of the prim-
itive tasks. If 0 ≤ ε ≤ 1

N(N2+1) and M < N/ε,
the run-time of the Network approximation algorithm is
O((N5/ε2) log(N3/ε2)). The algorithm uses O(N3/ε2)
memory.

Proof. The run-time and space bounds can be derived from
the bounds on Sequence and on Parallel, as follows.
In the Network algorithm, the trim accuracy parameter
is less than or equal to ε/N . The support size (called m
in Theorem 2) of the variables input to Sequence are
O(N2/ε). Therefore, the complexity of the Sequence al-
gorithm is O((N4/ε2) log(N3/ε2)) and the complexity of
the Parallel operator is O((N3/ε) log(N)). The time
and space for sequence dominate, so the total time complex-
ity is N times the complexity of Sequence and the space
complexity is that of Sequence.

If the constraining assumptions on M and ε in Theo-
rem 4 are lifted, the complexity is still polynomial: re-
place one instance of 1/ε by max(m, 1/ε), and the other by

max(1/ε,N(N2 + 1)) in the runtime complexity expres-
sion.

Complexity results
We show that the deadline problem is NP-hard, even for a
task tree consisting only of primitive tasks and one sequence
node. Observe that such simple trees are actually linear
plans. We begin by showing the following lemma on sums
of random variables.

Lemma 5. Let Y = {Y1, . . . , Yn} be a set of discrete real-
valued random variables specified by probability mass func-
tions with finite supports, T ∈ Z, and p ∈ [0, 1]. Then,
deciding whether Pr(

∑n
i=0 Yi < T) > p is NP-Hard.

Proof. : by reduction from SubsetSum (Garey and Johnson
1990, problem number SP13). Recall that SubsetSum is:
given a set S = {s1, . . . , sn} of integers, and an integer
target value T , is there a subset of S whose sum is exactly
T ? Given an instance of SubsetSum, create the two-valued
random variables Y1, . . . , Yn with Pr(Yi = si) = 1/2 and
Pr(Yi = 0) = 1/2. By construction, there exists a subset of
S summing to T if and only if Pr(

∑n
i=0 Yi = T) > 0.

Suppose we have an algorithm A(Y, T, p) that can decide
Pr(

∑n
i=0 Yi < T) > p in polynomial-time. Then, since the

random variables Yi are two-valued uniform random vari-
ables, the only possible values of p are integer multiples of
1/2n, and we can compute p = Pr(

∑n
i=0 Yi < T) us-

ing a binary search on p using n calls to A. To determine
whether Pr(

∑n
i=0 Yi = T) > 0, simply use this scheme

twice, since Pr(
∑n
i=0 Yi = T) > 0 is true if and only if

Pr(
∑n
i=0 Yi < T) < Pr(

∑n
i=0 Yi < T + 1).

Theorem 5. Finding the probability that a task tree τ satis-
fies a deadline T is NP-hard.

Proof. Consider a linear plan, i.e. a tree consisting of just
leaf nodes, all being children of a single sequence node. The
completion time of a sequence node is the sum of the com-
pletion times of its children. Therefore, the theorem follows
immediately from Lemma 5.

Finally, we consider the linear utility function, i.e. the
problem of computing an expected completion time of a task
network. Note that although for linear plans the deadline
problem is NP-hard, the expectation problem is trivial be-
cause the expectation of the sum of random variables Xi is
equal to the sum of the expectations of the Xis. For parallel
nodes, it is easy to compute the CDF and therefore also easy
to compute the expected value. Despite that, for task net-
works consisting of both sequence nodes and parallel nodes,
these methods cannot be effectively combined, and in fact,
we have:

Theorem 6. Computing the expected completion time of a
task network is NP-hard.

Proof. By reduction from subset sum. Construct random
variables (“primitive tasks”) Yi as in the proof of Lemma 5,
and denote by X the random variable

∑n
i=1 Yi. Construct

one parallel node with two children, one being a sequence

PlanRob 2015

6

node having the completion time distribution defined by X ,
the other being a primitive task that has a completion time
Tj with probability 1. (We will use more than one such case,
which differ only in the value of Tj , hence the subscript
j). Denote by Mj the random variable that represents the
completion time distribution of the parallel node, using this
construction, with the respective Tj . Now consider com-
puting the expectation of the Mj for the following cases:
T1 = T + 1/2 and T2 = T + 1/4. Thus we have, for
j ∈ {1, 2}, by construction and the definition of expecta-
tion:

E[Mi] = TjPr(X ≤ Tj) +
∑
x>Tj

x Pr(X = x)

= TjPr(X ≤ T) +
∑

x≥T+1

x Pr(X = x)

where the second equality follows from the Yi all being
integer-valued random variables (and therefore X is also in-
teger valued). Subtracting these expectations, we have that
the difference E[M1]− E[M2] is

(T +
1

2
)Pr(X ≤ T) +

∑
x≥T+1

xPr(X = x)−

(T +
1

4
)Pr(X ≤ T) +

∑
x≥T+1

xPr(X = x)

which reduces to 1
4P (X ≤ T). Therefore, using the com-

puted expected values, we can compute P (X ≤ T) in poly-
nomial time. Using two such computations, we can also
compute P (X = T), and the latter is non-zero if and only if
there is a subset of S summing to T .

Empirical Evaluation
We examine our approximation algorithm empirically in or-
der to shed light on the approximation bounds in practice.
We used the same machine for all experiments, Intel(R)
Core(TM) i5-3470 CPU @ 3.20GHz, and implemented all
algorithms in the same programming language, Python. A
summary of the results is presented in graphs and in ta-
bles. We also compare the results to exact computation of
the CDF and to a simple stochastic sampling scheme. We
used the following sampling algorithm, Algorithm 3, which
traverse the task tree τ . In every experiment, this algorithm
was executed s times, according to the number of samples
where s ∈ {103, 104, 105, 106, 107}.

Four types of task trees are used in this evaluation: task
trees used as execution plans for our ROBIL team entry
in the DARPA robotics challenge (DRC simulation phase),
linear plans (seq), plans for the Logistics domain (from
IPC2 http://ipc.icaps-conference.org/), and randomly gener-
ated task trees. The primitive task distributions were uni-
form distributions discretized to M values. The plans from
the DRC are shown in Figures 1, 2 and 3. For every entry of
M in tables 1 and 2 the first line is the runtime in seconds,
the second line presents the estimation error.

In the Logistics domain, packages are to be transported
by trucks or airplanes. Hierarchical plans were generated by

Algorithm 3: SampleTree(τ)
1 Let v be the root of τ
2 if v is a Primitive node then
3 return randomly choose duration according to the

distribution of v
4 if v is a Sequence node then
5 for c ∈ child(v) do
6 X += SampleTree (τc)

7 if v is a Parallel node then
8 for c ∈ child(v) do
9 X = max(X ,SampleTree (τc))

10 return X

Figure 2: A plan for Drive challenge task, 47 nodes

Figure 3: A plan for Walk challenge task, 57 nodes

the JSHOP2 planner (Nau et al. 2003) for this domain and
consisted of one parallel node (packages delivered in paral-
lel), with children all being sequential plans. The duration
distribution of all primitive tasks is uniform. The support
parameters were determined by the type of the task: in some
tasks the distribution is fixed (such as for load and unload),
and in others the distribution depends on the velocity of the
vehicle and on the distance to be travelled. After running
our approximation algorithm we actually also ran a variant
that uses an inverted version of the Trim operator, provid-
ing a lower bound of the CDF, as well as the upper bound
generated by Algorithm 21. Running both variants allows us
to bound the actual error, costing only a doubling of the run-
time. Despite the fact that our error bound is theoretically

1Except for the randomly generated plans where we ran only
Algorithm 2 and provided only the upper error bound.

PlanRob 2015

7

Graphs

Page 1

0.1 1 10 100 1000 10000
0

0.005

0.01

0.015

0.02

0.025

0.03

Drive

n=47, m=10

Approximation Algorithm Exact Sampling

Run time (sec)

E
rr

o
r

0.1 1 10 100 1000 10000
0

0.01

0.02

0.03

0.04

0.05

Drive

n=47, m=4

Exact Approximation Algorithm Sampling

Run time (sec)

E
rr

o
r

0.1 1 10 100 1000 10000
0

0.005

0.01

0.015

0.02

0.025

Drive

n=47, m=2

Exact Approximation Algorithm Sampling

Run time (sec)

E
rr

o
r

0.1 1 10 100 1000 10000
0

0.005

0.01

0.015

0.02

Walk

n=57, m=2

Sampling Exact Approximation Algorithm

Run\\\-time (sec)

E
rr

o
r

Figure 4: Execution times and estimation errors for the
Drive plan (Figure 2).

tight, in practice and with actual distributions, according to
tables 1 and 2, the resulting error in the algorithm is usually
much better than the theoretical bound. The actual accuracy
was sometimes as much as a factor of 20 better than the the-
oretical guarantee provided by ε.

Results for the various task trees are shown in tables 1
and 2. Errors are the maximum error in the CDF, measured
from the true result when available, and from the bounds
generated by the approximation algorithm using ε = 0.0001
when the exact algorithm timed out (over 2 hours). The ex-
act algorithm times out in many cases when the number of
tasks is 20 or more, except when size of the support M is
very small, in which case it handles some more nodes, but
still cannot handle 50 tasks even for M = 2. Both our ap-
proximation algorithm and the sampling algorithm handle
all these cases, as our algorithm’s runtime is polynomial in
N , M , and 1/ε as is the sampling algorithm’s (time linear
in number of samples).

The advantage of the approximation algorithm is clearly
the fact that it provides bound with certainty as opposed to
the bounds in-probability provided by sampling. In addi-
tion, as predicted by theory, it is evident from the tables that
the accuracy of the approximation algorithm improves lin-
early with 1/ε (and almost linearly with runtime in prac-
tice), whereas the accuracy of sampling improves only as a
square root of the number of samples. Therefore, even in the
cases where sampling initially outperformed the approxima-

Graphs

Page 1

0.1 1 10 100 1000 10000
0

0.005

0.01

0.015

0.02

0.025

0.03

Walk

n=57, m=10

Approximation Algorithm Sampling Exact

Run-time (sec)

E
rr

o
r

0.1 1 10 100 1000 10000
0

0.005

0.01

0.015

0.02

0.025

Walk

n=57, m=4

Approximation Algorithm Sampling Exact

Run-time (sec)

E
rr

o
r

0.1 1 10 100 1000 10000
0

0.005

0.01

0.015

0.02

Walk

n=57, m=2

Sampling Exact Approximation Algorithm

Run-time (sec)

E
rr

o
r

0.1 1 10 100 1000 10000
0

0.005

0.01

0.015

0.02

0.025

0.03

n=57, m=10

Approximation Algorithm Sampling Exact

Run-time (sec)

E
rr

o
r

Figure 5: Execution times and estimation errors for the Walk
plan (Figure 3).

Graphs

Page 1

0.01 0.1 1 10 100 1000 10000
0

0.005

0.01

0.015

0.02

0.025

0.03

Pickup

n=18, m=20

Approximation Algorithm Sampling Exact

Run-time (sec)

E
rr

o
r

0.01 0.1 1 10 100 1000 10000
0

0.005

0.01

0.015

0.02

Pickup

n=18, m=10

Approximation Algorithm Sampling Exact

Run-time (sec)

E
rr

o
r

Figure 6: Execution times and estimation errors for the Pick
Up plan (Figure 1).

PlanRob 2015

8

Task Tree M Exact Approximation algorithm Sampling algorithm (s is # of samples)
ε=0.1 ε=0.01 ε=0.001 s=103 s=104 s=105 s=106 s=107

Drive
2 1.49 0.141 1.14 1.49 0.187 1.92 19.11 190.4 1905

0 [-0.0052, 0.0086] [-0.0004, 0.0004] [-3.2·10−5, 3.4·10−5] 0.0206 0.0072 0.0031 0.0009 0.0001
N=47 4 18.9 0.34 7.91 16.11 0.21 2.1 20.95 211.5 2113.6

0 [-0.0096, 0.019] [-0.0009, 0.0013] [-9.2·10−5, 13·10−5] 0.0476 0.0075 0.0046 0.0011 0.0001

10 > 2h 1.036 32.94 390.5 0.28 2.81 28.6 279.1 2844.4
0 [-0.014, 0.028] [-0.0014, 0.0025] [-9.5·10−5, 14·10−5] 0.0236 0.0083 0.0024 0.0015 0.0003

Walk
2 4.46 0.33 3.1 4.03 0.205 2.06 20.86 208.1 2082.7

0 [-0.0039, 0.004] [-0.0003, 0.0003] [-3.1·10−5, 3.2·10−5] 0.0166 0.0067 0.002 0.0008 0.0003
N=57 4 183.5 0.983 18.42 95.11 0.23 2.34 23.03 230.4 2352.4

0 [-0.0038, 0.004] [-0.0004, 0.0004] [-3.6·10−5, 3.9·10−5] 0.0232 0.0125 0.0022 0.0014 0.0003

10 > 2h 8.13 128.99 3668.2 0.293 2.92 29.16 291.3 2902.7
0 [-0.0047, 0.0049] [-0.0004, 0.0005] [-3.8·10−5, 4·10−5] 0.0255 0.0117 0.0029 0.0011 0.0003

Pick Up 10 5.76 0.022 0.193 1.133 0.103 0.983 9.8 101.9 1006.8
0 [-0.0041, 0.0061] [-0.0003, 0.0005] [-3.5·10−5, 5.8·10−5] 0.018 0.0054 0.0027 0.0006 0.0002

N=18 20 27.88 0.046 0.4 3.15 0.132 1.33 13.25 130.4 1305.9
0 [-0.0038, 0.0031] [-0.0006, 0.0005] [-3·10−5, 3.5·10−5] 0.027 0.0046 0.0015 0.0008 0.0002

Logistics1 2 0.014 0.007 0.009 0.009 0.239 2.03 19.3 193.9 1767
0 [-0.0019, 0.0019] 0 0 0.0168 0.007 0.001 0.0009 0.0002

N=34 4 22.98 0.048 1.3 13.1 0.2 2 20 205 1928
0 [-0.0068, 0.0068] [-0.0006, 0.0006] [-3.4·10−5, 3.8·10−5] 0.025 0.0057 0.0032 0.0005 0.0003

10 > 4h 0.25 8.26 475 0.26 2.64 26.4 267 2649
0 [-0.008, 0.007] [-0.0009, 0.0007] 0 0.018 0.011 0.003 0.0009 0.0004

Logistics2 2 0.07 0.02 0.06 0.06 0.23 2.35 23.4 234.7 2196
0 [-0.002, 0.002] 0 0 0.013 0.015 0.004 0.001 0.0003

N=45 4 373.3 0.2 7 82.9 0.25 2.5 25.6 256 2393
0 [-0.004, 0.004] [-0.0004, 0.0004] [-3.3·10−5, 3.4·10−5] 0.036 0.008 0.002 0.0006 0.0002

10 > 4h 2.19 120 6101 0.31 3.12 31.3 314 3139
0 [-0.005, 0.006] [-0.0004, 0.0006] 0 0.03 0.013 0.002 0.001 0.0002

Table 1: Runtime and errors estimation comparison (run time in seconds)

Task Tree M Exact Approximation algorithm Sampling algorithm
ε=0.1 ε=0.01 ε=0.001 s=103 s=104 s=105

Seq 10 4 0.23 0.003 0.02 0.148 0.054 0.545 5.336
0 [-0.027, 0.041] [-0.0027, 0.0041] [-2.2·10−4, 2.5·10−4] 0.0224 0.008 0.0017

N=10 10 10.22 0.008 0.073 0.692 0.071 0.724 7.18
0 [-0.0316, 0.0615] [0.0033, 0.0067] [−2.6·10−4, 5.2·10−4] 0.027 0.0117 0.0038

Seq 20 2 0.23 0.003 0.02 0.285 0.054 0.545 9.62
0 [-0.02, 0.0373] [-0.0015, 0.0026] [-1.6·10−4, 2.6·10−4] 0.0266 0.0077 0.003

N=20 4 > 2h 0.011 0.106 1.208 0.105 1.066 10.74
0 [-0.026, 0.025] [-0.0025, 0.0025] [-2.7·10−4, 2.3·10−4] 0.039 0.01 0.002

10 > 2h 0.035 0.331 4.67 0.145 1.473 14.38
0 [-0.027, 0.027] [-0.0028, 0.0027] [-3·10−4, 2.5·10−4] 0.032 0.007 0.0042

Seq 50 2 > 2h 0.028 0.28 3.593 0.236 2.366 24.71
0 [-0.032, 0.032] [-0.0028, 0.0028] [-2.8·10−4, 2.4·10−4] 0.0193 0.007 0.0024

N=50 4 > 2h 0.079 0.81 11.145 0.265 2.68 26.84
0 [-0.035, 0.035] [-0.0036, 0.0035] [-3.9·10−4, 3.2·10−4] 0.0236 0.0064 0.0023

10 > 2h 0.227 3.1 38.01 0.354 3.63 35.63
0 [-0.037, 0.037] [-0.004, 0.0039] [-4.2·10−4, 3.5·10−4] 0.017 0.007 0.005

Rand50-AVG1
4 > 2h 1.1544 19.77 390.58 5.676 55.021 590.17

0 0.007 0.0007 0 0.0243 0.0084 0.0024

Table 2: Runtime and errors estimation comparison (run time in seconds) for sequential plans

PlanRob 2015

9

tion algorithm (which occurred sometimes when only low
accuracy was required), when increasing the required accu-
racy for both algorithms, eventually the approximation algo-
rithm overtook the sampling algorithm.

The graphs in figures 4, 5 and 6 present more vividly
the results for the task trees used as execution plans in the
DARPA robotics challenge. The horizontal axis represents
the run-time of the algorithm (exact, sampling, approxima-
tion) and the vertical axis represent the upper bound error.
It is easy to see that in all graphs our approximation algo-
rithm for ε = 0.01 and ε = 0.001 provides very small error
compared to the exact result and the run-time is lower. In
addition, in most graphs (7/8), the sampling results are less
accurate and the run-time is higher compared to our approx-
imation algorithm results. The only exception is in the Drive
task tree with M = 10 and ε = 0.1, our result is less accu-
rate and the run-time is higher than the sampling algorithm
for 103 samples. However, for 104 the run-time of our ap-
proximation algorithm is lower than the sampling algorithm
and for ε = 0.01 and ε = 0.001 our results are better than
the sampling results.

Discussion
There are numerous minor issues related to the work pre-
sented above, briefly discussed here. One set of issues is
related to trivial improvements to the Trim operator, such
as the inverse version of the operator used to generate a
lower bound for the empirical results. Other candidate im-
provements are not performing trimming (or even stopping a
trimming operation) if the current support size is below 1/ε,
which may increase accuracy but also the runtime. Another
point is that in the combined algorithm, space and time com-
plexity can be reduced by adding some Trim operations, es-
pecially after processing a parallel node, which is not done
in our version. This may reduce accuracy, a trade-off yet
to be examined. Another option is, when given a specific
threshold, trying for higher accuracy in just the region of
the threshold, but how to do that is non-trivial. For sam-
pling schemes such methods are known, including adaptive
sampling (Bucher 1988; Lipton, Naughton, and Schneider
1990), stratified sampling, and other schemes. It may be
possible to apply such schemes to deterministic algorithms
as well - an interesting issue for future work.

Incremental execution 2 of our algorithm can also be con-
sidered as future work, for instance, when a plan is being
generated, allow a planner to backtrack when it discovers
the current plan candidate is with high probability to exceed
the given deadline or to guide the search process in other
ways.

An obvious extension is handling continuous distribu-
tions. In practice, our algorithm can handle continuous dis-
tributions by pre-running a version of the Trim operator on
the primitive task distribution. Since one cannot iterate over
support values in a continuous distribution, start with the
smallest support value (even if it is −∞), and find the value
at which the CDF increases by ε. This requires access to
the inverse of the CDF, which is available, either exactly or

2Suggested by an anonymous reviewer

approximately, for many types of distributions. In fact, this
is precisely how Gaussian distributions were handled in our
empirical evaluation.

Approximation algorithm for the deadline problem is the
main focus of this paper. We also presented some results for
the expectation problem, mainly showing that this problem
is also NP-hard. A natural question is on approximation al-
gorithms for the expectation problem, but the answer here is
not so obvious. Sampling algorithms may run into trouble
if the target distribution contains major outliers, i.e. values
very far from other values but with extremely low proba-
bility. Our approximation algorithm can also be used as-is
to estimate the CDF and then to approximate the expecta-
tion, but we do not expect it to perform well because our
current Trim operator only limits the amount of probabil-
ity mass moved at each location to ε, but does not limit the
“distance” over which it is moved. The latter may be arbi-
trarily bad for estimating the expectation. Possibly adding
simple binning schemes to the Trim operator in addition to
limiting the moved probability mass to ε may work, another
issue for future research.

In this paper, we focus mostly on the issue of computing
the probability P (t < T) of satisfying a deadline T , i.e., that
the makespan t of the plan is less than a given value. Related
work on computing makespan distributions includes (Hong
2013), which examines sum of Bernoulli distributed random
variables. Other work examines both deterministic (Mercier
2007) and Monte-Carlo techniques (Bucher 1988; Lipton,
Naughton, and Schneider 1990). Distribution of maximum
of random variables was studied in (Devroye 1980), with a
focus mostly on continuous distributions.

Complexity of finding the probability that the makespan
is under a given threshold in task networks was shown to
be NP-hard in (Hagstrom 1988), even when the completion
time of each task has a Bernoulli distribution. Neverthe-
less, our results are orthogonal as the source of the complex-
ity in (Hagstrom 1988) is in the graph structure, whereas
in our setting the complexity is due to the size of the sup-
port. In fact for linear plans (an NP-hard case in our setting),
the probability of meeting the deadline can be computed in
low-order polynomial time for Bernoulli distributions, us-
ing straightforward dynamic programming. Makespan dis-
tributions in series parallel networks in the i.i.d. case was
examined in (Gutjahr and Pflug 1992), without consider-
ing algorithmic issues. There is also a significant body of
work on estimating the makespan of plans and schedules
(Herroelen and Leus 2005; Fu, Varakantham, and Lau 2010;
Beck and Wilson 2007), within a context of a planner or
scheduler. The analysis in these papers is based on averag-
ing or on limit theorems, and does not provide a guaranteed
approximation scheme.

Computing the distribution of the makespan in trees is a
seemingly trivial problem in probabilistic reasoning (Pearl
1988). Given the task network, it is straightforward to rep-
resent the distribution using a Bayes network (BN) that has
one node per task, and where the children of a node v in
the task network are represented by BN nodes that are par-
ents of the BN node representing v. This results in a tree-
shaped BN, where it is well known that probabilistic rea-

PlanRob 2015

10

soning can be done in time linear in the number of nodes,
e.g. by belief propagation (message passing) (Pearl 1988;
Kim and Pearl 1983). The difficulty is in the potentially ex-
ponential size of variable domains, which our algorithm, es-
sentially a limited form of approximate belief propagation,
avoids by trimming.

Looking at makespan distribution computation as prob-
abilistic reasoning leads to interesting issues for future re-
search, such as how to handle task completion times that
have dependencies, represented as a BN. Since reasoning in
BNs is NP-hard even for binary-valued variables (Dagum
and Luby 1993; Cooper 1990), this is unlikely in general.
But for cases where the BN topology is tractable, such as
for BNs with bounded tree width (Bodlaender 2006), or
directed-path singly connected BNs (Shimony and Domsh-
lak 2003), a deterministic polynomial-time approximation
scheme for the makespan distribution may be achievable.
The research literature contains numerous randomized ap-
proximation schemes that handle dependencies (Pearl 1988;
Yuan and Druzdzel 2006), especially for the case with no
evidence. In fact, our original implementation of the sam-
pling scheme in our ROBIL team entry handled dependent
durations. It is unclear whether such sampling schemes can
be adapted to handle dependencies and arbitrary evidence,
such as: “the completion time of compound task X in the
network is known to be exactly 1 hour from now”. Finally,
one might consider additional commonly used utility func-
tions, such as a “soft” deadline: the utility is a constant U
before the deadline T , decreasing linearly to 0 until T + G
for some “grace” duration G, and 0 thereafter.

Acknowledgments. This research was supported by the
ROBIL project, by the EU, by the ISF, and by the Lynne
and William Frankel Center for Computer Science.

References
Beck, J. C., and Wilson, N. 2007. Proactive algorithms for
job shop scheduling with probabilistic durations. J. Artif.
Intell. Res.(JAIR) 28:183–232.
Bodlaender, H. L. 2006. Treewidth: Characterizations,
applications, and computations. In Proceedings of the
32Nd International Conference on Graph-Theoretic Con-
cepts in Computer Science, WG’06, 1–14. Berlin, Heidel-
berg: Springer-Verlag.
Bonfietti, A.; Lombardi, M.; and Milano, M. 2014. Disre-
garding duration uncertainty in partial order schedules? Yes,
we can! In Integration of AI and OR Techniques in Con-
straint Programming. Springer. 210–225.
Bucher, C. G. 1988. Adaptive sampling: an iterative fast
Monte Carlo procedure. Structural Safety 5(2):119–126.
Cooper, G. F. 1990. The computational complexity of prob-
abilistic inference using Bayesian belief networks. Artificial
Intelligence 42 (2-3):393–405.
Dagum, P., and Luby, M. 1993. Approximating probabilistic
inference in Bayesian belief networks is NP-hard. Artificial
Intelligence 60 (1):141–153.

Devroye, L. 1980. Generating the maximum of indepen-
dent identically distributed random variables. Computers &
Mathematics with Applications 6(3):305–315.
Erol, K.; Hendler, J.; and Nau, D. S. 1994. HTN planning:
Complexity and expressivity. In AAAI, volume 94, 1123–
1128.
Fu, N.; Varakantham, P.; and Lau, H. C. 2010. Towards
finding robust execution strategies for RCPSP/max with du-
rational uncertainty. In ICAPS, 73–80.
Gabaldon, A. 2002. Programming hierarchical task net-
works in the situation calculus. In AIPS02 Workshop on On-
line Planning and Scheduling.
Garey, M. R., and Johnson, D. S. 1990. Computers and
Intractability; A Guide to the Theory of NP-Completeness.
New York, NY, USA: W. H. Freeman & Co.
Gutjahr, W., and Pflug, G. C. 1992. Average execution
times of series–parallel networks. Séminaire Lotharingien
de Combinatoire 29:9.
Hagstrom, J. N. 1988. Computational complexity of PERT
problems. Networks 18(2):139–147.
Herroelen, W., and Leus, R. 2005. Project scheduling un-
der uncertainty: Survey and research potentials. European
journal of operational research 165(2):289–306.
Hong, Y. 2013. On computing the distribution function for
the poisson binomial distribution. Computational Statistics
& Data Analysis 59:41–51.
Kelly, J. P.; Botea, A.; and Koenig, S. 2008. Offline planning
with Hierarchical Task Networks in video games. In AIIDE,
60–65.
Kim, J. H., and Pearl, J. 1983. A computation model for
causal and diagnostic reasoning in inference systems. In
Proceedings of the 6th International Joint Conference on AI.
Lipton, R. J.; Naughton, J. F.; and Schneider, D. A. 1990.
Practical selectivity estimation through adaptive sampling,
volume 19. ACM.
Mainprice, J.; Sisbot, E. A.; Jaillet, L.; Cortés, J.; Alami, R.;
and Siméon, T. 2011. Planning human-aware motions us-
ing a sampling-based costmap planner. In Robotics and Au-
tomation (ICRA), 2011 IEEE International Conference on,
5012–5017. IEEE.
Mercier, S. 2007. Discrete random bounds for general ran-
dom variables and applications to reliability. European jour-
nal of operational research 177(1):378–405.
Nau, D. S.; Smith, S. J.; Erol, K.; et al. 1998. Control
strategies in HTN planning: Theory versus practice. In
AAAI/IAAI, 1127–1133.
Nau, D. S.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock,
J. W.; Wu, D.; and Yaman, F. 2003. SHOP2: An HTN
planning system. J. Artif. Intell. Res. (JAIR) 20:379–404.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. San Mateo, CA:
Morgan Kaufmann.
Shimony, S. E., and Domshlak, C. 2003. Complexity
of probabilistic reasoning in directed-path singly connected
Bayes networks. Artificial Intelligence 151:213–225.

PlanRob 2015

11

Yuan, C., and Druzdzel, M. J. 2006. Importance sam-
pling algorithms for Bayesian networks: Principles and
performance. Mathematical and Computer Modelling
43(910):1189 – 1207.

PlanRob 2015

12

Planning with State Constraints and its Application to
Combined Task and Motion Planning

Jonathan Ferrer-Mestres
Universitat Pompeu Fabra

Barcelona, Spain
jonathan.ferrer@upf.edu

Guillem Francès
Universitat Pompeu Fabra

Barcelona, Spain
guillem.frances@upf.edu

Hector Geffner
ICREA & Universitat Pompeu Fabra

Barcelona, Spain
hector.geffner@upf.edu

Abstract

Most of the key computational ideas in planning have been
developed for planning languages where action preconditions
and goals are conjunctions of propositional atoms. These re-
strictions make the definition and computation of planning
heuristics easier but limit the expressive capabilities of the
resulting planners. As a result, standard planners are unable
to capture the type of geometrical reasoning that is critical in
robotics domains where both robots and objects have geomet-
rical dimensions and collisions are to be avoided. Such prob-
lems are addressed in robotics by combining task planners
that handle the symbolic reasoning part with motion planners
that check the geometrical feasibility of the plans output by
the task planners. This decomposition however may result in
a lot of backtracking as the symbolic and geometrical compo-
nents are not independent. The aim of this work is to provide
an alternative integration of task and motion planning where
the symbolic and geometrical components are addressed in
combination, with neither part taking the back seat. For this,
we build on the recent planner FS0 that is able to handles an
expressive variable-free, first-order planning language called
Functional STRIPS where constraints, functions and numeri-
cal variables are accommodated, and extend it to handle also
state constraints — namely, formulas that must be true in all
states. We then use functions for encoding the geometrical
dimensions and poses of objects, and state constraints to ex-
press that no pair of objects, including the robot, can overlap
in space. We illustrate the functionality and performance of
the planner over a number of examples.

Introduction
Classical AI planners are currently able to solve problems
over very large state spaces. In classical planning, the ini-
tial state is fully known and actions are assumed to have de-
terministic effects. The main techniques rely on the use of
heuristics that are derived automatically in order to guide
a state-space search or on translations into propositional
satisfiability (Russell and Norvig 2002; Ghallab, Nau, and
Traverso 2004; Geffner and Bonet 2013). However, the re-
strictions in planning modeling languages that have facili-
tated these developments, have also limited the scope of the
resulting planners. In particular, standard planners do not
appear to be suitable for capturing the type of geometrical
reasoning that is critical in robotics where both robots and
objects have geometrical dimensions and collisions are to

be avoided. Such problems are addressed instead through
a combination of two types of planners: task planners that
handle the high-level, symbolic reasoning part, which cor-
respond to the AI planners, and motion planners (LaValle
2006) that plan the movements in space and handle the ge-
ometrical constraints (Cambon, Gravot, and Alami 2004;
Wolfe, Marthi, and Russell 2010; Lagriffoul et al. 2012;
Lozano-Pérez and Kaelbling 2014). The symbolic and the
geometrical components, however, are not independent, and
hence, by giving one of these two parts the secondary role
of verifying feasibility, approaches based on task and mo-
tion decomposition are doomed to produce lots of back-
tracks. The problem of excessive backtracks is well-known
in constraint satisfaction when constraints are used passively
(Mackworth 1977; Dechter 2003). The computational solu-
tion to this problem is the interleaving of search with forms
of constraint propagation that make the constraints an active
part in the search. The situation is similar when searching
for a goal in a graph: blind-search methods where the goal
plays a passive role cannot scale as well as methods where
the goal directs the search by means of a heuristic function.

The aim of this work is to provide an alternative integra-
tion of task and motion planning where the symbolic and
geometrical components in robot planning are addressed in
combination and both parts play an active role in directing
the search for plans. For this, we build on the recent plan-
ner FS0 (Francès and Geffner 2015) that handles an ex-
pressive variable-free, first-order planning language called
Functional STRIPS (Geffner 2000) which naturally accom-
modates constraints, functions, and numerical variables both
in the specification of the problem and in the computa-
tion of the heuristics. On top of that, we extend FS0 and
Functional STRIPS with the ability to handle state con-
straints, i.e. formulas that must be true in all states encoun-
tered through the execution of a plan. We use functions for
encoding the geometrical dimensions of objects and their
poses, and state constraints to express that no two objects,
including the robot, can overlap in space. State constraints
are not a standard feature of planning languages, although
their convenience has been thoroughly discussed in the lit-
erature on reasoning about actions (Lin and Reiter 1994;
Son et al. 2005), sometimes under the name of plan invari-
ants.1 In our case, state constraints can be thought of as a

1State constraints should not be confused with state invariants: a

PlanRob 2015

13

convenient way to express preconditions that are implicit for
all actions (i.e. actions leading to the violation of a state con-
straint are deemed not applicable), states to be avoided (e.g.,
states where a formula p ∧ q is true),2 and dead-end condi-
tions, that is conditions that if ever achieved preclude reach-
ing the goal. Functions are then used in the planner to encode
the geometrical dimensions of objects and their poses, and
state constraints to express that objects should not overlap
in space. The functionality and performance of the planner
will be illustrated over some examples.

The rest of the paper is organized as follows. We first re-
view the Functional STRIPS planning language, whose ex-
pressivity is key for handling “motion planning” as a partic-
ular form of “task planning”, and the recent planner FS0,
which handles a large fragment of Functional STRIPS. We
then show how to extend this planner for handling state con-
straints. Finally, we use the resulting planner for modeling
and solving planning problems with state constraints, and in
particular, problems that combine motion and task planning.
Preliminary experimental results are reported, and simula-
tions of the resulting plans can be seen in videos.3

Functional STRIPS
Functional STRIPS (FSTRIPS) is a general modeling lan-
guage for classical planning based on the quantifier-free
fragment of first-order-logic involving constant, function
and relational or predicate symbols but no variable symbols.
We review it following (Geffner 2000).

Syntax
FSTRIPS assumes that fluent symbols, whose denotation
may change as a result of the actions, are all function sym-
bols. Fluent constant symbols can be seen as arity-0 function
symbols, and fluent relational symbols as boolean function
symbols of the same arity plus equality. For example, typical
blocksworld atoms like on(a, b) can be encoded in FSTRIPS
as on(a, b) = true, by making on a functional symbol, or
in this case, more conveniently, as loc(a) = b where loc is a
function symbol denoting the block location.

Constant, functional and relational symbols whose de-
notation does not change are called fixed symbols. Among
them, there is usually a finite set of object names, and con-
stant, function, and relational symbols such as ‘3’, ‘+’ and
‘=’, with the standard interpretation. Terms, atoms, and for-
mulas are defined from constant, function, and relational
symbols in the standard way, except that in order for the rep-
resentation of states to be finite and compact, the symbols,
and hence the terms are typed. A type is given by a finite
set of fixed constant symbols. The terms f(t) where f is a

state constraint enforces a formula to be true in all reachable states,
while a state invariant is a formula that can be proven to hold in
all reachable states. For example, block A not being on top of two
blocks at the same time is a typical state invariant in blocksworld,
whereas A not being on top of block B might be a particular state
constraint that we want to enforce.

2State constraints φ used this way model the class of extended
temporal goals “never φ” (Dal Lago, Pistore, and Traverso 2002).

3www.bitbucket.org/ferrerj/ctmp

fluent symbol and t is a tuple of fixed constant symbols are
called state variables, as the state is actually determined by
the value of such “variables”.

An action a is described by the type of its arguments and
two sets: the precondition and the effects. The precondition
Pre(a) is a formula, and the effects are updates of the form
f(t) := w, where f(t) and w are terms of the same type,
f is a fluent symbol, and t is a tuple of terms. The updates
express how fluent f changes when the action is taken. Con-
ditional effects C → f(t) := w, where C is a formula (pos-
sibly C = true), can be defined in a similar manner.

A FSTRIPS problem is a tuple P = 〈F, I,O,G〉 where I
and G are the initial and goal formulas, O is a set of actions,
and F describes the symbols and their types. The formula
I along with the external procedures must define a unique
initial denotation for each of the symbols in F .

Semantics
States represent logical interpretations over the language of
FSTRIPS. The denotation of a symbol or term t in the state
s is written as ts. The denotation rs of fixed symbols r does
not depend on the state and is written r∗. The denotation of
standard fixed symbols like ‘3’, ‘+’, ‘=’ is assumed to be
given by the underlying programming language, while ob-
ject names c are assumed to denote themselves i.e. c∗ = c.
The denotation of fixed (typed) function and relational sym-
bols can be provided extensionally, by enumeration in the
initial situation, or intensionally, by attaching actual func-
tions (external procedures) to them (Dornhege et al. 2009).

Since the only fluent symbols are function symbols, and
the types of their arguments are all finite, the (dynamic part
of the) state can be represented as the value of a finite set
of state variables f(t), where f is a functional fluent and t
is a tuple of fixed constant symbols. From the fixed denota-
tion r∗ of fixed symbols r, and the changing denotation of
fluent symbols f captured by the values [f(t)]s of the state
variables f(t) associated with f , the denotation of arbitrary
terms, atoms, and formulas follows in the standard way. The
denotation ts of any term not involving functional fluents,
expressed also as t∗, is c∗ if t is a constant symbol or, re-
cursively, g∗(t∗1) if t is the compound term g(t1) where t1
is a tuple of terms. Similarly, the denotation ts of a term
f(t1) where f is a fluent functional symbol is defined re-
cursively as the value [f(c)]s of the state variable f(c) in s
where c is the tuple of constant symbols that name the tuple
of objects ts1; i.e., c∗ = ts1. In the same way, the denotation
[p(t)]s of an atom p(t) is true/false iff the result of apply-
ing the boolean function p∗ to the tuple of objects ts yields
true/false. The truth value Bs of the formulas B made up
of such atoms in the state s follows then the usual rules.

An action a is applicable in a state s if [Pre(a)]s = true.
The state sa that results from the action a in s satisfies the
equation fsa(ts) = ws for all the updates f(t) := w that
the action a triggers in s, and is otherwise equal to s. This
means that the update changes the value of the state variable
f(c) to ws iff the action triggers an update f(t) := w in the
state s for which c∗ = ts. For example, if X = 2 is true
in s, then the update X := X + 1 increases the value of
X to 3 without affecting other state variables. Similarly, if

PlanRob 2015

14

loc(b) = b′ is true in s, the update clear(loc(b)) := true in
s is equivalent to the update clear(b′) := true.

A plan for a problem P = 〈F, I,O,G〉 is a sequence of
applicable actions from O that maps the unique initial state
where I is true into one of the states where G is true.

Example
A simple planning problem involving a set of integer vari-
ables X1, . . . , Xn and actions that allow us to increase or
decrease the value of any variable by one within the [0, n] in-
terval, can be modeled in Functional STRIPS by treating the
variablesXi as 0-arity fluent functional symbols with values
ranging in the [0, n] interval. TheseXi symbols represent the
state variables in the problem. If I = {X1 = 0, . . . , Xn =
0}, and G = {X1 < X2, . . . , Xn−1 < Xn}, the problem is
about changing the value of the Xi variables from 0 to final
values that increase monotonically with i. The precondition-
free action inc(Xi) has the effect Xi := min (Xi + 1, n),
whereas dec(Xi) has the effect Xi := max (Xi − 1, 0).

A Functional STRIPS Planner
The FS0 planner (Francès and Geffner 2015) deals with a
large fragment of the Functional STRIPS language where
preconditions and goal formulas must be in CNF and each
clause may involve two state variables at most, with the
exception of atoms expressing global constraints (van Ho-
eve and Katriel 2006; Rossi, Van Beek, and Walsh 2006).
For example, the goal of arranging a set of blocks in
blocksworld into a single tower can be expressed succinctly
as alldiff(loc(b1), . . . , loc(bn)) where alldiff repre-
sents the standard all-different constraint. Like constraint
solvers, FS0 gets a computational benefit from combin-
ing the O(n2) inequality constraints loc(bi) 6= loc(bj) into
one single alldiff global constraint, as this enables more
powerful forms of constraint propagation that yield more in-
formed heuristic values. We next focus on the computation
of these heuristics in FS0, where they are used to guide a
standard greedy best-first search.

Computation of the Heuristic
As noted by several authors, some of the heuristics that
are useful in STRIPS like hmax (Bonet and Geffner 2001)
and hFF (Hoffmann and Nebel 2001) can be generalized
to more expressive languages by means of the so-called
value-accumulating semantics (Hoffmann 2003; Gregory et
al. 2012; Ivankovic et al. 2014). In this interpretation, each
propositional layer Pk of the Relaxed Planning Graph
(RPG) keeps for each state variable X a set Xk of val-
ues that are possible in Pk. Such sets are used to define
the sets yk of possible values or denotations of arbitrary
terms, atoms, and formulas y, and from them, the sets of
possible values Xk+1 for the next layer Pk+1. For layer
P0, X0 = {Xs}, s being the state whose heuristic value
is sought. From the sets of possible values Xk for the state
variables X in layer Pk, the set of possible denotations tk
of any term not involving functional fluents is tk = {t∗},
while the set of possible denotations [f(t)]k for terms f(t)
where f is a fluent symbol is defined recursively as the union

of the sets [f(c)]k where f(c) is a state variable such that
c∗ ∈ tk. In a similar way, the set of possible denotations
[p(t)]k of an atom p(t) in layer Pk includes the value true
(false) iff p∗(c∗) = true (false, respectively) for some
tuple c∗ ∈ tk. The set of possible denotation of disjunc-
tions, conjunctions, and negations are defined recursively so
that true is in [A ∨ B]k, [A ∧ B]k and [¬A]k iff true is in
Ak or in Bk, true is in both Ak and Bk, and false is in
Ak respectively. Similarly, false is in [A ∨ B]k, [A ∧ B]
and [¬A]k iff false is in both Ak and Bk, false is in Ak

or in Bk, and true is in Ak respectively. The set of pos-
sible values Xk+1 for the state variable X in layer Pk+1

is the union of Xk and the set of possible values x for X
that are supported by conditional effects of actions a whose
preconditions are possible in Pk, i.e., true ∈ [Pre(a)]k. A
conditional effect C → f(t) := w of a supports value x
of X in Pk iff X = f(c) for some tuple of constant sym-
bols c such that c∗ ∈ tk and x ∈ wk. When computing the
heuristics hmax and hFF, the computation stops in the first
layer Pk where the goal formula G is true, i.e. true ∈ Gk,
or where a fixed point has been reached without rendering
the goal true, i.e. Xk = Xk+1 for all the state variables.
A relaxed plan πFF(s) can be obtained then backward from
the goal by keeping track of the state variables X and values
x ∈ Xk that make the goal true, the actions a and effects
C → f(t) := w supporting such values first, and iteratively,
the variables and values that make Pre(a) and C true. The
heuristic hFF(s) is given by the number of different actions
a in πFF(s), each action a counted as many times as layers
in πFF(s) where it is used, in accordance with the treatment
of conditional effects in FF. The heuristic hmax(s) is given
by the index k of the first layer Pk where the goal is true.
Logical Generalization: Constrained RPG. A weakness
of RPG heuristics is the assumption that state variables can
take several values at the same time. This simplification does
not follow from the monotonicity assumption that underlies
the value-accumulating semantics but from the way the sets
of possible values Xk in layer Pk are used. The fact that
these various values are all regarded as possible in layer Pk

does not imply that they are jointly possible. The way to re-
tain monotonicity in the construction of the planning graph
while removing the assumption that a state variable can take
several values at the same time is to map the domains Xk

of the state variables into a set V k of possible interpreta-
tions over the language. Indeed, given that an interpretation
s over the language is determined by the values Xs of the
state variables (Section 2), this set V k is nothing but the
set of interpretations v that result from selecting one value
Xv for each state variable X among the set of values Xk

that are possible for X in layer Pk. As before, X0 = {Xs}
when s is the seed state, and Xk+1 contains all the values in
Xk along with the set of possible values x for X supported
by the effects of actions a whose preconditions are possi-
ble in Pk. A formula like Pre(a) is satisfiable in layer Pk

iff there is an interpretation v ∈ V k s.t. [Pre(a)]v = true.
Moreover, a conditional effect C → f(t) := w of a sup-
ports the value x of X in Pk iff there is an interpretation
v ∈ V k where [Pre(a)]v and Cv are true, x = wv , and
X = f(c) for c∗ = tv . This alternative, logical interpreta-

PlanRob 2015

15

tion of the propositional layers Pi affects the contents and
computation of the RPG, which we now call Constrained
RPG (CRPG). The construction of the RPG stops at the
first layer Pk where the goal formula G is satisfiable, i.e.
where Gv is true for some v ∈ V k, or when a fixed point
is reached without rendering the goal true. Heuristics analo-
gous to hmax and hFF (which we name h∗max and h∗FF) can
then be obtained from such a graph in the usual way.

Polynomial Approximation: Constraint Propagation.
The heuristics h∗max and h∗FF correctly assign infinite heuris-
tic values to logically inconsistent goals such as (X <
3 ∧ X > 5), which get finite values in the unconstrained
heuristics hmax and hFF when each goal X < 3 and X > 5
is reachable separately. The problem with such heuristics
is that they are intractable. The two heuristics hcmax and
hcFF supported in the FS0 planner are aimed at approximat-
ing these two heuristics in an efficient, polynomial manner.
For this, it is assumed that action preconditions, conditions,
and goals are conjunction of atoms, and that fluent symbols
do not appear nested. Under these restrictions, checking
whether the goal G is satisfiable in a propositional layer Pk

boils down to solving a constraint satisfaction problem Gk

whose variables are the state variables X appearing in G,
the domain D(X) of the variables X is Xk, and the con-
straints are given by the atoms in G. In the approximation,
the goal G is deemed satisfiable simply if the local consis-
tency methods do not prove that the CSP is unsatisfiable by
leaving a variable with an empty domain. The local consis-
tency methods are node and arc consistency (Dechter 2003;
Rossi, Van Beek, and Walsh 2006). The hcmax heuristic is
defined by the index k of the first layer Pk where the goal
is deemed satisfiable in this manner. Arc consistency ap-
plies only to binary constraints, i.e. to atoms involving two
state variables. For atoms involving more variables, local
consistency algorithms that depend on the type of (global)
constraint are used instead. Currently, FS0 supports just
two types of global constraints, alldiff and sum (Rossi,
Van Beek, and Walsh 2006), but it offers the possibility of
defining new global constraints by providing their associated
local consistency algorithms.

As an illustration of these heuristics, the problem above
with variablesXi that must be increased or decreased from 0
until achieving the inequalitiesXi < Xi+1, i = 1, . . . , n−1,
yields an hmax value of 1 when the value-accumulating
semantics is used, or when the problem is compiled into
STRIPS. On the other hand, the constrained heuristic h∗max
and its polynomial approximation hcmax have the optimal
value n. This is because while each of the goal atoms Xi <
Xi+1 is reachable in one step in the RPG, their conjunction
is satisfiable in both the constrained RPG and its polynomial
approximation only after n steps.

State Constraints
By accommodating numerical variables, constraints, and
functions, it is possible to express in Functional STRIPS
problems that involve geometrical reasoning. For example,
one can easily deal with a problem involving a square ob-
ject o with side length d by using a representation in which

the function config(o) denotes its 2D location 〈x, y〉 which
can be changed through translation actions. By a suitable
discretization of the set of possible configurations, one can
then express the problem of manipulating the object o from
a given initial configuration into a final configuration where,
for example, a certain position (xc, yc) must be covered by
the object. For this, the goal G can be expressed as the for-
mula (x − d ≤ xc ≤ x + d) ∧ (y − d ≤ yc ≤ y + d) that
reduces to four atoms involving two state variables x and
y. Actually, the current version of FS0 handles the nega-
tion of such goals as well, which also involves two vari-
ables, and expresses the problem where the object must be
placed in a location where the target point is not covered.
Thus, it is simple to capture in FS0 problems where an ob-
ject must be moved in order to comply with some geometri-
cal goal constraint. What is less simple to do in Functional
STRIPS is to enforce such constraints throughout the execu-
tion of the plans which is critical in robotics. For doing this,
however, we just need to treat such constraints, not as goal
constraints, but as state constraints (Lin and Reiter 1994;
Son et al. 2005), i.e., constraints applying to all states not
just goal states. The changes required in the language and
in the derivation of heuristics for accommodating state con-
straints are minor, but the expressivity gained is significant.

Syntax and Semantics
A FSTRIPS planning problem with state constraints is a tu-
ple P = 〈F, I,O,G,C〉where the new componentC stands
for a set of formulas expressing the constraints. The syntax
for these formulas is the same as for those encoding the goal
G but their semantics is different. State constraints are used
for encoding implicit preconditions. Namely, an action a is
deemed applicable in a state s when both [Pre(a)]s = true
and the state sa that results from applying a to s is such that
cs = true for every state constraint c ∈ C. In other words,
an action a is non-executable in a state s where its precon-
dition Pre(a) holds, if its execution leads to a state sa that
violates some state constraint. In addition, the unique initial
state must satisfy all the state constraints as well. As a result,
if c ∈ C is a state constraint and s0, . . . , sn is the sequence
of states generated by a plan that solves P , then c will be
true in all the states si, i = 0, . . . , n.

Heuristics
The introduction of state constraints affects the definition of
the heuristics h∗max and h∗FF obtained from the constrained
RPG, and the polynomial approximations hcmax and hcFF
supported in the FS0 planner. The changes, however, are mi-
nor. First, recall that a layer Pk encodes sets Xk of possible
values for each state variableX , which in turn define sets V k

of possible interpretations over the language. An action a is
deemed applicable in layer Pk if one such interpretation sat-
isfies the formula Pre(a); similarly, the goalG is taken to be
true for the purpose of computing a constrained relaxed plan,
if one such interpretation satisfiesG. In the presence of state
constraints, this remains the same except that interpretations
in V k that do not satisfy a state constraint are pruned first.
In the polynomial approximation that leads to the heuristics

PlanRob 2015

16

hcmax and hCFF, the state constraints are not used to prune in-
terpretations directly but just the domains Xk of the state
variables X in layer k through constraint propagation.

Examples
We illustrate next the usefulness of state constraints both in
terms of modeling and computation with a couple of exam-
ples, reporting their running times as well.

The Missionaries and Cannibals (M&C) problem has
received wide attention since the early days of AI (Amarel
1968) as a toy problem that is nevertheless representative of
a wider class of transportation-under-constraints problems.
In its standard version, the problem places three missionar-
ies and three cannibals on the left bank of a river which they
all want to cross. A single boat is available that can hold
only two people at a time, regardless of whether they are
missionaries or cannibals. Apparently, the missionaries do
not want to be outnumbered by the cannibals, be it on either
bank of the river or inside of the boat, for fear of the canni-
bals exercising their defining inclination.4 The goal is to find
an appropriate schedule of river crossings that transports ev-
eryone to the right bank of the river in a safe manner.

We model a generalization of the problem for n mission-
aries and n cannibals (n ≥ 3) on a complete graph. There
are fixed symbols l1, . . . , lm representing the locations, and
state variables nc(l) and nm(l) representing the number of
cannibals and missionaries at each location l. In addition, the
0-ary functional symbol X represents the current location of
the boat. The actions move(c,m, l), with 0 ≤ c,m ≤ 2,
c+m ∈ {1, 2}, move c cannibals andmmissionaries in one
boat trip from the current location to l. Their preconditions
are c ≤ nc(X) and m ≤ nm(X), and their effects are X :=
l, nc(l) := nc(l)+c, nc(X) := nc(X)−c, and analogously
for the missionaries. Finally, the restriction on cannibals not
outnumbering missionaries in a location l is modeled by the
binary state constraint nm(l) ≥ nc(l)∨nm(l) = 0. The “in-
side of the boat” restriction is encoded as part of the move
action.

As a second example, consider a simple navigation with
geometrical obstacles problem in which an n × m grid
contains a robot that has to reach a goal cell while avoid-
ing obstacles. For simplicity, we assume a point robot with
no geometry, and obstacles o with rectangular shape which
can be represented by a couple of coordinate points (xo, yo)
and (x′o, y

′
o), with xo < x′o and yo < y′o (obstacles having

other shapes can be thought of as a combination of smaller
rectangles). The location of the robot is represented by two
0-arity fluent functional symbols x and y with values in
[1, n] and [1,m]. The actions move(dx, dy) with dx, dy ∈
[−1, 1] move the agent to adjacent locations, including di-
agonals, with effects x := max(0,min(x + dx, n)) and
y := max(0,min(y + dy,m)). Avoidance of obstacles o
in any plan can then be represented succinctly through the
state constraint ¬(xo ≤ x ≤ x′o ∧ yo ≤ y ≤ y′o), resulting

4A historically more accurate version of the problem has it that
it is the cannibals that do not want to be outnumbered by the mis-
sionaries for fear of being converted, but we restrict our discussion
to the first version for the sake of tradition.

Figure 1: Arm rotating to grasp an object

in a problem with as many state constraints as obstacles, and
where each of the state constraints involves the same two
state variables x and y.

We have actually tested the planner on a number of ran-
domly generated instances of increasing size for each of
these two domains.5 In the case of the M&C domain, the
planner scales up pretty well, handling problem sizes of 20-
node location graphs and 12 missionaries plus 12 cannibals
with relative ease: an instance with a 10-node graph and 9+9
missionaries and cannibals is solved in 80 sec. by finding a
plan of length 49 after expanding 637 nodes. An instance
with 20 nodes and 12 + 12 individuals takes 379 sec. and
183 node expansions to find a plan of length 45. Similarly,
the planner handles navigation problems with a linear num-
ber of geometrical obstacles in less than 0.1 sec. for 10× 10
grids and less than 15 sec. for 50× 50 grids.

Task and Motion Planning Combined
The last example illustrates how problems involving geo-
metrical constraints can be modeled in Functional STRIPS
with state constraints, and solved by the FS0 planner. We
now consider a more general type of problem involving a
robot that can translate, rotate (Figure 1), and pick and place
objects (Figure 2). Robots and objects can have arbitrary 2D
geometries, and collisions are to be avoided. In one task,
which we name moving with geometrical obstacles, the
robot must reach a goal configuration by navigating and
moving the objects that obstruct the path. In the other task,
which we name tidying up, the robot must place the objects
in some goal configuration. In both cases, the 2D space of
the environment is discretized according to a parameter r
into a regular grid of size r × r. Robots and objects have
a configuration that captures triplets 〈x, y, θ〉, where x and
y capture the center-of-mass position of the object or robot
within the discrete grid, and θ its orientation, with angles
being discretized into 45 degrees.

5Problem encodings for which empirical results are discussed
are available at www.bitbucket.org/ferrerj/ctmp.

PlanRob 2015

17

Figure 2: Gripper grasping an object

The configuration config(o) of an object or robot o
is represented with the functional fluent config . Transla-
tions and rotations of the robot change the robot con-
figuration, and, if the robot is holding and object, they
change the configuration of the object too. These changes
are all expressed by means of externally defined proce-
dures. In addition, the pickup(o) action has precondition
graspable(config(r), config(o)) where r is the robot, o the
object to be picked up, and graspable is a fixed predicate
symbol whose denotation is externally defined too.

The avoidance of collisions between movable and
static objects is captured by the fixed external proce-
dures that perform the configuration updates. If, say, a
translation of the robot would make it collide with a
static object, the procedure updates the configuration to
the particular invalid value ⊥. The avoidance of col-
lisions among movable objects, on the other hand, is
handled in a pairwise fashion by the binary state con-
straints non-overlapi,j(config(oi), config(oj)), where the
fixed predicate symbol non-overlapi,j is defined by an ex-
ternal procedure that is a function of the geometries and con-
figurations of the objects i and j. The predicate is true when
there is no grid cell occupied by both objects given their
fixed geometries and current configurations. For the sake of
performance, all reasoning involving object configurations
is precompiled into extensional form, meaning that all the
fixed external functions are extensionally stored by means
of tables that are indexed by the configuration identifiers.

Illustrations showing the initial, goal, and intermediate
configurations resulting from plans computed by FS0 on
the “moving with geometrical obstacles” problem are shown
in Figure 3. Movable objects are depicted by little squares,
static objects by brown boxes, the robot is stick-shaped with
a gripper and its final configuration is shown in green.

FSTRIPS Model Details
We provide a few additional details on the model of the prob-
lems in FSTRIPS. Besides the config symbol, two auxiliary
fluent functional symbols handempty and held are used, the
first boolean, the second denoting the object being held. The
functions used to capture the changes in the configurations
are translated , rotated and o-rotated (standing for the ro-
tation of the object being held). The first function is used
in the effects of the translation action, the second in the

rotation action, and the third in the rotation action with an
object. More precisely, translated(o, c, d) is the configura-
tion that results from applying an atomic translation to the
robot or object o when in configuration c, where d is a di-
rection; i.e., one of the the fixed symbols N , NE , E , SE ,
S , SW , W , NW . In turn, rotated(o, c, d) is the result of
applying an atomic rotation with d being one of the fixed
symbols cw and ccw (clockwise, counterclockwise). Finally,
o-rotated(o, c, d) denotes the resulting configuration of the
obstacle o held by the robot when the robot performs a ro-
tation in direction d. By atomic translations and rotations
we refer to step-wise operations that translate or rotate the
object to the next cell or angle respectively, according to
the chosen discretization. Having the objects move only one
step at a time is necessary to ensure that no collisions hap-
pen along trajectories, while keeping the total number of
(grounded) actions small and independent of the total num-
ber of configurations.

The problem model requires 6 action types translate,
rotate (when the robot is holding no object),
pick-up, place, translate-with-object, and
rotate-with-object (when the robot is holding an
object). We omit the full specification and limit our descrip-
tion to the action rotate-with-object(o, d), where
d ∈ {cw , ccw}, and which has a single precondition held =
o and two effects: conf (r) := rotated(r, conf (r), d) and
conf (o) := o-rotated(o, conf (o), d). All action precondi-
tions are CNF formulas with clauses involving a single state
variable, with the sole exception of the precondition of the
pick-up action which contains a clause making use of the
graspable predicate that involves two state variables.

Experimental Results
We report next the empirical results of the FS0 planner
when run on a number of problems from the MOVING-
GEOM-OBSTACLES and TIDYING-UP domains.6 The results
are from running the planner on an AMD Opteron 6300 ma-
chine with a 2.4Ghz clock, with a time bound of 30 minutes
and a memory bound of 8GB.

Table 1 shows the per-instance results of the planner, fo-
cusing on plan length (i.e. number of actions in the plan),
total number of expanded nodes along the search, and total
runtime of the plan search. In both domains, the complex-
ity of the problem clearly grows with both the discretization
resolution and the number of movable objects as expected.
In general, the higher the value of any of these two parame-
ters, the longer the plans, because steps are smaller and more
objects may have to be moved.

MOVING-GEOM-OBSTACLES problems with 10× 10 res-
olution grids are solved by FS0 with ease, even with 5 ob-
stacles. The number of node expansions during the greedy
best-first search grows with the number of objects but is
low, suggesting that the heuristic is informative. Grid res-
olutions of 30 × 30 and 50 × 50 pose a more significant
challenge, but nevertheless the planner solves the instances
with 1 − 3 objects with a low number of node expansions.

6Simulations of the obtained plans can be seen at www.
bitbucket.org/ferrerj/ctmp.

PlanRob 2015

18

Figure 3: The MOVING-GEOM-OBSTACLES domain in which a robot has to reach a target position but a number of obstacles
need to be picked up and moved around so that they stop blocking the robot’s path to the goal. Snapshots from top left to bottom
right show several steps of the solution, in which the robot reaches the goal configuration after clearing the path.

PlanRob 2015

19

Problem FSTRIPS model Solution
Type Res. Obj. vars configs actions constr. length #Exp Time (s.) #Exp per second
MGO 10× 10 1 4 212 22 3 18 19 0.16 118.75
MGO 10× 10 2 6 212 34 6 19 21 0.45 46.67
MGO 10× 10 3 8 212 46 10 23 33 1.13 29.20
MGO 10× 10 4 10 212 58 15 41 169 8.10 20.86
MGO 10× 10 5 12 212 70 21 59 397 10.56 37.59

MGO 30× 30 1 4 894 22 3 44 83 8.35 9.94
MGO 30× 30 2 6 894 34 6 49 55 16.39 3.36
MGO 30× 30 3 8 894 46 10 55 119 55.26 2.15
MGO 30× 30 4 10 894 58 15 - 1475 >1800 0.82
MGO 30× 30 5 12 894 70 21 - 2139 >1800 1.19

MGO 50× 50 1 4 2120 22 3 74 218 110.43 1.97
MGO 50× 50 2 6 2120 34 6 78 80 72.14 1.11
MGO 50× 50 3 8 2120 46 10 83 222 548.75 0.40
MGO 50× 50 4 10 2120 58 15 - 669 >1800 0.37
MGO 50× 50 5 12 2120 70 21 - 1458 >1800 0.81

TU 10× 10 2 6 226 34 6 12 14 0.06 233.33
TU 10× 10 3 8 227 46 10 35 63 0.43 146.51
TU 30× 30 2 6 908 34 6 54 143 13.24 10.80
TU 30× 30 3 8 909 46 10 112 6564 164.50 39.90
TU 50× 50 2 6 2134 34 6 47 154 5.51 27.95
TU 50× 50 3 8 2135 46 10 121 17449 1675.72 10.41

Table 1: Performance of FS0 on MOVING-GEOM-OBSTACLES (MGO) and TIDYING-UP (TU) instances, described in the text.
Instances differ on the resolution of the environment discretization (col. 2) and on the number of movable objects (col. 3).
Columns 4 to 7 report information about the characteristics of the FSTRIPS encoding, namely the number of state variables,
the number of object configurations, the number of (grounded) actions, and the number of state constraints. The four rightmost
columns respectively report (1) the length of the plan (a dash denotes that no plan was found), (2) the number of nodes expanded
along the search, (3) the total runtime until the plan is found, and (4) the rate at which nodes are expanded. Simulations of the
execution of the computed plans can be visualized at www.bitbucket.org/ferrerj/ctmp.

In turn, TIDYING-UP problems are also solved by expanding
few nodes in the simpler cases, although the heuristic is less
informative for the higher resolutions and 3 objects.

In general, the rate of nodes expanded per second de-
creases sharply with the resolution and number of objects.
This is indicative of the cost of computing the heuristic,
which is affected by the number of state variables associated
with the objects and by the total number of configurations,
which in turn depends on the chosen resolution. Indeed, the
number of object configurations in a grid discretized with
resolution r× r and k possible orientations is in the order of
k ·r2, although many of these configurations will not be fea-
sible, as they overlap with an static object in the map. The
empirical results show the feasibility of the approach, but
work is still needed to improve scalability further. In partic-
ular, one possibility to address the blowup that our approach
incurs when increasing the resolution or scaling up to a 3D
representation would be the use of an encoding along the
lines of the “navigation with geometrical obstacles” exam-
ple presented above, where configurations are modeled in
terms of three distinct state variables x, y and θ instead of
one. Particular attention should be paid to how this type of

change affects the quality of the resulting heuristics. Another
issue that deserves further consideration is the impact of the
precompilation of all external procedures into extensional
form. This offers an advantage on small-scale domains, but
it is not clear how useful it is on larger domains.

Related Work
Combined task and motion planning for grasping and ma-
nipulation is an open research problem at the intersection
of planning and robotics. The aSyMov planner (Cambon,
Gravot, and Alami 2004; Gravot, Cambon, and Alami 2005),
for instance, already aimed at integrating both symbolic and
geometric reasoning at each step of the planning process.
External procedures have also been used to avert the diffi-
culty of performing geometric reasoning within a logically-
oriented planning language (Dornhege et al. 2010), as well
as to predict the effects of actions involving complex physics
(Kunze and Beetz 2015).

Hierarchical approaches to the problem have also been ex-
plored in (Kaelbling and Lozano-Pérez 2011), where a hi-
erarchical regression-based schema is developed that com-
bines task and motion planning, and in (Wolfe, Marthi, and

PlanRob 2015

20

Russell 2010), where Hierarchical Task Networks are used
to tackle robotic manipulation problems by modeling the
bottom actions of the hierarchy with motion planning. Ma-
nipulation planning problems are also tackled through sym-
bolic planning in (Nebel, Dornhege, and Hertle 2013).

An alternative approach is that presented in (Srivastava et
al. 2014), where off-the-shelf classical and motion planners
are integrated through the use of a planner-independent in-
terface layer. The errors in the motion planning goals have
to be identified and fed back to the symbolic planner in
the form of logic predicates, the main challenge being the
proper identification of the offending atoms that prevent the
enactment of specific high-level actions. (Garrett, Lozano-
Pérez, and Kaelbling 2014) computes an heuristic that takes
the geometrical information into account together with the
symbolic information, exploiting a conditional reachability
graph as a form of a probabilistic roadmap conditioned to the
object configurations. (Lagriffoul et al. 2012) integrates task
and motion planning proposing a technique to reduce the
geometric configuration space and thus the number of calls
to the motion planner. A key difference between all these
approaches and ours, however, is the formulation of motion
planning as an additional component of the task planner.

Summary
We have proposed an alternative integration of task and mo-
tion planning where the symbolic and geometrical compo-
nents are addressed in combination, with neither part tak-
ing the back seat. For this, we have built on an expressive
planning language, Functional STRIPS, that supports con-
straints, functions, and numerical variables, and on the plan-
ner FS0, which supports a large fragment of this language in
the specification of problems and is crucially able to exploit
its expressivity in the computation of heuristics. We have
extended this language and computational model with state
constraints: logical formulas that must hold true in every
state of a plan. In order to address motion and task planning
problems, we use functions for encoding the geometrical di-
mensions of objects and their poses, and state constraints to
express that no two objects, including the robot, can overlap
in space. The experiments reported are preliminary but illus-
trate the feasibility of the approach. There is a lot of room
for improving performance and for exploring the possibili-
ties that are afforded by this integration of motion planning
into task planning. In particular, scaling up well in the pres-
ence of large grids and many objects remains a challenge.
In principle, however, there is no need for the grids to be
regular: it would be more natural to use higher resolutions
around the current robot configuration and lower resolutions
elsewhere. Alternatively, maps obtained from random con-
figuration sampling, as in probabilistic roadmaps, could be
used instead. The strength of the integration proposed is that
it is very general and independent of these choices.

References
Amarel, S. 1968. On representations of problems of reasoning
about actions. Machine intelligence 3(3):131–171.
Bonet, B., and Geffner, H. 2001. Planning as heuristic search.
Artificial Intelligence 129(1–2):5–33.

Cambon, S.; Gravot, F.; and Alami, R. 2004. aSyMov: Towards
more realistic robot plans. In Proc. of ICAPS.
Dal Lago, U.; Pistore, M.; and Traverso, P. 2002. Planning with a
language for extended goals. In Proc. AAAI, 447–454.
Dechter, R. 2003. Constraint Processing. Morgan Kaufmann.
Dornhege, C.; Eyerich, P.; Keller, T.; Trüg, S.; Brenner, M.; and
Nebel, B. 2009. Semantic attachments for domain-independent
planning systems. In Proc. of ICAPS, 114–121.
Dornhege, C.; Eyerich, P.; Keller, T.; Brenner, M.; and Nebel, B.
2010. Integrating task and motion planning using semantic attach-
ments. In Bridging the Gap Between Task and Motion Planning.
Francès, G., and Geffner, H. 2015. Modeling and computation
in planning: Better heuristics from more expressive languages. In
Proc. of ICAPS, 70–78. AAAI Press.
Garrett, C. R.; Lozano-Pérez, T.; and Kaelbling, L. P. 2014. FFRob:
An efficient heuristic for task and motion planning. In Proc. Int.
Workshop on the Algorithmic Foundations of Robotics (WAFR).
Geffner, H., and Bonet, B. 2013. A Concise Introduction to Models
and Methods for Automated Planning. Morgan & Claypool.
Geffner, H. 2000. Functional STRIPS: A more flexible language
for planning and problem solving. In Minker, J., ed., Logic-Based
Artificial Intelligence. Kluwer. 187–205.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated Planning:
theory and practice. Morgan Kaufmann.
Gravot, F.; Cambon, S.; and Alami, R. 2005. aSyMov: a planner
that deals with intricate symbolic and geometric problems. In In-
ternational Symposium on Robotics Research, 100–110. Springer.
Gregory, P.; Long, D.; Fox, M.; and Beck, J. C. 2012. Planning
modulo theories: Extending the planning paradigm. In Proc. of
ICAPS.
Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. Journal of Artificial In-
telligence Research 14:253–302.
Hoffmann, J. 2003. The metric-FF planning system: Translating
“ignoring delete lists” to numeric state variables. Journal of Artifi-
cial Intelligence Research 20:291–341.
Ivankovic, F.; Haslum, P.; Thiébaux, S.; Shivashankar, V.; and Nau,
D. S. 2014. Optimal planning with global numerical state con-
straints. In Proc. of ICAPS.
Kaelbling, L. P., and Lozano-Pérez, T. 2011. Hierarchical task
and motion planning in the now. In International Conference on
Robotics and Automation (ICRA), 1470–1477. IEEE.
Kunze, L., and Beetz, M. 2015. Envisioning the qualitative effects
of robot manipulation actions using simulation-based projections.
Artificial Intelligence.
Lagriffoul, F.; Dimitrov, D.; Saffiotti, A.; and Karlsson, L. 2012.
Constraint propagation on interval bounds for dealing with geomet-
ric backtracking. In International Conference on Intelligent Robots
and Systems (IROS), 957–964. IEEE.
LaValle, S. M. 2006. Planning algorithms. Cambridge.
Lin, F., and Reiter, R. 1994. State constraints revisited. Journal of
logic and computation 4(5):655–677.
Lozano-Pérez, T., and Kaelbling, L. P. 2014. A constraint-based
method for solving sequential manipulation planning problems.
In International Conference on Intelligent Robots and Systems
(IROS), 3684–3691. IEEE.
Mackworth, A. K. 1977. Consistency in networks of relations.
Artificial intelligence 8(1):99–118.

PlanRob 2015

21

Nebel, B.; Dornhege, C.; and Hertle, A. 2013. How much does a
household robot need to know in order to tidy up? In Proceedings
of the AAAI Workshop on Intelligent Robotic Systems.
Rossi, F.; Van Beek, P.; and Walsh, T. 2006. Handbook of con-
straint programming. Elsevier.
Russell, S., and Norvig, P. 2002. Artificial Intelligence: A Modern
Approach. Prentice Hall. 2nd Edition.
Son, T. C.; Tu, P. H.; Gelfond, M.; and Morales, A. 2005. Confor-
mant planning for domains with constraints: A new approach. In
Proc. AAAI-05, 1211–1216.
Srivastava, S.; Fang, E.; Riano, L.; Chitnis, R.; Russell, S.; and
Abbeel, P. 2014. Combined task and motion planning through
an extensible planner-independent interface layer. In International
Conference on Robotics and Automation (ICRA), 639–646. IEEE.
van Hoeve, W.-J., and Katriel, I. 2006. Global constraints. Hand-
book of constraint programming 169–208.
Wolfe, J.; Marthi, B.; and Russell, S. J. 2010. Combined task and
motion planning for mobile manipulation. In Proc. of ICAPS, 254–
258.

PlanRob 2015

22

Continuous Arvand: Motion Planning with Monte Carlo Random Walks

Weifeng Chen and Martin Müller
Department of Computing Science

University of Alberta
{weifeng3,mmueller}@ualberta.ca

Abstract

Sampling-based approaches such as Probabilistic
Roadmaps and Rapidly-exploring Random Trees are
very popular in motion planning. Monte Carlo Random
Walks (MRW) are a quite different sampling method.
They were implemented in the Arvand family of plan-
ners, which have been successful in classical planning
with its discrete state spaces and actions. The work de-
scribed here develops an MRW approach for domains
with continuous state and action spaces, as encoun-
tered in motion planning. Several new algorithms based
on MRW are introduced, implemented in the Continu-
ous Arvand system, and compared with existing motion
planning approaches in the Open Motion Planning Li-
brary (OMPL).

1 Introduction
Motion planning refers to breaking down a movement task
into discrete motions that satisfy movement constraints. For
example, to pick up an object in an environment, the arm of
the robot must move to the target location by using its exist-
ing actuators, and without colliding with other objects. Mo-
tion planning has many applications including robot naviga-
tion, manipulation, animating digital characters, automotive
assembly and video game design (LaValle 2006).

Among the many approaches to the motion planning
problem, sampling based methods have been very popu-
lar. A large number of these methods sample randomly
from the state space, which is usually called configuration
space, or short C-space, in motion planning. The Proba-
bilistic Roadmaps (PRM) (Kavraki et al. 1996) algorithm
constructs a roadmap, which connects random milestones,
in order to approximate the connectivity of the configu-
ration space. RRT (LaValle and Kuffner 2001) gradually
builds a tree that expands effectively in C-space. EST (Hsu,
Latombe, and Motwani 1997) attempts to detect the less ex-
plored area of the space through the use of a grid imposed
on a projection of C-space.

In contrast to sampling from C-space directly, KPIECE
(Şucan and Kavraki 2010) is a tree-based planner that ex-
plores a continuous space from the given starting point.
KPIECE uses a multi-level grid-based discretization for
guidance. Given a projection of state space, KPIECE sam-
ples cell chains in each iteration when building the exploring

tree. The goal of KPIECE is to estimate the coverage of the
state space by looking at the coverage of the different cells,
and reduce the time used for forward propagation.

Two main criteria for motion planning are feasibility and
optimality of plans. The motion planners mentioned above
all return the first feasible plan they find. In contrast, plan-
ners such as RRT* keep improving their best plan over time,
and some are proven to be asymptotically optimal (Karaman
and Frazzoli 2011).

Monte Carlo Random Walks (MRW) are the basis for
a successful family of algorithms for classical determin-
istic planning with discrete states and actions (Nakhost
and Müller 2009; Nakhost, Hoffmann, and Müller 2012;
Nakhost and Müller 2013). The method uses random explo-
ration of the local neighbourhood of a search state. Different
MRW variants have been implemented in the Arvand plan-
ning systems. The current work applies MRW to continu-
ous planning, using a local sampling forward search frame-
work which, like KPIECE, does not require sampling glob-
ally from C-space.

Component Classical planning Motion planning
State space discrete continuous

Goal checker deterministic approximate
Action execution instant gradual

Random walk sample action
→ new state

sample state
→ new motion

Heuristic Instance-specific,
e.g. Fast Forward

C-space-specific, e.g.
geometric distance

Table 1: Main differences between using MRW in classical
and motion planning.

The high-level view of MRW for continuous planning is
similar to classical planning: Random walks are used to ex-
plore the neighbourhood of a state and to escape from local
minima. A heuristic function which estimates goal distance
is used to evaluate sampled states. The main differences be-
tween MRW for classical and continuous planning lie in the
mechanisms for action selection and action execution within
the random walks. In classical planning, for each state s in
a random walk, the successor state s′ is found by randomly
sampling and executing a legal action in s. In contrast, in
continuous planning random actions are not generated di-

PlanRob 2015

23

rectly. Instead, a nearby successor state s′ is sampled locally
from the state space, and the motion planner is invoked to try
to generate a valid motion from s to s′. In classical planning,
actions take effect instantly. The solution to a planning prob-
lem is simply an action sequence that achieves a goal condi-
tion. In continuous planning, each motion action takes time
to complete. A solution is a sequence of valid, collision-free
motions that get “close enough” to a goal. Table 1 summa-
rizes some main differences of applying MRW to classical
and motion planning.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the main ideas of MRW planning and
their application to continuous planning, including different
restart strategies and variants for bidirectional search and
continuous plan improvement. Section 3 describes the im-
plementation of MRW planning algorithms in the Contin-
uous Arvand system. Section 4 evaluates the performance
of the new planners on planning benchmarks from OMPL
(Şucan, Moll, and Kavraki 2012). Section 5 is dedicated to
concluding remarks and some potential directions for future
work.

2 Applying MRW to Continuous Planning
Arvand (Nakhost and Müller 2009; Nakhost, Hoffmann, and
Müller 2012; Nakhost and Müller 2013) is a successful fam-
ily of stochastic planners in classical planning. These plan-
ners use Monte Carlo random walks to explore the neigh-
bourhood of a search state. In this work, a similar approach
is developed for continuous planning, and implemented in
the Continuous Arvand system.

Monte Carlo Random Walk Planning
A MRW algorithm uses the following key ingredients:

• A heuristic function h to evaluate the goal distance for
the endpoints of random walks. Strong heuristics lead to
better performance.

• A global restart strategy is used to escape from local min-
ima and plateaus.

• A local restart strategy is used for exploration.

In MRW, given a current state s, a number of random
walks sample a relatively large set of states S in the neigh-
bourhood of s: the endpoints of each walk. All states in S
are evaluated by the heuristic function h. Finally, a new state
s ∈ S with minimum h-value is selected as the next current
state, concluding one search step, and the process repeats
from there. The length of each random walk is decided by
the local restart strategy, and could be fixed or variable. Dif-
ferent choices will be discussed below. If the best observed
h-value does not improve after a number of search steps,
as controlled by the global restart strategy, the search will
restart. A good global restart strategy can quickly escape
from local minima, and recover from areas of the state space
where the heuristic evaluation is poor. The MRW approach
does not rely on any assumptions about local properties of
the search space or heuristic function. It locally explores the
state space before it commits to an action sequence that leads
to the best explored state.

MRW Algorithm
Algorithm 1, slightly adapted from (Nakhost and Müller
2009), shows an outline of MRW planning. This high-level
outline is nearly identical for classical and for continuous
planning. The only change is that a goal condition G is re-
placed by a goal region G.

The algorithm uses a forward-chaining search in the state
space of the problem to find a solution. The chain of states
leads from initial state s0 to goal state sn. Each transition
sj → sj+1 is generated by MRW exploring the neighbour-
hood of sj . If the best h-value does not improve after a given
number of search episodes, MRW simply restarts from s0.

Algorithm 1 Monte Carlo Random Walk Planning
Input Initial State s0, goal region G
Output A solution plan

s← s0
hmin ← h(s0)
counter ← 0
while s does not satisfy G do

if counter > MAX EPISODES then
s← s0 {restart from initial state}
counter ← 0

end if
s← randomWalk(s,G)
if h(s) < hmin then

hmin ← h(s)
counter ← 0

else
counter ← counter + 1

end if
end while
return the plan reaching the state s

Pure Random Walks
The main motivation for MRW planning is to better explore
the local neighbourhood, compared to the greedy search al-
gorithms which have been the standard in classical planning.
The simplest MRW approach uses a fixed number of pure
random walks to sample the neighborhood of a state s. Al-
gorithm 2 shows a pure random walk method similar to the
one in (Nakhost and Müller 2009), but adapted to the case
of continuous planning. In classical planning, a random le-
gal action is sampled given a current state s′ in a random
walk, and then applied to reach the next state s′′. For contin-
uous planning, instead of an action, the next state is sam-
pled from a region of the state space near s′. Before s′′

can succeed s′ as the current state, a check is performed to
make sure there is a valid motion from s′ to s′′. A random
walk stops either when a goal state is directly reachable, or
when the number of consecutive motions reaches a bound
LENGTH WALK. The end state of each random walk is eval-
uated by the heuristic h. The algorithm terminates when ei-
ther a goal state is reached, or NUM WALK walks have been
completed. The function returns the state smin with min-
imum h-value among all reached endpoints, and the state

PlanRob 2015

24

sequence leading to it. If no improvement was found, the
algorithm simply returns s.

The chosen limits on the length and number of random
walks have a huge impact on the performance of this algo-
rithm. Good choices depend on the planning problem. While
they are constant in the basic algorithm shown here, the
next subsection discusses different adaptive global and lo-
cal restart strategies, which are used by Arvand and can be
applied in continuous planning as well.

Algorithm 2 Pure Random Walks.
Input current state s, goal region G and state space S
Output smin

1: hmin ←∞
2: smin ← NULL
3: g ← sampleFromGoalRegion(G)
4: for i← 1 to NUM WALK do
5: s′ ← s
6: for j ← 1 to LENGTH WALK do
7: if validMotion(s′, g) then
8: return g
9: end if

10: repeat
11: s′′ ← uniformlySampleFromNear(s′, S)
12: until validMotion(s′, s′′)
13: s′ ← s′′

14: end for
15: if h(s′) < hmin then
16: smin ← s′

17: hmin ← h(s′)
18: end if
19: end for
20: if smin = NULL then
21: return s
22: else
23: smin

24: end if

Global and Local Restart Strategy
MRW parameters such as the number and length of ran-
dom walks, and the maximum number of search episodes,
are tedious to set by hand. Nakhost and Müller (2009;
2013) introduce several global and local restart strategies.

Random Walk Length While the simplest approach is to
use fixed length random walks, a better strategy in classical
planning uses an initial length bound, and successively in-
creases it if the best seen h-value does not improve quickly
enough. If the algorithm encounters better states frequently
enough, the length bound remains the same. A third strat-
egy uses a local restarting rate to terminate a random walk
with a fixed probability rl after each motion. In this case, the
length of walks is geometrically distributed with mean 1/rl.

Number of Random Walks The first version of Arvand
used a fixed number of random walks in each search step,
then progressed greedily to the best evaluated endpoint. This

approach was later replaced by a number of adaptive meth-
ods (Nakhost and Müller 2009; 2013). A simple strategy fol-
lowed here is to have only one random walk in a local search
(Nakhost, Hoffmann, and Müller 2012), which is faster than
choosing from among several walks, at the cost of solution
quality.

Number of Search Episodes and Global Restarting The
simplest global restart strategy restarts from initial state s0
whenever the h-value fails to improve for a fixed number tg
of random walks. An adaptive global restart (AGR) algo-
rithm is described in (Nakhost and Müller 2013).

Path Pool
Most versions of Arvand require very little memory. A
path pool can store a number of random walks and utilize
them for improving later searches (Nakhost, Hoffmann, and
Müller 2012). The techniques of On-Path Search Continua-
tion (OPSC) and Smart Restarts (SR) are based on a fixed-
capacity pool which stores the most promising episodes en-
countered so far. OPSC randomly picks a state along the ex-
isting path to start a new search episode, instead of always
starting from an endpoint. SR is used for global restart: in-
stead of always restarting from s0, the search restarts from a
random state on a random path in the pool.

This current work only uses the path pool idea and pur-
sued a different approach: to start a new search episode, a
path p from the pool is either selected with the minimum
h-value or randomly picked with a distribution; then a fixed
fraction of the pool contents is replaced by newly generated
random walks which extend p. Algorithm 3 shows details.
The algorithm begins with an empty pool at each global (re-
)start. A fixed number n, for example 10% of the pool size,
is chosen for addition/replacement. n random walks are per-
formed from start state s0 and stored in the pool. During the
search after (re-)start, one path in the pool is selected and ex-
panded by local exploration to generate n new paths. If the
pool is full, n randomly selected existing paths are replaced
by new paths. Each path in the pool is a state sequence from
s0 to an endpoint sj . If a solution is found during expansion,
the plan is returned immediately.

Algorithm 3 Expand
Input current state s, goal state g, existing path p, number

of new paths n, pool P
Output n new paths added to P , returns whether a solution

was found
for n iterations do

new walk← randomWalk(s, g)
new path← p+ new walk
store(P , new path)
if solution found then

return true
end if

end for
return false

PlanRob 2015

25

Bidirectional Arvand

Motion planners such as RRT and KPIECE have bidirec-
tional variants with good performance. Bidirectional Arvand
uses similar approach to solve planning problems. It main-
tains both a forward and a backward path pool. Explorations
start from both the start state s0 and a goal state g0, and try to
connect two search frontiers. For each pair of paths (pf , pb)
in the two pools, the heuristic distance of their endpoints is
stored. If the size of each pool is m, the time complexity of
replacing n paths in the pool in each episode and updating
the heuristic values is O(nm).

Algorithm 4 shows the outline of bidirectional Arvand.
In each search episode, search starts from the endpoint of
one chosen path, treats the endpoint of the other chosen path
as the search goal, and tries to connect them. In the code,
h(fPool , bPool) = minf∈fPool,b∈bPool h(f, b).

Algorithm 4 Bidirectional Arvand
Input current state s0, goal state g0, number of new paths n
Output A solution path

1: hmin ←∞
2: init ← true
3: repeat
4: if counter > MAX EPISODES or init then
5: counter ← 0
6: fPool,bPool← ∅
7: p← NULL
8: expand(s0, g0, p, n, fPool)
9: s← closest endpoint towards g0 in fPool

10: expand(s, s0, p, n, bPool)
11: current ← fPool
12: init ← false
13: end if
14: reserve(n, current) {reserve room for n new paths}
15: s, g ← argminf∈fPool,b∈bPool h(f, b)
16: p← complete path towards s
17: expand(s, g, p, n, current) {try to connect two paths}
18: if h(fPool, bPool) < hmin then
19: hmin ← h(fPool , bPool)
20: counter ← 0
21: else
22: counter ← counter + 1
23: end if
24: switch forward and backward search direction
25: until a solution is found
26: return solution path

Improving Plan Quality

The algorithms described above stop immediately after a
solution is found. Arvand*, shown in Algorithm 5, is an
optimizing version of Continuous Arvand, which keeps
restarting even after the first valid plan is found. Arvand*
uses post-processing techniques, such as shortcutting and
smoothing, to simplify each newly found solution. The
shortest solution after postprocessing is returned.

Algorithm 5 Arvand*
Input current state s0, goal region G
Output A solution path with shortest length

solmin ← NULL
while keep going() do
sol ← monteCarloRandomWalk(s0, G)
sol ← simplify(sol)
if solmin = NULL or length(sol) < length(solmin)
then

solmin ← sol
end if

end while
return solmin

3 Implementation - the Continuous Arvand
System

Continuous Arvand implements a framework for MRW mo-
tion planning, and several different planners. The program
is built on top of OMPL, the Open Motion Planning Library
(Şucan, Moll, and Kavraki 2012). OMPL provides imple-
mentations of all motion planning primitives such as dis-
tance heuristics, collision detection, and random state sam-
pling. The heuristic in Continuous Arvand is the distance
function provided by OMPL, which differs depending on the
type of state space. For instance, for state space SO(3,R)
the distance is the angle between quaternions, while R3 uses
euclidean distance. The simplify(path) post-processing func-
tion provided by OMPL is used in all experiments to shorten
the solutions.

(a) Maze (b) Barriers

(c) Abstract (d) Apartment

Figure 1: Planning scenarios

Six motion planners were implemented: Arvand fixed
and Arvand extend are based on the techniques introduced

PlanRob 2015

26

in (Nakhost and Müller 2009), while Arvand2 and Ar-
vand2 AGR use ideas from (Nakhost and Müller 2013).
BArvand and Arvand* are the bidirectional and optimizing
variants of Arvand described in Section 2.

Arvand fixed is the simplest implementation and uses
constant parameters for global restart rate tg , and num-
ber and length of random walks. In the experiments below,
tg = 20, NUM WALK = 20, and LENGTH WALK is tuned
to find the best setting for each planning scenario, in the
range from 10 to 800. Tuning these parameters is incon-
venient and time consuming. The other versions of Arvand
try to automatically adapt the setting for these variables. For
Arvand extend, NUM WALK = 800, and LENGTH WALK
= 10 initially, and is multiplied by a factor of 2 whenever
the h-value does not improve over 100 walks. In Arvand2,
NUM WALK = 1 and a local restarting rate of rl = 0.01
is used to control the random walk length. Arvand2 AGR is
similar to Arvand2, but adds adaptive global restarts. BAr-
vand is the bidirectional version of Arvand. In experiments,
the size of the forward and backward pools is 100 each, and
the setting of other parameters is as in Arvand fixed. Ar-
vand* uses the same settings as Arvand2 AGR, but keeps
running to improve solutions until a given time limit is
reached.

4 Experiments
In this section, the five planners Arvand fixed, Ar-
vand extend, Arvand2, Arvand2 AGR and BArvand are
compared with a selection of the best-performing plan-
ners available in OMPL: RRT (LaValle and Kuffner 2001),
KPIECE (Şucan and Kavraki 2010), EST (Hsu, Latombe,
and Motwani 1997), PDST (Ladd and Kavraki 2005), and
PRM (Kavraki et al. 1996). Arvand* is tested against RRT*
(Karaman and Frazzoli 2011), which is an asymptotically-
optimal incremental sampling-based motion planning algo-
rithm.

Experiments used 13 built-in benchmark scenarios from
OMPL: Maze, Barriers, Abstract, Apartment, BugTrap,
RandomPolygons, UniqueSolutionMaze, Cubicles, Alpha,
Easy, Home, Pipedream ring and Spirelli. These scenarios
are chosen as they can be solved by most available plan-
ners in reasonable time (less than 10 minutes). Four of them
are shown in Figure 1. We grouped these scenarios into four
categories: easy problems (Maze, BugTrap, RandomPoly-
gons, Easy), intermediate problems (Alpha, Barriers, Apart-
ment), intermediate problems with long detour (UniqueSo-
lutionMaze, Cubicles, Pipedream ring, Abstract) and hard
problems (Home, Spirelli). The configuration space used in
these problems is either SE(2) or SE(3). We used the rec-
ommended time limit provided in OMPL for each scenario
in our experiments.

All experiments were run on a machine with 8-core CPU
Intel Xeon E5420 @ 2.5GHz and 8GB memory. Results for
each planner are averaged over 20 runs per scenario. The
metrics of memory use (MB), path length, simplified path
length, planning time and simplification time (in seconds)
are considered.

Tables 3-16 show the benchmark results. For the met-
ric of memory use, almost all Arvand versions always use

less memory than all the other planners. One exception is
the BArvand version in scenario Cubicles, which used more
memory to maintain two path pools as this scenario has long
detours, and BArvand needs much longer paths to reach the
goal.

Considering the path length, Arvand2 and Arvand2 AGR
always output solutions with huge path lengths. The reason
is that these two Arvand versions do not run multiple random
walks and choose the best one. Therefore they run faster but
produce much longer paths. However, after post-processing,
the simplified path length is good enough to compete with
other planners. In scenarios Maze, RandomPolygons, Apart-
ment and Easy, Arvand fixed and Arvand extend are com-
parable to other planners on original path length. In scenario
Cubicles, these two planners are worse by a factor of 3 to 8.
BArvand usually does not provide a competitive initial path
length, but it performs very well after simplification. For in-
stance, BArvand outperforms all other planners in scenarios
Alpha and Barriers.

The total time in the experiments consists of planning
time plus simplification time. The simplification time is in-
significant: it is usually below 0.1s for all planners, and
never reached 0.5s in any of the experiments. Therefore,
only the total time is shown in the tables.

Among all Arvand versions, Arvand fixed and Ar-
vand extend are slower because they run many random
walks in one episode. This causes them to time out in
scenarios UniqueSolutionMaze, Home and Spirelli. Ar-
vand fixed times out in more scenarios: Cubicles, Alpha,
and Pipedream ring. Arvand2 and Arvand2 AGR are com-
petitive in terms of planning time for the easy planning
problems Maze and BugTrap. They also do well in the in-
termediate problems Cubicles, Pipedream ring and Apart-
ment. BArvand performs well in most scenarios. It is the
best planner in scenario Apartment, always takes a reason-
able amount of time when comparing among all Arvand ver-
sions, and produces competitive short solutions.

For intermediate problems with long detours, almost all
Arvand results are poor. The reason is that Arvand uses a
heuristic to guide the exploration, and a detour requires the
exploration to go multiple steps against the heuristic. Since
Arvand2 and Arvand2 AGR only run one random walk per
episode, the planning time is not bad. However, Arvand ver-
sions Arvand fixed and Arvand extend choose the heuristi-
cally best random walk among several walks. They have lit-
tle chance to go against the heuristic for several successive
steps, and need much more time to find a solution, or even
time out. The only competitive results on these planning sce-
narios is for BArvand in scenario Abstract.

The performance of the optimizing planners RRT* and
Arvand* within the recommended time limit is shown in Ta-
ble 16. On the main metric of simplified path length, RRT*
is always better than Arvand*, and Arvand* comes close to
the performance of RRT* only in scenarios Alpha and Easy.

The picture can change with longer time limits. Figure 2
compares the plan improvement over time for the two plan-
ners in scenario Alpha. While the initial solution found by
Arvand* is of rather poor quality, its path length decreases
rapidly over time and becomes better than RRT* in this ex-

PlanRob 2015

27

ample. At the current time, this is an isolated positive result
and it is not clear whether it generalizes to other scenarios.

Figure 2: Plan improvement over time for Arvand* and
RRT*. Average over 10 runs.

For generating Figure 2, since the intermediate paths
when RRT* is optimizing its plan are not accessible, RRT*
is run separately for different time limits. Each data point is
averaged over 10 runs.

As a final example, Table 2 shows the importance of
choosing the right parameters for MRW with fixed settings.
The example is from scenario Barriers, as solved by Ar-
vand fixed with different parameter settings. For setting 1,
the length of random walks is 20, the number of walks per
episode is 20, and the maximum number of episodes is 10;
for setting 2, the length of random walks is 1000, the num-
ber of walk per episode is 50, and the maximum number of
episodes is 100. In this planning scenario, setting 1 has bet-
ter performance.

Solution Path Planning Time
Setting 1 1205.7 8.7s
Setting 2 2063.8 24.1s

Table 2: Influence of parameter setting on performance.

5 Conclusions and Future Work
The algorithms developed in this paper apply the Monte
Carlo Random Walk method to motion planning. Global and
local restart strategies in this method have huge impact on
performance. Our work is still preliminary, but the results
are already interesting. Continuous Arvand works well for
problems that do not require long detours for which the dis-
tance heuristic is misleading. The algorithms use much less
memory than other planners, which makes them attractive
for embedded applications with limited resources.

Portfolio planning (Gomes and Selman 2001) combines
several algorithms into a portfolio and runs them in sequence
or in parallel. This is a very successful approach in classical
planning. The ArvandHerd system, winner of the parallel

satisficing track of the 2011 and 2014 International Planning
Competitions, is such a portfolio which combines (classical)
Arvand with another state of the art planner, LAMA (Valen-
zano et al. 2012; 2014). Our results indicate that adding
Continuous Arvand to a motion planning portfolio will very
likely strengthen its performance.

The current versions of Continuous Arvand do not work
well on planning problems with long forced detours that go
against the heuristic. Improving the performance on these
kinds of problems is the most important task for future
work. Some existing MRW techniques from classical plan-
ning, such as On-Path Search Continuation (OPSC) and
Smart Restarts (SR) (Nakhost, Hoffmann, and Müller 2012),
are not yet used in the Continuous Arvand implementa-
tion. Adaptive local restarting (Nakhost and Müller 2013)
is a technique used to estimate the best parameter for local
restarting. In addition of only evaluating the endpoint of a
random walk, Arvand could benefit from the heuristic eval-
uation of the intermediate states along the walk (Nakhost,
Hoffmann, and Müller 2012). Finally, there is work to do to
research the many different ways of using memory, such as
different strategies for using path pools, adding a tree as in
RRT, or a UCT-like approach.

References
Gomes, C. P., and Selman, B. 2001. Algorithm portfolios.
Artificial Intelligence 126(1):43–62.
Hsu, D.; Latombe, J.-C.; and Motwani, R. 1997. Path plan-
ning in expansive configuration spaces. In IEEE Robotics
and Automation, volume 3, 2719–2726. IEEE.
Karaman, S., and Frazzoli, E. 2011. Sampling-based al-
gorithms for optimal motion planning. The International
Journal of Robotics Research 30(7):846–894.
Kavraki, L. E.; Svestka, P.; Latombe, J.-C.; and Overmars,
M. H. 1996. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. IEEE Robotics and
Automation 12(4):566–580.
Ladd, A. M., and Kavraki, L. E. 2005. Motion planning
in the presence of drift, underactuation and discrete system
changes. In Robotics: Science and Systems, 233–240.
LaValle, S. M., and Kuffner, J. J. 2001. Randomized ki-
nodynamic planning. The International Journal of Robotics
Research 20(5):378–400.
LaValle, S. M. 2006. Planning algorithms. Cambridge
University Press.
Nakhost, H., and Müller, M. 2009. Monte-Carlo exploration
for deterministic planning. In IJCAI, volume 9, 1766–1771.
Nakhost, H., and Müller, M. 2013. Towards a second gener-
ation random walk planner: an experimental exploration. In
Proceedings of the Twenty-Third international joint confer-
ence on Artificial Intelligence, 2336–2342. AAAI Press.
Nakhost, H.; Hoffmann, J.; and Müller, M. 2012. Resource-
constrained planning: A Monte Carlo random walk ap-
proach. In McCluskey, L.; Williams, B.; Reinaldo Silva, J.;
and Bonet, B., eds., ICAPS, 181–189. AAAI Press.

PlanRob 2015

28

Şucan, I. A., and Kavraki, L. E. 2010. Kinodynamic motion
planning by interior-exterior cell exploration. In Algorithmic
Foundation of Robotics VIII. Springer. 449–464.
Şucan, I. A.; Moll, M.; and Kavraki, L. E. 2012. The Open
Motion Planning Library. IEEE Robotics & Automation
Magazine 19(4):72–82. http://ompl.kavrakilab.
org.
Valenzano, R.; Nakhost, H.; Müller, M.; Sturtevant, N.; and
Schaeffer, J. 2012. ArvandHerd: Parallel planning with a
portfolio. In De Raedt, L., ed., ECAI, volume 242 of Fron-
tiers in Artificial Intelligence and Applications, 786–791.
IOS Press.
Valenzano, R.; Nakhost, H.; Müller, M.; Schaeffer, J.; and
Sturtevant, N. 2014. Arvandherd 2014. In Vallati, M.;
Chrpa, L.; and McCluskey, T., eds., The Eighth International
Planning Competition, 1–5. University of Huddersfield.

PlanRob 2015

29

Planner Memory Path length Simplified path length Total time

KPIECE 1.26 285.35 149.64 0.49
EST 2.27 189.72 118.11 1.58
PDST 16.64 195.17 117.50 0.59
RRT 0.89 152.16 125.07 0.59
PRM 1.64 134.95 116.70 1.10

Arvand fixed 0.36 120.68 88.72 5.39
Arvand extend 0.47 187.00 105.30 7.16
Arvand2 0.98 4,630.43 139.96 1.74
Arvand2 AGR 2.04 10,739.10 153.31 1.75
BArvand 0.52 364.63 108.33 0.70

Table 3: Scenario Maze, time limit = 20s.

Planner Memory Path length Simplified path length Total time

KPIECE 2.71 3,410.69 1,738.58 0.61
EST 6.11 2,130.88 1,544.93 2.37
PDST 29.83 3,058.34 2,078.17 0.91
RRT 243.23 1,723.06 1,519.71 1.20

Arvand fixed 0.40 1,468.52 1,075.18 15.93
Arvand extend 0.70 4,253.87 1,416.57 28.52
Arvand2 1.65 35,791.87 1,623.66 4.10
Arvand2 AGR 3.14 111,872.24 1,714.82 3.49
BArvand 4.48 7,690.83 864.12 5.36

Table 4: Scenario Barriers, time limit = 300s.

Planner Memory Path length Simplified path length Total time

KPIECE 19.87 3,180.60 1,070.92 14.53
EST 17.18 1,567.90 855.60 16.59
PDST 199.83 2,764.19 1,228.19 14.71
RRT 153.39 1,256.63 949.70 29.57
PRM 160.16 805.39 706.16 258.84

Arvand fixed 0.88 1,388.88 647.05 166.39
Arvand extend 2.05 10,127.76 887.14 96.83
Arvand2 2.46 23,285.37 786.86 133.29
Arvand2 AGR 21.16 904,221.82 998.34 36.69
BArvand 0.59 1,395.73 589.79 11.02

Table 5: Scenario Abstract, time limit = 300s.

Planner Memory Path length Simplified path length Total time

KPIECE 10.43 1,133.78 452.93 17.25
EST 3.79 716.99 444.24 12.95
PDST 92.36 920.69 437.46 19.85
RRT 3.35 523.93 425.96 8.30
PRM 50.04 485.74 409.94 102.30

Arvand fixed 0.36 529.79 428.66 38.09
Arvand extend 0.52 859.32 437.66 96.77
Arvand2 0.63 2,859.56 431.09 9.17
Arvand2 AGR 0.72 4,233.13 458.73 12.35
BArvand 2.41 2,436.83 445.05 10.78

Table 6: Scenario Apartment, time limit = 300s.

PlanRob 2015

30

Planner Memory Path length Simplified path length Total time

KPIECE 4.62 446.65 170.58 0.33
EST 2.73 286.95 162.31 0.41
PDST 17.22 303.57 175.14 0.26
RRT 2.50 254.89 177.31 0.33
PRM 9.73 163.42 140.59 3.42

Arvand fixed time out
Arvand extend 0.79 867.29 165.84 4.94
Arvand2 1.91 10,514.92 167.31 0.73
Arvand2 AGR 2.78 16,058.34 160.42 0.77
BArvand 3.74 1,210.20 162.08 1.28

Table 7: Scenario BugTrap, time limit = 20s.

Planner Memory Path length Simplified path length Total time

KPIECE 0.94 310.00 133.65 0.11
EST 0.75 228.59 130.62 0.31
PDST 1.60 196.65 133.00 0.06
RRT 0.57 155.47 130.49 0.05
PRM 0.55 149.82 133.57 0.10

Arvand fixed 0.34 189.09 123.66 4.20
Arvand extend 0.43 290.43 127.64 2.26
Arvand2 0.79 2,192.15 137.73 0.18
Arvand2 AGR 0.86 2,137.46 132.41 0.14
BArvand 0.63 404.06 124.78 0.21

Table 8: Scenario RandomPolygons, time limit = 20s.

Planner Memory Path length Simplified path length Total time

KPIECE 3.29 663.00 393.32 1.33
EST 18.46 491.09 367.62 3.71
PDST 202.19 483.52 337.94 5.63
RRT 2.99 399.27 344.27 2.77
PRM 3.09 340.60 328.99 2.31

Arvand fixed time out
Arvand extend time out
Arvand2 2.55 8,134.98 346.50 6.66
Arvand2 AGR 6.13 42,158.52 341.17 7.73
BArvand 7.81 1,092.37 352.22 4.63

Table 9: Scenario UniqueSolutionMaze, time limit = 20s.

PlanRob 2015

31

Planner Memory Path length Simplified path length Total time

KPIECE 6.25 6,592.95 2,606.57 1.14
EST 10.96 3,888.98 2,450.79 6.81
PDST 55.02 4,805.96 2,555.92 2.41
RRT 0.91 3,242.16 2,587.69 0.60
PRM 12.34 2,512.20 2,292.76 5.33

Arvand fixed time out
Arvand extend 1.14 20,054.38 2,481.16 46.52
Arvand2 2.16 61,197.39 2,442.39 1.95
Arvand2 AGR 3.01 85,836.54 2,423.80 1.81
BArvand 48.50 34,533.70 2,454.40 7.59

Table 10: Scenario Cubicles, time limit = 60s.

Planner Memory Path length Simplified path length Total time

KPIECE 0.61 1,614.49 637.16 2.79
EST 0.78 938.13 550.47 4.12
PDST 19.65 1,569.88 576.56 2.04
RRT 17.15 949.06 583.25 4.12
PRM time out

Arvand fixed time out
Arvand extend 3.19 2,000.73 496.25 25.07
Arvand2 3.45 17,592.26 563.81 8.75
Arvand2 AGR 3.67 19,263.26 622.31 6.12
BArvand 3.45 6,947.17 481.80 18.85

Table 11: Scenario Alpha, time limit = 60s.

Planner Memory Path length Simplified path length Total time

KPIECE 2.41 1,140.28 234.30 0.63
EST 2.94 593.66 236.81 0.64
PDST 6.05 595.02 233.84 0.17
RRT 8.41 347.84 209.43 0.15
PRM 8.63 508.85 250.27 0.46

Arvand fixed 0.39 369.39 205.96 0.56
Arvand extend 0.43 594.30 204.28 0.73
Arvand2 0.92 33,561.37 216.11 1.19
Arvand2 AGR 2.49 126,037.08 208.22 1.10
BArvand 4.48 8,522.32 236.58 0.90

Table 12: Scenario Easy, time limit = 20s.

PlanRob 2015

32

Planner Memory Path length Simplified path length Total time

KPIECE time out
EST 303.22 4,127.54 2,364.86 31.00
PDST 3,229.55 3,955.31 1,908.11 128.53
RRT 3,581.81 2,585.87 2,141.99 26.56
PRM 3,584.59 1,825.84 1,637.01 59.76

Arvand fixed time out
Arvand extend time out
Arvand2 time out
Arvand2 AGR time out
BArvand time out

Table 13: Scenario Home, time limit = 300s.

Planner Memory Path length Simplified path length Total time

KPIECE 21.54 242.65 98.14 62.14
EST 19.45 161.73 89.26 2.52
PDST 22.73 241.60 108.95 1.03
RRT 23.45 157.41 105.98 2.02
PRM 223.71 128.58 86.23 90.12

Arvand fixed time out
Arvand extend 2.91 385.03 131.80 75.86
Arvand2 3.18 1,564.64 116.08 1.53
Arvand2 AGR 3.30 1,862.63 104.08 1.42
BArvand 3.97 957.35 133.25 14.39

Table 14: Scenario Pipedream ring, time limit = 300s.

Planner Memory Path length Simplified path length Total time

KPIECE time out
EST time out
PDST time out
RRT 2,229.50 203.22 166.05 102.99
PRM time out

Arvand fixed time out
Arvand extend time out
Arvand2 time out
Arvand2 AGR 1.41 3,043.27 222.48 78.68
BArvand 0.51 480.48 166.80 157.13

Table 15: Scenario Spirelli, time limit = 180s.

PlanRob 2015

33

Problem Planner Memory Path length Simplified path length

Alpha RRTstar 324.36 358.81 328.52
Arvandstar 37.63 5,890.36 358.97

Barriers RRTstar 510.36 822.51 806.70
Arvandstar 120.97 51,703.69 1,294.87

Easy RRTstar 266.48 208.19 203.44
Arvandstar 55.46 62,327.05 211.09

Pipedream ring RRTstar 471.33 84.77 77.14
Arvandstar 82.89 375.72 99.38

Spirelli RRTstar 8.52 118.59 114.89
Arvandstar 0.70 2,877.63 193.00

Abstract RRTstar 236.63 600.64 569.85
Arvandstar 298.18 438,366.05 862.49

Apartment RRTstar 57.75 404.29 382.32
Arvandstar 4.42 2,062.75 432.15

BugTrap RRTstar 29.55 124.66 121.78
Arvandstar 51.72 7,040.70 163.44

Cubicles RRTstar 18.38 1,916.82 1,833.96
Arvandstar 60.56 45,079.29 2,378.78

Maze RRTstar 9.71 71.51 69.69
Arvandstar 19.45 829.89 102.78

RandomPolygons RRTstar 16.51 108.78 106.53
Arvandstar 37.21 646.64 127.31

UniqueSolutionMaze RRTstar 11.35 280.85 277.49
Arvandstar 15.93 25,511.39 345.38

Table 16: Comparing RRT* and Arvand*, with the same time limits as in previous tables.

PlanRob 2015

34

Frontier-Based RTDP: A New Approach to Solving the Robotic Adversarial
Coverage Problem

Roi Yehoshua, Noa Agmon and Gal A. Kaminka
Computer Science Department

Bar Ilan University, Israel
{yehoshr1,agmon,galk}@cs.biu.ac.il

Abstract

Area coverage is an important problem in robotics, where
one or more robots are required to visit all points in a given
area. In this paper we consider a recently introduced ver-
sion of the problem, adversarial coverage, in which the cov-
ering robot operates in an environment that contains threats
that might stop it. The objective is to cover the target area
as quickly as possible, while minimizing the probability that
the robot will be stopped before completing the coverage.
We first model this problem as a Markov Decision Process
(MDP), and show that finding an optimal policy of the MDP
also provides an optimal solution to this problem. Since the
state space of the MDP is exponential in the size of the target
area’s map, we use real-time dynamic programming (RTDP),
a well-known heuristic search algorithm for solving MDPs
with large state spaces. Although RTDP achieves faster con-
vergence than value iteration on this problem, practically it
cannot handle maps with sizes larger than 7 × 7. Hence, we
introduce the use of frontiers, states that separate the covered
regions in the search space from those uncovered, into RTDP.
Frontier-Based RTDP (FBRTDP) converges orders of magni-
tude faster than RTDP, and obtains significant improvement
over the state-of-the-art solution for the adversarial coverage
problem.

Introduction
There are many real-life applications that require a robot,
or a group of robots, to cover an area. For example, a vac-
uum cleaning robot that needs to clean an entire room (Cole-
grave and Branch 1994), intrusion detection, mine cleaning
(Nicoud and Habib 1995) and search-and-rescue missions.

Most previous studies of the coverage problem dealt with
non-adversarial settings, where nothing in the environment
is hindering the robot’s task. However, on many occasions,
robots and autonomous agents need to perform coverage
missions in hazardous environments, such as operations in
nuclear power plants, exploration of Mars, demining and
search and rescue in the battlefield.

Hence, our work addresses the problem of planning for
a robot whose task is to cover a given terrain without be-
ing detected or damaged by an adversary, as introduced in
(Yehoshua, Agmon, and Kaminka 2013). Each point in
the area is associated with a probability of the robot being
stopped at that point. The objective of the robot is to cover

the entire target area as quickly as possible while maximiz-
ing its own safety. We will refer to this problem as the ad-
versarial coverage problem. Here we discuss the offline ver-
sion of this problem, in which the map of threats is given in
advance, therefore the coverage path of the robot can be de-
termined prior to its movement.

In this paper, we show how the adversarial coverage prob-
lem can be modeled as a Markov Decision Process (MDP).
MDPs are a natural choice for implementing a solution to
this problem because they explicitly represent costs and un-
certainty in results of actions, as well as doing lookahead
to examine the potential consequences of sequences of ac-
tions. We show that, given an appropriate definition of the
MDP, finding an optimal policy for the model also provides
an optimal solution to the adversarial coverage problem.

Since the state space of the MDP is exponential in the
size of the target area’s map, using classical (synchronous)
value iteration techniques to find the optimal policy is possi-
ble only for small-sized maps. Therefore, in order to han-
dle larger maps, we use real-time dynamic programming
(RTDP), which is a well-known heuristic search algorithm
for solving MDPs with intractably large state space (Barto,
Bradtke, and Singh 1995). Although RTDP achieves faster
convergence than value iteration on this problem, practically
it cannot handle maps with sizes larger than 7 × 7. This is
because the search graph representing the problem is highly
connected, and thus RTDP trials often get trapped in loops
(moving repeatedly between the same states).

Hence, we introduce the use of frontiers, states that sep-
arate the covered regions in the search space from those
uncovered, into RTDP. In each step of the trial, Frontier-
Based RTDP (FBRTDP) searches for a path with minimum
expected cost from the current state to a new frontier state,
choosing outcomes of this path stochastically according to
their probability. FBRTDP avoids getting trapped in loops
by advancing towards a new frontier in each step. The
use of frontiers speeds up the convergence of RTDP quite
dramatically, while retaining its focus and anytime behav-
ior. Finally, we show that FBRTDP attains significant im-
provement over the state-of-the-art solution to the problem
(Yehoshua, Agmon, and Kaminka 2014), in terms of both
the coverage time and probability to complete the coverage.

PlanRob 2015

44

Related Work

The problem of robot coverage has been extensively dis-
cussed in the literature (see (Galceran and Carreras 2013)
for a recent exhaustive survey). Grid-based coverage meth-
ods, such as we utilize here, use a representation of the envi-
ronment decomposed into a collection of uniform grid cells,
e.g., (Gabriely and Rimon 2003), (Luo et al. 2002).

Other optimization problems related to adversarial cov-
erage include the Canadian Traveller Problem (CTP) (Pa-
padimitriou and Yannakakis 1989), in which the objec-
tive is to find a shortest path between two nodes in a
partially-observable graph, where some edges may be non-
traversable. In contrast, here the graph is fully-observable
and the agent must visit every node in the graph (some of
them may stop the robot). MDPs have been shown to be
useful in solving CTP in certain types of graphs (Nikolova
and Karger 2008).

The offline adversarial coverage problem was formally
defined in a recent study (Yehoshua, Agmon, and Kaminka
2013). There the authors proposed a simplistic heuristic al-
gorithm that generates a coverage path which tries to min-
imize a cost function, that takes into account both the sur-
vivability of the robot and the coverage path length. The
heuristic algorithm worked only for obstacle-free areas, and
without any guarantees. In a follow-up paper (Yehoshua,
Agmon, and Kaminka 2014) we have addressed a more spe-
cific version of the problem, namely, finding the safest cov-
erage path. We suggested two heuristic algorithms to solve
this problem with some theoretical guarantees. However,
they could handle only one level of threats, i.e., the envi-
ronment could contain either safe or dangerous areas. In
contrast, here we suggest a model that can find optimal (or
near optimal) coverage paths that meet any desired risk and
time levels in environments that can contain any number of
threat levels, in addition to obstacles.

Perhaps the simplest algorithm for solving MDPs is value
iteration, which solves for an optimal policy on the full
state space. However, in many realistic problems, such
as the one we discuss here, only a small fraction of the
state space is relevant to the problem of reaching a goal
state from a fixed start state s. There are different heuris-
tic algorithms for solving MDPs, including offline and re-
altime methods. Real-Time Dynamic Programming (Barto,
Bradtke, and Singh 1995) and its variants (such as Labeled
RTDP (Bonet and Geffner 2003)) have been shown to out-
perform other heuristic search methods for solving MDPs,
such as AO*/LAO*, on several benchmark problems (Bonet
and Geffner 2003). The advantage of real-time heuristic
methods is that states that are more likely to be visited in
the search graph (as defined by the probability function) are
updated more frequently, which leads the algorithm to focus
on updating states which are more relevant to the problem
solving. In our case, states that are more likely to be vis-
ited by the robot represent coverage paths that encounter a
smaller number of threats, thus updating those states more
frequently can focus the search for the optimal coverage
path.

Adversarial Coverage Problem Definition
We are given a map of a target area T , which is decom-
posed into a regular square grid with n cells. We assume
that T can be decomposed into a regular square grid with n
cells. There are two types of cells: free cells and cells that
are occupied by obstacles. Some of the free cells contain
threats. Each free cell ci is associated with a threat prob-
ability pi (0 ≤ pi < 1), which measures the likelihood
that a threat in that cell will stop the robot. We assume the
robot can move continuously, in the four basic directions
(up/down, left/right), and can locate itself within the work-
area to within a specific cell. The robot’s task is to plan a
path through T such that every accessible free cell in T (in-
cluding the threat points) is visited by the robot at least once.

The objective is to find a coverage path of T that max-
imizes the probability of covering the entire area and also
minimizes the coverage time. Clearly, there is a tradeoff be-
tween these two objectives: trying to minimize the risk in-
volved in the coverage path could mean making some redun-
dant steps, which in turn can make the coverage path longer,
and thus increase the risk involved, as well as increase the
coverage time.

We now formally define this objective function. First,
we denote the coverage path followed by the robot by A =
(a1, a2, ..., am). Note that m ≥ n, i.e., the number of cells
in the coverage path might be greater than the number of
cells in the target area, since the robot is allowed to repeat
its steps. We define the event SA as the event that the robot
is not stopped when it follows the path A. The probability
that the robot is able to complete this path is:

P (SA) =
∏

i∈(a1,...,am)

(1− pi) (1)

In order to take into account both the accumulated risk
and the coverage time, we define the following cost function:

f(A) = −α · P (SA) + β · |A| (2)

where α, β ≥ 0, and |A| is the number of the steps the
robot needs to take in order to complete the coverage path. 1

Therefore, we wish to find a coverage path A that minimizes
the cost function f(A), i.e., f(A) ≤ f(B) for all possible
coverage paths B.

The problem of finding a minimum time coverage path
(α = 0) is equivalent to finding a Hamiltonian walk in
a graph, which is known to be NP-complete (Nishizeki,
Asano, and Watanabe 1983). Finding a coverage path
with maximum probability to complete (β = 0) has also
been shown to be NP-complete (Yehoshua, Agmon, and
Kaminka 2014). By reduction, the problem in the general
case of α, β ≥ 0 is NP-complete as well.

MDP Modeling
We now formulate the adversarial coverage problem as an
undiscounted stochastic shortest-path problem (Bertsekas
1995). Stochastic shortest path (SSP) problems are a sub-
class of MDPs, and they are given by:

1The travel time is uniform along the grid, thus coverage time
is measured directly by the number of steps.

PlanRob 2015

45

S1. a discrete and finite state space S
S2. an initial state s0 ∈ S
S3. a set G ⊆ S of goal states
S4. Actions A(s) ⊆ A applicable in each state s ∈ S
S5. Transition probabilities P (s′|s, a) for s ∈ S, a ∈ A(s)
S6. Positive action costs Ca(s, s

′) > 0
S7. Fully observable states

Let us denote the SSP that represents the adversarial cov-
erage problem by M. We now describe each of M’s com-
ponents.

States. The set of states in our model contains all possi-
ble configurations of the environment’s coverage status and
the robot’s location. A coverage status of the environment
is represented by a boolean matrix that indicates for each
cell in the grid if it has already been visited by the robot
or not. The state captures all relevant information from the
history of the robot’s movements, thus it satisfies the Marko-
vian property.

The initial state s0 is the state in which the robot is lo-
cated at the starting cell of the coverage path, and this is the
only cell marked as visited. The goal states G are the states
in which all the grid cells are covered. In addition, one of
the states in S is defined as a dead state, denoted by sd,
which represents the situation where the robot was stopped
by a threat. This dead-end state requires special attention,
as discussed in section . The goal states, as well as sd, are
termination states, i.e., taking any action in them causes a
self-transition with probability 1.

Actions. There are only four possible actions the robot
can perform - go up, down, left or right. There could be
fewer than four actions applicable in a given state, depend-
ing on the number of obstacles that surround the cell in
which the robot currently resides.

The Transition Function. The transition function de-
scribes the probability that the robot will be able to move
from its current location to the next location on its coverage
path. More specifically, if the current state is s, in which the
robot is located in cell ci, and the robot executes an action
a that leads it to cell cj , then we distinguish between two
possible cases:

Case 1. cj is a safe cell, i.e., pj = 0. In this case there is
only one possible outcome for (s, a). The outcome is a new
state s′, in which cj is added to the environment’s coverage
status and the robot’s location is changed to cell cj . The
transition probability in this case is Pa(s

′|s) = 1.
Case 2. cj is a dangerous cell. In this case there are

two possible successor states to (s, a). The first one, s′,
represents the possibility that the robot will be able to en-
ter the new cell cj . In s′, cj is added to the environment’s
coverage status and the robot’s location is changed to cell
cj . The transition probability to s′ is Pa(s

′|s) = 1 − pj ,
where pj denotes the probability that the threat in cell cj
will stop the robot. The second successor state is sd, which
represents the possibility that the robot will be stopped by a
threat in the cell cj . The transition probability to this state is
Pa(sd|s) = pj .

Note that the probabilities on all the outgoing transitions
of each state/action pair sum to 1.

The Cost Function. We define a uniform fixed cost
Ca(s, s

′) = 1 for actions that lead the robot to a safe cell.
For actions that lead the robot to a cell cj with threat prob-

ability pj , we define different costs for the two possible out-
comes of this action. If the robot was not hit by the threat,
the cost of the transition to the next state s′ is defined as
Ca(s, s

′) = 1
1−pj

. Otherwise, the transition cost to the dead-

end state sd is defined as Ca(s, sd) = −D · log(1−pj)
pj

, where
D ≥ 0 is a fixed penalty assigned to reaching the dead state.

The value of the penalty D should be set according to
the desired balance between the risk and the coverage time
(α/β). For example, setting D = 0 should make the model
find the shortest coverage path, while setting D = ∞ should
make it find the safest coverage path. For the in-between
cases, to help us calibrate the value of D, we will define that
when α = β, i.e., when the risk and the coverage time fac-
tors have equal importance, the penalty on making a move
to a dangerous cell (with a minimum threat probability) will
be equal to making one step in the grid. In particular, if pmin

is the minimum threat probability, then D is set to:

D = −α

β
· 1

log(1− pmin)
(3)

Note that this is the only place in the model where the risk
and the time factors are combined together.

This concludes the definition of the model M represent-
ing the adversarial coverage problem. To demonstrate the
model, let us consider the following simple grid (cells are
numbered 1 to 2 from top to bottom and left to right, the
numbers in the cells indicate the threat probabilities pi):

0 0
0.4 0.2

Assume that the robot starts the coverage at cell (1, 1) and
then moves right to cell (1, 2). Let us denote the current state
of the environment and the robot by s1. Figure 1 shows the
graph describing the possible transitions from s1. Circular
nodes of the graph represent states of the MDP and the rect-
angular nodes represent actions. Inside each state node there
is a description of the coverage status of the environment and
the robot’s position (marked by ’R’). Edges from actions to
states are annotated with transition probabilities and costs.

As can be seen in the graph, there are two possible actions
in state s1: going left (a1) and going down (a2). Moving
left to the safe cell (1, 1) (i.e., choosing action a1) has only
one possible outcome with probability 1. In the resultant
state s2, the coverage status of the environment does not
change, only the robot’s location. On the other hand, going
down to the dangerous cell (2, 2) (i.e., choosing action a2)
leads to two possible outcomes. If the move succeeds, i.e.,
the robot is not stopped by the threat, then the state changes
to s3, in which the robot is located at cell (2, 2) and this
cell is added to the coverage status of the environment. The
cost of this transition is: 1

1−0.2 = 1.25. However, if the
move fails, then the robot moves to the dead-end state sd.
The probability of the transition to sd is 0.2, which is the
threat probability in cell (2, 2). The cost of this transition

PlanRob 2015

46

1 1 R

0 0

s1

Go left

a1

Go down

a2

1 R 1

0 0

s2

1 1

0 1 R

s3

Dead

sd

P = 1, C = 1

P = 0.8, C = 1.25

P = 0.2, C = 1.116D

Figure 1: An example for a state in the MDP and its outgoing
transitions. Edges from actions to states are annotated with
transition probabilities and costs.

is: −D · log(1−0.2)
0.2 = 1.116D.

The solution of an MDP takes the form of a policy π map-
ping states s into actions a ∈ A(s). The value function of
a policy π, V π , represents the expected cost incurred from
following policy π from any given state s in S, i.e.:

V π(s) = E

[∞∑
t=0

Cat(st, st+1)

]
(4)

where s0 = s, and at = π(st) is the action taken at time
step t and causes a transition from state st to state st+1.

An optimal policy is a policy π∗ that has a minimum ex-
pected cost for all possible initial states. Such a policy is
guaranteed to exist if the following assumption holds (Bert-
sekas 1995):

S8. The goal is reachable from every state with non-zero
probability.
In M, all states except for the dead-end state satisfy this

assumption (since all threat probabilities are less than 1). We
discuss how to treat the dead-end state in section .

An optimal value function, denoted by V ∗(s), assigns to
each state its value according to an optimal policy π∗, and
satisfies the following fixed point equation, also known as
Bellman’s optimality equation (Bellman 1957):

V ∗(s) = min
a∈A(s)

∑
s′∈S

P (s′|s, a)
[
Ca(s, s

′) + V ∗(s′)
]

(5)

Value iteration (VI) is a standard dynamic programming
method for solving MDPs based on Eq. (5). VI algorithms
start with an initial guess for V0 and repeatedly update so
that V gets closer to V ∗.

We now prove the correctness of the model M.

Theorem 1. (correctness) The optimal policy of the MDP
M represents an optimal solution to the adversarial cover-
age problem.

Proof. By definition, the optimal policy π∗ of MDP M min-
imizes the expected cost:

E

[∞∑
t=0

Cat(st, st+1)

]
(6)

where s0 is the initial state, and at = π∗(st) is the action
taken at time step t according to the policy π∗.

The sequence of actions (a0, a1, a2, ...) taken by the opti-
mal policy must eventually lead to a goal state. This is due to
the fact that all action costs are positive (except for actions in
the goal states), thus if the sequence of actions never reaches
a goal, then the expected cost of the optimal policy becomes
infinite, which violates assumption S8 that states that there
must be at least one policy that reaches a goal state from any
state.

Now denote by n the number of state transitions needed
for the optimal policy to reach a goal state from the initial
state s0. Then the expected cost can be written as:

E

[n−1∑
t=0

Cat(st, st+1)

]
(7)

where sn is a goal state.
From the linearity of expectation, we get:

E

[n−1∑
t=0

Cat(st, st+1)

]
=

n−1∑
t=0

E
[
Cat(st, st+1)

]
(8)

Now let us denote by (c1, ..., cn) the sequence of cells
that were visited by the robot following the actions in
(a0, ..., an−1), and their threat probabilities by (p1, ..., pn).
According to the cost function Ca(s, s

′) in the MDP model,
the expected cost of moving to cell cj is:

E[C(cj)] = (1− pj) ·
1

1− pj
+ pj ·

[
−D · log(1− pj)

pj

]
= 1−D log(1− pj)

(9)

The resultant expression is also true for the expected cost
of moving to a safe cell cj , since in that case pj = 0, thus
E[C(cj)] becomes equal to 1.

Thus, the sum in Eq. (8) becomes:

n−1∑
t=0

E
[
Cat(st, st+1)

]
= n−D

n∑
j=1

log(1− pj) (10)

The result is a sum of two expressions - the first is de-
termined by the coverage path length (n) and the second is
determined by the accumulated risk that was taken by the
robot along the path. It is trivial to verify that if there are two
coverage paths with the same accumulated risk but with dif-
ferent lengths, then the optimal policy will prefer the shorter

PlanRob 2015

47

one. We now prove that if there are two coverage paths with
the same length but with different accumulated risks, then
the optimal policy will prefer the safer path. Let us denote
the sequence of cells visited along the first coverage path by
(u1, ..., ul) and the sequence of cells visited along the sec-
ond path by (v1, ..., vm). Let us assume that the first path
is safer than the second, i.e., it has a greater probability to
complete. Thus, we can write:∏

i∈(u1,...,ul)

(1− pi) ≥
∏

j∈(v1,...,vm)

(1− pj) (11)

Since the logarithm is a monotonically increasing func-
tion of its argument, the above expression is equivalent to:

∑
i∈(u1,...,ul)

log(1− pi) ≥
∑

j∈(v1,...,vm)

log(1− pj) (12)

If we multiply both sides by −D and add n (the path
length), we get:

n−D
∑

i∈(u1,...,ul)

log(1−pi) ≤ n−D
∑

j∈(v1,...,vm)

log(1−pj)

(13)
Note that the expressions on both sides of Eq. (13) are

similar to the expression on the right-hand side of Eq. (10).
Thus, we can conclude that the expected cost of a policy that
generates the first coverage path is lower than the expected
cost of a policy that generates the second one. Therefore,
the optimal policy of MDP M is guaranteed to produce the
safer coverage path.

In the in-between cases, where we want to find an opti-
mal coverage path that takes into account both the coverage
time and the accumulated risk, we can adjust the penalty D
according to the desired levels of risk and the time. The opti-
mal policy will then produce a coverage path that minimizes
the expected cost defined in Eq. (10), which is dependent on
D. The higher the penalty D is set, the more safer coverage
paths will be favored over shorter ones.

MDPs with Dead Ends
Researchers have realized that allowing dead ends in goal-
oriented MDPs could break the existing methods for solving
them (e.g., (Little and Thiebaux 2007)). In MDPs with dead
ends the objective of finding a policy that minimizes the ex-
pected cost of reaching the goal becomes ill-defined, since
it implicitly assumes that for at least one policy the cost in-
curred by all of the policy’s trajectories is finite.

This problem can be resolved by assigning a finite positive
penalty D for visiting a dead end, and augmenting the action
set A of the MDP with a special action a′ that causes a tran-
sition from the dead end to the goal with probability 1. This
MDP now satisfies assumption S8, since reaching the goal
with certainty is possible from every state. However, this
solution comes with a caveat - it may cause non-dead-end
states that lie on potential paths to a dead end to have higher
costs than the dead ends themselves. As a consequence, the
optimal policy may prefer getting into a dead end rather than

reaching the goal. Kolobov et al. (Kolobov, Mausam, and
Weld 2012) suggest resolving this issue by capping the cost
of each state by D. They use the following modified Bell-
man equation:

V π(s) = min
{
D, min

a∈A(s)

∑
s′∈S

P (s′|s, a)
[
Ca(s, s

′)+V π(s′)
]}

(14)
They show that MDPs with dead ends can be solved with

VI that uses Eq. (14) for updates. Moreover, all heuristic
search algorithms for solving SSPs (such as RTDP) and their
guarantees apply to this type of MDPs if they use Eq. (14)
in lieu of Bellman’s update.

Real-Time Dynamic Programming
RTDP (Barto, Bradtke, and Singh 1995) is a heuristic-search
DP algorithm for solving non-deterministic planning prob-
lems with full observability. In relation to other dynamic
programming methods, RTDP has two benefits. First, it is
focused, namely it updates only states that are encountered
in the search and thus relevant to the problem solving. Sec-
ond, it has a good anytime behavior, i.e., it produces good
policies fast and these policies improve smoothly with time.

RTDP works by repeated trials or runs (see algorithm 1).
Each trial starts at the initial state s0 and ends in a goal state
or a dead-end state. At each step, action selection is greedy
based on the current value function, and outcome selection
is stochastic according to the distribution of possible succes-
sor states given the chosen action. The values V (s) of the
visited states are updated along the way, using Bellman’s
equation (Eq. (5)). The initial values of V (s) are given by
an heuristic function h(s).

After the termination condition is met, a coverage path is
built by following the greedy policy from the starting state
to a goal state. In this final phase, we never enter a dead-end
state; whenever the robot visits a threat point, the outcome
that represents its survival of the threat is chosen determin-
istically. This way we guarantee that a complete coverage
path is created, i.e., a path that covers all the cells in the tar-
get area. In contrast, RTDP trials may be terminated before
the entire area is covered. This helps the algorithm focus on
updating states which the robot has more chance to reach.

From (Barto, Bradtke, and Singh 1995), it is known that
under conditions S1-S8 for SSPs, if the initial value func-
tion is admissible, i.e., h(s) ≤ V ∗(s) for every state s,
then repeated RTDP trials eventually yield optimal values
V (s) = V ∗(s) over all relevant states (states that can be
reached by at least one optimal policy). In our experiments
we have used the admissible heuristic function h ≡ 0.

Frontier-Based RTDP
A good heuristic can lead to faster convergence of RTDP.
However, choosing a good admissible heuristic function is
often a non-trivial task. Moreover, in a huge state space
such as we have here, finding a good heuristic function may
not be enough. Initial results from our empirical evalua-
tion have indicated that one of the main reasons for the slow
convergence of RTDP is that its trials a waste considerable

PlanRob 2015

48

Algorithm 1 Real Time Dynamic Programming
Input: a grid G, a starting cell c0, a termination criterion ϵ
Output: a coverage path P that covers all reachable cells in G
from c0
1: function RTDP(s0) // s0 is the initial state
2: while maxs∈visited RESIDUAL(s) > ϵ do
3: RTDPTRIAL(s0)
4: return BUILDCOVERAGEPATH(s0)

1: function RTDPTRIAL(s) // Execute one trial of RTDP
2: while not GOAL(s) and s ̸= sd do
3: // Pick best action and update hash
4: a← GREEDYACTION(s)
5: UPDATE(s, a)
6: // Stochastically simulate next state
7: s← CHOOSENEXTSTATE(a)

1: function GOAL(s)
2: return if all reachable cells from c0 are covered in s

1: function INITSTATE(s) // Implicitly called the first time each
state s is touched

2: s.V ← h(s)

1: function GREEDYACTION(s)
2: return argmina∈A(s) QVALUE(s, a)

1: function QVALUE(s, a)
2: return

∑
s′∈S

P (s′|s, a)
[
Ca(s, s

′) + s′.V
]

1: function UPDATE(s, a)
2: s.V ← QVALUE(s, a)

1: function CHOOSENEXTSTATE(s, a)
2: Choose s′ with probability P (s′|s, a)
3: return s′

1: function RESIDUAL(s)
2: a← GREEDYACTION(s)
3: return |s.V − QVALUE(s, a)|

1: function BUILDCOVERAGEPATH(s)
2: Create a new coverage path P
3: Add starting cell c0 to P
4: while not GOAL(s) do
5: a← GREEDYACTION(s)
6: Make the robot move according to action a
7: Add the cell c where the robot is located to P
8: // Deterministically simulate next state
9: s← s with cell c marked as visited and robot’s location

is at c
10: return P

amount of time moving back and forth between already vis-
ited states. For example, let us examine states s1 and s2
from the search subgraph depicted in Figure 1. Since both
cells (1, 1) and (1, 2) are safe, an RTDP trial would travel
back and forth between states s1 and s2 until the estimated
cost of the repeated transition between them becomes higher
than the cost of moving to one of the dangerous cells (2, 1)
or (2, 2). Clearly, these repeated transitions cannot be part
of the trajectory followed by the optimal policy (they only
increase the cost of the path to the goal), and thus should be
eliminated from the search.

Frontier-Based RTDP (algorithm 2) avoids such fruitless
cyclic returns in the search graph, by maintaining a list of
frontier states, defined as states that separate the covered re-
gions of the search space from those uncovered. Each time
a new state is encountered by an RTDP trial, it goes over all
its possible successors, and adds to the frontier list all the
unvisited successors that are not already in this list. A state
is taken out of the frontier list once it is visited by the trial.

At each step of the trial, FBRTDP examines all the possi-
ble paths from the current state to one of the frontier states,
and chooses the path with the minimum expected cost ac-
cording to the current value function. To allow a transition
from any given state to a frontier state, we extend the set of
actions A in the MDP model with the following definition.
Definition 1. Composite action â is an action that consists
of a sequence of actions (a1, ..., an) from A.

The possible outcomes of a composite action consist of all
the states that could be reached by an RTDP trial following
the sequence (a1, ..., an).

In the adversarial coverage case, any composite action has
only two possible outcomes: reaching the destination cell
of the final action in the sequence (a1, ..., an) or entering
the dead state. The probabilities of these outcomes depend
on the threat probabilities of the cells (c1, ..., cn) encoun-
tered along the path taken by the robot following the ac-
tions in (a1, ..., an). More specifically, the probability of
the first outcome, in which the robot is able to visit all the
cells (c1, ..., cn) without being hit by a threat, is:

P (s′|s, â) =
n∏

i=1

(1− pi) (15)

whereas the probability of the second outcome, in which the
robot is stopped by a threat along the path, is complementary
to the probability of the first outcome, i.e.,

P (sd|s, â) = 1− P (s′|s, â) (16)

More generally, to compute the probability P (s′|s, â) of
each outcome of a composite action â, we need to add up the
probabilities of all the possible paths from the current state
s to the destination state s′ of that outcome.

We now define the cost of a composite action Câ(s, s
′) as

the sum of the costs of all its primitive actions (a1, ..., an).
If we denote by (s0, ..., sn) the set of states visited by the
RTDP trial following the actions (a1, ..., an), starting from
the current state s0, then the cost of â is:

Câ(s0, sn) =

n∑
i=1

Cai(si−1, si) (17)

By linearity of expectation, the expected cost of a composite
action â is the sum of the expected costs of all its primitive
actions, i.e.,

E
[
Câ(s0, sn)

]
=

n∑
i=1

E
[
Cai(si−1, si)

]
(18)

In order to find a path with minimal expected cost from the
current state to a frontier state, at each step of the trial we

PlanRob 2015

49

build a subgraph of the search space that consists of the vis-
ited states so far and the frontier states. Then, we execute
Dijkstra’s shortest paths algorithm on this subgraph, where
the weight wij of the edge connecting states si and sj is de-
fined as the expected cost of the action leading from state si
to sj , i.e., wij = E

[
Ca(si, sj)

]
.

Dijkstra’s algorithm finds paths with minimum expected
costs between the current state s0 and all the frontier states
in this subgraph. The next action chosen by FBRTDP is the
composite action that leads from the current state s0 to the
frontier state with minimum expected cost path from s0.

Additionally, one can exploit domain-specific knowledge
to narrow down the set of frontier states and thus prune more
irrelevant states from the search. Specifically, in the adver-
sarial coverage case, we consider only states in which the
robot reaches an unvisited cell in the map as frontier states.
For instance, let us examine state s2 from Figure 1. Al-
though this state has not been encountered in the search be-
fore, we can treat it as a non-frontier state, since in this state
the robot returns to an already visited cell (1, 1). Thus, the
possible successor frontier states of s1 that should be con-
sidered are the states in which the robot reaches one of the
unexplored cells (2, 1) or (2, 2).

We now prove that FBRTDP has the same optimal con-
vergence guarantees as RTDP.
Theorem 2. Under conditions S1-S8, if the initial value
function is admissible, repeated FBRTDP trials eventually
yield optimal values V (s) = V ∗(s) along every optimal
path from the initial state to a goal state.

Proof. The main idea of the proof is to show that it is enough
to consider the paths to frontier states from any given state
in order to reach the optimal value function.

The first observation is that FBRTDP preserves the non-
overestimating property of h when visiting a state and up-
dating its value. Let us denote by F (s) the set of frontier
states that can be reached from a given state s. Assuming
that the h values of F (s) do not overestimate the expected
cost to reach the goal, then after adding paths with minimum
expected cost from s to each of these frontiers, the minimum
of the resulting values cannot overestimate the expected cost
to the goal from the given state.

We now define the value V (s) of a state s to be consistent
with the frontier states that can be reached from it, if V (s) =
mins′∈F (s)

[
E[C(s, s′)] + V (s′)

]
, where E[C(s, s′)] is the

expected cost of the optimal path from s to s′.
Now, assume the converse of the theorem, that after an

infinite number of trials, there exists a state along an optimal
path from the initial state to a goal whose value is not opti-
mal. Assuming that h of all goal states is zero, if the value of
any state along any path to a goal state is not optimal, then
some frontier state along the same path must be inconsistent.
This follows formally by induction on the distance from the
goal.

If there exists a frontier state whose value is inconsistent,
then there must exist at least one such state in an arbitrary
ordering of the states. Call such a state x. By assump-
tion, x lies along an optimal path from the initial state s

Algorithm 2 Frontier Based RTDP
Data structures: frontier - set of frontier states
visited - set of states already visited by the current trial
1: function FBRTDP(s0) // s0 is the initial state
2: while maxs∈visited RESIDUAL(s) > ϵ do
3: visited← {s0}
4: frontier ← all successors of s0
5: FBRTDPTRIAL(s0)

1: function FBRTDPTRIAL(s) // Execute one trial
2: while not GOAL(s) and s ̸= sd do
3: // Pick best composite action and update hash
4: â← GREEDYCOMPOSITEACTION(s)
5: UPDATE(s, â)
6: // Stochastically simulate next state
7: s← CHOOSENEXTSTATE(â)
8: if s /∈ visited then
9: Add s to visited

10: UPDATEFRONTIER(s)

1: function GREEDYCOMPOSITEACTION(s)
2: Build a graph G that consists of the states in visited ∪

frontier and its edge weights defined as the expected costs of
the state transitions

3: Run Dijkstra on the graph G starting from s
4: Find a frontier f with minimum cost path from s
5: Let â = (a1, ..., an) be the sequence of actions leading

from s to f on the minimum cost path
6: return â

1: function QVALUE(s, â)
2: return

∑
s′∈S

P (s′|s, â)
[
Câ(s, s

′) + s′.V
]

1: function UPDATE(s, â)
2: s.V ← QVALUE(s, â)

1: function CHOOSENEXTSTATE(s, â)
2: Choose s′ with probability P (s′|s, â)
3: return s′

1: function UPDATEFRONTIER(s)
2: Remove s from frontier
3: for every successor state s′ of s do
4: if s′ /∈ visited and s′ /∈ frontier then
5: Add s′ to frontier

to a goal state. In addition, since all the h values are non-
overestimating and this property is preserved by FBRTDP,
the values of all the states along the optimal path from s to
x, are less than or equal to their optimal values. This ensures
that state x will eventually be visited by FBRTDP. When it
is, its value will become consistent with the frontier states
that can be reached from it, thus violating the assumption
that it is the least inconsistent frontier state in some order-
ing. Therefore, the value of every state along an optimal path
from the initial state to a goal state must eventually reach its
optimal value.

Empirical Evaluation
In this section we evaluate FBRTDP in relation to RTDP
and three other algorithms: VI, the standard dynamic pro-
gramming algorithm, LRTDP (Labeled RTDP) (Bonet and
Geffner 2003), and GAC (Greedy Adversarial Coverage),

PlanRob 2015

50

the state-of-the-art solution to the adversarial coverage prob-
lem as described in (Yehoshua, Agmon, and Kaminka 2014).
We use a specific map to illustrate the operation of the algo-
rithms and we also report on the statistical analysis of their
behavior based on multiple randomly generated maps with
varying parameters.

Figure 2 shows an example for the optimal safest cover-
age path found by VI on a map of size 7 × 7. The map
contains 25% threat points with 5 different threat probabili-
ties between 0.006 and 0.03, and 30% obstacles. Obstacles
are represented by black cells, safe cells are colored white
and dangerous cells are represented by 5 different shades of
purple. Darker shades represent higher values of pi (more
dangerous areas). The number of visits to each cell along
the coverage path is indicated within that cell. The termina-
tion criterion was set to ϵ = 0.1.

Figure 2: An optimal coverage path generated from a Value
Iteration run.

As can be seen, the coverage path revisits only a single
threat point, which has the lowest threat probability. The
other five revisits are to safe cells. This coverage path is
optimal, since any coverage path of this map must revisit at
least one threat point (there is a threat point located next to
the two lower corners and the robot must get in and out of at
least one of these corners in order to complete the coverage).
The probability to complete the coverage path generated by
VI was 49.5%, and its total length was 40. Running GAC on
the same map generated a coverage path with 44.71% proba-
bility to complete (containing 4 revisits to threat points) and
total length of 72. RTDP, LRTDP and FBRTDP converged
to the same optimal solution as VI on this map, albeit in a
much shorter time. The curves in Figure 3 display the evo-
lution of the expected cost to the goal as a function of time
for the different algorithms. FBRTDP shows the best pro-
file, converging to the optimal policy in only 0.429 seconds,
while RTDP, LRTDP and VI converge to the optimal policy
in 541, 530, and 803 seconds, respectively.

For map sizes larger than 7 × 7, the MDP’s state space
exceeded the available memory, thus VI could not be exe-
cuted for such maps. Moreover, in such maps, RTDP’s and
LRTDP’s convergence was very slow (it took a few hours
for them to converge on maps of size 8× 8).

Therefore, for large-sized maps we have analyzed the per-
formance of only FBRTDP and GAC. Figure 4 shows the

10
−1

10
0

10
1

10
2

10
3

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Elapsed Time (sec)

E
xp

ec
te

d
C

os
t

FBRTDP
RTDP
LRTDP
VI

Figure 3: Expected cost to the goal vs. time for VI, RTDP,
LRTDP and FBRTDP. The time axis is plotted on a logarith-
mic scale.

completion probability and the path length obtained by both
algorithms for varying α/β ratios between 0.001 and 1000.
The results are averaged on 30 random maps. In all experi-
ments we have used map sizes of 20× 20, the ratio of obsta-
cles was 30%, the ratio of threats was 30% and the number
of threat levels was 5. The locations of the threat points and
the obstacles were randomly chosen. Note that for maps of
this size, FBRTDP did not converge (i.e., the residual didn’t
get below ϵ) in a reasonable amount of time, thus we halted
it after 1000 trials.

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

34.5

35

35.5

36

36.5

37

37.5

P
ro

b.
 T

o
C

om
pl

et
e

%

FBRTDP
GAC

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

400

450

500

550

600

650

700

T
ot

al
 P

at
h

Le
ng

th

α/β

Figure 4: Probability to complete the coverage and total path
length for different risk and time levels. x axis is plotted on
a logarithmic scale.

As can be seen, the coverage path length increases as the

PlanRob 2015

51

risk factor α become more dominant in both algorithms.
The probability to complete increases until the ratio α/β is
around 5 and then it starts to decrease. This is due to the fact
that when α is too high, the algorithms try to avoid visiting
higher-level threats as much as possible, which makes them
revisit lower-level threats more times, thus the coverage path
gets longer and riskier.

In all experiments, FBRTDP consistently outperforms the
greedy algorithm in terms of both the completion proba-
bility and the path length. On average, FBRTDP achieves
about 1% increase in the robot’s survivability and 5% de-
crease in the path length compared to GAC (which is sta-
tistically significant; one-tailed t-test p = 7.43 · 10−16).
As can be seen from the graph, changing the ratio between
the risk and the time factors (α/β) from 0 to ∞, under the
given map settings, can change the survivability probability
by only 1.5% in both algorithms. Thus, a 1% increase in
the robot’s survivability is quite dramatic. The absolute dif-
ference between the algorithms’ results depends upon map
settings. For example, when the threats ratio was decreased
to 25%, FBRTDP attained a robot’s survivability probability
which was 3% higher than GAC.

On the down-side, FBRTDP’s average running time was
significantly higher than GAC’s (179 seconds in FBRTDP,
0.154 seconds in GAC). This difference is caused by the
high number of FBRTDP trials that was needed in order
to reach convergence. However, FBRTDP typically outper-
forms GAC after a small number of trials (an FBRTDP trial
follows a greedy policy which resembles the greedy behav-
ior of GAC).

Conclusions and Future Work
We have described how to model the robotic adversarial cov-
erage problem as an MDP. We have shown how the model
can be used to find an optimal solution to the problem on
small-sized maps, and obtain significant improvement over
the state-of-the-art solution for larger maps. To the best of
our knowledge, this is the first time that MDPs have been
used to represent problems in the robotic coverage field.

We have also introduced FBRTDP, a new improvement to
RTDP, which maintains a list of frontier states and extends
the set of actions that can be used by the model. FBRTDP
provides significant speedup, allows RTDP to solve the ad-
versarial coverage problem on much larger maps, and has
the same optimal convergence guarantees as RTDP.

In the future we plan to use the MDP model to handle
other variants of the adversarial coverage problem, such as
a variant in which threats may cause time delays instead of
completely stopping the robot. We also intend to evaluate
FBRTDP on other planning problems and compare its per-
formance to other heuristic algorithms for solving MDPs.

References
Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1995. Learn-
ing to act using real-time dynamic programming. Artificial
Intelligence 72(1):81–138.
Bellman, R. 1957. Dynamic programming. Princeton Uni-
versity Press.

Bertsekas, D. P. 1995. Dynamic programming and optimal
control, volume 1 and 2. Athena Scientific.
Bonet, B., and Geffner, H. 2003. Labeled RTDP: Improv-
ing the convergence of real-time dynamic programming. In
Proc. of ICAPS, volume 3, 12–21.
Colegrave, J., and Branch, A. 1994. A case study of au-
tonomous household vacuum cleaner. AIAA/NASA CIRFFSS
107.
Gabriely, Y., and Rimon, E. 2003. Competitive on-line cov-
erage of grid environments by a mobile robot. Computa-
tional Geometry 24(3):197–224.
Galceran, E., and Carreras, M. 2013. A survey on cover-
age path planning for robotics. Robotics and Autonomous
Systems 61(12):1258–1276.
Kolobov, A.; Mausam; and Weld, D. 2012. A theory of goal-
oriented mdps with dead ends. In Proc. of the Conference
on Uncertainty in Artificial Intelligence (UAI-12), 438–447.
Little, I., and Thiebaux, S. 2007. Probabilistic planning vs.
replanning. In ICAPS Workshop on IPC: Past, Present and
Future.
Luo, C.; Yang, S. X.; Stacey, D. A.; and Jofriet, J. C. 2002. A
solution to vicinity problem of obstacles in complete cover-
age path planning. In Proc. IEEE International Conference
on Robotics and Automation (ICRA-02), volume 1, 612–
617.
Nicoud, J. D., and Habib, M. K. 1995. The pemex-b au-
tonomous demining robot: perception and navigation strate-
gies. In Proc. IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, ’Human Robot Interaction and
Cooperative Robots’, volume 1, 419–424.
Nikolova, E., and Karger, D. R. 2008. Route planning under
uncertainty: The canadian traveller problem. In Proc. of the
Twenty-Third Conference on Artificial Intelligence (AAAI-
08), 969–974.
Nishizeki, T.; Asano, T.; and Watanabe, T. 1983. An ap-
proximation algorithm for the hamiltonian walk problem
on maximal planar graphs. Discrete applied mathematics
5(2):211–222.
Papadimitriou, C. H., and Yannakakis, M. 1989. Shortest
paths without a map. In Automata, Languages and Program-
ming. Springer. 610–620.
Yehoshua, R.; Agmon, N.; and Kaminka, G. A. 2013.
Robotic adversarial coverage: Introduction and preliminary
results. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS-13), 6000–6005.
Yehoshua, R.; Agmon, N.; and Kaminka, G. A. 2014. Safest
path adversarial coverage. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS-14), 3027–
3032.

PlanRob 2015

52

A Framework for Performance Assessment of Autonomous Robotic Controllers

Pablo Muñoz 1 and Amedeo Cesta 2 and Andrea Orlandini 2 and Marı́a D. R-Moreno 1

1 Department of Automatics, University of Alcalá, Alcalá de Henares, Spain
{pmunoz, mdolores}@aut.uah.es

2 Institute of Cognitive Science and Technology, CNR, Rome, Italy
{amedeo.cesta, andrea.orlandini}@istc.cnr.it

Abstract

This work describes a framework to assess the perfor-
mance of autonomous software for robotics platforms.
The motivation for such an effort is twofold: (a) the dif-
ficulty to generate intensive test campaign for a given
robotic architecture; (b) the lack of a general approach
to assess and compare different planning and execution
approaches for the same robotic platform. The produced
framework, called OGATE, supports the integration,
testing and operationalization of an autonomous robotic
controller. It allows to run series of plan execution ex-
periments while collecting and analyzing relevant pa-
rameters of the system under a unified and controlled
environment. The first part of the paper presents the
framework, an evaluation methodology for autonomous
controllers and an initial deployment of OGATE to sup-
port experiments using a specific robotic system as a
case study. The second part of the paper summarizes
the lessons learned exploiting the proposed methodol-
ogy and OGATE as an automated testbench to analyze
different planning policies for the deliberative compo-
nent of the targeted robot.

Introduction
The interleaving of planning and execution is a key refer-
ence problem for the Planning and Robotics research com-
munities. For example it is one of the main issues to be ad-
dressed when deploying autonomous control systems in sim-
ulated and/or real robotics platforms – see e.g., (Gat 1992;
Alami et al. 1998; Aschwanden et al. 2006; Nesnas et al.
2006; Py, Rajan, and McGann 2010). As a common prac-
tice, such research efforts rely on rather specific validation
methodologies, experimental settings and assessment analy-
sis in a manner that leads them to be hardly exportable and
reproducible on different architectures. As a consequence,
the process of generating reports after empirical evaluation
with robots featuring plan-based autonomous capability of-
ten lacks a comparable testing methodology. Specifically,
the presence of uncertainty, errors and robot decision ca-
pabilities (based on how the world is perceived) allows to
provide a sort of “proof of concept” affected by (i) usage
of subjective and/or insufficiently general performance met-
rics, (ii) difficulties in reproducing results and (iii) hetero-
geneity of experimental conditions (Fontana, Matteucci, and

Sorrenti 2014). An interesting open issue consists of defin-
ing an evaluation methodology for control systems capable
of being exportable and reproducible with different plan-
based controllers for autonomous robotics.

Paper Contribution. This paper aims at contributing ac-
cording to the following directions: (1) a methodology for
evaluating autonomous controllers is defined and discussed;
(2) such a methodology is operationalised in a case study
constituted by a specific goal-based autonomous controller
of a rover in a space exploration domain; (3) the perfor-
mance of the autonomous controller is assessed consider-
ing a set of metrics whose measurements are collected dur-
ing an automatically generated test campaign. The proposed
framework (Muñoz et al. 2014) aims at becoming a general
and domain independent tool that, following a well struc-
tured methodology, can support the analysis and comparison
of autonomous controllers performance, based on objective
metrics and well suited experimental campaigns. In this pa-
per we only present the results obtained using a TimeLine
Based autonomous controller but we are also working on
a PDDL-based one. In the future, we will be able to show
the comparison between them. The framework allows to de-
fine metrics according to specific evaluation goals, to de-
fine a set of application scenarios to be exploited in order
to evaluate actual robotic platforms or associated simulators
under controlled and reproducible experimental conditions.
The tool is in charge of supervising and monitoring the con-
troller execution by inspecting internal monitors of the dif-
ferent components and retrieving relevant information about
its performance. Finally, the collected information are ex-
ploited to generate detailed reports to support assessments
based on the analysis of the considered metrics.

Related Works. Evaluating and characterizing au-
tonomous controllers have been investigated in different
perspectives. On the one hand, there are theoretical works
that aim to define the relevant parameters to measure for an
autonomous system (Ad Hoc ALFUS Working Group 2007;
Huang et al. 2010) or those who try to create valid method-
ologies for the testing process (Hudson and Reeker 2007;
Gertman et al. 2007). On the other hand, the are
the robotics competitions which allow us to com-
pare different solutions for the same problem with

PlanRob 2015

53

different platforms/controllers (del Pobil 2006;
Behnke 2006). Notwithstanding the relevance of such
works, they are focused on non-objective and weak eval-
uation criteria (e.g., (Orebäck and Christensen 2003;
McWilliams et al. 2007)), while others rely on expensive
robotic platforms that are not accessible to the wide research
community. In any case, the complexity of exploiting these
systems in an automated test campaign remains an open
issue.

Plan of the Paper. In the next section we present the
OGATE tool able to perform automatic campaigns to char-
acterize and evaluate autonomous controllers. Then, an eval-
uation methodology is presented. Next, we present the
GOAC controller and the space exploration domain that are
used to demonstrate the OGATE capabilities to perform an
automated test-bench to analyze the impact of different plan-
ning policies of the deliberative component of the architec-
ture. After, we discuss the performance evaluation of the
GOAC controller as a function of the deliberative compo-
nent for different space exploration scenarios. Some conclu-
sions end the paper.

The OGATE Tool
Plan-based deliberative systems are usually the top layer
of complex autonomous controllers specifically designed to
control a specific robotics platform to perform determinate
duties. Hand tailored testing and verification tasks are of-
ten exploited to validate such deliberative systems. More in
general, subparts of the control architectures can be eval-
uated in a stand-alone manner via particular test-bed. But
testing robustness, adequacy and performance for the whole
architecture is not a trivial task as it requires to collect and
to analyse relevant data from all the parts of the control sys-
tem while the test bed should be properly designed and not
just covering more than just typical scenarios. The authors
current work aims at designing and developing a software
framework called OGATE (in (Muñoz et al. 2014) an initial
report can be found) whose main objective is to support the
deployment of control architectures for robotics platforms
and to perform sets of reproducible experiments.

OGATE offers capabilities for instantiating and activat-
ing the required components of an autonomous controller
within a scenario defined by a user, supervises the plan exe-
cution and generates a report with information gathered dur-
ing the test. Furthermore, it constitutes also an interactive
tool to help designers and operators of autonomous con-
trollers providing a unified interface for in-execution con-
trol and inspection of the controlled system. In this regard,
OGATE aims at providing an environment to test the fea-
tures of goal oriented controllers as well as to generate re-
ports based on quantitative performance analysis by means
of software internal monitors of the controlled system after
experiments. A basic concept in OGATE is the one of mis-
sion that identifies a combination of goals, plans and robot
configuration details over a defined interval of time. The in-
frastructure of the system relies on three main modules (see
Figure 1) to support the test bed lifecycle for autonomous
agents, namely: mission specification, execution and report.

Figure 1: The OGATE framework

Mission specification. In order to define functionalities
and required goals, it is first required to specify the mission
configuration for the autonomous controller, i.e., the compo-
nents of the control architecture and the platform over which
they operate. In this regard, OGATE provides a suitable in-
terface to configure the components of the controlled sys-
tem, such as the deliberative module. In general, the mission
specification includes the configuration of the different com-
ponents (executive, deliberative, etc.) involved in the mis-
sion. Then, a suitable support is provided also to support
the definition of the experimental scenario, i.e., domain and
a problem specification typically required by these AI con-
trollers. Namely, the definition of causal and temporal inter-
actions between different elements of the system and, initial
facts and desired objectives of the mission.

Mission execution. OGATE supports also experiments
execution providing a framework to deal with the complex-
ity of the underlying architecture and the different subcom-
ponents, to execute the user defined missions and to gather
relevant data in order to provide the user with a report about
general controller performance. Also, the user is able to in-
teract with the controlled system during execution, modify-
ing internal parameters or including new mission goals to
change the nominal execution so as to test the system also
under dynamic conditions, e.g., focusing on the replanning
capabilities of the deliberative component. Then, using spe-
cific operational interfaces, OGATE is able to control and
gather data related to execution accessing the single com-
ponents of the autonomous controller. It is worth observing
that the system has the capability for both single run or batch
experiment set run hence facilitating data gathering.

Report. At the end of the execution of an experiment,
OGATE provides the user with a report about the collected
data. In this regard, OGATE provides a human-readable re-
port containing detailed information about the autonomous
controller performance while facing the mission. The
system is then open to be enriched with user-defined metrics
for assessing the performance of deliberative components
enabling the evaluation of the considered autonomous

PlanRob 2015

54

controller.

In order to control the autonomous controller and access in-
formation, some parts of the control architecture must be
accessible. In this regard, OGATE defines a small set of
simple interfaces allowing the control of different aspects
of a component (see again Figure 1). An OGATE plug-in
is a component of the system that implements some func-
tionalities accessible through such interfaces, giving access
to OGATE to control its execution and to retrieve data from
it. The interfaces are: a Control interface to provide the ba-
sic functionality to safely run, pause or stop the autonomous
controller and its submodules also monitoring the status of
the components and allowing the detection of non-nominal
states; a Data interface to supply a bidirectional channel to
retrieve the relevant data and to modify the internal status of
the components such as, for instance, including new goals
during the execution of deliberative components.

Also, the specification of a test-bench over that mission
configuration consists of evaluating different control archi-
tectures or various configurations for a control architecture
to select the best one for a particular mission, or the evalua-
tion of the performance for a particular control architecture
over a set of missions, to evaluate and improve the compo-
nents employed. The OGATE system will be able to support
these tests in an automated way.

Then, in order to work with OGATE, the user shall pro-
vide a set of elements: (a) the configuration of the different
components of the autonomous controller. This is done using
an ad-hoc XML configuration file containing the required
instructions to instantiate the particular autonomous con-
troller; (b) a scenario description over which the autonomous
controller is to be tested. Defining a pair of domain and prob-
lem models, and other configurations files to define the be-
haviors of the different components; (c) a metrics definition
file in which the user can set the different metrics to be con-
sidered. Each metric is defined by its name, the value range
(lower and upper bounds) and the importance of the metric
in the final evaluation (weight).

Given the above information, OGATE is able to instan-
tiate the autonomous controller exploiting the information
contained in the configuration file. Then, when all the con-
sidered components are properly set, it is possible to start
their execution and monitor the status of the components
collecting the information related to the defined metrics. As
soon as the execution ends, OGATE generates a report in-
cluding minimum, maximum and average value for each
metric, and a graphical report with the complete evaluation
of the controller performance.

Given this software infrastructure we now present an ap-
proach to evaluating plan-based autonomous controllers and
then we will describe the approach at work of a deliber-
ative control architecture, commenting the results that are
triggered by the use of the system.

Evaluation methodology
In general terms, given an autonomous controller to be as-
sessed, a set of evaluation objectives should be isolated and
some specific performance metrics should be identified and

defined accordingly. Then, a set of suitable tests should be
defined and performed so as to collect relevant information
constituting a quantitative basis for the evaluation process.
Finally, reports should be generated to point out measure-
ments indicating the performance of the controller accord-
ing to the evaluation objectives and metrics defined in the
first phase.

More in detail, the methodology proposed to analyze and
evaluate autonomous controllers can be described as the
composition of three phases: evaluation design, tests execu-
tion and, report and assessment.

Evaluation Design. First, the identification of evaluation
objectives is to identify which is the evaluation target. In
fact, according to the evaluation target different aspects may
result relevant (or not). For instance, measuring the deliber-
ation time or considering the number of dispatched goals in
different scenarios could provide relevant information about
the behaviour of the autonomous controller. In this case,
very specific parameters can be considered and analysed.
More in general, a set of parameters applicable to any de-
liberative system can be considered in order to enable also
the possibility to compare performance of different control
systems in the same operative scenario.

According to evaluation objectives, a metrics definition
task is to define parameters that should be measured during
execution. This is key as the result of the evaluation strongly
depends on the selected metrics. It is important to define
(at least) a small set of metrics that can be commonly ap-
plicable to autonomous controllers, such as the time spent
deliberating and the total time to accomplish all goals. Any-
way, focusing on a particular autonomous controller allows
to consider specific metrics for that controller during tests.

Then, the definition of different scenarios and configu-
rations to be tested should be implemented. The scenarios
can be defined as the set of constraints and goals that the
autonomous controller takes as input. In general, a represen-
tation of the interactions between the robotic platform and
the external world coupled with a given set of goals to be
accomplished. However, to also deal with uncertainty, sce-
narios should be defined considering external agents that can
dynamically send additional goals or some failures that can
occur during execution. Such scenarios definition requires
advanced capabilities such as replanning and failure recov-
ering schemes. More than one scenario can be defined in or-
der to investigate the behaviour of the autonomous controller
under different conditions.

Tests Execution. Performing tests entails the execution of
each scenario that is to be monitored. In case, uncertain
and/or uncontrollable tasks are part of the problem, each
scenario should be performed several times, collect average
behaviours and define metrics values. In this regard, a sce-
nario instantiation step is required to generate the set of
configuration files combining the sets of planning domains
and required goals. Also, autonomous controllers can be de-
ployed with different internal settings, so, scenarios instan-
tiation should consider also to enable the execution of tests

PlanRob 2015

55

under different conditions. Then, actual tests execution is
needed. This is an important step for instantiating, execut-
ing, monitoring and collecting the data of several executions
of an autonomous controller in a given scenario.

Report and Assessment. Once all the tests are completed,
a Report on the information gathered during the several
executions. Reports are to provide an insight of the con-
troller behaviours providing values for each metric as well
as generating synthesised views, e.g., by means of graphical
representations to support the users while analysing system
performances. In fact, the information provided within
reports is to inform users and enable a performance
assessment enabling an objective evaluation of the control
architecture in the different scenarios. After execution,
a huge amount of generated data is expected and then a
general representation for the data produced is to be defined.

Metrics Definition and Presentation
Definition and presentation of metrics deserve a more de-
tailed discussion and, in the following, a detailed formaliza-
tion is provided. In the above methodology, a set of metrics
M is considered, being a metric denoted as µi ∈ M and
defined in a range µlb

i ≥ µi ≥ µub
i with µlb

i and µub
i are

(respectively) the lower and upper bounds for the i metric.
Also, for each metric an extra parameter is to be consid-
ered, i.e., the weight, µW

i , that represents the relevance of
the metric within the global evaluation. Considering the size
of M (i.e., the number of defined metrics) as n, the sum of
all weights is supposed to be 100:

n∑
i=0

µW
i = 100 (1)

After execution, the average value for each metric, µV
i ,

is considered in the report and this value is considered to
compute a metric score µS

i as follows:

µS
i =

[
100−

(
100

|µub
i − µlb

i |
· µV

i

)]
· ε

C

εT
(2)

considering that the upper bound of the metric is the worst
score. If the metric value is out of the defined range, its score
is 0. Last factor, εC/εT , expresses the impact of execution
failures in the metrics scores, being εC the number of correct
executions and εT the total runs.

As stated before, a suitable way to provide reports is by
means of graphical representations. For example, in ALFUS
(McWilliams et al. 2007) and PerMFUS (Huang et al. 2010),
a three axis representation based on the mission and environ-
ment complexity and human independence is presented. In
a similar way, here, a circular graphic representation, such
as the one depicted in Figure 2, is proposed to represent
the autonomous controller performance. Such representation
presents three different areas. Namely, starting from the cen-
ter, the Global Score (GS), the execution times and the met-
rics scores area.

The Global Score (GS) presented in the center of the fig-
ure represents a synthetic evaluation for the architecture in a
scale between 0 and 10, that can be compared with the Sheri-
dan’s model (Parasuraman, Sheridan, and Wickens 2000). In
that model, the score increases with the level of autonomy
demonstrated by the controller, being 10 a fully autonomous
system. In our evaluation, a higher score represents a better
evaluation as a function of the defined metrics. To compute
the GS value, only metrics scores are considered (execution
times are not considered), being the score directly propor-
tional to the filled area of the ring, and computed as follows:

GS =

∑n
i=0

(
µS
i · µW

i

)
1000

(3)

Surroundings the GS area, three circular bars are de-
picted. These bars represent the average time required by
the considered autonomous controller to complete each sce-
nario. Starting from the center, these bars represent: the ex-
ecution time in (i) nominal conditions, (ii) in dynamic goal
injection conditions and (iii) the presence of execution fail-
ures.

Finally, the external ring in the chart is decomposed into
four quadrants. The smaller circumference of the ring rep-
resents the smaller score for a metric (µS

i = 0, when the
metric score is equal or bigger to its upper bound), while
the outside circumference is the best value (µS

i = 100, or
a metric value closer to the lower bound). In each quadrant
there are one or more metric scores represented as a filled
circular sector. So, depicting a metric requires metric weight
(µW

i provided by the user) and metric score (µS
i obtained

from the execution using eq. 2). As a result, the higher is the
weight of the metric and its score, the higher is the filled area
of the ring. Then, a evaluation with a GS of 10 is this one in
which the metrics score fills all the ring.

The metrics area is decomposed in four quadrant to allow
a clustering of the metrics. The clustering criteria is not fixed
and is up to the user to define it. A good practice may be to
organize the metrics in the four quadrants grouping them by,
for example, the degree of autonomy that the metrics repre-
sent. In that case, this implies to follow a schema in which
metrics related to the functional support are clustered in the

Figure 2: The OGATE graphical report.

PlanRob 2015

56

first quadrant while those related to the deliberative system
are presented in the fourth quadrant. Besides, while focusing
on a small set of metrics, the quadrants can be exploited to
present the same metrics applied to four different instances
of the same scenarios. In general, the representation may be
customised according to the objectives of the evaluation.

For example, in the graph presented in Figure 2, the val-
ues for lower and upper bounds and the weights (µW

i) are
provided by the user. The value of the metrics bounds can
be obtained through empirical evaluations or predictions of
the controller performance. The unit of the metrics are de-
pendent of the value measured, they can be seconds, a per-
centage or another unit. The weight of each metric shall be
decided by the user, by identifying the relative importance
of each metric for the evaluation process, ensuring that com-
plies with the eq. 1. The metric value (µV

i) is obtained during
the tests execution and the score (µS

i) is computed at the end.
For the metric score the units have not sense, the scores are
normalized in a range between 0 and 100. With these values,
the global score for that architecture tested over a particular
scenario and with this set of metrics is 5.82 as depicted in
the center of the fig. 2, computed through the eq. 3. The val-
ues for the execution time are only presented as an example
of how a complete evaluation looks.

This methodology constitutes a generic and reproducible
process to evaluate autonomous controllers while consider-
ing varying execution scenarios. In this regard, the definition
of metrics, i.e., weights, bounds and experimental cases, is
the basic step on which rely to reproduce the evaluation re-
sults. Also, the proposed graphical representation provides a
synthetic and standard approach to summarize performance
results in test campaign, which allow users to analyze and
compare different aspects of controllers performance in an
straightforward manner.

Case study: GOAC in planetary exploration
Thanks to ESA (European Space Agency) Robotic De-
partment we have been able to use the GOAC autonomous
controller (Goal Oriented Autonomous Controller (Ce-
ballos et al. 2011)) an effort from the agency to create
a reference platform for robotic software for different
space missions. The GOAC architecture is the integration
of several components: (a) a timeline-based deliberative
layer which integrates a planner, called OMPS (Fratini,
Pecora, and Cesta 2008), built on top of APSI Timelines
Representation Framework (APSI-TRF) (Cesta et al. 2009)
to synthesize flexible temporal action plans and revise
them according to execution needs, and an executive a la
T-REX (Py, Rajan, and McGann 2010) to synchronize the
different components under the same timeline represen-
tation; (b) functional layer (Bensalem et al. 2010) which
combines a state of the art tool for developing functional
modules of robotic systems (Gen

oM) with a component
based framework for implementing embedded real-time
systems (BIP); (c) a simulation environment that accepts
the commands generated by the functional layer. GOAC
has been successfully tested an iRobot ATRV (called
DALA) that provides a number of sensors and effectors

(http://homepages.laas.fr/matthieu/robots/dala.shtml) and
an ExoMars model on the ESA 3DROV simulator (Poulakis
et al. 2008).

This section describes a robotic scenario related to the
GOAC project exploited as case study for the experimen-
tal assessment presented in the experimental section. First,
we describe the DALA platform, i.e., the real robotic plat-
form deployed within the GOAC project. Then, we exploit
the same scenario in order to show a possible configuration
of a control system implemented by means of an APSI De-
liberative Reactor. However, independent of our current use,
the work described in this paper is valid for any generic lay-
ered control architecture (e.g., (Gat 1997)) that integrates a
temporal planning and scheduling system.

The Robotic Platform
The DALA rover is one of the LAAS-CNRS robotic plat-
forms that can be used for autonomous exploration experi-
ments. In particular, it is an iRobot ATRV robot that provides
a number of sensors and effectors. It can use vision based
navigation (such as the one used by the Mars Exploration
Rovers Spirit and Opportunity), as well as indoor navigation
based on a Sick laser range finder. Then, the use of DALA
in the GOAC project was to simulate a robotic scenario as
close as possible to a planetary exploration rover.

In this regard, DALA can be considered as a fair repre-
sentative for a planetary rover equipped with a Pan-Tilt Unit
(PTU), two stereo cameras (mounted on top of the PTU), a
panoramic camera and a communication facility. The rover
is able to autonomously navigate the environment, move the
PTU, take high-resolution pictures and communicate images
to a Remote Orbiter. During the mission, the Orbiter may
be not visible for some periods. Thus, the robotic platform
can communicate only when the Orbiter is visible. The mis-
sion goal is a list of required pictures to be taken in different
locations with an associated PTU configuration. A possible
mission actions sequence is the following: navigate to one
of the requested locations, move the PTU pointing at the
requested direction, take a picture, then, communicate the
image to the orbiter during the next available visibility win-
dow, put back the PTU in the safe position and, finally, move
to the following requested location. Once all the locations
have been visited and all the pictures have been communi-
cated, the mission is considered successfully completed. The
rover must operate following some operative rules to main-
tain safe and effective configurations. Namely, the following
conditions must hold during the overall mission: While the
robot is moving the PTU must be in the safe position (pan
and tilt at 0); The robotic platform can take a picture only
if the robot is still in one of the requested locations while
the PTU is pointing at the related direction; Once a picture
has been taken, the rover has to communicate the picture to
the base station; While communicating, the rover has to be
still; While communicating, the orbiter has to be visible. The
reader may refer to (Ceballos et al. 2011) for further details.

Configuring the control system for experiments
The GOAC system follows the approach, first proposed in
T-REX (Py, Rajan, and McGann 2010), according to which

PlanRob 2015

57

the control system is realized as the composition of a set of
different deliberative reactors. Goal of this paper is to assess
a single deliberative reactor. Taking advantage of the flex-
ibility provided by the GOAC framework, a control system
is here defined considering only two different reactors i.e.,
a Mission Manager responsible to perform all the delibera-
tive tasks and a Command Dispatcher in charge of executing
commands and collecting execution feedback.

More in detail, the Mission Manager reactor is designed
to provide plans for user requested goals, i.e., requests for
(i) scientific pictures in desired locations, (ii) reaching a cer-
tain position and (iii) monitoring a certain area. The deliber-
ative reactor can operate with two different planning poli-
cies: a single goal policy, in which the deliberative reac-
tor plans the goals one after one, following a sort of batch
schema; a all goals policy, in which the deliberative reac-
tor generates in a unique planning step a solution plan for
all the goals. Then, the timelines planned by the Mission
Managers are dispatched for execution to the Command Dis-
patcher reactor that, in turn, encodes the planned values into
actual commands for the rover and uses the replies provided
by the functional layer to produce observations on the low-
level timelines. Thus, each reactor has a specific functional
role over different temporal scopes during the mission: the
Mission Manager’s temporal scope is the entire mission and
potentially can take minutes to deliberate; the Command
Dispatcher interfaces to the DALA functional layer and re-
quires minimal latency with no deliberation. It is also worth
underscoring that the Mission Manager is the only delib-
erative reactor in this use of the GOAC architecture. The
Command Dispatcher is a fully reactive system that inter-
acts with the actual controlled system with no deliberation
task involved. In this paper to execute tests, the DALA rover
has been simulated by means of a software environment1
used for testing the control system during the GOAC project
and offering the same robotic functional interface as well
as fully replicating the physical rover behaviors (i.e., ran-
dom temporal duration for uncontrollable tasks). The exper-
iments have been ran on a PC endowed with an Intel Core i7
CPU (2.93GHz) and 4GB RAM.

It is worth underscoring OGATE has been designed to
directly connect the deliberative layer of a control architec-
ture. So, performing experiments with either simulated or
actual robotic platforms is not relevant: OGATE is monitor-
ing the control architecture not the simulated/actual robotic
platform. More in general, OGATE allows to connect any
layer of the control architecture. For instance, it is possi-
ble to directly measure the battery level of the robot from
the functional layer (which usually constitutes a critical re-
source) and consider it while processing a related metric to
be included in the evaluation.

Experimental results
This section illustrates the assessment of the performance
of GOAC taking advantage of OGATE for performing in-
tensive automated tests for generating and executing plans

1DALA software simulator courtesy of Felix Ingrand and
Lavindra De Silva from LAAS-CNRS.

in the planetary exploration problem introduced above and
considering the control system configuration presented in
the previous section. Namely, OGATE is exploited to as-
sess the capability of the GOAC system to successfully con-
trol the platform in the given domain but also to measure
how different degrees of uncertainty affect the control be-
haviors. To objectively analyze this, the methodology pre-
sented above is exploited to characterize and compare the
performance of the GOAC system when modifying the be-
haviors of the deliberative component. In this regard, the as-
sessment objectives and the scenarios over which test the
GOAC system are to be defined as a first step.

Here, the evaluation objective is to analyze the perfor-
mance of the GOAC system focusing on how the two dif-
ferent planning policies of the deliberative component affect
the controller performance. In particular, in order to assess
the implementation of a sense-plan-act cycle in the GOAC
controller, the evaluation is to focus on the time spent by
the deliberative reactor while elaborating sensor data, gen-
erating plans and dispatching commands to the Command
Dispatcher. In this regard, the performance analysis should
be performed considering different problems and execution
scenarios in order to assess how they affect the system from
a high level perspective.

Then, different planning/execution scenarios are consid-
ered by varying the complexity of the robotic planning prob-
lem dimensions and the execution conditions. In particu-
lar, the following elements are considered: (1) Plan Length.
Problem instances are considered with an increasing num-
ber of requested pictures (from 1 to 3). (2) Plan Flexibility.
For each uncontrollable activity (i.e., robot and PTU move-
ments as well as camera and communication tasks), a min-
imal duration is set, but temporal flexibility on activity ter-
mination is considered, i.e., the end of each activity presents
a tolerance ranging from 0 to 10 seconds. This interval rep-
resents the degree of temporal flexibility/uncertainty intro-
duced in the system. (3) Plan Choices. A number of visibil-
ity windows spanning from 1 to 4 is considered as increasing
opportunities to communicate picture contents. Increasing
the number of communication opportunities raises the com-
plexity of the planning problem with a combinatorial effect.
In general, among all the generated problems instances, the
ones with higher number of required pictures, higher tempo-
ral flexibility, and higher number of visibility windows result
as the hardest.

To complete the evaluation design step, metrics are to be
defined according to the evaluation objectives, i.e., assess
the sense-plan-act cycle. In this regard, the metrics to be
analyzed are the following: State processing time: the time
required by the deliberative reactor to analyze the observa-
tions collected from the Command Dispatcher (sense phase).
Deliberation time: the time spent by the deliberative reactor
to generate a solution plan for the considered goals (plan
phase). Operational time: the time spent by the deliberative
reactor to dispatch commands for the other reactor to ac-
complish its own high-level goals. For the above metrics,
the following ranges (in seconds) have been considered: [0,
4] for the state processing time; [0, 10] for the deliberation
time and; [0, 20] for the operational time. The ranges for the

PlanRob 2015

58

metrics have been obtained analyzing the results of differ-
ent executions of the GOAC architecture in the considered
scenarios. In the evaluation, all the metrics have the same
weights. Finally, in order to evaluate how the different sce-
narios described above affect the GOAC performance, the
quadrants of the circular charts have been set to present the
three metrics considering an increasing number of commu-
nications opportunities.

In this work, we focus our attention on the metrics defined
above but, in general, OGATE allows also the definition of
additional metrics such as number of generated goals, mean
processing time per goal, number of observations received
and processed, etc. that can be considered within the evalu-
ation process with no additional costs but their definition in
the system.

In order to perform the tests execution, a suitable GOAC
plugin for OGATE has been implemented and adapted in
order to monitor and store all the relevant performance in-
formation from the internal components of the controller
(again, see (Muñoz et al. 2014) for further details). Then,
OGATE has been exploited to (i) generate the considered
scenarios, (ii) carry out all the different controller executions
and (iii) collect performance data from the GOAC. For each
execution setting, 10 runs have been performed and average
values for the defined metrics are reported.

After the collection of performance information in all the
considered scenarios, OGATE is able to generates a report
containing a wide set of charts corresponding to different
control configurations, planning problem instances and ex-
ecution settings. Figure 3 shows an excerpt (related to the
3 pictures scenarios) of the charts provided by the OGATE
report.

Assessing the information shown in the reports, a first
straightforward evidence that can be elicited observing the
charts in Figure 3 is that the controller execution is not com-
pleted in all the considered scenarios (see Fig. 3-d-e-f in the
case of 3 and 4 communication windows). In some cases,
even though the deliberative module is able to generate a
valid plan, the GOAC controller fails in properly complet-
ing its execution. After some further analysis of that specific
scenarios, an issue related to a dynamic controllability prob-
lem (Morris and Muscettola 2005) in the execution of the
corresponding plans has been identified.

For what concerns the planning policy comparison, data
in Fig. 3 shows that the all goals policy is unable to solve
the scenarios with 3 pictures and 3 communication windows
for all flexibilities and the ones with 5 and 10 seconds flexi-
bility and 4 communication windows. Meanwhile, the single
goal policy can solve all scenarios, experiencing execution
failures with 3 pictures, 5 seconds flexibility and 4 commu-
nication windows, and also with 10 seconds flexibility and 3
and 4 communication windows. It is possible to observe that,
the all goals policy usually has the best operational time val-
ues while for the state processing time the better scores cor-
responds to the single goal policy. This is a consequence of
how the deliberative reactor dispatches the goals: in the sin-
gle goal policy, it dispatches goals one by one, increasing
the time spent in this task (operational time), while the all
goals policy do it just once. In opposition, the single goal

policy requires only to check the states for only one goal
(state processing time), managing a shorter list of expected
states, while the all goals policy must manage a list with the
expected states for all pictures. Focusing on the central area,
we can observe the average execution time in the circular
bar. The time is expressed as seconds/degree, and computed
considering both the correct executions and the failing ones
(those who reach a timeout of 5 minutes). In the center is
presented the Global Score that summarizes the metrics into
a single value. Considering only this value we can see that
increasing the flexibility, the performance of the system de-
creases for both planning policies. Also, the single goal pol-
icy shows a significative better GS than the all goals policy.

Further investigating the values for the three metrics in
the 3 pictures scenarios, additional consideration can be in-
ferred. First, focusing on the deliberation time, both policies
have a (close to) constant time for each number of pictures.
Anyway, the single goal policy requires less time to gener-
ate the plans, being remarkable the increment of the required
time for 3 pictures with the all goals policy. Considering the
difference between the time spent to generate the plan for
1, 2 and 3 pictures employing the single goal policy, we
observe that the time is not proportional to the number of
pictures (the average values for 1, 2 and 3 pictures are 0.61,
1.32 and 2.06 seconds respectively), which is an indication
of the possible presence of an anomaly behavior (as every
picture is planned independently, it is expected to take the
same time for planning). A further investigation has been
then performed considering the single goal policy in a sce-
nario with 0 seconds flexibility and with 2 communications
windows aiming to acquire 5 pictures. A temporal profile
has been generated and it is presented in fig. 4 where the
X-axis represent the tick count and the Y-axis is the time
measured in seconds, and the filled area is the time spent de-
liberation for each picture. The temporal profile is also part
of the data generated by OGATE, and allows to observe that
the single goal policy presents an important issue when con-
sidering an incremental number of goals. In fact, it fails in
obtaining the plan for the last picture in this scenario as it
requires an increasing amount of time for processing addi-
tional requested pictures. Then, it has been possible to figure
out that while processing additional goals, the OMPS plan-
ner performs some checks about past constraints, which are
not relevant for the current planning but strongly increase
the time spent in planning.

Figure 4: Temporal profiling for the single goal policy in a sce-
nario with 5 pictures.

More in general, a detailed analysis of the controller per-

PlanRob 2015

59

(a) Single goal with 0 secs flexibility. (b) Single goal with 5 secs flexibility. (c) Single goal with 10 secs flexibility.

(d) All goals with 0 secs flexibility. (e) All goals with 5 secs flexibility. (f) All goals with 10 secs flexibility.

Figure 3: GOAC evaluation for 3 pictures with different planning policies and temporal flexibilities of the deliberative component.

formance can be performed by taking advantage of the in-
formation provided by the OGATE report. Due to space is-
sue, we report here only a quick overview of the main re-
sults. For 1 and 2 communication windows, all the scenarios
are correctly completed with both the planning policies. For
3 communications windows, the all goals policy is able to
complete all scenarios for 2 pictures but it fails to solve the
3 pictures scenarios. The single goal policy solves all sce-
narios for both 2 and 3 pictures (except 3 pictures and 10
secs flexibility) where it fails to execute the scenario 30%
times. With 4 communications windows, the all goals pol-
icy has a worse performance: it solves only 30% and 60%
of the scenarios for 2 pictures with 5 and 10 seconds flex-
ibility respectively, and 100% for the scenario with 3 pic-
tures without flexibility. The single goal policy solves all
scenarios without flexibility; a half in the case of flexibility
5, and, with flexibility 10, it achieves a successful ratio of
90% and 70% for 2 and 3 pictures respectively. As a final
consideration, a general observation is that the exploitation
of the single goal policy in the GOAC architecture seems to
be more suitable to address all the considered scenarios but
it is affected by the issue shown in Fig. 4. On the other hand,
the all goals policy allows to overcome such issue but does
not provide good performance when facing scenarios with
more than two communication windows. So, according to
the gathered results, a suitable trade off for deploying the

GOAC architecture seems to be the configuration with single
goal policy when considering a short look-ahead for accept-
ing new picture requests.

Finally, It is worth underscoring how performing the same
empirical evaluation without the OGATE support consti-
tutes a significant effort in terms of coding work, customi-
sation of specific metrics to the considered control archi-
tecture, collection of performance information and genera-
tion of synthetic reports. By using OGATE, the main ef-
fort required is related to the implementation of the plugin
software for the specific autonomous controller. Thus, the
OGATE framework constitutes an off-the-shelf tool capable
of performing in automated manner a significant amount of
work: that includes the scenarios definition, the tests execu-
tion, the collection of information and the report generation.

Discussion and Conclusions
This paper addresses an open issue in autonomous soft-
ware for robotics platforms: how to perform intensive ex-
periments according to some structured methodology. We
have first produced the OGATE framework to support au-
tomated testbench campaigns to achieve performance mea-
sures of different autonomous controllers. This framework
is composed of (i) a methodology to define and guide the
testing process, and (ii) an engineering tool to support such
a methodology. The paper in particular introduces a method-

PlanRob 2015

60

ology for evaluating deliberative robotic components and a
way for compact visualising the result of its application. Us-
ing the new framework we have analyzed different planning
policies for the deliberative component of the GOAC system
here considered as an external system. Assessment has in-
volved inspecting internal measures of the deliberative com-
ponent while executing scenarios with increasing complex-
ity. Within these tests we have been able to obtain differ-
ent reports describing the performance of the system that al-
lows us to obtain conclusions that were hard to be achieved
performing standalone tests. In particular for the extensive
GOAC testing we have been able to identify an issue in the
single goal policy of the planning component, and we have
been able to conclude that the all goals policy is open to
dynamic controllability issues.

Some specific issues still require some additional com-
ments. First, the need of considering also stochastic model-
ing and, more in general, to allow for setting up more com-
prehensive and complex testing scenarios is a further de-
sired feature. As for assessment of plan-based components,
OGATE is a rather new solution and then the present pa-
per is more focused on proposing an evaluation methodol-
ogy and a technological supporting tool. Indeed, as a start-
ing point we are considering a set of preordered scenarios
from a real world robotic application (hence emphasizing
the realism of the use case). Nevertheless, OGATE can be
seamlessly extended in order to consider more complex sce-
narios, e.g., including stochastic features and to allow users
performing more thorough test campaigns analysis. This is
actually an ongoing work.

Then, the choice of relying on plugins enables OGATE to
connect to any kind of control architecture notwithstanding
which kind of robotic platform/software is deployed. Thus,
OGATE aims to be as much as possible platform/software
independent. Nevertheless, the implementation of a ROS
plugin is in our agenda for future versions of the framework.

In order to develop a plugin to connect OGATE to
an autonomous controller, some technical work by skilled
engineers and/or control architecture experts is obvi-
ously required. Nevertheless, after such mandatory step,
OGATE is requiring system users (i.e., not necessarily ex-
perts/engineers) to generate two XML files for describing i)
the set of components necessary to actually execute the au-
tonomous controller and ii) the metrics to be measured as
well as the data required to generate the evaluation reports.
Both files can be generated through the graphical environ-
ment of OGATE2. The file contains detailed information
(order of execution, paths, processes, parameters, simulator
settings file, etc.) about software processes to be issued in
order to properly activate the GOAC and the simulator soft-
ware.

Finally, among future developments, a further analysis of
robot missions evaluation is required to leverage OGATE
tool in order to identify relevant metrics to evaluate control
architectures also allowing metrics customization according

2As an example, at the following link, an example of an XML
file with the information to execute the GOAC controller is pro-
vided: https://www.dropbox.com/l/UBKryBFRaZq7taCzdUFCso.

to specific robot mission requirements. In general, the defi-
nition of a more thorough set of standard metrics is highly
desirable and would constitute a not trivial and important
contribution in this field. Moreover, the use of OGATE will
be considered for comparing different plan-based delibera-
tive platforms on the same benchmark tests.

Acknowledgments
Pablo Muñoz is supported by the European Space Agency
(ESA) under the Networking and Partnering Initiative. UAH
authors are partially supported by the Junta de Comunidades
de Castilla-La Mancha project PEII-2014-015-A. CNR au-
thors are partially supported by the Italian Ministry for Uni-
versity and Research (MIUR) and CNR under the GECKO
Project (Progetto Bandiera “La Fabbrica del Futuro”). Au-
thors want to thank to the ESA’s technical officer Mr. Michel
Van Winnendael for his continuous support.

References
Ad Hoc ALFUS Working Group. 2007. Autonomy Levels
for Unmanned Systems (ALFUS) Framework – Framework
Models. Technical Report 1011-II-1.0, National Institute of
Standards and Technology.
Alami, R.; Chatila, R.; Fleury, S.; Ghallab, M.; and Ingrand,
F. 1998. An architecture for autonomy. Field Robotics,
Special Issue on Integrated Architectures for Robot Control
and Programming 17:315–337.
Aschwanden, P.; Baskaran, V.; Bernardini, S.; Fry, C.; R-
Moreno, M. D.; Muscettola, N.; Plaunt, C.; Rijsman, D.; and
Tompkins, P. 2006. Model-unified planning and execution
for distributed autonomous system control. In Association
for the Advancement of Artificial Intelligence (AAAI) 2006
Fall Symposia.
Behnke, S. 2006. Robot competitions – ideal benchmarks
for robotics research. In 2006 IEEE/RSJ International Con-
ference on Robots and Systems (IROS) Workshop on Bench-
marks in Robotics Research.
Bensalem, S.; de Silva, L.; Gallien, M.; Ingrand, F.; and Yan,
R. 2010. “Rock Solid” Software: A Verifiable and Correct-
by-Construction Controller for Rover and Spacecraft Func-
tional Levels. In i-SAIRAS-10. Proc. of the 10th Int. Symp.
on Artificial Intelligence, Robotics and Automation in Space.
Ceballos, A.; Bensalem, S.; Cesta, A.; Silva, L. D.; Fratini,
S.; Ingrand, F.; Ocón, J.; Orlandini, A.; Py, F.; Rajan, K.;
Rasconi, R.; and Winnendael, M. V. 2011. A Goal-Oriented
Autonomous Controller for Space Exploration. In ASTRA
2011 - 11th Symposium on Advanced Space Technologies in
Robotics and Automation.
Cesta, A.; Cortellessa, G.; Fratini, S.; and Oddi, A. 2009.
Developing an end-to-end planning application from a time-
line representation framework. In IAAI-09. Proc. of the
The Twenty-First Innovative Applications of Artificial Intel-
ligence Conference.
del Pobil, A. P. 2006. Why do we need benchmarks in
robotics research? In 2006 IEEE/RSJ International Confer-
ence on Robots and Systems (IROS) Workshop on Bench-
marks in Robotics Research.

PlanRob 2015

61

Fontana, G.; Matteucci, M.; and Sorrenti, D. G. 2014.
RAWSEEDS: Building a benchmarking toolkit for au-
tonomous robotics. In Amigoni, F., and Schiaffonati, V.,
eds., Methods and Experimental Techniques in Computer
Engineering, SpringerBriefs in Applied Sciences and Tech-
nology. Springer International Publishing. 55–68.
Fratini, S.; Pecora, F.; and Cesta, A. 2008. Unifying Plan-
ning and Scheduling as Timelines in a Component-Based
Perspective. Archives of Control Sciences 18(2):231–271.
Gat, E. 1992. Integrating planning and reacting in a het-
erogeneous asynchronous architecture for controlling real-
world mobile robots. In the Tenth National Conference on
Artificial Intelligence (AAAI), 809–815.
Gat, E. 1997. On Three-Layer Architectures. In Artificial
Intelligence and Mobile Robots. MIT Press.
Gertman, D. I.; McFarland, C.; Klein, T. A.; Gertman, A. E.;
and Bruemmer, D. J. 2007. A methodology for testing un-
manned vehicle behavior and autonomy. In Performance
Metrics for Intelligent Systems (PerMIS’07) Workshop.
Huang, H.-M.; Messina, E.; Jacoff, A.; Wade, R.; and Mc-
Nair, M. 2010. Performance measures framework for un-
manned systems (PerMFUS): Models for contextual met-
rics. In Performance Metrics for Intelligent Systems (Per-
MIS’10) Workshop.
Hudson, A. R., and Reeker, L. H. 2007. Standardizing mea-
surements of autonomy in the Artificially Intelligent. In Per-
formance Metrics for Intelligent Systems (PerMIS’07) Work-
shop.
McWilliams, G. T.; Brown, M. A.; Lamm, R. D.; Guerra,
C. J.; Avery, P. A.; Kozak, K. C.; and Surampudi, B. 2007.
Evaluation of autonomy in recent ground vehicles using the
autonomy levels for unmanned systems (ALFUS) frame-
work. In Performance Metrics for Intelligent Systems (Per-
MIS’07) Workshop.
Morris, P., and Muscettola, N. 2005. Temporal dynamic
controllability revisited. In In Procs. of the 20th National
Conference on Artificial Intelligence (AAAI-2005).
Muñoz, P.; Cesta, A.; Orlandini, A.; and R-Moreno, M. D.
2014. First steps on an on-ground autonomy test envi-
ronment. In 5th IEEE International Conference on Space
Mission Challenges for Information Technology (SMC-IT).
IEEE.
Nesnas, I.; Simmons, R.; Gaines, D.; Kunz, C.; Diaz-
Calderon, A.; Estlin, T.; Madison, R.; Guineau, J.; McHenry,
M.; Shu, I.-H.; and Apfelbaum, D. 2006. CLARAty: Chal-
lenges and steps toward reusable robotic software. Advanced
Robotic Systems 3(1):23–30.
Orebäck, A., and Christensen, H. I. 2003. Evaluation of
architectures for mobile robotics. Journal of Autonomous
Robots 14:33–49.
Parasuraman, R.; Sheridan, T. B.; and Wickens, C. D. 2000.
A model for types and levels of human interaction with au-
tomation. Systems, Man and Cybernetics, Part A: Systems
and Humans, IEEE Transactions on 30(3):286–297.
Poulakis, P.; Joudrier, L.; Wailliez, S.; and Kapellos, K.
2008. 3DROV: A planetary rover system design, simula-

tion and verification tool. In International Symposium on
Artificial Intelligence, Robotics and Automation in Space (i-
SAIRAS).
Py, F.; Rajan, K.; and McGann, C. 2010. A System-
atic Agent Framework for Situated Autonomous Systems.
In AAMAS-10. Proc. of the 9th Int. Conf. on Autonomous
Agents and Multiagent Systems.

PlanRob 2015

62

The RoboCup Logistics League as a Benchmark for Planning in Robotics

Tim Niemueller and Gerhard Lakemeyer
Knowledge-based Systems Group

RWTH Aachen University, Aachen, Germany
{niemueller, gerhard}@cs.rwth-aachen.de

Alexander Ferrein
MASCOR Institute

FH Aachen, Aachen, Germany
ferrein@fh-aachen.de

Abstract
Planning in robotics as task-level executive is still an excep-
tion rather than the norm. Domains are often too dynamic or
complex and therefore developers resort to more reactive or
deliberative tools. In this paper, we characterize the RoboCup
Logistics League (RCLL) as a medium complex robotics
planning domain in terms of domain properties, implementa-
tion strategies, and planning models. We propose the RCLL
in simulation and on real robots as a suitable testbed for a
comparison of planning systems.

1 Introduction
Autonomous robots require a task-level executive, a soft-
ware component that decides on the actions to take to
achieve a certain goal. Typical approaches can be roughly
divided in three categories: state machine based controllers
like SMACH (Bohren and Cousins 2010) or XABSL (Loet-
zsch, Risler, and Jungel 2006), reasoning systems from Pro-
cedural Reasoning Systems (Alami et al. 1998a) or rule-
based agents (Niemueller, Lakemeyer, and Ferrein 2013) to
more formal approaches like GOLOG (Levesque et al. 1997),
and finally planning systems with varying complexity and
modeling requirements. There are also hybrid systems in-
tegrating aspects of more categories like integrating PDDL-
based planning into GOLOG (Claßen et al. 2012).

Planning systems are still the exception rather than the
norm in robotics applications, with notable exceptions
like (Dornhege and Hertle 2013). Often domains are either
too dynamic requiring prohibitively frequent decision points
(e.g., robot soccer), or are highly complex imposing tedious
modeling requirements to cover (a suitable subset of) the
domain (e.g., domestic service robots). In this paper, we
propose the RoboCup Logistics League (RCLL) as a suit-
able testbed for a wide variety of planning methodologies.
It is a medium complex domain inspired by problems from
in-factory logistic applications, where a group of robots has
to maintain and optimize a material flow among processing
machines and eventually deliver to an exit gate. We char-
acterize the domain in terms of classic domain properties
as a combined cooperative and competitive, dynamic, and
continuous environment with partial observability and non-
deterministic actions – but the latter two can be relaxed. We
Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

describe possible implementation and modeling strategies in
terms of planning scope and horizon, output type, and dis-
tribution, and their implication on suitable planning models.
The domain contains limited uncertainty in terms of orders
posted at times unknown a priori, machines being out-of-
order at some times, and due to robots of the other team.

A simulation (Fig. 3) of the competition (Zwilling,
Niemueller, and Lakemeyer 2014) is available as open
source software.1 It supports a high-level abstraction that al-
lows to keep the development and integration effort required
to implement a task-level executive and a possible later tran-
sition to actual robots manageable even for small teams.

2 The RoboCup Logistics League
RoboCup (Kitano et al. 1997) is an international initiative
to foster research in the field of robotics and artificial in-
telligence. It serves as a common testbed for comparing
research results in the robotics field. RoboCup is particu-
larly well-known for its various soccer leagues. In 2012,
the new industry-oriented RoboCup Logistics League Spon-
sored by Festo (LLSF) was founded to tackle the prob-
lem of production logistics and renamed to RoboCup Lo-
gistics League (RCLL) in 2015. Groups of three robots
have to plan, execute, and optimize the material flow in a
smart factory scenario and deliver products according to dy-
namic orders. Therefore, the challenge consists of creating
and adjusting a production plan and coordinate the group of
robots (Niemueller et al. 2013a). In 2015, the league intro-
duced actual production machines (Niemueller et al. 2013b).

The RCLL competition takes place on a field of
12m × 6m partially surrounded by walls (Fig. 3). Two
teams of up to three robots each are playing at the same time
competing for points, (travel) space and time. The game is
controlled by the referee box (refbox), a software compo-
nent which provides agency to the environment by instruct-
ing machines on the field. After the game is started, no man-
ual interference is allowed, robots receive instructions only
from the refbox and must act completely autonomous. The
robots communicate among each other and with the refbox
through WiFi. Communication delays and interruptions are
common and must be handled gracefully by the robots.

1http://www.fawkesrobotics.org/p/llsf-sim/

PlanRob 2015

63

mailto:niemueller@cs.rwth-aachen.de
mailto:gerhard@cs.rwth-aachen.de
mailto:niemueller@cs.rwth-aachen.de;gerhard@cs.rwth-aachen.de
mailto:ferrein@fh-aachen.de
http://www.fawkesrobotics.org/p/llsf-sim/

Figure 1: Play-offs game at the German Open 2015

Each team has an exclusive set of six machines of four dif-
ferent types of Modular Production System (MPS) stations.
The refbox assigns a zone of 2m × 1.5m to each station
(position and orientation are random within the zone). Each
station accepts input on one side and provides processed
workpieces on the opposite side. Machines are equipped
with markers that uniquely identify the station and side.
They host a signal light to indicate the current status of a
machine, such as “ready”, “producing” and “out-of-order”.

The game is split in two major phases. In the exploration
phase robots need to roam the environment and discover ma-
chines assigned to their teams. For such machines, it must
then report the marker ID, position zone, and light signal
code. For correct reports, robots are awarded points, for in-
correct reports negative points are scored.

In the production phase, the goal is to fulfill orders ac-
cording to a randomized schedule by refining raw material
through several processing steps and eventually delivering it.
Orders are announced by the refbox. They state the product
to be produced, defined as a workpiece consisting of a cup-
like cylindrical colored base (red, black, or silver), zero, or

Figure 2: Robot approaching a ring station in production

Figure 3: Simulation of the RCLL 2015

up to three colored rings (blue, green, orange, or yellow),
and a cap (black or gray). An exemplary production chain
for a product of the highest complexity is shown in Fig. 4.
All stations require communication through the refbox to
prepare and parametrize them for the following production
step. Bases are dispensed by the base station (BS). Each
team has two ring stations (RS) to mount colored rings on a
workpiece. Each hosts two unique ring colors. Fig. 2 shows
a robot at such a station waiting for a product after mounting
a yellow ring. Some ring colors require additional material,
that is, one or two additional bases which must be filled into
a passive slide (left-most side of the machine in Fig. 2, indi-
cated by diagonally sliced bases in Fig. 4). The refbox de-
termines the affected ring colors randomly once per game.
The cap station (CS) is used to mount the final cap on a
product. It must be pre-filled with a cap first. Only then the
buffered cap can be mounted on the actual workpiece. Fi-
nally, the finished product must be taken to the delivery sta-
tion (DS). Points are awarded on successful delivery only.
More complex products score higher, but have an increased
risk to loose all points if the product is lost due do a handling
error late in the production chain.

The robot used in the competition is the Robotino 3 by
Festo Didactic. It features a round base with a holonomic
drive, infrared short-distance sensors, and a webcam. Teams
are allowed to add additional sensors and computing devices
as well as a gripper for workpiece handling. A customized
Robotino of the Carologistics Team is shown in Fig. 2. It
features an additional laser range finder for self-localization,
collision avoidance, and machine alignment, a custom grip-
per, and two webcams, one for station marker detection and
one for light signal recognition. It has an additional laptop
to match the computational requirements. It uses the Fawkes
Robot Software Framework (Niemueller et al. 2010) for sys-
tem integration.2

To facilitate rapid development we have created a simula-
tion for the RCLL based on Gazebo (Zwilling, Niemueller,
and Lakemeyer 2014) depicted in Fig. 3. It uses the refbox
to provide the same environment agency as a real game and
can be used to operate on several levels of abstraction, e.g.,
providing either laser sensor data for self-localization or the

2The full software stack is available as open source on
https://www.fawkesrobotics.org/p/llsf2014-release

PlanRob 2015

64

https://www.fawkesrobotics.org/p/llsf2014-release

BS RS 1 RS 2 RS 2 CS 2

Base Element
(specific color)
Base Element
(any color)

Up to 3 rings
(four colors)

Top-most cap

CS Machine Type
{BS,DS,CS,RS}

Figure 4: Refinement steps for production of highest complexity product in RCLL 2015 (legend on the right).

position of the robot with noise directly from the simula-
tion. The simulation is crucial for the efficient development
of the task-level executive, i.e., a reasoning or planning sys-
tem that implements and executes the goal-driven behavior
of the robots, because it provides faster (semi-automated)
testing even if not all lower-level components are available,
yet. The simulation software according to the rules for 2014
and 2015 is available as open source software.

3 Characterization of the RCLL
In this section we describe some properties of the RCLL do-
main and characterize potential planning strategies and as-
sess how the RCLL could fit into common planning models.

3.1 Domain Properties
We describe the RCLL following the standard property ma-
trix of (Russell and Norvig 2010) and some additional com-
mon properties of interest.

Cooperative vs. Competitive The RCLL is inherently a
multi-robot and multi-agent domain. While the game can
be played with a single robot, meaningful score can only be
achieved by efficient cooperation of the robot group. In a
cooperative setting, agents have common interest and try to
maximize a common performance measure. In a competitive
environment, agents have adversarial goals.

The RCLL scenario is both, cooperative and competitive
at the same time. Robots of the same team directly cooperate
on the task itself. Robots of opposing teams indirectly coop-
erate by avoiding collisions with each other and not block-
ing machines of the other team. The setting is still compet-
itive, as both teams try to achieve the highest score. How-
ever, the robots compete for travel space only, i.e., while
indeed avoiding collisions, there is no need to give way to
another robot immediately. Other resources, like production
machines, are exclusively assigned to one team and robots
must not intentionally disturb each other.

Full vs. Partial Observability Describes if agents can ob-
serve all relevant aspects of the world through its sensors or
only parts of these. In the latter case, a probability distribu-
tion over the possible observations outcomes is desirable.

The RCLL is inherently partially observable. Positions
of opponent robots are generally unknown and can only be
observed if close to a robot of the own team. Additionally,
machine signals can only be read when in front of them,
therefore a robot must approach it, for example, to check if
a production has completed.

Deterministic vs. Non-Deterministic Determines whe-
ther the outcome of actions or observations is completely
determined by the current state and the executed action. Ac-
tions are called stochastic, if a probability distribution over
the non-deterministic action outcomes is known. A simi-
lar statement can be made about observations, i.e., for non-
deterministic one must consider that sensor interpretation
might be wrong or imprecise. For stochastic observations
a probabilistic sensor model can be specified.

The RCLL is a non-deterministic domain. For example,
a product might be lost on the way if the grasp was unsta-
ble or dropped when feeding it into a machine. A stochastic
model is typically not known for the actions. However, for
observations, like recognizing the signal light pattern, mod-
els might be determined empirically. Typically, sensor data
is aggregated, for example, in a Bayesian form, to reach the
desired certainty, balancing time and accuracy.

Episodic vs. Sequential In an episodic environment a
robot’s experience is divided into atomic episodes each not
depending on the actions taken previously. In the sequential
case previous action potentially influence future decisions.

The RCLL is clearly sequential, as every decision regard-
ing the task structure, traveled routes, or resource assign-
ment influences the remainder of the game and other robots.

Static vs. Dynamic Classifies whether the world does not
change while the agent reasons about it, or if it does in the
case of dynamic domains.

The RCLL is dynamic, as robots of the other team make
their own independent choices. Even robots of the same
team may make decisions while reasoning and the refbox
triggers events of the environment, like finishing a produc-
tion step or setting a machine out-of-order.

Discrete vs. Continuous Determines whether the state of
the environment can be described strictly in discrete terms,
or if continuous elements exist.

The RCLL can be modeled either way, but leans towards
a continuous representation. The game has the concept of
a continuous game time and robot motions are continuous.
However, the time can be discretized, say, to seconds, as can
the positions, for instance, as being at a certain machine,
spot on the field, or on the move.

Known vs. Unknown If the environment is known, the
outcomes for all actions are given.

The RCLL’s environment is known, in particular because
its agency is provided for by the referee box. Filling a prod-
uct into a certain machine will produce a specified outcome
depending on whether a valid production step was triggered.

PlanRob 2015

65

Implicit vs. Explicit Time Distinguishes durative actions
with an explicit time span from actions where the duration
is only given implicitly.

The times in the RCLL are mostly explicit. For exam-
ple, a production step at a certain machine requires a certain
amount of time. While this time is randomized, it is consis-
tent within a single game and is specified to be in a certain
range. It is generally impossible to correctly estimate the
duration of actions, as for example, a moving robot might
need to slow down to avoid a collision.

Finite vs. Infinite Domain Determines whether the do-
main of the planning problem is finite or infinite.

That depends on the modeling granularity chosen. It is
possible to represent the domain with a finite domain for the
general game. But some aspects require infinite domains,
for example, if the time is modeled in a continuous fashion
or actual robot positions are needed.

3.2 Strategy Characterization
The implementation of a planning and execution system for
the RCLL might follow different strategies. They determine
the choice of modeling, applicable tools and planners, and
system requirements. The criteria are derived from (Alami
et al. 1998b).

Global vs. Local Scope Determines whether to consider
the overall fleet of robots or to limit reasoning and planning
to a single robot.

The decision for the planning scope has a major influence
in many regards. First, the granularity of planned actions
typically varies. While on a global scope, planning would
more likely be about task planning, that is, when is which
robot to handle certain machines, but on a local scope indi-
vidual actions like moving, or grasping a product will prob-
ably play a role. Additionally, it determines how much in-
formation must be communicated. For a global scope, all in-
formation must be available for the planner, either on a robot
or on a central station. Then, the tasks must be assigned and
communicated to the individual robots. On a local scope,
robots need only to communicate the important information,
and even if communication breaks down for a limited time
(not unlikely in a RoboCup competition where WiFi is used
for communication), the robots can still continue operations,
even though maybe not optimally. Also, a combined strategy
is possible where a global task planner creates an optimal
plan given the known information and generates jobs. These
could be assigned to the individual robots, for example, by
using an auction scheme, which in turn plan individually or
employ an approach like plan merging (Alami et al. 1998b).

Complete vs. Incremental Planning Specifies whether
to generate a full plan towards a final goal, or whether to
plan for some specified horizon and incrementally extend
the plan while executing it.

Current typical systems in the RCLL follow an incremen-
tal strategy where only the next best option is determined. If
a planning system is used, longer planning horizons or even
complete plans could be considered.

Centralized vs. Distributed Differentiates whether a cen-
tralized instance plans for all robots and communicates plans
or if the robots plan for themselves and then coordinate.

In the RCLL, a central station is allowed to provide addi-
tional computing power for coordination and planning. But
since communication is unreliable, this comes at the risk of
not being able to communicate information or task assign-
ments. At this time, all teams follow a distributed scheme. If
more capable planning is introduced into the league, a cen-
tralized station might provide the required processing power.

Centralized planning could mean that a central station
runs individual planners for each robot and then coordinates
and distributes these plans. A centralized scheme does there-
fore not necessarily imply a global planning scope.

Sequential vs. Conditional Plans Determines whether
the resulting plan is a sequence of actions or a policy.

For the RCLL, it seems more likely to generate a sequen-
tial plan and adapt it or re-plan if the plan is no longer ex-
ecutable, for example, because new information rendered it
invalid. On the other hand, the number of decision points in
the RCLL should be manageable when generating a policy.

3.3 Planning Models
A planning model (Geffner and Bonet 2013) depends on the
domain properties (Sec. 3.1) and its application is influenced
by the chosen planning strategy (Sec. 3.2). We will describe
the major planning models and our expectation of the appli-
cability for the RCLL. However, the domain has yet to be
formally described and therefore some assumptions may not
hold in the end.

Classical Planning Classical planning assumes full infor-
mation about all parameters relevant at planning time and
deterministic actions.

Obviously, in a robotics scenario like the RCLL simplify-
ing assumptions are necessary for modeling. Actions do fail
occasionally and some information is simply not known, like
machines being out-of-order, or processing and order times.

Approaches like Continual Planning – cf. (desJardins et
al. 1999) or (Brenner and Nebel 2009) – which interleave
planning and execution, can remedy these problems. Then,
classical planners can be used to plan for certain run-time
assumptions (e.g., all machines are available) and monitor
plan execution to recover from failed actions or an unex-
pected world state by re-planning.

Conformant Conformant planning allows to account for
sensor feedback and uncertainty in the environment.

The RCLL should be a suitable domain for conformant
planning, as the sensor feedback relevant to planning can be
minimized to machine status feedback, e.g., signal light pat-
terns. A conformant plan could thus plan for both possible
situations at a machine, it can be working or out-of-order. In
the former case the production will be performed, in the lat-
ter the planner might decide to move on an perform another
production step first.

MDP or FOND If the environment but the actions are
non-deterministic, the problem can be modeled as Markov
Decision Processes (MDP) in a probabilistic setting, i.e., if

PlanRob 2015

66

expected action outcomes can be described by a stochas-
tic model, a logical setting is described as Fully Observable
Non-Deterministic (FOND).

As we described earlier, the RCLL is not per se fully ob-
servable. But the domain description can be relaxed and
augmented with assumptions that MDP or FOND planners
should be applicable. For example, the planner can simply
make assumptions about machine sensor feedback. A con-
troller must then recognize if the machine is indeed out of
order and adapt or re-plan.
POMDP or Contingent If an environment is only par-
tially observable, actions are non-deterministic, and there is
uncertainty ascribed to sensors, more expressive planning
methods are required. Contingent planning extends the clas-
sical model with sensing, while partially observable MDPs
(POMDP) require a stochastic sensor model.

This class of planners subsumes the previous models, but
planners have to cope with a much increased complexity
and thus typically require much longer planning times. The
RCLL should provide enough complexity to justify the use
of these models, but also not overwhelm the domain de-
signer with details that have to be modeled.

4 Challenges for Planning Systems
Planning in the RCLL is applicable in particular in two
forms: as a local-scope on-board planning system for the in-

(define (domain rcll-production-local-strips)

(:requirements :strips :typing)

(:types machine workpiece machine-type

base-color ring-color cap-color)

(:predicates

(rs-contains ?m - machine ?r - ring-color)

(wp-has-ring ?w - workpiece ?r - ring-color)

(delivered ?w - workpiece ?b - base-color

?r - ring-color ?c - cap-color)

)

(:action process-at-RS

:parameters (?w - workpiece ?m - machine

?b - base-color ?r - ring-color)

:precondition

(and (m-type ?m RS) (proc-at ?w ?m)

(rs-contains ?m ?r) (wp-has-base ?w ?b))

:effect (wp-has-ring ?w ?r)

)

(:action deliver

:parameters

(?w - workpiece ?m - machine

?b - base-color ?r - ring-color ?c - cap-color)

:precondition

(and (is-at ?m) (holding ?w) (m-type ?m DS)

(wp-has-base ?w ?b) (wp-has-ring ?w ?r)

(wp-has-cap ?w ?c))

:effect (and (delivered ?w ?b ?r ?c)

(not (holding ?w)) (holding NONE))

)

)

List. 1: PDDL domain (exc.) constrained to the STRIPS subset for
the production and delivery of a workpiece with a single ring

dividual robots, and a central global-scope planning system
that considers the whole group.

Local-scope planning allows for a wide range of appli-
cable solutions. The basic problem can be simplified to
the STRIPS subset (Fikes and Nilsson 1972) of classical
planning systems. We have created an example domain for
which an excerpt is shown in List. 1. For reasons of brevity,
we have omitted actions for moving, for putting and retriev-
ing workpieces to and from machines (similar to many other
domains), and for processing at BS, CS, or DS stations (sim-
ilar to provided RS action), as well as constants and some
predicates. The example handles the production and deliv-
ery of a product with a single intermediate ring. The prob-
lem statement in List. 2 describes the initial situation and
the goal to deliver a product consisting of a red base, a
yellow ring, and a gray cap. We have run the Fast Down-
ward (Helmert 2006) planning system yielding the plan in
List. 3 with a simple blind A∗ search.

Already this greatly simplified example shows that the
complete modeling of the RCLL requires an elaborated do-
main description. For the full scenario, we are currently in-
vestigating a formalization based on the ADL subset (Ped-
nault 1989), which greatly shortens and simplifies the do-
main description. A general shortcoming of either solution
is that they do not account for uncertainty.

Global-scope planning handles creating a plan for the
overall group of robots. This model allows for a better op-
timization in terms of resource (robot) usage. When using
durative actions, we envision that this might lead to plans
where multiple robots cooperate on quickly handling a sin-
gle processing step, for example, to deliver on time for or-
ders with a short lead time. This, however, is yet to be ex-
plored.

A general challenge is the dynamicity the environment.
Orders are posted at random times with a specified lead time
and an order time window when the product is to be de-
livered. This requires frequent updating of the group plan.
Approaches like Continual Planning (Brenner and Nebel
2009), which interleave planning and execution, could rem-
edy these problems by checking continuously whether a plan
is still applicable triggering re-planning if it is not.

Additionally, there are several sources of uncertainty. For

(define (problem rcll-production-local-strips-c1)

(:domain rcll-production-local-strips)

(:objects w1 - workpiece)

(:init

(is-at ANYWHERE) (holding w1)

(m-type C-DS DS) (m-type C-BS BS)

(m-type C-RS1 RS) (m-type C-RS2 RS)

(m-type C-CS1 CS) (m-type C-CS2 CS)

(rs-contains C-RS1 RING_GREEN)

(rs-contains C-RS1 RING_BLUE)

(rs-contains C-RS2 RING_YELLOW)

(rs-contains C-RS2 RING_ORANGE)

)

(:goal (delivered w1 BASE_RED RING_YELLOW CAP_GREY))

)

List. 2: PDDL problem to produce product with red base, a yellow
middle ring, and a gray cap (constants in orange)

PlanRob 2015

67

(drive-to anywhere c-bs)

(process-at-bs w1 c-bs base_red)

(drive-to c-bs c-rs2)

(bring-product-to w1 c-rs2)

(process-at-rs w1 c-rs2 base_red ring_yellow)

(get-product-from w1 c-rs2)

(drive-to c-rs2 c-cs1)

(bring-product-to w1 c-cs1)

(process-at-cs-mount

w1 c-cs1 base_red ring_yellow cap_grey)

(get-product-from w1 c-cs1)

(drive-to c-cs1 c-ds)

(deliver w1 c-ds base_red ring_yellow cap_grey)

List. 3: Fast downward solution to the planning problem

example, handling the different stations is simple compared
to other mobile manipulation tasks, but yet difficult enough
to introduce considerable uncertainty into the domain. For
example, producing longer product chains score consider-
ably higher, but bear more uncertainty expressing a higher
risk of a workpiece handling error. Additionally, robots of
the other team may increase travel costs that can make it
difficult to achieve accurate action cost estimates.

5 Conclusion
As of this time, teams participating in the RCLL typically
employ a local, incremental, and distributed strategy without
planning. That is, robots collect information and classify the
current situation and commit to the next action. An example
is a CLIPS-based agent system (Niemueller, Lakemeyer, and
Ferrein 2013) that collects information in a knowledge base
and employs a rule-based reasoning system that models a
hierarchical task structure to decide on the next action. A
planning system, however, could offer a better ground for
optimization of the production for the overall fleet of robots.

As a medium complex domain, the RCLL provides a
proper balance between required modeling effort, necessary
planning model features, horizon, and complexity, and run-
time. It is therefore an interesting planning domain allowing
to compare planning systems in the context of multi-robot
system in a semi-standardized environment providing lim-
ited amounts of uncertainty, partial observability, and non-
determinism in action execution. The domain also fosters
embedding of planning systems into robotic executives. Es-
pecially, the availability of a simulation system reduces the
initial development and integration effort.

Acknowledgments. T. Niemueller was supported by the
German National Science Foundation (DFG) research unit
FOR 1513 on Hybrid Reasoning for Intelligent Systems
(http://www.hybrid-reasoning.org).

We gratefully acknowledge travel funding provided by Festo
Didactic to present this work at the workshop on Planning in
Robotics at ICAPS 2015 in Jerusalem, Israel.

References
Alami, R.; Chatila, R.; Fleury, S.; Ghallab, M.; and Ingrand, F.
1998a. An architecture for autonomy. The International Journal of

Robotics Research 17(4).
Alami, R.; Fleury, S.; Herrb, M.; Ingrand, F.; and Robert, F. 1998b.
Multi-Robot cooperation in the MARTHA project. Robotics & Au-
tomation Magazine, IEEE 5(1).
Bohren, J., and Cousins, S. 2010. The SMACH High-Level Exec-
utive. Robotics Automation Magazine, IEEE 17(4).
Brenner, M., and Nebel, B. 2009. Continual planning and acting in
dynamic multiagent environments. Autonomous Agents and Multi-
Agent Systems 19(3).
Claßen, J.; Röger, G.; Lakemeyer, G.; and Nebel, B. 2012.
PLATAS – Integrating Planning and the Action Language Golog.
KI - Künstliche Intelligenz 26(1).
desJardins, M. E.; Durfee, E. H.; Charles L. Ortiz, J.; and Wolver-
ton, M. J. 1999. A Survey of Research in Distributed, Continual
Planning. AI Magazine 20(4).
Dornhege, C., and Hertle, A. 2013. Integrated Symbolic Planning
in the Tidyup-Robot Project. In AAAI Spring Symposium - Design-
ing Intelligent Robots: Reintegrating AI II.
Fikes, R. E., and Nilsson, N. J. 1972. STRIPS: A new approach to
the application of theorem proving to problem solving. Artificial
intelligence 2(3):189–208.
Geffner, H., and Bonet, B. 2013. A Concise Introduction to Mod-
els and Methods for Automated Planning. Synthesis Lectures on
Artificial Intelligence and Machine Learning. Morgan & Claypool.
Helmert, M. 2006. The Fast Downward planning system. Journal
of Artificial Intelligence Research 26.
Kitano, H.; Asada, M.; Kuniyoshi, Y.; Noda, I.; and Osawa, E.
1997. RoboCup: The Robot World Cup Initiative. In Proc. 1st Int.
Conf. on Autonomous Agents.
Levesque, H. J.; Reiter, R.; Lespérance, Y.; Lin, F.; and Scherl,
R. B. 1997. Golog: A logic programming language for dynamic
domains. Journal of Logic Programming 31(1-3).
Loetzsch, M.; Risler, M.; and Jungel, M. 2006. XABSL - A Prag-
matic Approach to Behavior Engineering. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems.
Niemueller, T.; Ferrein, A.; Beck, D.; and Lakemeyer, G. 2010.
Design Principles of the Component-Based Robot Software Frame-
work Fawkes. In International Conference on Simulation, Model-
ing, and Programming for Autonomous Robots (SIMPAR).
Niemueller, T.; Ewert, D.; Reuter, S.; Ferrein, A.; Jeschke, S.; and
Lakemeyer, G. 2013a. RoboCup Logistics League Sponsored by
Festo: A Competitive Factory Automation Testbed. In RoboCup
Symposium 2013.
Niemueller, T.; Lakemeyer, G.; Ferrein, A.; Reuter, S.; Ewert, D.;
Jeschke, S.; Pensky, D.; and Karras, U. 2013b. Proposal for Ad-
vancements to the LLSF in 2014 and beyond. In Proc. of 1st Work-
shop on Developments in RoboCup Leagues at IEEE ICAR.
Niemueller, T.; Lakemeyer, G.; and Ferrein, A. 2013. Incremental
Task-level Reasoning in a Competitive Factory Automation Sce-
nario. In AAAI Spring Symposium - Designing Intelligent Robots:
Reintegrating AI.
Pednault, E. P. 1989. ADL: Exploring the middle ground between
STRIPS and the situation calculus. In Proc. of the 1st Int. Confer-
ence on Principles of Knowledge Representation and Reasoning.
Russell, S. J., and Norvig, P. 2010. Artificial Intelligence - A Mod-
ern Approach (3. internat. ed.). Pearson Education.
Zwilling, F.; Niemueller, T.; and Lakemeyer, G. 2014. Simulation
for the RoboCup Logistics League with Real-World Environment
Agency and Multi-level Abstraction. In RoboCup Symposium.

PlanRob 2015

68

http://www.hybrid-reasoning.org

Active Perception: Using Goal Context to Guide Sensing and Other Actions

Andreas Hofmann, Paul Robertson
Dynamic Object Language Labs, Inc., 114 Waltham St., Lexington, MA, USA

andreas@dollabs.com, paulr@dollabs.com

Abstract
Existing machine perception systems are too inflexible,
and therefore cannot adapt well to environment uncer-
tainty. We address this problem through a more dynamic
approach in which reasoning about context is used to
actively and effectively allocate and focus sensing and
action resources. This Active Perception approach pri-
oritizes the system’s overall goals, so that perception
and situation awareness are well integrated with actions
to focus all efforts on these goals in an optimal man-
ner. We use a POMDP (Partially Observable Markov
Decision Process) framework, but do not attempt to
compute a comprehensive control policy, as this is in-
tractible for practical problems. Instead, we employ Be-
lief State Planning to compute point solutions from
an initial state to a goal state set. This approach au-
tomatically synthesizes perception data flow processes,
by generating action sequences that optimally combine
state-changing actions that achieve a goal state set with
supporting sensing actions that reduce uncertainty in the
belief state.

Introduction
In most existing machine perception systems, the perception
components are statically configured, so that sensor data is
processed in the same, bottom-up manner each sensing cy-
cle. The parameters of components in such a system are also
statically tuned to operate optimally under very specific con-
ditions. If higher level goals, context, or the environment
change, the specific conditions for which the static configu-
ration is intended may no longer hold. As a result, the static
systems are prone to error because they cannot adapt to the
new conditions; they are too inflexible.

In addition to their inflexibility, existing machine per-
ception systems are often not well integrated into the au-
tonomous and systems to which they provide information.
As a result, they are unaware of the autonomous system’s
overall goals, and therefore, cannot make intelligent obser-
vation prioritization decisions in support of these goals. In
particular, it may not be necessary or useful for the percep-
tion system to be aware of every aspect of a situation, and
it may be detrimental, due to resource contention and time
limits, to the overall goal.

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We address these challenges by using a more dynamic Ac-
tive Perception approach in which reasoning about context
is used to actively and effectively allocate and focus sensing
and action resources. Our system reasons about dynamically
changing goals, contexts, and conditions, and therefore, is
able to change to a more appropriate process flow configura-
tion, or to better parameter settings in an intelligent way. The
Active Perception approach (Hofmann and Robertson. 2015;
Pineau et al. 2003; Prentice and Roy 2009), prioritizes the
system’s overall goals, so that perception and state-changing
actions are optimally combined to achieve the goals. As a
result the approach is more robust to environmental uncer-
tainty.

Active perception draws on models to inform context-
dependent tuning of sensors, direct sensors towards phe-
nomena of greatest interest, to follow up initial alerts from
cheap, inaccurate sensors with targeted use of expensive,
accurate sensors, and to intelligently combine results from
sensors with context information to produce increasingly
accurate results. The model-based approach deploys sen-
sors to build structured interpretations of situations to meet
mission-centered decision making requirements.

Problem Statement
Examples of autonomous systems operating in dynamic
and uncertain environments, and that depend on intelligent
perception, include cyber defense systems, tactical battle-
field advisors, automated transportation and logistics sys-
tems, and automated equipment diagnosis and repair sys-
tems. Consider, for example, the overall problem of vehi-
cle inspection and repair, and more specifically the prob-
lem of changing a tire. This has been a “textbook” problem
for PDDL generative planning systems (Fourman 2000), and
also a challenge problem in the Defense Advanced Research
Project Agency ARM project (Hebert et al. 2012). There are
significant challenges in building an autonomous system that
can perform this task entirely, or even one that would just
assist with the task (Figure 1). Such a system would have to
be able to determine whether a tire is actually flat (Figure
2), and what an appropriate sequence of repair steps should
be (Figure 3). It would have to be able to solve many sub-
problems, such as reliably finding a wheel in an image. The
system would have to be able to work in many different en-
vironments, a great range of lighting conditions, and for a

PlanRob 2015

67

comprehensive set of vehicle types.

(a) Fully autonomous system
using robot.

(b) Semi-autonomous advisory
system.

Figure 1: Intelligent machine perception would be needed
for both a fully autonomous system (a), and a semi-
autonomous advisory system (b). The latter might include
observation drones, and Google glasses (Bilton 2012) to
guide a human user in the repair.

(a) Tire is flat. (b) Tire is under-
inflated.

(c) Tire is OK.

Figure 2: The perception system must be able to determine
whether a tire is really flat, and which one it is.

(a) Wheel chock. (b) Remove wheel.

Figure 3: Repair steps include stabilizing the car (a), getting
the spare tire and tools, jacking up the car, removing lug nuts
and wheel (b), and installing the new wheel.

We consider, in detail, a subproblem of the tire change
problem: reliably finding the wheels of a vehicle in an im-
age. We show how the use of top-down, model-based rea-
soning can be used to coordinate the efforts of multiple per-
ception algorithms, resulting in more robust, accurate per-
formance than is achievable through use of individual algo-
rithms operating in a bottom-up way. We also show how our
model-based framework can be used to address the entire
tire change problem.

The general problem we consider can be stated in the fol-
lowing way. Given one or more agents operating in an en-
vironment, and given that the agents do not directly know
the state of the environment, or even, possibly, parts of their
own state, and given a goal state for the environment and
agents, the problem to be solved is to compute control ac-
tions for the agents such that the goal is achieved. In this

case, an agent is a resource capable of changing the environ-
ment (and its own) state, by taking action. An agent could
be a mobile ground robot, a sensing device, or one of many
parallel vision processing algorithms running on a cluster,
for example. Given that there is uncertainty in the environ-
ment state, because it cannot be measured directly, an agent
must estimate this state as best as is possible based on (pos-
sibly noisy) observations. Similarly, part of the agent’s state,
such as the functional status of its components, may not be
directly measurable, and must be estimated. Based on the
agent’s best estimate of the current environment state (and
its own state), it should take actions that affect the state in
a beneficial way (move the state towards the goal). The ac-
tions, themselves may have some uncertainty; they do not
always achieve the intended effect on the state. The agents
must take both state estimate uncertainty, and action uncer-
tainty into account when determining the best course of ac-
tion. Actions can also have cost. The agents must balance
the cost of actions against the reward of reduced uncertainty
and progress towards the goal when deciding on actions.

This problem presents significant challenges. First, the
overall state space can be very large. Second, the state space
is generally hybrid; it includes discrete variables, such as
hypotheses for vehicle type, as well as continuous variables,
such as position of a wheel. Third, significant parts of the
state space may not be directly measurable, and must be es-
timated based on noisy observations. Fourth, the effect of
some actions on state may have uncertainty. Fifth, the agents
must take many considerations into account when deciding
on actions: they must take into account the uncertainty of
the state estimate, the uncertainty of the action effect on the
state, the cost of the action, and the benefit of the action in
terms of reducing uncertainty and making progress towards
the goal.

Note that some actions are performed to improve situa-
tional awareness, and some actions are performed to change
the state of the agent and/or environment, to achieve an over-
all goal (for example, jacking up a car so the tire can be
changed). The autonomous system should judiciously mix
both types of actions so that the situational awareness is suf-
ficient to achieve the goal. In particular, a good sequence
of control actions is one that minimizes cost, where cost at-
tributes include both state uncertainty, as well as cost of the
action itself. Note, also, that it is typically not necessary for
the system to exhaustively resolve all state uncertainty; it
just needs to be certain enough to achieve the overall goal.

The problem to be solved can be stated formally as fol-
lows. Suppose that the state space is represented by S =
{Se, Sa} , where Se is the state space associated with the
environment, and, Sa, that associated with the agent. Sup-
pose, further, that the agent can perform a set of actions, A,
and make a set of observations, O. A state transition model
represents state evolution as a function of current state and
action: T : S × A × S 7→ [0, 1]. An observation model
represents likelihood of an observation as a function of ac-
tion and current state: Ω : O × A × S 7→ [0, 1]. A re-
ward model represents reward associated with state evolu-
tion: R : S × A × S 7→ R. Given an initial state s0 and
goal states sg , the problem to be solved is to compute an

PlanRob 2015

68

action sequence a0, . . . an such that sn ∈ sg , and R is max-
imized. The agent bases its action decisions on its estimates
of the state, which in turn, is based on the observations.
The state estimates must be sufficiently accurate to support
good action decisions. Note that this problem formulation,
expressed in terms of a single agent, is easily extended to
allow for multiple agents.

Background and Related Work
A Partially Observable Markov Decision Process (POMDP)
(Monahan 1982) is a useful framework for formulating
problems for autonomous systems where there is uncer-
tainty both in the sensing and actions. A POMDP is a tu-
ple 〈S,A,O, T,R,Ω, γ〉 where S is a (finite, discrete) set of
states, A is a (finite) set of actions, O is a (finite) set of ob-
servations, T : S × A × S 7→ [0, 1] is the transition model,
R : S×A×S 7→ R is the reward function associated with the
transition function, Ω : O×A×S 7→ [0, 1] is the observation
model , and γ is the discount factor on the reward. The be-
lief state is a probability distribution over the state variables,
and is updated each control time increment using recursive
predictor/corrector equations. First, the a priori belief state
(prediction) for the next time increment, b̄ (sk+1), is based
on the a posteriori belief state for current time increment.

b̄ (sk+1) =
∑
sk

Pr (sk+1|sk, ak) b̂ (sk)

=
∑
sk

T (sk, ak, sk+1) b̂ (sk)
(1)

Next, the a posteriori belief state (correction) for the next
time increment, b̂ (sk+1), is based on the a priori belief state
for next time increment.

b̂ (sk+1) = α Pr (ok+1|sk+1) b̄ (sk+1)

= α Ω (ok+1, sk+1) b̄ (sk+1)
(2)

α =
1

Pr (ok+1|o1:k, a1:k)
(3)

These equations work well given that the models are
known, and given that the control policy for selecting an ac-
tion based on current belief state is known. Unfortunately,
computing these, particularly the control policy, is a chal-
lenging problem. Value iteration (Zhang and Zhang 2011) is
a technique that computes a comprehensive control policy,
but it only works for very small problems. An alternative is
to abandon computation of a comprehensive control policy,
and instead, compute point solutions for a particular initial
state and goal state set.

A promising technique for this is Probabilistic Planning
(Mausam 2012; Hansen and Zilberstein 2001; Bonet and
Geffner 2006), which attempts to plan based on the most
likely outcomes. We use a variation of this called Belief
State Planning (Kaelbling and Lozano-Pérez 2013) that is
based on generative planner technology (Helmert 2006). A
key idea in this technique is the use of two basic actions for
a robotic agent: move and look. A move action changes the

state of the robot and/or environment; it may move the robot
in the environment, for example. A look action is intended
to improve the robot’s situational awareness.

The move action is specified using a PDDL-like descrip-
tion language.

Move(lstart, ltarget)
effect: BLoc(ltarget, eps)
precondition: BLoc(lstart, moveRegress(eps))
cost: 1

The variables lstart and ltarget denote the initial and final
locations of the robot. The effect clause specifies conditions
that will result from performing this operation, if the condi-
tions in the precondition clause are true before it is executed.
Cost of the action is specified in the cost clause. The func-
tion BLoc(loc, eps) returns the belief that the robot is at loca-
tion loc with probability at least (1 - eps). The moveRegress
function determines the minimum confidence required in the
location of the robot on the previous step, in order to guar-
antee confidence eps in its location at the resulting step:

moveRegress(eps) =
eps− pfail
1− pfail

(4)

where pfail is the probability that the move action will fail.
The look action is specified as follows:

Look(ltarget)
effect: BLoc(ltarget, eps)
precondition: BLoc(lstart,

lookPosRegress(eps))
cost: 1 - log(posObsProb

(lookPosRegress(eps)))

The lookPosRegress function takes a value eps and re-
turns a value eps’ such that, if the robot is believed with
probability at least 1 eps’ to be in the target location before
a look operation is executed and the operation is success-
ful in detecting ltarget, then it will be believed to be in that
location with probability at least 1 eps afterwards.

lookPosRegress(eps) =
eps(1− pfn)

eps(1− pfn) + pfp(1− eps)
(5)

where pfn and pfp are the false negative and false positive
observation probabilities.

In terms of the POMDP belief state update, the move ac-
tion corresponds to the predictor (Eq. 1), and the look action
corresponds to the corrector (Eq. 2).

For the observations, we make extensive use of two types
of feature detection algorithms: Speeded Up Robust Features
(SURF) (Bay et al. 2008), and Hough Transforms (Duda and
Hart 1972). Neither of these algorithms, used individually,
is satisfactory for solving the wheel detection problem ro-
bustly. However, when used together, in an Active Percep-
tion framework, they beneficially reinforce each others’ hy-
potheses, allowing for more reliable performance.

PlanRob 2015

69

ApproachAndImplementation

When evaluating approaches to this problem, it is useful to
consider what an architecture for the sensors and state esti-
mation components should look like if it were designed by
a human expert (Figure 4). Each sensing algorithm can use
the current belief state as input, and can also adjust belief
state as output.

This organization based on actions, observations, and be-
lief state fits well with the POMDP formalism. As stated
previously, we avoid value iteration approaches (Zhang and
Zhang 2011), and instead compute point solutions. Our ap-
proach automatically synthesizes architectures such as the
one in Figure 4, and generates action sequences for sensing
operations that reduce uncertainty in the belief state, and ul-
timately achieve the goal state set.

We use three main sensing actions: SURF Match, SURF
Match Other Wheel, and Hough Ellipse Match. Each of
these actions has preconditions (requirements for current be-
lief state), and post conditions (effects on belief state). SURF
Match uses the SURF algorithm to perform a preliminary
detection of a wheel in an image. SURF Match Other Wheel
attempts to find the second wheel, also using SURF, given
that the first wheel has been detected. This action also per-
forms vehicle pose estimation, and refines the prediction of
where the wheels are. Hough Ellipse Match uses either a
Hough Circle or Hough Ellipse transform algorithm to re-
fine the wheel location estimates.

The sequence of actions is computed using a generative
planner. Given the high uncertainty in our problem, the tra-
ditional approach of generating a plan and executing it in its
entirety is not suitable. Instead, we adopt a receding horizon
control framework in which a plan is generated based on the
current belief state, but only the first action of this plan is
executed. After the action, the belief state is updated based
on observations, and an entirely new plan is generated. The
process then repeats with the first action from this new plan
being executed. This approach is computationally intensive,
but it ensures that all actions are based on the most current
belief state.

To implement this receding horizon control framework,
we use an architecture consisting of four main components:
Executive, Planner, Sensor Actions, and Belief State Up-
dater, as shown in Figure 5. The Executive manages the re-
ceding horizon control process. It maintains the current be-
lief state, and the goal state set. At each control loop itera-
tion, it passes these to the Planner. The Planner, if successful,
returns a plan consisting of actions that transition the system
from the current state to a goal state, if there are no distur-
bances. The Executive takes the first action from the plan
and executes it by dispatching the appropriate sensor oper-
ation. The sensor operation produces an observation, which
is used to update the belief state. The process then repeats.

The following sub-sections describe the four components.
We begin with the Belief State Updater component, as un-
derstanding of belief state representation and update is fun-
damental to our approach. We then describe the Executive,
Planner, and Sensor Action components.

Figure 5: Receding Horizon Control Architecture for Active
Perception

Belief State Update

Belief state for a discrete state variable is represented as a
Probability Mass Function (PMF) over the possible values
of the probabilistic variable. Belief state for a continuous
state variable is represented using a Gaussian Probability
Distribution Function (Gaussian PDF) with a specified mean
and variance. This could be extended to a representation us-
ing a mixture of Gaussians, in order to approximate more
complex, non-Gaussian PDFs.

In a traditional POMDP, as explained in the Background
section, there are two basic steps for each control iteration.
First, an action is taken that modifies the state in some way.
The transition function is used to ”predict” the effect of the
action on the state. Second, an observation is made. The ob-
servation function is used to ”correct” the prediction of state.
The observation function is usually expressed as Pr(O|S).
Thus, it is essentially a static function of state; the observa-
tion is performed the same way each time.

Now consider the ”move” and ”look” methodology de-
scribed in the Background section. The move action corre-
sponds to the traditional POMDP action, and to the predictor
equation (Eq. 1). The look action corresponds to the correc-
tor equation (Eq. 2), but it is also something new; it repre-
sents the notion that the observation in the POMDP correc-
tion step is, itself, an action. The observation function be-
comes Pr(O|S,A), where A is not the action for the move,
but rather, a separate ”look” action. This action can have pa-
rameters: A (p1, p2, ...pn), which may be set, intelligently,
based on high-level context information. Thus, the observa-
tion function becomes something very dynamic, rather than
static. This is the key idea behind active perception.

More formally, consider the case where the observation
is binary (result is true or false). This is common when the
observation is used to test a specific hypothesis, for example,
look in the closet to see if the broom is there. We now use
Bayes’ rule to derive the observation function. In this case,
a1 is the observation action used to confirm the hypothesis
that the state is s1 (if the observation returns true, then the
belief in s1 should increase, if it returns false, belief in s1
should decrease).

PlanRob 2015

70

Figure 4: Data flow architecture for wheel finding components.

Pr(s1|a1, o = true) Pr(o = true|a1)

= Pr(s1, o = true|a1)

= Pr(o = true|s1, a1)b̄ (s1)
(6)

Therefore,

b̂ (s1) =
Pr(o = true|s1, a1)b̄ (s1)

Pr(o = true|a1)
(7)

This is just the standard POMDP observation correction
equation (Eq. 2), where Pr(o = true|s1, a1) is the observa-
tion function, and Pr(o = true|a1) is the normalization fac-
tor. These terms can be expressed in terms of probabilities
of false positives and negatives.

Pr(o = true|s1, a1) = 1− pfn(s1, a1) (8)

where pfn is the probability of a false negative given that the
state is s1, and observation action a1 was taken. Similarly,

Pr(o = true|a1) = Pr(o = true|s1, a1)b̄ (s1)

+ Pr(o = true|s 6= s1, a1)(1− b̄ (s1))

= (1− pfn(s1, a1))b̄ (s1)

+ pfp(s 6= s1, a1)(1− b̄ (s1))
(9)

where pfp is the probability of a false positive. Note that this
is the basis for the look regress function (Eq. 5).

Suppose, for example, that the state, s, can have two
(discrete) values: s1 and s2, and that b̄ (s1) = 0.5, and
b̄ (ss) = 0.5. Suppose, further, that pfn(s1, a1) = 0.2, and
pfp(s2, a1) = 0.1. Then, if the observation returns true,

b̂ (s1) =
0.8× 0.5

0.8× 0.5 + 0.1× 0.5
= 0.889 (10)

and

b̂ (s2) = 1− b̂ (s1) = 0.111 (11)
As expected, belief in s1 has increased, and belief in s2 has
decreased.

If the observation returns false, then

b̂ (s2) =
Pr(o = false|s2, a1)b̄ (s2)

Pr(o = false|a1)
(12)

or

b̂ (s2) =
(1− pfp(s2, a1))b̄ (s2)

(1− Pr(o = true|a1))
(13)

or

b̂ (s2) =
(1− 0.1)× 0.5

(1− 0.8× 0.5 + 0.1× 0.5)
= 0.692 (14)

and

b̂ (s1) = 1− b̂ (s2) = 0.308 (15)
As expected, belief in s2 has increased, and belief in s1 has
decreased.

POMDP Executive
The Executive component implements the top-level receding
horizon control loop, coordinating the activities of the plan-
ner and sensor components. Algorithm 1 shows pseudocode
for the Executive. The algorithm begins by initializing the
belief state according to the a priori probabilities, and per-
forming other initialization (Line 1). The receding horizon

PlanRob 2015

71

control loop begins at Line 5. The first step is to invoke the
generative planner in order to determine the next action. A
generative planner requires, as one of its inputs, the current
state in a deterministic form. The belief state, however, is
represented in a probabilistic form, so it first has to be con-
verted to a deterministic form using MostLikelyState (Line
6). The input to the generative planner includes the deter-
minized state, as well as the goal state set. The Executive
generates domain and problem PDDL files, and then exe-
cutes the planner (Line 7). The planner generates a result
file containing a plan, which the Executive reads.

The planner may fail to generate a plan, in which case, the
algorithm returns failure. If the planner is successful in gen-
erating a plan, the executive dispatches the first action (Line
11). The action (sensor operation) generates an observation.
The belief state is updated based on this observation (Line
12). The algorithm terminates if the goal has been achieved,
or the maximum number of iterations has been exceeded.

Algorithm 1: Executive

Input: a-priori-belief-state-probs, goal-state-set
Output: goal-achieved?

/* Perform initialization. */

1 belief-state←
InitializeBeliefState(a-priori-belief-state-probs);

2 goal-achieved?← false;
3 max-iterations← 1000;
4 iteration← 0;

/* Begin control loop. */

5 while not goal-achieved? do
6 current-state

← MostLikelyState(belief-state);
7 plan?←

GeneratePlan(current-state,goal-state-set);
8 if not plan? then
9 return ;

10 action← First(plan?);
11 observation← Dispatch(action);
12 belief-state

← UpdateBeliefState(observation);
13 goal-achieved?←

CheckGoalAchieved(belief-state,goal-state-set);

14 iteration← iteration + 1;
15 if iteration > max-iterations then
16 return ;

Planner
The Planner component was originally implemented using
Fast Downward (Helmert 2006), a state of the art generative
planner that accepts problems formulated in the PDDL lan-
guage (McDermott et al. 1998). A limitation of this planner

is that it does not support real-valued variables, which neces-
sitated discretization of belief levels (Hofmann and Robert-
son. 2015). This became unwieldy, so we are now using
Metric FF, which supports real-valued variables, and linear
relations among them. This is an improvement, though the
restriction to linear relations requires linearization of the be-
lief update formulas. We have also tried some planners that
support non-linear relations, but the ones we tried have not
reached a level of maturity to be useable. This is still an im-
portant area of ongoing research in the community.

In order for the Planner component to operate properly, it
is necessary for it compute belief state updates. This allows
it to predict the effect of actions on belief state; a prediction
needed for planning purposes. Note that this computation is
distinct from the belief state update performed by the Belief
State Update component after an observation. The limita-
tions of current planners make it impossible, during plan-
ning, to implement completely accurate belief state update,
as specified by Eq. 6. Instead, we use an approximation (a
linearization in this case), and accept that this approxima-
tion is not as accurate as the one performed by the Belief
State Update component after an observation. The key point
here is that the goal of the Planner component is to make
a good choice for the next action, not to predict completely
accurately what will happen in the future. The approxima-
tion that we use is good enough for our current purposes.
More testing is needed to determine whether a more accu-
rate approximation would be beneficial for more complex
problems.

We linearize Eq. 7 using a first-order approximation of the
form

b̂ (s1) ≈ f0(ε) + f1(ε)(ε− b̄ (s1)) (16)

where ε is the linearization point, the belief value about
which Eq. 7 is being linearized, and

f0(ε) =
(1− pfn(s1, a1)) ε

(1− pfn(s1, a1))ε+ pfp(s 6= s1, a1)(1− ε)
(17)

f1(ε) =
df0(ε)

dε
(18)

f1(ε) =
pfp(s 6= s1, a1) (1− pfn(s1, a1))

ε2 (1− pfn(s1, a1))
2

+2ε (1− pfn(s1, a1)) pfp(s 6= s1, a1)(1− ε)
+pfp(s 6= s1, a1)2(1− ε)2

(19)
We currently use a single linearization, with εmanually cho-
sen to be 0.5, the average probability. Using multiple lin-
earizations, with different ε values, would allow for approx-
imating the nonlinear belief state update more accurately,
with piecewise linearizations.

A PDDL problem formulation consists of a domain file,
and a problem file. The domain file specifies types of ac-
tions that can be used across a domain of application such

PlanRob 2015

72

as logistics, manufacturing assembly, or in this case, find-
ing wheels in an image. The domain file is fixed; it does not
change for different problems within the domain. Thus, this
part of the formulation was generated manually, and is not
modified by the Executive. The problem file, on the other
hand, contains problem-specific information such as initial
and goal states. Therefore, it must be generated specifically
for any new problem. The Executive generates this file auto-
matically, based on knowledge of the goal and belief states.
The following PDDL domain file fragment shows the defi-
nition of the SURF Match action in PDDL.

(:action SURF-match
:parameters
(?w ?p ?bsv)

:precondition
(and (belief-state-variable ?bsv)

(pose ?p) (wheel ?w)
(for-wheel ?w ?bsv)
(at-pose ?p ?bsv)
(> (belief-level ?bsv) 0.1))

:effect
(and (increase

(belief-level ?bsv)
(- (+ (f0)

(* (f1)
(- (eps)

(belief-level ?bsv))))
(belief-level ?bsv)))

(increase
(total-cost)
(feature-observation-cost ?p))))

The precondition clause specifies that the belief state vari-
able value for a particular pose and wheel must be at a mini-
mum of 0.1 in order for this operation to be tried. The effect
clause specifies that the belief level increases according to
Eq. 16. The cost for the operation is also added to the to-
tal cost. The other sensor actions are specified in the PDDL
domain file in a similar manner.

Sensor Actions
We now describe in more detail the three sensor actions:
SURF Match, SURF Match Other Wheel, and Hough El-
lipse Match. The SURF Match action uses the SURF
(Speeded Up Robust Features) algorithm (Bay et al. 2008)
to attempt to identify wheels by matching a wheel in a refer-
ence image with a wheel in the target image. The SURF al-
gorithm is scale invariant, but is somewhat sensitive to large
changes in orientation. Therefore, multiple reference images
are used, including ones for different orientations (Figure 6).
The orientations in the reference images correspond to the
orientations of the discrete belief state variables.

The SURF Match action is not highly reliable; it can miss
detecting a wheel, especially if the target image is noisy, and
it can falsely detect objects that are not wheels. Also, due
to the symmetry of wheel images, the SURF Match algo-
rithm does not provide a very accurate estimate of the pose
(position and orientation) of the wheel in the target image.
Thus, the SURF Match action is used to attempt to achieve

(a)
+2

(b) +1 (c) 0 (d) -1 (e) -2

Figure 6: Wheel reference images, corresponding to differ-
ent orientations.

a rough initial match, the goal being to move from low to
medium confidence estimates, and set the stage for the use
of the other sensor actions to improve the estimates.

The SURF Match Other Wheel sensor action is similar to
the SURF Match action, but assumes that one wheel position
estimate already exists. It uses this information, along with a
number of gists (assumptions), to try to find the other wheel.
In particular, it is assumed that the action is observing the
left side of the car, and that the car is on level terrain.

If the SURF Match Other Wheel action is successful in
finding the other wheel, then it uses the position estimates
of both wheels to estimate the pose of the car. The sensor
action uses projective geometry, combined with a number of
additional gists, to estimate the positions of each wheel in
the world coordinate frame, given the image position esti-
mates. These gists are: 1) the height of the camera; 2) the
focal length of the camera; and 3) the size of the wheel. All
of these are reasonable gists; a ground robot or UAV would
know the focal length of its camera, as well as its height.
Given previous gists for vehicle type, the size of the wheel
can be determined from the vehicle type’s spec data.

Once the position estimates of each wheel in the world
coordinate frame are known, simple trigonometry is used to
determine orientation of the car, particularly, its yaw (rota-
tion about the vertical axis). This estimate is the continuous
counterpart to the discrete belief state variables for orienta-
tion. The continuous and discrete variables inform and rein-
force each other as part of the belief state update mechanism.

The Hough Ellipse Match sensor action uses Hough trans-
forms (Duda and Hart 1972) to determine wheel position
in an image with a high degree of accuracy. This action
is computationally expensive, but has the potential to give
very accurate estimates, when supplied with good parame-
ters. Thus, this action is used after the other, less expensive
sensor actions have developed a good hypothesis about the
wheel pose.

The computational expense of the Hough transform algo-
rithm rises as the number of parameters increases. There-
fore, the ellipse variant is more expensive than the circle
variant. For this reason, the Hough Ellipse Match sensor ac-
tion first checks whether estimated orientation (yaw angle)
of the car is small, indicating that the car side is facing the
camera directlym ub wgucg case the circle variant is used.

PlanRob 2015

73

Results

Results using Individual Sensor Algorithms

SURF Algorithm Results The SURF algorithm is suscep-
tible to error, particularly when there is a significant differ-
ence in orientation between the wheel in the reference and
target images. Figure 7 shows a weak match result due to
this problem. Figure 8 shows an incorrect match, also due to
this problem.

For this reason, our system uses multiple wheel reference
images, at different orientations, as shown in Fig. 6. Which
to use is informed by the belief state variables, which hy-
pothesize the most likely orientation of the vehicle.

We performed systematic testing with combinations of
vehicle orientations (Fig. 9) and wheel reference images
(Fig. 6) in order to determine the observation function used
in Eq. 6. Fig. 10 shows PMF’s for Pr(o|s, a). In this case,
s corresponds to the hypothesized orientation of the vehicle,
represented by a target image in Fig. 9, and a corresponds
to the look action, represented by a reference image in Fig.
6. The testing involved selecting a target image and refer-
ence image combination, running the SURF algorithm, and
noting the number of raw SURF matches.

Figure 7: The significant difference in wheel orientation be-
tween the reference and target images results in a match of
only two points. This does not give a very good estimate of
wheel position.

Figure 8: The significant difference in wheel orientation be-
tween the reference and target images results in a bad match
(false positive).

(a) -2 (b) -1

(c) 0 (d) +1

(e) +2

Figure 9: Car target images, corresponding to different ori-
entations.

Figure 10: SURF observation function distributions for each
look action a, represented by reference image poses -2, -1,
0, +1, and +2. The horizontal axis indicates the target im-
age pose. The vertical axis is number of raw SURF matches.
This is easily normalized to get a true PMF. Results for ref-
erence image poses -2, -1, 0, and +1 are as expected; the
target image with orientation matching the reference image
gets the most SURF matches. Results for reference image
pose +2 are ambiguous. This is likely due to the extreme
angle for this pose.

PlanRob 2015

74

Hough Ellipse Algorithm Results Figure 11 shows what
can easily happen when the Hough Ellipse algorithm is used
with insufficient guidance. Instead of finding a wheel, the
algorithm has found an elliptical form in the car’s grill. Suf-
ficiently constraining the expected ellipse parameters solves
this problem.

Figure 11: With insufficient guidance, the Hough algorithm
finds an ellipse in the car’s grill (highlighted in green), rather
than finding the wheel.

The Hough Ellipse algorithm has numerous parameters;
how they are set can have a big impact not only on the accu-
racy of the solution, but also on the time it takes to compute
it. First, as shown in Table 1, it is very beneficial to pre-
process the gray-scale input image with an edge detection
filter, and use the edge detected image as the input to the
Hough Ellipse algorithm. Also as shown in Table 1, the al-
gorithm works much faster on scaled images than full-size
images. This suggests a staged approach, where small scales
are used to obtain an initial solution, and to tightly constrain
parameters that are then used in the full size image. Table
1 also shows the beneficial effect on compute time of us-
ing the algorithm’s randomization parameter. The parameter
reduces the number of Hough cells, selecting a smaller num-
ber at random. The number of cells used is determined by the
parameter. Appropriate settings of this parameter have neg-
ligible effect on solution quality, while significantly reduc-
ing compute time. Other parameters include rotation span
(range of degrees for rotation angle), and bounds on major
axis length. Tables 2 and 3 show the benefits of tight bounds
for these parameters.

Settings Image scale
full 1/2 1/4 1/8

gray scale hours 6280 114 4
edge detected 602 14 1.55 0.12
edge detected, randomization 58 5.3 1.7 0.12

Table 1: Hough ellipse algorithm timing results for various
image scales, image input types, and randomization settings
(times are in seconds). Test image is a wheel shown at an
oblique angle, requiring the use of the ellipse rather than the
circle version of the algorithm.

Rotation span Image scale
full 1/2 1/4 1/8

40 2515 54.6 6.68 0.36
20 1233 29.5 3.35 0.23
10 537 13.6 1.83 0.16
2 88 2.8 0.33 0.02

Table 2: Hough ellipse algorithm timing results for various
image scales, and rotation span settings (rotation spans are
in degrees, times are in seconds). Max major axis length =
250, min = 150.

Max Min Image scale
full 1/2 1/4 1/8

250 150 1233 29.5 3.35 0.23
225 175 500 12.36 1.40 0.14
195 175 299 7.5 0.82 0.085

Table 3: Hough ellipse algorithm timing results for various
image scales, and max and min major axis length bounds.
Axis length bounds are in pixels, times are in seconds. Ro-
tation span = 20 degrees.

Example Test Cases
For the first test case, the target image is as shown in Figure
12. The a priori belief state for the discrete wheel poses is
shown in Figure 13 (values for car pose belief state are simi-
lar). This indicates that the poses are largely unknown, with
a slight bias to the zero pose.

Figure 12: Target image for test case 1.

The first control step iteration, based on this belief state,
yields the initial plan shown below (plan 1). The Execu-
tive performs the first of these actions, yielding a success-
ful match, as shown in Figure 14. Based on this, wheel pose
estimates are updated; the hypothesis for zero pose for the
front wheel is strengthened. The second control step itera-
tion, based on this updated belief state, yields plan 2. The
Executive performs the first of these actions, yielding a suc-
cessful match, as shown in Figure 15. Based on this, wheel
and car pose estimates are updated to further strengthen the
zero pose hypothesis. The third control step iteration, based
on this updated belief state, yields plan 3. The Executive per-
forms the first of these actions, yielding a successful match,
as shown in Figure 16. In this case, because the pose hypoth-
esis is pose zero (indicating that the camera is directly facing

PlanRob 2015

75

(a) Wheel

Figure 13: Wheel pose, a priori belief state.

the car), the circle rather than ellipse variant of the Hough
transform is used. The history of rear wheel pose belief state
values over the control iterations is shown in Figure 17. The
zero pose belief increases with successive iterations (obser-
vations), whereas the pos and neg pose beliefs decrease.

Plan 1
1. SURFMatch(front-wheel pose-zero)
2. SURFMatchOtherWheel(front-wheel pose-zero)
3. HoughEllipseMatch(rear-wheel pose-zero)
Plan 2
1. SURFMatchOtherWheel(front-wheel pose-zero)
2. HoughEllipseMatch(rear-wheel pose-zero)
Plan 3
1. HoughEllipseMatch(rear-wheel pose-zero)

Figure 14: Successful SURF match to front wheel.

Figure 15: Successful SURF match to other (rear) wheel.

For the second test case, the target image is as shown in
Figure 18. As before, the planner generates a plan assum-
ing pose zero, based on the a priori belief state. The SURF

Figure 16: Successful Hough ellipse match to rear wheel
(match highlighted in green).

Figure 17: Evolution of belief state for rear wheel pose vari-
able (neg, zero, and pos values).

matches succeed, even though the reference image for pose
zero does not exactly match the wheels in the car due to its
angle. After the SURF match other wheel action, the pose
estimate is improved, resulting in a belief state where pose
-1 is most likely. The effect of this new belief state is shown
in Plan 3, which uses pose-neg-one, rather than pose-zero as
the parameter to the Hough ellipse match action; the circle
variation of the algorithm will not work, so it uses the ellipse
variation, with bounds on aspect ratio and rotation informed
by the car pose estimate. This results in a successful match,
as shown in Figure 19. The history of rear wheel pose belief
state values over the control iterations is shown in Figure
20. The zero pose belief is initally the highest, but after the
SURF match other wheel action (iteration 2), it drops, along
with the pos pose belief, while the neg pose belief increases.

Plan 1
1. SURFMatch(front-wheel pose-zero)
2. SURFMatchOtherWheel(front-wheel pose-zero)
3. HoughEllipseMatch(rear-wheel pose-zero)
Plan 2

PlanRob 2015

76

1. SURFMatchOtherWheel(front-wheel pose-zero)
2. HoughEllipseMatch(rear-wheel pose-zero)
Plan 3
1. HoughEllipseMatch(rear-wheel pose-neg-one)

Figure 18: Target image for test case 2.

Figure 19: Successful Hough ellipse match, using ellipse
rather than circle variation of the algorithm.

Figure 20: Evolution of belief state for rear wheel pose vari-
able, example test case 2.

Discussion
The focus of our efforts thus far has been on the sub-problem
of finding a wheel in an image. This has led to an emphasis
on “look” actions, corresponding to the different sensing al-
gorithms (SURF and Hough), and parameterized by which
wheel to focus on, and which reference image orientation
to use. However, we have not incorporated “move” actions
(actions that change the state of the agent or its environ-
ment). We believe that the approach we have developed is
well suited for incorporating move as well as look actions,
with the generative planning component intelligently com-
bining both types of actions. This would allow for testing
with more general kinds of problems, where the goal is more
than purely a perception goal, but rather, involves achieving
an environment goal.

As a next step, we will use a quadcopter platform as a
testbed for combining the existing look actions with move
actions that move the quadcopter. We expect that this will
allow for reliable navigation of the quadcopter around the
vehicle, in indoor (garage) environments, while avoiding ob-
stacles like pillars or people. It will also support movement
of the quadcopter to close in on a wheel to inspect it more
carefully.

Figure 21 shows a grid of navigation waypoints situated
relative to a target vehicle. The quadcopter would move be-
tween these waypoints in order to navigate, and also to get
a better look at the vehicle and wheels. For example, sup-
pose the quadcopter starts at waypoint wp1. A possible plan
generated by the planner would mix look and move ac-
tions, possibly with the goal of verifying that a wheel ac-
tually has a flat tire. The move actions allow quadcopter
to move to a more advantageous position, in order to de-
termine with more certainty, the state of the wheel. The
look actions determine the state of the wheel, and also keep
the target vehicle anchored with respect to the quadcopter
(Laporte and Arbel 2006; Coradeschi and Saffiotti 2002;
Karlsson et al. 2008). This is important for indoor environ-
ments, like garages, where GPS navigation is not available.

Initial Plan
1. SURFMatch(front-wheel pose-neg-two)
2. Move(wp1, wp2)
3. SURFMatch(front-wheel pose-neg-one)
4. Move(wp2, wp3)
5. SURFMatch(front-wheel pose-zero)
6. HoughEllipseMatch(front-wheel pose-zero)

The restriction to linear relations in the generative plan-
ner we are currently using allows for a reasonable approxi-
mation of belief state update, particularly for the belief state
value associated with the look action. However, it does not
allow for good normalization across all the values of a be-
lief state variable during planning. Further testing and in-
vestigation is needed to determine whether this is a serious
shortcoming. In any case, we will investigate planners that
allow for nonlinear relations, and therefore, more accurate
belief state update during planning. Such planners include
sampling-based planners, simple forward heuristic search
planners, and SMT solvers.

PlanRob 2015

77

Figure 21: Active perception by quadcopter navigating be-
tween waypoints.

Thus far, we have avoided any attempt to learn from all
the planning; we are computing point solutions, not learn-
ing control policies. While learning comprehensive control
policies is generally intractible, it would be interesting to
investigate whether partial policies could be learned as a
by-product of the planning. A related question is whether
a planner, rather than generating a single, rigid plan, could
generate a plan with some limited choices. The choices
would be made quickly at execution time using a control
policy associated with the flexible plan.

Acknowledgments.
This research was developed with funding from the Defense
Advanced Research Projects Agency. The views, opinions,
and/or findings contained in this article are those of the au-
thors and should not be interpreted as representing the offi-
cial views or policies of the Department of Defense or the
U.S. Government. Distribution Statement ”A” (Approved
for Public Release, Distribution Unlimited).

References
Bay, H.; Ess, A.; Tuytelaars, T.; and Van Gool, L. 2008.
Speeded-up robust features (surf). Computer vision and im-
age understanding 110(3):346–359.
Bilton, N. 2012. Behind the google goggles, virtual reality.
New York Times 22.
Bonet, B., and Geffner, H. 2006. Learning depth-first search:
A unified approach to heuristic search in deterministic and
non-deterministic settings, and its application to mdps. In
ICAPS, volume 6, 142–151.
Coradeschi, S., and Saffiotti, A. 2002. Perceptual anchor-
ing: A key concept for plan execution in embedded sys-
tems. In Advances in Plan-Based Control of Robotic Agents.
Springer. 89–105.
Duda, R. O., and Hart, P. E. 1972. Use of the hough trans-
formation to detect lines and curves in pictures. Communi-
cations of the ACM 15(1):11–15.
Fourman, M. P. 2000. Propositional planning. In Proceed-
ings of AIPS-00 Workshop on Model-Theoretic Approaches
to Planning, 10–17.

Hansen, E. A., and Zilberstein, S. 2001. Lao: A heuristic
search algorithm that finds solutions with loops. Artificial
Intelligence 129(1):35–62.
Hebert, P.; Hudson, N.; Ma, J.; Howard, T.; Fuchs, T.; Ba-
jracharya, M.; and Burdick, J. 2012. Combined shape, ap-
pearance and silhouette for simultaneous manipulator and
object tracking. In Robotics and Automation (ICRA), 2012
IEEE International Conference on, 2405–2412. IEEE.
Helmert, M. 2006. The fast downward planning system. J.
Artif. Intell. Res.(JAIR) 26:191–246.
Hofmann, A., and Robertson., P. 2015. Active perception:
Improving perception robustness by reasoning about con-
text. In Proceedings of the 10th International Conference
on Computer Vision Theory and Applications.
Kaelbling, L. P., and Lozano-Pérez, T. 2013. Integrated
task and motion planning in belief space. The International
Journal of Robotics Research 0278364913484072.
Karlsson, L.; Bouguerra, A.; Broxvall, M.; Coradeschi, S.;
and Saffiotti, A. 2008. To secure an anchor–a recovery
planning approach to ambiguity in perceptual anchoring. Ai
Communications 21(1):1–14.
Laporte, C., and Arbel, T. 2006. Efficient discriminant view-
point selection for active bayesian recognition. International
Journal of Computer Vision 68(3):267–287.
Mausam, A. K. 2012. Planning with markov decision pro-
cesses: an ai perspective. Synthesis Lectures on Artificial In-
telligence and Machine Learning. Morgan & Claypool Pub-
lishers.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. Pddl-the
planning domain definition language.
Monahan, G. E. 1982. State of the arta survey of partially
observable markov decision processes: Theory, models, and
algorithms. Management Science 28(1):1–16.
Pineau, J.; Montemerlo, M.; Pollack, M.; Roy, N.; and
Thrun, S. 2003. Towards robotic assistants in nursing
homes: Challenges and results. Robotics and Autonomous
Systems 42(3):271–281.
Prentice, S., and Roy, N. 2009. The belief roadmap: Efficient
planning in belief space by factoring the covariance. The
International Journal of Robotics Research.
Zhang, N. L., and Zhang, W. 2011. Speeding up the con-
vergence of value iteration in partially observable markov
decision processes. arXiv preprint arXiv:1106.0251.

PlanRob 2015

78

Dynamically Extending Planning Models using an Ontology

Michael Cashmore, Maria Fox, Derek Long,
Daniele Magazzeni, and Bram Ridder

King’s College London
London WC2R 2LS

firstname.lastname@kcl.ac.uk

Valerio De Carolis, David Lane,
and Francesco Maurelli
Herriot-Watt University

Edinburgh, Scotland, UK EH14 4AS
vd63@hw.ac.uk, d.lane@hw.ac.uk

Abstract
In this paper we couple a deterministic planner with
an ontology, in order to adapt to new discoveries
during plan execution and to reason about the af-
fordances that are available to the planner as the set
of known objects is updated. This allows us to ex-
tend the planning agent’s functionality during exe-
cution. We use as an example planning for persis-
tent autonomous behaviour in underwater vehicles.
Planning in this scenario takes place in a symbolic
model of the environment, simulating sequences
of possible decisions. Ensuring that the simula-
tion remains robust requires careful matching of
the model to the real world, including dynamically
updating the model from continuous sensing ac-
tions. We describe how our system constructs an
initial state for planning, using the ontology; how
the ontology is also used to determine the results
of each action performed by the planner; and fi-
nally demonstrate the performance of the system
in a simulation, in which two AUVs are required
to cooperate in an unknown environment, demon-
strating that with additional reasoning the planning
system is able to make new efficient choices, taking
advantage of the environment in new ways.

1 Introduction and Motivation
AI Planning [Ghallab et al., 2004] supports a key requirement
of intelligent robotics: the ability to perform strategic task-
level planning, taking into account limited resources, time,
environmental constraints and long-term goals. Planners rely
on having access to a rich model of the environment, the ob-
jects within it, and the actions that can be performed on the
different kinds of objects. A major challenge is that knowl-
edge of the environment constantly changes during plan ex-
ecution, so the set of objects that can be manipulated cannot
be fixed in advance. Instead, the planner’s model has to be
adapted and updated as new discoveries are made. Acquiring
new knowledge in an autonomous way, adapting behaviour
accordingly, is a fundamental requirement of persistent au-
tonomous behaviour. Path-planning [Lavalle, 2006] is also a
fundamental underlying requirement, but we do not address
this topic in this paper.

To enable the acquisition and interpretation of data, and
inference over the resulting new knowledge, we provide an
ontology as one of the components of an autonomous plan-
based system. This paper addresses using an ontology in the
dynamic construction of AI planning models, using under-
water mission-planning for AUVs as an example. In the work
presented here, the ontology has two roles: to recognise in-
stances of known concepts from sensed data (eg: to be able to
distinguish a valve from a weld), and to identify affordances
with the newly recognised objects (eg: to recognise that, be-
ing a valve, the object can be grasped, turned, etc). In this
way, interpretation of sensed data opens up new reasoning
choices for the planner.

Our goal is to show that, equipped with task planning and
an ontology, an autonomous system can perform long-term
operations without human intervention, adapting to discover-
ies and increasing its functionality over time. Our approach
is to plan operations over a horizon, and replan whenever the
ontology updates the planning model. We make two main
contributions:

1. The use of a temporal planner, rather than a reactive
strategy, to control underwater missions, in order to an-
ticipate and avoid problems rather than simply react to
them when they cause actions to fail.

2. The use of an ontology to provide object classifications
and affordances to the planner, to improve the planner’s
interaction with the world.

When planning in robotic domains the actions available to
the planner correspond to interactions between the robot and
recognised objects in the environment, an idea explored by
Geib et al. [2006] as Object-Action complexes. If a plan-
based intelligent robot is placed in an environment with a
fixed model, the robot might not be able to exploit all of its
capabilities as objects are not correctly recognised, or are of
unknown types that nevertheless afford known interactions.
Using ontological reasoning in conjunction with planning, we
extend the capabilities of the planner to more closely match
those of the robot in the environment.

We consider the problem of autonomous inspection and
maintenance of a seabed oil installation. Regular inspection
and maintenance of the facility is to be carried out using au-
tonomous underwater vehicles (AUVs) over extended hori-
zons, so the system must be able to deal with unexpected dis-

PlanRob 2015

79

covery, and be able to model actions that can be performed in
the environment in the symbolic language of the planner. The
missions that must be undertaken have many temporal con-
straints and characteristics. For example, depending on how
long it takes to achieve a planned task, the timeframe in which
other tasks might be completed can be affected. Thus, de-
pending on the importance of tasks, the planner might decide
to make more time available for one task rather than another.
In cooperative tasks, the planner has to time the behaviours
of the cooperating robots so that they coincide at the right
locations.

The combination of planning with other modules that
model knowledge about the domain has been explored in
other contexts. Several approaches to building semantic maps
have been developed. Petrick et al. [2013; 2014] address the
issue of joining continuous low-level sensor data with plan-
ning in a partially-known symbolic representation with sens-
ing actions in contingent planning. This is similar to the
problem that we propose to tackle with an ontology mod-
ule. Where Petrick et al. cope with unknown knowledge at
a Planning level, our focus is on using an ontology to reason
about discovered objects, and by so doing extend the possi-
ble means of interacting with them. Tenorth et al. [2010] and
Galindo et al. [2008] focus on combining semantic knowl-
edge with spatial data to form a semantic map of the environ-
ment. Tenorth et al. in particular deal with attaching semantic
information to a spatial map using an ontology in the ROS1

framework for indoor household tasks. We define a similar,
but general approach to linking an ontology with a planner in
ROS.

We validate this approach in an under-water mission,
which we describe in Section 2, along with discussion related
work. In Section 3 we describe the details of our integration
between planning and ontology. We describe the simulations
with our system and then conclude in Sections 4 and 5.

2 Planning with Ontologies
Ontologies organise knowledge around concept hierarchies
and the relationshipsand attributes between these concepts
and instances of them. Considerable work has been car-
ried out on developing representational languages based on
description logics and inferences over the sentences they
record [Gruber, 1993]. In our framework, an ontology is used
as a way for the robot to organise the knowledge about the
physical world in which the AUVs operate, not just as geo-
metric concepts, but also as richer structures that offer access
to affordances expressed as action templates available in a
PDDL [Fox and Long, 2003] domain model (actions applica-
ble to objects of the corresponding types).

In this work we use an ontology to detect new objects and
reason about their identification and the relations between
them. The planner adapts to unexpected features by revising
its abstract, deterministic model of the world and replanning
to take account of the new features, while relying on robust
control and signal processing systems to handle inaccuracy
and noise.

1Robot Operating System (ROS); http://www.ros.org; last ac-
cessed Apr. 2014

Combining task planning and control have been considered
in much prior work. Recent works include: the constraint-
based temporal planning system, EUROPA-2, in the T-REX
framework [McGann et al., 2008; Py et al., 2010]; combin-
ing task and motion planning onboard the PR2 robot [Srivas-
tava et al., 2014]; using homotopy classes to guide path plan-
ning [Hernández et al., 2011b; 2011a]; generating a coarse
plan to initialise the inspection of an unknown hull [Englot
and Hover, 2010]; using a plan-based policy to guide an
AUV for autonomously tracking the boundary of the sur-
face of a partially submerged harmful algal bloom [Fox et
al., 2012] and autonomous underwater maintanence, explored
in the context of temporal planning [Cashmore et al., 2013;
2014];.

2.1 Case Study
We consider a context in which two AUVs have to cooperate
to accomplish tasks in a long term mission that requires sus-
tained autonomy: the inspection and maintenance of a seabed
facility. Some tasks cannot be achieved by a single AUV and
coordination between two or more AUVs is required. Our
problem scenarios in this paper are set in this context, fo-
cussing on a cluster of inspection tasks. Maintenance tasks
take place in a dynamic environment; currents will move
the robots, visibility might become obscured, and extrane-
ous events, such as sea animals passing by, might interfere
with the execution of an action. In order to find plans that are
robust to the uncertainty inherent in the environment, we con-
struct domain models that are conservative with respect to re-
source requirements (e.g. time and energy). The uncertainty
is abstracted by embedding it in the resource estimates used
in planning the actions. In this way, we can exploit powerful
deterministic temporal planning methods, rather than proba-
bilistic methods which, although they model and reason about
uncertainty directly, are much less performant.

During the execution of the plan the ontology is continu-
ously updated using parsed sensor data. As a result of some
observations and updates to the model of the world, an exe-
cuting plan can become invalid (some of the assumptions on
which it rests can be violated). This situation is identified by
the reasoning within the ontology, coupled with the content
on the plan, and will trigger a replan. For example, consider
the case where an AUV plans to perform an inspection of a
structure, and then move on towards a valve panel. While
performing the inspection, the sonar data continuously up-
dates the map. Suppose, during execution of the inspection,
the path planned between the structure and the valve panel
is found to be blocked. This information is given immedi-
ately to the planning system, which will find a new path to
the valve panel, and might decide to change the details of the
structural inspection to better fit the new strategic plan. This
is described in more detail in Section 3. It should be empha-
sised that the replanning carried out in this case is not path
planning (although path planning is a part of the problem),
but construction of a task plan, linking and coordinating ac-
tions between AUVs to achieve the goals of the original plan.

In this paper we focus on a mission involving two AUVs,
which we call the structure inspection task. The objective
is for the two AUVs is to inspect a structure. This requires

PlanRob 2015

80

exploring a set of inspection points, by navigating close by
and directing the sonar and imaging equipment towards them.
However, if there are pillars in the structure, the AUVs are
able to inspect each complete pillar as a single structure, by
observing from a greater distance. This action explores a
larger area than any single inspection point, but poses some
challenges, as the pillars are deep down in the water, so that a
light has to be shone upon the target for the observation to be
of sufficient quality.

One solution would be to equip a single AUV with both a
camera and a light, but in such a case the light would come
from the same direction as the camera, and backscatter would
compromise the image quality. Instead, one AUV should ap-
proach the pillar and shine the light from an oblique angle,
while the other AUV approaches the target to make the ob-
servation. Note that it is not possible to sequentialise the be-
haviour of the two AUVs for the pillar inspection task. The
concurrency of the behaviours is crucial to the success of the
inspection. This task therefore requires temporal coordina-
tion of activities, and temporal reasoning is key for the effec-
tive planning of this mission. The combination of temporal
coordination of two AUVs, the assignment of tasks between
them and the timing and ordering of tasks is the role of a task
plan and cannot be resolved by path planning, although path
planning is necessary in determing which navigation tasks are
achievable and by what route.

The AUVs are placed inside an environment with a number
of pillars and other structures. Initially the AUVs have little
knowledge of the environment. The AUVs and planning sys-
tem are capable of performing an inspection in an unknown
environment by observing dynamically generated inspection
points and replanning as new observations invalidate the cur-
rent plan.

3 Integration
The symbolic model of the world is provided by the ontology
though a ROS interface that the planner uses to construct the
initial state of the problem. The symbolic representation of
the locations that the AUVs can visit, the objects, and the re-
lationships between them are provided by the ontology. This
process is described in four parts. First we describe our model
for the structure inspection task, and how it is dynamically
updated. We discuss how the model recorded in the ontology
is delivered as a problem description for the planner. We then
show some solutions to examples of these generated planning
problems, and finally describe how these plans are executed.

3.1 Model
The objects collated in the ontology are either known a pri-
ori or are derived from analysing sensor data that is col-
lected throughout the execution of a plan. The types of ob-
jects include 3d-points within the volume bounding the mis-
sion region, which has several subtypes (waypoints, inspec-
tion points and strategic waypoints), and structures, which
includes the subtypes of pillars and one representing the im-
age slice a sonar captures when intersecting a cylinder, which
we call a Circle (though it might be elliptical, depending on
angle, and will be partially occluded by the solid structure).

Figure 1: The architecture of integration between the plan-
ning system and ontology. The ontology provides the initial
state of the planning problem. The ontology is also involved
in the exectution of the plan, alerting the planning system
when an important part of the environment changes, or is dis-
covered to be different from what is expected.

Figure 1 displays the relationship between the planning sys-
tem and the ontology.

The possible trajectories the AUVs can traverse are deter-
mined by a set of waypoints. These waypoints are created
using a probabilistic road map (PRM) [Kavraki et al., 1996;
Lavalle, 2006], and stored in the ontology. We use an oc-
tomap [Wurm et al., 2010] to check if a waypoint collides
with an obstacle in the world. Similarly we use the octomap
to determine whether the AUVs can traverse between two
waypoints. The octomap is built from sensor data and con-
tinuously updated.

Inspection points are added to the ontology. These are ar-
eas that must be observed by the AUV, either areas of unex-
plored space, or the unseen sides of possible pillars.

The PRM is augmented with additional waypoints – called
strategic waypoints – these waypoints are stored in the ontol-
ogy to provide a denser collection of waypoints around points
of interest (in our case the locations of possible pillars and
unexplored space). For example, if the sonar picks up a sig-
nature that is roughly cylindrical, this is recognised as a new
Circle and stored in the ontology. New inspection points are
inferred as a consequence of the knowledge that such struc-
tures can be inspected on all sides. This has the effect of
enabling and encouraging the planning system to plan to in-
spect the opposite side of this object to determine whether it
is a Pillar.

This information can also be used to ’clean up’ the oc-
tomap by removing noise. If an object is determined to be
a pillar, its shape is known and errors from the sonar can be
corrected.

3.2 Constructing the Planning Problem Instance
In our domain, the state of each AUV is partially described
by its position, given by a waypoint. The AUV can per-
form six actions, namely do hover fast, do hover controlled,
correct position, illuminate pillar, observe pillar, and ob-
serve inspection point, as shown in Figure 2.

PlanRob 2015

81

(:durative-action do_hover_fast
:parameters (?v - vehicle ?from ?to - waypoint)
:duration (= ?duration (* (distance ?from ?to)

(invtime ?v)))
:condition (and (at start (at ?v ?from))

(at start (connected ?from ?to)))
:effect (and (at start (not (at ?v ?from)))

(at end (near ?v ?to))))

(:durative-action illuminate_pillar
:parameters (?v - vehicle ?wp - waypoint ?p - pillar)
:duration (>= ?duration 0)
:condition (and (over all (at ?v ?wp))

(at start (can_observe_pillar ?v ?wp ?p)))
:effect (and

(at start (pillar_illuminated ?p))
(at start (not (can_observe_pillar ?v ?wp ?p)))
(at end (not (pillar_illuminated ?p)))
(at end (can_observe_pillar ?v ?wp ?p))
(at end (near ?v ?wp))))

(:durative-action observe_pillar
:parameters (?v - vehicle ?wp - waypoint ?p - pillar)
:duration (= ?duration 10)
:condition (and

(at start (at ?v ?wp))
(at start (can_observe_pillar ?v ?wp ?p)))
(over all (pillar_illuminated ?p))

:effect (and
(at start (not (can_observe_pillar ?v ?wp ?p)))
(at end (observed_pillar ?p))
(at start (not (at ?v ?wp)))
(at end (near ?v ?wp))))

Figure 2: A fragment of the PDDL inspection-task domain.

The do hover fast action moves the AUV between two
connected waypoints (which, by construction, are the end-
nodes of a collision-free edge). Since the fast motion does
not take into account final orientation, it only arrives near
the desired pose. The position must then be corrected. The
duration of the action depends on the distance between the
two waypoints.

The observe actions allow the AUV to observe an inspec-
tion point or a pillar. The precondition requires the AUV to
be at a waypoint from which the target inspection point is
(partially) visible. Furthermore, the observe pillar action re-
quires the pillar to be illuminated over the whole duration of
the observe action. The illuminate pillar action, whose du-
ration is decided by the planner, needs to be performed by a
different AUV to meet this requirement.

The problem instance is described using a collection of ob-
jects, their initial states, and a goal. The objects correspond
to object types known by the ontology, and the initial state of
the problem instance is generated from the attributes of these
objects, also stored in the ontology. This describes the current
known state of the world. In the structure inspection task the
goal is automatically generated from the initial state, given
the current knowledge of the environment. This is done by
adding the requirement that every inspection point and pillar
has been fully observed. This data is accessed using a ROS
interface. In a typical scenario, the goal is initially to observe
a set of inspection points p1, . . . , pn. When a pillar is dis-
covered, the goal is dynamically updated, and some inspec-
tion points pj , . . . , pk are removed from the goal and replaced
with the goal of observing the pillar (as it subsumes multiple

(define (problem inspection-task-p1)
(:objects

auv - vehicle
wp1 wp2 wp3 ... - waypoint
ip1 ip2 ip3 ... - inspectionpoint)
p1 ... - pillar)

(:init
(at auv wp1)
(= (mission-time) 0)
(= (observed ip1) 0)
(connected wp1 wp2) (connected wp2 wp1)
(= (distance wp1 wp2) 7.16958)
(= (distance wp2 wp1) 7.16958)
...
(cansee auv ip4 wp12)
(= (obs ip4 wp12) 0.445331)
...

)
(:goal (and (>= (observed ip1) 1)

(observed_pillar p1)
...

))
(:metric minimize (total-time)))

Figure 3: A fragment of the PDDL inspection-task problem
instance.

inspection points, pj , . . . , pk, as determined by the appropri-
ate geomtric reasoning in the ontology). Figure 3 shows a
fragment of a problem instance.

3.3 Solving the Planning Problem
To solve the problem, we use the temporal planner
POPF [Coles et al., 2010]. As described earlier, the planner
deals with coarse-grained events: in this case movement be-
tween waypoints and observation of inspection points. Ex-
ample plans in PDDL representation are shown in Figures 4
and 5. In both plans, the AUVs are explicitly given concur-
rent activities and the planner minimises the duration of the
plans. However, in the second case, the plan requires con-
currency to allow the correct illumination of the pillar during
the (long range) inspection task. Note that the illumination
duration has been set by the planner to meet the demands of
the inspection task.

3.4 Execution
The controllers are responsible for achieving the actions and
providing feedback. There are two possible reasons for re-
planning:

1. action failure: an action execution reports failure, using
the ROS action feedback, or times out; and

2. change of environment: the ontology notifies the plan-
ner of a change in the environment that invalidates the
plan, or new information, such as new object instances,
pertinent to mission goals.

A single plan governs both AUVs. We make the assump-
tion that when replanning, the vehicles can coordinate and
share information as required. In practice, this communica-
tion is difficult, and in future work we will consider how the
plans execution and replanning requests can be coordinated
between independent vehicles.

Once the planner has found a plan, the actions are con-
verted into ROS messages and sent to the AUVs. This is done
by tokenizing the plan (e.g. figures 4 or 5) and passing the

PlanRob 2015

82

Without knowledge of Pillars
Plan time PDDL action duration

0.000: (correct position auv0 wp auv0) [10.000]
0.000: (correct position auv1 wp auv1) [10.000]

10.001: (do hover fast auv1 wp auv1 s16) [46.469]
10.001: (do hover controlled auv0 wp auv0 s0) [14.274]
24.276: (observe inspection point auv0 s0 i0) [10.000]
34.277: (correct position auv0 s0) [10.000]
44.278: (do hover controlled auv0 s0 s1) [16.971]
56.471: (correct position auv1 s16) [10.000]
61.250: (observe inspection point auv0 s1 i1) [10.000]
66.472: (observe inspection point auv1 s16 i16) [10.000]
71.251: (correct position auv0 s1) [10.000]
76.473: (correct position auv1 s16) [10.000]
81.252: (do hover controlled auv0 s1 s2) [16.971]
86.474: (do hover controlled auv1 s16 s20) [15.000]
98.224: (do hover fast auv0 s2 s10) [66.000]

101.475: (observe inspection point auv1 s20 i20) [10.000]
111.476: (correct position auv1 s20) [10.000]
121.477: (do hover controlled auv1 s20 s17) [22.649]
144.127: (observe inspection point auv1 s17 i17) [10.000]

Figure 4: A PDDL plan for an inspection task, found using
POPF. Each action has an associated duration, and expected
dispatch time, which may differ from the actual execution.
Each waypoint and inspection point is associated with its co-
ordinates, as stored in the ontology. In this plan no pillars
have been recognised by the ontology.

With knowledge of Pillars
Plan time PDDL action duration

0.000: (correct position auv0 wp auv0) [10.000]
0.000: (correct position auv1 wp auv1) [10.000]

10.001: (do hover fast auv1 wp auv1 s16) [46.469]
10.001: (do hover controlled auv0 wp auv0 s0) [14.274]

0.000: (correct position auv0 wp auv0) [10.000]
0.000: (correct position auv1 wp auv1) [10.000]

10.001: (do hover controlled auv0 wp auv0 s3) [10.833]
10.001: (do hover fast auv1 wp auv1 s16) [46.469]
20.835: (do hover fast auv0 s3 s20) [84.546]
56.471: (correct position auv1 s16) [10.000]
75.383: (illuminate pillar auv1 s16 pillar2) [50.000]

105.382: (correct position auv0 s20) [10.000]
115.383: (observe pillar auv0 s20 pillar2) [10.000]

Figure 5: A PDDL plan for an inspection task, found using
POPF. Each action has an associated duration, and expected
dispatch time, which may differ from the actual execution.
Each waypoint and inspection point is associated with its co-
ordinates, as stored in the ontology. In this plan, knowledge
of pillars exists in the intial state, allowing faster observation
of the structure.
actions to the AUV controllers. The actions are dispatched to
the two AUVs concurrently as scheduled by the plan.

The AUV controllers provide feedback to the executor. If
the action is successful, then at the scheduled time, the next
action can be dispatched to that controller. If the action is
failed, then replanning is triggered. If an action is taking too
long to complete, the action is cancelled by the executor and
replanning is triggered.

During the execution of an action the executor may can-
cel the action if the plan is invalidated or the current action

Figure 6: The plan is executed with sonar continuously up-
dating the environment. The plan is invalidated in 2 and re-
planning is triggered.

is no longer desirable. Note that, in our framework, replan-
ning is based on reformulating the inspection task as a new
planning problem. This re-modelling is performed dynam-
ically, as new information becomes available – the PRM is
continuously updated according to the new information about
the environment, and the ontology with detected objects and
structures to inspect. This reformulation allows the AUVs to
adapt to new discoveries during execution.

For example, by collating information continuously it is
possible that the obstacle is detected long before the action is
to be dispatched. The system can alter the plan before the ac-
tion is dispatched, thereby avoiding dead-ends and inefficien-
cies. For example, consider the following simple scenario in
figure 6: the AUV is moving between two waypoints, and the
sonar detects a wall. The wall obstructs the planned hover
action, but will not interfere with the current action. Clearly,
replanning should take place to avoid dispatching the doomed
action. In this case the obstructed connection is removed from
the ontology, the planning system is notified of the change,
and finds a new route before dispatching the action.

4 Experimentation
Our objective is to show that the planner and ontology can
interact to support the execution of a complex mission. We
have designed experiments that demonstrate the following
features:

1. Controlled failure of an executing plan in the event of
the discovery of new information

2. The discovery of new object instances and their affor-
dances, and updating of the planning problem

3. Replanning of a cooperative mission involving coordi-
nated activity of the two AUVs to achieve mission goals

We show that by continually augmenting the knowledge
available, the ontology gives the planner access to previously
unknown parts and affordances of the environment leading to
plans that are shorter and more efficient than those that can be
found without the ontology. We demonstrate the role of plan-
ning by considering a mission with interesting temporal struc-
ture. The two AUVs must act concurrently in order to inspect
pillars. A reactive strategy, in which one or more AUVs patrol
the site inspecting pillars as they are encountered, would not
be able to arrange coordination of AUV activities and would

PlanRob 2015

83

of pillars IPs only IPs and Pillars
1 208.909 117.631
1 216.309 135.814
2 365.618 263.028
2 351.014 350.307
3 758.375 383.531
3 781.005 324.062

Avg time (s) 446.872 262.395
Avg # actions 58 23

Table 1: Plan quality for the structure inspection task. “IPs
only” refers to the task undertaken without knowledge of pil-
lars. “IPs and Pillars” shows the results when taking knowl-
edge of pillars into account.
result in inefficient inspections. We illustrate this by com-
paring the behaviour of the AUVs under coordination of the
planner with and without the support of the ontology.

The structure inspection missions are carried out in simu-
lation, using a system that emulates an underwater environ-
ment and interfaces with ROS. The entire control system has
been used to plan and execute missions using physical vehi-
cles, but we have not had the opportunity to test physical mis-
sions with two AUVs together. In the test missions, the AUVs
are sent to inspect different structures with various numbers
of pillars. Initial inspection points are placed on the surface
of the structure. Our hypothesis is that using the knowledge
from the ontology will allow us to generate plans that have a
shorter duration, and fewer actions, because the recognition
of a specific instance of an object type gives the planner ac-
cess to the best affordances to enable efficient interaction with
the object. The simulation was run multiple times, first with-
out taking into account knowledge of pillars from the ontol-
ogy. In this case, all the inspection points had to be observed.
Then, the ontological data was taken into account, and pillars
could be inspected with the pillar-specific observation action,
inspecting multiple inspection points at once.

The times taken to execute the missions are reported. The
planning time on each planning cycle is limited to 10 sec-
onds. Figure 7 shows the simulation during runtime. Using
the knowledge provided by the ontology about Pillars greatly
reduced the time taken to complete the mission (Table 1). Ex-
tending the functionality of the planner with new knowledge
about the environment can be expected to increase the quality
of the plans based on the improvement of affordances.

5 Conclusion
In this paper we describe the linkage of a planning system
to an ontology within an execution framework, allowing the
planner to exploit features and affordances of elements of the
environment as they are identified and inferred by the ontol-
ogy. As the world state is continually modified using pro-
cessed sensor data to update the ontology, the executing plan
is monitored for validity and replanning is invoked when it
ceases to be valid. The result is a system robust to changes in
the environment. We tested our system in simulation, show-
ing that using the ontology to associate objects with affor-
dances can result in plans with a shorter duration and fewer
actions.

Figure 7: Images of the simulation environment, the 3D
model of the AUV structure and sea-bed; and the rviz scene,
the environment as detected by the AUV.

PlanRob 2015

84

References
[Cashmore et al., 2013] Michael Cashmore, Maria Fox, Tom Lark-

worthy, Derek Long, and Daniele Magazzeni. Planning inspec-
tion tasks for auvs. In Proc. of the MTS/IEEE Oceans 2013 Con-
ference, San Diego (OCEANS’13), 2013.

[Cashmore et al., 2014] Michael Cashmore, Maria Fox, Tom Lark-
worthy, Derek Long, and Daniele Magazzeni. Auv mission con-
trol via temporal planning. In IEEE Int. Conf. on Robotics and
Automation (ICRA’14), 2014.

[Coles et al., 2010] Amanda Coles, Andrew Coles, Maria Fox, and
Derek Long. Forward-chaining partial-order planning. In Proc.
of the 20rd Int. Conf. on Automated Planning and Scheduling
(ICAPS’10), pages 42–49, 2010.

[Englot and Hover, 2010] B. Englot and F. Hover. Inspection plan-
ning for sensor coverage of 3D marine structures. In IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems, 2010.

[Fox and Long, 2003] Maria Fox and Derek Long. PDDL2.1: An
extension to pddl for expressing temporal planning domains.
Journal of Artificial Intelligence Res. (JAIR), 20:61–124, 2003.

[Fox et al., 2012] Maria Fox, Derek Long, and Daniele Magazzeni.
Plan-based policy-learning for autonomous feature tracking. In
Proc. of the 22nd Int. Conf. on Automated Planning and Schedul-
ing (ICAPS), 2012.

[Galindo et al., 2008] Cipriano Galindo, Juan-Antonio Fernandez-
Madrigal, Javier González, and Alessandro Saffiotti. Robot task
planning using semantic maps. Robotics and Autonomous Sys-
tems, 56(11):955–966, 2008.

[Geib et al., 2006] Christopher Geib, Kira Mourão, Ron Petrick,
Nico Pugeault, Mark Steedman, Norbert Krueger, and Florentin
Wörgötter. Object action complexes as an interface for planning
and robot control. In Proc. of the Humanoids-06 Workshop: To-
wards Cognitive Humanoid Robots, 2006.

[Ghallab et al., 2004] M. Ghallab, D. Nau, and P. Traverso. Auto-
mated Planning: Theory and Practice. Morgan Kaufmann, 2004.

[Gruber, 1993] T. R. Gruber. A translation approach to portable
ontologies. Knowledge Acquisition, 5(1):199–220, 1993.

[Hernández et al., 2011a] Emili Hernández, Marc Carreras, Javier
Antich, Pere Ridao, and Alberto Ortiz. A topologically guided
path planner for an auv using homotopy classes. In IEEE Int.
Conf. on Robotics and Automation (ICRA’11), pages 2337–2343,
2011.

[Hernández et al., 2011b] Emili Hernández, Marc Carreras, and
Pere Ridao. A Path Planning Algorithm for an AUV Guided with
Homotopy Classes. In Proc. 21st Int. Conf. on Automated Plan-
ning and Scheduling (ICAPS’11), 2011.

[Kavraki et al., 1996] L. E. Kavraki, J.-C. Latombe P. Svestka, and
M. H. Overmars. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. In IEEE Transactions on
Robotics and Automation, page 566580, 1996.

[Lavalle, 2006] S. M. Lavalle. Planning Algorithms. Cambridge
University Press, 2006.

[McGann et al., 2008] Conor McGann, Frederic Py, Kanna Rajan,
Hans Thomas, Richard Henthorn, and Robert S. McEwen. A
deliberative architecture for auv control. In IEEE Int. Conf. on
Robotics and Automation (ICRA’08), pages 1049–1054, 2008.

[Petrick and Foster, 2013] Ronald P. A. Petrick and Mary Ellen
Foster. Planning for social interaction in a robot bartender do-
main. In Proc. of the 23rd Int. Conf. on Automated Planning and
Scheduling (ICAPS’13), pages 389–397, 2013.

[Petrick and Gaschler, 2014] Ronald P. A. Petrick and Andre
Gaschler. Extending knowledge-level contingent planning for
robot task planning. In Proc. of the ICAPS 2014 Workshop on
Planning and Robotics (PlanRob), pages 157–165, 2014.

[Py et al., 2010] Frederic Py, Kanna Rajan, and Conor McGann. A
systematic agent framework for situated autonomous systems. In
Int. Conf. on Autonomous Agents and Multiagent Systems (AA-
MAS’10), pages 583–590, 2010.

[Srivastava et al., 2014] Siddharth Srivastava, Eugene Fang,
Lorenzo Riano, Rohan Chitnis, Stuart Russell, and Pieter
Abbeel. Combined task and motion planning through an extensi-
ble planner-independent interface layer. In Proc. IEEE Int. Conf.
on Robotics and Automation (ICRA’14), 2014.

[Tenorth et al., 2010] Moritz Tenorth, Lars Kunze, Dominik Jain,
and Michael Beetz. KNOWROB-MAP - knowledge-linked se-
mantic object maps. In Humanoids, pages 430–435, 2010.

[Wurm et al., 2010] Kai M Wurm, Armin Hornung, Maren Ben-
newitz, Cyrill Stachniss, and Wolfram Burgard. OctoMap: A
probabilistic, flexible, and compact 3d map representation for
robotic systems. In Proc. of the ICRA 2010 workshop on best
practice in 3D perception and modeling for mobile manipulation,
volume 2, 2010.

PlanRob 2015

85

Metareasoning for Concurrent Planning and Execution

Dylan O’Ceallaigh and Wheeler Ruml
Department of Computer Science

University of New Hampshire
Durham, NH 03824 USA

dylan.oceallaigh at gmail.com, ruml at cs.unh.edu

Abstract

We consider two fundamental questions in concurrent
planning and execution. First, if the domain has an
‘identity action’ that allows the agent to postpone act-
ing, remain in the same state, and deliberate further,
when should this action be taken? Second, if the agent
decides to act before a complete plan has been formed,
to how many actions in the current partial plan should
the agent commit? We show that considering these deci-
sions carefully can reduce the agent’s total time taken to
arrive at a goal in several benchmark domains, relative
to the current state-of-the-art. The resulting algorithm
can dynamically adjust the way it interleaves planning
and acting, between reactive greedy hill-climbing and
deliberative A*, depending on the problem instance.

Introduction
Because of new sensor data, unexpected changes in the
world, and execution failures, robots are continually plan-
ning and replanning. Yet to interact successfully with hu-
mans, robots also need to be responsive and to achieve their
goals promptly. They should respond immediately to a goal
request and cannot stand still while deliberating endlessly
about the perfectly optimal plan. This raises the central chal-
lenge of how to organize concurrent planning and execution
so that an agent can achieve a goal as quickly as possible
while allowing planning and acting to happen concurrently
(Ghallab, Nau, and Traverso 2014). In this paper, we for-
malize a simple version of this problem in the context of
real-time heuristic search and address it using an approach
based on metareasoning, in which the planner reasons about
its own behavior in order to decide when to plan and when
to act.

Real-time heuristic search refers to the setting in which a
search must finish within a fixed amount of time. Because
it may be impossible to find a complete path from the start
state to a goal within this time, the search is only required
to return the next action for the agent to take. The search
is therefore iterated until a goal is reached. Because exe-
cution begins before the optimality of the path is verified,
no real-time search can guarantee that the agent will follow
an optimal trajectory. However, real-time search can nicely
handle the realistic setting in which search and execution
can happen in parallel: while the agent transitions from state

si to sj , the search can plan which action to take from sj ,
where the duration of the transition is used as the bound on
planning time. This is the setting we address in this paper.

Because we are addressing concurrent planning and
execution, we will use goal achievement time (GAT)
(Hernández et al. 2012; Burns, Kiesel, and Ruml 2013) as
our main evaluation metric. This is the total time taken from
the start of the first search iteration to the arrival of the agent
at a goal. In a robotics application like fetching a beer for
a user, it is natural to minimize this measure, since it corre-
sponds to the time the user has to wait from when the request
is issued until it is fulfilled. For an offline algorithm such as
A*, this is the sum of planning and execution time. A* will
spend a lot of time searching, but then the shortest possible
time executing. Because of its real-time constraint, real-time
search may execute a longer plan than A*, but because most
of its planning will happen concurrently with execution, it
may have a shorter GAT than A*. If the cost of an action
equals the time taken to execute it, then a real-time search
for minimizing GAT can be thought of as minimizing total
cost, as usual, as long as the cost of identity actions are taken
into account.

Because each search iteration is taking place under a time
constraint, a real-time search must be careful about its use of
computation time. After performing some amount of looka-
head, a real-time search will have identified a most promis-
ing state on the search frontier, along with the path leading
to it from the current state. It then faces two fundamental
questions: 1) should it continue to search, gaining increased
confidence that it has identified the correct action to take, or
is it ready to begin executing the action that currently ap-
pears to be best? In many domains, the agent is allowed to
idle in the current state, effectively executing a ‘identity’ or
‘no-op’ action while performing additional search. While
this deliberation will delay the agent’s arrival at a goal, the
delay may be worthwhile if the additional planning allows
the agent to avoid selecting a poor action. This is perhaps
the most fundamental question an agent faces when plan-
ning and acting are allowed to interleave or run concurrently.
And 2) if the algorithm decides to act, should it commit to
all the actions leading to the most promising frontier node,
or just some prefix?

Most existing real-time search algorithms decide these
questions at design time. For example, the seminal RTA*

PlanRob 2015

86

algorithm of Korf (1990) always commits to a single action,
while state-of-the-art algorithms like LSS-LRTA* (Koenig
and Sun 2009) and Dynamic f̂ (Burns, Kiesel, and Ruml
2013) always commit to the entire path to the frontier. None
of these algorithms take advantage of identity actions. In this
paper, we explore whether it can be beneficial to make these
decisions dynamically during planning. Considering iden-
tity actions, for example, allows a real-time search to decide
at runtime whether to behave more like greedy hill-climbing,
and commit to an action after only limited lookahead, or be-
have more like A* (Hart, Nilsson, and Raphael 1968), and
explore all the way to a goal before starting to act.

We view our approach as a form of metareasoning, in
which the search algorithm governs its own behavior by at-
tempting to estimate the effects of committing to actions ver-
sus doing more search. Because the effects of search are nec-
essarily uncertain, the challenge is to efficiently estimate the
probability of various outcomes. We believe that the metar-
easoning perspective provides an elegant and principled way
to address the fundamental trade-off between search and ex-
ecution in planning and combinatorial search.

Concretely, the paper proposes two extensions of the Dy-
namic f̂ algorithm, one addressing identity actions and one
addressing prefix commitment. We carefully examine their
behavior on a new set of handcrafted pathfinding problems
and then run large-scale tests on four benchmark domains.
We find that the new techniques successfully allow a real-
time search to adapt its behavior between greed and delib-
eration, matching or outperforming previous state-of-the-art
algorithms. This illustrates one principled way in which an
agent can appropriately organize concurrent planning and
action.

Previous Work
LSS-LRTA*
Local Search Space-Learning Real-Time A* (LSS-LRTA*)
is a state-of-the-art real-time search algorithm that has been
recommended for situations in which there is an explicit
real-time constraint per action (Koenig and Sun 2009). It
consists of a two step process. First, LSS-LRTA* performs
an A*-like search from the agent’s current state toward a
goal until some expansion limit is reached. Second, LSS-
LRTA* selects the best state on the search frontier, queues
the best path to that state for the agent to execute, much as
A* does for the complete path to the goal, and proceeds
with a Dijkstra-like backup process where the h value of
each state in the lookahead search space is updated to the h
value of its best child plus the edge cost between the two.
This intensive learning step allows the algorithm to escape
local minima much faster than previous real-time search al-
gorithms.

Dynamic f̂
Dynamic f̂ makes two small modifications to LSS-LRTA*.
A pseudocode sketch is shown in Figure 1. First, instead of
using a fixed time bound, Dynamic f̂ sets the time bound
for search dynamically after each search iteration based on

1. until a goal is reached
2. perform a best-first search on f̂ until time bound
3. update heuristic values of nodes in CLOSED
4. s← state in OPEN with the lowest f̂
5. start executing path to s
6. time bound← execution time to reach s
7. OPEN← {s}; clear CLOSED

Figure 1: Pseudocode for the Dynamic f̂ algorithm.

_
bc(a,b)

b

_a

ba

_aaa

a
_b

c(a,b)
b

a

Figure 2: Backed up heuristic error in Dynamic f̂ .

the duration of the actions that have been queued for execu-
tion (line 6). The longer it will take the agent to execute the
actions that have been committed to, the more computation
can be done by the search before it must terminate the subse-
quent iteration. This can result in a positive feedback loop of
longer queued paths and yet more search time, allowing the
search to perform larger learning steps and ultimately reach-
ing the goal much faster. In contrast, LSS-LRTA* tries to
minimize total search effort, and thus avoids search during
execution. Under the GAT metric, concurrent search can be
regarded as free.

The second modification that Dynamic f̂ employs is an
inadmissible heuristic, notated ĥ (line 2). This value is our
unbiased best guess about what the node’s true f∗ value is,
rather than a lower bound. Just as f(s) = g(s) + h(s), we
will write f̂ = g(s) + ĥ(s). In Dynamic f̂ , the search fron-
tier is sorted on f̂ instead of f . While any ĥ could be used, in
experiments report below, we use a version of the admissible
h that is debiased online using the ‘single-step error global
average’ method of Thayer, Dionne, and Ruml (2011). Dur-
ing search, the error ε in the admissible h is estimated at ev-
ery expansion by the difference between the f value of the
parent node and the f value of its best successor (these will
be the same for a perfect h). If ε̄ is the average error over
all expansions so far and d(s) is an estimate of the remain-
ing search distance (number of edges along the path) from a
state s to the nearest goal, then ĥ(s) = h(s) + ε̄ ·d(s). Inad-
missible heuristics have shown promise in other suboptimal
search settings as well (Thayer 2012).

In Dynamic f̂ , the next action to take from the current
state is the one leading to the successor with the best f̂ value.
As noted by Burns, Kiesel, and Ruml (2013), this requires
some subtlety. If node a inherits its f value from a node b
on the search frontier, then the heuristic learning step (line
3) will update its h value using the path cost between a and

PlanRob 2015

87

α β

f(α) f(β)f(α)^ f(β)^

α β

f(α) f(β) f(α)^ f(β)^

β

f(α)f(β) f(α)^ f(β)^

α

Figure 3: The three scenarios considered by Ms. A*.

b (the difference in their g values) and b’s h value. The re-
maining error in the estimate of a’s f value will then derive
from the error in b’s h value. This is illustrated in Figure 2.
To take this into account, we compute ĥ(a) = h(a)+ ε̄·d(b).
This means that, as we learn updated h values, we record the
d values of the nodes they were inherited from.

Metareasoning
One of the first applications of metareasoning to heuristic
search was Decision-Theoretic A* (DTA*) (Russell and We-
fald 1991). DTA* emits actions individually, like a real-time
search, but at each step it estimates how much search to
perform. To do this, it weighs the time required to search
against the likelihood that further search will change the se-
lected action and the expected reduction in total GAT. If fur-
ther search is predicted to reduce the expected GAT more
than the time taken for the searching, then the algorithm im-
plicitly executes an identity action and performs additional
search. This approach is extremely elegant (and inspired
the approach taken in this paper). However, to estimate the
effects of further search, DTA* uses offline training data,
which can be laborious to gather. Furthermore, DTA* also
makes the assumption of a search space with disjoint sub-
trees, searching independently under the competing actions
that the agent might take next. Burns (2013) showed that it
performs poorly compared to modern search algorithms like
LSS-LRTA* that use a single lookahead search space.

More recently, a metareasoning approach has been em-
ployed for search in the form of regret minimization in
MDPs (Tolpin and Shimony 2012). This work attempts to
estimate the probabilistic gain of performing additional roll-
outs in a stochastic environment. Like DTA*, it considers
the actions available at the agent’s current state, and makes
its decision based on the likelihood of additional computa-
tion showing that the currently best action is surpassed by
a competitor. This is done by continually sampling the top
level actions until the incumbent is deemed sufficiently more
promising than its competitors.

A simplistic metareasoning analysis is used by the Ms. A*
algorithm of Burns (2013) to determine whether to take
identity actions and how much of the plan prefix to com-
mit to. Like Dynamic f̂ , Ms. A* uses an unbiased inad-
missible heuristic ĥ and defines f̂ = g + ĥ. Define α as
the action whose unbiased f̂ is lowest, and β as a compet-

ing action to be taken. As indicated in Figure 3, for each
action, Ms. A* interprets f̂ as the expected value of a be-
lief distribution regarding the location of the true f∗ cost of
the action and interprets the admissible f value as the trun-
cated left edge of that distribution. (This is reminiscent of
work on Bayesian reinforcement learning (Dearden, Fried-
man, and Russell 1998).) By definition, f̂(α) ≤ f̂(β). If
f(α) ≤ f(β) as well, then Ms. A* concludes that either α is
significantly better than β (top left panel in the figure) or the
two are so close that further search is not worth the negligi-
ble gain (top right panel). However, if f(β) < f(α) (lower
panel), then Ms. A* concludes that further search is war-
ranted. While this analysis is quick and easy, it completely
ignores the cost and likely effects of further search. The sim-
plicity of Ms. A* can lead it to take identity actions when
they do not result in improved results. O’Ceallaigh (2014)
showed empirically that Ms. A* can sometimes outperform
previous real-time algorithms, but that it is itself outper-
formed by the more principled algorithms presented below.

Deciding When to Act
We now turn to the first of the two metareasoning schemes
we propose in this paper. It concerns ‘identity actions’,
which are special actions available in some domains that the
agent may take but that don’t change the problem state, but
merely allow the agent to delay acting. (Such an action is
also known as a ‘no-op’, although we prefer to emphasize
that we are assuming the state does not change.) They allow
the agent to continue searching from the same initial state
as in the previous search iteration, without discarding the
lookahead search space, and therefore they allow the agent
to look further ahead and gather more information about the
potential long-term effects of choosing the different actions
applicable in the current state.

We call our algorithm f̂IMR, as it decides whether to take
an identity action by using a metareasoning process like that
of DTA*. It is a variant of Dynamic f̂ . Whenever an iden-
tity action is applicable in the current state, the algorithm
attempts to estimate whether the time that could be spent
planning during the identity action will be more than offset
by the expected improvement in GAT resulting from being
more likely to select a better action. If so, the learning step
is skipped, an identity action is issued, and the search con-
tinues from where it left off.

More formally, if tidentity is the duration of the identity
action and B is the expected benefit of search (in terms of
GAT reduction), then f̂IMR will take the identity action iff

B > tidentity . (1)

The value of tidentity is known (likely selected by the sys-
tem designer); it is B that is more difficult to estimate. Note
that search will only provide benefit if, instead of taking the
currently most promising action α, we select some other ac-
tion β instead. So we must estimate the probability that,
after searching, our estimate of β’s expected cost has fallen
below α’s, and if so, by how much. Note that we choose
actions based on their f̂ values, so what we need to know
is where α and β’s f̂ values are likely to be after we have

PlanRob 2015

88

performed more search. As in any metareasoning approach,
we will need to make some significant assumptions and ap-
proximations in order to make our method practical.

We approach this problem from a perspective similar to
that of Ms. A*: we view our belief about the value of an
action a as a probability distribution over possible values,
with pa(x) representing the probability density that a’s true
f∗ value is x. Thinking back to Dynamic f̂ , we can see that
further lookahead will decrease the error in a’s backed up
f value, represented in our f̂ estimate as the d value that a
inherits from its best frontier descendant b. If we view our
pa(x) belief distribution, as we did with Ms. A*, as cen-
tered on f̂ with variance controlled by ε̄ · d(b), then we see
that additional search will decrease our uncertainty about a’s
value, as we would expect. More specifically, because ε̄·d(b)
represents our estimate of the expected error in a’s f value
(f̂(a)− f(a)), we interpret it as an estimate of the standard
deviation of pa, and its square as the variance of the belief
distribution: 1

σ2
pa = (ε̄ · d(b))2. (2)

Now what we need in order to computeB is an estimate of
where f̂(a) might be located if we were to have performed
additional search. We represent this too as a probability
distribution, with p′ā(x) representing the probability density
that f̂(a) = x after further search. We model p′ā as a Gaus-
sian distribution. We first note that, because the current f̂(a)
value is our best guess about the true value of a, we can use
it as the mean of p′ā. Second, we note that, if no further
search were done, the variance of p′ā should equal that of pa,
and if we searched all the way to a goal, then the variance
of p′ā would be zero, since we would know its true value.
Therefore, we make the (admittedly strong) assumption that
the variance of p′ā is

σ2
p′ā

= σ2
pa · (1−min(1,

ds
d(b)

)) (3)

where ds is the distance, in search steps, along the path to
a goal that we expect to cover during the search. In other
words, we take the variance of pa as the variance of p′ā, but
scaled according to how far toward the goal we expect to
get. To estimate ds, we use the concept of expansion delay
introduced by Dionne, Thayer, and Ruml (2011). Expansion
delay estimates the average progress of a search along any
single path. It is easily calculated as the average number
of expansions from when a node is generated until it is ex-
panded. Our implementation tracks path-based averages and
uses the average computed during one iteration as the value
for the next. Given the number of expansions that the search
will perform within the duration of the candidate identity

1An implementation detail: although the lookahead search of
f̂IMR uses the same ‘single-step global average’ method for es-
timating ε̄ as Dynamic f̂ did, preliminary studies (O’Ceallaigh
2014) showed that the alternative ‘path-based correction’ approach
of Thayer, Dionne, and Ruml (2011) gave a better estimate when
used to compute the variance of the desired belief distribution, so
that method is used when computing variance.

Figure 4: Handcrafted pathfinding problems. Clockwise
from top left: nested cups, wall, slalom, uniform.

action,

ds =
expansions

delay
. (4)

This gives us all the ingredients for our belief distribution:

p′ā ∼ N(f̂(a), σ2
p′ā

). (5)

Now that we can estimate how our beliefs about the values
of actions might change with search, we can return to our
central concern: estimating the possible benefit of search. If
the value of the most promising action α were to become xα
and the value of some competing action β were to become
xβ , the benefit would be

b(xα, xβ) =

{
0 if xα ≤ xβ
xα − xβ otherwise

(6)

because we would have done α if we had not searched. Now
we just compute the expected value over our estimates of p′ᾱ
and p′

β̄
:

B =

∫
xα

p′ᾱ(xα)

∫
xβ

p′β̄(xβ)b(xα, xβ)dxβdxα. (7)

In the implementation tested below, we use a straightforward
numerical integration with 100 steps.

Experimental Results
To assess whether f̂IMR behaves as we would expect,
we constructed four simple handcrafted instances of grid
pathfinding, where it is easy to assess algorithm behavior.
To gauge whether f̂IMR might be useful in practice, we then
tested it on four larger more realistic real-time search bench-
mark domains.

Handcrafted Instances
Small versions of the four handcrafted pathfinding problems
are sketched in Figure 4, with @ marking the start and a star
marking the goal. Movement was four-way and the heuris-
tic was Manhattan distance, ignoring obstacles. To see a full
spectrum of behaviors and have a good basis for assessment,
we tested A*, an off-line optimal search; RTA*, a simple

PlanRob 2015

89

instance algorithm GAT short identity
A* 166 90 90
hill-climbing 3108 1 1
RTA* 1666 1 1

cups LSS-LRTA* 3500 1 1
f̂ 5322 1 1
f̂IMR 970 255 255
f̂PMR 4238 646 1
Mo’RTS 241 83 82
A* 102 43 43
hill-climbing 241 1 1
RTA* 723 1 1

wall LSS-LRTA* 523 1 1
f̂ 717 1 1
f̂IMR 101 31 31
f̂PMR 441 100 1
Mo’RTS 140 64 62
A* 29578 27180 27180
hill-climbing 2999 1 1
RTA* 2997 1 1

uniform LSS-LRTA* 3195 1 1
f̂ 2997 1 1
f̂IMR 2997 1 1
f̂PMR 2997 1 1
Mo’RTS 2997 1 1
A* 177 27 27
hill-climbing 1974 1 1
RTA* 2168 1 1

slalom LSS-LRTA* 382 1 1
f̂ 638 1 1
f̂IMR 161 6 6
f̂PMR 4794 662 1
Mo’RTS 161 6 6

Table 1: Performance on handcrafted pathfinding instances.

real-time search; LSS-LRTA*, a modern real-time search;
and Dynamic f̂ , the algorithm that f̂IMR extends. We also
tested a greedy hill-climbing algorithm that performs only
one expansion and moves to the best child (equivalent to
RTA* with a lookahead of one). In addition to measuring
our central figure of merit, GAT, we also counted the num-
ber of short trajectories, when an algorithm chooses not to
commit to all the actions along the best path to the looka-
head frontier, and the number of identity actions executed.
The two counts are identical for f̂IMR but will differ for later
algorithms in this paper. For all algorithms, the first search
iteration is considered an identity action. For A*, all itera-
tions are identity actions until the search is complete and the
agent starts moving. To simplify reasoning about the algo-
rithms, we disabled dynamic lookahead, so Dynamic f̂ and
f̂IMR act like LSS-LRTA* and wait to search until the last
committed action has begun executing. The lookahead (or
equivalently, the time per action) was set to 10 expansions.

The first instance, nested cups, has sets of walls form-

ing nested local minima which temporarily ensnare real-time
searches. The full instance was 51 × 29 (w × h) with cor-
ridors two spaces wide and a 3 × 3 space in the innermost
cup. One would expect A* to outperform hill-climbing, for
example, because A* expands each state at most once, while
hill-climbing and similar real-time searches must revisit the
same states repeatedly as they build up enough learning to
escape the minima. Experimental results are shown in Ta-
ble 1, and indeed A* has the best performance, while most
of the real-time methods suffer (the f̂PMR and Mo’RTS algo-
rithms will be introduced below). Notably, however, f̂IMR is
able to detect that the heuristic is deceptive and that planning
ahead is useful, as it executes a substantial number of iden-
tity actions and performs 5.5 times better than the f̂ method
it is based on. We had expected f̂ to perform well, but as
it learns that the heuristic significantly underestimates, it in-
creases ε̄, which causes it to behave more greedily. With an
unreliable heuristic, f̂IMR chooses more deliberation, which
appears to be a better strategy.

The wall instance, where a single flat obstacle in the mid-
dle of the map blocks the goal, elicits similar behavior be-
cause the wall creates a single large local minimum. The full
instance was 41× 21 with a gap of one on either side of the
wall. f̂IMR executes many identity action and performs just
as well as A*, while f̂ is 7 times worse.

In the uniform instance, where small obstacles are uni-
formly distributed across the map, the local minima each
require only one step to escape. The full instance was
1200 × 1200. We would expect the real-time algorithms
to perform well, while A* would labor to determine the true
optimal path among many close contenders. The results con-
firm these expectations, with f̂ reaching the goal in a tenth of
the time of A*. f̂IMR recognizes that identity actions are not
needed and matches the performance of the other real-time
searches.

The final handcrafted instance, slalom, features a long and
winding path down the center of the map to the goal, with a
quicker option being to bypass the slalom via either side of
the map. The full instance was 37 × 124 with the corridor
2 spaces wide and a 3-space margin around the outside. As
the results indicate, the simple real-time algorithms commit
to following the winding path while A* is able to find the
outside path and reach the goal much faster. LSS-LRTA*
and f̂ start down the path but eventually turn back, while
f̂IMR quickly recognizes the deceptive heuristic, executes a
few key identity actions, and reaches the goal even faster
than A*.

To summarize, f̂IMR appears able to successfully adapt
to behave more like A* or more like hill-climbing as the
situation requires. While these small benchmarks are very
promising, it remains to be seen if the algorithm can perform
well on full-scale benchmarks.

Larger Benchmarks
We used four benchmarks: grid pathfinding in the orz100d
map from Dragon Age: Origins using the 25 start/goal com-
binations for which the optimal solution cost was high-

PlanRob 2015

90

est (Sturtevant 2012), Korf’s 100 instances of the 15-
puzzle (Korf 1985), 100 randomly selected instances of
a platformer-style video game (Burns, Kiesel, and Ruml
2013), and 25 randomly selected instances of a Frogger-
style traffic avoidance game (O’Ceallaigh 2014). The video
games are examples of dynamic domains closer to robotics,
where users expect agents to begin acting promptly and
achieve goals quickly, while the sliding tile puzzle is a clas-
sic benchmark. While these domains are deterministic and
fully observable, the time pressure of optimizing GAT high-
lights the trade-off between deliberation and acting. All but
the traffic domain feature identity actions.

We used full dynamic lookahead for Dynamic f̂ and f̂IMR.
We tested at five different ‘search speeds’, varying the num-
ber of expansions allowed per unit of action duration in pow-
ers of 10 from 102 to 106 inclusive. For each instance, algo-
rithms were given a limit of 7 GB of memory and 10 min-
utes of CPU time. No data point is plotted for any setting
where an algorithm failed to reach the goal on one or more
instances within the resource constraints.

We also tested RTA* and LRTA* (Korf 1990), DTA*, and
Ms. A*, but their results were inferior and uninteresting, so
we do not include them in the plots.

The left column of Figure 5 presents the results of f̂IMR,
with each row showing a different domain. The x axis of
each plot varies the search speed and the y axis shows the
GAT, normalized as a factor of the GAT of an oracle that
immediately commits to an optimal plan without searching,
shown on a log10 scale. The normalization reduces the vari-
ance within each domain, as some instances are easier than
others. Error bars show 95% confidence intervals on the
mean over all the instances in the domain.

The top left panel shows the pathfinding domain. The
heuristic is quite accurate and A* is hard to beat. But
among the real-time algorithms, f̂IMR shows a slight advan-
tage when few expansions can be performed. The second
panel shows the 15-puzzle, and f̂IMR gives a pronounced
advantage. The trade-off between behaving like A* when
search is fast and behaving like Dynamic f̂ when search is
slow is evident. In the platformer domain, Dynamic f̂ and
f̂IMR perform similarly, both better than LSS-LRTA*. And
in the traffic domain, there are no identity actions, so f̂IMR is
identical to Dynamic f̂ , both of which are better than LSS-
LRTA*.

In summary, results in both the small handcrafted in-
stances and the larger benchmarks suggest that a metarea-
soning approach to deciding when to commit to actions and
when to plan further is quite promising, matching or outper-
forming existing real-time algorithms.

Deciding How Many Actions to Commit To
We now turn to the second of the two metareasoning
schemes we propose in this paper. Recall that modern real-
time search algorithms like LSS-LRTA* and Dynamic f̂ ex-
plore a local search space and then commit to a plan prefix
leading to a frontier node (line 5 in Figure 1). While f̂IMR

addressed the issue of whether to commit or search further,

a
c

d
e

f
b

1

1

1
1 11

4
2

Figure 6: Useful (d) versus not useful (@, a) decision points.

the issue we consider now is, given that we commit to act-
ing, how much of the plan prefix should we commit to? If
there exists some state s along the prefix P where the action
αs selected at s is not certainly better than an alternative βs,
it might prove worthwhile to cut P short such that it ends
at s. This path prefixing operation allows the search to pay
attention to promising paths which might otherwise be ig-
nored. We call this algorithm f̂PMR, as it considers prefixes
using metareasoning.

We use the same assessment of the benefit of search as
in f̂IMR, computing B at the nodes along P and stopping
at the first one for which search appears worthwhile. In this
situation, we are not comparing the benefitB against the du-
ration of an identity action, but rather against the more neb-
ulous costs of ‘starting search at a point before the frontier’.
We tested two approaches to assessing these costs. The first
was to assume that they were zero, leading us to commit to
search at the first node for which B was positive. The sec-
ond, and more successful, was to interpret the cost of stop-
ping short of the frontier as the expected time required to
regenerate the nodes from the new start state to the current
lookahead frontier. We estimate this as the number of steps
in the pruned suffix of P times the expansion delay, divided
by the number of expansions per action duration. While this
does estimate the amount of repeated work, it is not fully
satisfactory, as this repeated work will likely be done con-
currently with search and might not lead to increased GAT.
However, it will certainly prevent the search from looking as
far ahead in the search space as it would if we committed to
the entire prefix, because a smaller prefix will have a smaller
duration (line 6 in Figure 1).

A second complication is that we only wish to consider
performing more search at nodes along P that have succes-
sors that lie on best paths to different frontier nodes. While
there will likely be alternative actions available at every step
of the path, some of them may represent unnecessarily ex-
pensive temporary deviations from P , rather than truly use-
ful alternatives. Figure 6 gives a concrete example. Edges
drawn with solid lines also represent parent pointers back
from the successor. The best path P is 〈@, a, d, e〉. Node
d represents a useful decision point because it has multi-
ple successors that lie along best paths to different fron-
tier nodes. Node a is not a useful decision point, because
c merely represents a longer way to reach the same frontier
node as d. The agent’s current state is also not a useful deci-
sion point, as b does not lie along the best known path to f,
so there is no use in going that way. Computing usefulness
just requires bookkeeping during the learning step, record-

PlanRob 2015

91

orz100d

expansions per unit duration log10
642

G
AT

 lo
g1

0
fa

ct
or

 o
f o

pt
im

al
 0.4

0.2

0

 LSS-LRTA*
Dyn fHat

Dyn FHat_IMR
A*

orz100d

expansions per unit duration log10
642

G
AT

 lo
g1

0
fa

ct
or

 o
f o

pt
im

al
 0.4

0.2

0

 LSS-LRTA*
Dyn fHat

Dyn FHat_PMR
A*

orz100d

expansions per unit duration log10
642

G
AT

 lo
g1

0
fa

ct
or

 o
f o

pt
im

al
 0.4

0.2

0

 LSS-LRTA*
Dyn fHat

Dyn FHat_PMR
Dyn FHat_IMR

Dyn MoRTS

15-puzzle

expansions per unit duration log10
642

G
AT

 lo
g1

0
fa

ct
or

 o
f o

pt
im

al
 0.4

0.2

0

A*
 LSS-LRTA*

Dyn fHat
Dyn FHat_IMR

15-puzzle

expansions per unit duration log10
642

G
AT

 lo
g1

0
fa

ct
or

 o
f o

pt
im

al
 0.4

0.2

0

A*
 LSS-LRTA*

Dyn FHat_PMR
Dyn fHat

15-puzzle

expansions per unit duration log10
642

G
AT

 lo
g1

0
fa

ct
or

 o
f o

pt
im

al
 0.4

0.2

0

 LSS-LRTA*
Dyn FHat_PMR

Dyn fHat
Dyn FHat_IMR

Dyn MoRTS

platformer

expansions per unit duration log10
642

G
AT

 lo
g1

0
fa

ct
or

 o
f o

pt
im

al
 0.4

0.2

0

A*
 LSS-LRTA*

Dyn fHat
Dyn FHat_IMR

platformer

expansions per unit duration log10
642

G
AT

 lo
g1

0
fa

ct
or

 o
f o

pt
im

al
 0.4

0.2

0

A*
 LSS-LRTA*

Dyn fHat
Dyn FHat_PMR

platformer

expansions per unit duration log10
642

G
AT

 lo
g1

0
fa

ct
or

 o
f o

pt
im

al
 0.4

0.2

0

 LSS-LRTA*
Dyn fHat

Dyn FHat_IMR
Dyn MoRTS

Dyn FHat_PMR

traffic

expansions per unit duration log10
642

G
AT

 lo
g1

0
fa

ct
or

 o
f o

pt
im

al
 0.04

0.02

0

A*
 LSS-LRTA*

Dyn fHat
Dyn FHat_IMR

traffic

expansions per unit duration log10
642

G
AT

 lo
g1

0
fa

ct
or

 o
f o

pt
im

al
 0.04

0.02

0

A*
 LSS-LRTA*

Dyn fHat
Dyn FHat_PMR

traffic

expansions per unit duration log10
642

G
AT

 lo
g1

0
fa

ct
or

 o
f o

pt
im

al
 0.04

0.02

0

 LSS-LRTA*
Dyn fHat

Dyn FHat_IMR
Dyn FHat_PMR

Dyn MoRTS

Figure 5: Goal achievement time as a function of search speed. One problem domain per row, different algorithms per column.

PlanRob 2015

92

platformer

expansions per unit duration log10
642

G
AT

 lo
g1

0
fa

ct
or

 o
f o

pt
im

al
 0.4

0.2

0

All Nodes
Useful Only

Useful Only + Cost

Figure 7: Variants of f̂PMR.

ing for each node the frontier node from which it inherits
its value, or nil if the inheritance happened through a non-
parent pointer (indicating that the node does not lie on a best
path to the frontier). f̂PMR then only performs its metarea-
soning at useful decision nodes along P , where at least two
successors lie on best paths to distinct non-nil frontier nodes.

Experimental Results
Figure 7 presents an example of how considering only nodes
representing useful choices and considering even a rough
cost for pruning a plan prefix leads to improved performance
for f̂PMR.

The performance of f̂PMR on the handcrafted instances is
included in Table 1. While it led to some improvements over
f̂ on cups and wall, it performed poorly on slalom. Overall,
it appears to provide less of a benefit than f̂IMR. Its behav-
ior on the larger benchmarks is shown in the middle column
of Figure 5. It performs comparably to Dynamic f̂ except
on traffic, where it outperforms all other algorithms. The
performance on larger benchmarks is reminiscent of f̂IMR,
in that f̂PMR performs similarly to Dynamic f̂ except on
one domain, where it shows a pronounced advantage. This
brings up the obvious possibility of combining the two meth-
ods.

Mo’RTS
We investigated the combination of both the identity and
prefix techniques in the same algorithm, which we call
Mo’RTS (for metareasoning online real-time search, pro-
nounced ‘Moe RTS’). Mo’RTS checks if an identity action is
applicable at the current state even if it is not a true decision
node. Only if acting seems preferable to search is the best
path checked for the prefix length to which the algorithm
should commit.

The performance of Mo’RTS on the handcrafted instances
is included in Table 1. Surprisingly, it outperforms both
f̂IMR and f̂PMR on the cups instance, coming very close
to A*’s performance. On the wall instance, it performs al-
most as well as f̂IMR, and the same as f̂IMR on uniform and

slalom. Performance on larger benchmarks is shown in the
right column of Figure 5. On pathfinding and the 15-puzzle,
where f̂IMR is strong, Mo’RTS does just as well. And
on traffic and platformer, where f̂PMR is strong, Mo’RTS
matches its performance. Overall, the results show signifi-
cant improvement over the state-of-the-art LSS-LRTA* and
Dynamic f̂ algorithms.

Discussion
While the methods we introduce appear to work well across
a variety of domains, they are based on several assumptions.
First, both Dynamic f̂ and metareasoning methods assume
access to an inadmissible ĥ, which in this work we create
using on-line debiasing. There is no strong practical theory
that we currently know of to explain when such a method
will result in a reasonable heuristic or not. Thayer (2012,
Figure 4-3) and O’Ceallaigh (2014, Table 3.2) suggest that
debiasing yields an inaccurate heuristic, yet it is clearly ef-
fective. Second, we make several assumptions in order to
approximate p′ā, including a Gaussian form, a linear vari-
ance reduction with lookahead, and a prediction of future
expansion delay. In our limited investigations (O’Ceallaigh
2014), our Gaussian approximation of p′ā seems remarkably
poor, and it is surprising that the metareasoning algorithms
work as well as they do. There is likely much room remain-
ing for improvements.

As we mentioned above, we do not currently have a fully
satisfactory way in f̂PMR to understand the implicit cost of
choosing to commit to a plan prefix that stops short of the
lookahead frontier. Using a short prefix results in less search
time for the following iteration, which limits the number of
actions to which that iteration may commit. Both f̂IMR and
f̂PMR are essentially myopic. Explicitly reasoning about all
this may be too expensive for on-line metareasoning.

In this study, we limited lookahead in node generations,
not wall time. While this simplifies replication of results, it
ignores the many issues necessary for deploying real-time
search, such as predictable OS interrupt servicing and mem-
ory management. Considering an identity action is only
done once per search iteration, if one is applicable at the
agent’s current state, and so the CPU overhead is likely neg-
ligible. Consider possible prefixes is done at potentially ev-
ery node of the best path to the frontier, if all nodes are use-
ful. (Computing usefulness adds negligible overhead, as ex-
plained above.) It remains to be seen whether this overhead
is significant in practice, although in most domains there are
many times more nodes generated than there would be along
any single path to the frontier.

If the overhead of metareasoning could be made low
enough, it may be beneficial to check more frequently
whether the current lookahead gives sufficient confidence
for committing to one or more actions. This would decou-
ple the search iterations from the action start/end times. It
would also provide an alternative approach to considering
path prefix decisions.

Our study has demonstrated concurrent planning and ex-
ecution with a real-time state-space planner. The real-time

PlanRob 2015

93

search approach certainly applies to a plan-space planner,
but the agent commits to decisions in the order in which they
are made, which may be awkward if decisions early in the
search space concern actions that cannot be executed until
later. In this sense, real-time search encourages the search
space to place decisions that the agent is currently facing
early in the search space.

Metareasoning has previously been used for directly guid-
ing expansion decisions in off-line search, in which all plan-
ning occurs before any acting (Burns, Ruml, and Do 2013),
and in contract search, where the planner faces a deadline
(Dionne, Thayer, and Ruml 2011). It has also been used to
decide which of multiple available heuristics to use in A*
(Tolpin et al. 2013), IDA* (Tolpin et al. 2014), and CSP
solving (Tolpin and Shimony 2011). This recent generation
of work is fulfilling the early promise heralded by pioneers
from the late 1980s such as Dean and Boddy (1988) and
Russell and Wefald (1991).

In the context of robotics, our study has illustrated concur-
rent planning and acting, but only on deterministic domains.
However, because each iteration of a real-time search can
consider an updated world model or even updated goals, the
approach should generalize easily to settings in which new
information or new goals arrive, or in which execution fail-
ures occur.

Conclusion
In this work, we considered how metareasoning can be ap-
plied to the problem of concurrent planning and acting. We
presented two methods for deciding how to commit to ac-
tions during a real-time search and investigated their behav-
ior on both small easily-understood benchmarks and larger
more realistic problems. Our techniques allow a single al-
gorithm to dynamically adapt its behavior to the problem
at hand, quickly committing to actions like greedy hill-
climbing when possible or deliberating before acting like A*
when necessary. Empirically, our methods match or outper-
form the state-of-the-art Dynamic f̂ real-time search algo-
rithm. This work provides a principled perspective on cur-
rent planning and acting, and we hope to generalize it to
address additional challenges in planning for robotics.

Acknowledgments
We gratefully acknowledge support from NSF (award
1150068), preliminary work by Sofia Lemons, code by Scott
Kiesel and Ethan Burns, and discussions with Solomon Shi-
mony, David Tolpin, and Ariel Felner.

References
Burns, E.; Kiesel, S.; and Ruml, W. 2013. Experimental
real-time heuristic search results in a video game. In Pro-
ceedings of the Sixth International Symposium on Combina-
torial Search (SoCS-13).
Burns, E.; Ruml, W.; and Do, M. B. 2013. Heuristic search
when time matters. Journal of Artificial Intelligence Re-
search 47:697–740.
Burns, E. 2013. Planning Under Time Pressure. Ph.D.
Dissertation, University of New Hampshire.

Dean, T. L., and Boddy, M. S. 1988. An analysis of time-
dependent planning. In Proceedings of the 7th National
Conference on Artificial Intelligence (AAAI-88), 49–54.
Dearden, R.; Friedman, N.; and Russell, S. 1998. Bayesian
Q-learning. In Proceedings of AAAI-98, 761–768.
Dionne, A. J.; Thayer, J. T.; and Ruml, W. 2011. Deadline-
aware search using on-line measures of behavior. In Pro-
ceedings of the Symposium on Combinatorial Search (SoCS-
11). AAAI Press.
Ghallab, M.; Nau, D.; and Traverso, P. 2014. The actor’s
view of automated planning and acting: A position paper.
Artificial Intelligence 208:1–17.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions of Systems Science and Cybernet-
ics SSC-4(2):100–107.
Hernández, C.; Baier, J.; Uras, T.; and Koenig, S. 2012.
Time-bounded adaptive A*. In Proceedings of the 11th In-
ternational Conference on Autonomous Agents and Multia-
gent Systems (AAMAS-12), 997–1006.
Koenig, S., and Sun, X. 2009. Comparing real-time and in-
cremental heuristic search for real-time situated agents. Au-
tonomous Agents and Multi-Agent Systems 18(3):313–341.
Korf, R. E. 1985. Depth-first iterative-deepening: An opti-
mal admissible tree search. Artificial Intelligence 27(1):97–
109.
Korf, R. E. 1990. Real-time heuristic search. Artificial
Intelligence 42:189–211.
O’Ceallaigh, D. 2014. Metareasoning in real-time heuristic
search. Master’s thesis, University of New Hampshire.
Russell, S., and Wefald, E. 1991. Do the Right Thing: Stud-
ies in Limited Rationality. MIT Press.
Sturtevant, N. 2012. Benchmarks for grid-based pathfind-
ing. Transactions on Computational Intelligence and AI in
Games 4(2):144–148.
Thayer, J. T.; Dionne, A.; and Ruml, W. 2011. Learning
inadmissible heuristics during search. In Proceedings of the
Twenty-first International Conference on Automated Plan-
ning and Scheduling (ICAPS-11).
Thayer, J. 2012. Heuristic Search Under Time and Quality
Bounds. Ph.D. Dissertation, University of New Hampshire.
Tolpin, D., and Shimony, S. E. 2011. Rational deployment
of CSP heuristics. In Proceedings of the 22nd International
Joint Conference on Artificial Intelligence (IJCAI-11), 680–
686.
Tolpin, D., and Shimony, S. E. 2012. MCTS based on simple
regret. In Proceedings of the Twenty-Sixth AAAI Conference
on Artificial Intelligence.
Tolpin, D.; Beja, T.; Shimony, S. E.; Felner, A.; and Karpas,
E. 2013. Toward rational deployment of multiple heuris-
tics in A*. In Proceedings of the 23rd International Joint
Conference on Artificial Intelligence (IJCAI-13).
Tolpin, D.; Betzalel, O.; Felner, A.; and Shimony, S. E.
2014. Rational deployment of multiple heuristics in IDA.

PlanRob 2015

94

In Proceedings of the 21st European Conference on Artifi-
cial Intelligence (ECAI-14), 1107–1108.

PlanRob 2015

95

Robust Efficient Robot Planning through Varying Model Fidelity

Breelyn Kane Styler and Reid Simmons
Robotics Institute

Carnegie Mellon University
5000 Forbes Ave

Pittsburgh, PA 15213
{breelynk,reids}@cs.cmu.edu

Abstract

Long-term robot autonomy requires reliable execution
success. Execution success improves by modeling the
real world accurately during planning time. Unfortu-
nately, computing a full plan in highly accurate mod-
els is often intractable since accurate world models in-
crease the dimensionality of the planning space. Addi-
tionally, planning in the highest model is unnecessary
for simple uncluttered parts of the environment. Current
planners achieve tractable planning times by using ap-
proximate models. However, these approximations re-
duce accuracy resulting in decreased execution success.
We introduce an approach that balances planning time
efficiency while maintaining execution success. This is
accomplished by leveraging a varying fidelity model hi-
erarchy. The approach identifies infeasible execution lo-
cations and uses a model selection process to locally
re-plan in the minimum fidelity model necessary to cir-
cumvent the infeasibility. This effectively generates a
single, mixed-fidelity plan. We evaluate the approach
on a simulated differential drive robot that navigates a
constrained environment. The robot maintains its rate of
successful task completion while conserving computa-
tion resources by switching from lower fidelity models
only when needed.

1 Introduction
Autonomous robots leverage planning and models to intel-
ligently operate in the real world. Furthermore, autonomous
robots deployed for long periods need to be robust to fail-
ure. They can minimize runtime failures by reasoning about
models that capture execution feasibility at plan-time. Mod-
els can be arbitrarily complex to better represent the inter-
action between the robot and its environment. These high
fidelity models often include higher dimensions, dynamics
and differential constraints. However, planning with such
complex models is computationally expensive. Therefore,
model approximation may be necessary to achieve tractable
global planning times for complex tasks. The loss of model
fidelity from these approximations leads to increased fail-
ure rates in complex locales of the environment where lower
fidelity models are insufficient.

Model approximations sacrifice fidelity for computation
feasibility. These approximations are sufficient for simple
regions in the task space. For example, a model that con-

siders detailed terrain vehicle interactions is unnecessary for
large flat open spaces. They are insufficient, however, for
complex portions of the environment. For that reason, the
robot’s non-uniform execution space suggests plan savings
by leveraging multiple models. Our work attempts to stay as
long as possible in the lowest fidelity model applicable in
order to decrease plan computation time without sacrificing
execution quality.

Our approach organizes a given set of planning models
into a directed hierarchical graph. These varying fidelity
models, when combined, approximate the continuous high-
est possible real-world model. The approach attempts to de-
tect the parts of the lower fidelity plans that are infeasi-
ble for execution and repair them using re-planning through
higher fidelity model selection. The model selection process
uses prior plans to autonomously select the most applicable
higher fidelity model in the hierarchy. This higher fidelity
model is used to locally plan to an intermediate goal where
the previous lower fidelity plan is resumed. This approach
creates a mixed model plan.

Our approach increases robot robustness by giving robots
the ability to autonomously decide to re-plan in higher
fidelity model representations that inherently incorporate
more information. This will improve performance over only
using a lower fidelity model, and it will reduce planning
times over only using the highest fidelity model. Model
switching combines the robustness of a high-fidelity plan
with the efficiency of an abstract representation by using
higher fidelity models only when necessary.

We ran a series of experiments, in simulation, with a dif-
ferential drive robot, and used wheeled mobile robot motion
planning models for our testing. In our results, we demon-
strate failure rates and planning times when using a fixed sin-
gle model versus autonomously switching between models
of varying fidelity. Our approach creates plans that maintain
robustness, and take significantly less time to plan, overall,
than planning from the start using the highest fidelity model.

2 Related Work
Model generation is prevalent in the robotics community.
For instance, there are models for humanoid balancing
(Stephens 2007), physics based models for manipulation
planning (Dogar et al. 2012), and models for wheeled robots
that more accurately capture real world trajectories (Seeg-

PlanRob 2015

96

miller and Kelly 2014). These previous works demonstrate
different model types that increase robustness as the fidelity
increases. These works inspire the use of a multi-model ap-
proach, but they use hard coded rules for knowing what
model to use, and do not include a switching strategy.

Adjusting the resolution in a plan could be considered a
form of model fidelity switching. The following works adapt
the planning space resolution locally around the robot, but
do not vary the model fidelity throughout the same plan
(Kambhampati and Davis 1986), (Steffens, Nieuwenhuisen,
and Behnke 2010), (Behnke 2004). Our strategy varies mod-
els throughout the same plan and changes the resolution of
both the state and action spaces.

Our use of hierarchical models is inspired by other hi-
erarchical approaches (Fernández-Madrigal and González
2002), (Barbehenn and Hutchinson 1995) as well as hierar-
chical approaches in task motion planning that recognize the
need to consider lower-level motion plans in task space for
plan success (Wolfe, Marthi, and Russell 2010), (Kaelbling
and Lozano-Pérez 2011).

In addition to a model hierarchy our work uses re-
planning to switch between varying fidelity models. This is
motivated by previous work in re-planning. Re-planning is a
technique that has been in symbolic planning since early mo-
bile robots (Fikes, Hart, and Nilsson 1972). The execution
monitoring portion of the planner PLANEX included ways
to regenerate unsuccessful plan actions with different argu-
ments. Re-planning is also prevalent in the motion planning
community. Motion planning uses re-planning in incremen-
tal search (Stentz 1995) (Koenig and Likhachev 2002), and
sampling based algorithms (Bruce and Veloso 2002) (Fergu-
son, Kalra, and Stentz 2006). Our approach re-plans between
different hierarchical levels of the configuration space and
workspace including reasoning about differential constraints

Many previous works focus on when to switch between
models rather than reasoning about what detail the model
contains before switching. Our work contains an additional
model selection stage that most related works do not. This
stage determines what detail level is most applicable for re-
planning.

Related work, such as (Howard and others 2009), uses
fixed strategies by focusing on when to switch between lev-
els of detail. This is apparent in work that only has two lev-
els, such as a higher level global plan that guides a low level
continuous planner (Knepper and Mason 2011). Similarly
hybrid planning switches between a distinct discrete plan
and more focused continuous planner (Plaku, Kavraki, and
Vardi 2010) as occurs in the SyClop planning framework.
This also occurs in (Choi, Zhu, and Latombe 1989) where
a contingency ”channel” with many possible motion plans
guides a lower-level potential field controller. Other work
(Göbelbecker, Gretton, and Dearden 2011) divides the plan-
ning space between task and observation level plans simi-
lar to the division between global and local planners. They
switch between a fast sequential ”classical” planner, that
generates an overall strategy, and more expensive decision-
theoretic planning for abstracted sub problems.

Multi-modal and multi-stage work also contain fixed
switching strategies. They switch between different planner

types based on the modal discretization of the motion plan-
ning domain. Multi-modal motion planning for humanoid
manipulation (Hauser, Ng-Thow-Hing, and Gonzalez-Baños
2011) generate trajectories within a single mode and rea-
son about the motion transitions as targets. The levels of
mode ”classes” are pre-defined with such modes as: walk-
ing, reaching left, reaching right etc, each with their own
constraints and dynamics. Work by (Hauser and Latombe
2009) also divides the space into modes based on the differ-
ent dimensions in motion configuration space. They sample
transitive connections between modes but do not reason ex-
plicitly about the detail they are switching to. Lastly, work
by (Sucan and Kavraki 2011) for task motion multigraphs
also contain predefined points where switching occurs. This
work decides between left and right arm motion trajectories
which could be viewed as different models. The decision of
when to switch is predefined between tasks and the selec-
tion criteria is based on computation time. Our model selec-
tion criteria reasons about task success and the point when
to switch to a new model is not predefined.

A work that is more similar to ours graduates motion
primitive fidelity along a state lattice (Pivtoraiko and Kelly
2008). They change the fidelity between replans in the mo-
tion planning workspace. They also recognize that ”partially
or completely unknown” regions of the space can use lower
fidelity representations than regions most relevant to the cur-
rent problem. The work also claims that previous multi-
resolution work is more systematic while theirs allows dif-
ferent resolution regions to move over time. The amount of
fidelity around the robot is fixed and moves like a sliding
window, which is different than our mixed fidelity plan.

Our work is mainly inspired by Gochev’s previous
work with adaptive dimensionality (Gochev, Safonova, and
Likhachev 2013) (Gochev et al. 2011) (Gochev, Safonova,
and Likhachev 2012). That work divides the state space into
two parts; a high dimensional and low dimensional graph
with defined transition probabilities. They use a state lat-
tice planner with pre-computed grid transitions. Unlike other
works, they are able to mix the two subspaces into a sin-
gle plan. Our work also has this same effect, of generating
plans that mix dimension spaces, through adaptive switch-
ing. They also have a tracking phase (similar to our plan
checking stage) to determine where to insert higher fidelity
states in a low fidelity plan. Our novelty is we use a com-
plete hierarchy of models. Therefore, our algorithm contains
an additional model selection stage. In addition, our models
incorporate more than just the state space dimensionality.

3 Approach
Our algorithm for robust plan generation consists of three
main stages that loop:

1. Plan generation.
Here a plan is generated for a particular start and goal state
using a given model.

2. Feasibility detection.
This is the plan checking stage where execution problems
are determined. This stage answers the question of ’when’

PlanRob 2015

97

to switch between models in the plan. 1

3. Model selection.
This stage decides what model to switch to for re-
planning. The model selector reasons over the model
graph to determine what model may be sufficient to re-
pair the plan.

Using the motion planning domain as an example, the
robot’s task is to navigate from a start state to a goal state.
Our system uses an environment map to generate a plan from
start to goal in the lowest applicable fidelity model (Plan
generation). This plan is the initial global plan.

The plan is then checked in the highest fidelity model to
determine parts of the plan that might need repairing (Fea-
sibility detection). Even though the high fidelity model is
complex, checking a single plan does not incur much com-
putation time.

If re-planning is necessary, due to a detected impediment,
the algorithm moves to stage three (Model selection). The
model selector finds the lowest fidelity model that can still
feasibly generate a repaired plan. This gives further compu-
tation savings by using the lowest fidelity model applicable
rather than always switching back to the highest available
model. The re-planning model is selected by re-testing the
partial plan segment, which needs repair, in higher fidelity
models. The first model in which checking of the previous
plan segment is unsuccessful is the model selected for re-
planning. This model is assumed to be a more informative
approximation of the space.

The algorithm then cycles back to stage one. A new plan
is generated in the selected model. The use of the selected
model is localized around the detected impediment by re-
planning to intermediate goals on the remainder of the infea-
sible plan rather than re-planning all the way to the original
goal. This creates a partial plan. The new partial plan is then
merged back into the global plan. The process repeats until
the feasibility detection stage does not find any more imped-
iments. If this is the case, the full global plan is determined
to be executable.

The next sections describes our definition of model as
well as how the varying fidelity models are organized in a
directed hierarchical graph. Section 3.3 provides more de-
tails about the robust plan generation algorithm.

3.1 Models
Note that the model space is separate from the underlying
robot controller. To illustrate this separation, imagine a per-
son racing a car on switchbacks. They are able to apply a
controlled skid to take tight turns at high speeds by estimat-
ing an internal momentum model. The internal model they
use for their driving plan is separate from the underlying ap-
plication of braking, hitting the gas pedal, and steering that is
necessary for controlling the car. Similarly the robot’s mod-
els provide decision making options through the generation

1For an execution time-only approach the robot can trigger a
failure detection during runtime. This makes sense if failures are
non-detrimental and easily detectable. For this work we focus on
a plan-time approach since we are testing in simulation and not
reasoning explicitly about uncertainty.

of possible plans. The plan then needs to be translated into
control inputs for the robot to execute 2 (see section 4.1).

When we use the word model we describe a three-tuple
{Sr, Se, A} consisting of:

• Sr : set of robot states {s0 . . . s∞}
Example robot states: position, orientation, mass, wheel
slip constraints, etc.

• Se : set of environment states {s0 . . . s∞}
Example environment states: position and orientation of
obstacles, 3D/2D representation, static or dynamic obsta-
cles, etc.

• A : set of actions {a0 . . . a∞}
Example action set: planar motions, equations of motion
that include control inputs and differential constraints,
motion primitives, or other trajectory generation methods,
etc.

Each model includes states and actions that allow the gen-
eration of a plan within that model space. The action space
varies from geometric spatial actions to differential equa-
tions of motion that include input controls. The environ-
ment representation (2D vs 3D) also varies through the state
space. Where the models come from is not relevant to this
paper. We assume they are all provided to us (see, for in-
stance, (LaValle 2006)).

Figure 1: Chassis Directed Model Graph: The graph evolves
from (roughly) left to right, with the root at [x,y]. Note:
States listed do not encompass the entire model and exist
only as labels for the model nodes.

3.2 Model Organization
Ordering the models hierarchically is important for model
selection. For a model to be higher fidelity than another, it
could be a direct superset by including more states in the
space (higher dimensions), or containing more control in-
puts. The more correct a model is at representing the real

2Translation is only necessary for the geometric planar models
for our specific plan following controller. This translation step can
be avoided by planning with directly executable feasible motion
primitives, as was demonstrated in previous state lattice motion
planning work (Pivtoraiko and Kelly 2005). Additionally, some
plan following controllers are robust enough to follow geometric
plans without translation. This is demonstrated in Big Dog (Raib-
ert et al. 2008) where the robot successfully executes plans that
were generated on a two-dimensional grid.

PlanRob 2015

98

world (such as modeling slip), or the larger the space con-
sidered, the higher fidelity the model is.

Our work makes an assumption that lower fidelity models
can be translated into higher models at each layer. This al-
lows the lowest model to be translated into the highest model
through each layer of the graph (see Section 4.1). This trans-
lation capability is necessary for 1) checking the full plan for
errors, 2) model selection, and 3) connecting partial plans
with intermediate goals.

As a concrete example, Figure 1 shows a model graph
with models from the motion planning community for a two-
wheel differential drive robot. The node names are just in-
dicative - the actual models incorporate more information
than just a description of state.

As the models change fidelity the environment and/or
the action space is changed. For example, the added z-
dimension changes only the collision checker to consider
three dimensional objects, an environment change. This is
because the chassis cannot actuate in the z-dimension, so
the addition does not effect the action space. Adding the θ
dimension changes both the state and action space. Colli-
sion checks are now done in θ and the underlying controller
is constrained to s-curve motions. The specific models used
in the experiments are described in more detail in Section
4.1.

3.3 Robust Plan Generation
We start by planning in a default model space, typically
[x,y], and check the plan in the highest fidelity model. If
the plan is feasible, it is sent to the robot for execution. If the
plan is not feasible, the infeasible plan segment is sent to the
model selector. The model space used for the plan segment
that needs repair (initially the [x,y] model) is then the first
node to search from in the model graph.

Algorithm 1 Robust Plan Generation
1: setupPlanSpace()
2: [p , planResult] = generatePlan(m);
3: globalPlan = SAVEPLAN(p, globalPlan);
4: if planResult == success then
5: tm = translateToModel(p, highest);
6: [planCheck, b4repair, afterrepair] = propagateWhileValid(tm, highest)
7: if planCheck == infeasible then
8: m = MODELSELECTOR(globalPlan, b4repair, afterrepair);
9: Goto line 1
10: else
11: executeResult = sendToRobot(globalPlan);
12: if executeResult == failure then Robot failed in execution.
13: else
14: Robot made it to goal!
15: end if
16: end if
17: else
18: Failed to find plan.
19: end if

Our model selection process uses Breadth First Search to
explore the model graph. For each model, we first test the
infeasible plan segment in that new model space. If the test-
ing is unsuccessful, it means the model has information not

present in the original model used to generate the plan. Re-
planning from the segment start to intermediate goals (way-
points) is then performed in that model. If a successful plan
is found, it is merged back into the global plan (Algorithm
4) to be re-checked. This strategy is detailed in Algorithm 1.

As an example of how the model selector works (Algo-
rithm 2), assume that it starts with the first child of the [x,y]
model which is the [x,y,θ] model. The previous [x,y] plan
segment is tested in this model (Algorithm 2, line 8). If the
plan succeeds, we assume that the [x,y,θ] model does not
accurately capture the infeasibility. We then choose the next
child of [x,y], which is [x,y,z], and again test the previous
plan in this higher fidelity model. If the plan again succeeds,
we then try the [x,y,z,θ] model. If testing the previous plan
finally does not succeed, we assume this model captures the
space of the impediment and we select it as the model to
use for re-planning from the start of the infeasible segment.
Based on this approach, it is possible to produce a final plan
that can effectively skip between model tree levels when
choosing the next model (in this example, we skipped from
[x,y] to [x,y,z,θ]).

Algorithm 2 The model selector does a Breadth First Search
by testing old infeasible plan segments in higher fidelity
model spaces until the old plan fails. If the old plan fails,
this indicates the model contains information that may be
relevant to the impediment and that is the model chosen for
re-planning.
1: function MODELSELECTOR(p, b4failIndex, afterfailIndex)
2: mLast = findModelFor(p.getNode(b4failIndex));
3: m = mLast;
4: p = resizePlan(p.getNode(b4failIndex), p.getNode(afterfailIndex));
5: setUsedModel(m); . Last model used becomes root node.
6: m = getNewModelBFS();
7: tm = translateToModel(p,m);
8: planResult = propagateWhileValid(tm, m); . Does collision checking.
9: if planResult == success then
10: Goto line 5
11: end if
12: return m
13: end function

Intermediate Goals Instead of re-planning in a model all
the way to the original goal, the previous plan is potentially
reused by planning to intermediate goals. In particular, the
remaining nodes after the infeasible area are translated to
the currently selected model and set as possible goals. This
effectively creates a goal set to plan to (Algorithm 3). If we
successfully plan to an intermediate goal we can switch back
to using the original plan for the remainder of the plan.

The idea of using waypoints as a cache was also done in
work by (Bruce and Veloso 2002). We expand this for multi-
fidelity nodes and plan reuse. For instance, in Figure 2 a goal
set is created for all unachieved waypoints (1 through goal).
The planner then re-plans to this goal set and finds waypoint
3 is successful. The remaining plan, with this new partial
plan, is sent for the robot to execute.

Planning to an intermediate goal localizes around the in-
feasible location in order to plan in higher fidelity models

PlanRob 2015

99

for less time. The resulting plan to be executed can contain
nodes from different models, creating a mixed model plan.

(a) After model selection, elevate remaining nodes (node after
failure to original goal) to match model selected. Plan to goal set
(1,2,3,4, and original goal)

(b) Successful re-plan to intermediate goal 3, remainder of plan
sent from there to original goal

Figure 2: Localizing around the infeasible area by planning
to intermediate goals, in the new selected model, rather than
re-planning to the original goal.

Algorithm 3 To plan to intermediate goals it is necessary to
elevate the planning model of the remaining nodes in the
plan, after the infeasibility, to be the same as the current
model. This allows the planner to plan to a possible set of
goals rather than a single goal.
1: procedure SETGOALS

2: node = findNodeB4Repair(globalPlan);
3: m = node.getModel();
4: setGoals(translateRemainingNodes(globalPlan,m));
5: end procedure

4 Implementation
This section presents the models from the motion planning
community that we used for our experiments. We also show
translation between the models and how collision check-
ing varies based on the model. Section 4.2 describes the
low-level robot controller, and the collision monitoring tech-
niques we applied for execution.

In our current implementation, the real world is rep-
resented by the Gazebo simulator (http://gazebosim.org/)
which models dynamics by simulating rigid-body physics.
Our test environment contains three dimensional overhangs
of different heights as well as a sliding door that periodically
opens and closes every 10 seconds. Pictures of the door open
and closed are shown in Figure 4 (a) and Figure 4 (b). We
are setting up an environment more complex than the lower
models can handle for the sake of demonstrating the benefits
of different model use.

Plans are generated using the Open Motion Planning Li-
brary (OMPL) (Şucan, Moll, and Kavraki 2012). While

Algorithm 4 A global plan saves the proper model with each
plan node. Partial paths are merged back into the global plan.
When planning to intermediate goals the remainder of the
old plan must also be added to the partial plan.
1: function SAVEPLAN(p, globalPlan)
2: if globalPlan!=empty then
3: planPrepend = findPartial(p.start(), p.end(), globalPlan)
4: planRemainder = findPartial(p.end(), globalPlan);
5: globalPlan = planPrepend + p + planRemainder;
6: addConnectionPoint(planPrepend.end(), p.start());
7: addConnectionPoint(p.end(), planRemainder.start());
8: else
9: globalPlan = p;
10: end if
11: return globalPlan
12: end function

(a) Open door

(b) Closed door

Figure 4: The world with a door that opens periodically on
the right side (every 10 seconds). A large center overhang
the robot cannot go under, and a smaller overhang the robot
can go under.

the underlying motion planner is not so important, we use
Rapidly Exploring RandomTrees (RRTs) to generate mo-
tion plans (LaValle and Kuffner 2001) since RRTs can easily
handle various models, including those with differential con-
straints and dynamics. We defined the RRT distance function
to primarily use the x and y components.

For intermediate goals, θ is added to the distance func-
tion to make sure mixed plans with connection points for θ-
models align properly with previous plans. Also, as a heuris-
tic in RRT planners, the goal is sampled with some probabil-
ity. We probabilistically weight the remaining intermediate
goals linearly based on the inverse of their distance from the
repair segment start. This biases intermediate goals to those
closest to the detected impediment in order to re-use more
of the remaining plan when possible.

Figure 3 shows the plan-time algorithm generation for the
navigation motion planning domain. Each generation stage
of the plan is shown resulting in a final plan which merges

PlanRob 2015

100

(a) (b) (c)

(d) (e) (f)

Figure 3: The dark blue lines connect the waypoints in the path. A plan is generated in the lowest fidelity space (a). The plan
is translated into the highest model and a collision is detected in the plan run in the highest model (b). The light blue arrow
shows the detected collision. The model selector re-plans in a higher selected model (this case [x,y,z]) (c). This partial plan
is merged back into the global plan (d), where another collision is detected when checked in the highest model. The model
selector re-plans a partial plan in the selected model[x,y,z] (e). The final mixed fidelity plan with no more detected repairs is
constructed (f). Note: overhangs projected for illustration purposes.

partial plans from different models.

4.1 Models Used
Our robot has only one subsystem, the chassis, which is dif-
ferential drive and can translate (in 2D x, y space where x
and y are coupled) and rotate in theta (x, y, θ space). The
model state focuses on positions in x, y, z space and SO2
space. Time is added to the state space for models that have
velocities, which allows us to represent dynamic obstacles
that can change position periodically.

For the action space, the underlying ordinary differential
equations specific to a non-holonomic two wheeled vehi-
cle were constructed based on the unicycle model (LaValle
2006). Models with proper velocity space sample the right
and left wheel velocities separately rather than just sample
a linear velocity. Table 1 lists the state, controls, and ac-
tion spaces for the models we implemented. The models
we selected are chosen explicitly to illustrate the benefits of
switching. Models for real world robot use are expected to
be more sophisticated. Figure 5 shows different plans gener-
ated using different models.

The robot’s model fidelity changes in two ways. The fi-
delity of the physical robot changes for collision checking
during planning, and the fidelity of robot motions vary to
better capture the underlying controller. In particular, mod-
els without z treat the environment as 2D, in terms of col-
lision checking, while models with z do full 3D collision
checking. 3

3Note: For our experiments we cut the z-dimension at a par-
ticular low height. The overhangs are not seen in the planner for

Collision Checker We check collisions only if obstacles
inflated by the robot’s bounding sphere intersect the current
state. Table 2 describes how collision checking changes for
different models.

For models with velocity, we use an additional time vari-
able in the state to properly index the environment we are
checking against (doors that are closed or open). Models
without velocity assume the doors are open.

To help account for uncertainty in the robot’s motions, we
create a small buffer around the robot by increasing the robot
footprint 6% in the x and y directions (3% on each side).

Translating Between Models Translation functions ex-
ist to convert states and actions in lower fidelity models
to higher fidelity (see Table 3 for details). For models that
generate actions that are not directly executable by the con-
troller, additional controls are added. This is necessary for
the purely geometric models that have planar motions. For
instance, the [x,y] model space generates plans that have the
robot turn-in-place and follow a straight line to the next way-
point. The translation function adds extra waypoints to en-
able the controller to perform turn-in-place actions.

For checking translated plans in higher models we use the
same propagation function used in the RRT to plan between
waypoints. This forces the use of the same motion equations
and collision checker as the model that is being checked in.

the [x,y] model in Figure 3 during step (a). An alternative is to
project the z-dimension into 2D. Projection is a more conserva-
tive approach since the robot would never consider going under the
overhangs in [x,y]. In both cases, there is information lost to mod-
els that do not consider the z-dimension.

PlanRob 2015

101

(a) x, y (2d environment, planar motions) (b) x, y, z, θ (3d environment, constrained s-
curve motions)

(c) x, y, θ, ẋ, ẏ, θ̇ (2d environment + time,
smoother unconstrained s-curve motions)

Figure 5: Examples of plan generation for three different models.

Table 1: Models Used
Model label States Control Inputs Action Space

[x, y] x and y none straight line motions
and interpolation.

[x, y, z] x, y, and z none straight line motions
and interpolation.

[x, y, θ] x, y, and
theta

sample linear veloc-
ity, u[0], rotational
velocity u[1] found
by dividing by ra-
dius.

Equations of motion.
ẋ = u[0] cos(θ)

ẏ = u[0] sin(θ)

θ̇ = u[1]

[x, y, z, θ] x, y, z,
and theta

sample linear veloc-
ity, u[0], rotational
velocity u[1] found
by dividing by ra-
dius.

Equations of motion.
ẋ = u[0] cos(θ)

ẏ = u[0] sin(θ)

θ̇ = u[1]

[x, y, θ, ẋ, ẏ, θ̇] x, y, theta,
and time

sample left and
right wheel veloci-
ties u[0], u[1].

Equations of motion.

ẋ =
(u[0] + u[1])

2 cos(θ)

ẏ =
(u[0] + u[1])

2 sin(θ)

θ̇ = u[1]− u[0]

[x, y, z, θ, ẋ, ẏ, θ̇] x, y, z,
theta, and
time

sample left and
right wheel veloci-
ties u[0], u[1].

Equations of motion.

ẋ =
(u[0] + u[1])

2 cos(θ)

ẏ =
(u[0] + u[1])

2 sin(θ)

θ̇ = u[1]− u[0]

Since the global plan contains a mix of models, the trans-
lation function loops through the global plan translating par-
tial plans between connection points.

4.2 Execution
Robot Controller Angular and linear velocity controls are
sent for the robot to execute. Controls are matched by having
separate PID controllers for each wheel. The robot executes
these controls until it is within epsilon of the next waypoint
or it crosses a line segment that goes through the next way-
point perpendicular to the robot’s heading. The robot follows
smoother curves by modifying the commanded linear veloc-
ity to be a function of the angular error when the angular
error is greater than some epsilon.

The controller also uses a correction in angular velocity

Table 2: Collision Checking
Model label States Collision Checking

[x, y] x and y in x and y, with 2D obstacles.
[x, y, z] x, y, and z in x, y, and z with 3D obstacles.
[x, y, θ] x, y, and theta in x, y, and theta with 2D obsta-

cles.
[x, y, θ] x, y, z, and theta in x, y, z, and theta with 3D ob-

stacles.
[x, y, θ, ẋ, ẏ, θ̇] x, y, theta, and time in x, y, and theta with 2D obsta-

cles indexed by time.
[x, y, z,θ, ẋ, ẏ, θ̇] x, y, z, theta, and

time
in x, y, z, and theta with 3D ob-
stacles and indexed by time.

for better path following. It adjusts the robot to turn towards
the next waypoint when within some small linear distance
(0.6) and then turn towards the next planned theta within an
even smaller linear distance (0.1).

Execution Monitor We use a Gazebo contact sensor to
simulate the robot’s bump sensor. If the robot bumps into
anything a failure message is sent to indicate failure dur-
ing execution. This failure signal can be used to initiate re-
planning, using a variant of Algorithm 1.

(a) Test 1 start and end (b) Test 2 start and end

Figure 6: The start and end positions for the simulation runs.

5 Experimental Results
We ran experiments in the simulator world for two different
start and end states as shown for Test1 and Test2 in Figure 6.
Test1 requires the robot to traverse through more obstacles,
take more turns, and navigate more overhangs than Test2.
Test2 focuses on the dynamic sliding door. It places the robot
closer to the doors and changes the goal to be directly behind
the doors.

PlanRob 2015

102

Table 3: Translation
Model label Translate to La-

bel
Translation

[x,y] [x,y,z] add z
[x,y] [x,y,θ] add theta by finding arctan from next

waypoint and get linear and angular ve-
locity from distance to next waypoint.

[x,y,z] [x,y,z,θ] add theta by finding arctan from next
waypoint and get linear and angular ve-
locity from distance to next waypoint.

[x,y,θ] [x,y,z,θ] add z.
[x,y,θ] [x,y,θ, ẋ, ẏ, θ̇] convert linear and angular velocity to left

and right wheel velocities. Time variable
calculated through state propagation.

[x,y,z,θ] [x,y,z,θ, ẋ, ẏ, θ̇] convert linear and angular velocity to left
and right wheel velocities. Time variable
calculated through state propagation.

[x,y,θ, ẋ, ẏ, θ̇] [x,y,z,θ, ẋ, ẏ, θ̇] add z.

We ran three test types. First we ran all six models inde-
pendently without allowing switching, as shown in Table 4.
Then we demonstrate our approach using Algorithm1 and
always starting in the lowest model. We refer to these results
as ’switch all’ shown in Table 5. Lastly, for comparison, we
ran tests that only switch between the lowest and highest
model, again always starting in the lowest model.

For all tests we recorded the planing time mean and
std deviation for 100 runs. We also display the percentage
of successful executions that occurred for running the fi-
nal produced plan in simulation, without execution time re-
planning.

To produce good plans, we generated 30 RRT plans and
chose the best (shortest) one for execution.

Note that we are constructing scenarios that are more
likely to fail in the lower fidelity models to show the effi-
cacy of our approach. In normal practice we would expect
the initial model (in this case [x,y]) to fail rarely.

Table 4 shows the percentage of successful executions
to the goal for each model (without switching) as well as
their average planning times. We see that as the models in-
crease in fidelity the mean plan-time over 30 runs increases.
The time change in adding the z-component is less than that
of theta since this is purely a geometric change which has
collision checking in three-dimensions rather than two. The
search space does not change. For models that incorporate
theta, collision checking is done using theta. Additionally,
theta is sampled and the linear velocity is sampled to con-
strain motion to s-curves. This increases the state search
space for waypoint targets and the action space. The two
highest fidelity models take the longest since they sample
both the right and left wheel velocities as well as incorporat-
ing time in the state which adds additional collision checks
for sliding doors. This also creates a larger search space
which increases the branching factor causing higher plan-
ning times.

Test1 starts in front of a long overhang. Models that in-
clude the z-dimension are the most beneficial for this test.
Additionally, since this test ends near the sliding door veloc-

ity models played a minor role in task success.

Figure 7: An example of a plan generated in model
[x, y, z, θ, ẋ, ẏ, θ̇] for Test2.

In Test2, success rates are much higher for models with
velocity since they do properly model the time space (note
that models that do not consider time assume the sliding
doors are always open). Figure 7, is an example of a path
generated in the model [x,y,z,θ, ẋ, ẏ, θ̇]. Note that the ve-
locity decreases as the robot nears the doors (as evidenced
by the smaller distance between waypoints), waiting for the
doors to open, and then increases again to rush through the
doors before they close.

Table 4: Results for single model runs with no switching.
Model success % plan-time

mean(s)
plan-time
std dev

Test 1 (From x=-2, y=-2 to x=6.0, y=2.0). Includes overhangs.
[x,y] 19% 0.13 0.01
[x,y,θ] 20% 79.0 25.5
[x,y,z] 67% 1.79 0.52
[x,y,z,θ] 87% 93.0 19.1
[x,y,θ, ẋ, ẏ, θ̇] 17% 110.2 30.2
[x,y,z,θ, ẋ, ẏ, θ̇] 90% 158.5 43.3
Test 2 (From x=2.0 , y=-1.0 to x=6.0 to y=-2.0). Includes moving door.
[x,y] 35% 0.10 0.01
[x,y,θ] 46% 56.1 14.6
[x,y,z] 44% 1.22 0.33
[x,y,z,θ] 52% 81.1 19.5
[x,y,θ, ẋ, ẏ, θ̇] 73% 162.2 51.1
[x,y,z,θ, ẋ, ẏ, θ̇] 75% 194.2 58.2

Table 5: Switching results.
Model success % plan-time

mean(s)
plan-time
std dev

Test 1 (From x=-2, y=-2 to x=6.0, y=2.0). Includes overhangs.
Switch all 90% 2.44 8.44
Switch lowest and highest 86% 17.4 23.0
Test 2 (From x=2.0 , y=-1.0 to x=6.0 to y=-2.0). Includes moving door.
Switch all 85% 128.2 127.7
Switch lowest and highest 80% 149.4 146.3

Table 5 shows the results of our switching algorithm. Note
that in these results mean planning time also includes the
time it took for selecting the next appropriate model to re-
plan in. However, model selection times are negligible. Our

PlanRob 2015

103

algorithm, ’switch all’, produces success rates comparable
to that of the highest fidelity model, but with much more
efficient planning times. For comparison, we also evaluated
a more traditional approach where the system switches be-
tween only two models (the lowest and highest fidelity mod-
els). The traditional approach produces success rates compa-
rable to our full switching approach, but the plan times are
higher.

The plan-time gains for switching were higher for Test1
than Test2. This is due to which models were selected dur-
ing plan-time to switch to. The models selected for switch-
ing with Test2 were most often the velocity models since
infeasibility was often detected in the time dimension. This
causes the times to be higher on average. Additionally, plans
with impediments detected directly in front of the sliding
doors tend to take much longer to repair since the robot can-
not travel backwards. Test1 switched more often to lower
models with the ’z’ dimension which gave a larger plan-
time savings. This is most evident when compared with the
switching between only the highest and lowest model. In
many parts of the Test1 space the highest model is not nec-
essary for task success.

In general, switching creates plans with mean times lower
than the highest fidelity model and higher than the lowest
fidelity model. Intermediate goals further improve planning
times. This is evident in the results for switching between
the low and high model in Test1. The mean planning time
is much lower because the highest model is only necessary
for a short detour in the space. Switching with all models
created plans with mean times lower than just switching be-
tween the low and high models without sacrificing execu-
tion success. The switching tests also contained a handful
of cases which failed to generate a plan. This suggests addi-
tional evaluations for completeness and guarantees.

The fact that the robot still fails in our highest model dur-
ing execution 20-25% of the time means the framework can
still be extended to additional models. For instance, assum-
ing instantaneous velocity and acceleration caused the robot
controller to vary from the plan. A model that can capture
this would reduce the failure rates even more. In cases where
it is difficult to model the information necessary to approx-
imate the underlying controller, it would also be possible to
add uncertainty.

6 Future Work
The architecture allows for expansion to additional models.
The model graph can include other robot subsystems such as
models for a manipulator, or those that combine manipulator
and chassis motions. We would also like to include models
with simple physics such as friction for object interaction,
and forces for pushing. The architecture allows models that
are intractable over the full plan generation to still be used
locally which would increase robot robustness by enabling
even higher success rates.

We observed that if the robot controller did not follow the
generated plan exactly time state synchronization drifts. If
this occurred when the robot was passing near the sliding
doors, during a state change, it most certainly caused a fail-
ure. At other times it had little effect. The ability to add un-

certainty as a buffer around time, would allow the robot to be
more conservative when deciding to pass the doors. There-
fore, we would like to investigate how uncertainty fits into
the model hierarchy and selection process. We recognize in-
creasing uncertainty, such as a very large robot footprint,
can cause the robot to be conservative and think it cannot
traverse through a narrow area. This is why we would also
like to investigate different levels of uncertainty coverage.
We believe varying uncertainty is another form of varying
fidelity and will give the robot more choices to increase suc-
cess when applicable.

Lastly, we would like to combine the execution-time ver-
sion of the approach with our plan-time approach for real-
robot application. Execution time is important for obtain-
ing information that is not available during plan-time. This
could be due to uncertainty in the world or sensing abili-
ties. An execution time approach would focus the algorithm
towards the failure recovery domain. Information acquired
during execution is then provided to the planner allowing the
robot to switch to models it previously did not have enough
information for. This would continue to provide a more ro-
bust plan.

7 Conclusions

We present an approach that leverages a multi-fidelity model
graph to produce a mixed-model plan. This plan finds a good
balance between decreased planning time and increased ro-
bustness by giving the robot the ability to re-plan in a more
detailed model to provide a more accurate representation of
reality. Just as the robot’s operation space is non-uniform,
containing a mix of simple and complex areas, our algorithm
tries to capture the space with a mix of low and high fidelity
models generating an efficient plan that does not sacrifice
execution success.

Our tests show that the algorithm improves computation
time while obtaining comparable performance to planning
always in the highest fidelity model. The average overall
planning time (initial plus re-plans) is greater than the av-
erage time for [x,y] planning alone, but still less than the av-
erage for the higher fidelity spaces. Switching between mul-
tiple models is also cheaper than just switching between the
lowest and highest model. Our switching tests localize plan-
ning around the infeasible location without sacrificing the
probability of successful executions.

The results also show there is not always a single best
model to use, but rather that it depends on the situation. For
example, even though modeling the differential constraints
of the robot is higher fidelity than a purely geometric model,
that model will not help if the real problem is not consid-
ering the z dimension (e.g. if overhangs exist in the world).
This is why it is important to have a separate model selection
stage that can reason about which model should be used for
repair. This is increasingly important as robots, their tasks,
and their environments become more complex. We believe
that, especially as these complexities increase, selecting the
most appropriate model to plan in is important for robust,
tractable planning.

PlanRob 2015

104

References
Barbehenn, M., and Hutchinson, S. 1995. Efficient search
and hierarchical motion planning by dynamically maintain-
ing single-source shortest paths trees. Robotics and Automa-
tion, IEEE Transactions on 11(2):198–214.
Behnke, S. 2004. Local multiresolution path planning. In
Robocup 2003: Robot Soccer World Cup VII. Springer. 332–
343.
Bruce, J., and Veloso, M. 2002. Real-time randomized
path planning for robot navigation. In Intelligent Robots and
Systems, 2002. IEEE/RSJ International Conference on, vol-
ume 3, 2383–2388. IEEE.
Choi, W.; Zhu, D.; and Latombe, J.-C. 1989. Contingency-
tolerant robot motion planning and control. In Intelligent
Robots and Systems’ 89. The Autonomous Mobile Robots
and Its Applications. IROS’89. Proceedings., IEEE/RSJ In-
ternational Workshop on, 78–86. IEEE.
Dogar, M. R.; Hsiao, K.; Ciocarlie, M.; and Srinivasa, S. S.
2012. Physics-based grasp planning through clutter. In In
RSS. Citeseer.
Ferguson, D.; Kalra, N.; and Stentz, A. 2006. Replanning
with rrts. In Robotics and Automation, 2006. ICRA 2006.
Proceedings 2006 IEEE International Conference on, 1243–
1248. IEEE.
Fernández-Madrigal, J.-A., and González, J. 2002. Mul-
tihierarchical graph search. Pattern Analysis and Machine
Intelligence, IEEE Transactions on 24(1):103–113.
Fikes, R. E.; Hart, P. E.; and Nilsson, N. J. 1972. Learning
and executing generalized robot plans. Artificial intelligence
3:251–288.
Göbelbecker, M.; Gretton, C.; and Dearden, R. 2011. A
switching planner for combined task and observation plan-
ning. In AAAI.
Gochev, K.; Cohen, B.; Butzke, J.; Safonova, A.; and
Likhachev, M. 2011. Path planning with adaptive dimen-
sionality. In Fourth Annual Symposium on Combinatorial
Search.
Gochev, K.; Safonova, A.; and Likhachev, M. 2012. Plan-
ning with adaptive dimensionality for mobile manipulation.
In Robotics and Automation (ICRA), 2012 IEEE Interna-
tional Conference on, 2944–2951. IEEE.
Gochev, K.; Safonova, A.; and Likhachev, M. 2013. Incre-
mental planning with adaptive dimensionality. In Twenty-
Third International Conference on Automated Planning and
Scheduling.
Hauser, K., and Latombe, J.-C. 2009. Multi-modal motion
planning in non-expansive spaces. The International Jour-
nal of Robotics Research.
Hauser, K.; Ng-Thow-Hing, V.; and Gonzalez-Baños, H.
2011. Multi-modal motion planning for a humanoid robot
manipulation task. In Robotics Research. Springer. 307–
317.
Howard, T. M., et al. 2009. Adaptive model-predictive mo-
tion planning for navigation in complex environments.
Kaelbling, L. P., and Lozano-Pérez, T. 2011. Hierarchical
task and motion planning in the now. In Robotics and Au-
tomation (ICRA), 2011 IEEE International Conference on,
1470–1477. IEEE.

Kambhampati, S., and Davis, L. 1986. Multiresolution path
planning for mobile robots. Robotics and Automation, IEEE
Journal of 2(3):135–145.
Knepper, R. A., and Mason, M. T. 2011. Improved hier-
archical planner performance using local path equivalence.
In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ
International Conference on, 3856–3861. IEEE.
Koenig, S., and Likhachev, M. 2002. D* lite. In AAAI/IAAI,
476–483.
LaValle, S. M., and Kuffner, J. J. 2001. Randomized kin-
odynamic planning. The International Journal of Robotics
Research 20(5):378–400.
LaValle, S. M. 2006. Planning algorithms. Cambridge
university press.
Pivtoraiko, M., and Kelly, A. 2005. Efficient constrained
path planning via search in state lattices. In International
Symposium on Artificial Intelligence, Robotics, and Automa-
tion in Space.
Pivtoraiko, M., and Kelly, A. 2008. Differentially con-
strained motion replanning using state lattices with gradu-
ated fidelity. In Intelligent Robots and Systems, 2008. IROS
2008. IEEE/RSJ International Conference on, 2611–2616.
IEEE.
Plaku, E.; Kavraki, E.; and Vardi, M. Y. 2010. Motion plan-
ning with dynamics by a synergistic combination of layers of
planning. Robotics, IEEE Transactions on 26(3):469–482.
Raibert, M.; Blankespoor, K.; Nelson, G.; Playter, R.; et al.
2008. Bigdog, the rough-terrain quadruped robot. In Pro-
ceedings of the 17th World Congress, volume 17, 10822–
10825.
Seegmiller, N., and Kelly, A. 2014. Enhanced 3d kinematic
modeling of wheeled mobile robots.
Steffens, R.; Nieuwenhuisen, M.; and Behnke, S. 2010.
Multiresolution path planning in dynamic environments for
the standard platform league. In Proceedings of 5th Work-
shop on Humanoid Soccer Robots at Humanoids.
Stentz, A. 1995. The focussed dˆ* algorithm for real-time
replanning. In IJCAI, volume 95, 1652–1659.
Stephens, B. 2007. Humanoid push recovery. In Humanoid
Robots, 2007 7th IEEE-RAS International Conference on,
589–595. IEEE.
Sucan, I. A., and Kavraki, L. E. 2011. Mobile manipulation:
Encoding motion planning options using task motion multi-
graphs. In Robotics and Automation (ICRA), 2011 IEEE
International Conference on, 5492–5498. IEEE.
Şucan, I. A.; Moll, M.; and Kavraki, L. E. 2012. The Open
Motion Planning Library. IEEE Robotics & Automation
Magazine 19(4):72–82. http://ompl.kavrakilab.org.
Wolfe, J.; Marthi, B.; and Russell, S. J. 2010. Combined task
and motion planning for mobile manipulation. In ICAPS,
254–258.

PlanRob 2015

105

Mixed Discrete-Continuous Heuristic Generative Planning based on Flow Tubes
(extended version)

Enrique Fernandez-Gonzalez, Erez Karpas and Brian C. Williams
Massachusetts Institute of Technology

Computer Science and Artificial Intelligence Laboratory
32 Vassar Street, Building 32-224, Cambridge, MA 02139
efernan@mit.edu, karpase@mit.edu, williams@mit.edu

Abstract
Nowadays, robots are programmed with a mix of dis-
crete and continuous low level behaviors by experts in
a very time consuming and expensive process. Exist-
ing automated planning approaches are based on hy-
brid model predictive control techniques, which don’t
scale well due to time discretization, or temporal plan-
ners, which sacrifice plan expressivity by only support-
ing discretized fixed rates of change in continuous ef-
fects. We introduce Scotty, a mixed discrete-continuous
generative planner that finds the middle ground be-
tween these two. Scotty can reason with linear time
evolving effects whose behaviors can be modified by
bounded control variables, with no discretization in-
volved. Our planner exploits the expressivity of contin-
uous effects represented by flow tubes, and the perfor-
mance of heuristic forward search. The generated solu-
tion plans are better suited for robust execution, as ex-
ecutives can use both time and continuous control vari-
ables to react to disturbances.

Introduction
Robotic missions are commonly programmed by highly
skilled experts in an expensive and time consuming process.
As robotic systems become increasingly more common, it
is desirable to devise more efficient systems to program the
behavior of these robots. This often involves reasoning over
a mix of discrete and continuous conditions and effects with
temporal deadlines and constraints.

When no discrete conditions or effects need to be con-
sidered, robotics planning reduces to trajectory optimiza-
tion, that is, coming up with a control sequence over time
that satisfies a set of feasibility constraints and maximizes
an objective. Model-predictive control is, perhaps, the most
common approach, which frames trajectory planning as a
discrete time continuous state optimization problem. Tra-
jectory optimization has been generalized to a hybrid prob-
lem in which control behaviors are engaged and disen-
gaged, and control trajectories are generated for those differ-
ent behaviors. Kongming (Li and Williams 2008; Li 2010;
Li and Williams 2011) provides one such approach that
generalized the discrete time, continuous model-predictive
control framework to a mixed discrete-continuous formula-
tion using an encoding based on flow tubes and hybrid flow
graphs. Although quite expressive, Kongming is limited to

small horizons due to the size of the corresponding optimiza-
tion problem.

On the other hand, the AI planning community has
developed an extensive set of discrete temporal planners
whose performance has improved substantially over the last
decade. Such planners have been used successfully in real
robotic missions by NASA (Muscettola et al. 1998) and oth-
ers, but continuous effects have often been neglected in the
planning stage and only considered during plan execution.
The planning community has also extended traditional plan-
ners to deal with continuous variables. Heuristic forward
search variants of these planners such as COLIN (Coles et
al. 2009) have demonstrated good empirical performance
on IPC benchmarks. Some of these planners have been ap-
plied to robotics problems. For example, POPF (Coles et al.
2010) has been used to design AUV inspection plans of un-
derwater installations (Cashmore et al. 2014). However, the
planner did not explicitly consider the continuous motion of
the robot, but instead chose a mission path by selecting dis-
crete waypoints that were previously generated using ran-
dom sampling motion planning techniques. The benefit of
this type of planners is that time is not discretized, enabling
the planner to handle long time horizons. The challenge,
however, is that although continuous linear time evolving
effects are supported, actions have constant control values.
While trajectory optimization can be mimicked by creating
multiple copies of each action with discretized control val-
ues, this approach does not scale well.

Kongming generates control trajectories that preserve the
richness of classical model predictive control techniques,
but at the severe cost of computational efficiency. On the
other hand COLIN leverages the efficiency of heuristic
forward search methods at the cost of the richness of the
control trajectories generated. Finding the middle ground
that preserves essential elements of the expressivity of
Kongming, while preserving the efficiency offered by
COLIN is desirable for robotic applications. In this paper,
we present Scotty, a mixed discrete-continuous temporal
planner temporal planner that combines the representation
of continuous effects based on flow tubes from Kongming,
with the efficient solving method based on heuristic forward
search and linear programs for consistency checking that
COLIN uses. Scotty leverages the temporal flexibility of
temporal planners and the control trajectory flexibility from

PlanRob 2015

106

Volcano Region
Eruption ends in 5 hours

Sample Region

Uplink beacon

Rendezvous
region

AUV Start

x

y

Figure 1: Example AUV mission.

model predictive control techniques to generate plans that
are suited for robust execution.

Motivating Example
To motivate the need for a mixed discrete-continuous plan-
ner for robotic missions, we introduce an example sce-
nario involving a scientific autonomous underwater vehicle
(AUV) mission (Figure 1). In this mission the AUV has a
time frame to complete two objectives before ascending to
the rendezvous point. The AUV needs to take a sample in an
specified interest region and collect data of an ongoing un-
derwater eruption site before the eruption ends, in five hours.
The collected data needs to be uplinked to an optical under-
water beacon, so that nearby scientists can analyze it as soon
as possible.

Note that this mission requires activities with discrete ef-
fects, such as collect-data, but also activities with continu-
ous effects, such as navigate. In effect, in this mission we
define the continuous state variables x and y that specify the
position of the AUV at all times. Activities such as collect-
data require the AUV to be in a specified region (constraints
on x and y). The AUV can change its position using the
continuous navigate activity. This activity varies the x and
y state variables with time according to the control vari-
able speed, which is bounded and can be modified contin-
uously. The hybrid planner needs to be able to reason with
these continuous effects in order to take the AUV to the re-
gions in which samples or data can be collected, and do it
within their respective time windows. Table 1 shows an ex-
ample fixed solution plan for this mission. Figure 2 shows
the state trajectory and values for the control variables from
this solution. In a later section, we discuss how to generate
a flexible plan suitable for robust execution from the fixed
solution plan for this problem.

In the next sections we describe Scotty’s problem state-
ment, its solution and how that solution is found.

Problem Statement
The input to the problem consists of the domain, initial con-
ditions and goal. These extend PDDL 2.1 (Fox and Long
2011) with some modifications that allow us to define activ-
ities with continuous effects that depend on bounded control

t Event State
0.0000 START-VOLCANO-ERUPTION x=0.0, y=0.0
0.0001 START-DO-MISSION x=0.0, y=0.0
0.0002 START-NAVIGATE-AUV x=0.0, y=0.0

100.0002 END-NAVIGATE-AUV x=400.0, y=75.0
100.0003 START-TAKE-SAMPLE x=400.0, y=75.0
105.0003 END-TAKE-SAMPLE x=400.0, y=75.0
105.0004 START-NAVIGATE-AUV x=400.0, y=75.0
211.2504 END-NAVIGATE-AUV x=150.0, y=500.0
289.9999 START-COLLECT-VOLCANO-DATA x=150.0, y=500.0
299.9999 END-COLLECT-VOLCANO-DATA x=150.0, y=500.0
300.0000 END-VOLCANO-ERUPTION x=150.0, y=500.0
300.0001 START-NAVIGATE-AUV x=150.0, y=500.0
337.5001 END-NAVIGATE-AUV x=300.0, y=545.0
337.5002 START-UPLINK-VOLCANO-DATA x=300.0, y=545.0
342.5002 END-UPLINK-VOLCANO-DATA x=300.0, y=545.0
342.5003 START-NAVIGATE-AUV x=300.0, y=545.0
430.0003 END-NAVIGATE-AUV x=650.0, y=420.0
430.0004 START-ASCEND x=650.0, y=420.0
440.0004 END-ASCEND x=650.0, y=420.0
440.0005 END-DO-MISSION x=650.0, y=420.0

Table 1: Example solution for the motivating scenario.

variables. Similarly to PDDL 2.1, durative activities have a
bounded controllable duration, discrete effects and continu-
ous and discrete conditions defined at start, over all and at
end. Continuous conditions are defined by linear inequalities
over the state variables according to:

cTx′ ≤ 0 (1)

, where x′ = (x1, . . . , xnx
, 1)T and c ∈ Rnx+1 is a vector

of coefficients, with nx being the number of state variables
of the system.

Our problem statement differs from PDDL 2.1 in the ef-
fects on continuous variables. Each activity has a set of con-
trol variables, which can be seen as continuous parameters
— each of those constrained by lower and upper bounds.
The continuous effects of the activity are similar to the con-
tinuous effects of PDDL 2.1, except they are affected by
the value chosen for the control variables. We restrict each
continuous effect to involve only a single control variable,
cvar, and thus each continuous effect can be defined by
〈x, cvar, k〉, where x is a state variable, cvar is a control vari-
able, and k is a constant.

In the simple case, where a single continuous effect
〈x, cvar, k〉 is active from time tstart to time tend with cvar
fixed to a constant value of c throughout the duration, then
x(t), the value of state variable x at time t is defined by
x(t) = x(tstart) + k · c · (t− tstart) with tstart ≤ t ≤ tend.

Multiple continuous effects on the same state variable are
additive, and thus x(t) is defined by:

x(t) = x(0) +

∫ t

0

Cx(τ)dτ (2)

where Cx(t) is the sum of the values of control variables in
active continuous effects modifying x at time t (represented
by the set E).

Cx(t) =
∑

〈x,cvar,k〉∈E

k · cvar(t) (3)

where cvar(t) denotes the value chosen for the control vari-
able cvar at time t. The navigate activity of the example
AUV mission is shown in Figure 3. Note the bounded con-
trol variables velX and velY.

PlanRob 2015

107

0 100 200 300 400

0

100

200

300

400

500

600

700
st

at
e

va
ria

bl
e

x y

0 100 200 300 400
time

4

2

0

2

4

co
nt

ro
l v

ar
ia

bl
e navigate-auv-1

navigate-auv-2
navigate-auv-3

navigate-auv-4

velX velY

Figure 2: Trajectories of x and y in the example problem
due to the four navigate activities and the values of their
control variables velX and velY extracted from the fixed plan
solution from Table 1.

(:durative-action navigate
:control-variables ((velX) (velY))
:duration (and (<= ?duration 5000))
:condition (and

(over all (>= (velX) -4)) (over all (<= (velX) 4))
(over all (>= (velY) -4)) (over all (<= (velY) 4))
(over all (<= (x) 700)) (over all (>= (x) 0))
(over all (<= (y) 700)) (over all (>= (y) 0))
(at start (AUV-ready)))

:effect (and
(at start (not (AUV-ready)))
(at end (AUV-ready))
(increase (x) (* 1.0 (velX) #t))
(increase (y) (* 1.0 (velY) #t))))

Figure 3: Navigate activity modified by continuous control
variables velX and velY.

The problem initial conditions are given by the set of true
propositions (P0) and an assignment to the state variables at
the start (xi(0)). Finally, the goal consists of the discrete and
continuous conditions that need to hold at the end.

A fixed solution plan to the planning problem consists of
a list of scheduled activities defined by the following prop-
erties: activity a, execution start time ta, duration da, and a
trajectory of the value of each control variable of a from ta
to ta + da, that is a function giving the value of each control
variable at any given moment, caj(t) with ta ≤ t ≤ ta +da.
Note that a fixed plan gives us the values of all the state
variables (discrete and continuous) at every time t between
0 and the end of the plan — the state trajectory. We further
require that all activity conditions are satisfied by the state
trajectory at the appropriate times, as in PDDL 2.1.

A fixed plan is not robust: any small deviation during ex-
ecution will cause the plan to fail. However, it is possible to
use flexible plans that allow an executive to respond to small

disturbances during execution. One such representation is
Qualitative State Plans (QSP) (Léauté and Williams 2005).
A QSP is defined by a set of events (starts and ends of activ-
ities), along with simple temporal constraints and state con-
straints. Simple temporal constraints (Dechter, Meiri, and
Pearl 1991) are of the form lb ≤ tj−ti ≤ ub, where ti and tj
are execution times of events and lb, ub are a fixed lower and
upper bound on the duration between ti and tj . State con-
straints specify legal values for continuous state variables at
the start and end events of the state constraint, as well as
the legal trajectories of continuous state variables and con-
trol variables. These trajectories specify the legal values of
these at any moment in time between the events. Typically
in robotic applications, these are given by the dynamics of
the robot. For Scotty, these are limited to the linear form
∆x = cvar ·∆t with cl ≤ cvar ≤ cu.

Executives exist that can control a robot given a QSP
as an input (Hofmann and Williams 2015). These execu-
tives choose the control variables and the execution times
of events online, while ensuring that all constraints are met.
Therefore, we focus on generating a flexible plan and leave
its dynamic execution to the executive. In the next section,
we review key ideas from existing planners that Scotty bor-
rows.

Previous Work
In this section we briefly describe the approaches that Kong-
ming and COLIN use to solve their planning problems.
Scotty combines the best of these approaches to solve the
hybrid planning problem with continuous control variables.

Kongming
Kongming solves the same planning problem as Scotty: ac-
tions are hybrid and their continous effects are modified by
bounded continuous control variables. One of the main in-
novations introduced by Kongming consists in representing
continuous effects with flow tubes, that are abstractions of
the infinite number of trajectories that a continuous action
can produce.

Another key innovation introduced by Kongming consists
in the introduction of the Hybrid Flow Graph, the continu-
ous analog to Graphplan’s Planning Graph (Blum and Furst
1997). Hybrid actions connect initial state regions to goal
regions after some fixed duration using the flow tubes gen-
erated from the system dynamics. Kongming expands the
Hybrid Planning Graph with alternating action and fact lay-
ers until the goal conditions are non-mutex in the last fact
layer. Kongming then encodes the problem as a mixed logic
linear (non-linear) program that contains the system dynam-
ics constraints on the state variables and logic constraints on
binary variables for the discrete conditions and effects (sim-
ilar to Blackbox’s SAT encoding (Kautz and Selman 1999)).
Kongming alternates between trying to solve the ML(N)LP
and adding additional layers to the graph until the ML(N)LP
solver returns a solution.

Although Kongming’s approach is innovative, it suffers
from performance degradation issues in medium to large
problems due to time discretization, as graph layers are dis-
cretized using a fixed time step. In problems in which the

PlanRob 2015

108

time horizon is moderately large, this involves creating many
layers. As the number of layers increases, identifying mu-
tex relations becomes exponentially more complicated. This
also slows down significantly the ML(N)LP solver, as each
additional layer adds many more additional variables and
constraints. In a later section of this document, we illustrate
with an example how this can become a problem very fast.

COLIN
COLIN solves temporal planning problems with continuous
effects as defined in PDDL 2.1. Hybrid actions can have con-
tinuous linear time-varying effects, whose rate of change is
specified by a fixed gradient.

In order to solve the planning problem, COLIN uses
heuristic forward search with the Enforced Hill Climbing al-
gorithm (EHC). Every search state is tested for consistency
with a Linear Program in which the real valued variables are
the continuous state variables and the times at which actions
are executed. The continuous linear time-varying effects and
the temporal relations between actions are encoded as con-
straints. The linear program is also used at each step of the
search to determine the minimum and maximum possible
bounds for each state variable in order to prune actions that
can’t possibly be feasible at that point of the search.

COLIN’s heuristic is based on the Temporal Relaxed
Planning Graph (TRPG) and delete relaxations. COLIN de-
fines FF’s analogous delete relaxation for continuous linear
time-varying effects by only allowing state variable bounds
to grow as a result of those continuous effects (bounds never
get smaller). The heuristic value is the number of actions in
the relaxed plan.

Although COLIN is a very efficient and proven planner,
it is not expressive enough to solve the kind of robotic prob-
lems we want to target. COLIN’s continuous actions can
only use fixed rates of change, according to the following
equation:

x(tend) = x(tstart) + rate-of-change · (tend − tstart) (4)

COLIN’s formulation can’t handle bounded continuous
rates of change (control variables). We can simulate this be-
havior by creating many equivalent continuous actions with
discretized fixed rates of change. However, this solution is
problematic as described at the end of this document.

From COLIN we borrow the efficient solving approach
based on linear programs for testing plan consistency and
heuristic forward search. We also use a modified version of
COLIN’s heuristic. The key innovation of our approach con-
sists in combining Kongming’s more flexible representation
of continuous actions based on flow tubes, with COLIN’s
more efficient solving approach based on heuristic forward
search and no time discretization.

Approach
In order to find flexible solution plans as described in the
Problem Statement section, Scotty first finds a fixed plan. In
this section we describe how Scotty uses flow tubes to repre-
sent continuous effects modified by continuous control vari-

t

x(t)

tstart tend
tstart + dl tstart + du

x(tstart)

xe

t1

min(k cl, k cu)

max(k cl, k cu)

Figure 4: Flow tube with its reachable region (shaded area).
The solid blue line represents an example valid state trajec-
tory. The flow tube contains all valid state trajectories.

ables, how fixed plans are found and, finally, how a flexible
plan is extracted from the fixed plan.

Flow tube representation of continuous effects
As Kongming, our planner uses flow tubes to represent con-
tinuous effects modified by continuous control variables.
Each activity can have multiple continuous effects, and each
is represented by a flow tube. For Scotty, we limit flow tubes
to operate on only one state variable. Flow tubes represent
the reachable state space region, that is, the values that the
state variable can take after the activity is started. We restrict
continuous effects to linear time varying effects.

A flow tube f(dl, du, cvar, x, k) is defined by the follow-
ing properties:

• minimum and maximum duration (dl, du), which are the
minimum and maximum durations of the activity the flow
tube belongs to.

• state variable x that the flow tube modifies.

• control variable cvar, is the activity control variable the
flow tube is associated with. Remember from the Problem
Statement that control variables are bounded (cl ≤ cvar ≤
cu).

• the scalar constant factor k that regulates the impact of the
control variable on the state variable

If no other flow tubes are affecting state variable x be-
tween tstart and tend, then the reachable region of x rep-
resented by the flow tube f(dl, du, cvar, x, k) of an activity
executed between tstart and tend is defined by the following
equations:

x(tend) = x(tstart) + k ·
∫ tend

tstart

cvar(t) · dt (5)

with cl ≤ cvar(t) ≤ cu (6)
dl ≤ tend − tstart ≤ du (7)

where x(tstart) is the initial value of the state variable be-
fore the activity is executed. Note that, if the value of the

PlanRob 2015

109

t

x(t)

min(k1 c1min, k1 c1max)

max(k1 c1min, k1 c1max)

t

x(t)

f1(dl1,du1,c1,x,k1)

f2(dl2,du2,c2,x,k2)

max(k2 c2min, k2 c2max)

min(k1 c1min, k1 c1max) tt1 t2 t3 t4

f1

f1 + f2
f1 x(t)

+

Figure 5: Combined flow tubes.

control variable is constant during the execution of the ac-
tivity, equation 5 reduces to x(tend) = x(tstart) + k · cvar ·
(tend − tstart).

Figure 4 shows a flow tube. Note that any point in the
shaded region (reachable region) can be reached at the end
of the activity by carefully choosing the appropriate activity
duration and control variable value. In the figure, we can see
how the state value xe can be reached as fast as in tend = t1
if the control variable cvar is constant and takes its maxi-
mum possible value (uc), or as late as tend = tstart + du if
cvar(t) takes smaller values.

Note that two or more flow tubes operating on the same
state variable and belonging to the same or different ongo-
ing activities can be active at the same time, having their
effects combined. For example, suppose that activity a1 has
start and end times t1 and t4 and activity a2, t2 and t3 and
that t1 < t2 < t3 < t4 so that a2 happens while a1 is in
progress. Suppose also that among their continuous effects,
they each have flow tubes f1 and f2 respectively that oper-
ate on state variable x. Figure 5 shows how the effects of
these flow tubes are combined. From the start, any point in
the shaded region can be reached. Note that for t ∈ [t2, t3]
(while both a1 and a2 are being executed), the effects of f2
are added to those of f1.

In general, if F represents the set of flow tubes belong-
ing to ongoing activities in t ∈ [ta, tb], the following state
evolution constraint between ta and tb holds:

x(tb) = x(ta) +

∫ tb

ta

Cx(τ)dτ (8)

Cx(t) =
∑
f∈F

kf · cvarf (t) (9)

where F is the set of flow tubes belonging to ongoing
activities in t ∈ [ta, tb].

An important characteristic of flow tubes, as described by
Kongming, is that they provide a compact encoding of all
feasible trajectories. This property is exploited to find a fixed
plan, as explained in the next section.

Finding a fixed solution plan
Now that we’ve defined how flow tubes represent continuous
effects, we proceed to describe how fixed plans are found. In
order to do that, Scotty uses a method based on heuristic for-
ward search and linear programs for consistency checking,
that is borrowed from COLIN. The main difference is that
Scotty’s continuous effects are represented by flow tubes
modified by control variables, and therefore, the state evo-
lution constraints are different, as will be explained later in
this section.

Activities are divided into start and end events, analogous
to the start and end snap actions used by many temporal
planners (Long and Fox 2003; Coles et al. 2008). In order to
find a fixed plan, Scotty needs to find the ordered sequence
of start and end events that takes the system from the initial
conditions to the goal and the execution time of each event.
Scotty also needs to find a trajectory for the values of each
activity control variable between the start and end events of
the activity (cvar(t) with tstart ≤ t ≤ tend).

Scotty finds trajectories for the control variables of an ac-
tivity that are piecewise constant. The number of segments
of these trajectories are given by 1 + nev , where nev is the
number of events that occur between the start and end events
of the activity. Remember that, in general, the value of a
control variable can vary within its bounds throughout the
execution of the activity. However, Scotty only needs to find
one solution at this step. It can be proved that, if the planning
problem has a solution, there exists a control variable piece-
wise constant solution, and that’s the fixed solution plan that
Scotty finds. The reason is that the state variables of the sys-
tem only change due to the continuous effects of executing
activities and are only constrained by the start, end and over-
all conditions of activities. Therefore, the constraints that
state variables are subject to only change at events (starts or
ends of activities). Moreover, these constraints are linear (in-
equalities as in (1)) and, therefore, the set of valid state vari-
able assignments is convex. Because of that, if the problem
can be solved, a fixed plan containing piecewise constant tra-
jectories for the control variables is always a solution. Simi-
larly, if no piecewise constant solution can be found, then the
problem doesn’t have any solutions. This property is conve-
nient, as we’ll show that a linear program formulation exists
that can find such piecewise constant solutions.

As COLIN, Scotty uses heuristic forward search to find
the sequence of start and end events that form a fixed plan,
and linear programs to check the consistency of each search
state. The search uses Enforced Hill Climbing, which has
proven to be effective in this type of problems (Hoffmann
and Nebel 2001). However, because EHC is not complete, if
no solution is found, Scotty can optionally try again with a
complete algorithm such as best-first search.

Search states contain the set of propositions that are
known to be true due to discrete effects, and are augmented
with the ongoing activities list and the bounds for all state
variables. The ongoing activities list keeps track of the ac-
tivities that have started but not finished at that state and is
needed to keep track of the active overall discrete and contin-
uous constraints. The lower and upper bounds for the state
variables are used to prune sections of the search tree that

PlanRob 2015

110

Type Constraints

Temporal

Total order of events:
For any pair of consecutive events i and j

tj − ti ≥ ε (10)

Activity duration:
For every activity whose start and end
events are i and j

dl ≤ tj − ti ≤ du (11)

where dl and du are the lower and upper
bounds of the activity duration.

State

Activity conditions:
For every start or end event i

cTk x
′
i ≤ 0 ∀ck ∈ Ci (12)

where ck is a vector of real coefficients,
x′
i = (x1i , . . . , xnxi

, 1)
T and Ci is the set

of continuous conditions that are active at
event i. That is, the start (or end) conditions
of the activity, and the overall conditions
of activities that started before i but whose
end event occurs after i.

Table 2: Temporal and state constraints used in the consis-
tency linear program. tk represents the execution time for
event k and xlk represents the value of state variable xl at
event k.

are necessarily not feasible. For example, if the start event
of a certain activity a requires state variable x to be greater
than 7 but the lower and upper bounds of x are 3 and 5 re-
spectively, the search algorithm won’t even try to apply this
event. However, an event having a x ≥ 4 condition will be
tried in the search. Note that these state variable bounds are
calculated for each state variable independently of the oth-
ers. As a consequence, the fact that a constraint is satisfied
by these bounds doesn’t mean that the partial plan is nec-
essarily feasible. Whether the partial plan is really feasible
is only discovered when the consistency linear program is
solved.

Each search state defines a partial plan as a sequence of
start and end events so far, and is tested for consistency us-
ing a linear program. The partial plan is feasible if the linear
program has a solution. In this linear program the decision
variables are the event execution times and the values of the
state variables at each event. The constraints include activity
duration, start, end and overall conditions and state evolu-
tion constraints that are built from the current sequence of
start and end events. Table 2 shows the temporal and state
constraints between events. These constraints are the same
ones that COLIN uses and are explained in detail in its jour-
nal article (Coles et al. 2012). Scotty needs a different state
evolution constraint, though, due to the presence of control
variables. This constraint is given by the flow tube reachabil-

ity equation (5). Because the values of the control variables
can change during the activity execution, and the start and
end times of the activity are variables of the linear program,
this equation is not linear if control variables are decision
variables of the linear program. However, we can redefine
the reachability region of the flow tube with the following
linear inequalities:

xend ≥ xstart + min(k · cl, k · cu) · (tend − tstart) (13)
xend ≤ xstart + max(k · cl, k · cu) · (tend − tstart) (14)

, where cl and cu are the bounds of the control variable. Note
that min(k ·cl, k ·cu) represents the minimum rate of change
of k · cvar and reduces to k · cl when k > 0. The more com-
plicated expression is needed to preserve generality when
k < 0. The same applies to the maximum rate of change.
These linear inequalities represent the same flow tube reach-
ability region described by equation (5) if each of the activ-
ity’s control variables appear in only one continuous effect.
However, note that this is not always the case. Imagine an
activity drive with its control variable speed. Assume drive
has two continuous effects that are modified by the control
variable speed. On one hand the state variable x is modified
by the flow tube ∆x = speed · ∆t. On the other, the car’s
battery is drained according to ∆battery = −3 · speed ·∆t.
Because the control variable speed that affects the battery
drain is the same as the one that controls the rate of change
in x, inequalities (13) and (14) can no longer represent the
real state evolution of the system. These inequalities would
artificially allow us to select at the same time a small value
for the speed that drains the battery and a large one for the
speed that makes the vehicle move fast. In these cases the
reachability region needs to be represented with the origi-
nal flow tube equations and the value of the control vari-
able made a decision variable. Then the constraints become
quadratic and the program is no longer linear. In its current
implementation, Scotty only accepts activities in which this
doesn’t happen to keep the program linear but in the future,
an appropriate solver will be used to handle this quadratic
constraints.

According to the previous discussion, Scotty uses the fol-
lowing state evolution constraints for state variable x be-
tween consecutive events i and j that consider that more than
one continuous effect can be operating on x simultaneously:

xj ≥ xi + Cx
l · (tj − ti) (15)

xj ≤ xi + Cx
u · (tj − ti) (16)

Cx
l =

∑
〈x,cvar,k〉∈Ax

i→j

min(k · cl, k · cu) (17)

Cx
u =

∑
〈x,cvar,k〉∈Ax

i→j

max(k · cl, k · cu) (18)

(19)

where xk denotes the value of the state variable x at event
k, tk is the execution time of event k and Ax

i→j is the set of
continuous effects affecting x between events i and j. Recall
that cl and cu denote the lower and upper bounds of each
state variable.

PlanRob 2015

111

c01

x(t)

t0

navigate take-sample navigate collect-volcano-data

x0
x1

x2
x3 x4

x5
x6

t1 t2
t3 t4

t5 t6

c45

start
navigate

start
take-sample

start
coll-volcano

end
navigate

end
take-sample

start
navigate

end
navigate

start
navigate

start
navigate

x0

t0

x1

x2

x3

x4

x5

x6

t1

t2

t3

t4

t5

t6

Figure 6: Flow tubes and state variable bounds for subse-
quent search states along the search tree. Flow tubes for the
navigate activities define the reachable regions of x at the
end of the activity (x1, x5). The rectangular regions show
the required conditions that x needs to satisfy for the take-
sample and collect activities.x1 = x2 = x3 = x4 and
x5 = x6 because take-sample and collect don’t modify x.

Note that the values of the control variables are not deci-
sion variables of the linear program. However, for each pair
of consecutive events 〈i, j〉, we can compute

Cx
i→j =

xj − xi
tj − ti

(20)

, where Cx
i→j =

∑
〈x,cvar,k〉∈Ax

i→j
k · cvar. We can use this

value to find piecewise constant assignments for each con-
trol variable between events i and j. Note that there are infi-
nite valid such possible piecewise assignments if more than
one continuous effect is affecting x. This is not a problem as
Scotty only needs to find one at this step. The control vari-
able values of the example problem shown in Figure 2 were
calculated in this manner.

Figure 6 shows how activities’ flow tubes are handled in
the linear program. The figure shows the values of state vari-
able x as solved by the linear program at different search
states. Activities’ flow tubes as well as continuous condi-
tions are shown. The consistency program is solved for each
state in the search tree to determine the feasibility of the par-
tial plan, and to extract the event times (t1 . . . t6), state vari-
able values (x1 . . .x6), and control variables. These values
keep changing as more steps are added to the plan during
search. In order to find the state variable lower and upper
bounds, the LP is solved twice per state variable (to mini-
mize and maximize its value).

If the current search state is determined to be consistent,
its heuristic value is computed and the state is added to the
queue. If the state satisfies the goal conditions, a valid fixed
plan has been found and Scotty proceeds to extract the flex-
ible plan next. The last linear program used to extract the
fixed plan tries to minimize the makespan of the plan, al-
though a different optimization objective could be chosen.

The heuristic function used by Scotty is essentially the
same used by COLIN, with minor modifications due to

…

[10, 10][1, ∞)(0, ∞) (0, ∞)

∆x = navspeed t
x ∈ VolcanoRegion-4 ≤ navspeed ≤ 4

(0, 300](0, 500]

start
navigate … end

take-sample
start

navigate
end

navigate
start

coll-volcano
end

coll-volcano

x ∈ VolcanoRegion

Figure 7: Example of a Qualitative State Plan that can be
extracted from Scotty’s solution. Start and end events are
represented with labeled oval shapes. Temporal constraints
are displayed in black above the events. State evolution con-
straints are displayed on blue. Finally, state constraints are
shown in green.

the use of control variables. The heuristic value for a state
is the number of start or end events to reach the goal in
the relaxed plan. The planning graph that COLIN expands
keeps track of the state variables lower and upper bounds
for each fact layer, with the caveat that activities can only
grow these bounds, in a similar fashion as how Metric-FF
works (Hoffmann 2003). COLIN calculates the positive
gradient affecting each state variable by adding the positive
rates of change of each ongoing activity (similarly with
the negative gradient). In Scotty’s case, these positive
and negative gradients are found by adding the maximum
(and minimum) rates of change given by the bounds of
the control variables affecting each activity. This heuristic
function is explained in detail in COLIN’s journal article
(Coles et al. 2012).

Extracting a QSP
The fixed solution plan obtained in the previous section is
not robust: any deviation during execution may result in an
infeasible plan. In this section we discuss how we can extract
a more flexible plan from the fully specified solution that can
take advantage of the temporal and control flexibility of the
problem.

As described in the Problem Statement, we use Qualita-
tive State Plans (QSPs) to describe such flexible plans. A
partial QSP extracted from the solution plan of the example
problem is shown in Figure 7. This QSP is a temporal net-
work of events (starts and ends of activities). These events
no longer have associated precise execution times as in the
fixed plan, but are connected by temporal constraints that
come from the duration constraints of the activities and the
problem temporal constraints (such as taking the volcano
samples before the eruption finishes in 300 minutes). Start
and end events of activities with continuous effects (such as
navigate) are connected by state evolution constraints that
express restrictions on how variables can vary while the ac-
tivity is being executed and what the bounds of the control
variables are. Finally, events can have state constraints (con-
ditions at start or end of activities), such as being in the ren-
dezvous region at the end of the mission, and events can be
connected by state constraints, that specify the feasible tra-

PlanRob 2015

112

jectories for the state variables between events (for example,
being in the volcano region while the data is collected).

The QSP can be extracted from the fixed solution plan by
traversing the fixed plan schedule and annotating the tempo-
ral constraints (activity durations), state constraints (activity
conditions) and state evolution constraints (continuous ef-
fects). This requires maintaining the total order of the events
so that the discrete conditions of activities hold. Lifting a
partial order plan from the grounded solution or, even bet-
ter, using POPF’s (Coles et al. 2010) approach of planning
with partial order states is possible, and is considered for fu-
ture work. In that case we would also have to annotate the
discrete conditions as additional constraints in the resulting
QSP.

Although we could extract a flexible plan like the one
defined above from the solution of any temporal planner,
the fact that Scotty operates with continuous control vari-
ables makes this plan much more useful. The advantage
of Scotty compared to other temporal generative planners
is that Scotty can reason with continuous control variables,
making this flexible plans much more useful. In effect, this
gives the executive the flexibility to choose not only the ex-
ecution times of the events, but also the values of the con-
trol variables that modify the continuous effects. For exam-
ple, if during execution it takes the AUV longer to take the
sample than initially expected, the executive will be able
to increase the navigation speed of the vehicle in order to
ensure that the eruption data is collected before the event
ends. In short, this provides the executive with two degrees
of freedom to react to disturbances: the execution times and
the control variables, as long as all state transition, activ-
ity conditions and time constraints are satisfied. Algorithms
exist that can execute QSPs (Hofmann and Williams 2015;
2006). These algorithms execute the plan activities online by
choosing the execution times of the events and the control
variables, while making sure that all constraints are propa-
gated forward and satisfied at all times.

Empirical Evaluation
Scotty and Kongming can both reason with continuous ef-
fects modified by bounded control variables. In a previ-
ous section, we argued that Kongming’s time discretization
can hurt performance as the complexity of the problem in-
creases. In Figure 8 we present a simple AUV sampling mis-
sion scenario that highlights this issue. The AUV needs to
reach a certain depth range in order to take a sample. We
parametrize this scenario in terms of the sampling depth
that needs to be reached to take the sample. The AUV can
use the action descend to modify its depth according to the
bounded control variable descent-rate. Because Kongming
discretizes time in constant time steps, increasing the tar-
get sampling depth forces Kongming to create additional
fact and action layers and, additionally, more variables that
the ML(N)LP solver needs to consider. As a result, the per-
formance of Kongming degrades very fast with the target
sampling depth as shown in Figure 8. While Kongming’s
performance degrades very fast with depth, Scotty’s per-
formance is constant (and orders of magnitude better than
Kongming’s). This is expected, as Scotty doesn’t discretize

0.1
1

10
100

0 40 80 120 160

Kongming
Scotty

AeroAstro Doctoral Research Evaluation, January 2014 - Enrique Fernandez

3.2. Preliminary Results

�19

Pla
nn

ing
 Ti

me

(se
co

nd
s)

0.1

1

10

100

Sampling Depth

0 40 80 120 160

Kongming
Scotty

Results are preliminary. Ongoing work.

Scotty appears to solve some scaling issues that hinder Kongming’s
performance due to it’s use of discrete time

sampling
depth

sampling X

30 m

80 m

sampling
area

X = 0
depth = 0

descend1
descend2descend1

descend2

descend3

Example scenario:

Higher depth (larger
distance) requires more
time steps (layers) to find a
solution.

Kongming

Sampling Depth (m)

Pl
an

nin
g

Ti
m

e

Figure 8: Sampling scenario that shows the problems of dis-
cretizing time.

2D AUV 1 2D AUV 2 3D AUV Firefighting 1 Firefighting 2
Kongming 3.633 9.736 13.063 1.505 20.202
Scotty 0.054 0.025 0.192 0.03 0.372

Table 3: Comparison between Kongming and Scotty in sev-
eral domains. Results show planning time in seconds for
each problem.

time and, therefore, is solving the same problem regardless
of the depth. Table 3 shows Scotty’s large performance ad-
vantage in other domains. These domains typically show-
case one or more mobile robots moving in a 2D or 3D envi-
ronment and trying to complete objectives that involve vis-
iting different locations.

On the other hand COLIN/POPF are efficient heuristic
forward search planners that do not present the time dis-
cretization problem. However, they are not meant for robot
control and therefore do not support continuous control vari-
ables, but fixed rates of change for continuous linear time
evolving effects. Let’s consider an example that shows why
this is not desirable for the type of problems we are inter-
ested in (Figure 9). Imagine that the AUV in the example
mission needs to reach the volcano region (xmin ≤ x ≤
xmax) some prudential time after the eruption has ended so
that it’s safe to be nearby but before too long has passed, so

t

x(t)

tmin tmax

xmin

xmax

c*min

c*max
c0

c1

c2

c3
c4

Figure 9: Discretization of rates of change.

PlanRob 2015

113

that the collected data is still relevant (tmin ≤ t ≤ tmax).
Let’s consider that the robot can move with some speed
(control variable) cmin ≤ c ≤ cmax. Note that in order to
satisfy the constraints, the robot needs to move with some
speed satisfying c∗min = xmin/tmax ≤ c ≤ c∗max =
xmax/tmin. Because COLIN does not support continuous
control variables, it would have to discretize the interval
[cmin, cmax] into a set of discrete fixed rates of change (rep-
resented as c0...c4 in Figure 9). The problem only becomes
feasible if one of the discretized values happens to be inside
the valid bounds [c∗min, c∗max] (c2 in the example). Each
discretized rate of change requires a new action added to the
domain, making the problem harder to solve. The required
number of discretized rates of change can become arbitrar-
ily large as different time and state constraints can modify
the valid speed interval arbitrarily. This problem becomes
worse if the problem contains multiple goals with similar
constraints but different values that require a different dis-
cretization. If we expand this example to multiple dimen-
sions (the robot can move in 3D space with different x, y and
z velocities, for example) the problem exacerbates, as the
discretization of the rate of change will need to happen si-
multaneously across all dimensions, which would result in a
large number of discretized actions. Because Scotty supports
continuous control variables, no discretization is needed and
only one activity is sufficient as long as the interval given by
the control variable bounds and the interval that contains the
problem valid speeds have a non-empty intersection.

Finally, we compare Scotty’s performance to COLIN and
POPF in some of their benchmarking domains that use fixed
rates of change and do not require continuous control vari-
ables. The results are shown in table 4. Some of these do-
mains were slightly modified to substitute discrete numeric
effects with fixed-rate continuous time dependent effects.
The reason for that is that Scotty’s current implementation
doesn’t support discrete numeric effects yet. This is an im-
plementation issue and not an algorithmic problem as dis-
crete numeric effects could be added to the planner in ex-
actly the same way as they are handled by COLIN.

COLIN and POPF perform better in general than Scotty
(about an order of magnitude) in the domains they were de-
signed for. This is expected as they are written in C++ and
their code bases have matured for years in preparation for
the International Planning Competitions. On the other hand
Scotty has been written from scratch in Common Lisp to
better integrate with our internal software and doesn’t in-
clude common optimization techniques, such as detecting
compressible temporal actions, that state of the art planners
do. If the goal was to develop a high performance planner
with Scotty’s new capabilities, integrating Scotty’s advance-
ments in COLIN’s high performance code base would be the
natural way to proceed.

Conclusion
We have presented Scotty, a mixed discrete-continuous gen-
erative planner that fills the gap between high fidelity model
predictive control approaches, that suffer from scalability
problems, and temporal planners, that present an impressive

domain # colin popf scotty
cafe delivery window 01 0.028 0.024 0.776

02 0.014 0.056 1.098
03 0.017 0.145 2.148
04 0.021 0.307 3.811
05 0.026 0.572 6.673
06 0.039 0.963 10.540
07 0.036 1.428 16.682
08 0.044 2.056 25.346
09 0.050 3.109 35.157
10 0.060 4.171 48.323
11 0.073 5.648 62.154
12 0.081 7.226 86.643

linear generator 01 0.013 0.015 0.543
rovers continuous 01 0.066 0.049 1.268

02 0.028 0.030 1.017
03 0.096 0.125 2.319
04 0.051 0.047 1.021
05 - 0.701 3.486
06 - - -
07 0.324 0.538 4.219
08 6.118 - 60.345
09 - - -
10 3.854 5.221 -
11 1.432 264.648 -
12 - - 5.863

Table 4: Scotty performance results in some of COLIN’s
benchmark continuous domains. Table shows planning time
in seconds with a timeout limit of 10 minutes. Results shown
as “-” indicate that the planners couldn’t solve the problem
in ten minutes.

performance on large problems at the cost of limited expres-
sivity, as can only reason with behaviors with discretized
control parameters. Scotty finds the middle ground between
these approaches by using flow tubes to compactly encapsu-
late continuous effects with continuous control variables, as
Kongming, and using heuristic forward search and a contin-
uous time formulation, as COLIN. By avoiding discretiza-
tion of either time or control variables, Scotty can reason
with more expressive problems than COLIN and perform
at least two orders of magnitude better than Kongming. Fi-
nally, Scotty produces flexible plans that are suitable for ro-
bust execution, as executives can exploit both temporal and
control flexibility due to the presence of continuous control
variables.

Acknowledgments
The work was partially supported by the Boeing Company
under grant number MIT-BA-GTA-1. The authors would
also like to thank Andrew Coles for providing a PDDL
grounder tool that was used for testing our planner.

References
Blum, A. L., and Furst, M. L. 1997. Fast planning through
planning graph analysis. Artificial Intelligence 90(1):281–
300.
Cashmore, M.; Fox, M.; Larkworthy, T.; Long, D.; and Mag-

PlanRob 2015

114

azzeni, D. 2014. AUV mission control via temporal plan-
ning. In Robotics and Automation (ICRA), 2014 IEEE Inter-
national Conference on, 6535–6541.
Coles, A.; Fox, M.; Long, D.; and Smith, A. 2008. Planning
with Problems Requiring Temporal Coordination. In Pro-
ceedings of the Twenty-Third AAAI Conference on Artificial
Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13-17,
2008, 892–897.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2009. Tem-
poral Planning in Domains with Linear Processes. In IJCAI
2009, Proceedings of the 21st International Joint Confer-
ence on Artificial Intelligence, Pasadena, California, USA,
July 11-17, 2009, 1671–1676.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2010.
Forward-Chaining Partial-Order Planning. In Proceedings
of the 20th International Conference on Automated Planning
and Scheduling, ICAPS 2010, Toronto, Ontario, Canada,
May 12-16, 2010, 42–49.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2012. COLIN:
Planning with continuous linear numeric change. Journal of
Artificial Intelligence Research (JAIR) 44:1–96.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence.
Fox, M., and Long, D. 2011. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. CoRR
abs/1106.4561.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 253–302.
Hoffmann, J. 2003. The Metric-FF Planning System: Trans-
lating ”Ignoring Delete Lists” to Numeric State Variables. J
Artif Intell Res(JAIR) 20:291–341.
Hofmann, A., and Williams, B. 2006. Robust Execution
of Temporally Flexible Plans for Bipedal Walking Devices.
In Proceedings of the Sixteenth International Conference on
Automated Planning and Scheduling, ICAPS 2006, Cum-
bria, UK, June 6-10, 2006, 386–389.
Hofmann, A. G., and Williams, B. C. 2015. Temporally and
spatially flexible plan execution for dynamic hybrid systems.
Artificial Intelligence (0 SP - EP - PY - T2 -):–.
Kautz, H. A., and Selman, B. 1999. Unifying SAT-based
and Graph-based Planning. In Proceedings of the Sixteenth
International Joint Conference on Artificial Intelligence, IJ-
CAI 99, Stockholm, Sweden, July 31 - August 6, 1999. 2 Vol-
umes, 1450 pages, 318–325.
Léauté, T., and Williams, B. C. 2005. Coordinating Ag-
ile Systems through the Model-based Execution of Tempo-
ral Plans. In Proceedings, The Twentieth National Confer-
ence on Artificial Intelligence and the Seventeenth Innova-
tive Applications of Artificial Intelligence Conference, July
9-13, 2005, Pittsburgh, Pennsylvania, USA, 114–120.
Li, H. X., and Williams, B. C. 2008. Generative Planning
for Hybrid Systems Based on Flow Tubes. In Proceedings
of the Eighteenth International Conference on Automated
Planning and Scheduling, ICAPS 2008, Sydney, Australia,
September 14-18, 2008, 206–213.

Li, H., and Williams, B. 2011. Hybrid Planning with Tem-
porally Extended Goals for Sustainable Ocean Observing.
In Proceedings of the Twenty-Fifth AAAI Conference on Ar-
tificial Intelligence, AAAI 2011, San Francisco, California,
USA, August 7-11, 2011.
Li, H. X. 2010. Kongming: a generative planner for hybrid
systems with temporally extended goals. Ph.D. Dissertation,
Massachusetts Institute of Technology.
Long, D., and Fox, M. 2003. Exploiting a Graphplan Frame-
work in Temporal Planning. In Proceedings of the Thir-
teenth International Conference on Automated Planning and
Scheduling (ICAPS 2003), June 9-13, 2003, Trento, Italy,
52–61.
Muscettola, N.; Nayak, P. P.; Pell, B.; and Williams, B. C.
1998. Remote Agent: to boldly go where no AI system has
gone before. Artificial Intelligence 103(1-2):5–47.

PlanRob 2015

115

Goal Reasoning to

Coordinate Robotic Teams for Disaster Relief

 Mark Roberts1, Swaroop Vattam1, Ronald Alford2,

Bryan Auslander3, Tom Apker4, Benjamin Johnson1,

and David W. Aha4

1NRC Postdoctoral Fellow; Naval Research Laboratory, Code 5514; Washington, DC
2ASEE Postdoctoral Fellow; Naval Research Laboratory, Code 5514; Washington, DC

3Knexus Research Corporation; Springfield, VA
4Navy Center for Applied Research in Artificial Intelligence; Naval Research Laboratory, Code 5514; Washington, DC

1,2first.last.ctr@nrl.navy.mil | 3first.last@knexusresearch.com | 4first.last@nrl.navy.mil

Abstract

Goal reasoning is a process by which actors deliberate to

dynamically select the goals they pursue, often in response

to notable events. Building on previous work, we clarify and

define the Goal Reasoning Problem, which incorporates a

Goal Lifecycle with refinement strategies to transition goals

in the lifecycle. We show how the Goal Lifecycle can model

online planning, replanning, and plan repair as instantiations

of Goal Reasoning while further allowing an actor to select

its goals. The Goal Reasoning Problem can be solved

through goal refinement, where constraints introduced by

the refinement strategies shape the solutions for successive

iterations. We have developed a prototype implementation,

called the Situated Decision Process, which applies goal

refinement to coordinate a team of autonomous vehicles to

gather information soon after a natural disaster strikes. We

outline several disaster relief scenarios that progressively

require more sophisticated responses. Finally, we

demonstrate the prototype Situated Decision Process on the

simplest of our scenarios, showing the merits of applying

goal refinement to disaster relief.

1. Introduction

Robotic systems often commit to actions to achieve some

goal. For example, a robot may commit to actions that

attain some goal (e.g., to be at(location)) or to maintain

some desirable condition (e.g., keep its battery charged).

Robots also frequently act in partially-observable, dynamic

environments with non-deterministic action outcomes.

Consequently, robots may encounter notable events that

impact their current commitments, examples of which

include an exogenous event in the environment (e.g., wind

disrupts vehicle navigation), a sensor reading identifies

something of interest (e.g., a radio sensor reports the cell

phone signal of an important person), or an executed action

leads to an unanticipated outcome (e.g., a vehicle switches

itself to a more urgent task, causing delay on the first task).

 Robots must deliberate on their responses to notable

events that impact their goals. Appropriate responses

might include continuing despite the event, adjusting

expectations, repairing the current plan, replanning,

selecting a different goal (i.e., regoaling), deferring the

original goal in favor of another goal, or dropping the goal

altogether. Responses could be designed a priori or learned

by the robot, but ultimately, the robot deliberates about its

commitment(s) to its goal(s). Goal Reasoning (GR) is the

capacity of an actor to deliberate about its goals, which

involves formulating, prioritizing, and adjusting its goals

during execution. GR actors are distinguished by their

available responses, how they obtained them, and how they

apply them. The degree to which an actor performs GR

determines its autonomy and ability to respond to change.

 We have implemented a software library for Goal

Reasoning that we apply to coordinating robotic vehicle

teams for Foreign Disaster Relief (FDR) operations. In the

rest of the paper, we introduce FDR (§2) and our prototype

system called the Situated Decision Process (SDP) (§3).

We formally extend the GR Problem to online planning,

demonstrating how it instantiates common systems (§4).

We describe how to solve Goal Reasoning as iterative

Goal Refinement (§5). We outline a set of FDR scenarios

(§6) and detail how we applied our Goal Refinement

library for the simplest of the FDR scenarios (§7). After a

proof-of-concept demonstration (§8), we conclude and

highlight ongoing and future work (§9). Related work is

mentioned throughout the sections. The contributions of

this paper over previous work (Roberts et al. 2014, 2015)

include formally incorporating Goal Refinement into an

online planning and execution framework (Nau 2007) and

introducing an algorithm, fully outlining the set FDR

scenarios, and providing richer detail of the

implementation of Goal Refinement for FDR.

PlanRob 2015

127

2. Motivating Application: Disaster Relief

We study how to coordinate a team of robotic vehicles for

Foreign Disaster Relief (FDR) operations. Between the

time of a tragic disaster (e.g., Typhoon Yolanda) and the

arrival of support operations, emergency response

personnel need information concerning the whereabouts of

survivors, the condition of infrastructure, and suggested

ingress and evacuation routes. Current practice for

gathering this information relies heavily on humans (e.g.,

first responders, pilots, drone operators). A team of

autonomous vehicles with sensors can facilitate such

information gathering tasks, freeing humans to perform

more critical tasks in FDR operations (Navy 1996). It is

not tenable to tele-operate every vehicle, so we must

design a system that allows humans to be “on” the control

loop of vehicles without issuing every vehicle command.

FDR operations present unique challenges for domain

modeling because each disaster is distinct. Any system that

supports FDR operations must allow personnel to tailor

vehicles’ tasks to the current situation. The system must

also respond to notable events during execution.

 An example information gathering task is shown in

Figure 1 (top), which depicts a survey task for a team of

fixed-wing aerial vehicles. Three vehicles (V1, V2, and

V3) begin at the center base and must follow the nominal

trajectories (green dashed lines) as closely as possible to

maximize coverage of the areas (gray circles). The outer

gray box outlines the vehicles’ allowed flight envelope.

 Figure 1 (bottom) demonstrates notable events for a

single vehicle with a next goal of at(y). The vehicle should

follow the expected path (dashed line from x to y) within

the preferred bounds (the curved thin green lines); staying

within these bounds gives the best solution. The gray outer

box is the proposed flight envelope outside of which the

vehicle may negatively interact with other vehicles. The

actual flight path is given by the solid arc that starts at x

and ends at y. The deviating path is due to the difference

between the expected wind (dashed vectors) and actual

wind (solid vectors). The dots correspond to notable events

that could impact the vehicle’s goal commitment to be

at(y). The first two points indicate where the vehicle

violates the preferred trajectory while the last two points

indicate the eminent and actual violation of the flight

envelope.

 Below each plot is a representation of the vehicle

timeline(s), as described by Smith et al. (2000). The time

window of the plan indicates that the plan should start

executing no earlier than the earliest start time (i.e., the

leftmost vertical bar) and finish by the latest finish time

(the rightmost vertical bar). The large block in the middle

indicates the expected duration.

3. The Situated Decision Process (SDP)

We have implemented a prototype of a system, called the

Situated Decision Process (SDP), which is designed to

allow flexible assignment and control of a team of robots

for FDR. Figure 2 displays an abstraction of the SDP

components we discuss in this paper. The SDP is

partitioned into three abstract layers, each composed of

components that perform specific tasks. We will briefly

describe the layers and some components. A more

complete exposition of the SDP and its components is

provided by Roberts et al. (2015).

 The UI Layer (colored white) manages interaction with

the Operator. In this layer, the User Interface (UI)

component collects operational goals and constraints from

a human Operator (e.g., survey this region, look for a Very

important Person (VIP) in this other region, and do not fly

outside these bounds). The UI Layer conveys Operator

feedback to the other components as needed and provides

info to an Operator that the Operator may then decide to

act on.

 The Distributed Layer (colored black) manages the

vehicles or vehicle simulation. Reactive robotic controllers

often employ FSAs to determine a robot’s next action.

Although they are fast to execute, hand-writing FSAs is

Figure 1: Examples where goal reasoning

may apply in a team survey task (top) and a track

following task from point x to point y (bottom) with

possible notable events highlighted by dots.

PlanRob 2015

128

error prone, tedious, and brittle. Yet, creating a single

robotic controller for the many FDR missions and tasks is

untenable because no controller could incorporate all the

necessary steps. Recent advances apply a restricted variant

of Linear Temporal Logic (LTL) called General

Reactivity(1) to automatically synthesize FSAs in time

cubic in the size of the final FSA (Bloem et al. 2012). This

layer leverages LTLMop (Kress-Gazit et al. 2009) for LTL

synthesis and physicomimetics (Apker et al. 2014) to

implement vehicle control.

 The Coordination Layer (colored gray) focuses on the

mission and task abstractions for the vehicle teams. Even

though LTL improves the consistency and speed of FSA

generation, synthesis still becomes impractical for teams in

dynamic environments. Hierarchical mission planning is

naturally suited to limit the FSA size for teams of vehicles

(e.g., by pre-allocating missions to vehicles or by assigning

vehicles to teams). Assigning specific tasks to vehicles

leads to compact, manageable LTL specifications, which

allows us to construct vehicle FSAs with reasonable

computational effort. We employ hierarchical

decomposition (task) planning because it matches well

with how humans view FDR operations (Navy 1996). In

particular, we apply goal refinement to coordinate those

vehicle missions in support of larger FDR operations.

 The Coordination and Distributed Layers of the SDP are

linked via a set of Coordination Variables, which integrate

team mission goals with the vehicle controllers by

providing abstraction predicates for vehicle commands,

vehicle state (e.g., current behavior and health), and

abstract vehicle sensor data.

 The responses of the SDP must consider relevance to the

operational context. Much is unknown or dramatically

different from before to the disaster. The SDP must

respond appropriately to the Operator dynamically

(re)allocating resources or (re)prioritizing goals as new

information becomes available. The SDP should respond

by confirming the Operator’s intent and producing

alternatives that best allocate resources to goals.

4. Goal Reasoning

Deliberating about objectives – how to prioritize and attain

(or maintain) them – is a ubiquitous activity of all

intentional entities (i.e., actors). For the purposes of this

section, we make the simplifying assumption that an

objective is a goal, which is a set of states the actor desires

to attain or maintain. Thangarajah et al. (2011) and

Harland et al. (2014) show that all goals are either

attainment goals or maintenance goals, but for further

simplicity we will focus almost exclusively on attainment

goals in this paper. Regardless of the source, achieving

goals requires deliberation on the part of the actor (e.g., a

plan must be created to achieve a goal). Although our

motivating application is robotic team coordination, we

generally refer to any system that interleaves deliberation

with acting as an actor, following the terminology of

Ghallab et al. (2014) and Ingrand & Ghallab (2014). This

section extends and clarifies early work on formalizing GR

by Roberts et al. (2014).

 To clarify the relationship of GR to planning, consider

our adaptation of Nau’s (2007) model of online planning

and execution in Figure 3, which shows how a Goal

Reasoner complements online planning (in black) with

Goal Reasoning (in gray). The world is modeled as a State

Transition System Σ = (𝑆, 𝐴, 𝐸, 𝛿) where: 𝑆 =
{𝑠0, 𝑠1, 𝑠2, … } is a set of (discrete) states that represent facts

in the world; 𝐴 = { 𝑎1, 𝑎2, … } are the actions controlled by

the actor; 𝐸 = {𝑒1, 𝑒2, … } is a set of events not controlled

by the actor; and, 𝛿 ∶ 𝑆 × (𝐴 ∪ 𝐸) → 2𝑆 is a state-

transition function. 𝑠𝑖𝑛𝑖𝑡 ∈ 𝑆 denotes the initial state of the

actor. Assuming attainment goals, the actor seeks a set of

transitions from 𝑠𝑖𝑛𝑖𝑡 to either a single goal state 𝑠𝑔 ∈ 𝑆 or

Figure 3: Incorporating Nau’s (2007) Online
Planning Model into a Goal Reasoning Loop.

Figure 2: An abstract view of the Situated Decision

Process (SDP). Nodes are colored by layer: UI (white),

Coordination (Gray), and Vehicle (black).

PlanRob 2015

129

a set of goal states 𝑆𝑔 ⊂ 𝑆. Under classical assumptions,

the planning problem can be stated: Given Σ = (S, A, δ),

𝑠𝑖𝑛𝑖𝑡 , and a set of goal states 𝑆𝑔 find a sequence of actions

(𝑎1, 𝑎2, … , 𝑎𝑘) that lead to a sequence of states

(𝑠𝑖𝑛𝑖𝑡 , 𝑠1, 𝑠2, … , 𝑠𝑘) such that 𝑠1 ∈ 𝛿(𝑠𝑖𝑛𝑖𝑡 , 𝑎1), 𝑠2 ∈
𝛿(𝑠1, 𝑎2), … , 𝑠𝑘 ∈ 𝛿(𝑠𝑘−1, 𝑎𝑘), and 𝑆𝑔 ∈ 𝑠𝑘. However, it is

rare that plans exist without some actor to execute them

(cf. Pollack & Horty 1999). In online planning, execution

status is provided to the planner as part of its deliberation.

This allows the planner to adjust to dynamic events or new

state in the environment. The online planning model often

assumes static, external goals.

 Before we define Goal Reasoning, we must clarify the

notion of “state” in the GR actor, which includes both its

external and internal state and which requires expanding

the state representation beyond S. To avoid confusion with

the use of the word state as it is typically applied in

planning systems, we will use 𝐿 to represent the language

of GR. We say that the language of a GR actor is 𝐿 =
𝐿𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 ∪ 𝐿𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 , where

 𝐿𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 will often be a model of Σ but may be (or

may become) a modified or incomplete version of Σ

during execution or deliberation. An example of an

external state for Figure 1 is at(y).

 𝐿𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 represents the predicates and state required

for the refinement strategies (e.g., the predicates

𝑎𝑡𝑡𝑎𝑖𝑛(𝑔) or 𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛(𝑔), the state of all goals).

An example of an internal state for Figure 1 is

attain(at(y)).

 We similarly extend and partition the set of goals into

𝐿𝑔 = 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝑔 ∪ 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑔 . In 𝐿𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 the actor

selects actions to achieve 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝑔. In 𝐿𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 the actor

selects actions to achieve 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑔. Internal goals may be

conditioned on external goals or vice versa. For

convenience, we write goals as 𝑔 and it should be clear

from context whether we mean 𝑔 ∈ 2𝑆 or 𝑔 ∈ 2𝐿. If more

context is needed we will use 𝑆𝑔 for goals that depend on Σ

and 𝐿𝑔 for goals that depend on Ζ (defined next).

 We model the GR actor as a State Transition

System Ζ = (𝑀, 𝑅, 𝛿𝐺𝑅), where: 𝑀 is the goal memory that

we detail in §4.1; 𝑅 is the set of refinement strategies

introduced in §4.2; and 𝛿𝐺𝑅 ∶ 𝑀 × 𝑅 → 𝑀′ is a transition

function we describe in §4.3.

4.1 The Goal Memory (𝑀)

The Goal Memory 𝑀 stores 𝑚 goals. Let 𝑔𝑖 be the actor’s

𝑖𝑡ℎ goal for 0 ≤ 𝑖 ≤ 𝑚. Then 𝑁𝑔𝑖 =
〈𝑔𝑖 , 𝑝𝑎𝑟𝑒𝑛𝑡, 𝑠𝑢𝑏𝑔𝑜𝑎𝑙𝑠 , 𝐶, 𝑜, 𝑋, 𝑥, 𝑞〉 is a goal node where:

𝑔𝑖 is the goal that is to be achieved (or maintained);

𝑝𝑎𝑟𝑒𝑛𝑡 is the goal whose subgoals include 𝑔𝑖;

𝑠𝑢𝑏𝑔𝑜𝑎𝑙𝑠 is a list containing any subgoals for 𝑔𝑖;

𝐶 is the set of constraints on 𝑔𝑖. Constraints could be

temporal (finish by a certain time), ordering (do x

before y), maintenance (remain inside this area),

resource (use a specific vehicle), or computational

(only use so much CPU or memory).

𝑜 is current lifecycle mode (see Figure 4 and §4.2).

𝑋 is a set of expansions that will achieve the goal. The

kind of expansions for a goal depend on its type. For

goals from Σ, expansions might be a plan set Π. But

other goals might expand into a goal network, a task

network, a set parameters for flight control, etc. The

expand strategy, described in §4.2, creates 𝑋.

𝑥 ∈ 𝑋 is the currently selected expansion. This

selection is performed with the commit strategy.

𝑞 is a vector of one or more quality metrics. For

example, these could include the priority of a goal,

the inertia of a goal indicating a bias against

changing its current mode because of prior

commitments, the net value (e.g., cost, value, risk,

reward) associated with achieving 𝑔𝑖, using the

currently selected expansion 𝑥 ∈ 𝑋, the parallel

execution time (i.e., the schedule makespan) or the

number of plan steps.

The constraints will be discussed in §5, where we detail

how a GR actor refines goals. A partition 𝐶 = 𝐶𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 ∪
𝐶𝑎𝑑𝑑𝑒𝑑 separates constraints into those provided to the GR

process independent of whatever invoked it (e.g., human

operator, meta-reasoning process, coach) and those added

during refinement. Top-level constraints can be pre-

encoded or based on drives (e.g., (Coddington et al. 2005;

Young & Hawes 2012)). Hard constraints in 𝐶 must be

satisfied at all times, while soft constraints should be

satisfied if possible.

 Our use of goal memory is distinct from its typical use in

cognitive science, where goal memory is typically

presented as a mental construct with representations and

processes that are used to store and manage goal-related

requirements of the task that a cognitive agent happened to

be engaged in (e.g., Altmann & Trafton 1999; Anderson &

Douglass 2001; Choi 2011). While issues such as

interference level, strengthening, and priming constraints

are key requirements to mimic human memory (Altmann

& Trafton 2002), we ignore any such considerations

because we are not concerned with the cognitive

plausibility of our goal memory model.

4.2 Refinement strategies (𝑅)

The actor applies a set of refinement strategies 𝑅 to

transition goal nodes in 𝑀. The Goal Lifecyle (Figure 4)

captures the possible decision points of goals in the SDP.

Decisions consist of applying a strategy (arcs in Figure 4)

to transition a goal node 𝑁𝑔 among modes (rounded

boxes). For convenience, we sometimes refer to the goal

node 𝑁𝑔 as simply the goal 𝑔, though it should be clear

PlanRob 2015

130

that any strategies are functions that transition some 𝑁𝑔. In

§6 we will detail strategies that we implemented for the

FDR application that motivated this work.

 Goal nodes in an active mode are those that have been

formulated but not yet dropped. The formulate strategy

determines when a new goal node is created. Vattam et al.

(2013) describe goal formulation strategies. The drop

strategy causes a goal node to be “forgotten” and can occur

from any active mode; this strategy may store the node’s

history for future deliberation. To select 𝑁𝑔 indicates

intent and requires a formulated goal node. The expand

strategy decomposes 𝑁𝑔 into a goal network (e.g., a tree of

subgoal nodes) or creates a (possibly empty) set of

expansions 𝑋. Expansion is akin to the “planning” step, but

is renamed here to generalize it from specific planning

approaches. The commit strategy chooses an expansion

𝑥 ∈ 𝑋 for execution; a static strategy or domain-specific

quality metrics may rank possible expansions for selection.

The dispatch strategy slates 𝑥 for execution; it may further

refine 𝑥 prior to execution (e.g., it may allocate resources

or interleave 𝑥’s execution with other expansions).

Goal nodes in executing modes (Figure 4, dashed lines)

can be subject to transitions resulting from expected or

unexpected state changes in Σ or Ζ. The monitor strategy

checks progress for 𝑁𝑔 during execution. Execution

updates, including notification that the executive has

completed the tasks for the goal, arrive through the

evaluate strategy. In a nominal execution, the information

can be either resolved through a continue strategy after

which the finish strategy marks the goal node as finished.

 When notable events occur during execution, the

evaluate strategy determines how they impact goal node

execution and the resolve strategies define the possible

responses. If the evaluation does not impact 𝑁𝑔, the actor

can simply continue the execution. However, if the event

impacts the current execution other strategies may apply.

One obvious choice is to modify the world model (i.e., Σ or

Ζ) using adjust, but adjusting its model does not resolve

the mode of 𝑁𝑔 and further refinements are required. The

repair strategy repairs the expansion 𝑥 so that it meets the

new context; this is frequently called plan repair. If no

repair is possible (or desired) then the re-expand strategy

can reconsider a new plan in the revised situation for the

same goal; this is frequently called replanning. The defer

strategy postpones the goal, keeping the goal node selected

but removing it from execution. Finally, formulate creates

a revised goal 𝑔′; the actor then may drop the original goal

𝑔 to pursue 𝑔′ or it could consider both goals in parallel.

 We partition 𝑅 = 𝑅𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 ∪ 𝑅𝑎𝑑𝑑𝑒𝑑 ∪ 𝑅𝑙𝑒𝑎𝑟𝑛𝑒𝑑 to

distinguish between representations that the actor was

provided prior to the start of its lifetime (e.g., through

design decisions), representations that were added to its

model as a result of execution in an environment (e.g., a

new object is sensed), and those it learned for itself (e.g.,

the actor adjusts its expectations for an action after

experience).

4.2 The Transition Function (𝛿𝐺𝑅)

Not every strategy will apply to every goal or every

situation. The transition function 𝛿𝐺𝑅 specifies the allowed

transitions between modes. In a domain-independent

fashion, 𝛿𝐺𝑅 is defined by the arcs in the lifecycle.

However, a system or domain may modify (through

composition, ablation, or additional constraints) the

transitions for 𝑀. For example, in FDR operations, human

approval is required before the SDP can commit to vehicle

flight paths. In such a case, additional constraints on the

commit strategy would ensure that Operator consent is

obtained before a vehicle actually flies a trajectory.

4.3 Instantiations of the Goal Reasoning Problem

The Goal Reasoning Problem distinguishes systems by

their design choices and, thus, facilitates their comparison.

Figure 5 shows how different instantiations of the Goal

Lifecycle can represent iterative plan repair (e.g., Chien et

al. 2000), replanning (e.g., Yoon et al. 2007), and Goal-

Driven Autonomy (e.g., Klenk et al. 2013).

Figure 4: The Goal Lifecycle (Roberts et al. 2014). Strategies (arcs) denote possible decision points

of an actor, while modes (rounded boxes) denote the status of a goal (set) in the goal memory.

PlanRob 2015

131

4.4 The Goal Reasoning Problem

We can now define the Goal Reasoning Problem. Let 𝐿𝑖𝑛𝑖𝑡

be the initial state of the actor, which includes 𝑠𝑖𝑛𝑖𝑡 . Then,

the Goal Reasoning Problem can be stated:

Given 𝛧 and 𝐿𝑖𝑛𝑖𝑡 , a GR actor examines its goal

memory 𝑀𝑡 at time 𝑡 and chooses a strategy that

maximizes its long-term rewards using

∑ 𝛾𝑡𝑟𝑒𝑤𝑎𝑟𝑑𝑡
∞
𝑡 , where 𝛾𝑡 is a discount factor and

𝑟𝑒𝑤𝑎𝑟𝑑𝑡: 𝑀𝑡 × 𝑅𝑡 → ℝ𝑡 yields the actor’s reward of

applying one or more refinement strategies at time 𝑡.

Roberts et al. (2014) showed how this problem could be

modelled as an MDP or Reinforcement Learning problem.

However, we apply neither of these in our implementation.

4.5 Related Work

The Goal Lifecycle bears close resemblance to that of

Harland et al. (2014) and earlier work (Thangarajah et al.,

2010). They present a Goal Lifecycle for BDI agents,

provide operational semantics for their lifecycle, and

demonstrate the lifecycle on a Mars rover scenario. It

remains future work to more fully characterize the overlap

of their lifecycle with the Goal Lifecycle we define. Work

by Winikoff et al. (2010) has also linked Linear Temporal

Logic to the expression of goals. Our work differs in that it

focuses on teams of robots rather than single agents.

Our approach of coordinating behaviors with constraint-

based planning is inspired by much of the work mentioned

by Rajan, Py, and Barriero (2013) and Myers (1999).. Our

Team Executive leverages the Executive Assistant of Berry

et al. (2003).

5. Goal Reasoning as Goal Refinement

Solutions to the Goal Reasoning Problem can be solved

through refinement search, a process we call goal

refinement. Goal refinement builds on planning as

refinement search (Kambhampati 1994, 1997;

Kambhampati et al. 1995). Refinement planning employs a

split and prune model of search, where plans are drawn

from a candidate space 𝐾. Let a search node 𝑁 be a

constraint set that implicitly represents a candidate set

drawn from 𝐾. Refinement operators transform a node 𝑁𝑖

at layer 𝑖 into 𝑘 children 〈𝑁𝑗1, 𝑁𝑗2,, … , 𝑁𝑗𝑘〉 at layer 𝑗 = 𝑖 +

1 by adding constraints that further restrict the candidate

sets in the next layer. If the constraints are inconsistent

then the candidate set is empty. Let 𝑁∅ represent an initial

node whose candidate set equals 𝐾 and results from only

the initial constraint set provided in the problem

description (from the perspective of the search process, the

refined constraints are empty, thus the subscript ∅). The

RefinePlan algorithm recursively applies refinements to

add constraints until a solution is found. A desirable

property of refinements is that subsequent recursive calls

result in smaller candidate subsets. Thus the constraints aid

search by pruning the solution space, identifying

inconsistent nodes, and providing backtracking points.

Instantiations of RefinePlan correspond to variants of

classical planning search algorithms. Plan refinement

equates different kinds of planning algorithms in plan-

space and state-space planning. Extensions incorporated

other forms of planning and clarify issues in the Modal

Truth Criterion (Kambhampati and Nau 1994). More

recent formalisms such as angelic hierarchical plans

(Marthi et al. 2008) and hierarchical goal networks

(Shivashankar et al. 2013) can also be viewed as

leveraging plan refinement. The focus on constraints in

plan refinement allows a natural extension to the many

integrated planning and scheduling systems that use

constraints for temporal and resource reasoning.

 Figure 6 shows a Goal Refinement algorithm. Goal

Refinement begins with 𝑁∅
𝑔

, which consists of the

candidate space of all possible executions achieving 𝑔. It

then applies refinement strategies from the Goal Lifecycle

(see Figure 4) to 𝑁𝑖
𝑔

 at layer 𝑖 into k children

〈𝑁𝑗1
𝑔

, 𝑁𝑗2,
𝑔

, … , 𝑁𝑗𝑚
𝑔 〉 at layer 𝑗 = 𝑖 + 1 by modifying the goal

node, which further restricts the candidate sets in the next

layer. Figure 7 shows how the modes of a goal indicate

successively smaller candidate sets towards eventual

execution; transitions between these modes consist of

adding, removing, or modifying constraints and states in

𝑁𝑔. Each transition increases the level of commitment the

actor has made to 𝑔 and increases the degree of refinement

for 𝑁𝑔. If each refinement also reduces the candidate set of

solutions, then search can be more efficient.

Figure 5: Instantiations of the Goal Lifecycle that

incorporate plan repair (top), replanning (middle),

 and Goal-Driven Autonomy (bottom).

PlanRob 2015

132

6. FDR Scenarios and GR Use Cases

Military leaders in a FDR focus on five priorities (Navy,

1996). Relief operations prevent or limit further loss of life

or property damage; these operations focus on identifying

or deploying first responders and taking actions to provide

critical sustenance and first aid. Logistics operations

establish and maintain key areas for equipment as well as

plan for the distribution of materiel and personnel to the

area; these focus on determining large, medium and small

landing zones for air, sea, and ground vehicles as well as

determining the capacity of existing infrastructure. Security

operations locate key personnel and maintain safety for

military and civilian assets; these operations involve

locating the embassy and local government personnel,

determining threats to operations, and providing

transportation or evacuation assistance. Communications

or information sharing operations establish and maintain

an unclassified web-based network to allow foreign

planners to share information with relief organizations;

these involve assessing the existing communications

network and possibly supplementing it as needed.

Consequence management operations eliminate the

negative impact of intentional or inadvertent release of

hazardous materials as well as potential epidemics.

 Two common threads in all five priorities are updated

map data and reliable communications. A team of

autonomous vehicles can update the map data concerning

the roads and communications network, confirm the state

of any potential hazardous material or threats to operations,

and provide intelligence concerning the locations of

survivors. We consulted with Navy reservists who perform

FDR operations to develop three scenarios that showcase

how the SDP can support FDR operations. Each scenario

focuses on introducing notable events or error conditions to

force the SDP to respond in a coordinated way by

proposing operationally relevant solutions.

 Though we only discuss the scenarios in this paper, we

also developed use cases based on these scenarios to

independently exercise every strategy of the Goal

Lifecycle. Each use case corresponds to the detection of

and response to specific notable events by the Mission

Manager. The use cases focus on using the resolve

strategies of Goal Lifecycle (cf. Figure 4, dashed lines).

 The vehicles in these scenarios carry three kinds of

sensors. Electro Optical (EO) sensors that collect images.

Radio Frequency (RF) sensors that can locate radio

signals or perform radio communications. Another type of

sensor detects chemical, biological, radiation, nuclear,

and explosives (CBNRE). We can simulate CBNRE

dangers using an RF signal at a particular frequency.

Alternatively, we can simulate the existence of a hazard in

a mixed real-virtual environment where the vehicles are

flying in the real world but sensor reports are given by a

software system.

 The scenarios use three vehicle types (see Figure 8).

Fixed wing Unmanned Aerial Vehicles (UAVs) are small

air vehicles such as the Bat4, Insitu ScanEagle, Unicorn or

Blackjack. A UAV’s operational time ranges from 2 to 20

hours, it can travel at low air speeds at altitudes up to 5000

feet, and it can carry sensor payloads up to 100kg. Micro

Aerial Vehicles (MAVs) are small quadrotor or heptarotor

UAVs such as the Acending Technologies Pelican. MAVs

have operational times ranging from 3-15 minutes, travel

close to the ground with limited range, and can carry very

small EO or RF sensors. The extended scenario adds

additional air and ground vehicles. Unmanned Ground

Vehicles (UGVs) are small ground vehicles weighing

about 60 pounds with a running time of 2-4 hours between

charges. We use one to three iRobot Packbots PB1, PB2,

and PB3. These vehicles can support significant payloads

and computational power (depending on their battery life).

Because MAVs are so range-limited, we also include in

our scenarios Kangaroos, which are a combined vehicle

type consisting of UGVs carrying a MAV.

 These vehicles provide three atomic mission types: (1)

Surveying a region with an EO sensor; (2) locate a Very

Important Person (VIP) using an RF sensor; and (3) serve

as a communications relay for a VIP.

Figure 6: A Goal Refinement algorithm

Figure 7: Modes define increasingly smaller

candidate subsets for Goal Refinement

Figure 8: UAV (left), UGV (middle), and MAV

(right). See prose for descriptions.

PlanRob 2015

133

6.1 Integration Scenario

This simple baseline scenario tests and demonstrates the

major system components and their interactions; it

involves a team of vehicles surveying the roads and finding

a VIP in one of two Operator-selected regions. Three

fixed-wing UAV vehicles fly over two pre-selected regions

of interest to collect low resolution raster data in support of

infrastructure assessment. When a UAV locates a

survivor’s cell phone signal, it circles the signal location

acting as a relay until receiving further instruction.

 Figure 9 demonstrates a hypothetical start of the

integration scenario, when a known map is provided to the

Coordination Layer and discretized to allow for sensor data

collection. The Operator can specify that particular regions

as likely to contain specific people. For example, areas

around an embassy and airport are likely to have VIPs to

the FDR operations. In this example, one VIP is located at

a building on an embassy compound. The VIP’s cell phone

can be represented by any suitable radio signal emitter that

the RF sensors on the vehicles will sense.

 The Operator first identifies the specific vehicle/sensor

platforms, which in this scenario includes three UAV

vehicles, each with an EO and an RF sensor. The Operator

then selects two regions and selects two missions (i.e.,

goals) for these regions: (1) VIPFound and (2)

RoadsAssessed. Note that the Coordination Layer will

eventually propose potential regions, as identified below in

the extended scenario The Coordination Layer responds by

highlighting possible trajectories over these regions,

soliciting operator approval, and executing the data

collection for those regions. UAV1, UAV2, and UAV3

complete a survey of these two regions of interest.

 UAV1 locates the VIP cell signal and responds by

switching to a VIPCommsRelayed goal. The vehicle’s

response is to begin hovering over the VIP signal. The UI

response is to add a new avatar for the VIP (e.g., a red star)

in the appropriate spot on the screen. The response in the

Coordination Layer will be to formulate a new goal

VIPCommsRelayed.

The automated formulation of this goal is central to

demonstrating how GR can aid the guidance of

autonomous systems. One can imagine extending this to

more elaborate scenarios where the system proposes new

missions for the team as missions unfold.

6.2 Recommendation Scenario

This scenario extends the Integration Scenario so that the

SDP additionally suggests the most likely regions for

finding the VIP. In this scenario, the Operator can simply

accept these regions rather than have to manually highlight

them. This scenario reduces Operator entry load at the start

of an FDR operation; the SDP instead refines goals to

obtain the map from the world model, observe probable

locations of the VIP (e.g., the embassy and the airport), and

suggest regions to begin exploring. To do this, the SDP

analyzes known map data to create a region around an

airport, a region around a building where the VIP was last

spotted, and a region following the best road network

between the airport and building.

6.3 Extended Scenario

Our most ambitious scenario involves all three vehicle

types and exercises every strategy in the Goal Lifecycle.

Figure 10 displays the main elements of the scenario,

which takes place in a region the size of a few city blocks.

Streets are named along the bottom and right side of the

plot; some streets have a specific region (dotted boxes near

the top and middle of the plot) where vehicles will need to

survey during the scenario.

This scenario extends the Integration scenario after the

point where UAV1 has identified that the VIP signal is

emitted near the Embassy Compound. UAV2 and UAV3

return to base, and await further instruction. For the rest of

the scenario, UAV1 circles above the embassy, tracking it

and acting as a communications relay. At this point, the

SDP is not aware of the Flood or Chlorine Spill because

trees are blocking the flood from the UAV’s camera and

Figure 9: Example airport and VIP regions. The base is

located between the regions. Also shown are the

trajectories (blue lines) for two vehicles (yellow dots). Figure 10: The Extended Scenario

PlanRob 2015

134

the UAV is flying too high to detect the spill. The UI has

already notified the operator that a VIP was found and we

assume the Operator “calls” the cell phone, decides to

extract this person, and adds a new goal for the

autonomous team to confirm safe ingress/egress routes

followed by locating the VIP within the Embassy. At the

start of the scenario, the best route that can be planned to

extract the VIP from the Main Base is east along Palamino

St., and then north on Aster Rd., which we denote as Route

A. The Coordination Layer suggests allocating two

Kangaroos to explore Route A, confirms this route via the

UI Layer with the human, and dispatches the approved

trajectories.

During navigation of Route A, the Kangaroos detect a

chlorine spill of unknown severity. The Mission Manager

responds by suggesting a new allocation of three additional

MAVs with CBNRE sensors to assess the extent of the

spill. Alternatively, it could assign one Kangaroo to stop

exploring Route A and help with this task. By now the

Kangaroos should be at or near the VIP. However, because

of the chlorine spill, a new route must be determined. The

Mission Manager asks the Kangaroos to survey the Frisco

Region (dashed lines on Frisco St.) and the flood is

discovered, so Frisco St. is deemed impassable until further

inquiry is done (this follow up goal should appear in the

goal list of the Coordination Layer). The Mission Manager

then commands the Kangaroos to survey the GrandRegion

and determine Grand St. is passable. A safe route between

the base and VIP is now established. The Kangaroos enter

the embassy and locate the VIP. Because the FDR mission

context includes locating survivors in buildings, the

Mission Manager suggests the Kangaroos perform

additional searching within the embassy to the Operator,

who consents to this goal.

7. Goal Refinement for FDR

In this section, we detail our implementation of Goal

Refinement in the SDP. We encoded the domain

knowledge as a hierarchical goal network (Shivashankar et

al. 2013; Geier & Bercher 2012). The SDP’s goal network

is currently hand-coded, but we are currently writing this

model in the ANML language (Dvorák et al. 2014) and

plan to integrate a full planning system in the SDP. The

SDP will eventually guide vehicles in cooperation with its

Operator, but in this paper we assume static mission goals

and a fixed number of vehicles. We implemented the Goal

Refinement model as a Java library and used this library to

implement a goal network for the integration scenario. In

this section, we provide details regarding how we

implemented the GR actor for the Mission Manager of the

SDP. We will frequently refer the goal nodes as “goals” to

simplify the explanation, though it should be clear from

context that these are actually the goal nodes of §4.1.

 A GoalMemory class stores goal nodes in a priority

queue sorted by the node priority. The priority of a node in

the SDP depends on mode: formulated (10000), selected

(20000), expanded (30000), committed (40000),

dispatched (50000), evaluated (70000), and finished

(90000). Higher priority ensures that goals further along in

the lifecycle get more attention.

 The Mission Manager is the GR actor in the SDP. It

works with two GoalMemory objects. An

InternalGoalMemory is used to initialize the system (e.g.,

load the domain) and store incoming information waiting

to be processed. It stores any goals drawn from 𝐿𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙

(see §4). A DomainGoalMemory stores the goal nodes

associated with 𝐿𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 . Figure 11 displays the goal

network stored in the DomainGoalMemory for the scenario

in Figure 9.

 Goals (i.e., goal nodes) in the SDP exist within a goal

ontology. Strategies in the SDP are written as a Strategy

Pattern (Gamma et al. 1994) called by the Mission

Manager. Every goal in the SDP implements the

StrategyInterface; goals override methods in this interface

to implement their specific strategies. Unless specifically

stated as overridden, goals inherit the strategies of the

goals they extend. This allows default strategies to be

implemented high in the goal ontology, encouraging

strategy reuse.

StrategyInterface contains the following strategies:

formulate, select, expand, commit, dispatch, evaluate,

resolve, finish, and drop. This interface provides no

default implementation for these strategies.

BaseGoal (implements StrategyInterface) and defines

the default strategies for all goals. It also implements the

𝛿𝐺𝑅 transition function that controls which strategies can

be applied; all strategies consult 𝛿𝐺𝑅 to ensure a

transition is allowed. The formulate strategy creates the

appropriate goal node and insert the node in the correct

GoalMemory. The default behavior for most strategies is

to transition to the next mode if the strategy is called.

However, the expand and finish strategies perform

additional steps. The expand strategy for a goal may

require interaction with a process that provides the

expansions (e.g., it may require a planner). So it has a

hook that allows subclasses to specify how expansions

can be generated if needed. If no expansion process is

provided for a goal subclass, the default behavior is to

allow expand to continue. The default finish strategy

confirms that all subgoals are finished before allowing a

parent to transition to finished.

PlanRob 2015

135

When the Mission Manager first loads, it places goals in

each memory and adds a goal to load the domain.

MaintainGoalMemory (extends BaseGoal) is the goal

that ensures goals continue to get processed in each

GoalMemory. This goal contains a queue of modified

goals and notifies the MissionManager of changes.

When a goal is modified, the MaintainGoalMemory goal

tries to apply the next applicable strategy.

AchieveDomainLoaded (extends BaseGoal) is a goal

that fills the root goal in the DomainGoalMemory. It

currently places the root goal in the

DomainGoalMemory and finishes. However, if there

were database calls or files to read for the domain to

load, the expand strategy would be the correct strategy

to implement this functionality.

Non-primitive domain goals are expanded by instantiating

a sub-goal tree for the goal. The SDP commits to and

dispatches the only expansion available for these goals,

since this is a small example. These non-primitive goals

remain in a dispatched (i.e., in-progress) state until their

subgoals finish. The remaining goals are domain specific

and relate to Figure 11.

OperationalGoal (extends BaseGoal) is base type for

non-primitive goals that match to the operational

priorities of FDR operations. Strategies for these goals

are the same as the BaseGoal.

Operational subgoals eventually decompose into

AchieveTeamMission goals.

AchieveTeamMission (extends BaseGoal) modifies two

strategies from the default given by BaseGoal. The

expand strategy connects a special trajectory generator

to create expansions. The trajectory generator examines

many factors to create a suitable trajectory. However, the

details of this are not known to the goal. The trajectory

generator implements an interface that returns an

expansion that is attached to the goal node after calling

expand. The commit strategy requires Operator

approval before it can send vehicles on a trajectory. So

this strategy confirms that approval has been granted.

 Expanding an AchieveTeamMission goal results in a

specific VehicleMission goal, which includes details

regarding a proposed allocation of a vehicle to a specific

trajectory (cf. the lawnmower flight paths of Figures 1 and

9). Once the VehicleMission details are approved – either

automatically or by the Operator – the Mission Manager

commits and dispatches the proposed expansion of the

VehicleMission for execution.

VehicleMission (extends BaseGoal) is a goal that allows

the Mission Manager to track the progress toward

completion of a mission. It modifies only one strategy

from the default behavior. The dispatch strategy sets up

a special listener for vehicle state that triggers the goal to

move to call the evaluate strategy when a vehicle update

is received. Because the default behavior of every

strategy is to attempt to move to the next mode, the

evaluate strategy will move to finished when the

progress of a vehicle is above a specific threshold that

indicates the task is complete.

The Coordination Manager and Team Executive then begin

sending vehicle commands. The VehicleMission goal

remains dispatched until new information (e.g., a progress

update) causes it to become finished or need some other

resolve strategy.

 The Mission Manager has triggers to monitor the

dispatched goals so that it will notice if the goal is stalled

or completed by the executive. The Mission Manager uses

a repair strategy on the original vehicle allocation to retask

a vehicle for a stalled VehicleMission,

8. Demonstration

We demonstrate the SDP on the Integration Scenario (see

§6.1). Figure 9 shows an airport region (upper left) and, 3-

5 km away from the airport, a VIP region (lower middle)

that is centered on a particular building near the suspected

location of the VIP. The VIP emits a radio signal (e.g., cell

phone signal). Two fixed-wing air vehicles (in yellow) are

tasked with assessing the two regions and finding the VIP.

They carry Electro Optical and Radio Frequency sensors

that activate when the target is within their sensor radius.

 The integration scenario demonstrates the SDP’s key

capabilities, namely that: (1) the SDP can create new goals

responding to an open world (e.g., it collectively responds

to the VIP being found); (2) a vehicle can make decisions

autonomously (e.g., a vehicle may begin relaying the VIP

once found); (3) the SDP responds to vehicles making

Figure 11: Goal decomposition during an SDP run

PlanRob 2015

136

autonomous decisions (e.g., it notes the vehicle relaying

instead of surveying when the VIP is found); and (4) the

SDP can retask a vehicle to complete a mission (e.g., it

retasks stalled missions to idle vehicles).

 To generate 30 scenarios based on Figure 1 we select 30

random airports from OpenStreetMaps data for North

Carolina (Geofabrik 2014) and then select buildings within

3-5 kilometers of the airport. Buffer regions of 300 meters

around the airport and the building serve as the airport and

VIP regions, respectively. Each run completes when (1)

both regions are completely surveyed and the VIP is found

or (2) the simulation reaches 35,000 steps. Each step is

approximately one second of real time simulation. We use

the MASON simulator (Luke et al. 2005) to run the

scenario.

 At the start of the scenario, one vehicle is assigned to

assess the Aiport Region, denoted by AirportVehicle, and

the other vehicle is assigned to the VIP Region, denoted

VIP Vehicle. Vehicles return to the base when their fuel is

sufficiently low. Vehicle behavior depends on whether the

vehicles can retask themselves to relay when the VIP is

found (denoted +Relay) or they do not relay (–Relay).

Regardless of whether a vehicle begins relaying, the

Mission Manager should always create a new “Relay VIP”

goal when the VIP is found. The Mission Manager

behavior depends on whether it is allowed to retask a

vehicle (+Retask) or not (–Retask).

Condition 1: Find VIP (–Relay –Retask) provides a

baseline. In it the vehicles detect the VIP and a new goal to

relay the VIP appears when the VIP is found. Getting the

SDP to do something meaningful with the “Relay VIP”

goal is our next condition.

 Condition 2: Relay VIP (+Relay –Retask)

demonstrates that a vehicle can retask itself with a new

goal by automatically relaying the VIP once found. The

retasking is embedded in the Vehicle Controller (see

Figure 5, line 15). However, this change of behaviors

needs to be shown in the goal network, where the goal

“Mission: RelayVIP” should appear after the VIP is found.

However, nothing is done with the new goal and VIP

Vehicle does not complete the entire survey of the VIP

region because it switches its own task to relaying.

 Condition 3: Relay and Retask (+Relay +Retask). To

address the problem of the VIP region remaining

unfinished, the Coordination Layer is allowed to retask the

Airport Vehicle so it finishes the VIP Region survey after

completing its area first.

 When we run the simulation on the three conditions, we

observe exactly the expected results. In every case, a new

goal is observed in the Mission Manager after the VIP is

found. In the Relay VIP condition, the VIP Vehicle begins

relaying as expected, leaving the VIP Region unfinshed.

When the Mission Manager is allowed to retask vehicles,

we observe that all three missions complete.

 This demonstration exercises most Goal Lifecycle

strategies (i.e., all except adjust and re-expand). It should

be clear that the nominal strategies (cf. Figure 4, solid arcs)

are executed. However, it may be less clear that the

demonstration also applies most of the resolve strategies

(Figure 4, dashed lines). During the notable events of the

scenario, the evaluate step notifies the Mission Manager of

the need to deliberate. When a vehicle returns to base to

recharge, the Mission Manager applies continue because

recharging is an expected contingency behavior of

surveying. When relaying is enabled (+Relay) and a

vehicle switches to relaying, the Mission Manager must

apply formulate(𝒈′) where 𝑔′ is the RelayVIP goal. Then

it applies defer(Survey) in preference to the RelayVIP

goal. This leaves the Survey goal in a selected (i.e.,

unfinished) mode. With retasking enabled (+Retask), the

Mission Manager applies repair(Survey) to reassign the

goal to the AirportVehicle. Running the ablated versions

(i.e., –Relay or –Retask) is the same thing as limiting the

strategies available to the Mission Manager.

9. Summary and Future Work

We detailed our implementation of a prototype system,

called the Situated Decision Process (SDP), which uses a

Goal Refinement library we have constructed to coordinate

teams of vehicles running LTL-synthesized FSAs in their

vehicle controllers. The central contributions of this paper

are clarifying the relationship of GR with Nau’s (2007)

model of online planning, more clearly defining the Goal

Reasoning Problem and Goal Refinement, outlining a set

of use cases for Foreign Disaster Relief (FDR), detailing

the implementation of Goal Refinement for FDR in our

prototype system and demonstrating that the SDP can

respond to notable events during execution.

 Future work will consist of further automating portions

of the SDP, extending the demonstration to work with

large teams of robotic vehicles, and enriching the domain

model. For example, we plan to extend the domain model

to fully encode temporal and resource concerns similar to

the TREX system (Rajan, Py, and Barriero 2013). We plan

to test the SDP against the more challenging scenarios with

richer sensor models and higher-fidelity simulations.

Ultimately, we plan to run the SDP on actual vehicles and

perform user studies on its effectiveness in helping an

Operator coordinate a team of vehicles in Disaster Relief.

Acknowledgements

Thanks to OSD ASD (R&E) for sponsoring this research.

The views and opinions in this paper are those of the

authors and should not be interpreted as representing the

views or policies, expressed or implied, of NRL or OSD.

We also thank the reviewers for their helpful comments.

PlanRob 2015

137

References

Anderson, J. R., & Douglass, S. (2001). Tower of Hanoi:
Evidence for the cost of goal retrieval. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 27, 1331–1346.

Altmann, E. M., & Trafton, J. G. (1999, August). Memory for
goals: An architectural perspective. In Proc. of the 21st annual
meeting of the Cognitive Science Society (Vol. 19, p. 24).

Apker, T., Liu, S.-Y., Sofge, D., and Hedrick, J.K. (2014).
Application of grazing-inspired guidance laws to autonomous
information gathering. Proc. of the Int’l Conference on Intelligent
Robots and Systems (pp. 3828-3833). Chicago, IL: IEEE Press.

Balch, T., Dellaert, F., Feldman, A., Guillory, A., Isbell, C.L.,
Khan, Z., Pratt, S.C., Stein, A.N., & Wilde, H. (2006). How
multirobot systems research will accelerate our understanding of
social animal behavior. Proc. of the IEEE, 94(7), 1445-1463.

Berry, P., Lee, T. J., & Wilkins, D. E. (2003). Interactive
execution monitoring of agent teams. Journal of Artificial
Intelligence Research, 18, 217–261.

Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Saʼar, Y.
(2012). Synthesis of Reactive(1) designs. Journal of Computer
and System Sciences, 78(3), 911–938.

Chien S., Knight R., Stechert A., Sherwood R., and Rabideau, G.
(2000) Using Iterative Repair to Improve the Responsiveness of
Planning and Scheduling. Proc. of the Conf. on Auto. Plan. and
Sched.(pp. 300-307). Menlo Park, CA: AAAI.

Choi, D. (2011). Reactive goal management in a cognitive
architecture. Cognitive Systems Research, 12(3), 293-308.

Coddington, A.M., Fox, M., Gough, J., Long., D., & Serina, I.
(2005). MADbot: A motivated and goal directed robot. Proc. of
the 20th Nat’l Conf. on Art. Intel.(pp. 1680-1681). Pittsburgh,
PA: AAAI Press.

Dvorák, F., Bit-Monnot, A., Ingrand, F., & Ghallab, M. (2014). A
Flexible ANML Actor and Planner in Robotics. In Working
Notes, PlanRob Workshop at ICAPS. Portsmouth, NH: AAAI.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994) Design
Patterns: Elements of Reusable Object-Oriented Software.
Boston: Addison-Wesley.

Geofabrik. OpenStreetMap Data Extracts. (2014) Accessed from
http://download.geofabrik.de/index.html.

Ghallab, M., Nau, D., & Traverso, P. (2014). The actor’s view of
automated planning and acting: A position paper. Artificial
Intelligence, 208, 1–17.

Geier, T. & Bercher, P. (2011). On the decidability of HTN
Planning with task insertion. In Proc. of the 22nd Int’l Joint Conf.
on AI. (pp. 1955-1961). Barcelona: AAAI.

Harland, J., Morley, D., Thangarajah, J., & Yorke-Smith, N.
(2014). An operational semantics for the goal life-cycle in BDI
agents. Auton. Agents and Multi-Agent Systems, 28(4), 682–719.

Ingrand, F., & Ghallab, M. (2014). Robotics and artificial
intelligence: A perspective on deliberation functions. AI
Communications, 27(1), 63-80.

Kambhampati, S., Knoblock, C.A., & Yang, Q. (1995). Planning
as refinement search: A unified framework for evaluating design
tradeoffs in partial-order planning. Art. Intelligence, 76, 168-238.

Kambhampati, S. & Nau, D. (1994). On the nature of modal truth
criteria in planning. Proc. of the 12th Nat’l Conference on AI (pp.
67-97). Seattle, WA: AAAI Press.

Klenk, M., Molineaux, M., & Aha, D.W. (2013). Goal-driven
autonomy for responding to unexpected events in strategy
simulations. Comp. Intell., 29(2), 187-206.

Kress-Gazit, H., Fainekos, G.E., & Pappas, G.J. (2009). Temporal
logic based reactive mission and motion planning. Transactions
on Robotics, 25(6), 1370-1831.

Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., & Balan, G.
(2005). Mason: A multiagent simulation environment.
Simulation, 81(7), 517-527.

Marthi, B, Russell, S., & Wolfe, J. (2008). Angelic hierarchical
planning: Optimal and online algorithms. Proc. of the Int’l Conf.
on Auto. Plan. & Sched. (pp. 222-231). Menlo Park, CA: AAAI.

Myers, K.L. (1999). CPEF: A continuous planning and execution
framework. AI Magazine, 20(4), 63-69.

Nau, D. (2007) Current trends in Automated Planning. AI
Magazine, 28(4), 43-58.

Navy, U.S. Department of. (1996) Humanitarian
assistance/disaster relief operations planning, (TACMEMO 3-
07.6-05). Washington, D.C.: Gov’t Printing Office.

Pollack, M.E., & Horty, J. (1999). There’s more to life than
making plans: Plan management in dynamic, multiagent
environments. AI Magazine, 20, 71-83.

Rajan, K., Py, F., & Barreiro, J. (2012). Towards deliberative
control in marine robotics. In Marine Robot Autonomy (pp. 91–
175). New York, NY: Springer.

Roberts, M., Vattam, S., Alford, R., Auslander, B., Karneeb, J.,
Molineaux, M., Apker, T., Wilson, M., McMahon, J., & Aha,
D.W. (2014). Iterative goal refinement for robotics. In Working
Notes of the Planning and Robotics Workshop at ICAPS.
Portsmouth, NH: AAAI.

Roberts, M., Apker, T., Johnson, B., Auslander, B., Wellman, B.
& Aha, D.W. (2015). Coordinating Robots for Disaster Relief.
Proc. of the Conf. of the Florida AI Research Society (to appear)
Hollywood, FL: AAAI.

Shivashankar, V., Alford, R., Kuter, U., & Nau, D. (2013). The
GoDeL planning system: A more perfect union of domain-
independent and hierarchical planning. Proc. of the 23rd Int’l
Joint Conference on AI (pp. 2380-2386). Beijing, China: AAAI.

Smith, D., Frank, J., & Jonsson, A. (2000). Bridging the gap
between planning and scheduling. Know. Eng. Rev., 15, 61-94.

Thangarajah, J., Harland, J., Morley, D., & Yorke-Smith, N.
(2011). Operational behaviour for executing, suspending, and
aborting goals in BDI agent systems. In Declarative Agent Lang.
and Technologies VIII (pp. 1–21). Toronto, Canada: Springer.

Vattam, S., Klenk, M., Molineaux, M., & Aha, D. W. (2013).
Breadth of approaches to goal reasoning: A research survey. In
D.W. Aha, M.T. Cox, & H. Muñoz-Avila (Eds.) Goal Reasoning:
Papers from the ACS Workshop (Tech. Report CS-TR-5029).
College Park, MD: Univ. of Maryland, Dept. of Comp. Science.

Winikoff, M., Dastani, M., & van Riemsdijk, M. B. (2010). A
unified interaction-aware goal framework. In Proc. of ECAI (pp.
1033–1034). Lisbon, Portugal: IOS Press.

Yoon, S.W., Fern, A., & Givan, R. (2007). FF-Replan: A baseline
for probabilistic planning. Proc. of the 17th Int’l Conf. on Auto.
Plan. and Sched. (pp. 352-359). Providence, RI: AAAI Press.

Young, J., & Hawes, N. (2012). Evolutionary learning of goal
priorities in a real-time strategy game. In Proc. of the 8th AAAI
Conf. on Artificial Intelligence and Interactive Digital
Entertainment. Stanford, CA: AAAI Press.

PlanRob 2015

138

http://download.geofabrik.de/index.html

Planning for Serendipity - Altruism in Human-Robot Cohabitation
Tathagata Chakraborti1 and Gordon Briggs2 and Kartik Talamadupula3

Matthias Scheutz2 and David Smith4 and Subbarao Kambhampati1

Department of Computer Science1
Arizona State University
Tempe, AZ 85281, USA

{tchakra2,rao}@asu.edu

HRI Laboratory2

Tufts University
Medford, MA 02155, USA

{gbriggs,mscheutz}@cs.tufts.edu

Cognitive Learning Department3
IBM T. J. Watson Research Center

Yorktown Heights, NY 10598, USA
krtalamad@us.ibm.com

Intelligent Systems Division4

NASA Ames Research Center
Moffett Field, CA 94035, USA
david.smith@nasa.gov

Abstract
Recently there has been a lot of focus on human robot
co-habitation issues that are usually orthogonal to as-
pects of human-robot teaming; e.g. on producing so-
cially acceptable behaviors of robots and de-conflicting
plans of robots and humans in shared environments.
However, an interesting offshoot of these settings that
has largely been overlooked is the problem of plan-
ning for serendipity - i.e. planning for stigmergic col-
laboration without explicit commitments on agents in
co-habitation. In this paper we formalize this notion
of planning for serendipity for the first time, and pro-
vide an Integer Programming based solution for this
planning paradigm. Further, we illustrate the different
modes of this planning technique on a typical Urban
Search and Rescue scenario and show a real-life imple-
mentation of the ideas on the Nao Robot.

Automated planners are increasingly being used to en-
dow robots with autonomous planning capabilities in joint
human-robot task scenarios (Talamadupula et al. 2010). As
the efficiency and ubiquity of planners used in these scenar-
ios increases, so does the complexity of the various tasks that
the planner can handle on behalf of the robot. Specifically, in
cooperative scenarios (including human-robot teaming), the
planner’s role is no longer limited to only generating new
plans for the robot to execute. Instead, contingent on the
availability of the right information, the planner can antic-
ipate, recognize, and further predict the future plans of other
agents. Recent work (Talamadupula et al. 2014) has seen
the successful deployment of this idea in scenarios where
a robotic agent is trying to coordinate its plan with that of
a human, and where the agents are competing for the same
resource(s) and must have their plans de-conflicted in some
principled manner. Indeed there has been a lot of work under
the umbrella of “human-aware” planning, both in the context
of path planning (Sisbot et al. 2007; Kuderer et al. 2012) and
in task planning (Koeckemann, Pecora, and Karlsson 2014;
Cirillo, Karlsson, and Saffiotti 2010), that aim to provide so-
cial skills to robots so as to make them produce plans con-

forming to desired behaviors when humans and robots oper-
ate in shared settings.

However, as we will show in this paper, the robots can
be more proactive in their choices to help, and there can
be different modes of collaboration (which are not neces-
sarily aligned with just the notion of avoidance of conflicts
but can involve more positive and active help) in such set-
tings that are not predefined behavioral traits of the robots.
Indeed very little attention has been paid to an important
phenomenon that often occurs in the course of coopera-
tive behavior amongst agents – serendipity. In this context,
serendipity can be seen as the occurrence or resolution of
facts in the world such that the future plan of an agent is
rendered easier in some measurable sense. Note that there is
no explicit team being formed here, and as such the agents
do not have any commitments to help each other - this type
of assistance can thus be seen as an instance of stigmergic
collaboration between robots and humans in co-habitation
and a way for robots (to the extent that they only exist in the
setting as assistive agents to the humans) to exhibit goodwill
to their human “colleagues”. If the planner knows enough
about the model, intentions, and state of the other agent in
the scenario, it can try to manufacture these serendipitous
circumstances. To the other agent, conditions that appear
serendipitously will look remarkably similar to exogenous
events (Gerevini, Saetti, and Serina 2011), and that agent
may replan to take these serendipitous facts into account
(thus hopefully reducing the cost of its own plan).

In this paper, we define for the first time, the notion of
planning for serendipity, and outline a general framework
for the different modes of such behavior. We also provide
an IP-based planner that models the ideas involved in this
planning paradigm. We will be using a typical USAR (Ur-
ban Search and Rescue) setting as the motivating scenario
throughout the discussion to illustrate most of these ideas.
Before we go into the details of the planning framework, let
us first look at the scenario and understand the ideas involved
in planning for serendipity in this context.

PlanRob 2015

139

Figure 1: USAR setting involving a commander and a robot. The commanders have goal(s) to do triage at the different room
locations, while the robot can help them both actively (as part of a team) or passively (planning for serendipity).

1 Overview of the USAR Scenario
Figure 1 shows a typical USAR setting, unfolding inside a
building with interconnected rooms and hallways, with a hu-
man commander CommX and a robot. The commander has
capabilities to move and conduct triage at specified loca-
tions, and he can also meet with other agents, as well as
pickup, dropoff or handover medkits to accomplish their
task. The robot can similarly move about, search rooms, or
handover or change the position of the medkits. It can thus
have its own goals (maybe from being directly assigned by
the commander himself or due to long term task specifica-
tions), but can also help the commander in accomplishing his
goals by fetching the medkits for him. All of these agents
are autonomous agents working together or independently
in the same environment, and as we discussed before, such
teaming behaviors have been studied extensively in litera-
ture over the years. The specific problem we look at in this
work is an interesting spin-off of such a setting - can the
robot choose to help without being told to do so explicitly?
What forms of assistance can this involve? Before we dis-
cuss ways to model these behaviors, we will first define a
few terms related to planning in this setting.

1.1 Agent Models
Each agent α (in the current scenario α is either H or R
depending on when it is being used to refer to the human
or the robot respectively) in the environment is described
by a domain model Dα = 〈Tα, Vα, Sα, Aα〉, where Tα is
a set of object types; Vα is a set of variables that describe
objects that belong to Tα; Sα is a set of named first-order
logical predicates over the variables Vα that describe the
world state W; and Aα is a set of operators available to
the agent. The action models a ∈ Aα are represented as
a = 〈Na,Ca,Pa,Ea〉 where Na denotes the name of that
action; Ca is the cost of that action; Pa is the list of pre-
conditions that must hold for the action a to be applicable;
and Ea = {eff+(a), eff−(a)} is a list of predicates in Sα
that indicates the effects of applying the action. The transi-
tion function δ(·) determines the next state after the appli-
cation of action a in state s as δ(a, s) = (s \ eff−(a)) ∪

eff+(a), s ⊆ Sα. When a sequence of actions is applied to
the world state, the transition function determines the resul-
tant state by applying the actions one at a time as follows
δ(〈a1, a2, . . . , an〉, s) = δ(〈a2, . . . , an〉, δ(a1, s)).

Further, the robot can also maintain belief models Belα
about the other agents in its environment as described in
more detail in (Talamadupula et al. 2014). For the purposes
of this paper, we assume that agents have complete informa-
tion about the environment, and the robot has the complete
domain as well as belief model of the humans. We will also
assume that agents do not have communication or observa-
tion actions between themselves and the only way they can
update their beliefs is through direct interaction (e.g. hand-
ing over a medkit) or exceptions in the world state while plan
execution. We will relax this assumption later.

1.2 Semantics of Individual vs Composite
Planning

The agents can of course, given their current state and goal,
produce plans based on their own action models. However,
given that the robot and the commanders are co-existing
(even though independently) in the same environment with
potentially mutually helpful capabilities, they could form
teams or coalitions consisting of one or more agents in order
to achieve a common goal.

Definition 1.0 : An individual plan πα of an agent α with the
domain model Dα is a mapping Iα ×Gα ×Dα 7→ πα from
the initial state Iα ⊆ Sα and the goal state Gα ⊆ Sα to an or-
dered sequence of actions πα = 〈a1, a2, . . . , an〉, ai ∈ Aα
such that δ(Iα, πα) |= Gα. The plan is optimal if
whenever δ(Iα, π′α) |= Gα, C(πα) ≤ C(π′α) (where
C(πα) =

∑
a∈πα

Ca is the cost of the plan).

Definition 1.1 : A composite plan πA of a set of agents
A = {R,H}, referred to as the super-agent with a com-
posite domain DA =

⋃
α∈ADα, is defined as a mapping

IA × GA × DA 7→ πA from the initial state IA =
⋃
α∈A Iα

and the goal state GA =
⋃
α∈A Gα of the super-agent to

an ordered sequence of action sets πA = 〈µ1, µ2, . . . , µn〉,
where µ = {a1, . . . , a|A|}, µ(α) = a ∈ Aα ∀µ ∈ U

PlanRob 2015

140

such that δ′(IA, πA) |= GA, where the modified transition
function δ′(µ, s) = (s \

⋃
a∈µ eff

−(a)) ∪
⋃
a∈µ eff

+(a).
Similarly, the composite plan πA is said to be optimal
if whenever δ′(IA, π′A) |= GA, C(πA) ≤ C(π′A) (where
C(πA) =

∑
µ∈πA

∑
a∈µCa is the cost of the plan).

A composite plan can thus be viewed as a composition of
individual plans such that they together achieve a particular
goal. The characteristics of the composite plan in terms of
how these individual plans are composed is determined by
what kind of behavior (planning for teaming or collabora-
tion vs serendipity) we desire from the agents involved in
the composite plan. Note that the contribution of the human
to the composite plan is not the same as the plan he is
currently executing - while generating the composite plan,
the robot only ensures that this is the plan that ends up being
executed (subject to different constraints discussed in detail
in the Sections 2.1 and 2.2), given the human’s individual
plan currently “planned” for execution.

Lemma 1.1a : A composite plan πA = 〈µ1, µ2 . . . , µT 〉 =⋃
α∈A πα can thus be represented as a union of

plans πα contributed by each agent α ∈ A so
that we can represent the original plan πα as
πA(α) = 〈a1, a2, . . . , an〉, ai = µi(α) ∀ µi ∈ πA.

Lemma 1.1b : A composite plan πA = 〈µ1, µ2 . . . , µT 〉
with δ′(

⋃
α∈A Iα, πA) |= GA guarantees that the world

state W |= G at t = T , if every agent α ∈ A
starting from the initial state Iα at t = 0, executes
at = µt(α), ∀µt ∈ πA at each time step t ∈ [1, T]. It
follows that at t < T , [πα]execution is not necessarily same
as 〈a1, a2, . . . , aT 〉, ai = µi(α), µi ∈ πA.

The challenge then is to find the right composition of the
individual plans into the composite plan, under constraints
defined by the context. We will continue using this notion
of a composite plan for the super-agent in the discussion on
planning for serendipity in the next section.

2 Planning for Serendipity
In the current section we will look to formalize exactly what
it means to be planning for serendipity. If the robotic agents
are the ones who bring about the serendipitous moments for
the human, then these moments would essentially appear as
outcomes of positive exogenous events during the execution
of the human’s plan. Remember that, even though the hu-
mans and the robotic agents are cohabitants of the same en-
vironment, this is not a team setting, and there is no explicit
commitment to help from the robots - and so the human can-
not expect or plan to exploit these exogenous events. This
means that, given that there are no guarantees or even ex-
pectations from the other agents, the human agent can at best
only be optimal by himself. This also means that the robots,
if they want to make positive interventions, must produce
composite plans that are valid given the current human plan
under execution. Thus it becomes incumbent on the robot to
analyze the original human plan in order to determine which
specific parts of the plan can be changed and which parts
need to be preserved. Indeed, we will see that these notions

of plan interruptibility and plan preservation are crucial to
the aspect of planning for serendipity, and in the follow-
ing discussion we will define the semantics of planning for
serendipity in terms of plan interruptibility and plan preser-
vation. Before we do that, however, it is worth noting at this
point, that the notion of plans being enabled by positive ex-
ternal events is closely associated with the use of triangle ta-
ble kernels (Nilsson 1985) during plan execution. However,
triangle table kernels only enable positive effects internal to
a plan, and cannot capture the variety of modalities in stig-
mergic collaboration, specifically ones that involve changes
outside of the original plan under execution.

2.1 Plan Interruptibility
We start off by noting that it only makes sense to produce
composite plans that have a lesser global cost than the
single optimal plan of the human. However, just having a
better cost does not guarantee a useful composite plan in the
current context. Consider the following example. Suppose
the initial positions of medkit1 and medkit2 are room7
and room3 respectively (refer to Figure 1), and CommX has
a goal to conduct triage in room1. Also, suppose that the
robot knows that the commander plans to pick up medkit1
from room7 on his way to the triage location (this being the
optimal plan), while a cheaper composite plan is available
if the robot chooses to pick up medkit2 from room3 and
hands it over to commX in hall4 which falls in his path.
One possible way to make this happen would be to maybe
lock the door to room7 so that commX cannot execute
his original plan any more, and switches to a plan that
happens to conform to the composite optimum. However,
since there is no active collaboration between the agents, in
this case CommX might very well go looking for the keys
to enter room7, and the serendipity is lost. Indeed, this
leads us to the notion of identifying parts of the human plan
as interruptible, so as to lend itself to such serendipitous
execution, as follows -

Definition 2.0 : If plan πH = 〈a1, a2, . . . , aT 〉 of the
human H with δ(IH , πH) |= GH , then any subplan
πijH = 〈ai, . . . , aj〉, 1 ≤ i < j ≤ |πH | is positively
removable iff ∃πA for the set of agents A = {R,H} (R
being the robot) such that δ′(

⋃
α∈A Iα, πA) |= GH where,

for some i′ > i, πA(H) =
(
⊆ πH [1 : i − 1]

)·πA(H)[i :

i′]· (⊆ πH [j + 1 : |πH |]
)

and C(πA(H)) < C(πH) (here· means concatenation).

Definition 2.1 : A plan is interruptible iff it has at least one
positively removable subplan.

Thus time steps i ≤ t ≤ i′ is when the (serendipitous)
exceptions can occur. Note that we specify the rest of the
plan to be subsequences of the original plan which ensures
that the human does not need to go outside his original plan
sans the part where the actual exceptions occurs.

The notion of serendipitous exceptions is closely tied
to the issue of what is actually visible to the human and
whether such exceptions are immediately recognizable to
the human or not. While this is hard to generalize in such

PlanRob 2015

141

non-proximal settings, one measure of this might be the
length of the exception. Going back to the previous exam-
ple, if the exception is just finding the locked door, then this
cannot be a positive interruption because when the human
goes looking for the keys then this detour is not a subplan
of his original plan anymore. However, the exception can
always be made to be long enough to accommodate the en-
tire detour, but such exceptions are penalized because it is
likely to be harder for the human to come up with such newer
plans, partly because the entire world might not be visible to
him. Note that this might mean that the formulation would
sometimes prefer that the robot does not do the entire job
for the human even if it were possible - this is particularly
relevant to situations when the human has implicit prefer-
ences or commitments in his plan and thus shorter detours
are preferable. The exact trade-off between longer interrup-
tions (and possible interference being perceived by the hu-
man) and cheaper plans is determined by the objective func-
tion of the planner (described later in Section 2.3). We intend
to do HRI studies in the future to see what kind of exceptions
humans really respond to (Narayanan et al. 2015).

To account for normal human cognition, if we assume
that the human replans optimally (and independently) after
the serendipitous exceptions, we can modify Definition 2.0
to accommodate such adaptive behavior as follows -

Definition 2.0a : If plan πH = 〈a1, a2, . . . , aT 〉 of the
human H with δ(IH , πH) |= GH , then any subplan
πijH = 〈ai, . . . , aj〉, 1 ≤ i < j ≤ |πH | is positively
removable iff ∃πA for the set of agents A = {R,H} (R
being the robot) such that δ′(

⋃
α∈A Iα, πA) |= GH where

πA(H)[1 : i − 1] ⊆ πH [1 : i − 1] = 〈a1, . . . , ai−1〉
and πA(H)[i : |πA(H)|] is the optimal plan such that
δ′(δ′(

⋃
α∈A Iα, πA[1 : i − 1]), πA(H)[i : |πA(H)|]) |= GH

and C(πA(H)) < C(πH).

We will now see what kinds of positive interruptibility
accommodates serendipity for the human, and define con-
straints on top of Definitions 2.0-1 to determine opportuni-
ties to plan for such serendipitous moments.

2.2 Preservation Constraints
Let us now go back to the setting in Figure 1. Suppose the
initial position of medkit1 is now room5, and CommX
still has a goal to conduct triage in room1. Clearly, one
of the optimal human plans is to pick up medkit1 from
room5 on his way to the triage location, while a cheaper
composite plan is again available if the robot chooses to
pick up medkit2 from room3 and hands it over to commX
in hall4 which falls in his path. However, the CommX does
not know that the robot plans to do this, and will continue
with his original plan, which makes the robot’s actions
redundant, and the composite plan, though cheaper, is not a
feasible plan in the current setting. Specifically, since there
is no expectation of interventions, the robot must preserve
the plan prefix of the original plan (that appears before
and independently of the intervention) in the final com-
posite plan. This then forms the first preservation constraint -

Definition 3.0 : The composite plan πA that positively re-
moves subplan πijH from the original plan πH of the human
is a serendipitous plan iff πA(H)[1 : i− 1] = πH [1 : i− 1],
where i = argmini[a = πA(H)[i] ∧ a 6∈ πH], ∀ a ∈ AH .

Further, the composite plan must ensure that the effects
of the actions of the robot R preserve the world state
for the human’s plan to continue executing beyond the
serendipitous moment (because there is no commitment
from the robot to help in future, and the human cannot plan
to exploit future assistance), which provides our second
preservation constraint below -

Definition 3.1 : The composite plan πA that pos-
itively removes subplan πijH from the original
plan πH of the human is a serendipitous plan iff
δ′(
⋃
α∈A Iα, πA[1 : j]) |= δ(IH , πH [1 : j]).

We will now introduce a planner that can take into account
all these constraints and produce serendipitous composite
plans. Given the plan the human is executing, the robot de-
cides on what serendipitous exceptions to introduce to make
the cost of that plan lower. In doing this, the robot searches
over a space of exceptions during execution time for the hu-
man’s plan, as well as the length of the detours that those
exceptions will cause (by ”simulating” what it thinks the hu-
man will do in replanning).

2.3 The Planner
The planning problem of the robot, defined in terms of the
super-agent A = {R,H} - given by Π = 〈DA, θA, πH〉
- consists of the domain model DA, the problem instance
θA = 〈OA, IA,GA〉 (where O are the objects or constants
in the domain, and IA and GA are the initial and goal states
of the super-agent respectively) and the original plan πH of
the human. Recall that we assumed completely known be-
lief models, which means that in our current scenario, the
robot starts with the full knowledge of the human’s goal(s)
and can predicts the plan he is currently following (assum-
ing optimality) - this forms πH . Planning for serendipity
involves modeling complicated constraints between the hu-
man’s plan and the composite plan being generated, which
is not directly suited to be handled by conventional plan-
ners. We adopt the principles for planning for serendipity
outlined thus far and propose the following IP-based plan-
ner (partly following the technique for IP encoding for state
space planning outlined in (Vossen et al. 1999)) to showcase
these modes of behavior in our motivating scenario.

Henceforth, when we refer to the domain Dα of agent
α, we will mean the grounded (with objects ∈ O) version
of its domain. Note that this might mean that some of the
inter-agent actions (like handing over medkits) are now only
available to the super-agent A. i.e.

⋃
α∈AAα ⊆ AA.

For the super agent, we define a binary action variable for
action a ∈ AA at time step t as follows:

xa,t =

1, if action a is executed by the super-agent A

at time step t
0, otherwise; t ∈ {1, 2, . . . , T}

PlanRob 2015

142

Also, for every proposition f at step t a binary state vari-
able is introduced as follows:

yf,t =

{
1, if proposition is true in plan step t
0, otherwise; ∀f ∈ SA, t ∈ {0, 1, . . . , T}

We also define two variables ξ1, ξ2 ∈ [1, T], 1 ≤ ξ1 <
ξ2 ≤ T to represent the subplan that gets positively removed
by Definition 2.0. We also add a new “no-operation” action
Aα ← Aα ∪ aφ ∀ α ∈ A such that aφ = 〈N,C,P,E〉 where
N = NOOP, C = 0, P = {} and E = {}.

The IP formulation modeling the interruptibility and
preservation constraints is given by (the constraints are
explained after the formulation):

Obj : min
∑
a∈AA

∑
t∈{1,2,...,T} Ca×xa,t +K ||ξ2−ξ1||

such that

yf,0 = 1 ∀f ∈
⋃
α∈A Iα (1)

yf,0 = 0 ∀f /∈
⋃
α∈A Iα (2)

yf,T = 1 ∀f ∈ GH (3)

xa,t ≤ yf,t−1 ∀a ∈ AA, s.t. f ∈ Pa, t ∈ {1, . . . , T} (4)

yf,t ≤ yf,t−1 +
∑
a∈add(f) xa,t

s.t. add(f) = {a|f ∈ eff+(a)}, a ∈ AA, ∀f ∈ SA,
t ∈ {1, 2, . . . , T} (5)

yf,t ≤ 1−
∑
a∈del(f) xa,t

s.t. del(f) = {a|f ∈ eff−(a)}, a ∈ AA ∀f ∈ SA,
t ∈ {1, 2, . . . , T} (6)

ξ1 ≤
∑
t(t× xa,t)(1−

∑
t

∑
a∈πα1

xa,t)

+ T (1−
∑
t xa,t) + T (

∑
t

∑
a∈πα1

xa,t)

∀a ∈ AH , t ∈ {1, 2, . . . , T} (7a)

xa,t ≥ 1
T (ξ1 − t) ∀a ∈ πH , t ∈ {1, 2, . . . , T} (7b)

xa,t ≤ 1 + 1
T (ξ2 − t) ∀a ∈ AR, t ∈ {1, . . . , T} (8)

xa,t + xaφ,t ≥ 1
T (t− ξ2) ∀a ∈ πH , t ∈ {1, 2, . . . , T} (9)∑

a∈Aα
xa,t +

∑
a∈AA\

⋃
α∈A Aα

xa,t ≤ 1

∀α ∈ A, t ∈ {1, . . . , T} (10)∑
a∈AA

∑
t∈{1,2,...,T}Ca × xa,t ≤ cost(πH) (11)

ξ1, ξ2 ∈ {1, 2, . . . , T}, ξ2 ≤ ξ1 + 1 (12)

yf,t ∈ {0, 1} ∀f ∈ SA, t ∈ {0, 1, . . . , T} (13)

xa,t ∈ {0, 1} ∀a ∈ AA, t ∈ {1, 2, . . . , T} (14)

where K is a large constant and T is the planning horizon.

Here, the objective function minimizes the sum of the cost
of the composite plan and the length of the proposed posi-
tively removable subplan. Here we assume unit cost actions,
i.e. Ca = 1 ∀a ∈ AA and then investigate the effect of
varying the cost of the robot’s actions with respect to the

human’s. Constraints (1) through (3) model the initial and
goal conditions, while constraints (4) through (6) enforce the
state equations that maintain the preconditions, and add and
delete effects of the actions.

Constraint (7a) specifies the value of ξ1 as per Defini-
tion 3.0. Specifically, ξ1 = argmini[a = πA(H)[i] ∧ a 6∈
πH], ∀ a ∈ AH . Thus ∀a ∈ AH we write the following
inequalities (where the constraints are written in a way such
that β ≥ T , so as to render such cases trivial since we al-
ready have 1 ≤ ξ1 ≤ T) -

ξ1 ≤

β, if a 6∈ πA(H)

β, if a ∈ πH
t, if a = πA(H)[t]

and constraint (7b) imposes Definition 3.0 as

xa,t

{
> 0 =⇒ 1, if a ∈ πH and t < ξ1
∈ {0, 1}, otherwise

Similarly, constraint (8) models Definition 3.1 by stop-
ping actions from the robot for t > ξ2 as follows -

xa,t

{
< 1 =⇒ 0, if a ∈ AR and t > ξ2
∈ {0, 1}, otherwise

Constraint (9) is optional and models Definition 2.0 (when
ignored, Definition 2.0a is implied) as follows -

xa,t

{
> 0 =⇒ 1, if a ∈ πH ∪ aφ and t > ξ2
∈ {0, 1}, otherwise

Constraint (10) imposes non concurrency on the actions
of each agent (or inter-agent actions) during every epoch.
Constraint (11) specifies that the generated composite plan
should have lesser cost than the original human plan (again,
this is optional). Finally constraints (12) to (14) provide the
binary ranges of the variables. The constant K penalizes
larger subplans from being removed (so as to minimize in-
terference with the human’s plan).

Going back to Figure 1, we note that the optimal plan for
CommX in order to perform triage in room1 involves pick-
ing up medkit1 from room2 -

MOVE_COMMX_ROOM13_HALL8
MOVE_REVERSE_COMMX_HALL8_HALL7
MOVE_REVERSE_COMMX_HALL7_HALL6
MOVE_REVERSE_COMMX_HALL6_HALL5
MOVE_REVERSE_COMMX_HALL5_HALL4
MOVE_REVERSE_COMMX_HALL4_HALL3
MOVE_REVERSE_COMMX_HALL3_HALL2
MOVE_REVERSE_COMMX_HALL2_ROOM2
PICK_UP_MEDKIT_COMMX_MK1_ROOM2
MOVE_COMMX_ROOM2_HALL2
MOVE_REVERSE_COMMX_HALL2_HALL1
MOVE_REVERSE_COMMX_HALL1_ROOM1
CONDUCT_TRIAGE_COMMX_ROOM1

However, the robot can be proactive and decide to fetch
medkit2 and hand it over to him on his way towards
room1. Indeed, this is the plan that it produces -

PlanRob 2015

143

1 - MOVE_COMMX_ROOM13_HALL8
1 - MOVE_REVERSE_ROBOT_ROOM4_ROOM3
2 - MOVE_REVERSE_COMMX_HALL8_HALL7
2 - PICK_UP_MEDKIT_ROBOT_MK2_ROOM3
3 - MOVE_REVERSE_COMMX_HALL7_HALL6
4 - MOVE_REVERSE_COMMX_HALL6_HALL5
4 - MOVE_ROBOT_ROOM3_ROOM4
5 - MOVE_REVERSE_COMMX_HALL5_HALL4
5 - MOVE_ROBOT_ROOM4_HALL4
6 - HAND_OVER_ROBOT_COMMX_MK2_HALL4
6 - HAND_OVER_ROBOT_COMMX_MK2_HALL4
8 - MOVE_REVERSE_COMMX_HALL4_HALL3
9 - MOVE_REVERSE_COMMX_HALL3_HALL2
11 - MOVE_REVERSE_COMMX_HALL2_HALL1
12 - MOVE_REVERSE_COMMX_HALL1_ROOM1
13 - CONDUCT_TRIAGE_COMMX_ROOM1

2.4 Planning with Communication
The dynamics of the setting change somewhat when we al-
low certain forms of communication to exist between the
agents. Going back to the previous example, now it is no
longer necessary for the robot to ensure that the prefix of
the original human plan is respected (for example, the robot
can inform commX that it is going to be in hall4 to hand
over medkit2 to him), so that planning with communica-
tion changes the desiderata in terms of the preservation con-
strains in the plan generation process.

One immediate upshot of being able to communicate is
that it is no longer necessary for the robot to preserve plan
prefixes, and Definition 3.0 and correspondingly constraints
(7b) and (7b) are no longer required. If, however, we wish
to impose the interruptibility constraints from Definition
1.0 as πA(H)[1 : i − 1] ⊆ πH [1 : i − 1] (for a positively
removable subplan πijH) on the plan prefix, constraint 7b
may now updated to the following -

xa,t ≤ 1 + 1
T (t− ξ1)

∀a ∈ AH ∧ a 6∈ πH , t ∈ {1, 2, . . . , T} (7b)

Finally, communication comes at a cost - too much com-
munication might feel like interference from the point of
view of the human. With this in mind, we can define the
communication cost to be proportional to the number (or
cost) of actions that the robot changes in the composite plan
with respect to the original human plan.

Definition 3.2 : The communication cost in the composite
plan πA is given by C ∝

∑
Ca ∀ a ∈ πA(H) ∧ a 6∈ πH .

Thus we update the objective function of the IP with
Obj ← Obj + C (and remove constraints (7a) and (7b)).

Going back again to the world state in Figure 1, but now
with medkit1 in room7, we note that the optimal plan
for CommX in order to perform triage in room1 involves
picking up medkit1 from room7, as follows -

MOVE_COMMX_ROOM13_HALL8
MOVE_REVERSE_COMMX_HALL8_HALL7
MOVE_REVERSE_COMMX_HALL7_ROOM7
PICK_UP_MEDKIT_COMMX_MK1_ROOM7
MOVE_COMMX_ROOM7_HALL7
MOVE_REVERSE_COMMX_HALL7_HALL6
MOVE_REVERSE_COMMX_HALL6_HALL5

MOVE_REVERSE_COMMX_HALL5_HALL4
MOVE_REVERSE_COMMX_HALL4_HALL3
MOVE_REVERSE_COMMX_HALL3_HALL2
MOVE_REVERSE_COMMX_HALL2_HALL1
MOVE_REVERSE_COMMX_HALL1_ROOM1
CONDUCT_TRIAGE_COMMX_ROOM1

The plan from the previous section is no longer a valid
serendipitous plan because it violates Definition 3.0, as con-
firmed by the planner. However, the robot can choose to
communicate its intention to handover medkit2 and in-
deed, the planner once again produces the plan outlined in
the previous section when communication is allowed.

3 Experimental Results
In the following section we will go through simulations to il-
lustrate some of the salient aspects of planning for serendip-
ity, and provide a real world execution of the ideas discussed
so far on the Nao Robot. The IP-planner has been imple-
mented on the IP-solver gurobi. The planner is available
at http://bit.ly/1zZvFB8. The simulations were conducted on
an Intel Xeon(R) CPU E5-1620 v2 @ 3.70GHz×8 proces-
sor with a 62.9GiB memory. For the simulations, we build
a suite of 200 test problems on the domain shown in Figure
1, by randomly generating positions for the two medkits and
the positions of the two agents, and also randomly assigning
a triage goal to the commander.

3.1 Different Flavors of Collaboration
In Table 1 we look at the full spectrum of costs incurred (to
the entire team) by planning for individual plans to planning
for serendipity (with and without communication) to opti-
mal global plans and compare gains associated with each
specific type of planning with respect to the individual opti-
mal plans. Note that communication costs are set to zero in
these evaluations so as to show the maximum gains poten-
tially available by allowing communication. Also, for com-
posite planning, the number of planning epochs was set to
the length of the planning horizon of the original individual
plan. Of course with higher planning horizons we will get
more and more composite plans that make the robot do most
of the work with discounted actions costs. Notice the gains
in cost achieved through the different flavors of collabora-
tion. The results also outline the expected trend of decreas-
ing costs of the composite plan with respect to increasing
discounts on the cost of the robot’s actions.

Table 2 shows the effect of varying the discount factor on
the percentage of problem instances that supported opportu-
nities for the robot to plan for serendipity. That the numbers
are low is not surprising given that we are planning for cases
where the robot can help without being asked to, but notice
how more and more instances become suitable for serendip-
itous collaboration as we reduce the costs incurred by the
robot, indicating there is sufficient scope of exhibiting such
behaviors for relatively lower costs of the robot’s actions as
compared to the human’s.

Table 3 shows the runtime performance of the four types
of planning approaches discussed above. The performance
is evidently not affected much by the different modes of

PlanRob 2015

144

http://github.com/TathagataChakraborti/serendipity

Table 1: Comparison of Costs b/w w/ comm. vs w/o comm.
vs composite optimal planning (as compared to average cost
of 8.25 for individual plans)

Discount w/o comm. w/ comm. Comp. Optimal
0% 9.82 9.72 9.70

10% 9.8115 9.6525 9.634
30% 9.7945 9.4805 9.458
50% 10.765 9.2475 9.21
70% 10.6815 8.931 8.89
90% 9.5525 8.5105 8.47

Table 2: Serendipitous Planning Opportunities w/ and w/o
Comm. as a Function of the Discount Factor

Discount→ 0% 10% 30% 50% 70% 90%
w/o comm. 1/200 7/200 7/200 12/200 29/200 32/200
w/ comm. 13/200 23/200 34/200 40/200 62/200 70/200

planning. Note that the time for generating the single plan
is contained in these cases (for the composite plan also, the
individual plan is produced to get the planning horizon).

3.2 Implementation on the Nao
We now illustrate the ideas discussed so far on the Nao
Robot operating in a mock implementation of Figure 1 as
shown in Figure 2. We reproduce the scenarios mentioned
in Sections 2.3 and 2.4, and demonstrate how the Nao pro-
duces serendipitous moments during execution of the hu-
man’s plan. A video of the demonstration is available at
https://youtu.be/DvQBBOX6Qgo.

4 Conclusion
In this paper we propose a new planning paradigm - plan-
ning for serendipity - and provide a general formulation of
the problem with assumptions of complete knowledge of the
world state and agent models. We also illustrate how this can
model proactive and helpful behaviors of autonomous agents
towards humans operating in a shared setting like USAR
scenarios. This of course raises interesting questions on how
the approach can be adopted to a probabilistic framework
for partially known models and goals of agents, and how
the agents can use plan recognition techniques with obser-
vations on the world state to inform their planning process -
questions we hope to address in future.

Acknowledgments
This research is supported in part by the ARO grant
W911NF-13-1-0023, and the ONR grants N00014-13-1-
0176, N00014-13-1-0519 and N00014-15-1-2027.

Table 3: Runtime Performance of the Planner

w/o comm. w/ comm. Comp. Optimal
Time (in sec) 28.68 33.93 44.96

Figure 2: Demonstration of the various aspects of planning
for serendipity on the Nao Robot in a mock implementation
of the USAR setting from Figure 1.

References
[Cirillo, Karlsson, and Saffiotti 2010] Cirillo, M.; Karlsson,
L.; and Saffiotti, A. 2010. Human-aware task planning:
An application to mobile robots. ACM Trans. Intell. Syst.
Technol. 1(2):15:1–15:26.

[Gerevini, Saetti, and Serina 2011] Gerevini, A.; Saetti, A.;
and Serina, I. 2011. An approach to temporal planning and
scheduling in domains with predictable exogenous events.

[Koeckemann, Pecora, and Karlsson 2014] Koeckemann,
U.; Pecora, F.; and Karlsson, L. 2014. Grandpa hates
robots - interaction constraints for planning in inhabited
environments. In Proc. AAAI-2010.

[Kuderer et al. 2012] Kuderer, M.; Kretzschmar, H.; Sprunk,
C.; and Burgard, W. 2012. Feature-based prediction of tra-
jectories for socially compliant navigation. In Proceedings
of Robotics: Science and Systems.

[Narayanan et al. 2015] Narayanan, V.; Zhang, Y.; Mendoza,
N.; and Kambhampati, S. 2015. Automated planning for
peer-to-peer teaming and its evaluation in remote human-
robot interaction. In Extended Abstract in ACM/IEEE Inter-
national Conference on Human Robot Interaction (HRI).

[Nilsson 1985] Nilsson, N. 1985. Triangle tables: A pro-
posal for a robot programming language. Technical report,
Technical Note 347, AI Center, SRI International.

[Sisbot et al. 2007] Sisbot, E.; Marin-Urias, L.; Alami, R.;
and Simeon, T. 2007. A human aware mobile robot motion
planner. Robotics, IEEE Transactions on 23(5):874–883.

[Talamadupula et al. 2010] Talamadupula, K.; Benton, J.;
Kambhampati, S.; Schermerhorn, P.; and Scheutz, M. 2010.
Planning for human-robot teaming in open worlds. ACM
Trans. Intell. Syst. Technol. 1(2):14:1–14:24.

[Talamadupula et al. 2014] Talamadupula, K.; Briggs, G.;
Chakraborti, T.; Scheutz, M.; and Kambhampati, S. 2014.
Coordination in human-robot teams using mental modeling
and plan recognition. In Intelligent Robots and Systems
(IROS), IEEE/RSJ International Conference on, 2957–2962.

[Vossen et al. 1999] Vossen, T.; Ball, M. O.; Lotem, A.; and
Nau, D. S. 1999. On the use of integer programming models
in ai planning. In IJCAI, 304–309.

PlanRob 2015

145

https://youtu.be/DvQBBOX6Qgo

Planning with Stochastic Resource Profiles:
An Application to Human-Robot Co-habitation

Tathagata Chakraborti1 and Yu Zhang1 and David Smith2 and Subbarao Kambhampati1

Department of Computer Science1
Arizona State University
Tempe, AZ 85281, USA

{tchakra2,yzhan442,rao}@asu.edu

Intelligent Systems Division2

NASA Ames Research Center
Moffett Field, CA 94035-1000, USA

david.smith@nasa.gov

Abstract

It is important for robotic agents to be respectful of
the intentions of the human members cohabiting an en-
vironment and account for conflicts on the shared re-
sources in the environment, in order to be acceptable
members of human-robot ecosystems. In this paper we
look at how maintaining predictive models of the human
cohabitors in the environment can be used to inform the
planning process of the robotic agents. We introduce an
Integer Programming based planner as a general for-
mulation of the “human-aware” planning problem and
show how the proposed formulation can be used to
model different behaviors of the robotic agent, showcas-
ing compromise, opportunism or negotiation. Finally,
we show how the proposed approach scales with the dif-
ferent parameters involved, and provide empirical eval-
uations to illustrate the pros and cons associated with
the proposed style of planning.

In environments where multiple agents are working inde-
pendently, but utilizing shared resources, it is important for
these agents to maintain belief models of other agents so
as to act intelligently and prevent conflicts. In cases where
some of these agents are humans, as in assistive robots in
household environments, these are required (rather than de-
sired) capabilities of robots in order to be “socially accept-
able” - this has been studied extensively under the umbrella
of “human-aware” planning, both in the context of path
planning (Sisbot et al. 2007; Kuderer et al. 2012) and in
task planning (Cirillo, Karlsson, and Saffiotti 2009; Koeck-
emann, Pecora, and Karlsson 2014; Cavallo et al. 2014;
Tomic, Pecora, and Saffiotti 2014). Probabilistic plan recog-
nition can play an important role in this regard, because
by not committing to a plan, that pre-assumes a particu-
lar plan for the other agent, it might be possible to mini-
mize suboptimal (in terms of redundant or conflicting ac-
tions performed during the execution phase) behavior of the
autonomous agent. Here we look at possible ways to min-
imize such suboptimal behavior by ways of compromise,
opportunism or negotiation. There has been previous work
(Beaudry, Kabanza, and Michaud 2010; Cirillo, Karlsson,
and Saffiotti 2010) on some of the modeling aspects of the

Figure 1: Architecture diagram - the robot has partial beliefs
of the world, which it uses to predict and plan.

problem, in terms of planning with uncertainty in resources
and constraints. In this paper we provide a unified frame-
work of achieving these behaviors of the autonomous agents,
particularly in such scenarios of human robot cohabitation.

The general framework of the problem addressed in this
work is shown in Figure 1. The autonomous agent, or the
robot, is acting (with independent goals) in an environment
co-habited with other agents (humans), who are similarly
self-interested. The robot has a model of the other agents act-
ing independently in its environment. These models may be
partial and hence the robot can only make uncertain predic-
tions on how the world will evolve with time. However, the
resources in the environment are limited and are likely to be
constrained by the plans of the other agents. The robot thus
needs to reason about the future states of the environment in
order to make sure that its own plans do not produce conflict-
ing states with respect to the plans of the other agents. With
the involvement of humans, however, the problem is more
skewed against the robot, because humans would expect a
higher priority on their plans - robots that produce plans that
clash with those of the humans, without any explanation,
would be considered incompatible for such an ecosystem.
Thus the robot will be expected to follow plans that preserve
the human plans, rather than follow a globally optimal plan
for itself. This aspect makes the current setting distinct from
normal human robot teaming scenarios and produces a num-

PlanRob 2015

146

Figure 2: The running example - a human commander and
a robot involved in an USAR setting, with constrained re-
sources (medkits).

ber of its own interesting challenges. How does the robot
model the humans’ behavior? How does it plan to avoid fric-
tion with the human plans? If it is possible to communicate,
how does it plan to negotiate and refine plans? These are
the questions that we seek to address in this work. Our ap-
proach models human beliefs and defines resource profiles
as abstract representations of the plans predicted on the ba-
sis of these beliefs of the human agents. The robot updates
its own beliefs about the world upon receiving every new
observation from its environment, and passes on the resul-
tant profiles onto its own planner as shown in Figure 1. For
the planning module, we introduce an IP-based planner that
minimizes the overlap between these resource profiles and
those produced by the robot’s own plan in order to maintain
least conflicts with the predicted human tasks in the future.

1 Planning with Resource Profiles
We will now go into details about each of the modules shown
in Figure 1. We will be using a similar setting as the one
described in (Talamadupula et al. 2014) (shown in Figure
2) as the running example throughout this discussion. The
setting involves a commander CommX and a robot in a USAR
(Urban Search and Rescue) scenario. The shared resources
here are the two medkits - some of the plans the commander
can execute will lock the use of and/or change the position
of these medkits, so that from the set of probable plans of the
commander we can extract a probability distribution over the
usage (or even the position) of the medkit over time based
on the fraction of plans that conform to these facts. These
resource availability profiles provide a way for the agents to
minimize conflicts with the other agents. Before going into
details about the planner that achieves this, we will first look
at how the agents are modeled and how these profiles are
computed in the next section.

1.1 The Belief Modeling Component
The notion of modeling beliefs introduced by the authors
in (Talamadupula et al. 2014) is adopted in this work and
described briefly here. Beliefs about state are defined in
terms of predicates bel(α, φ), where α is an agent with be-
lief φ = true. Goals are defined by predicates goal(α, φ),

where agent α has a goal φ. The set of all beliefs that the
robot ascribes to α together represents the perspective for
the robot of α. This is obtained by a belief model Belα
of agent α, defined as { φ | bel(α, φ) ∈ Belself },
where Belself are the first-order beliefs of the robot (e.g.,
bel(self, at(self, room1))). The set of goals ascribed to
α is similarly described by {goal(α, φ)|goal(α, φ) ∈
Belself}.

Next, we turn our attention to the domain model Dα of
the agent α that is used in the planning process. Formally,
a planning problem Π = 〈Dα, πα〉 consists of the domain
model Dα and the problem instance πα. The domain model
of α is defined as Dα = 〈Tα, Vα, Sα, Aα〉, where Tα is a set
of object types; Vα is a set of variables that describe objects
that belong to Tα; Sα is a set of named first-order logical
predicates over the variables Vα that describe the state; and
Aα is a set of operators available to the agent. The action
models a ∈ Aα are represented as a = 〈N,C,P,E〉where N
denotes the name of that action; C is the cost of that action;
P is the list of pre-conditions that must hold for the action
a to be applicable; and E = {eff+(a), eff−(a)} is a list
of predicates in Sα that indicates the effects of applying the
action. The transition function δ(·) determines the next state
after the application of action a in state s as δ(a, s) = (s \
eff−(a)) ∪ eff+(a), s ⊆ SR. For this work, we assume
that the action models available to an agent are completely
known to all the other agents in the scenario; that is, we rule
out the possibility of beliefs on the models of other agents.

The belief model, in conjunction with beliefs about the
goals / intentions of another agent, will allow the robot to
instantiate a planning problem πα = 〈Oα, Iα,Gα〉, where
Oα is a set of objects of type t ∈ Tα; Iα is the initial state of
the world, and Gα is a set of goals, which are both sets of the
predicates from Sα initialized with objects from Oα. First,
the initial state Iα is populated by all of the robot’s initial be-
liefs about the agent α, i.e. Iα = {φ | bel(α, φ) ∈ Belrobot}.
Similarly, the goal is set to Gα = {φ | goal(α, φ) ∈
Belrobot}. Finally, the set of objects Oα consists of all the
objects that are mentioned in either the initial state, or the
goal description: Oα = {o | o ∈ (φ | φ ∈ (Iα ∪Gα))}. This
planning problem instance (though not directly used in the
robot’s planning process) enables the goal recognition com-
ponent to solve the compiled problem instances.

1.2 The Goal Recognition Component
It is unlikely for the robot to be aware of the goals of other
humans in its environment completely, but it can be proac-
tive in updating its beliefs incrementally based on observa-
tions of what the other agents are doing. To accommodate
this, the robot’s current belief of α’s goal, Gα, is extended
to a hypothesis goal set Ψα. The computation of this goal
set can be done using planning graph (Blum and Furst 1995)
methods. In the worst case, Ψα corresponds to all possible
goals in the final level of the converged planning graph. Hav-
ing further (domain-dependent) knowledge (e.g. in our sce-
nario, information that CommX is only interested in triage-
related goals) can prune some of these goals by removing the
goal conditions that are not typed on the triage variable. At
this point we refer to the work of Ramirez and Geffner who

PlanRob 2015

147

Figure 3: Different types of profiles corresponding to the two
recognized plans.

in (Ramrez and Geffner 2010) provided a technique to com-
pile the problem of goal recognition into a classical planning
problem. Given a sequence of observations θ, the probabil-
ity distribution Θ over G ∈ Ψα is recomputed by using a
Bayesian update P (G|θ) ∝ P (θ|G), where the prior is ap-
proximated by the function P (θ|G) = 1/(1 + e−β∆(G,θ))
where ∆(G, θ) = Cp(G− θ) − Cp(G+ θ). Thus, solving
two planning problems, with goalsG−θ andG+θ, gives the
posterior distribution Θ over possible goals of α. We then
compute the optimal plans for the goals in Ψα, which are
used to compute the resource profiles described in the next
section. Note here that one immediate advantage of using
this specific goal recognition approach is that while comput-
ing the plan to a particular goalGwe can reuse the compiled
problem instance with the goal G+ θ to ensure that the pre-
dicted plan conforms to the existing observations.

1.3 Resources and Resource Profiles
As we discussed previously, since the plans of the agents
are in parallel execution, the uncertainty introduced by the
commander’s actions cannot be mapped directly between the
commander’s final state and the robot’s initial state. How-
ever, given the commander’s possible plans recognized by
the robot, we can extract information about at what steps,
or at what points of time, the shared resources in the envi-
ronment are likely to be locked by the commander (given
that we know what these shared resources are). This infor-
mation can be represented by resource usage profiles that
capture the expected (over all the recognized plans) varia-
tion of probability of usage or availability over time. The
robot can, in turn, use this information to make sure that the
profile imposed by its own plan has minimal conflicts with
those of the commander’s.

Formally, a profile is defined as a mapping from time step
T to a real number between 0 and 1, and is represented by a
set of tuples as follows G : N→ [0, 1] ≡ {(t, g) : t ∈ N, g ∈
[0, 1], such that G(t) = g at time step t}.

The idea of the resource profiles can be handled at two

levels of abstraction. Going back to our running example,
shared resources that can come under conflict are the two
(locatable typed objects) medkits, and the profiles over the
medkits can be over both usage and location, as shown in
Figure 3. These different types of profiles can be used (pos-
sibly in conjunction if needed) for different purposes. For
example, just the usage profile shown on top is more help-
ful in identifying when to use the specific resource, while
the resource when bound with the location specific ground-
ings, as shown at the bottom can lead to more complicated
higher order reasoning (e.g. the robot can decide to wait for
the commander’s plans to be over, as he inadvertently brings
the medkit closer to it it with high probability as a result of
his own plans). We will look at this again in Section 2.

Let the domain model of the robot be DR =
〈TR, VR, SR, AR〉 with the action models a = 〈N,C,P,E〉
defined in the same way as described in Section 1.1. Also,
let Λ ⊆ VR be the set of shared resources and for each λ ∈ Λ
we have a set of predicates fλ ⊆ SR that are influenced by
λ, and let Γ : Λ → ξ be a function that maps the resource
variables to the set of predicates ξ = ∪λfλ they influence.
Without any external knowledge of the environment, we can
set Λ = Vα ∩ VR and ξ = Sα ∩ SR, though in most cases
these sets are much smaller. In the following discussion, we
will look at how the knowledge from the hypothesis goal set
can be modeled in terms of resource availability graphs for
each of the constrained resources λ ∈ Λ.

Consider the set of plans ΨP
α containing optimal

plans corresponding to each goal in the hypothesis goal
set, i.e. ΨP

α = {πG = 〈a1, a2, . . . at〉 | G =
δ(at, . . . δ(a2, δ(a1, Iα))) ∀ G ∈ Ψα and ai ∈ Aα∀i}
and let l(π) be the likelihood of the plan π modeled on
the goal likelihood distribution ∀ G ∈ Ψα, p(G) ∼ Θ as
l(πG) = c|πG| × p(G), where c is a normalization constant.

At each time step t, a plan π ∈ ΨP
α may lock one or

more of the resources λ. Each plan thus provides a profile of
usage of a resource with respect to the time step t as Gλπ :
N → {0, 1} = {(t, g) | t ∈ [1, |π|] and g = 1 if λ is locked
by π at step t, 0 otherwise} such that Gλπ(t) = g ∀ (t, g) ∈
Gλπ . The resultant usage profile of a resource λ due to all
the plans in ΨP

α is obtained by summing over (weighted by
the individual likelihoods) all the individual profiles as Gλ :
N → [0, 1] = {(t, g) | t = 1, 2, . . . ,max(|π|) and g ∝

1
|ΨPα |

∑
π Gλπ(t)× l(π) ∀ π ∈ ΨP

α}.
Similarly, we can define profiles over the actual ground-

ings of a variable (shown in the lower part of Figure 3) as
Gfλπ = {(t, g) | t ∈ [1, |π|] and fλ = 1 at step t of plan π,
0 otherwise}, and the resultant usage profile due to all the
plans in ΨP

α is obtained as before as Gfλ = {(t, g) | t =

1, 2, . . . ,max(|π|) and g ∝ 1
|ΨPα |

∑
π Gf

λ

π (t) × l(π) ∀ π ∈
ΨP
α}. These profiles are helpful when actions in the robot’s

domain are conditioned on these variables, and the values
of these variables are conditioned on the plans of the other
agents in the environment currently under execution.

One important aspect of this formulation that should be
noted here is that the notion of “resources” is described here
in terms of the subset of the common predicates in the do-

PlanRob 2015

148

main of the agents (ξ ⊆ Sα ∩ SR) and can thus be used
as a generalized definition to model different types of con-
flict between the plans between two agents. In as much as
these predicates are descriptions (possibly instantiated) of
the typed variables in the domain and actually refer to the
physical resources in the environment that might be shared
by the agents, we will stick to this nomenclature of calling
them “resources”. We will now look at how an autonomous
agent can use these resource profiles to minimize conflicts
during plan execution with other agents in its environment.

1.4 Conflict Minimization
The planning problem of the robot - given by Π =

〈DR, πR,Λ, {Gλ | ∀λ ∈ Λ}, {Gfλ | ∀f ∈ Γ(λ),∀λ ∈ Λ}〉 -
consists of the domain model DR and the problem instance
πR = 〈OR, IR,GR〉 similar to that described in section 1.3,
and also the constrained resources and all the profiles corre-
sponding to them. This is because the planning process must
take into account both goals of achievement as also conflict
of resource usages as described by the profiles. Traditional
planners provide no direct way to handle such profiles within
the planning process. Note here that since the execution of
the plans of the agents is occurring in parallel, the uncer-
tainty is evolving at the time of execution, and hence the
uncertainty cannot be captured from the goal states of the
recognized plans alone, and consequently cannot be simply
compiled away to the initial state uncertainty for the robot
and solved as a conformant plan. Similarly, the problem does
not directly compile into action costs in a metric planning in-
stance because the profiles themselves are varying with time.
Thus we need a planner that can handle these resource con-
straints that are both stochastic and non-stationary due to the
uncertainty in the environment. To this end we introduce the
following IP-based planner (partly following the technique
for IP encoding for state space planning outlined in (Vossen
et al. 1999)) as an elegant way to sum over and minimize
overlaps in profiles during the plan generation process. The
following formulation finds such T-step plans in case of non-
durative or instantaneous actions.

For action a ∈ AR at step t we have an action variable:

xa,t =

{
1, if action a is executed in step t
0, otherwise; ∀a ∈ AR, t ∈ {1, 2, . . . , T}

Also, for every proposition f at step t a binary state vari-
able is introduced as follows:

yf,t =

{
1, if proposition is true in plan step t
0, otherwise; ∀f ∈ SR, t ∈ {0, 1, . . . , T}

Note here that the plan being computed for the robot in-
troduces a new resource consumption profile itself, and thus
one optimizing criterion would be to minimize the overlap
between the usage profile due to the computed plan with
those established by the predicted plans of the other agents
in the environment. Let us introduce a new variable to model
the resource usage graph imposed by the robot as follows:

gf,t =

{
1, if f ∈ ξ is locked at plan step t
0, otherwise; ∀f ∈ ξ, t ∈ {0, 1, . . . , T}

For every resource λ ∈ Λ, the actions in the domain
of the robot are divided into three sets - Ω+

f = {a ∈
AR such that xa,t = 1 =⇒ yf,t = 1}, Ω−f = {a ∈
AR such that xa,t = 1 =⇒ yf,t = 0} and Ωof =

AR \ (Ω+
f ∪ Ω−f). These then specify respectively those ac-

tions in the domain that lock, free up, or do not affect the
current use of a particular resource, and are used to calculate
gf,t as part of the IP. Further, we introduce a variable hf,t to
track preconditions required by actions in the generated plan
that are conditioned on the plans of the other agents (e.g. po-
sition of the medkits are changing, and the action pickup
is conditioned on it) as follows:

hf,t =

{
1, if f ∈ Pa and xa,t+1 = 1

0, otherwise; ∀f ∈ ξ, t ∈ {0, 1, . . . , T − 1}

Then the solution to the IP should ensure that the robot
only uses these resources when they are in fact most ex-
pected to be available (as obtained by maximizing the over-
lap between hf,t and Gf

λ

). These act like demand profiles
from the perspective of the robot.

We also add a new “no-operation” action AR ← AR ∪ aφ
such that aφ = 〈N,C,P,E〉 where N = NOOP, C = 0,
P = {} and E = {}.

The IP formulation is given by:

min k1

∑
a∈AR

∑
t∈{1,2,...,T}Ca × xa,t

+k2

∑
λ∈Λ

∑
f∈Γ(λ)

∑
t∈{1,2,...,T} gf,t ×Gλ(t)

−k3

∑
λ∈Λ

∑
f∈Γ(λ)

∑
t∈{0,1,...,T−1} hf,t ×Gf

λ

(t)

such that

yf,0 = 1 ∀f ∈ IR \ ξ (1)

yf,0 = 0 ∀f /∈ IR or f ∈ ξ (2)

yf,T = 1 ∀f ∈ GR (3)

xa,t ≤ yf,t−1 ∀a s.t. f ∈ Pa,∀f /∈ ξ, t ∈ {1, . . . , T} (4)

hf,t−1 = xf,t ∀a s.t. f ∈ Pa,∀f ∈ ξ, t ∈ {1, . . . , T} (5)

yf,t ≤ yf,t−1 +
∑
a∈add(f) xa,t

s.t. add(f) = {a|f ∈ eff+(a)},∀f, t ∈ {1, . . . , T} (6)

yf,t ≤ 1−
∑
a∈del(f) xa,t

s.t. del(f) = {a|f ∈ eff−(a)},∀f, t ∈ {1, . . . , T} (7)∑
a∈AR xa,t = 1, t ∈ {1, 2, . . . , T} (8)∑
a∈Ω+

f

∑
t xa,t ≤ 1 ∀f ∈ ξ, t ∈ {1, 2, . . . , T} (9)

gf,t =
∑
a∈Ω+

f
xa,t

+(1−
∑
a∈Ω+

f
xa,t −

∑
a∈Ω−

f
xa,t)× gf,t−1

∀f ∈ ξ, t ∈ {1, . . . , T} (10)

hf,t ×Gf
λ

(t) ≥ ε ∀f ∈ ξ, t ∈ {0, 1, . . . , T − 1} (11)

PlanRob 2015

149

yf,t ∈ {0, 1} ∀f ∈ SR, t ∈ {0, 1, . . . , T} (12)

xa,t ∈ {0, 1} ∀a ∈ AR, t ∈ {1, 2, . . . , T} (13)

gf,t ∈ {0, 1} ∀f ∈ SR, t ∈ {0, 1, . . . , T} (14)

hf,t ∈ {0, 1} ∀f ∈ SR, t ∈ {0, 1, . . . , T − 1} (15)

where k1, k2, k3 are constants (set manually) that determine
the relative importance of each of the optimization criteria
and ε is a small constant.

Here, the objective function minimizes the sum of the cost
of the plan and the overlap between the cumulative resource
usage profiles of the predicted plans and that imposed by the
current plan of the robot itself while maximizing the valid-
ity of the demand profiles. Constraints (1) through (3) model
the initial and goal conditions, while the value of the con-
strained variables are kept uninitialized (and are determined
by their profiles). Constraints (4) and (5), depending on the
particular predicate, enforces the preconditions, or produces
the demand profiles respectively, while (6) and (7) enforces
the state equations that maintain the add and delete effects
of the actions. Constraint (8) imposes non concurrency on
the actions, and (9) ensures that the robot does not repeat
the same action indefinitely to increase its utility. Constraint
(10) generates the resource profile of the current plan, while
(11) maintains that actions are only executed if there is at
least a small probability ε of success. Finally (12) to (15)
provide the binary ranges of the variables.

2 Modulating the Behavior of the Robot
The IP-planner has been implemented on the IP-solver
guorbi and integrates Ramirez et. al. (Ramrez and Geffner
2010) and fast-downward (Helmert 2011) respectively
for goal recognition and plan prediction for the recognized
goals. We will now go through a simplified use case, and
illustrate how the resource profiles can be used to produce
different behaviors of the robot by appropriately configuring
the objective function and the length of the planning horizon
of the IP formulation.

2.1 Compromise vs Opportunism
Let us look back at the setting in Figure 2. Consider that
the robot recognizes that the goal of the commander is to
perform triage in room1, computes his optimal plan (which
ends up using medkit1 at time steps 7 through 12) and
updates the resource profiles accordingly. If now, it has its
own goal to perform triage in hall3, the plan that it comes
up with given a 12 step lookahead is shown below. Notice
that the robot now opts to use the other medkit (medkit2
in room3) even though its plan now incurs a higher cost
in terms of execution. The robot thus can adopt a policy of
compromise if it is possible for it to preserve the comman-
der’s (expected) plan.

01 - MOVE_ROBOT_ROOM1_HALL1
02 - MOVE_ROBOT_HALL1_HALL2
03 - MOVE_ROBOT_HALL2_HALL3
04 - MOVE_ROBOT_HALL3_HALL4
05 - MOVE_REVERSE_ROBOT_HALL4_ROOM4

06 - MOVE_REVERSE_ROBOT_ROOM4_ROOM3
07 - PICK_UP_MEDKIT_ROBOT_MK2_ROOM3
08 - MOVE_ROBOT_ROOM3_ROOM4
09 - MOVE_ROBOT_ROOM4_HALL4
10 - MOVE_REVERSE_ROBOT_HALL4_HALL3
11 - CONDUCT_TRIAGE_ROBOT_HALL3
12 - DROP_OFF_ROBOT_MK2_HALL3

Notice, however, that the commander is actually bring-
ing the medkit to room1 as predicted by the robot, and
this is a favorable change in the world, because robot can
use this medkit once the commander is done and incur a
much lower cost of achieving its goal. The robot, indeed,
realizes this once we give it a bigger time horizon to plan
with, as shown below. Thus, in this case, the robot shows
opportunism based on how it believes the world state will
change.

01 - NOOP
02 - NOOP
03 - NOOP

...
12 - NOOP
13 - NOOP
14 - PICK_UP_MEDKIT_ROBOT_MK1_ROOM1
15 - MOVE_ROBOT_ROOM1_HALL1
16 - MOVE_ROBOT_HALL1_HALL2
17 - MOVE_ROBOT_HALL2_HALL3
18 - CONDUCT_TRIAGE_ROBOT_HALL3
19 - DROP_OFF_ROBOT_MK1_HALL3

2.2 Negotiation
In many cases, the robot will have to eventually produce
plans that will have potential points of conflict with the
expected plans of the commander. This occurs when there
is no feasible plan with zero overlap between profiles
(specifically

∑
gf,t ×Gλ(t) = 0) or if the alternative plans

for the robot are too costly (as determined by the objective
function). If, however, the robot is equipped with the ability
to communicate with the human, then it can negotiate a plan
that suits both. To this end, we introduce a new variable
Hλ(t) and update the IP as follows:

min k1

∑
a∈AR

∑
t∈{1,2,...,T} Ca × xa,t

+k2

∑
λ∈λ

∑
f∈Γ−1(λ)

∑
t∈{1,2,...,T} gf,t ×Hλ(t)

−k3

∑
λ∈Λ

∑
f∈Γ−1(λ)

∑
t∈{0,1,...,T−1} hf,t ×Gf

λ

(t)

+k4

∑
λ∈Λ

∑
t∈{0,1,...,T} ||Gλ(t)−Hλ(t)||

yf,T ≥ hf,t−1 ∀ a s.t. f ∈ Pa,∀f ∈ ξ, t ∈ {1, . . . , T} (5a)

Hλ(t) ∈ [0, 1] ∀λ ∈ Λ, t ∈ {0, 1, . . . , T} (16)

Hλ(t) ≤ Gλ(t) ∀λ ∈ Λ, t ∈ {0, 1, . . . , T} (17)

Constraint (5a) now complements constraint (5) from the
existing formulation, by promising to restore the world state
every time a demand is made on a variable. The variable
Hλ(t), maintained by constraints (16) and (17), determine
the desired deviation from the given profiles. The objective
function has been updated to reflect that overlaps are now
measured with the desired profile of usage, and there is a

PlanRob 2015

150

T Number of Observations
1 2 3 4 5 6 7 8 9

T
=1

0 C 9 9 9 9 9 9 8.84 8.81 8.84
U 0.39 0.417 0.394 0.399 0.406 0.35 0.36 0.484 0.429
S 1 1 1 1 1 1 0.96 0.955 0.96

T
=1

5 C 5.5 5.23 5.26 5.27 5.3 5.38 5.2 5.39 5.41
U 0.007 0.008 0.007 0.008 0.006 0.002 0.008 0.01 0.009
S 0.5 0.467 0.456 0.464 0.453 0.442 0.457 0.55 0.508

T
=2

0 C 5.34 5.23 5.26 5.27 5.3 5.2 4.86 5.09 5.19
U 0.004 0.004 0.004 0.004 0.003 0.001 0.004 0.008 0.006
S 0.46 0.467 0.457 0.464 0.453 0.412 0.394 0.495 0.465

T
=2

5 C 5.28 5.16 5.21 5.207 5.24 5.2 4.857 5.095 5.15
U 0.003 0.003 0.003 0.003 0.002 0.001 0.003 0.007 0.004
S 0.46 0.458 0.455 0.455 0.444 0.412 0.397 0.499 0.459

Table 1: Performance metrics w.r.t. number of observations

cost associated with the deviation from the real one. The re-
vised plan now produced by the robot is shown below.

01 - MOVE_ROBOT_ROOM1_HALL1
02 - MOVE_ROBOT_HALL1_HALL2
03 - MOVE_REVERSE_ROBOT_HALL2_ROOM2
04 - PICK_UP_MEDKIT_ROBOT_MK1_ROOM2
05 - MOVE_ROBOT_ROOM2_HALL2
06 - MOVE_ROBOT_HALL2_HALL3
07 - CONDUCT_TRIAGE_ROBOT_HALL3
08 - MOVE_REVERSE_ROBOT_HALL3_HALL2
09 - MOVE_REVERSE_ROBOT_HALL2_ROOM2
10 - DROP_OFF_ROBOT_MK1_ROOM2

Notice that the robot restores the world state that the hu-
man is believed to expect, and can now communicate to him
“Can you please not use medkit1 from time 7 to 9?” based
on how the real and the ideal profiles diverge, i.e. t such that
Hλ(t) < Gλ(t) for each resource λ.

3 Evaluation
We ran our scenario (with one human and one robot, and
two medkits) on 400 problem instances, randomly generated
by varying the specific (as well as the number of probable)
goals of the human, and evaluated how the planner behaved
with the number of observations it can start with to build
its profiles. To generate the test cases, we first fix the do-
main description, location and goal of the agents, and the
position of the resources. Then we consider 10×6 randomly
generated hypothesis goal sets each of size 1 through to 6.
The goals of the commander were assumed to be known
to be triage related, but the location of the triage was al-
located randomly, and one of the possible goals were again
picked at random as the real goal. Finally for each of these
problems, we generate 1-9 observations for each of these
problems by simulating the commander’s plan over the real
goal, and plan with these observations knowna priori the
robot’s plan generation process. The experiments were con-
ducted on a Intel Xeon(R) CPU E5-1620 v2 3.70GHz×8
processor with a 62.9GiB memory. The planner is available
at http://bit.ly/1QHt21Q.

3.1 Scaling Up
Note that our primary contribution is the IP-formulation for
planning with resource profiles, while the goal recognition
component can be any off-the-shelf algorithm, and as such

Time Size of the Hypothesis Goal Set |Ψα|
1 2 3 4 5 6

T=10
C 9 8.95 8.74 8.95 8.75 8.73
U 0.345 0.364 0.54 0.228 0.55 0.42
S 1 0.988 0.93 0.98 0.94 0.93

T=15
C 7.32 6.34 5.26 5.65 3.65 4.44
U 0.015 0.004 0.012 0.005 0.011 0.004
S 1 0.683 0.45 0.365 0.322 0.27

T=20
C 7.32 6.34 5.1 5.14 3.35 4.07
U 0.009 0.002 0.007 0.003 0.006 0.002
S 1 0.68 0.431 0.255 0.27 0.192

T=25
C 7.32 6.18 5.1 5.14 3.35 4.07
U 0.006 0.002 0.005 0.002 0.004 0.002
S 1 0.663 0.432 0.255 0.27 0.192

Table 2: Performance metrics w.r.t. size of the goal set

Figure 4: Performance of the planner with increasing num-
ber of possible goals and with increasing planning horizon.

we compare the scalability with respect to the planning com-
ponent only. Indeed, our planner only consumes 0.2-27%
(for T = 10 to 25 steps) of the total CPU time.

w.r.t. the Number of Agents and the Size of the Hypoth-
esis Goal Set The IP formulation is independent of the
number of agents being modeled. In fact, this is one of the
major advantages of using abstractions like resource profiles
in lieu of actual plans of each of the agents. On the other
hand, the time spent on recognition, and on calculating the
profiles, is significantly affected. However, observations on
multiple agents are asynchronous, and goal recognition can
operate in parallel, so that this is not a huge concern be-
yond the complexity of a single instance. Similarly the per-
formance is also largely unaffected by the number of possi-
ble goals in Ψα, as shown in Figure 4.

w.r.t. Length of the Planning Horizon The performance
of the planner with respect to the length of the planning
horizon is shown in Figure 4 in terms of a box plot. This
is the biggest bottleneck in the computation due to the
exponential growth in the size of the IP.

3.2 Quality of the Plans Produced
Tables 1 and 2 point out some interesting aspects of plan-
ning with resource profiles. We define the U as the aver-
age conflict per step of the plan when a demand on a re-
source is placed by the robot, and S as the success proba-
bility per plan step that the demand is met. Notice that the
average conflict goes down with increasing planning hori-
zon T , which indicates opportunistic behavior on the part of

PlanRob 2015

151

http://github.com/TathagataChakraborti/resource-conflicts

the robot, while the average cost C of the plans is higher
for lower T , which indicates that the robot has to compro-
mise towards higher cost plans in case of conflicts. Also note
how the algorithm is quite robust with respect to the number
of observations available a priori, indicating that the robot
need not wait long to find good plans. Further, U falls dras-
tically with higher T , which indicates that given longer plan
lengths the robot is able to effectively identify lower conflict
time steps to act. However, S also falls with higher T which
might seems unintuitive at first, but it really means that with
lesser options the robot chooses safer plans at a higher exe-
cution cost. Indeed the exact tradeoff in this behavior can be
modulated by appropriately configuring the objective func-
tion of the planner.

4 Conclusions
In this paper we look at how plans may be affected by con-
flicts on shared resources in an environment cohabited by
humans and robots, and introduce the concept of resource
profiles to model the usage of such resources. We also pro-
pose a general formulation to plan in such scenarios and
provide a complete framework of obtaining and using these
profiles in conjunction with this planner. Finally, we show
how the planner can be used to model different types of be-
havior of the autonomous agents. One interesting research
question would be to extend the current formulation to con-
sider nested beliefs on the agents; after all, humans are rarely
completely aloof of other agents in its environment. Also,
currently we only assume non-durative actions, and com-
pletely known models of the human and completely observ-
able worlds, which we hope to relax in future works.

Acknowledgments
This research is supported in part by the ARO grant
W911NF-13-1-0023, and the ONR grants N00014-13-1-
0176, N00014-13-1-0519 and N00014-15-1-2027.

References
[Beaudry, Kabanza, and Michaud 2010] Beaudry, E.; Ka-
banza, F.; and Michaud, F. 2010. Planning with concur-
rency under resources and time uncertainty. In Proceedings
of the 2010 Conference on ECAI 2010: 19th European Con-
ference on Artificial Intelligence, 217–222. Amsterdam, The
Netherlands, The Netherlands: IOS Press.

[Blum and Furst 1995] Blum, A., and Furst, M. L. 1995. Fast
planning through planning graph analysis. In IJCAI, 1636–
1642.

[Cavallo et al. 2014] Cavallo, F.; Limosani, R.; Manzi, A.;
Bonaccorsi, M.; Esposito, R.; Di Rocco, M.; Pecora, F.; Teti,
G.; Saffiotti, A.; and Dario, P. 2014. Development of a so-
cially believable multi-robot solution from town to home.
Cognitive Computation 6(4):954–967.

[Cirillo, Karlsson, and Saffiotti 2009] Cirillo, M.; Karlsson,
L.; and Saffiotti, A. 2009. Human-aware task planning for
mobile robots. In Proc of the Int Conf on Advanced Robotics
(ICAR).

[Cirillo, Karlsson, and Saffiotti 2010] Cirillo, M.; Karlsson,
L.; and Saffiotti, A. 2010. Human-aware task planning:
An application to mobile robots. ACM Trans. Intell. Syst.
Technol. 1(2):15:1–15:26.

[Helmert 2011] Helmert, M. 2011. The fast downward plan-
ning system. CoRR abs/1109.6051.

[Koeckemann, Pecora, and Karlsson 2014] Koeckemann,
U.; Pecora, F.; and Karlsson, L. 2014. Grandpa hates
robots - interaction constraints for planning in inhabited
environments. In Proc. AAAI-2010.

[Kuderer et al. 2012] Kuderer, M.; Kretzschmar, H.; Sprunk,
C.; and Burgard, W. 2012. Feature-based prediction of tra-
jectories for socially compliant navigation. In Proceedings
of Robotics: Science and Systems.

[Ramrez and Geffner 2010] Ramrez, M., and Geffner, H.
2010. Probabilistic plan recognition using off-the-shelf clas-
sical planners. In In Proc. AAAI-2010.

[Sisbot et al. 2007] Sisbot, E.; Marin-Urias, L.; Alami, R.;
and Simeon, T. 2007. A human aware mobile robot motion
planner. Robotics, IEEE Transactions on 23(5):874–883.

[Talamadupula et al. 2014] Talamadupula, K.; Briggs, G.;
Chakraborti, T.; Scheutz, M.; and Kambhampati, S. 2014.
Coordination in human-robot teams using mental modeling
and plan recognition. In Intelligent Robots and Systems
(IROS 2014), 2014 IEEE/RSJ International Conference on,
2957–2962.

[Tomic, Pecora, and Saffiotti 2014] Tomic, S.; Pecora, F.;
and Saffiotti, A. 2014. Too cool for school adding social
constraints in human aware planning. In Proc of the Inter-
national Workshop on Cognitive Robotics (CogRob).

[Vossen et al. 1999] Vossen, T.; Ball, M. O.; Lotem, A.; and
Nau, D. S. 1999. On the use of integer programming models
in ai planning. In Dean, T., ed., IJCAI, 304–309. Morgan
Kaufmann.

PlanRob 2015

152

Handling Advice in MDPs for Semi-Autonomous Systems

Abdel-Illah Mouaddib1 and Laurent Jeanpierre1 and Shlomo Zilberstein2∗†

Abstract
This paper proposes an effective new model for decision mak-
ing in situations where full autonomy is not feasible due to
inability to fully model and reason about the domain. To over-
come this limitation, we consider a human operator who can
supervise the system and guide its operation by providing
high level advice. We define a rich representation for advice
and describe an effective algorithm for generating a new pol-
icy that conforms to the given advice. Advice is designed to
improve the efficiency and safety of the system by impos-
ing constraints on state visitation (either encouraging or dis-
couraging the system to visit certain states). Coupled with
the standard reward maximization criterion for MDPs, advice
poses a complex multi-criteria decision problem. We present
and analyze an effective algorithm for optimizing the policy
in the presence of advice.

Introduction
There has been significant progress in recent years with
the construction of autonomous systems for a wide range
of domains from household products such as the iRobot’s
Roomba vacuum cleaners to space exploration vehicles. But
limitations of the prevailing sensing and reasoning tech-
niques still limit the deployment of autonomous systems
in uncertain environments where a variety of unexpected
events may occur. Maintaining a safe and robust behavior in
such environments is a considerable challenge. In general,
systems use approximate and incomplete models for plan-
ning. Even if they compute an optimal policy, the approxi-
mate nature of the model makes it hard to produce reliable
operation, particularly in application domains where uncon-
trollable events can lead to catastrophic damage or perma-
nent failure of the system.

A general approach to address this challenge is to de-
velop semi-autonomous systems that work under the su-
pervision of a human operator who may have more com-
plete knowledge of the domain and better sensing abilities.
∗1University of Caen basse-Normandie, CNRS,

ENSICaen, Campus II, BP5186, 14032 Caen
Cedex, France {abdel-Illah.mouaddib,
Laurent.Jeanpierre}@unicaen.fr
†2School of Computer Science, University of Massachusetts,

Amherst, USA shlomo@cs.umass.edu
Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The operator may intervene to correct the behavior of the
system when a deviation from the desired behavior is de-
tected, according to their knowledge. There are many ex-
amples of research efforts to support such capabilities. The
multiagent systems community has long been exploring var-
ious forms of adjustable autonomy, allowing autonomous
agents or robots to get help from humans (Côté et al. 2012;
Dorais et al. 1999; Goodrich et al. 2001; Mouaddib et al.
2010). Human help could come in different forms such as
teleoperation (Goldberg et al. 2000) or guidance in the form
of goal bias (Côté et al. 2012). Tools to facilitate human su-
pervision of robots have been developed. Examples include
a single human operator supervising a team of robots that
can operate with different levels of autonomy (Bechar and
Edan 2003), or robots that operate in hazardous environ-
ments under human supervision, requiring teleoperation in
difficult situations (Ishikawa and Suzuki 1997). There has
also been research on mobile robots that can proactively seek
help from people in their environment to overcome their lim-
itations (Hüttenrauch and Severinson Eklundh 2006; Rosen-
thal and Veloso 2012). In robotics, researchers have started
to develop robots that can autonomously identify situations
in which a human operator must perform a subtask (Shiomi
et al. 2008) and design suitable interaction mechanisms for
the collaboration (Yanco, Drury, and Scholtz 2004).

But human intervention is often costly and should be
minimized, and permanent supervision or tele-operation of
a system is not desired. Therefore, it is important to de-
velop mechanisms that allow external input to help a semi-
autonomous system avoid permanent failures, situations that
require external help or the activation of costly recovery
mechanisms.

In this paper, we develop a formal framework allowing
an operator to intervene and guide the behavior of a semi-
autonomous system. Interventions consist of advice sent by
the operator to the system to improve its behavior. Advice
takes the form of a list of states to target by the system for
efficiency reasons and a list of states to avoid for safety
reasons. To this end, we define advice as sets of forbid-
den states, desired states and undesired states. We develop a
model and algorithms to integrate such advice with an MDP-
based framework and to compute on-line a new policy upon
the arrival of a new advice, considering the advice as hard
and soft constraints on the policy. In this paper, we focus on

PlanRob 2015

153

MDPs with terminal goal states with no loops (cyclic poli-
cies including self-loops are left for future work).

Contributions We propose a new decision-making model
in which a semi-autonomous system operates while interact-
ing with an operator in charge of extending the abilities of
the system by sending it advice to improve the safely and
efficiently of the mission. The advice is based on external
knowledge that is not explicitly available to the system. To
this end, we consider an underlying Markov decision pro-
cess (MDP) where the standard reward-maximizing objec-
tive is augmented by advice from a supervisor (operator) that
guides the system in avoiding risky states or visiting desired
states. The paper provides:

• A formal definition of advice in terms of desired states,
forbidden states and undesired states and desired actions
at some states;

• A formal definition of MDP with advice, called A-MDP;

• A formal definition of policy properties in terms of com-
pleteness, safety and satisfaction;

• A multi-criteria approach to solve an A-MDP as a multi-
criteria MDP using a lexicographic regret-based tech-
niques;

• An efficient algorithm to derive an advice-based policy
respecting the properties defined above.

Background on Markov decision process
A Markov decision process (MDP) is a mathematical tool
for robust sequential decision making and planning un-
der uncertainty. Formally, an MDP is specified by a tuple
〈S,A, T,R,H〉 as follows :

• S is a set of possible system states

• A is the set of actions

• T is the transition function: T : S×A×S → [0, 1] where
T (s, a, s′) represents the probability of reaching a state s′
when taking action a in state s

• R is the reward function: R : S → < representing the
reward of the agent in state s.

• H is the horizon, representing the number of decision
steps. When H is infinite, we say that the MDP is with
an infinite horizon and when H is finite but unknown, we
say that the MDP is with indefinite horizon.

The core decision problem for MDPs is to find a “policy”
for the decision maker: a function π that specifies the action
π(s) that the decision maker should choose when in state s.
The goal is to find a policy π that will maximize the expected
cumulative value of the rewards, possibly discounting future
rewards with a factor of γ per decision cycle. The Bellman
equation defines a value function over states, V ∗(s), from
which an optimal policy π∗ can be extracted:

V ∗(s) = argmaxa∈A[R(s) + γ
∑
s′

T (s, a, s′) · V ∗(s′)]

(1)

We consider MDPs with indefinite horizon and terminal
goal states. In this case, a process unfolds over a finite, but
possibly unknown, number of steps and ends when the sys-
tem reaches one of the terminal states. Many algorithms
have been developed to solve such MDPs and derive an op-
timal policy such as value and policy iteration (Sutton and
Barto 1998).

A-MDP definition and policy properties
Definition of advice
Advice can come in the form of state visitation (telling the
system to visit or not visit certain states during plan execu-
tion), such as “avoid the bridge” or “visit the park”, or in the
form of actions to perform or not to perform in some states,
such as “don’t cross the bridge” or “don’t take the highway,
go through the forest”. To capture such guidance, we define
advice A to be a tuple〈Sf , Sd, Su, π̂〉 such that:
• Sf ⊂ S is a set of forbidden states that the system must

avoid;
• Sd ⊂ S is a set of desired states whose visitation is pre-

ferred;
• Su ⊂ S is a set of undesired states whose avoidance is

preferred;
• π̂ is a partial policy recommending some actions in some

states.

An MDP-based model with advice
An A-MDP is a classical MDP where some states are la-
beled desired, undesired and forbidden and some actions are
recommended at some state. More formally, an A-MDP is
a pair defined by 〈MDP,A〉. A goal-based A-MDP is de-
fined by 〈MDP,A〉 and G, a set of terminal goal states that
the agent has to reach. In this paper, we address goal-based
A-MDPs with no loops. Self-looping and cyclic policies are
left for future work.

A goal-based A-MDP presents a multi-criteria problem
where we have to consider first π̂, then (G,Sf) as hard con-
straints to satisfy and then (Sd,Su), which are soft con-
straints to satisfy. The best policies should guarantee that
a goal is reached, all forbidden states are avoided, desired
states are visited and undesired states are avoided as much
as possible. Hence, we face a multi-criteria MDP problem
with ordered criteria.

Different techniques have been dedicated to solving such
MDPs. Most of them are focused on the determination of
the set of Pareto-optimal solutions. However, this set could
be very large making its computation highly complex. The
good news is that policies offering a good well-balanced
tradeoff between criteria (Roijers, Vamplew, and Whiteson
2013) or fairly sharing the expected rewards among agents
(Mouaddib, Boussard, and Bouzid 2007) present promis-
ing solution techniques to this class of MDPs. Minimizing
the ordered weighted average of regrets (OWR) (Roijers,
Vamplew, and Whiteson 2013) has been proposed to com-
pute such policies. This approach is considered an extension
of minmax regret technique, relaxing egalitarianism with a
milder notion of fairness. The OWR approach overcomes the

PlanRob 2015

154

limitation of minmax and weighted sum methods, which are
known to reach respectively pessimistic or non-balanced so-
lutions. OWR is then a good alternative, but it suffers from
initial state dependence (its optimality depends on the initial
state) and violation of the Bellman optimality principle (that
each subpolicy of an optimal policy is optimal).

To this end, we propose an approach that takes advan-
tage of the problem structure, particularly that our cri-
teria are ordered and the initial state is known, thereby
transforming OWR into a Regret Tchebychev-like measure
where ideal and worst regret measures are used to guar-
antee the Bellman optimality principle (Mouaddib 2004;
Roijers, Vamplew, and Whiteson 2013). In the following, we
formally define the key concepts and policy properties using
our regret value function. With such characteristics (ordered
criteria, a know initial state and our regret function), the
solutions we find using classical techniques such as value-
iteration or linear programming are regret-optimal solutions
(Roijers, Vamplew, and Whiteson 2013). We define the key
ingredients of the approach below.

Probability of visitation
Definition 1 Probability of visitation The probability of
visitation of a state s when following a policy π and starting
at state s0 is:

Pvis(s|s0, π) =
∑
t∈S

T (t, π(t), s) · Pvis(t|s0, π)

with conditions:

∀ terminal state g Pvis(g|g, π) = 1

Pvis(s0|s0, π) = 1

Admissibility conditions of a policy
Goal states

Definition 2 We say that a policy π is proper and complete
when: Pvis(G|s0, π) =

∑
g∈G Pvis(g|s0, π) = 1

Forbidden states

Definition 3 We say that a policy π is safe when

Pvis(Sf |s0, π) = 0

Pvis(Sf |π) =
∑
f∈Sf

Pvis(f |s0, π)

Thus, ∀f ∈ Sf , Pvis(f |s0, π) = 0

Admissible policy

Definition 4 We say that a policy π is admissible when π is
proper and complete and when it is safe. More formally:
∀π : π is admissible when

Pvis(G|s0, π) = 1 and Pvis(Sf |s0, π) = 0

When admissible policies don’t exist, we consider poli-
cies that maximize the probability of reaching a goal in G
and minimize the probability of visiting Sf . To this end, we
define value functions V G,π and V Sf ,π as follows:

V G,π = Pvis(G|s0, π)

V Sf ,π = Pvis(Sf |s0, π)
We present in the following sections methods to solve

these equations when an admissible policy doesn’t exist.

Optimization conditions
Desired states
Definition 5 Desired states are the states whose visitation
is preferred. We say that a policy is satisfying when the ex-
pected number of visitation Nvis of Sd is maximized. The
expected number of visitation Nvis of Sd when starting at
state s0 and following a policy π is as follows:

Nvis(Sd|s0, π) =
∑
s∈Sd

Pvis(s|s0, π)

Undesirable states
Definition 6 Undesirable states are the states for which
avoiding visitation is preferred. We say that a policy is sat-
isfying when the expected number of visitation Nvis of Su
is minimized. The expected number of visitation Nvis of Su
when starting at state s0 and following a policy π is as fol-
lows:

Nvis(Su|s0, π) =
∑
s∈Su

Pvis(s|s0, π)

Perfect satisfying condition
Definition 7 We say that a policy π is perfectly satisfying
when the following conditions hold:
[∀π : π is perfectly satisfying when

π∗ = argminπNvis(Su|s0, π) and
π∗ = argmaxπNvis(Sd|s0, π)

Solving these equations can lead to many solutions or
none. When there are many solution policies, we have to use
the value function to select solution policies that maximize
the value. However, the more interesting and more likely
case is that no solution is available for the above two equa-
tions. We introduce a multi-criteria optimization technique
to deal with such cases.

Partial Policy
Definition 8 Desirable actions at some states advice rec-
ommend some actions at some states, such as “by night take
the highway”. Such advice is considered a partial definition
of the policy πadvice which specifies the actions to perform
at some states defined by the set Sadvice. For such advice,
the policy to follow is defined as follows:

∀s ∈ Sadvice, π(s) = πadvice(s)

∀s ∈ S − Sadvice,
π(s) = argmaxa∈A(R(s) +

∑
s′

P (s, a, s′) · V (s′))

PlanRob 2015

155

Overall principles and algorithms
An MDP with an advice < G, Sf , Sd, Su, π̂ > can be seen
as a Multi-criteria MDP where criteria have a partial order
to be respected such that we should solve the MDP consid-
ering the constraints in the following order π̂ > (G, Sf) >
(Sd, Su). Thus, solving an MDP with advice consists of:

1. Considering π̂ as a constraint on possible policies;

2. Verifying if policies exist satisfying G, Sf with potability
1, named admissible;

3. if admissible policies exist then satisfying Sd, Su by max-
imizing Nvis of Sd and minimizing Nvis of Su using a
multi-criteria optimization based on a regret-based algo-
rithm inspired by OWR (Roijers, Vamplew, and Whiteson
2013).

4. If admissible policies don’t exist, select policies maximiz-
ing the probability to visit a goal in G and minimizing
the probability of visiting states in Sf and then optimize
Sd, Su. To this end, we use the OWR approach where re-
gret criteria on G and Sf satisfaction and on Sd, Su satis-
faction are computed and a lexicographic order over these
two regret criteria is used. The use of this lexicographic
method over ordered criteria guarantees a fair optimiza-
tion (Roijers, Vamplew, and Whiteson 2013).

In the next sections, we present different algorithms to
satisfy advice using a labeling algorithm to efficiently deter-
mine whether admissible policies exist or not and then we
use a regret-based algorithm to optimally satisfy the other
constraints.

Solving an MDP with (G, Sf) constraints when an
admissible policy exists
When the advice comes in the form of (G, Sf) constraints,
the solving algorithms of the MDP should derive a policy
respecting these constraints. To do that, we propose the fol-
lowing labeling and pruning algorithm.

The algorithm we propose labels states and actions ac-
cording to the satisfaction of (G, Sf) constraints. To this end,
we use the following principle: (1) all terminal goal states
are labeled +1; (2) all forbidden states are labeled −1 ; (3)
all terminal non-goal states are labeled −1. For other states,
we use the following state and action labeling approach:

1. Assign a label +1 to goal terminal states and −1 to non-
goal terminal states and forbidden states.

2. Assign a label +1 to an action when it leads to states la-
beled +1. Otherwise, the label of the action is −1. This is
a min operator over the label of reached states with this
action.

3. Assign to states the label max of the labeled action. This
means that once an action ends at a goal state without
visiting forbiden states this action is labeled +1.

4. prune all states labeled −1 and their corresponding ac-
tions.

More formally: ∀s ∈ S, ∀a ∈ A,

Label(s) = max
a∈A

Label(s, a)

input : S, A, (G, Sf)
output : Labeled safe state and action spaces

for s ∈ Sf do
Label(s) = −1

end
for terminal state s do

if s ∈ G then
Label(s) = +1

end
Label(s) = −1

end
for s ∈ S do

for a ∈ A do
Label(a) = mins′∈S:T (s,a,s′)>0 Label(s

′)
end
Label(s) = maxa∈A Label(a)

end
Return Labeled A and Labeled S

Algorithm 1: The (G, Sf)-labeling algorithm

∀a ∈ A,∀s ∈ S,Label(s, a) = min
s′∈Ssafe:T (s,a,s′)>0

Label(s′)

Thus,
Label(s) = max

a∈A
min

s′∈S:T (s,a,s′)>0
Label(s′)

Theorem 1 An admissible policy exists when the label of
the initial state is +1.
Proof Let s0 be the initial state and Label(s0) = +1

Label(s0) = max
a∈A

Label(a) = +1

Thus Label(a) = +1

Label(a) = min
s1∈S:T (s0,a,s1)>0

Label(s1) = +1

Thus, Label(s1) = +1 Iteratively, we can say t ∈
{0 . . . H}, we have Label(st) = +1 and Label(a1) = +1.
Note that the only states sH with label +1 are the goal states,
thus sH ∈ G. Then, when the label of initial state is +1, all
the trajectories τ = {s0, a0, s1, a1, . . . , sH−1, aH−1, sH =
goal have states and actions labeled +1. Then, any policy π
following these trajectories will reach a state sH = goal.
Thus Pvis(sH = goal|s0, π) = 1. The policy π is proper
and complete.

Assume that π is not safe. This means that Pvis(sf ∈
Sf |s0, π) 6= 0. Pvis(sf ∈ Sf |s0, π) 6= 0 and Pvis(sf ∈
Sf |s0, π) =

∑
t∈S T (t, π(sf), sf)Pvis(t|s0, π) →

T (t, π(t), sf) > 0. By definition, Label(π(t)) = +1,
then Label(π(t)) = mins′∈S:T (t,π(t),s′)>0 Label(s

′) = 1
→ Label(s′) = 1, thus Label(sf) = 1. This contradicts the
fact that sf ∈ Sf and Label(sf) should be −1. Thus π is
safe.

Solving an MDP with (G, Sf) with no admissible
policy
In this section, we discuss the situation where an admissible
policy doesn’t exist. In this case, we use the labeling algo-
rithm to guide the search of the best satisfying policy. To de-
fine the best satisfying policy, we define the so-called ideal

PlanRob 2015

156

input : Labeled S, Labeled A
output : New state and action spaces

for t ∈ {0 . . . H − 1} do
for st ∈ S do

for at ∈ A do
if label(at) = −1 then

Prune at

for st+1 : T (st, at, st+1) > 0 do
Prune subtree with root(st+1)

end
end

end
end

end
Return new state and action spaces

Algorithm 2: The (G, Sf)-Pruning algorithm

policy which maximizes the value of states labeled +1 and
minimizes, the value of states labeled −1.

Hence, we define V G,∗ and V Sf ,∗ two ideal values to op-
timally satisfying G and Sf as follows :

V G,∗(s) = max
π

∑
g∈G

Pvis(g|s, π) (2)

V Sf ,∗(s) = min
π

∑
f∈Sf

Pvis(f |s, π) (3)

Definition 9 We say that a policy π∗ is perfect when its val-
ues are the two ideal values V G,∗ and V Sf ,∗

Theorem 2 Any admissible policy is perfect.

Proof When π is admissible, by definition of the value
function, we have: V G,π(s) = 1, which is the upper bound
of V G,∗(s) and V Sf ,π(s) = 0, which is the lower bound of
V Sf ,∗(s).

To assess the value of a non-admissible policy π we com-
pute its values V G,π and V Sf ,π as follows:

V G,π(s) =
∑

s′,label(s′)=+1

T (s, π(s), s′) · V G,π(s′) (4)

V Sf ,π(s) =
∑

s′,label(s′)=−1

T (s, π(s), s′) · V Sf ,π(s′) (5)

with ∀g ∈ G : V G,π(g) = 1 and ∀f ∈ Sf : V Sf ,π(f) = 0

We then compare the value vectors (V G,π , V Sf ,π) and
(V G,∗, V Sf ,∗). This comparison leads to a multi-criteria op-
timization process. To this end, we propose to use a regret
Tchebychev measure to compare policies by preferring a
policy over another one when it minimizes the regret. To
this end, we consider (V G,∗, 0) respectively the best value
without considering the second criterion (V Sf ,π) and an ap-
proximation of the worst value of V G,π to compute a regret
measure of getting V G,π by policy π at a state:

regret(V G,π) =
V G,∗ − V G,π

V G,∗

with regret(V G,π) = 0 when V G,∗ meaning there is no re-
gret when it’s impossible to accomplish the goals.

The regret of V Sf ,π considers (V Sf ,∗, 1) respectively the
best value without considering the second criterion (V G,π)
and an approximation of the worst value of V Sf ,π .

regret(V Sf ,π) =
V Sf ,∗ − V Sf ,π

V Sf ,∗ − 1

with regret(V Sf ,π) = 0 when V Sf ,∗ = 1 meaning there is
no regret when it’s impossible to avoid forbidden states.

Finally, we compute the Tchebychev measure as follows:

regretG,Sf (π) = regret(V G,π) + regret(V Sf ,π)

The best preferred policy is given by:

π∗ = argminπregret
G,Sf (π)

Solving an A-MDP with (Sd, Su) soft
constraints

To exploit the previous algorithms, we propose a new label-
ing algorithm as follows:

∀s ∈ Sd : NLabel(s) = +1

∀s ∈ Su : NLabel(s) = −1
and for all states belonging to G and Sf are neutral and thus
we label them accordingly. Thus, we propose, the following
new labeling: If an admissible policy doesn’t exist then

∀s ∈ G
⋃
Sf : NLabel(s) = 0

otherwise all states of Sf are pruned and,

∀s ∈ G : NLabel(s) = 0

and, for the other states we use the minmax labeling algo-
rithm as above.

From this new labeling we can compute the perfectly sat-
isfying policy using the same principle by computing the
ideal values to satisfy (Sd, Su). Similarly to the previous
section, we get:

V Sd,∗(s) = max
π
Nvis(Sd|s0, π) (6)

V Su,∗(s) = min
π
Nvis(Su|s0, π) (7)

and,

regret(V Sd,π) =
V Sd,∗ − V Sd,π

V Sd,∗

with regret(V Sd,π) = 0 when V Sd,∗ = 0

regret(V Su,π) =
V Su,∗ − V Su,π

V Su,∗ − 1

with regret(V Su,π) = 0 when V Su,∗ = 1

regretSd,Su(π) = regret(Sd, π) + regret(Su, π)

Note that for (Sd, Su) a simple weighted sum could be
considered but to find a good balance of (Sd, Su), we use
the regret measure.

PlanRob 2015

157

An overall solution method for A-MDPs with
advice (π̂,G, Sf , Sd, Su)

Taking the constraint π̂ into account, consists in redefining
the value function where the value of states where the policy
is defined are the expectation of applying this policy at these
states. More formally,
Let Sπ̂ be the states where the policy is given and S6π̂ are the
other states such that S6π̂ = S − Sπ̂ .
The value function for a policy π where π̂ is considered is
as follows:

V π(s)=

{
s ∈ Sπ̂ :R(s) +

∑
s′∈S γT (s, π̂(s), s

′) · V π(s′)
s ∈ S6π̂ :R(s) +

∑
s′∈S γT (s, π(s), s

′) · V π(s′)
(8)

Then, we consider the other constraints as follows. The al-
gorithm uses the (G, Sf)-labeling and pruning algorithm to
detect the existence of admissible policy and then considers
the (Sd, Su) soft constraints using the regret-based method
to derive an admissible perfectly satisfying policy or a per-
fect eligible satisfying policy. This works as follows:

1. Assign to each state an action using π̂ and let NS be the
state spaces non-assigned.

2. Use the (G, Sf)-labeling algorithm.

3. If the label of the initial state is +1, then optimize accord-
ing to (Sd, Su) in NS space by minimizing regretSd,Su .

4. If the label of the initial state is −1 (no ad-
missible policy exists), then optimize according to
(G, Sf , Sd, Su) in NS by using a lexicographic order on
(regretG,Sf , regretSd,Su).

More formally:

π∗=

∀s ∈ Sπ̂ : π̂
∀s /∈ Sπ̂ :

argminπ regret
Sd,Su
π if label(s0) = +1;

arglexminπ(regret
G,Sf
π , regret

Sd,Su
π) otherwise

Experimental Results
Real-robot target application
We have developed a robotic system for exploration and
recognition to map and recognize an area and we developed
a user-interface, Figure 1, allowing an operator to express
its advice. The operator with a simple clic can show the de-
sired, undesired or forbidden location on the map (shown in
the middle of the image. This interface allows also the oper-
ator to send actions to perform. This system is dedicated to
security application where robots evolve in an enemy area
and receive advice on the zone to avoid (undesired), to head
(desired), not to visit (forbidden) and the destination (goal).

To show how the policy computation are performed in
such real examples, a grid and maze based environments
have been used to assess the advice-based MDP in compari-
son with a classical MDP. Different situations have been de-
veloped where goals, desired, undesired and forbidden states
(cells) have been expressed to evaluate and to compare the
policies derived from anA-MDP and from a classical MDP.

Figure 1: Interface to express advice

Model/Config 1G 1G2D2U 1G4D4U 1G8F 4G 8G
MDP 25, 9 24 25, 5 25, 7 26, 3 25, 6
A-MDP 9, 9 9, 6 9, 5 9, 8 9, 7 9, 6

Figure 2: Table summarizing computation time (in seconds)
ofA-MDP and an MDP for a 40×40 grid with 40 time units
(deadline)

Performance
In this section, we evaluate the performance of A-MDP
in terms of computation time in comparison with a classi-
cal solving algorithm of MDPs to show that our approach
computes policies in reasonable time that allow us to con-
sider on-line policy computation. We also show the ability
of the approach to scale up well by considering very large
Maze and grid environments. We developed experiments
with grids 100 × 100 with 100 time units leading to one
million states solved in 3,3 second with our approach and
25s with a classical MDP. In general, our approach scales
up well and solves different instances (as show in Table 2)
in reasonable time more quickly than a classical MDP. The
main reason to that is the fact that with different kind of
states (goals, desired, undesired, forbidden) leads to a struc-
tured problem which is exploited with labeling and prun-
ing algorithms to speed up the resolution. A summary of
results are given in the following table with different con-
figurations (where notation xGyDzUtF, in the table, means
x goal states, y desirable states, z undesirable states and t
forbidden states):

Results
We conducted a set of experiments in a grid-based environ-
ments with different situations. We present the results con-
ducted in an environment where a goal is at the bottom right
cell of the grid, two undesired cells in the bottom of the grid
and along the frontier of the grid we set a set of desired
cells. According to different deadlines, we can notice that
when the deadlines are tight (deadline =4, Figure 3) both
approaches behave in the same way by reaching the goal
but violating the undesired states since the policy leads to
visit them. When the deadline is larger (6 time units), Fig-
ure 4, our approach allows to reach the goal and not visit-

PlanRob 2015

158

ing undesired states. As soon as the deadlines become larger
(deadlines 8 and 10, Figures 5 and 6), A-MDP behaves in a
better way since the policy allows the robot to avoid unde-
sired cells, reaching the goal and visiting some desired states
(1 desired state for deadline 8, Figure 5 and 3 desired states
for deadline 10, Figure 6). The MDP approach is an average
expectation based approach, the undesired states are often
visited.

Figure 3: Derived policies from A-MDP and classical MDP
with tight deadlines in a grid (4 time units)

Figure 4: Derived policies fromA−MDP and classical MDP
with tight deadlines in a grid (6 time units)

Figure 5: Derived policies fromA−MDP and classical MDP
with large deadlines in a grid (deadline 8)

We conducted a set of experiments in a Maze-based en-
vironments with two situations : first situation concerns one
goal state, two desired states and one undesired state and the
second situation is similar the first one but we replace the
undesired state with forbidden state. In the first situation A-
MDP behaves gracefully and leads to a desired policy where
the undesired state is often avoided and the desired states are
visited (Figure 7). In the second situation, Figure 8, the pol-
icy respects the hard constraint (forbidden state) even if this

Figure 6: Derived policies fromA−MDP and classical MDP
with large deadlines in a grid (deadline 10)

avoid the robot to visit the goal state while the MDP-based
approach can violate this constraint.

Figure 7: Derived policies from A-MDP and classical MDP
with large deadlines in a Maze with 1 goal, 2 desired states
and 1 undesired state

Figure 8: Derived policies from A-MDP and classical MDP
with large deadlines in a Maze with 1 goal, 2 desired states
and 1 forbidden

Conclusion and future works
In this paper we present a new framework for handling ad-
vice in MDP to allow autonomous systems to consider ad-
vice from an external entity to overcome difficulties of sens-
ing or acting. This framework presents a definition of advice
in terms of goal, desired, undesired and forbidden states and
how these advice could be integrated in an MDP and how to
transform an MDP with advice into a multi-criteria decision-
making problem. Finally, an efficient algorithm to solve such
MDPs has been developed, implemented and evaluated in
grid and maze environments and how it can be used in
an existing robotic system. Experimental results show that
A-MDP outperforms classical MDP and that this decision

PlanRob 2015

159

model is suitable to semi-autonomous systems and bridging
the cap between them and full autonomous ones.

Acknolwledgement
This work was supported in part by NSF (USA) and
ANR/DGA (France).

References
Bechar, A., and Edan, Y. 2003. Human-robot collabora-
tion for improved target recognition of agricultural robots.
Industrial Robot: An International Journal 30(5):432–436.
Côté, N.; Canu, A.; Bouzid, M.; and Mouaddib, A.-I. 2012.
Humans-robots sliding collaboration control in complex en-
vironments with adjustable autonomy. In Proceedings of In-
telligent Agent Technology.
Dorais, G. A.; Bonasso, R. P.; Kortenkamp, D.; Pell, B.; and
Schreckenghost, D. 1999. Adjustable autonomy for human-
centered autonomous systems. In IJCAI Workshop on Ad-
justable Autonomy Systems, 16–35.
Goldberg, K.; Chen, B.; Solomon, R.; Bui, S.; Farzin, B.;
Heitler, J.; Poon, D.; and Smith, G. 2000. Collaborative
teleoperation via the Internet. In IEEE International Con-
ference on Robotics and Automation, 2019–2024.
Goodrich, M. A.; Olsen, Jr., D. R.; Crandall, J. W.; and
Palmer, T. J. 2001. Experiments in adjustable autonomy.
In IEEE International Conference on Systems, Man and Cy-
bernetics, 1624–1629.
Hüttenrauch, H., and Severinson Eklundh, K. 2006. Beyond
usability evaluation: Analysis of human-robot interaction at
a major robotics competition. Interaction Studies 7(3):455–
477.
Ishikawa, N., and Suzuki, K. 1997. Development of a hu-
man and robot collaborative system for inspecting patrol of
nuclear power plants. In Robot and Human Communication,
118–123.
Mouaddib, A.-I.; Zilberstein, S.; Beynier, A.; and Jeanpierre,
L. 2010. A decision-theoretic approach to cooperative con-
trol and adjustable autonomy. In Proceedings of the Nine-
teenth European Conference on Artificial Intelligence, 971–
972.
Mouaddib, A.-I.; Boussard, M.; and Bouzid, M. 2007. To-
wards a formal framework for multi-objectiove multi-agent
planning. In International Joint conference on Autonomous
and MultiAgent Systems (AAMAS), 123–130.
Mouaddib, A.-I. 2004. Multi-criteria decision-theoretic path
planning. In IEEE International Conference on Robotics
and Automation, volume 3, 2814–2819.
Roijers, D.; Vamplew, P.; and Whiteson, S. 2013. A survey
of multi-objective sequential decision-making. Journal of
Artificial Intelligence Research 48:67–113.
Rosenthal, S., and Veloso, M. M. 2012. Mobile robot plan-
ning to seek help with spatially-situated tasks. In Proceed-
ings of the Twenty-Sixth AAAI Conference on Artificial In-
telligence.

Shiomi, M.; Sakamoto, D.; Kanda, T.; Ishi, C. T.; Ishiguro,
H.; and Hagita, N. 2008. A semi-autonomous communi-
cation robot: a field trial at a train station. In Proceedings
of the 3rd ACM/IEEE International Conference on Human
Robot Interaction, 303–310. New York, NY, USA: ACM.
Sutton, R. S., and Barto, A. G. 1998. Introduction to Rein-
forcement Learning. Cambridge, MA, USA: MIT Press.
Yanco, H. A.; Drury, J. L.; and Scholtz, J. 2004. Beyond
usability evaluation: Analysis of human-robot interaction at
a major robotics competition. Human–Computer Interaction
19(1-2):117–149.

PlanRob 2015

160

	PlanRob 2015 - Proceedings v4
	PlanRob 2015 - Proceedings v3
	PlanRob 2015 - Proceedings v2
	PlanRob 2015 - Proceedings v1
	papers-authoridx.pdf
	paper 20.pdf
	Overview of the USAR Scenario
	Agent Models
	Semantics of Individual vs Composite Planning

	Planning for Serendipity
	Plan Interruptibility
	Preservation Constraints
	The Planner
	Planning with Communication

	Experimental Results
	Different Flavors of Collaboration
	Implementation on the Nao

	Conclusion

	paper 19.pdf
	Planning with Resource Profiles
	The Belief Modeling Component
	The Goal Recognition Component
	Resources and Resource Profiles
	Conflict Minimization

	Modulating the Behavior of the Robot
	Compromise vs Opportunism
	Negotiation

	Evaluation
	Scaling Up
	Quality of the Plans Produced

	Conclusions

	toc
	PlanRob 2015 - Proceedings v1
	papers-authoridx.pdf
	paper 20.pdf
	Overview of the USAR Scenario
	Agent Models
	Semantics of Individual vs Composite Planning

	Planning for Serendipity
	Plan Interruptibility
	Preservation Constraints
	The Planner
	Planning with Communication

	Experimental Results
	Different Flavors of Collaboration
	Implementation on the Nao

	Conclusion

	paper 19.pdf
	Planning with Resource Profiles
	The Belief Modeling Component
	The Goal Recognition Component
	Resources and Resource Profiles
	Conflict Minimization

	Modulating the Behavior of the Robot
	Compromise vs Opportunism
	Negotiation

	Evaluation
	Scaling Up
	Quality of the Plans Produced

	Conclusions

	PlanRob 2015 - Proceedings v2
	PlanRob 2015 - Proceedings v1
	papers-authoridx.pdf
	paper 20.pdf
	Overview of the USAR Scenario
	Agent Models
	Semantics of Individual vs Composite Planning

	Planning for Serendipity
	Plan Interruptibility
	Preservation Constraints
	The Planner
	Planning with Communication

	Experimental Results
	Different Flavors of Collaboration
	Implementation on the Nao

	Conclusion

	paper 19.pdf
	Planning with Resource Profiles
	The Belief Modeling Component
	The Goal Recognition Component
	Resources and Resource Profiles
	Conflict Minimization

	Modulating the Behavior of the Robot
	Compromise vs Opportunism
	Negotiation

	Evaluation
	Scaling Up
	Quality of the Plans Produced

	Conclusions

	toc
	PlanRob 2015 - Proceedings v1
	papers-authoridx.pdf
	paper 20.pdf
	Overview of the USAR Scenario
	Agent Models
	Semantics of Individual vs Composite Planning

	Planning for Serendipity
	Plan Interruptibility
	Preservation Constraints
	The Planner
	Planning with Communication

	Experimental Results
	Different Flavors of Collaboration
	Implementation on the Nao

	Conclusion

	paper 19.pdf
	Planning with Resource Profiles
	The Belief Modeling Component
	The Goal Recognition Component
	Resources and Resource Profiles
	Conflict Minimization

	Modulating the Behavior of the Robot
	Compromise vs Opportunism
	Negotiation

	Evaluation
	Scaling Up
	Quality of the Plans Produced

	Conclusions

	Paper 15
	PlanRob 2015 - Proceedings v3
	PlanRob 2015 - Proceedings v2
	PlanRob 2015 - Proceedings v1
	papers-authoridx.pdf
	paper 20.pdf
	Overview of the USAR Scenario
	Agent Models
	Semantics of Individual vs Composite Planning

	Planning for Serendipity
	Plan Interruptibility
	Preservation Constraints
	The Planner
	Planning with Communication

	Experimental Results
	Different Flavors of Collaboration
	Implementation on the Nao

	Conclusion

	paper 19.pdf
	Planning with Resource Profiles
	The Belief Modeling Component
	The Goal Recognition Component
	Resources and Resource Profiles
	Conflict Minimization

	Modulating the Behavior of the Robot
	Compromise vs Opportunism
	Negotiation

	Evaluation
	Scaling Up
	Quality of the Plans Produced

	Conclusions

	toc
	PlanRob 2015 - Proceedings v1
	papers-authoridx.pdf
	paper 20.pdf
	Overview of the USAR Scenario
	Agent Models
	Semantics of Individual vs Composite Planning

	Planning for Serendipity
	Plan Interruptibility
	Preservation Constraints
	The Planner
	Planning with Communication

	Experimental Results
	Different Flavors of Collaboration
	Implementation on the Nao

	Conclusion

	paper 19.pdf
	Planning with Resource Profiles
	The Belief Modeling Component
	The Goal Recognition Component
	Resources and Resource Profiles
	Conflict Minimization

	Modulating the Behavior of the Robot
	Compromise vs Opportunism
	Negotiation

	Evaluation
	Scaling Up
	Quality of the Plans Produced

	Conclusions

	PlanRob 2015 - Proceedings v2
	PlanRob 2015 - Proceedings v1
	papers-authoridx.pdf
	paper 20.pdf
	Overview of the USAR Scenario
	Agent Models
	Semantics of Individual vs Composite Planning

	Planning for Serendipity
	Plan Interruptibility
	Preservation Constraints
	The Planner
	Planning with Communication

	Experimental Results
	Different Flavors of Collaboration
	Implementation on the Nao

	Conclusion

	paper 19.pdf
	Planning with Resource Profiles
	The Belief Modeling Component
	The Goal Recognition Component
	Resources and Resource Profiles
	Conflict Minimization

	Modulating the Behavior of the Robot
	Compromise vs Opportunism
	Negotiation

	Evaluation
	Scaling Up
	Quality of the Plans Produced

	Conclusions

	toc
	PlanRob 2015 - Proceedings v1
	papers-authoridx.pdf
	paper 20.pdf
	Overview of the USAR Scenario
	Agent Models
	Semantics of Individual vs Composite Planning

	Planning for Serendipity
	Plan Interruptibility
	Preservation Constraints
	The Planner
	Planning with Communication

	Experimental Results
	Different Flavors of Collaboration
	Implementation on the Nao

	Conclusion

	paper 19.pdf
	Planning with Resource Profiles
	The Belief Modeling Component
	The Goal Recognition Component
	Resources and Resource Profiles
	Conflict Minimization

	Modulating the Behavior of the Robot
	Compromise vs Opportunism
	Negotiation

	Evaluation
	Scaling Up
	Quality of the Plans Produced

	Conclusions

	PlanRob 2015 - Proceedings v4
	PlanRob 2015 - Proceedings v3
	PlanRob 2015 - Proceedings v2
	PlanRob 2015 - Proceedings v1
	papers-authoridx.pdf
	paper 20.pdf
	Overview of the USAR Scenario
	Agent Models
	Semantics of Individual vs Composite Planning

	Planning for Serendipity
	Plan Interruptibility
	Preservation Constraints
	The Planner
	Planning with Communication

	Experimental Results
	Different Flavors of Collaboration
	Implementation on the Nao

	Conclusion

	paper 19.pdf
	Planning with Resource Profiles
	The Belief Modeling Component
	The Goal Recognition Component
	Resources and Resource Profiles
	Conflict Minimization

	Modulating the Behavior of the Robot
	Compromise vs Opportunism
	Negotiation

	Evaluation
	Scaling Up
	Quality of the Plans Produced

	Conclusions

	toc
	PlanRob 2015 - Proceedings v1
	papers-authoridx.pdf
	paper 20.pdf
	Overview of the USAR Scenario
	Agent Models
	Semantics of Individual vs Composite Planning

	Planning for Serendipity
	Plan Interruptibility
	Preservation Constraints
	The Planner
	Planning with Communication

	Experimental Results
	Different Flavors of Collaboration
	Implementation on the Nao

	Conclusion

	paper 19.pdf
	Planning with Resource Profiles
	The Belief Modeling Component
	The Goal Recognition Component
	Resources and Resource Profiles
	Conflict Minimization

	Modulating the Behavior of the Robot
	Compromise vs Opportunism
	Negotiation

	Evaluation
	Scaling Up
	Quality of the Plans Produced

	Conclusions

	PlanRob 2015 - Proceedings v2
	PlanRob 2015 - Proceedings v1
	papers-authoridx.pdf
	paper 20.pdf
	Overview of the USAR Scenario
	Agent Models
	Semantics of Individual vs Composite Planning

	Planning for Serendipity
	Plan Interruptibility
	Preservation Constraints
	The Planner
	Planning with Communication

	Experimental Results
	Different Flavors of Collaboration
	Implementation on the Nao

	Conclusion

	paper 19.pdf
	Planning with Resource Profiles
	The Belief Modeling Component
	The Goal Recognition Component
	Resources and Resource Profiles
	Conflict Minimization

	Modulating the Behavior of the Robot
	Compromise vs Opportunism
	Negotiation

	Evaluation
	Scaling Up
	Quality of the Plans Produced

	Conclusions

	toc
	PlanRob 2015 - Proceedings v1
	papers-authoridx.pdf
	paper 20.pdf
	Overview of the USAR Scenario
	Agent Models
	Semantics of Individual vs Composite Planning

	Planning for Serendipity
	Plan Interruptibility
	Preservation Constraints
	The Planner
	Planning with Communication

	Experimental Results
	Different Flavors of Collaboration
	Implementation on the Nao

	Conclusion

	paper 19.pdf
	Planning with Resource Profiles
	The Belief Modeling Component
	The Goal Recognition Component
	Resources and Resource Profiles
	Conflict Minimization

	Modulating the Behavior of the Robot
	Compromise vs Opportunism
	Negotiation

	Evaluation
	Scaling Up
	Quality of the Plans Produced

	Conclusions

	Paper 15
	PlanRob 2015 - Proceedings v3
	PlanRob 2015 - Proceedings v2
	PlanRob 2015 - Proceedings v1
	papers-authoridx.pdf
	paper 20.pdf
	Overview of the USAR Scenario
	Agent Models
	Semantics of Individual vs Composite Planning

	Planning for Serendipity
	Plan Interruptibility
	Preservation Constraints
	The Planner
	Planning with Communication

	Experimental Results
	Different Flavors of Collaboration
	Implementation on the Nao

	Conclusion

	paper 19.pdf
	Planning with Resource Profiles
	The Belief Modeling Component
	The Goal Recognition Component
	Resources and Resource Profiles
	Conflict Minimization

	Modulating the Behavior of the Robot
	Compromise vs Opportunism
	Negotiation

	Evaluation
	Scaling Up
	Quality of the Plans Produced

	Conclusions

	toc
	PlanRob 2015 - Proceedings v1
	papers-authoridx.pdf
	paper 20.pdf
	Overview of the USAR Scenario
	Agent Models
	Semantics of Individual vs Composite Planning

	Planning for Serendipity
	Plan Interruptibility
	Preservation Constraints
	The Planner
	Planning with Communication

	Experimental Results
	Different Flavors of Collaboration
	Implementation on the Nao

	Conclusion

	paper 19.pdf
	Planning with Resource Profiles
	The Belief Modeling Component
	The Goal Recognition Component
	Resources and Resource Profiles
	Conflict Minimization

	Modulating the Behavior of the Robot
	Compromise vs Opportunism
	Negotiation

	Evaluation
	Scaling Up
	Quality of the Plans Produced

	Conclusions

	PlanRob 2015 - Proceedings v2
	PlanRob 2015 - Proceedings v1
	papers-authoridx.pdf
	paper 20.pdf
	Overview of the USAR Scenario
	Agent Models
	Semantics of Individual vs Composite Planning

	Planning for Serendipity
	Plan Interruptibility
	Preservation Constraints
	The Planner
	Planning with Communication

	Experimental Results
	Different Flavors of Collaboration
	Implementation on the Nao

	Conclusion

	paper 19.pdf
	Planning with Resource Profiles
	The Belief Modeling Component
	The Goal Recognition Component
	Resources and Resource Profiles
	Conflict Minimization

	Modulating the Behavior of the Robot
	Compromise vs Opportunism
	Negotiation

	Evaluation
	Scaling Up
	Quality of the Plans Produced

	Conclusions

	toc
	PlanRob 2015 - Proceedings v1
	papers-authoridx.pdf
	paper 20.pdf
	Overview of the USAR Scenario
	Agent Models
	Semantics of Individual vs Composite Planning

	Planning for Serendipity
	Plan Interruptibility
	Preservation Constraints
	The Planner
	Planning with Communication

	Experimental Results
	Different Flavors of Collaboration
	Implementation on the Nao

	Conclusion

	paper 19.pdf
	Planning with Resource Profiles
	The Belief Modeling Component
	The Goal Recognition Component
	Resources and Resource Profiles
	Conflict Minimization

	Modulating the Behavior of the Robot
	Compromise vs Opportunism
	Negotiation

	Evaluation
	Scaling Up
	Quality of the Plans Produced

	Conclusions

