
This electronic thesis or dissertation has been

downloaded from the King’s Research Portal at

https://kclpure.kcl.ac.uk/portal/

Take down policy

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing

details, and we will remove access to the work immediately and investigate your claim.

END USER LICENCE AGREEMENT

Unless another licence is stated on the immediately following page this work is licensed

under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

licence. https://creativecommons.org/licenses/by-nc-nd/4.0/

You are free to copy, distribute and transmit the work

Under the following conditions:

 Attribution: You must attribute the work in the manner specified by the author (but not in any
way that suggests that they endorse you or your use of the work).

 Non Commercial: You may not use this work for commercial purposes.

 No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and

other rights are in no way affected by the above.

The copyright of this thesis rests with the author and no quotation from it or information derived from it

may be published without proper acknowledgement.

Sequential and Distributed Algorithmic Frameworks for the Maximum Concurrent Flow
Problem

Christofi, Michalis

Awarding institution:
King's College London

Download date: 12. Jan. 2025

Sequential and Distributed
Algorithmic Frameworks for the

Maximum Concurrent Flow
Problem

Michalis Christofi

Department of Informatics

King’s College London

A thesis submitted for the degree of

Doctor of Philosophy

May 2016

i

Acknowledgements

I want to express my gratitude to my advisor Professor Tomasz Radzik.
His support, guidance and patience were very precious all along this
time. I also deeply acknowledge his sharing of experience and knowl-
edge and I will try to keep his good practices as examples. I also want
to thank my examiners for the many suggestions which improved the
presentation of this thesis.

Finally, I would like to thank my partner, parents and family for their
support and encouragement all these years. This PhD is a testament
to your faith in me, I hope I have made you proud.

Abstract

Networks are everywhere, changing the way we communicate with
each other, transport goods and share information. The problems of
efficient operation of such networks can often be stated as (abstract)
network flow problems. In a problem of this type we want to send
some commodity (goods, messages, data, electricity, vehicles) from
supply points to demand points in an underlying network, which is
modeled as a graph. There are various constraints on the charac-
teristics of the routes, such as capacities and costs. There may be a
number of different optimization objectives, depending on the problem
setting. Network flow problems form one of the most important and
most frequently encountered classes of optimization problems. They
lie at the intersection of several scientific fields including computer sci-
ence, mathematics and operational research. We are interested in the
computer science aspect of network optimization problems, that is, in
development and analysis of efficient algorithms for such problems.

In this thesis we study algorithmic frameworks for multicommodity
flow problems, which can be described in the following way. The in-
put is a directed graph G = (N,E), where N is the set of nodes and
E is the set of edges, and specifications of k commodities. Each edge
has an associated capacity c(e) and each commodity has an associ-
ated source-sink pair of nodes (si, ti) and a demand value di. The
goal is to design simultaneous flow of all commodities that satisfies
their demands, takes into account the capacities of the edges and op-
timizes a specified objective function. We focus on the problem of
minimizing the overall congestion, which is often referred to as the
Maximum Concurrent Flow problem. We consider both sequential

and distributed models of computation. We show that the two main
sequential algorithmic Maximum Concurrent Flow frameworks - the
rerouting framework and the incremental framework - are more closely
related than previously assumed. We prove that the running time of
some distributed Maximum Concurrent Flow algorithms shown re-
cently are asymptotically tight. We also propose a heuristic for these
algorithms to improve their performance on some types of inputs.

Contents

Contents v

List of Figures ix

I Introduction and Background 1

1 Introduction 2
1.1 Context of the Research . 2
1.2 Algorithmic Approaches . 3
1.3 Contributions of the Thesis . 3
1.4 Outline of the Thesis . 5

2 Network Flows: Background and Terminology 7
2.1 Graphs . 8
2.2 Networks and Flows: The single-commodity case 10
2.3 Residual Networks and Blocking Flows 11
2.4 Exact and Approximation Algorithms 13
2.5 Efficiency and Complexity . 16
2.6 Computational Models . 17

2.6.1 Sequential Computing . 18
2.6.2 Parallel Computing . 19
2.6.3 Distributed Computing . 19

2.7 Summary . 20

v

CONTENTS

3 Multicommodity Flows and the Maximum Concurrent Flow Prob-
lem 22
3.1 Definition . 23
3.2 A Simple Example . 25
3.3 Two Formulations of the MCF Problem 27

3.3.1 Edge based formulation 27
3.3.2 Path based formulation . 30

3.4 Applications of Multicommodity Flow Problems 33
3.4.1 The Sparsest Cut Problem 34
3.4.2 VLSI Circuit . 34
3.4.3 Transportation and Distribution Networks 35
3.4.4 Computer and Communication Networks 35
3.4.5 Other Applications . 36

3.5 Summary . 37

4 Solution Methods and Previous Results 38
4.1 Exact Solution Algorithms . 41
4.2 Approximation Algorithms . 42

4.2.1 The Primal-Dual Approach 42
4.2.2 Previous Work . 47

4.3 Summary . 50

II Analysis of Sequential Algorithms 51

5 The Main Solution Algorithms 52
5.1 The Rerouting Method . 53

5.1.1 Description of Shahrokhi and Matula 54
5.1.2 Klein’s Proposal . 55
5.1.3 Leighton’s Proposal for Arbitrary Capacities 57
5.1.4 Goldberg’s Proposal . 64
5.1.5 Radzik’s Proposal . 64
5.1.6 A Rerouting Example . 65

5.2 The Incremental Method . 68

vi

CONTENTS

5.2.1 Young’s Proposal . 68
5.2.2 Garg and Koenemann’s proposal 68
5.2.3 Fleischer’s Proposal . 71
5.2.4 Madry’s Proposal . 74
5.2.5 An Incremental Example 75

5.3 Summary . 78

6 The Incremental Method with an Exponential Length Function 80
6.1 Exponential Length Function . 81
6.2 Correctness of the Algorithm . 83
6.3 Running Time . 87
6.4 Summary . 89

7 Rerouting based on Shortest Paths 90
7.1 The Successive Shortest Path Algorithm 91

7.1.1 Approximation Algorithm for Minimum Cost Flow 93
7.2 A Modification of the MCF Round-Robin Algorithm 95

7.2.1 Analysis of the Modified Round-Robin Algorithm 98
7.2.2 Running time . 101

7.3 Summary . 102

III Analysis of Distributed Algorithms 104

8 Distributed Computing Models 105
8.1 Definition and Characteristics . 106
8.2 Features . 107
8.3 Distributed Models . 108
8.4 Previous Work . 110

8.4.1 Decisions at the Nodes . 111
8.4.2 The Billboard Model . 114

8.5 Summary . 118

9 The Approximate Steepest Descent Framework 119
9.1 The Approximate Steepest Descent Algorithm 120

vii

CONTENTS

9.2 A Worst Case Input . 123
9.2.1 Analysis of the DGD-MCF algorithm on Worst Case Input 126

9.3 Balancing Distributed MCF algorithm 141
9.3.1 Description of the BD-MCF algorithm 142
9.3.2 Execution of the Algorithm 147

9.4 Summary . 161

10 The Distributed Rerouting Algorithm 162
10.1 The Greedy Distributed Rerouting Algorithm 163
10.2 The Upper Limit on the Increase of Flow in One Round 169
10.3 Running Time of Greedy Distributed Algorithm 171

10.3.1 The GDR-MCF Algorithm with the Flow-Decrease Con-
straints . 171

10.3.2 The GDR Algorithm Without the Flow-Decrease Constraints173
10.4 The Greedy Balancing Distributed Algorithm 179

10.4.1 Analysis of the Algorithm 180
10.5 Summary . 186

11 Conclusions 187
11.1 Summary . 187
11.2 Future Work . 188

References 197

viii

List of Figures

2.1 Directed and Undirected Graphs 9
2.2 A Path . 10
2.3 Graph and Residual Graph . 12
2.4 A Blocking Flow . 13
2.5 Residual network . 14
2.6 A Maximum Flow . 14
2.7 Sequential Computing . 18
2.8 Parallel Computing . 20
2.9 Distributed versus Parallel Computing 21

3.1 An Example Input for the MCF problem 26
3.2 Non-optimal Flow . 26
3.3 Optimal Flow . 27

4.1 A Counterexample in an Undirected Network 39
4.2 A Counterexample in a Directed Network 40

5.1 Network with Two Commodities 66
5.2 Maximum Flow for each Commodity Routed Independently . . . 66
5.3 One Iteration of the Rerouting Algorithm 67
5.4 Two Commodities Network . 76
5.5 First Phase of Incremental Algorithm 76
5.6 Second Phase of Incremental Algorithm 77
5.7 Termination of Incremental Algorithm 78

8.1 Message Passing System versus Shared Memory System 109

ix

LIST OF FIGURES

9.1 Example of Network ΥL . 124
9.2 Network for One Commodity . 126

10.1 Old v New Upper Limit on the Increase of Flow 171
10.2 Network Υ′L for One Commodity 174

x

Part I

Introduction and Background

1

Chapter 1

Introduction

Contents
1.1 Context of the Research 2

1.2 Algorithmic Approaches 3

1.3 Contributions of the Thesis 3

1.4 Outline of the Thesis 5

1.1 Context of the Research

The multicommodity flow problem is a network flow problem with multiple com-
modities between different origin-destination pairs. Many real-life applications
may be formalized under the form of a multicommodity flow problem. It arises
in a variety of applications, from distribution of goods and transportation prob-
lems to computer and communication networks. It consists in routing a set of
commodities through a given network from some origins to some destinations
optimizing a specified objective function. We focus on the problem of minimizing
the overall congestion, which is often referred to as the Maximum Concurrent
Flow (MCF) Problem. We consider both sequential and distributed models of
computation.

2

1.2 Algorithmic Approaches

Two approaches to solving the MCF problem under the sequential computation
model were established in the beginning of 1990s, the rerouting framework and
the incremental framework. The rerouting method starts the computation from
some initial flow and then keeps redistributing (rerouting) the flow from more
congested to less congested paths, while the incremental method builds a solution
from scratch by iteratively adding small amounts of flow.

Distributed computing arose from the integration of computer and networking
technologies which enabled parallelism. There are two main models of distributed
computing for the multicommodity flow problem. In 1990s the "classical" model
was investigated, in which computing units are associated with the nodes of the
network and make local decisions on how the flows of the commodities should
be forwarded. More recently a new model of distributed computing for multi-
commodity flow problems was proposed by Awerbuch et al. [7] and Awerbuch
and Khandekar [4]. In this model each computing unit (agent) is associated with
each commodity. A "billboard" maintains the current total flows on the edges of
the network. The agents are allowed to read the values on the billboard at the
beginning of each round and decide how to reroute the flows of their commodi-
ties. Each agent has information about the total edge flows (from the billboard)
and the edge flows of its commodity, that is, they cannot distinguish between the
flows of other commodities. At the end of each round the agents submit their
flows to the billboard again. The agents are not allowed to co-ordinate with each
other in any other way than through the billboard, in particular, they cannot
read the flows of other agents or have information about their decisions in the
current round. The only co-ordination that exists is that the agents synchronize
their executions using the notion of a round.

1.3 Contributions of the Thesis

The main contributions of this thesis are summarized below.

3

Sequential Algorithms
The rerouting and incremental frameworks have traditionally been described

and analyzed separately as two different methods, but when executed, they ex-
hibit similar patterns of computation. First, we exhibit the two methods, explain
their computation and discuss their main properties. This helps us to highlight
the differences and similarities between the two methods. Then we modify algo-
rithms proposed under each framework and show that each method can be viewed
as a variation of the other.

For the incremental method we propose a new exponential length function,
which is similar to the length function used in the rerouting method. We show
that this length function fits in the original analysis of the incremental method.
The new length function proposed, unlike the one in the original method, has
a functional relation with the flow. This modification converts the incremental
method into an instance of the rerouting method.

In the rerouting method, the most successful technique for updating the flows
in each iteration is by using minimum cost flow computations. We show that we
can use a simple approach to find suitable approximate minimum cost flow under
the rerouting framework using the Successive Shortest Path algorithm (SSP). We
explain how to use this algorithm and prove a running time bound. The SSP
algorithm uses shortest paths to create the updated flow, in a similar way as in
the incremental framework. Essentially, this modification converts the rerouting
method into an instance of the incremental method. Moreover, it has been shown
that the SSP algorithm is faster in practice than the other algorithms proposed
for the calculation of minimum cost flows [85, 13]. Therefore our modification
could make the rerouting method better in practice.

Distributed Algorithms
We study the two main distributed algorithms for the multicommodity flow

problem proposed by Awerbuch et al. [7] and Awerbuch and Khandekar [4]. These
two algorithms need Õ(L) rounds to terminate, where L denotes the maximum
path size in the network and the Õ notation hides polylogarithmic factors. The
upper bound analysis in both [7] and [4] was based on the analysis of the flow
change on one edge of the shortest path. In each iteration, there is one edge

4

with an increase of flow by at least some small amount. These increases are then
totalled to get the flow change on the whole path and this result is used to derive
the upper bound on the number of rounds.

The upper bound analysis in both [7] and [4] was only counting the increases
of flow on the saturated edges. However, when the flow is updated on paths, then
in addition to (at least one) saturated edge, the flow would increase on all edges
of the path. So, it was reasonable to expect that the derived upper bounds were
not tight. We construct a worst-case network and show that the running time
bounds of these algorithms are actually tight.

We then propose a heuristic improvement of these algorithms and analyze
its performance on the worst-case inputs. In the original algorithms the flow
updates depend on the computation of a blocking flow under some flow control
constraints. We impose an extra requirement on the computed blocking flow to
distribute flow evenly among available approximate shortest paths. We show how
to achieve such a distribution without increasing the asymptotic running time.
We also show that our heuristic significantly speeds up the process at least on
our worst-case input. This result indicates potential for better performance of
our heuristic than the previous algorithms.

This thesis also serves as a large review of the different Maximum Concurrent
Flow formulations and algorithms found in the literature. Moreover, we estab-
lish new connections between various Maximum Concurrent Flow algorithms and
explicate the effect of these connections on the running time of the different al-
gorithms proposed to solve the problem.

1.4 Outline of the Thesis

This thesis is divided into tree main parts. Part I is devoted to introductory
material, definitions and applications of the Multicommodity Flow Problem. In
Chapter 2 we introduce the basic background for Network Flow Problems. In
Chapter 3 we introduce the Maximum Concurrent Flow Problem and give its
formulations and its applications. In Chapter 4 we describe the main solution
methods used to solve the MCF problem.

In Part II we examine the sequential algorithms for the MCF problem. More

5

specifically, in Chapter 5 we describe the main sequential algorithms for solving
the problem, the incremental and the rerouting method. In Chapter 6 we intro-
duce a new length function for the incremental method which is exponential in
the value the flow. This length function is similar to the one used in the rerouting
framework. We show how this length function fits in the original analysis of the
incremental method, prove its correctness and show the running time bounds. In
Chapter 7 we introduce a different way to calculate minimum cost flows under the
rerouting framework. We show how we can do this using the Successive Shortest
Path algorithm (SSP) in a modified network. We prove that our modification
fits in the analysis of Radzik’s [65] algorithm and show the running time. Our
results are slightly inferior to the current best running times but using the SSP
algorithm we show that that the rerouting algorithm is closer to the incremental
one than previously considered. Implementing the SSP algorithm for computing
minimum cost flow paths is also much simpler than the previous methods used.

Part III is devoted to distributed algorithms for the MCF problem. In Chapter
8 we describe the distributed model of computation and give some of its appli-
cations. We also review the previous results for solving the MCF problem under
the distributed computing framework. In Chapter 9 we examine the Approxi-
mate Steepest Descent Framework (DGD-MCF) proposed in [7]. We construct a
worst-case input and show the running times of the DGD-MCF algorithm on this
network. We also propose a heuristic improvement which speeds up significantly
the running time of the DGD-MCF algorithm. Finally, in Chapter 10 we analyze
the Greedy Distributed Framework (GDR-MCF) proposed in [4]. We show that
its running time bottleneck is an artifact of the flow control constraints imposed.
We also show that even by relaxing the flow control constraints the running time
does not improve significantly when analyzed on our worst-case network. We
propose a heuristic improvement to improve the running time of the GDR-MCF
algorithm on our worst-case network.

6

Chapter 2

Network Flows: Background and
Terminology

Contents
2.1 Graphs . 8

2.2 Networks and Flows: The single-commodity case 10

2.3 Residual Networks and Blocking Flows 11

2.4 Exact and Approximation Algorithms 13

2.5 Efficiency and Complexity 16

2.6 Computational Models 17

2.7 Summary . 20

Network flow problems are one of the most important and most frequently
encountered types of optimization problems [11]. They lie at the intersection of
several scientific fields including computer science, mathematics and operational
research. Applications of network flow problems can be found everywhere in
our daily lives; in transportation, in telecommunication, in manufacturing and
distribution of goods. In all of these application domains we want to send some
commodity (products, messages, electricity, vehicles, data) from supply points
to demand points in an underlying network, which is modeled as a graph. The
network consists of several routes (paths) which connect these points and are

7

used to transfer the requested commodity. Usually there are constraints on the
characteristics of the routes, such as capacities or costs. The objective, in the
most general sense, is to route these commodities in the network in the most
efficient and typically least expensive way.

In this chapter we introduce the background of the research area examined in
this thesis. In Sections 2.1, 2.2, 2.3 we introduce the notation and terminology
associated with the problems addressed in this thesis. In Section 2.4, we provide
an overview of the main approaches used to solve them efficiently. In Section 2.5
we provide the measures used to analyze the algorithms we develop in this thesis.
Finally, in Section 2.6 we give a brief description of the available computing
methods and discuss how these lead us in designing appropriate algorithms for
solving the multicommodity flow problem.

The following textbooks were used as a basis for the concepts we introduce
in this chapter and are suggested for further details on Network Flow Problems:
Network Flows: Theory, Algorithms, and Applications by Ahuja et al. [1], Net-
work Optimization: Continuous and Discrete Models by Bertsekas [11], Linear
Programming and Network Flows by Bazaraa et al. [9] and The Design of Ap-
proximation Algorithms by Williamson and Shmoys [81].

2.1 Graphs

This section presents some basic graph-theoretic concepts. Examples are given
to clarify the expositions.

Definition 1. An undirected graph G = (N,E), consists of a set of nodes N and
a set of edges E whose elements are unordered pairs of distinct nodes.

Definition 2. A directed graph G = (N,E), consists of a set of nodes N and a
set of edges E whose elements are ordered pairs of distinct nodes.

Figure 2.1(a) shows an example of an undirected network. Figure 2.1(b) shows
an example of a directed network.

The number of nodes is denoted by n and the number of edges is denoted by
m. We note that some authors use a different terminology by referring to the

8

Figure 2.1: Directed and Undirected Graphs

nodes as vertices and to edges as arcs. An edge is directed if it is assumed ordered
and it is denoted by (u, v), u, v ∈ N. If unordered, the edge is referred to as
undirected and is denoted by {u, v}, u, v ∈ N. Note that we use both e and
(u, v) or {u, v} to denote an edge depending on the context to make our notation
simpler.

Definition 3. The capacity of an edge c(u, v) is a function c : E → R+, where
R+ is the set of non-negative real numbers. We extend this definition to all node
pairs by letting c(u, v) = 0 if (u, v) /∈ E.

A network is a graph (directed or undirected) with associated values on its
nodes or edges, e.g. capacities or demands. The edges and nodes in this thesis
always have edge or node values associated with them. For convenience, we will
often use the term graph to refer to networks. We will mostly deal with directed
graphs since they are convenient for our problem domain. Therefore we often
omit the term "directed" and thus whenever referring to a graph we implicitly
assume that the graph is directed unless stated otherwise.

We do not exclude the possibility of the presence of edges connecting two
nodes in both directions in a directed graph. However for simplicity of notation
we do not allow two or more edges in the same direction between the same pair of
nodes (so called multiple edges). In the network flow problems that we consider,
we can replace parallel edges with one "super-edge" which has the same direction
and whose capacity is equal to the sum of the capacities of the edges that have
been replaced.

Definition 4. A graph G′ = (N′,E′), is called a subgraph of G = (N,E), if N′ ⊆ N

and E′ ⊆ E.

9

Figure 2.2: Path (1,2,3,4)

Definition 5. A cut in a graph G = (N,E), often denoted as [S, S], is a partition
of the node set N into two disjoint sets, S ⊆ N and S = N − S. A cut-set is the
set of edges which have their one end in the set S and their other end in the set
S.

In Figure 2.1 the sets S = {1, 2, 3} and S = {4, 5, 6} define a cut with the
edges {2, 4}, {3, 5} ∈ [S, S] in the cut.

Definition 6. A path P is a graph whose nodes can be listed in the order
(ν1, ν2, . . . , νk), such that the edges are (νi, νi+1) ∈ E, where i = 1, 2, . . . , n− 1.

Figure 2.2 shows an example of a path.

2.2 Networks and Flows: The single-commodity

case

In the applications of network flows we send a commodity (e.g. electric current,
messages, cars) through a network. We introduce variables which measure the
amount of commodity sent over different edges. The variable associated with
edge (u, v) is defined as the flow of this edge and it is denoted by f(u, v). The
flow of an edge can only be positive or zero. We extend this definition to all node
pairs by letting f(u, v) = 0 if (u, v) /∈ E.

Definition 7. A flow in a network with a set of nodes N, a set of edges E, a
source s and a sink t, is a real-valued function f : N×N→ IR with the following
properties:

10

Capacity Constraints: 0 ≤ f(u, v) ≤ c(u, v), ∀ (u, v) ∈ N ×N,

Flow Conservation:
∑

v∈N f(u, v)−
∑

v∈N f(v, u) = 0, ∀ u ∈ N \ {s, t}.

Note that if (u, v) /∈ E then f(u, v) = 0. The capacity constraints state that
the total flow on an edge cannot be greater than the capacity of the edge. The
flow conservation property states that the total flow arriving at a node is equal
to the total flow departing from the node. This is true for all nodes except the
source and the sink. At the source we put flow into the network so the net flow∑

v∈N f(s, v) will be positive and at the sink we take out flow from the network
and thus the net flow is negative.

Definition 8. The output of the maximum flow problem is a flow in G which
maximizes

∑
v∈N f(s, v).

2.3 Residual Networks and Blocking Flows

Crucial notions for network flow algorithms are the residual capacity and the
residual networks. These notions are defined below, with an example in Figure
2.3.

Definition 9. A residual capacity cR(u, v) = c(u, v) − f(u, v) is the amount of
available capacity of an edge (u, v). From these capacities we can construct the
residual network GR = (N,ER), where ER = {(u, v) ∈ E : cR(u, v) > 0}, which
gives us the available capacity of the graph. The capacities of the reverse edges
in the residual network are equal to f(u, v).

A saturated edge is an edge with residual capacity equal to zero, that is no more
flow can be sent through this edge without violating the capacity constraints. The
capacity of a path is the minimum over all capacities of the edges in the path. An
augmenting path is a source-to-sink path in the residual network.

Definition 10. A blocking flow is a flow function in which every source-to-sink
path in the directed graph G has a saturated edge.

11

Figure 2.3: Graph and Residual Graph

12

Figure 2.4: A Blocking Flow

We should note that a blocking flow does not guarantee a maximum flow. A
maximum flow is achieved if we cannot find any augmenting paths in the residual
network to send flow. We can observe this in Figures 2.4 and 2.6. In Figure 2.4
we have a blocking flow, that is we cannot find any path in the directed network
to augment flow. However, in the residual network we can still send one unit of
flow along path s − 4 − 5 − 3 − 6 − t. We can easily verify in Figure 2.6 that
we cannot send any more flow since all the outward edges from the source are
saturated, and therefore this is a maximum flow.

2.4 Exact and Approximation Algorithms

To solve a computational problem we need to combine three building blocks
essentially: an algorithm, a computational device and a data structure on which
we apply our algorithm. The computational device nowadays is a computer or a
network of computers linked together to increase their power. A data structure is
a way to store and organize data in order to facilitate access and modifications.
In our notion of network flows a data structure is a way to represent the nodes,

13

Figure 2.5: Residual Network

Figure 2.6: A Maximum Flow

14

edges, demands and flows. Although this area is very important in the general
concept of algorithms it is beyond the scope of this thesis so we will not cover it
in detail. The algorithms which we consider in this thesis use the adjacency lists
representation of graphs and networks. The algorithms may use some auxiliary
data structures, for example priority queues. We will not consider details of these
data structures in this thesis.

Network flow problems fall into the broader category of Combinatorial Op-
timization Problems. A vast number of algorithms exist to solve problems in
Combinatorial Optimization. These algorithms can, generally speaking, be cate-
gorized in two groups, Exact Algorithms and Approximation Algorithms. Exact
Algorithms are the algorithms which when executed on a problem instance output
an exact solution of a problem. Unfortunately many of the problems in Combina-
torial Optimization appear to be difficult to be solved exactly in polynomial time.
This means that getting an exact solution would be very expensive (in terms of
time or computational power needed) and in many cases impossible. The network
flow problems that we consider have polynomial-time algorithms, but only with
a polynomial of high degree.

In computer science we are mostly interested in algorithms which return an
optimal or near-optimal solution in polynomial time with respect to the input
size. To achieve fast polynomial-time algorithms we need to relax some of our
requirements. In general an algorithm is considered to be "good" if it returns an
optimal solution, in polynomial time, for any instance. So if we are not willing
to relax our polynomial-time requirement we have two options:

• Relax the any instance requirement. We can devise algorithms for various
special instances that run in polynomial time,

• Relax the optimal solution requirement, that is find a solution which is not
optimal, but is close enough.

The latter approach is the most common and it is examined deeply in this thesis.
We examine approximation algorithms, that is algorithms which find a solution
that is close to the optimal. We formalize this in the following definition.

15

Definition 11 ([63]). Let A be an optimization (maximization or minimization)
problem with positive cost function c, and let α be an algorithm which, given an
instance I of A returns a feasible solution fα(I). Let f̃(I) be an optimal solution
of A. Then α is called an ε-approximate algorithm for A for some ε > 0 if and
only if

|c(fα(I))− c(f̃(I))|
c(f̃(I))

≤ ε

for all instances I.

The solution fα(I) of the ε-approximate algorithm α for the optimization
problem A is called ε-approximate solution.

2.5 Efficiency and Complexity

To estimate the running time of an algorithm we need a performance guaran-
tee. Typically this guarantee is expressed in terms of the input size parameters.
There are three basic approaches to measure the complexity (running time) of an
algorithm:

Empirical Analysis: Estimate how algorithms perform in practice. This
is done by implementing the algorithm and running this implementation on
a set of different problem instances.

Average-case Scenario: Estimate the expected number of steps an al-
gorithm needs to terminate. This is executed by assigning a probability
distribution for the problem instances and by deriving asymptotic expected
running times using statistical analysis.

Worst-case Scenario: This analysis provides upper bounds for the num-
ber of steps an algorithm needs to terminate on any problem instance of
given size. By providing upper bounds we ensure that the algorithm will
terminate within the running time estimated.

In this thesis we use the worst-case to analyze the performance of our algorithms.

16

Let n,m and U be the input parameters indicating the size of an input network
for a network optimization problem P . The n and m parameters are the number
of nodes and edges, as used before. It is assumed that all input numbers (for
example edge capacities) are given as rational numbers and the parameter U is
the largest integer (in absolute value) among the denominators and numerators
of these numbers. To estimate the complexity, as we stated above, we need to
derive a bound on the running time in terms of the input parameters. Such a
bound is given usually by some expression of the form

c · g(n,m,U),

where c is a constant and g is a known function.
We say that the running time is O(g(n,m,U)) if the running time of an algo-

rithm is bounded above asymptotically (up to a constant factor) by g(n,m,U).
We say that the running time is Ω(g(n,m,U)), if it is bounded below asymptoti-
cally by g(n,m,U). Finally, we say that it is Θ(g(n,m,U)) if it is bounded both
above and below asymptotically by g(n,m,U).

If we can express g(n,m,U) using a polynomial function in n, m and logU ,
for example, O(np · mq · (logU)t) for some constants p, q, t ∈ IR+, we say that
the algorithm has polynomial running time. We say that an algorithm is strongly
polynomial, if we can express the running time in terms of the parameters n
and m only, for example, O(np ·mq). A pseudopolynomial running time depends
polynomially on the input parameters n and m but exponentially on the length
of the input, for example, O(np ·mq · U).

2.6 Computational Models

The history of algorithms is tightly coupled with the history of computing archi-
tecture. As computers and computer networks evolved, algorithms were designed
to make appropriate use of this environment. Algorithms were also designed for
computational models which were yet to be realized in practise. In this section
we briefly introduce the two basic computational models which are explored in
this thesis. Parallel computing is also briefly discussed for completeness but it is

17

Figure 2.7: Sequential Computing

not within the scope of this thesis. More details are given when needed in the
following chapters.

2.6.1 Sequential Computing

Early computers had only a single processor and could only accept programs that
would be implemented in a sequential manner. They provided the platform for
sequential algorithms which formed the basic theoretical framework for algorith-
mic problem solving. In sequential computing an algorithm has the following
properties.

• An algorithm runs on a single computer having a single central processing
unit (CPU).

• Instructions are executed one after another; only one instruction can be
executed at a time.

• The CPU can read and write to any memory location with equal speed
(RAM-Random Access Machine).

Figure 2.7 shows how sequential computing is executed. We consider sequen-
tial algorithms for solving the MCF Problem in Chapters 5, 6 and 7.

18

2.6.2 Parallel Computing

In the early 1980s the industry began developing computers with parallel pro-
cessors [10]. In this setting processors worked together in a synchronized envi-
ronment, normally under the control of a central processor. This motivated the
design of parallel algorithms to harness this power. The properties of parallel
algorithms [39] are:

• They are intended to be executed using multiple processors on a single
computer.

• A parallel algorithm consists of separate parts that can be executed in
parallel; with each part broken down into a set of instructions executed as
a sequential model.

• Instructions from each part, where no dependencies between parts exist, are
executed simultaneously by different processors.

• An overall central coordination is achieved by an appropriate synchroniza-
tion mechanism.

• All processors have equal access to a single shared memory (PRAM-Parallel
RAM).

Figure 2.8 shows how parallel computing is executed.

2.6.3 Distributed Computing

More recently and through the emergence of computer networks a new type of
computing has been introduced, the distributed computing. Clusters of comput-
ers in different locations, with various speeds and capacities, are working together
in an asynchronous environment, communicating with each other over the net-
work using message passing or some middleware. Distributed algorithms, which
utilize such a computing environment, have similar properties with parallel al-
gorithms. Their main difference is that in distributed computing each processor
has its own local memory, and information is passed along using messages, nor-
mally in asynchronous manner. Furthermore in contrast to parallel algorithms,

19

Figure 2.8: Parallel Computing

distributed algorithms do not have central control. Figure 2.9 illustrates how the
two methods differ.

Distributed algorithms are widely used in cluster [84, 21] and grid computing
[14, 22]. The Internet enables access to the power of thousands of computers
in different locations to solve computationally intensive problems. There are a
number of versions of distributed computing models. We consider distributed
algorithms for the maximum concurrent flow problem in Chapters 8, 9 and 10,
and give there further details for the model used by those algorithms.

2.7 Summary

In this chapter we have introduced the main definitions and terminology used in
this thesis. We have described the main concepts in graph theory and network
flow problems which are essential as a background for our work. We have also
discussed the different types of algorithms used to solve combinatorial optimiza-
tion problems and the different methods used to measure their running time. In
the next chapter we are going to introduce the problems addressed in this thesis
and give some of their main applications.

20

Figure 2.9: Distributed versus Parallel Computing

21

Chapter 3

Multicommodity Flows and the
Maximum Concurrent Flow
Problem

Contents
3.1 Definition . 23

3.2 A Simple Example 25

3.3 Two Formulations of the MCF Problem 27

3.4 Applications of Multicommodity Flow Problems 33

3.5 Summary . 37

The multicommodity flow problem is a network flow problem which involves
the collection of several independent network flow problems specified on the same
network, each one with its own requirements and constraints, but also sharing the
constraints of the common underlying network. Consider the case of a telecom-
munication network as an example. Multiple users download movies from differ-
ent suppliers using the same network. Each commodity can be associated with
the video traffic produced by each user with the demand being the size of the
movie. The users have their own bandwidth constraints (imposed by the Internet
providers) but since they also share the same network they are limited by the
capacity of the links of the underlying network.

22

In Section 3.1 we give the formal definition of the general multicommodity
flow problem and its special case called the maximum concurrent flow problem
which is the main focus of the thesis. In Section 3.2 we provide a simple example
to illustrate these definitions. In Section 3.3 we provide two distinct formulations
of the maximum concurrent flow problem which form the basis for two approaches
to deriving algorithms for the problem. Finally, in Section 3.4 we describe some
of the applications of the multicommodity flow problem.

3.1 Definition

The multicommodity flow problem is a network flow problem with multiple com-
modities between different source-sink pairs. We are given a problem instance
where we have a directed graph G = (N,E) with n = |N| nodes and m = |E|
edges each with an associated capacity c(u, v), and a specification of k commodi-
ties with source si ∈ N, destination ti ∈ N and demand di. The flow fi(e) of
commodity i on edge e is a function fi : E→ R+.

The multicommodity flow problems is a class of network flow problems which
have the following characteristics:

∑
v∈N

fi(u, v)−
∑
v∈N

fi(v, u) = 0, ∀ u ∈ N \ {si, ti}, ∀ i = 1, 2, . . . , k (3.1)

fi(u, v) ≥ 0, ∀ i = 1, 2, . . . , k, (3.2)
k∑
i=1

fi(u, v) ≤ c(u, v), ∀ (u, v) ∈ E. (3.3)

For the maximum multicommodity flow problem there are no specified
demands. The objective is to send as much flow as possible from a set of sources
to a set of destinations. The objective for this problem is the following:

max
k∑
i=1

∑
v∈N

fi(si, v). (3.4)

For the minimum-cost multicommodity flow problem a cost function

23

exists which assigns a cost w(u, v) to each edge. The specification of the net-
work with edge costs and capacities is often abbreviated as N = (G, w, c), where
w : E → IR is a vector of edge costs, and c : E → R+ is a vector of non-negative
edge capacities. Considering these the objective of the minimum-cost multi-
commodity flow problem is:

min
∑

(u,v)∈E

w(u, v) ·
k∑
i=1

fi(u, v) (3.5)

subject to

∑
z∈N

fi(si, z)−
∑
x∈N

fi(x, si) =di, ∀ i = 1, 2, . . . , k, (3.6)

∑
z∈N

fi(ti, z)−
∑
x∈N

fi(x, ti) =− di, ∀ i = 1, 2, . . . , k. (3.7)

Equation (3.6) simply states that the flow of commodity i pushed in the
network from its source si is equal to its demand di. Equation (3.7) states that
the flow pulled out of the network from the sink of commodity i must be equal
to its demand di.

In this thesis we examine in detail the maximum concurrent flow prob-
lem (MCF problem). The objective of this problem is to maximize the minimum
fraction of the satisfied demand of each commodity, that is to satisfy the maxi-
mum possible proportion of all demands γ. We are given a network N = (G, c).
The formulation of the problem is given below.

(P0)

maximize γ

24

subject to

∑
x: (x,v)∈E

fi(x, v)−
∑

z: (v,z)∈E

fi(v, z) ≥

0 ∀ v ∈ N \ {si, ti}
−γdi if v = si

γdi if v = ti

,∀ i = 1, 2, . . . , k.

(3.8)

k∑
i=1

fi(u, v) ≤ c(u, v),∀ (u, v) ∈ E, (3.9)

fi(u, v) ≥ 0,∀i : i = 1, 2, . . . , k.

3.2 A Simple Example

In this section we provide a simple example to illustrate the concepts we have
introduced in the previous section. Figure 3.1 shows an input network with
two commodities. The network consists of n = 6 nodes and m = 8 edges with
corresponding capacities. Each commodity has a source-sink pair, this is 1 − 6

for commodity 1 and 3− 4 for commodity 2. The demands are 3 and 4 units of
flow for commodity 1 and 2 respectively. Figure 3.2 shows a non-optimal solution
of this problem. Under this solution we manage to send 3 units of flow of both
commodities. This corresponds to a 100% of the demand of commodity 1 and
75% of the demand of commodity 2. In Figure 3.3 we show that a better solution
exists. More specifically we show an optimal solution where we manage to send
100% of the demand of both commodities.

25

Figure 3.1: An Example Input for the MCF problem

Figure 3.2: Non-optimal Flow;γ = 0.75

26

Figure 3.3: Optimal Flow;γ = 1

3.3 Two Formulations of the MCF Problem

We can formulate the maximum concurrent flow problem in two ways, the edge-
based formulation (introduced as the (P0) problem in Section 3.1) and the path-
flow formulation. Based on these two formulations different algorithms for solving
the problem can be constructed. In this section we first give an edge-based formu-
lation of the MCF problem, which is alternative(but equivalent) to (P0), and the
formulation of the dual problem. Then we present the path-based formulation.
We will refer to these formulations later when we provide the solution methods
for the maximum concurrent flow problem.

3.3.1 Edge based formulation

Recall from Section 3.1 that we have a network G = (N,E) with capacities c(u, v)

for all edges (u, v) ∈ E, and the source si, destination ti and demand di, for
each commodity i, i = 1, 2, . . . , k. Formulation (P1) is equivalent to formulation
(P0). The variables in (P1) are fi(u, v) for (u, v) ∈ E and i = 1, 2, . . . , k and

27

λ. The variable fi(u, v) stands for the flow of commodity i on edge (u, v), as in
(P0). The variable λ is the upper bound on the "relative" congestions on edges.
To see the equivalence between (P0) and (P1), observe that given values of the
variables γ and fi(u, v) are feasible for (P0) if and only if the values λ = 1/γ

and fi(u, v)/γ are feasible for (P1).
The formulation of (P1) can be obtained by substituting γ with 1/λ and

fi(x, v) with fi(x, v)/γ in (P0), resulting is the following congestion minimiza-
tion problem

(P1)

minimize λ

subject to

∑
x: (x,v)∈E

fi(x, v)−
∑

z: (v,z)∈E

fi(v, z) =

0 ∀ v ∈ N \ {si, ti}
−di if v = si

di if v = ti

, ∀ i = 1, 2, . . . , k.

(3.10)

k∑
i=1

fi(u, v) ≤ λc(u, v),∀ (u, v) ∈ E (3.11)

fi(u, v) ≥ 0, ∀i : i = 1, 2, . . . , k

For given flows fi of the commodities i = 1, 2, . . . , k (which satisfy (3.10)) let
f(e) =

∑k
i=1 fi(e) be the total flow on edge e. Then, λf (e) ≡ f(e)/c(e) is defined

as the congestion of an edge and λf = max{λf (e) : e ∈ E} is called the congestion
of the flow.

The dual of (P1) has a variable l(u, v) ≥ 0 associated with each of the capac-
ity constraints (3.11) and an unconstrained variable zi,v for each of the demand
constraints (3.10). We will talk more about the dual of a linear program and its
importance in combinatorial optimization in Section 4.2. For each of the variables
in the Primal (P1) there exist an associated constraint in the Dual. So, the dual

28

of (P1) is the following

(D1)

maximize
∑k

i=1 di(zi,ti − zi,si)

subject to

∑
(u,v)∈E

c(u, v)l(u, v) ≤ 1, (3.12)

zi,v − zi,u ≤ l(u, v),∀(u, v) ∈ E, ∀ i = 1, 2, . . . , k, (3.13)

l(u, v) ≥ 0.

Observe that if zi,v, l(u, v) are a feasible solution for (D1) then so is zi,v+αi, l(u, v)

for any numbers α1, α2, . . . , αk, and the value of the objective function doesn’t
change. Therefore we can consider only the feasible solutions for (D1) such that
zi,si ≡ 0. For any feasible values l(u, v), (u, v) ∈ E, the objective function is
maximized for zi,v = distl(si, v) and it is equal to

∑k
i=1 di · distl(si, ti), where

distl(si, v) is the shortest path distance from si to v with respect to the edge
length l(u, v). To see this, observe that for any feasible values of zi,v we must
have

zi,v ≤ distl(si, v)

from constraints (3.13). Indeed, by induction on the length of the shortest path
from si to v, if (si, . . . , x, v) is the shortest path and zi,x ≤ distl(si, x) (by induc-
tion) then

zi,v ≤ zi,x + l(x, v)

≤ distl(si, x) + l(x, v)

= distl(si, v),

where the first inequality follows from (3.13). So, the value of the objective
function is

k∑
i=1

di · zi,ti ≤
k∑
i=1

di · distl(si, ti).

29

Now check that zi,v ≡ distl(si, v) is a feasible solution and its objective value is

k∑
i=1

di · distl(si, ti).

Also, observe that the inequality (3.12) is in fact an equality in the optimal so-
lution. This holds because if in the optimal solution the inequality is not tight,
we can always increase the lengths without violating the constraints but achiev-
ing a better solution thus, contradicting the fact that the previous solution was
optimal. Therefore, (D1) reduces to the following formulation

(D1’)

maximize
∑k

i=1 di · distl(si, ti)

subject to

∑
(u,v)∈E

c(u, v)l(u, v) = 1 (3.14)

l(u, v) ≥ 0.

3.3.2 Path based formulation

In the path-based formulation we deal again with the same specification as before.
We have a network G = (N,E) with capacities c(e) for all edges e ∈ E,and
demands di, i = 1, 2, . . . , k, for each commodity i, source si and destination ti.

Let Pi be the set of paths between vertices si and ti and let P :=
⋃
i Pi. We

assume that for any two distinct commodities i 6= j, (si, ti) 6= (sj, tj), so the set
of paths Pi and Pj are distinct. (If two commodities had the same source and
destination, then we would view them as one commodity). Let f(P) denote the
amount of flow sent along path P,∀P ∈ P. The path-based LP formulation of
the maximum concurrent flow problem is the following

(P2)

maximize γ,

30

such that

∑
P:e∈P

f(P) ≤ c(e), ∀ e ∈ E, (3.15)

∑
P∈Pi

f(P) ≥ γdi,∀ i : i = 1, 2, . . . , k, (3.16)

f(P) ≥ 0,∀P ∈ P

The sum on the left hand side of equation (3.15) is the total flow on edge e. In
the edge based formulation the problem (P0) of maximizing the throughput γ
is equivalent to the problem (P1) of minimizing the congestion, λ. We have a
similar equivalence in the path based formulation. An equivalent formulation,
which can be obtained by substituting γ with 1/λ and f(P) with f(P)/γ is:

(P3)

minimize λ,

such that

∑
P:e∈P

f(P) ≤ λc(e),∀ e ∈ E, (3.17)

∑
P∈Pi

f(P) ≥ di,∀ i : i = 1, 2, . . . , k, (3.18)

f(P) ≥ 0,∀P ∈ P

The dual LP for (P2) has a variable l(e) for each capacity constraint (3.17)
of the primal, called the length of edge e, and a variable zi for each commodity
demand constraint (3.18).

(D2)

minimize
∑

e∈E c(e)l(e)

such that

31

∑
e∈P

l(e) ≥ zi, ∀i,∀P ∈ Pi, i = 1, 2, . . . , k,

k∑
i=1

dizi ≥ 1,

l(e) ≥ 0, ∀e ∈ E,

zi ≥ 0,∀i : i = 1, 2, . . . , k.

In each optimal solution of (D2), zi = distl(si, ti) and
∑k

i=1 didistl(si, ti) = 1.
We can argue that the constraint

∑k
i=1 dizi ≥ 1 is an equality. The reason is that

if the constraint is not tight we can divide all the edge lengths by some number
β > 1 so that all the constraints are satisfied but the objective function is smaller,
contradicting the fact that it is optimal, i.e. the minimum. Hence the problem
formulation can be restated as

(D2’)

minimize
∑

e∈E c(e)l(e)

such that

k∑
i=1

di · distl(si, ti) = 1,

l(e) ≥ 0,∀e ∈ E,

which is equivalent to the dual of the edge based formulation (D1). We will refer
later also to the dual of (P3). The direct dual of (P3) is the following problem.

(D3)

maximize
∑k

i=1 dizi

32

such that

∑
e∈P

l(e) ≥ zi, ∀i,∀P ∈ Pi, i = 1, 2, . . . , k, (3.19)

∑
e∈E

c(e)l(e) ≤ 1,

l(e) ≥ 0,∀e ∈ E,

zi ≥ 0,∀i : i = 1, 2, . . . , k.

In any optimal solution of (D3) we have zi = distl(si, ti) and
∑

i∈E c(e)l(e) = 1

(from the constraints (3.19)) and the objective function. Hence we can consider
the dual in the following form.

(D3’)

maximize
∑k

i=1 di · distl(si, ti)

such that ∑
e∈E

c(e)l(e) = 1,

l(e) ≥ 0,∀e ∈ E.

The formulations we have described are exploited when designing algorithms
to solve the maximum concurrent flow problem. Some algorithms have been
developed using only the dual of the formulations and others use the primal dual
relation. We will explain the derivation of the different algorithms used to solve
the MCF problem using these formulations in Chapters 4 and 5.

3.4 Applications of Multicommodity Flow Prob-

lems

Multicommodity flow problems arise in a variety of applications, from distribution
of goods and transportation problems to computer and communication networks.
In this section we consider several application domains and indicate how we can

33

formulate them to become problem instances of multicommodity flow problems.
In most cases we do not get clear problems as MCF, but need to consider addi-
tional constraints/objectives.

3.4.1 The Sparsest Cut Problem

Consider an undirected network G = (N,E) with capacities c(e) for all edges
e ∈ E, and a source-sink-demand specification (si, ti, di) for each commodity i

with i = 1, 2, . . . , k. For each subset S ⊆ N, let I(S) = {i : |S
⋂
{si, ti}| = 1}

denote the terminal pairs that are disconnected by removing the edges in C(S) =

{(u, v) ∈ E : u ∈ S, v 6∈ S}. The sparsity ratio ρ(S) of the set S is given by
the total capacity of the edges which connect S with N \ S divided by the total
demand separated by this cut, i.e.:

ρ(S) =

∑
e∈C(S) c(e)∑
i∈I(S) di

. (3.20)

The objective in the Sparsest Cut Problem is to minimize the sparsity ratio
ρ(S) over all S such that I(S) 6= ∅. In other words the objective is to remove the
maximum demand possible in the "cheapest" way with respect to capacity.

Finding a sparsest cut is NP-Hard [58]. The Sparsest Cut problem has numer-
ous applications in designing approximation algorithms for optimization problems
in the area of routing and embedding (see [71, 54]). It can be shown that the dual
of Maximum Concurrent Flow Problem is in fact equivalent to the relaxation of
the Sparsest Cut Problem (see [71]). This relation has given rise to many algo-
rithms that solve the Sparsest Cut Problem by exploiting the properties of the
MCF Problem (see [36, 54]).

3.4.2 VLSI Circuit

Very-large-scale-integration (VLSI) is the process of integrating thousands of elec-
tronic components into a small area (for example creating integrated circuits by
combining transistors into a single chip). The transistors lay out in a grid each
one placed at a node. The wires connecting the transistors may be viewed as

34

edges. Certain transistor pairs must communicate with each other using these
wires. The transistor pairs may be viewed as source-sink pair and the set of
wires connecting them as a path. The objective is to find a path between each
source-sink pair with the constraint that each transistor must be used only by one
communication pair. This is required because information passing through the
same wire may cause distortion. Extensive work on VLSI design can be found in
[2, 15, 66, 68]. One can understand now that if we have thousands pairs of tran-
sistors we need to find such a path for, we could end up with thousands of layers
of wires resulting in a huge cost. Therefore we need to design a communication
layout which minimizes the number of layers. To solve the problem of minimizing
the number of layers required to build a VLSI circuit we need to solve a special
version of the Maximum Concurrent Flow Problem.

3.4.3 Transportation and Distribution Networks

In distribution networks multiple products need to be distributed from production
points to consuming points using fleets of trucks, trains or tankers (see [67]).
Middle points such as warehouses or rail yards may be present. Certain capacities
exist related to the transportation fleets and to the storage fleets. Transportation
networks arise in several contexts in our daily lives such as road, air, and rail
networks (see [79]). They involve the transportation of commodities, including
goods, people or services (see [17]). The network topology and the capacities
of the means of transportation impose constraints on the cost and the amount
of commodities that can be moved. The objective in this problem setting is to
minimize the operational costs. The problem can be formulated by the minimum
cost multicommodity flow problem.

3.4.4 Computer and Communication Networks

Computer and communication networks are one of the most frequent applica-
tions of the multicommodity flow problems. Computers and storage devices are
linked together with transmission lines exchanging data between them. The de-
vices can be considered as nodes and the transmission lines as edges with certain
capacities. The data transmitted are represented by commodities with demands

35

being the amount of data requested by the different computer devices. The data
transmitted can be messages (see [59, 8]), packets (see [56]), videos and many
more.

3.4.5 Other Applications

The multicommodity flow problems have applications in numerous other prob-
lem domains. An example is cryptography, Lai [53] converted the problem of
simultaneously generating independent keys for independent users into a multi-
commodity flow in a multigraph. Their problem was to distribute a secret key
between each pair of users in a wireless network so that a secure communica-
tion could be established. They denoted each user by a node and each key by a
commodity. The problem now is to find a path between all the pairs so that the
requested commodity can be sent. The links between two nodes have capacities
equal to the rate of the mutual information (the amount of information exchanged
per unit of time between the two nodes). Then the problem of simultaneously
distributing keys for different users becomes a multicommodity flow problem (see
[37]).

Finally, the road congestion problem [61] is another area that can be addressed
using a solution of the multicommodity flow problem. The source-sink pair is
accordingly the origin-destination of a traveler (commodity) with the demand
being equal to 1, i.e. the unit (car) which moves in the network. The interesting
part is that each user would like to minimize her own cost (travel time, widely
known as the Wardrop’s first principle [78], or travel cost) whereas in the greater
context the objective is to minimize the total congestion in the network. To
avoid "selfish" behavior one can impose a congestion charge, i.e. a fee is paid if
a user moves in a certain area at some specific time. The fees for traveling along
a particular edge can be obtained from the dual solution (edge lengths). The
optimal solution then can be enforced if everyone chooses the cheapest way to
transport. This problem domain can be formulated by the maximum concurrent
flow problem.

36

3.5 Summary

In this chapter we have presented the multicommodity flow problems and in-
troduced the maximum concurrent flow problem, which is the main problem
addressed in this thesis. The main applications of the multicommodity flow prob-
lems have been briefly discussed. We have also provided both the edge and the
path based formulation for the problem along with their variations. These for-
mulations have given rise to solution algorithms for the MCF problem. In the
following chapter we explore the main solution methods and give an overview of
the previous work on the maximum concurrent flow problem.

37

Chapter 4

Solution Methods and Previous
Results

Contents
4.1 Exact Solution Algorithms 41

4.2 Approximation Algorithms 42

4.3 Summary . 50

The Multicommodity Flow Problem can be considered as a generalization
of the single-commodity maximum flow problem. The Maximum Flow Problem
(MF) was first formulated in the 1930s to study the Russian Railway System
(see Schrijver [69]). Ford and Fulkerson [26] first solved the problem in 1950s
using augmenting paths - a method known now as the Ford-Fulkerson algorithm.
Numerous methods have been proposed to solve the MF problem since then, the
most fundamental ones being the network simplex method [18, 34], the blocking-
flow method [23] and the push-relabel method [32, 34]. The Maximum Flow
Problem inspired Ford and Fulkerson [26] and Elias et al. [24] to independently
prove the Max-Flow Min-Cut Theorem, one of the most important theorems in
the area of Combinatorial Optimization and a basis for numerous algorithms for
various network flow problems.

However, although the MF problem has been studied extensively and various
algorithms have been proposed to solve it, its solution methods do not readily

38

Figure 4.1: A three-commodity flow counterexample for the Max-Flow Min-Cut
Theorem in an undirected network with uniform capacities and demands(all equal
to 1). The minimum cut (separating all sources from their destinations) has
capacity two, but the maximum value of flow is equal to 1.5

extend to the multicommodity flow problems. This is due to the set of bundle con-
straints, which limit the total flow of all commodities on each edge. Furthermore
the Max-Flow Min-Cut theorem cannot extend to more than two commodities
(see [38]) even for an undirected network. Fulkerson [29] gives an example of an
undirected network with three commodities where the maximum flow is strictly
less than the minimum cut (see Figure 4.1).

For directed graphs, the Max-Flow Min-Cut Theorem does not even hold for
the two-commodity case. Kennington [46] gives an example of such a case (see
Figure 4.2). In this example the minimum cut is two but the maximum flow is
1.5. Leighton and Rao [54] prove an approximate Max-Flow Min-Cut Theorem.
They showed that for a uniform capacity Multicommodity Flow problem the
minimum cut ratio is within an O(log n) factor of the maximum concurrent flow.
Their groundbreaking work inspired a line of research on the Approximate Max-
Flow Min-Cut Theorem. Klein et al. [49] extended this result to the general MCF
problem and proved an O(logD logC) approximate Max-Flow Min-Cut Theorem,
where D is the sum of the demands and C is the sum of the capacities. Their
work was improved to a O(log2 k) ratio by Tragoudas [75], Garg et al. [31] and

39

Figure 4.2: A two-commodity flow counterexample for the Max-Flow Min-Cut
Theorem in a directed network with uniform capacities and demands (all equal
to 1).

Plotkin and Tardos [64]. The running time was further improved to a factor of
O(log k) by Aumann and Rabani [3].

The literature on the Multicommodity Flow Problem has been substantial
since the publications of the work of Ford and Fulkerson [27] and Hu [38]. The
MCF-problem is very important not only for its direct applications but also for
its use in solving NP-Hard problems. Leighton and Rao [54] show how an approx-
imate solution of the MCF-problem can be used to find an approximate solution
for the sparsest cut problem. They use this result to design approximate algo-
rithms for a variety of NP-Hard problems such as graph partitioning, min-cut
linear arrangement and minimum feedback arc set. Klein et al. [49] generalized
these results and used them to develop an O(log3 n)-approximate algorithm for
the NP-hard problem of minimum deletion of clauses of a 2 CNF -formula.

For the remainder of this chapter we present the main solution methods used
to solve the MCF-problem. Firstly, in Section 4.1 we present the exact solution
algorithms for solving the MCF-problem and subsequently, in Section 4.2 we
explore the approximation algorithms for this problem.

40

4.1 Exact Solution Algorithms

The scope of this thesis is to examine approximation algorithms for the MCF-
problem. However, to cover the whole spectrum we provide some literature review
on exact solution algorithms. Since the MCF-problem can be formulated as
a linear program it can be solved using linear programming (LP) techniques.
The first linear programming method dates back to the times of World War II.
Kantorovich [41] developed linear programming problems to plan expenditures
and returns in order to reduce costs for the army. Dantzig [19] proposed the
simplex method to solve this problem, which on average is very efficient, but was
proved by Klee and Minty [48] to have an exponential running time in the worst
case.

Up to 1979 the research community could not prove that the general LP prob-
lem could be solved polynomially. Khachiyan [47] first showed that linear pro-
gramming could be solved in polynomial time by proposing the ellipsoid method.
The method terminates in O(n6B2) running time, where n is the dimension of
the problem (the number of variables) and B is the total number of bits in the
input. The algorithm is inferior to the simplex algorithm proposed by Dantzig
[19] in most cases encountered in practice but unlike the simplex algorithm, it
is always polynomial. Later Karmarkar [43] proposed the interior point method
which improved the running time to O(n3.5B2). Many improvements have been
proposed since then.

The multicommodity flow problem can be solved using general linear program-
ming techniques. Some authors have tried to exploit its structure specifically and
proposed exact algorithms which run significantly faster for the multicommodity
problem. Up to recently the fastest multicommodity flow algorithm for finding an
exact solution has been the one by Vaidya [76] which has a complexity bound of
O(k2.5m0.5n2B) time. Kamath and Palmon [40] have also proposed an algorithm
with faster running time when m < k0.9n0.9. Their algorithm, which is based on
the interior point method, terminates in O((k0.5m2.7 + km1.5n1.2 + km2.5)B).

41

4.2 Approximation Algorithms

The maximum concurrent flow problem can be solved by LP solvers, applied
to LP formulations given in Section 3.3 but the complexity increases rapidly as
the number of commodities in the network increases. Since solving the problem
using LP solvers may become inefficient for large problem instances we need to
approach the problem by approximation algorithms. Using formulation (P1),
the feasible flows fi and a feasible value λ must satisfy

λ ≥
∑k

i=1 fi(u, v)

c(u, v)
,∀ (u, v) ∈ E. (4.1)

Since we are minimizing λ we can set:

λ = max
(u,v)∈E

{∑k
i=1 fi(u, v)

c(u, v)

}
(4.2)

Recall that the λ value in (4.2) is referred to as the congestion of the concurrent
flow f = (f1, f2, ..., fk). At this point we recall the notion of an ε-approximate
algorithm given in Definition 11 (see subsection 2.4). Note that in the context
of the maximum concurrent flow problem we measure the cost by its congestion
value λ. Given a parameter ε ≥ 0 we say that a flow is an ε-approximate flow
if its congestion λ is at most (1 + ε) times the optimal congestion λ∗, that is,
λ ≤ (1 + ε)λ∗. Thus, following Definition 11, an ε-approximate algorithm for the
maximum concurrent flow problem computes ε-approximate flows.

In this section we introduce the main combinatorial algorithmic methods for
designing approximate multicommodity flow algorithms. We describe their main
features and how they can be used to design approximation algorithms. We
describe the main algorithms used to solve the multicommodity flow problem
based on these methods in the next chapter.

4.2.1 The Primal-Dual Approach

The primal-dual method is one of the many linear programming techniques that
have been devised to solve combinatorial optimization problems. The method

42

was first proposed by Dantzig et al. [20] who extended the "Hungarian Method"
proposed by Kuhn [52] for the assignment problem to a general algorithm for
linear programming problems. In this section we are going to describe the classical
primal-dual method and its use in approximation algorithms. For a more in depth
review on this method see the textbooks of Papadimitriou and Steiglitz [63] and
Williamson [80].

43

Consider the linear program

(LP)

min
n∑
j=1

cj · xj

subject to

n∑
j=1

ai,jxj ≥ bi, for i = 1, 2, . . . ,m,

xj ≥ 0, for j = 1, 2, . . . , n.

Its dual is

(DLP)

max
m∑
i=1

bi · yi

subject to

m∑
i=1

ai,jyi ≤ cj, for i = 1, 2, . . . , n,

yi ≥ 0, for i = 1, 2, . . . ,m.

For the linear programs given above we have a set of complementary slackness
conditions that must be satisfied to have an optimal solution. The conditions are
given below:

Primal complementary slackness condition:

C1: for each j, either xj = 0 or
∑m

i=1 ai,jyi = cj,

Dual complementary slackness condition:

C2: for each i, either yi = 0 or
∑n

j=1 ai,jxj = bi.

44

Theorem 1 ([63]). Vectors x and y are optimal if and only if the conditions
above are satisfied.

The primal-dual methods starts from a feasible dual solution, usually we set
y = {y1, y2, . . . , yn} = 0. Then, in each iteration it tries to find a feasible primal
solution which satisfies the complementary slackness conditions. Either it finds a
feasible primal solution x that obeys the complementary slackness conditions, so
both x and y are optimal, or it finds a modified y which improves the objective
function. We keep trying to modify y in a certain fashion until we can find a
primal feasible solution x, and hence an optimal solution for the problem.

In approximation algorithms instead of using the tight complementary slack-
ness conditions we relax them so that we can obtain an approximate optimal
solution. Finding an approximate solution is much faster than finding the exact
solution of the problem and with the right measure guarantee we can ensure that
our solution is close enough to the optimal one. Consider the following set of
relaxed complementary slackness conditions.

Primal relaxed complementary slackness condition:

CR1: for each j, either xj = 0 or cj ≥
∑m

i=1 ai,jyi ≥ cj/α,

Dual relaxed complementary slackness condition:

CR2: for each i, either yi = 0 or bi ≤
∑n

j=1 ai,jxj ≤ βbi,

where α, β > 1 (see, for example [72]). It can be proved that using these condi-
tions we can get a solution close to the optimal.

Lemma 1. If x and y are feasible solutions to the primal and dual problem
and satisfy the relaxed optimality conditions stated above then x is an (αβ − 1)-
approximate solution for the primal problem.

Proof. Consider the objective function of the linear programming formulation.

45

We have

n∑
j=1

cjxj ≤ α

n∑
j=1

m∑
i=1

(ai,jyi)xj (4.3)

= α
m∑
i=1

yi

n∑
j=1

(ai,jxj) (4.4)

≤ αβ

m∑
i=1

biyi (4.5)

Hence by relaxing the complementary slackness conditions we are able to have
a solution within a factor of αβ of the optimal one, that is x is an (αβ − 1)-
approximate solution for the primal problem.

The following pseudocode gives a description of a generic way of computing
an approximate solution using the primal-dual approach.

Algorithm: Primal-Dual Approximation
Initialization Round: Start with a dual feasible solution
y = {y1, y2, . . . , yn}(Usually y = 0) and find the primal solution
x = {x1, x2, . . . , xm}, so that the pair x,y satisfies the relaxed
Complementary Slackness Conditions. ;
while Primal solution x is infeasible do

1. Increase one or more values yi until some dual constraints go tight,
i.e.

∑m
i=1 ai,jyi = cj/α for some j, while maintaining feasibility of the

dual vector y
2. Select some subset of tight dual constraints and increase the values
of the corresponding primal variables;

end
Output: Approximate optimal solution

For the maximum concurrent flow problem the following Complementary
Slackness Conditions must be satisfied for an optimal solution. These conditions
are derived directly from the Primal-Dual formulations (P3)-(D3) (Subsection
3.3.2):

Primal complementary slackness condition:

46

MCF.C1: for each P , either f(P) = 0 or l(P) ≡
∑

e∈P l(e) = distl(si, ti).

Dual complementary slackness condition:

MCF.C2: for each edge e, either l(e) = 0 or f(e) = λc(e),

Many approximation algorithms for the MCF problem are based on relaxations
of the conditions MCF.C1 and MCF.C2, obtaining conditions similar to CR1 and
CR2, though often technically more complicated. For example, the relaxed com-
plementary slackness conditions for MCF would also relax the conditions "xi = 0"
and "yi = 0" in CR1 and CR2, allowing both the primal and dual variables to
take on some appropriately small values. An important part of developing an
approximation algorithm based on relaxed complimentary slackness conditions is
to prove that if those conditions are satisfied, then the solution has the desired
approximation precision. There are also different ways of arranging the progress
of a primal-dual algorithm. For example, some MCF algorithms that we review
later, maintain the flow and the edge lengths both feasible and satisfy one of the
complimentary slackness conditions. Such an algorithm makes progress during
the computation towards satisfying also the other relaxed complementary slack-
ness condition. We discuss this further in the following chapters.

4.2.2 Previous Work

We summarize here the main algorithmic results for the approximate MCF prob-
lem. The details of the two main approaches - rerouting and incremental - are
discussed in the next chapters.

The Maximum Concurrent Flow Problem has been introduced by Shahrokhi
and Matula [70] in early 1990s. They described an approximation algorithm for
the uniform capacity case based on an exponential length function. Their algo-
rithm first determines a feasible solution using an initial length function, it then
calculates the shortest paths for each commodity and reroutes the flow where ap-
propriate. The algorithm terminates in O(ε−5nm7) time. This algorithm started
the "rerouting" framework for the MCF problem and a number of improvements
followed. Klein et al. [50] gave a faster approximation algorithm for the unit
capacity concurrent flow problem by using a different length function. The new

47

length function made it possible to make bigger improvements in each iteration
thus reducing the total running time. The algorithm proposed in [50] runs in
Õ(km(ε−1n+ ε−3m)). Leighton et al. [55] generalize the results in Shahrokhi and
Matula [70] and [50] for the case of arbitrary capacities and propose an algorithm
which runs in Õ(ε−2k2mn) time. Radzik [65] improved this time by a factor of k
by providing a deterministic round-robin selection of the commodities instead of
a randomized one.

On a departure from this line of research Garg and Koenemann [30] describe
the first approximation algorithm based on an iterative method for the MCF
problem that terminates in Õ(ε−2m(m+k)+knm2) based on Primal-Dual meth-
ods. The algorithm proceeds in phases each one consisting of k iterations. In each
phase di units of flow of each commodity are routed from its source to its desti-
nation. Then the length of each edge is updated and the algorithm proceeds to
the next phase. A shortest path is calculated for a commodity using the current
length function and flow is sent along this path so that it is saturated. Fleis-
cher [25] improved the bound of the algorithm by noticing that it is sufficient
to compute approximate maximum flows for each commodity instead of exact
ones. This removed the bottleneck on the running time of [30] of calculating k
maximum flows and thus reduced the running time to Õ(ε−2m(m + k)). Subse-
quently Karakostas [42] managed to improve the running time of the algorithm
by grouping together all the commodities with the same source. This way the
shortest path tree for all these commodities can be computed by just one call of
the Dijkstra’s algorithm. Flow is then routed along these paths in ratio of the
demands of the commodities. Hence the number of iterations in each phase is
now bounded by the number of sources, which is at most min(n, k). The running
time of Karakostas’ algorithm [42] is Õ(ε−2m2). Recently Madry [57] managed to
improve this running time by randomizing the selection of paths in each iteration
and providing a suitable data structure to manage the paths. Madry’s algorithm
[57] terminates in Õ(ε−2(m+ k)n) time.

The Flow Deviation Method for the MCF problem introduced by Fratta et al.
[28] is another example of the incremental method. This method is applied to the
problem (P2) of maximizing the throughput γ. The method starts with a feasible
flow satisfying strict capacity constraints (f(e) < c(e)) and gradually increases

48

the throughput while maintaining these constraints. The difference between the
flow deviation method and the incremental algorithms mentioned above is the
type of edge lengths (dual variables) used. The edge lengths in the algorithms
which follow the Garg-Koenemman’s [30] incremental scheme are generally of the
form

l(e) = exp(αf(e)),

for some α which depends on ε and the size of the input network. On the other
hand, in the flow deviation method, the edge lengths can be viewed as having the
form

lf (e) =
c(e)

(c(e)− f(e))2
.

The objective of the dual (D2) is to minimize
∑

e∈E l(e)c(e). This translates
in Fratta et al. [28] to minimizing the function Ψ(f) =

∑
e∈E lf (e)c(e), which

is referred to as a "barrier" function. The edge length function lf (e) ensures
that the strict capacity constraints are maintained. The algorithm proposed by
Fratta et al. [28] converges in O(ε−3km5) shortest path computations. To reduce
the barrier function they perform a Frank-Wolfe procedure based on shortest
paths. Bienstock and Raskina [12] give an algorithm based on this method which
terminates in (ε−2km3 +km3 logm) minimum-cost flow computations. To achieve
this they solve minimum-cost flow problems for each commodity to update its
flow. They allow several Frank-Wolfe iterations within the improvement of the
barrier function, in contrast to [28] who allow only one iteration.

Recently significant improvements have been made for the MCF problem in
undirected graphs. Although this problem is out of the scope of this thesis we
summarize the main results. Kelner et al. [44] give an algorithm which computes
an ε-approximate flow in Õ(ε17/3k4m4/3 + ε4k13/2m). They adapt the algorithm
from [55] to use flows with electrical capacity constraints associated with the k
commodities instead of minimum cost flow as its oracle call. Kelner et al. [44]
use an algorithm that is a direct extension of the electrical flow based maximum
flow algorithm from [16] to minimize the maximum congestion of an edge. They
reduce the problem of computing maximum flows subject to capacity constraints
to the problem of computing electrical flows in resistor networks.

Subsequently, Kelner et al. [45] introduced a new framework for approximately

49

solving flow problems in capacitated, undirected graphs and apply it to the MCF
problem. The framework consists of two main parts: an iterative scheme that
reduces the problem to the construction of a projection matrix with certain prop-
erties and, the construction of such a matrix. Kelner et al. [45] have improved
the running time to approximately solve the MCF problem in undirected graphs
to O(ε2k2m1+o(1)).

4.3 Summary

In this part we have introduced the main background and terminology for net-
work flow problems. We have defined the Maximum Concurrent Flow problem
and provided its different formulations and applications. Different algorithms for
solving the problem were introduced based on its formulations. We have briefly
described the main solution methods used and outlined the previous work on the
MCF problem. In the next part we are going to examine sequential algorithms for
solving the MCF problem. First, we analyze and compare the main algorithms
proposed in the literature and show the differences between the two main meth-
ods. We then modify the main algorithms proposed to solve the MCF problem
and show that each one can be viewed as a variation of the other. In the last
part we are examining the main distributed algorithms for solving this problem.

50

Part II

Analysis of Sequential Algorithms

51

Chapter 5

The Main Solution Algorithms

Contents
5.1 The Rerouting Method 53

5.2 The Incremental Method 68

5.3 Summary . 78

In this chapter we consider the two main combinatorial algorithmic schemes
for the Maximum Concurrent Flow Problem. In Section 5.1 we describe the
Rerouting Method and in Section 5.2 we examine the Incremental Method. We
explain the computation and discuss the main properties, including running times.
The aim of this chapter is to elucidate the relationship between the main algo-
rithms proposed to solve the MCF problem and to explicate the effect of their
differences on the gradual improvement of the running time to solve the prob-
lem. In Chapter 6 we propose an exponential length function for the Incremental
Method and show how it fits in the original analysis in [30]. This functional
relationship between the length function and the flow on an edge converts the
Incremental Method to an instance of the Rerouting Method. In Chapter 7 we
propose a new way of calculating minimum cost flows for the Rerouting Method
based on the Successive Shortest Path algorithm. This change converts a special
case of the Rerouting Method to an instance of the Incremental Method. Es-
sentially, in this part of the thesis, we show that each solution method can be
considered as an instance of the other, which shows that the two frameworks are

52

more closely related than how they have been traditionally perceived.

5.1 The Rerouting Method

The Maximum Concurrent Flow problem defined in Chapter 3, was first intro-
duced by Shahrokhi and Matula [70]. The problem was motivated by a variation
of the routing problem in packet-switched telecommunication networks. In their
paper Shahrokhi and Matula [70] describe a fully polynomial-time approximation
scheme (FPTAS) for the Unit Capacity MCF problem (UC-MCF). The prob-
lem is a restriction of the Maximum Concurrent Flow problem with all edge
capacities equal to 1. Let |f | = maxe∈E{f(e)} denote the maximum flow over
all edges e (that is, the congestion of the flow, in the unit capacities case) and
l : E → R+ be a nonnegative length function. The length of a path is denoted
by l(P) =

∑
e∈P l(e). The following theorem gives the optimality conditions for

a multicommodity flow.

Theorem 2 ([70]). If all the edge capacities are equal to 1, then for a multicom-
modity flow f satisfying the demands di and a length function l,

|f |
∑
e∈E

l(e) = |f |
∑
e∈E

l(e) ≥
∑
e∈E

l(e)f(e) =
k∑
i=1

∑
e∈E

fi(e)l(e)

≥
k∑
i=1

distl(si, ti)di. (5.1)

Moreover, a multicommodity flow f minimizes |f | if and only if there exists a
nonzero length function l for which all the above terms are equal.

This theorem can be viewed as the duality theorem for the LP formulations
(P1) and (D1’) given in Section 3.3.1. Assuming that we consider only the
normalised lengths, that is

∑
e∈E l(e) = 1 as required in (D1’), the L.H.S. of

(5.1) is the objective function of the formulation (P1) and the R.H.S. of (5.1) is
the objective function of the formulation (D1’). Theorem 2 is important because
it can be used to derive conditions for an ε-approximate flow.

53

Corollary 1. For a multicommodity flow f satisfying the demands di and a
length function l if

|f | ≤ (1 + ε)

∑k
i=1 distl(si, ti)di∑

e∈E l(e)
, (5.2)

then f is ε-approximate.

Proof. From Theorem 2 for an optimal flow fopt the following inequality holds

|fopt| ≥
∑k

i=1 distl(si, ti)di∑
e∈E l(e)

. (5.3)

Then from (5.2)

|f | ≤ (1 + ε)

∑k
i=1 distl(si, ti)di∑

e∈E l(e)
≤ (1 + ε)|fopt|. (5.4)

5.1.1 Description of Shahrokhi and Matula

The general approach is to keep updating flows while maintaining appropriate
length function to keep making progress towards satisfying condition (5.2). The
remarkable idea introduced by Shahrokhi and Matula [70] was to use a length
function which is an exponential function of the edge flows:

l(e) = exp(cm2f(e)/ε), (5.5)

for some constant c. This function is used to decide how the flow is rerouted
from highly utilized edges to low utilized ones. The algorithm maintains the set
of active paths Pi (paths with non-zero flow) for each commodity i. The initial
flow used in this algorithm is the flow obtained by supplying the demand for each
commodity i from its source si to its destination ti through the path with the
minimum number of edges. That is, initially there is one active path for each
commodity and all demand of this commodity is sent along this path. Then the

54

algorithm proceeds in iterations. At the beginning of each iteration it compares
the maximum edge flow |f | with the ratio of

∑k
i=1 distl(si, ti)di to

∑
e∈E l(e) (see

(5.3)). If |f | satisfies (5.2) then the algorithm terminates and the resulting flow is
ε-approximate (Corollary 1). If (5.2) is not satisfied, then the algorithm calculates
the shortest path P SP

i from si to ti for each commodity i using the exponential
length function (5.5). The algorithm also chooses the longest active path P i ∈ Pi

for each commodity i. It then chooses the commodity i which maximizes the
quantity

l(P i)− l(P SP
i),

and reroutes a small fraction of the flow of commodity i from P i to P SP
i (P SP

i is
added to the set of active paths Pi, if not already there). This procedure continues
until the stopping condition for approximate optimality is met. The algorithm
runs in O(ε−5m8) time, because it can be shown that there are at most O(ε−2m3)

active paths at any iteration and thus each iteration can be implemented in
O(ε−2m4) time, with at most O(ε−3m4) iterations. Shahrokhi and Matula [70]
showed that this bound can be improved to O(ε−5nm7).

5.1.2 Klein’s Proposal

Later this algorithm has been improved in a number of ways. Klein et al. [50]
improved the running time by introducing a different length function:

l(e) = exp(c log(mε−1)f(e)/ε|f |), (5.6)

where c is some constant. Instead of using absolute edge flow values as in (5.5),
this length function uses edge flows relative to the maximum congestion. The
crucial change however is the change of the factor m2 in (5.5) to logm. This en-
ables rerouting a higher fraction of flow resulting in considerably fewer iterations.
Klein et al. [50] also proposed a new framework of approach to the problem. The
notion of an ε-good path for a commodity i is introduced. A path P ∈ Pi is
ε-good if the following condition holds

l(P)− distl{si, ti} ≤ εl(P) + ε
maxe∈E{f(e)}
min{D, kdi}

, (5.7)

55

where D is the sum of the demands di. The intuition behind this definition is
that a path for a commodity is ε-good if its length is not much greater than
the shortest path length. A path that is not ε-good is said to be ε-bad. They
also introduce relaxed optimality conditions based on the notion of ε-good paths
which enable them to check if the current flow is ε-approximate. If it is not, then
an appropriate ε-bad path is chosen for improvement/rerouting. These conditions
are given below, where f denotes a flow and l denotes a length function:

R1.1: ∀e ∈ E either l(e) ≤ (ε/m)
∑

e∈E l(e) or f(e) ≥ maxe∈E{f(e)}/(1 + ε)

R1.2:
∑k

i=1

∑
P∈Pi s.t. P ε−bad fi(P)l(P) ≤ ε

∑k
i=1

∑
P∈Pi fi(P)l(P).

The approximate optimality conditions are a relaxation of the complementary
slackness conditions MCF.C1 and MCF.C2 for the MCF problem introduced
in Section 4.2.1. The ε-good condition and R1.2 together are a relaxation of
MCF.C1. The condition MCF.C1 requires that all flow goes only on the shortest
paths (f(P) > 0 only if l(P) = distl(si, ti)). The condition R1.2 relaxes this by
requiring most of the flow to be on approximate shortest paths (ε-good paths). If
a small fraction of the flow is on other paths (the ε-bad paths) then its cost (the
LHS in R1.2) cannot be more than an ε fraction of the total. Condition R1.1 is a
direct relaxation of MCF.C2. The condition MCF.C2 requires that for each edge
either the length of this edge is zero or the edge is saturated (f(e) = λc(e)). The
condition R1.1 relaxes this by requiring that for each edge either the length of
this edge is relatively small (the first part of R1.1) or the edge is almost saturated
(the second part of R1.1). It can be shown that these two conditions imply that
f is 7ε-approximate.

The particular exponential length function proposed by Klein et al. [50] always
satisfies condition R1. The algorithm then tries to improve the flow so that
eventually condition R2 is also satisfied. The algorithm iteratively finds an active
path (it maintains active paths, as in [70]) that is ε-bad and reroutes a fraction
of flow from this path to the shortest path from si to ti. This way it gradually
reroutes flow to less congested paths until both relaxed optimality conditions are
satisfied.

The bottleneck procedure of the algorithm is the identification of an ε-bad
active path. For this procedure they propose various deterministic and random-

56

ized schemes. The basic deterministic scheme is essentially similar to the one
proposed by Shahrokhi and Matula [70]. To find an ε-bad path they find the
shortest path P SP

i and the longest active path P i from si to ti for each commod-
ity i and check whether the condition (5.7) for an ε-good path holds. Thus their
improvement does not come from the way they choose the paths to reroute flow.
They achieve better running times than [70] because the new length function
(5.6) enables them to make better improvement in each iteration, thus reducing
the number of iterations of their algorithm. The notion of an ε-good commodity
and the new approximate optimality conditions proposed are exploited in the
randomized scheme. For the randomized algorithm they note that an ε-bad path
contributes at least an ε fraction on the total length

∑k
i=1

∑
P∈Pi fi(P)l(P). To

find an ε-bad path they select an edge with probability proportional to l(e)f(e)

and choose an active path Pe through this edge with probability proportional to
its flow. It can be shown that the probability of choosing this path is proportional
to its contribution to the sum

∑k
i=1

∑
P∈Pi fi(P)l(P). So in this randomized pro-

cess the probability of selecting a bad path is ε, so we get an ε-bad path in
expected 1/ε iterations if such a path exists. To implement efficiently this ran-
domized selection a dedicated data structure is proposed. The running time for
the randomized algorithm is

O((kε−2 +mε−4)(m+ n log n) log n) = Õ((kε−2 +mε−4)(m+ n)).

The running time of the simple deterministic algorithm is

O((kε−1 +mε−3)(k∗n log n+m(log n+min{k, k∗ log dmax})) log n))

= Õ(k(kε−1 +mε−3)(m+ n)),

where k∗ is the number of different sources si and, dmax is the maximum among
all demands di.

5.1.3 Leighton’s Proposal for Arbitrary Capacities

The algorithms of Shahrokhi and Matula [70] and Klein et al. [50] are only for the
Unit-Capacity Maximum Concurrent Flow problem. Leighton et al. [55] propose

57

the first combinatorial polynomial approximation algorithm for the MCF problem
with arbitrary capacities. Their approach is similar to Shahrokhi and Matula
[70] and Klein et al. [50] with the main differences being that they manage to
reroute an entire commodity in each iteration, instead of a flow path and they
use minimum cost flow calculations instead of shortest path. In each rerouting
step they calculate a minimum cost flow for a commodity i and reroute a small
fraction of the total flow of this commodity onto the minimum cost flow paths
calculated. They generalize the length function proposed in [50] to the case of
arbitrary capacities:

l(e) = exp

{
c
ln(mε−1)

ελ0

f(e)

c(e)

}
, (5.8)

where c is a constant and λ0 is the current upper bound on the maximum con-
gestion. Observe that if all capacities are the same, then (5.8) becomes (5.6). We
are going to describe the approach based on the scheme provided by Leighton
et al. [55] in more detail.

Recall that λ(e) = f(e)/c(e), with f(e) the flow on edge e and c(e) its capacity.
Let l be a non-negative length function on the edges, f a multicommodity flow,
and λ = maxe∈Eλ(e). Let Ci be the cost of the current flow of commodity i under
the length function l and denote by C∗i (λ) the minimum cost flow of commodity
i, subject to costs l(e) and capacity constraints λ · c(e). The following theorem
and the complementary slackness conditions given by linear programming were
used by Leighton et al. [55] to construct the relaxed optimality conditions needed
for this algorithm.

Theorem 3. For a multicommodity flow f satisfying capacities λc(e) and a
length function l,

λ
∑
e∈E

l(e)c(e) ≥
k∑
i=1

∑
e∈E

fi(e)l(e) =
k∑
i=1

Ci ≥
k∑
i=1

C∗i (λ). (5.9)

A multicommodity flow f minimizes λ if and only if there exists a non-zero length
function l for which all the above terms are equal.

58

Corollary 2. For the optimal flow f ∗ and any length function l

λ∗ ≥
∑k

i=1C
∗
i (λ∗)∑

e∈E l(e)c(e)
. (5.10)

Proof. This simply follows from Theorem 3 applied to an optimal flow f ∗

λ∗
∑
e∈E

l(e)c(e) ≥
k∑
i=1

∑
e∈E

f ∗i (e)l(e) =
k∑
i=1

Ci ≥
k∑
i=1

C∗i (λ∗).

The algorithms by Leighton et al. [55] are based on the following version of
the complementary slackness conditions for the MCF problem.

Theorem 4 (Complementary Slackness conditions). A multicommodity flow f

has a minimum congestion λ if and only if there exists a non-negative length
function l such that:

MCF.C1 For each edge e ∈ E, either (a) l(e) = 0 or (b) f(e) = λ · c(e)

MCF.C2’ For each commodity i, Ci = C∗i (λ)

Given these conditions we can identify when a flow f and a length function
l are optimal. As defined in Section 4.2 a flow f is ε-approximate if it has a
congestion at most (1 + ε) times the optimal congestion λ∗. We would like to
have conditions for checking whether a current solution is ε-approximate thus
we are going to use a relaxed version of Theorem 3 and of the complementary
slackness conditions to obtain this. Let f be a multicommodity flow and l a
length function. Instead of classifying flow paths as ε-good or ε-bad as in [50],
here the flows of whole commodities are classified as ε-good or ε-bad. For ε > 0

we say that a commodity i is ε-good if

Ci − C∗i (λ) ≤ εCi + ε
λ

k

∑
e∈E

l(e)c(e). (5.11)

The intuition behind this notion is that a commodity with cost flow equal to
its minimum cost flow, with an ε error, or with a cost that corresponds to a very

59

small fraction of the total cost of all commodities is considered to be ε-good. Such
flows will sum up to an ε-approximate flow. Otherwise a commodity is said to be
ε-bad. Leighton et al. [55] define the relaxed optimality conditions as follows:

R2.1 ∀e ∈ E either
(a) c(e)l(e) ≤ (ε/m)

∑
e′∈E l(e

′)c(e′) or
(b) (1 + ε)f(e) ≥ λc(e).

R2.2
∑

i ε−badCi ≤ ε
∑k

i=1 Ci.

These condition are a relaxation of the Complementary Slackness Conditions
MCF.C1 and MCF.C2’. The first condition R2.1 is a direct generalization of R1.1
to the case of arbitrary capacities, and a direct relaxation of the complementary
slackness condition MCF.C1. For all edges either the length function l(e) is close
to zero, more precisely l(e) ≤ (ε/mc(e))

∑
e′∈E l(e

′)c(e′), or flow f(e) is within
a (1 + ε) factor of the capacity of the edge λ · c(e), i.e. f(e) close to λ · c(e).
The second condition R2.2 ensures that all ε-bad commodities in total have only
small contribution to the total cost. This condition, together with condition
(5.11), indicating which commodity flows are ε-good, form the relaxed version
of complementary slackness condition MCF.C2’. The following theorem sets the
framework under which the algorithm is constructed. The two relaxed optimality
conditions R2.1 and R2.2 will give us a 5ε-approximate flow.

Theorem 5. A multicommodity flow f together with a length function l and an
error parameter 0 < ε ≤ 1/5 which satisfy the relaxed optimality conditions R2.1
and R2.2 is 5ε-approximate.

If both the relaxed optimality conditions are satisfied the flow is 5ε-approximate.
When this occurs the algorithm terminates and we get our required flow. We first
prove for completeness, since it is not included in the previous literature, that
the given relaxed optimality conditions will generate a 5ε-approximate flow then
we are going to give some details of the algorithm and its running time.

The proof of Theorem 5 uses the following claim.

60

Claim 1. Amulticommodity flow which satisfies the relaxed optimality condition
R2.1 also satisfies

(1− ε)λ
∑
e∈E

l(e)c(e) ≤ (1 + ε)
∑
e∈E

f(e)l(e) (5.12)

Proof. To prove this we need to consider the two cases

• (1 + ε)f(e) ≥ λc(e)

• (1 + ε)f(e) < λc(e),

Let E1 denote the set of edges which satisfy the first case and E2 denote the set
of edges which satisfy the second case. For the first case the proof is trivial since
it is obvious that if (1 + ε)f(e) ≥ λc(e) then

λ
∑
e∈E1

l(e)c(e) ≤ (1 + ε)
∑
e∈E

f(e)l(e) (5.13)

For the second case we have

c(e)l(e) ≤ (ε/m)
∑

e′∈E l(e
′)c(e′)

Hence the sum over all the edges e ∈ E2 is at most

∑
e∈E2

c(e)l(e) ≤
∑

e∈E(ε/m)
∑

e′∈E l(e
′)c(e′)

and thus
λ
∑
e∈E2

c(e)l(e) ≤ λε
∑
e′∈E

l(e′)c(e′) (5.14)

Adding the inequalities for the two cases (5.13) and (5.14) together gives us the
required result.

Now we are ready to prove that the two relaxed optimality conditions imply
a 5ε-approximate flow.

Proof of Theorem 5. We want to show that

λ
∑

e∈E l(e)c(e) ≤ (1 + 5ε)
∑k

i=1 C
∗
i (λ)

61

and apply Corollary 2 to conclude that λ = (1 + 5ε)λ∗. From now on C∗i stands
for C∗i (λ) Consider the term

k∑
i=1

∑
e∈E

fi(e)l(e) (5.15)

We split the sum in (5.15) into two sums

A =
∑

i ε−good

∑
e∈E

fi(e)l(e) (5.16)

B =
∑
i ε−bad

∑
e∈E

fi(e)l(e). (5.17)

Then from (5.11) we get

A =
∑

i ε−good

Ci ≤
∑

i ε−good

C∗i + ε
∑

i ε−good

Ci + ε
∑

i ε−good

λ

k

∑
e∈E

l(e)c(e)

and hence

(1− ε)
∑

i ε−good

Ci ≤
∑

i ε−good

C∗i + ε
∑

i ε−good

λ

k

∑
e∈E

l(e)c(e)

≤
k∑
i=1

C∗i + ε
k∑
i=1

λ

k

∑
e∈E

l(e)c(e)

=
k∑
i=1

C∗i + ελ
∑
e∈E

l(e)c(e).

For the second sum, we have

B =
∑
i ε−bad

Ci ≤ ε
k∑
i=1

Ci ≤ ελ
∑
e∈E

l(e)c(e)

Hence

A + B ≤
k∑
i=1

C∗i + 2ελ
∑
e∈E

l(e)c(e)

62

On the other hand, from (5.12)

A + B ≥ (1− ε)
(1 + ε)

λ
∑
e∈E

l(e)c(e)

Thus,
(1− ε)
(1 + ε)

λ
∑
e∈E

l(e)c(e) ≤
k∑
i=1

C∗i + 2ελ
∑
e∈E

l(e)c(e)

which implies that

λ
∑
e∈E

l(e)c(e) ≤ (1 + ε)

(1− 3ε− 2ε2)

k∑
i=1

C∗i ≤
(1 + ε)

(1− 3ε− 2ε2)

k∑
i=1

C∗i (λ)

From Corollary 2 we have

λ∗ ≥
∑k

i=1C
∗
i (λ∗)∑

e∈E l(e)c(e)
.

Thus,

λ ≤ (1 + ε)

(1− 3ε− 2ε2)
λ∗ ≤ (1 + 5ε)λ∗.

The last inequality follows from the assumption that ε ≤ 1/5.

Formally the Leighton et al. [55] algorithm proceeds as follows. We start
from a flow that has congestion λ0 ≤ kλ∗. To obtain such a flow we find the
maximum flow separately for each commodity i and then combine their flows to
obtain a concurrent flow. It can be shown that for the used edge lengths (5.8) the
relaxed optimality condition R1.1 is always satisfied. By rerouting flow towards
cheaper paths, according to the edge lengths, we try to satisfy also condition
R2.2. In each iteration we choose an ε-bad commodity i and form an auxiliary
min-cost flow problem. Given an optimal solution f ∗i to this auxiliary problem
we reroute σ = ε/8αλ fraction of the flow fi towards the paths of f ∗i by setting
fi = (1−σ)fi+σf ∗i . We repeat until either condition R2.2 is satisfied or the flow
f has a maximum congestion λ ≤ λ0/2. If R2.2 is satisfied then we terminate. If
λ ≤ λ0/2, then we reset λ0 = λ0/2 and continue.

Leighton et al. [55] give two algorithms, one deterministic and one randomized.

63

The deterministic algorithm runs in O(k2(log k log n + ε−2 log n
ε
)) minimum cost

flow computations. To find an ε-bad commodity deterministically, all they need to
do is to compute the costs

∑
e∈E fi(e)l(e) for each commodity i and compare them

to the minimum cost flows for these commodities. This way they need to check at
most k commodities and thus an iteration can be implemented by computing at
most k minimum cost flows. For the randomized algorithm they use an approach
similar to Klein et al. [50]. To find an ε-bad commodity, they compute the
cost Ci for each commodity i and then choose a commodity randomly with the
probability proportional to its cost. They expect to find an ε-bad commodity
within ε−1 trials, thus the expected number of minimum cost flow calculations
is ε−1. The expected time for the termination of the randomized algorithm is
O(k(log k log n+ ε−3 log n

ε
)) minimum cost flow computations.

5.1.4 Goldberg’s Proposal

Goldberg [33] improved the running time of Leighton et al. [55] by a factor of
ε−1, following the same framework as in [55] with the only difference being the
way a commodity is chosen to reroute flow. Goldberg [33] removes the notion
of an ε-bad commodity and introduces a new relaxed optimality condition in the
place of R2.2 which together with R2.1 imply an ε-approximate solution. The
new condition is:

R3.2 (1− 2ε)
∑

iCi ≤
∑k

i=1C
∗
i .

This way instead of trying to find an ε-bad commodity by randomly choosing
commodities he introduces a more natural randomization strategy. A commodity
is chosen uniformly at random and it updates its flow only if this gives progress
towards satisfying condition R3.2. It is proved that we can expect significant
progress even with this simpler method and that the running time decreases by
an ε−1 factor to O(k(log k log n+ ε−2 log n

ε
)).

5.1.5 Radzik’s Proposal

Radzik [65] improved the running time of the deterministic algorithm proposed
by Leighton et al. [55] by a factor of k so that it matched the running time of the

64

best known randomized algorithm for the MCF problem. In his paper Radzik
[65] finds a way to essentially replace the random selection of the commodities
by a deterministic round-robin. In each iteration all commodities are examined
one by one. The cost of their flow is compared to the minimum-cost flow and
if a commodity is "bad" it reroutes some flow towards the minimum-cost flow
computed. More specifically a commodity reroutes a fraction of its flow if the
difference between its current cost Ci and its minimum cost C∗ is greater than
an ε factor of its current cost, i.e. it reroutes if Ci − C∗i > εCi. A commodity
is therefore considered to be ε-good if the cost of its current flow is close to its
minimum cost flow. Essentially Radzik [65] removes the additional condition used
in Leighton et al. [55], where a commodity is also ε-good if its contribution to
the total cost is small. The algorithm is proved to run in O(k lg n(lg k + ε−2))

minimum cost flow computations.
The table below summarizes the running times of the algorithms proposed in

the literature for solving the MCF problem based on the rerouting framework.

Table 5.1: Comparison of Running times of Rerouting Algorithms

Author Problem
Deterministic
Running time

Randomized
Running Time

Shahrokhi and
Matula [70]

UC-MCF - O(ε−5nm7)

Klein et al. [50] UC-MCF Õ((ε−3km2) Õ(ε−4m2)

Leighton et al. [55] MCF Õ(ε−2k2nm) Õ(ε−3knm)

Goldberg [33] MCF Õ(ε−1k2nm) Õ(ε−2knm)

Radzik [65] MCF Õ(ε−2knm) -

We assume that m is greater than n and k. Õ hides polylogarithmic factors.

5.1.6 A Rerouting Example

To illustrate the rerouting method consider the network in Figure 5.1 with two
commodities. The capacities of the edges and the source-sink pair si− ti for each

65

Figure 5.1: Network with Two Commodities

Figure 5.2: Maximum Flow for each Commodity Routed Independently

66

Figure 5.3: One Iteration of the Rerouting Algorithm

commodity i can be observed in this figure. Each commodity i has a demand
di = 2. The rerouting method starts with each commodity computing and routing
independently a maximum flow. In the network example in Figure 5.1 it is easy
to verify that the value of the maximum flow for each commodity is two. The
exact flow in the network for each commodity can be observed in Figure 5.2.
This flow has a maximum congestion of λ = 2. In this example it is easy to
verify that the optimal congestion is λ∗ = 4/3. This can be achieved when each
commodity sends 4/3 amount of flow on their independent path - the paths that
the commodities have restricted access (s1 − 2 − 4 − t1 and s2 − 6 − 7 − t2 for
commodities 1 and 2 respectively) and 2/3 of flow on the respective paths with
the shared edge (s1−3−5− t1 for commodity 1 and s2−3−5− t2 for commodity
2). For this example assume that we set the approximation parameter to be
ε = 1/3.

After the initial routing we check whether the relaxed optimality conditions
are met (see subsection 5.1.3). We can observe that the current solution is not ε-
approximate. In one iteration of the rerouting algorithm then an ε-bad commodity

67

is chosen and a small fraction σ is rerouted towards the minimum cost flow
paths. In our example commodity 1 reroutes a σ fraction from the shared edge
path (s1 − 3 − 5 − t1) to the independent path (see Figure 5.3). The procedure
terminates when the relaxed optimality conditions are met.

5.2 The Incremental Method

5.2.1 Young’s Proposal

Departing from the line of research which focused on rerouting methods for the
Maximum Multicommodity Flow problem, Young [82] proposed a new technique
to solve the MMF problem which builds the flow from scratch. Young [82] pro-
poses an algorithm in the general context of packing and covering problems which
applies directly to the multicommodity flow problem. A solution for the Maxi-
mum Multicommodity Flow problem can be viewed as a collection of flow paths
P "packed" into the network. Each path P is from si to ti for some commodity
i and carries some flow f(P). Moreover, for each edge e ∈ E, the total flow
must be within the capacity of this edge that is,

∑
P∈P f(P) ≤ c(e). His tech-

nique, called oblivious rounding, deviates significantly from randomized rounding
which involves solving first the relaxed linear program and then apply randomized
rounding to find approximate solutions. In terms of the maximum multicommod-
ity flow problem, the algorithm chooses a path that has short length (the length
of a path is measured using a length function associated with the edge flows)
and routes a unit of flow along this path, updating the edge lengths afterwards.
This process continues for a number of iterations and the resulted accumulated
flows satisfy cdi demands for some constant c > 1. The algorithm builds the flow
from scratch and only scales it down in the end so that it satisfies the problem
constraints.

5.2.2 Garg and Koenemann’s proposal

Young’s method was later further developed by Garg and Koenemann [30] who
provide a simpler and faster algorithmic framework for the MMF-problem based

68

on incremental routing. Their algorithm is much faster because, unlike Young’s
method which pushes one unit of flow to shortest paths in each iteration, their
method allows pushing as much flow as the minimum capacity of the shortest
path, thus saturating it. This way their improvement in each iteration is much
larger than Young [82] and thus fewer iterations are needed for the algorithm to
terminate. Garg and Koenemann [30] also adapt this framework to the Maximum
Concurrent Flow problem. We are going to describe their algorithm below since
it provides the core model for the incremental framework for the MCF-problem.
We are going to discuss future improvements below.

Garg and Koenemann [30] propose an algorithm which is based on the dual of
the path-based formulation (D2) given in Section 3.3.2. Informally, the algorithm
proceeds in phases, each one consisting of k iterations, one for each commodity.
In each phase each commodity i transports di units of flow from its source to its
destination. A length function, which is based on the current flow, is maintained
for each edge. Flow is sent along shortest paths with respect to this length func-
tion. Each iteration i consists of steps, and in each step the current commodity
i tries to push as much flow as possible from its source si to its destination ti by
saturating the shortest path from si to ti calculated based on the current length
function. Upon termination of the algorithm the final flow is scaled down by the
number of phases so that it becomes feasible.

Formally the quantity we want to minimize is (see the dual problem (D2) in
Section 3.3.2)

D(l) =
∑
e∈E

c(e)l(e).

The flow is set to f(P) ≡ 0 and the length function for each edge e to l(e) =

ζ/c(e) for an appropriate parameter ζ derived from the analysis of the algorithm.
Initially the dual variables zi for each commodity are set to be the shortest path
distance from si to ti under the current length function, i.e. zi = minP∈Pil(P).
The algorithm proceeds in phases, with each phase partitioned into k iterations.
In iteration i the objective is to send di units of commodity i from source si to
the destination ti. This is done in steps. In phase p, iteration i, at the beginning
of step s (that is, at the end of step s− 1) we have the following values:

69

ds−1
i is the demand remaining to be routed (d0

i = di)

∆f sp,i(e) is the flow sent on edge e at step s of iteration i, phase p (∆f 0
1,i(e) =

0)

lsp,i(e) is the length of edge e at step s of iteration i, phase p (l01,0(e) = δ)

In the current step the algorithm computes the shortest path P SP
i from si to ti

based on the current length function. Then the capacity c = min{c(e) : e ∈ P SP
i }

of the path is calculated and the minimum of the remaining demand and this
capacity is sent along the path, that is, we send

us = min {c, dsi} .

At the end of the step the length and the remaining demand are updated as
follows

lsp,i(e) = ls−1
p,i (e)(1 + ε∆f sp,i(e)/c(e)),

dsi = ds−1
i − us−1.

The dual variable zj is set to the shortest path under the updated length
function. The algorithm proceeds until the objective value is at least one, that
is D(l) ≥ 1, in which case it is proven that the resulting (scaled) flow is ε-
approximate.

Garg and Koenemann [30] introduce a(l) =
∑

i didistl(si, ti) where distl(si, ti)
denotes the shortest path distance from si to ti under the current length function.
Then the problem formulation (D2) in Section 3.3.2 can be written as

minimize β := D(l)/a(l)

subject to ∑
e∈P

l(e) ≥ distl(si, ti), ∀i, ∀P ∈ Pi, i = 1, 2, . . . , k,

l(e) ≥ 0,∀e ∈ E.

The problem can now be viewed as a problem of finding assignments for the
lengths l(e) such that β is minimized. Garg and Koenemann [30] provide an

70

analysis for the case when β ≥ 1 and show that the algorithm terminates in
β
ε

log1+ε
m

1−ε phases. To bound the number of phases they propose a two stage
method to estimate β. First they find suitable lower and upper bounds for β
and then they show how to reduce the number of phases if the value of β is
large. Their analysis depends crucially on β to be greater than one. Garg and
Koenemann [30] show how to handle the case when the optimal value β < 1 with
an appropriate scaling technique which can be explained in the following way.
Let fmaxi be the maximum flow of commodity i if routed independently and let

|f | = min
fmaxi

di
.

Since at best all commodities can be routed simultaneously using single commod-
ity maximum flows, |f | is an upper bound on the value of the optimal solution.
We remind the reader that we use the version of MCF problem formulation which
maximizes the proportion of the demands. Note also that by sending 1/k fraction
of fmaxi for each commodity i we get a feasible solution. Thus |f |/k is a lower
bound on the optimal solution, that is,

|f |
k
≤ β ≤ 1.

Scaling the demands by |f |
k

ensures that β ≥ 1. But now β can be as large as k.
To deal with this Garg and Koenemann [30] have to take extra steps throughout
the algorithm. First they start the algorithm and proceed for T = 21

ε
log1+ε

m
1−ε

phases. If the algorithm does not terminate then β ≥ 2. Thus, double the
demands by 2, causing β to drop to half, and proceed again for T more phases.
This way we ensure that the algorithm will terminate in T log k such phases.
The overall running time of the algorithm is Õ(ε−2m(m+ k) + TMaxFlow), where
TMaxFlow is the time to compute a maximum flow for a single commodity and the
current best running time is Õ(nm) due to [62].

5.2.3 Fleischer’s Proposal

Fleischer [25] improve the running time of the algorithm proposed by Garg and

71

Koenemann [30] using a different technique to find an upper bound on β. Instead
of calculating k maximum flows at the beginning notice that it is sufficient to
calculate an O(m) approximation to the value of fmaxi since it is only used to
calculate an initial estimate of β. Thus, instead of finding the exact value of fmaxi

we can look for a value f̂maxi > 1
m
fmaxi . Of course now β is bounded by,

|f |
km
≤ β ≤ 1.

Therefore, if we scale the flows by |f |
k

the value of β can be as large as km.
However, using a technique similar to the one in [30], the algorithm will terminate
in T log(km) phases. But now, the time to compute an approximate maximum
flow for each commodity is significantly less than the time needed to compute
a maximum flow for this commodity. Since any flow can be decomposed into
at most m paths this value can be computed simply by sending flow across a
maximum capacity path. Such a path can be found in O(m logm) time, for
example using binary search over the range of capacities. Thus, the time needed
to find a good upper bound approximation for β is now O(Tm logm log(km)).
The running time of [30] is no longer dominated by the time needed to compute
k maximum flows as in [30] and thus it is reduced to Õ(ε−2(m2 + km)).

Subsequently Karakostas [42] managed to improve the running time for the
Maximum Concurrent Flow problem to Õ(ε−2m2). To do this, instead of consid-
ering commodities one by one he considers their sources. Note that the number
of sources could be less than the number of commodities since some of them could
use the same source. Hence the number of iterations of the algorithm now is k′,
where k′ denotes the number of different sources. This is a crucial improvement
since now all the shortest paths of commodities sharing the same source can be
calculated by one call of Dijkstra’s algorithm. To handle the contention between
the commodities sharing the same source, in each step instead of saturating the
shortest path for each commodity (as previous algorithms) the flows of the com-
modities are scaled so that the sum of the flows do not exceed the capacity of
any edge of the shortest paths calculated for these commodities. We formalize
this below.

Consider the set of commodities Q sharing the same source sq. In phase p,

72

iteration q at the beginning of step s we have:

dsi is the demand remaining to be routed (d0
i = di), i ∈ Q

∆f sp,q,i(e) is the flow sent on edge e at step s of phase p for commodity i ∈ Q

(∆f 0
1,q,i(e) = 0)

lsp,q(e) is the length of edge e (l01,0(e) = δ).

The algorithm calculates the shortest path P SP
i for each commodity i ∈ Q and

sets the amount of flow to be sent to f sp,q,i = dsi . Then it finds how much flow
can actually be sent in this step by calculating the level of violation σ of the
capacities in paths P SP

i , i ∈ Q

σ = max

{
1, max

e∈Pi:i∈Q

∑
i:e∈PSPi

∆f sp,q,i

c(e)

}
,

and scales the flows to be sent to f sp,q,i/σ. This fraction of the remaining demand
of each commodity is sent at this step. The remaining demands, edge flows and
edge lengths are updated at the end of the step. The iteration terminates when
the remaining demand of all commodities sharing the same source is zero.

The above scheme does not keep track of the edge flows of individual com-
modities. It maintains only the total edge flows and it is a fast way to compute
an ε-approximate value for the congestion. In many applications we are inter-
ested in the exact flow of each commodity on each edge. This case is referred to
by Karakostas [42] as the implicit representation of flows and he shows how it
can be calculated by a more careful distribution of flows along shortest paths in
each step. Instead of considering all the commodities that share the same source
together in each step and routing the scaled flow of each one appropriately he
considers the commodities one by one within the step. Thus the algorithm now
is similar to the one described in [30] with the difference being that commodities
that share the same source are considered together when calling Dijkstra’s algo-
rithm to compute a shortest path tree. The total running time of Karakostas’
[42] implicit algorithm is Õ(ε−2(m2 + kn)).

73

5.2.4 Madry’s Proposal

Recently, Madry [57] managed to provide an even faster approximation scheme
for the Maximum Concurrent Flow problem. To do this he introduces ideas from
dynamic graph algorithms. He observed that the shortest path subproblems that
previous algorithms repeatedly solved are closely related, that is, the underlying
graph is the same with only some of the edge lengths changing. Hence it is
suboptimal to treat these subproblems as independent in each step and calculate
a shortest path from scratch. By maintaining a suitable data structure this
problem could be circumvented. Indeed, using ideas from the decremental all-
pair shortest path problem (DAPSP) he manages to reduce the running time of
previous algorithms. The DAPSP problem is the problem of maintaining shortest
paths among all pairs on nodes in a graph that deletion of edges can occur. The
data structure proposed maintains the length of the shortest path under the
current length function and the set of paths with length within an (1 + ε) factor
of the shortest path. It also supports fast operations of retrieving the paths and
their lengths.

The problem in this setting was that the data structures used for the decre-
mental all-pair shortest path problem so far could not provide the appropriate
bounds for the Multicommodity Flow Problems. Madry [57] shows how to modify
the data structure so that it fits to the MCF problem. He introduces a subset P̂
of paths in P. Remember that P is the set of all paths in graph G. The paths in
the subset P̂ are chosen in the following way. For j = 1, 2, . . . , log n random sets
Sj are obtained by sampling each node in N with probability pj = min{10 lnn

2j
, 1}.

Then P (Sj, 2
j) is the set of all paths in P which pass through at least one node in

Sj and have exactly 2j edges. The subset P̂ is the union of all the sets P (Sj, 2
j).

This random set of paths P̂, which can be seen as a "sparsification" of the set
of all paths in G, is proved in [57] that with high probability it contains all the
set of paths of a given concurrent flow. As a consequence of this fact Madry
[57] proves that such a structure contains approximate shortest paths with a high
probability and thus can be used in the data structure maintained. Essentially
Madry [57] transforms the framework provided by Garg and Koenemann [30] and
Fleischer [25] for solving the MCF problem to a Monte-Carlo algorithm. The

74

data structure maintained is used to find approximate shortest paths replacing
Dijkstra’s algorithm and it is updated each time flow is augmented. Madry [57]
shows that maintaining this data structure does not cost too much time. Under
this setting the algorithm terminates in expected Õ(ε−2(m + k)n logM) time,
where M denotes the upper bound on the size of binary representation of any
number used in the input instance.

Table 5.2 summarizes the running times of the algorithms proposed in the
literature for solving the MCF problem.

Table 5.2: Comparison of Running times of Incremental Algorithms for the MCF
problem

Author Running time

Garg and Koenemann [30] Õ(ε−2m2 + knm2)

Fleischer [25] Õ(ε−2(m2 + km))

Karakostas [42] Õ(ε−2m2), Õ(ε−2(m2 + kn))

Madry [57] Õ(ε−2(m + k)n)

5.2.5 An Incremental Example

To illustrate the incremental method consider the network in Figure 5.4 with two
commodities. The capacities of the edges and the source-sink pair si− ti for each
commodity i can be observed in this figure. Each commodity i has a demand
di = 4. One phase of the incremental method is split into k = 2 iterations. In
each iteration each of the k commodities incrementally sends its demand through
the network. The flow is sent in steps. In each step a shortest path is calculated
under the current length function. Then the minimum of the capacity of the
path and the remaining demand to be sent for the commodity is routed through
the path. In this example assume that the approximation parameter ε is set to
ε = 1/3.

In the network example in Figure 5.5 we can observe the flow after one phase.
The resulting flow was routed in the following way. Commodity 1 starts the
computation. It computes a shortest path and sends the maximum among its

75

Figure 5.4: Two Commodities Network

Figure 5.5: First Phase of Incremental Algorithm

76

Figure 5.6: Second Phase of Incremental Algorithm

demand and the capacity of the computed shortest path. In the first iteration
both available paths for commodity 1 have the same length. Assume that the
commodity chooses path s1 − 2 − 4 − t1. Then the whole commodity can be
routed in one step. The algorithm then proceeds to the next commodity. For
commodity 2 again two paths are both shortest paths under the current length
function. Then, assuming that the commodity picks the path s2 − 6 − 7 − t2 to
send its flow, the whole demand can be sent in one step. The first phase then
terminates.

Before the next phase starts the stopping criteria are checked. In this example
the computed flow is still not ε-approximate since the optimal congestion is 2/3

(Flow of each commodity must be split in the ratio 2/3 : 1/3 among the available
paths). Commodity 1 then will again compute the shortest path. In the second
phase the shortest path is obviously s1 − 3− 5− t1 since it has no flow yet. The
whole commodity can be routed in one step. Commodity 2 then can pick any
of the two available paths since both have the same length (both paths had one
length update sending four units of flow). Assuming that commodity 2 chooses

77

Figure 5.7: Termination of Incremental Algorithm

path s2 − 3 − 5 − t2 the resulting flow is given in Figure 5.6. For the given
example the algorithm will terminate in one more phase. Both commodities in
the next phase will choose the independent path and route their whole demand
(the independent path is the shortest path in this phase). Then the resulting flow
can be observed in Figure 5.7. This flow has to be scaled to meet the demands
(this is the last iteration of the algorithm when the computed flows meet the
stopping criteria). Observe that if we scale the current flow by three the resulting
flow is indeed ε-approximate.

5.3 Summary

In this chapter we have presented the two main methods of solving the approx-
imate maximum concurrent flow problem, the rerouting method and the incre-
mental method. We have demonstrated how the approximation algorithms under
each of the two methods are linked together. The two methods outlined in this
chapter have traditionally been perceived as distinct. In the next two chapters

78

we show that the two methods can be modified so that each one can be viewed
as an instance of the other.

Although it is tempting to use the ideas based on these approximation al-
gorithms to solve the maximum concurrent flow problem exactly unfortunately
that does not lead to polynomial algorithms for the exact case. To get an exact
solution of the MCF problem based on one of these algorithms we have to keep
scaling down the parameter ε until we are very close to the optimal solution.
Thus, parameter ε has to be exponentially small to get an exact optimal solu-
tion. However, since the running time of the algorithms described in this section
depends on ε−2, the result would be an exponential running time for finding an
exact solution.

79

Chapter 6

The Incremental Method with an
Exponential Length Function

Contents
6.1 Exponential Length Function 81

6.2 Correctness of the Algorithm 83

6.3 Running Time . 87

6.4 Summary . 89

For the incremental method, both the flow and the length function are updated
incrementally, according to related but somewhat separate processes. The new
length of an edge is equal to the previous one plus a small fraction which depends
on the amount of flow routed through this edge at the current iteration. This
means that two edges with the same capacity and current flow might have different
lengths because the current value of the length of an edge depends on the history
of flow updates on this edge. On the other hand, in the rerouting method the
length l(e) of an edge e is always a direct function of the current flow: two
edges with the same flow have always the same length. In terms of the flow the
incremental method builds the flow from scratch. In each iteration it sends a flow
of value equal to the demand of each commodity. Upon termination it scales the
flow down (if needed) so that it does not exceed the capacities of the edges. The
rerouting method on the other hand starts with a flow (usually a maximum flow

80

routed independently for each commodity) and then tries to redistribute the flow.
In this chapter we show that we can employ in the incremental method an

exponential length function similar to the rerouting algorithm, which is a direct
function of the current flow. This modification essentially converts the incremen-
tal method into an instance of the rerouting method.

6.1 Exponential Length Function

As described in Section 5.2, the update of the length function in the original
incremental method [30] at the end of step s, iteration i of phase p is given by
the formula

lsp,i(e) = ls−1
p,i (e)(1 + ε∆f sp,i(e)/c(e)),

where ∆f sp,i(e) is the flow sent on edge e in this step, c(e) is the capacity of edge
e and ε is the approximation parameter of the method.

We change this length function to the following function:

lsp,i(e) =
δ

c(e)
exp(εf sp,i(e)/c(e)), (6.1)

where δ is a constant that will be given later and f sp,i(e) is the total flow on edge e
at the end of this step, and c(e) and ε are as above. The new edge length function
we propose has a functional relation with the total flow f(e) on that edge

l(e) =
δ

c(e)
exp(εf(e)/c(e)). (6.2)

This length function is similar to the one used in the rerouting method up to
some constants (see Section 5.1). The length of an edge directly depends on the
flow on this edge and is monotonically increasing with the flow. The maximum
value is achieved when f(e) = c(e), i.e. when the edge is saturated. This means
that the cost of an edge is high when it is close to saturation. The incremental
algorithm with the exponential length function is given below as Algorithm 1.
Recall that D(l) =

∑
e∈E c(e)l(e) and note that the only modification we have

made is replacing the length function. Other than that the algorithm is exactly

81

the same as proposed by Garg and Koenemann [30]. Our analysis follows the
structure of their original analysis but changes had to be worked out to adopt
the derivations to the new length function.

The algorithm proceeds in phases, each one consisting of k iterations, one for
each commodity. In each phase each commodity i transports di units of flow from
its source to its destination. A length function, which is based on the current flow
(6.2), is maintained for each edge. Flow is sent along shortest paths with respect
to this length function. Each iteration i consists of steps, and in each step the
current commodity i tries to push as much flow as possible from its source si to
its destination ti by saturating the shortest path from si to ti calculated based
on the current length function. Upon termination of the algorithm the final flow
is scaled down by the number of phases so that it becomes feasible.

Algorithm 1: Incremental algorithm using an exponential length function
Input: Network G = (N,E), capacities c(e), commodities i with source si,

destination ti, demand di, i = 1, 2, . . . , k
Initialization: Set f(e) = 0 for each edge e;

Set l(e) = δ/c(e) for each edge e;
while D(l) < 1 do

for commodities i = 1 to k do
Set d′i = di;
while D(l) < 1 and d′i > 0 do

1. Compute the shortest path P SP
i from si to ti under the

current length function;
2. Define u = min{c(e) : e ∈ P SP

i };
3. Route ∆ = min{u, d′i} units of flow of commodity i along
path P SP

i :
fi(e) = fi(e) + ∆ for each e ∈ P SP

i ;
4. Update l(e) = (δ/c(e)) exp(εf(e)/c(e)) and d′i = d

′
i −∆;

end
end

end
Termination: Scale down the flow of each commodity i so that its value
is exactly di

In the next Section we prove the correctness of our algorithm. In Section 6.3
we prove its running time.

82

6.2 Correctness of the Algorithm

In what follows we show that Algorithm 1 returns a 5ε-approximate flow. One
phase in Algorithm 1 is one iteration of the outer "while" loop. One iteration in
one phase is an iteration of the "for" loop: one iteration for each commodity. One
step is one iteration of the innermost loop. Let lsp,i denote the length function l
at the end of step s in iteration i of phase p, and let lp,i be the length function
at the end of iteration i in phase p. Similarly let f sp,i(e) denote the total flow on
edge e at the end of step s in phase p, iteration i. Thus D(lsp,i) is the value of
D(l) at the end of step s, iteration i, phase p, and we set

α(lp,i) :=
k∑
i=1

didist(si, ti; lp,i),

where dist(u, v; l) ≡ distl(u, v), denotes the shortest path from a node u to a
node v under the length function l. Let ∆f sp,i(e) denote the additional flow sent
on edge e at step s in iteration i of phase p. We prove the correctness of our
algorithm below.

Theorem 6. Algorithm 1 returns a 5ε-approximate flow.

Proof. As in Section 5.2, let

β := minlD(l)/α(l) (6.3)

be the optimal dual objective value, where the minimization is taken over the
length function l such that l(e) > 0,

∑
e∈E l(e) > 0.

83

At the end of step s in iteration i of phase p using (6.1) we have

D(lsp,i) :=
∑
e∈E

c(e)lsp,i(e) =
∑
e∈E

c(e)
δ

c(e)
eεf

s
p,i(e)/c(e)

=
∑
e∈E

c(e)
δ

c(e)
eε(f

s−1
p,i (e)+∆fsp,i(e)/c(e))

=
∑
e∈E

c(e)
δ

c(e)
eεf

s−1
p,i (e)/c(e)eε∆f

s
p,i(e)/c(e)

≤
∑
e∈E

c(e)ls−1
p,i (e)

(
1 + ε

∆f sp,i(e)

c(e)
+ ε2

(
∆f sp,i(e)

c(e)

)2
)

=
∑
e∈E

ls−1
p,i (e)c(e) + ε

∑
e∈E

ls−1
p,i (e)∆f sp,i(e) + ε2

∑
e∈E

ls−1
p,i (e)∆f sp,i(e)

(
∆f sp,i(e)

c(e)

)
≤
∑
e∈E

ls−1
p,i (e)c(e) + ε(1 + ε)

∑
e∈E

ls−1
p,i (e)∆f sp,i(e)

= D(ls−1
p,i) + ε(1 + ε)∆s

p,idist(si, ti; l
s−1
p,i).

The inequality in the fourth line comes from the fact that ex ≤ 1 + x + x2 for
0 ≤ x ≤ 1/5 and the conditions that ∆f sp,i(e) ≤ c(e) and assuming ε < 1/5.
The inequality in the sixth line follows again from the fact that the flow sent
cannot exceed the edge capacities. The last equality follows from the fact that
∆f sp,i(e) = ∆s

p,i(e) on the edges of the shortest path (and zero on the rest of the
edges) at each step. The variable ∆s

p,i is the minimum between the capacity of the
shortest path calculated and the remaining demand at this step (see Algorithm
1).

Summing up over all steps of iteration i in phase p we get (observe that
lsp,i(e) ≤ lp,i(e), because the edge lengths can only increase, and

∑
s ∆s

p,i = di)

D(lp,i) ≤ D(lp,i−1) + ε(1 + ε)didist(si, ti; lp,i). (6.4)

For simplicity of further derivations, let D(p) = D(lp,k) = D(lp+1,0) and α(p) =

α(lp,k) =
∑k

i=1 didist(si, ti; lp+1,0), that is, D(p) and α(p) are the values D(l) and
α(l) at the end of phase p. Inequality (6.4) summed up over all iterations in phase

84

p gives (observe that lp,i(e) ≤ lp+1,0(e))

D(p) ≤ D(p− 1) + ε(1 + ε)
k∑
i=1

didistl(si, ti; lp,i)

≤ D(p− 1) + ε(1 + ε)α(p).

Now, since D(p)/α(p) ≥ β (so α(p) ≤ D(p)/β), we have

D(p) ≤ D(p− 1)

1− ε(1 + ε)/β
. (6.5)

We analyze now the change of the parameter D(l) when the computation pro-
gresses over the phases. Since D(0) = mδ, using (6.5) we have

D(p) ≤ mδ

(1− ε(1 + ε)/β)p

=
mδ

1− ε(1 + ε)/β

(
1 +

ε(1 + ε)

β − ε(1 + ε)

)p−1

≤ mδ

1− ε(1 + ε)/β
exp

{
ε(1 + ε)(p− 1)

β(1− ε(1 + ε)/β)

}
≤ mδ

1− ε(1 + ε)
exp

{
ε(1 + ε)(p− 1)

β(1− ε(1 + ε))

}
, (6.6)

where in the second inequality we have used the fact that (1 + x) ≤ ex for every
x and in the last inequality we have used the assumption that β ≥ 1.

The algorithm terminates at the first phase when D(p) ≥ 1. Thus using (6.6) we
conclude that if the algorithm terminates at phase p, we have

1 ≤ D(p) ≤ mδ
1−ε(1+ε)

exp
{
ε(1+ε)(p−1)
β(1−ε(1+ε))

}
,

which implies

β

p− 1
≤ ε(1 + ε)

(1− ε(1 + ε)) ln ((1− ε(1 + ε)) /mδ)
. (6.7)

In the first (p−1) phases we have routed (p−1)di units of flow of each commodity
i. Now we need to show by how much we need to scale the flow down to get a

85

feasible flow (the flow within the edge capacities).

Claim 2. To obtain a feasible flow at the end of the computation of Algorithm 1
the computed flow is scaled down by a factor at most ε−1 ln(1/δ).

Proof. Consider an edge e. For every c(e) units of flow sent along edge e we
increase its length by a factor of eε (see (6.1)). Initially the length l(e) = δ/c(e)

for each edge e. Now we know that after (p− 1) phases D(p− 1) < 1 and thus,
lp−1,0(e) < 1/c(e). Therefore an edge e cannot be saturated more than ε−1 ln(1/δ)

times because otherwise the length of edge e would raise to at least:

δ

c(e)
eε(ln(1/δ))/ε =

1

c(e)
.

Hence the amount of flow through edge e when the main loop of the algorithm
terminates is less than ε−1 ln(1/δ) times its capacity.

A simple consequence of this result is that if the computation ends in phase
p, then the throughput is

γ ≥ ε(p− 1)/ ln(1/δ). (6.8)

This follows from the fact that at least di(p− 1) units of flow of each commodity
is sent at the end of the computation and the final flow is scaled down by at most
ε−1 ln(1/δ).

Therefore the ratio of the dual to the primal solution from (6.7) and (6.8) is,

β

γ
≤ (1 + ε) ln(1/δ)

(1− ε(1 + ε)) ln 1−ε(1+ε)
mδ

.

Setting δ =
(

m
1−ε(1+ε)

)−1/ε

we get

86

β

γ
≤ (1 + ε) ln(1/δ)

(1− ε(1 + ε)) ln
(

1−ε(1+ε)
mδ

)
=

(1 + ε)

(1− ε(1 + ε))

ln
(

m
1−ε(1+ε)

)1/ε

ln
(

m
1−ε(1+ε)

)−1+1/ε

=
(1 + ε)

(1− ε(1 + ε))(1− ε)

Assuming that ε < 1/5, we get β/γ ≤ (1 + 5ε), so the final flow is (5ε)-
approximate.

6.3 Running Time

In this section we prove the running time of Algorithm 1. We state this result in
the following theorem.

Theorem 7. The total running time of Algorithm 1 is Õ(ε−2(m2 + km)).

Proof. The running time of Algorithm 1 is proved by bounding the running time
of the three main loops. The outer loop runs in p phases. Using the weak-duality
theorem and (6.8) we have

1 ≤ β

γ
≤ β

p− 1

ln(1/δ)

ε
.

Therefore the number of phases is p = O(βε−1 ln(1/δ)). Using a technique pro-
posed by Garg and Koenemann [30] and subsequently improved by Fleischer
[25] we can find an upper bound for the value of β and use scaling. Using
this technique, the number of scaling stages is O(log(km)) and each stage has
O(ε−1 ln(1/δ)) phases (see Section 5.2 for details). Thus the total number of
phases is O(ε−1 ln(1/δ) log(km)).

Each iteration consists of a number of steps each one involving a shortest path
calculation. We need to bound the number of steps to get the overall running

87

time of our algorithm. Recall that initially there is no flow in the network. Thus
the length of each edge e initially is given by

l(e) =
δ

c(e)
exp(εf(e)/c(e)) =

δ

c(e)
.

In each iteration except the last one, the length of some edge (the bottleneck
edge of the path chosen to augment flow) increases by a factor of eε. Since each
length has a value of δ/c(e) initially and, it is at most 1/c(e) at the final step
(recall that D(l) < 1 just before the final step), the total number of steps r when
a given edge e gives the bottleneck capacity satisfies the following inequality

δ

c(e)
erε ≤ 1

c(e)

⇒ δerε ≤ 1

⇒ rε ≤ ln

(
1

δ

)
⇒ r ≤ ε−1 ln

(
1

δ

)
⇒ r ≤ ε−2 ln

(
m

1− ε(1 + ε)

)
.

Since there arem edges in the network, we conclude that the total number of steps
charged to the edges is at most O(ε−2m ln

(
m

1−ε(1+ε)

)
). We charge a flow increase

to the commodities when the whole remaining demand of a commodity has been
sent. This happens exactly once in each phase so the total number of steps
charged to the commodities is O(k) per phase. Thus the total number of steps
charged to the commodities is O(kε−1 ln(1/δ) log(km)) = O(kε−2 log(m) log(km))

and the total number of steps of the algorithm is

O(kε−2 log(m) log(km) + ε−2m log(m)) = O(ε−2 log(m)(k log(km) +m)).

Each step involves the calculation of a single source shortest path. The time to
compute such a path using Dikstra’s algorithm is O(m+ n log n). Thus the total

88

running time of the algorithm is

O((ε−2 log(m)(k log(km) +m))(m+ n log n)) = Õ(ε−2(m2 + km)).

This terminates the proof of Theorem 7.

6.4 Summary

In this chapter we have introduced a new exponential length function for the
Incremental Method of solving the MCF problem. This length function has a
functional relation with the flow on an edge. This means that at any instance
we can retrieve the flow of an edge using its length. Under this setting we can
consider the incremental method to be an instance of the rerouting method. The
first few iterations of the outer loop can be considered as the initialisation phase.
Subsequently we "reroute" flow to less congested paths by pushing flow on the
shortest paths. The flow "rerouted" at any subsequent iteration is a small fraction
of the demand. At any point of time, using the functional length function, we
can stop and check how close we are to the optimal solution by a simple scaling.
In the next chapter we show how we can use the Successive Shortest Path to
calculate the minimum cost flows in the rerouting method. Using this result we
essentially show that the rerouting method can be converted to an instance of
the Incremental Method with a functional length function.

89

Chapter 7

Rerouting based on Shortest Paths

Contents
7.1 The Successive Shortest Path Algorithm 91

7.2 A Modification of the MCF Round-Robin Algo-
rithm . 95

7.3 Summary . 102

We have shown in the previous chapter how we can use an exponential length
function (a length function used previously in the Rerouting Framework) in the
Incremental Framework. In this chapter we show how we can use shortest paths
to calculate minimum cost flows in the Rerouting Framework. This modification
allows us to show that the Rerouting Method can be considered as an instance
of the Incremental Method. More specifically, we are going to use the Successive
Shortest Path algorithm (SSP) to find a minimum cost flow. Previously suggested
minimum cost flow algorithms for the MCF Rerouting Framework, though the-
oretically efficient, are not practical [85, 13]. Theoretically the most efficient
algorithm is described in [35]. This algorithm uses a technique of successive ap-
proximations based on cost scaling and sophisticated data structures. We modify
the MCF algorithm developed by Radzik [65] to use the Successive Shortest Path
algorithm to calculate a minimum cost flow in each iteration.

More specifically, we prove that approximate min-cost flows computed by
the Successive Shortest Path algorithm suffice to find an ε-approximate solution

90

to the MCF problem. Then, we present how to construct such a solution by
introducing a modified version of the original network. We show how we use the
Successive Shortest Path (SSP) algorithm for computing the min-cost flows of the
commodities in each step and prove the running time of our algorithm. Our work
builds directly on the analysis done in [65], but modifications have been made in
order to enable an ε-approximate min-cost flow computation instead of an exact
one. In Section 7.1 we describe the SSP algorithm and discuss its similarities
with the Incremental algorithm. In subsection 7.1.1 we show how to modify the
original network so that the SSP algorithm runs in polynomial time. Finally, in
Section 7.2 we show how we can modify the round-robin algorithm proposed by
Radzik [65] so that we can use the SSP algorithm to calculate the minimum cost
flow in each step.

7.1 The Successive Shortest Path Algorithm

The SSP algorithm is used to calculate the minimum cost flow in a network.
Its execution is very similar to the Incremental Method used to solve the MCF
problem. The algorithm starts with zero flow and proceeds in iterations. In
each iteration the shortest path from the source node v with excess flow to the
destination node u with deficit flow is computed. Then the maximum amount
that can be sent through this path at the current iteration is calculated and
sent along the path. At the end of the iteration the capacities of the edges are
recalculated and the procedure continues until no augmenting path can be found
in the residual network GR(see Section 2.3). The result is a minimum cost flow
from node v to node u. The reader is referred to [1] for more details.

We will give the pseudocode for the SSP algorithm but first we recall some
definitions and introduce some new notation. Let G = (N,E) be a directed
network with n nodes and m edges. Each edge (u, v) ∈ E has an associated
capacity c(u, v). We focus here on one of the k commodities with source si, sink
ti and demand di. Let exc(v) denote the excess flow of a node v, that is,

exc(v) = b(v) +
∑
u∈N

f(u, v)−
∑
u∈N

f(v, u),

91

where

b(v) =

0 ∀ v ∈ N/{si, ti}
di if v = si

−di if v = ti,

and f is the current flow of this commodity. Let l : E → IR+ be an edge length
(cost) function. Let π(v) denote the potential of a node v and lπ(u, v) = l(u, v)−
π(u) + π(v) denote the length of an edge (u, v) with respect to node potentials.
The lengths lπ(u, v) are also referred to as reduced costs. The pseudocode of the
SSP algorithm is given below.

Algorithm 2: The Successive Shortest Path Algorithm
Input: Network G = (N,E), source-sink pair (si, ti), demand di
Output: Minimum cost flow of commodity i
1. Initialize π(v) = 0, ∀ v ∈ N, f(u, v) = 0, ∀ (u, v) ∈ E

2. exc(v) = b(v), ∀ v ∈ N

3. lπ(u, v) = l(u, v)

while e(si) > 0 do
1. Calculate the shortest path P SP

i from si to ti and its length
distl(si, ti) with respect to reduced costs lπ(u, v)

2. Update π(v)← π(v)− distl(si, v)

3. Calculate δ = min{e(si),min{cR(u, v) : (u, v) ∈ P SP
i }}

4. Augment δ units of flow along path P SP
i

5. Update f , GR and lπ(u, v)

end

To adopt the SSP algorithm to fit in Radzik’s Rerouting Framework [65] we
propose an appropriate modification of the original network. Notice in line 3 of the
"while" loop of Algorithm 2 that the amount of flow sent in each step is bounded
by the smallest capacity of the shortest path computed. If these capacities are too
small, then the running time of the algorithm will be exponential. This motivates
us to construct a network that will eliminate this possibility. We describe how
we can achieve this in the following section.

92

7.1.1 Approximation Algorithm for Minimum Cost Flow

To compute approximate minimum cost flows in polynomial time using the Suc-
cessive Shortest Path algorithm we need to modify the original network. Consider
the network G = (N,E) with n nodes and m edges with capacities c(e). Now con-
sider finding a minimum-cost flow of a single commodity with demand d, source
s and destination t, and let the network Gδ = (N,Eδ) be the original network G

but with the capacities of all edges rounded down to the units of δ = εd/m

cδ(e) = b c(e)
δ
cδ.

We assume without loss of generality that the capacities c are sufficient to have a
flow which satisfies the demand d. The reason for this change is that we want to
use a simpler algorithm to compute the minimum-cost flow, that is the Successive
Shortest Path Algorithm, but we also want to keep the running time low. We
need rounding so as to remove the possibility of very small residual capacities,
which might cause exponential worst-case running time [83] of the Successive
Shortest Path algorithm.

The difference of this ”rounded” network from the original one is that the ca-
pacity between the source and the destination may be reduced, but this reduction
is at most mδ = εd. Consider the network G and consider a cut (C,C) with the
source s ∈ C and destination t ∈ C. Let c(C,C) be the capacity of the cut. The
cut obviously contains at most m edges. Rounding the capacity of each edge
down to a multiple of δ may result in removing at most δ units of flow from each
edge. Hence, since there are at most m edges in the cut we conclude that we may
decrease the capacity of the cut by at most mδ = εd units of flow. To deal with
this, we search for a minimum-cost flow that satisfies the demand of (1 − ε)d in
the ”rounded” network and then scale this flow by (1 − ε) to meet the original
demand. Therefore, the final flow will be within the capacities 1

1−εc(e). Of course,
the resulting flow would cost more but we prove that it is not too far from the
minimum-cost flow. In fact we prove that it is within an ε fraction from it. In
other words we will show that the obtained flow is an ε-approximate min-cost
flow.

Let f ∗ be the minimum cost-flow of a single commodity with demand d in
network G and let C∗ be the cost of this flow. Let f δ∗ be the minimum cost of

93

the flow of this commodity satisfying demand (1− ε)d in network Gδ and let Cδ∗

be the cost of this flow. Let f̂ ∗ be the scaled flow 1
1−εf

δ∗ and let Ĉ∗ be the cost
of f̂ ∗.

Lemma 2. Flow f̂ ∗ satisfies the edge capacities c(e)/(1−ε) and its cost is within
a factor of 1/(1− ε) from the minimum cost of a flow in network G.

Proof. Consider flow f ∗ in network G = (N,E) and the network G
δ

= (N,E)

defined as follows:
For all e ∈ E, with capacities c(e) there exist two parallel corresponding edges
e′, e′′ ∈ E, with capacities c(e′), c(e′′) respectively such that

c(e′) = cδ(e) and c(e′′) = c(e)− cδ(e)

Each flow f in G has a corresponding flow f ′ in G
δ
obtained in the following

way

if f(e) ≤ cδ(e), then

{
f ′(e′) = f(e),

f ′(e′′) = 0

if f(e) > cδ(e), then

{
f ′(e′) = cδ(e),

f ′(e′′) = f(e)− cδ(e)
We can decompose f ∗ into at most 2m paths in G

δ
with

f ∗ = f ∗1 + f ∗2

where f ∗1 is the sum of the flow paths which don’t use ”small” edges, i.e. edges
with capacities less than δ, and f ∗2 consists of the flow paths which do use ”small”
edges.

It follows that this flow in Gδ satisfies

C∗ = C(f ∗) ≥ C(f ∗1) ≥ Cδ∗

We conclude that

Ĉ∗ = Cδ∗

1−ε ≤
C∗

1−ε .

Lemma 3. The running time of the Successive Shortest Path algorithm on the
network Gδ is Õ(ε−1m2).

94

Proof. We route at least δ units in each iteration. Hence the number of iterations
to route (1− ε)d units from the source si to the destination ti is bounded above
by d/δ = m/ε.
For each iteration we use Dijkstra’s Shortest Path algorithm which runs in O(m+

n log n) time.
Hence the total running time is

O(m(m+ n log n)ε−1) = Õ(m2ε−1).

7.2 A Modification of the MCF Round-Robin Al-

gorithm

In the previous section we have shown how we can use the SSP algorithm to find
an approximate minimum cost flow in polynomial running time. We are going to
use this method to calculate approximate minimum cost flows in the algorithm
proposed by Radzik [65] for the MCF problem (see Section 5.1). Note that to get a
polynomial running time of the SSP algorithm we needed to modify the capacities
of the network, search for a minimum cost flow within these capacities and then
scale the flow by a small fraction. We need to prove that these modifications
within the round-robin algorithm proposed by Radzik [65] will still give us an ε-
approximate solution for the MCF problem. In this section we follow the analysis
of [65] proving that our modifications will still give an ε-approximate solution in
a polynomial running time.

Let G = (N,E) be a network with n nodes and m edges with capacities
c(e), e ∈ E. Let Gδ = (N,Eδ) be the original network G with modified capacities

cδ(e) = bc(e)
δ
cδ,

where δ = εd
m
. Let λ(e) = f(e)/c(e), where f(e) is the flow on edge e and c(e) its

capacity. Let l be a nonnegative length function on the edges, f a multicommodity
flow, and λ = maxe∈Eλ(e). Let ci be the cost of the current flow of commod-
ity i under the length function l and denote c∗i with the minimum cost flow of

95

commodity i, subject to costs l and capacity constraints λ · c(e). If fi is a flow
of commodity i in network G, for i = 1, 2, . . . , k, then f = (f1, f2, . . . , fk) is a
concurrent flow of commodities 1 through k in network G.

For a length function l, define the potential to be

Φl =
∑
e∈E

l(e)c(e).

The cost of a flow f with respect to a length function l is

C(l, f) =
∑
e∈E

l(e)f(e).

The cost of a commodity i is

Ci =
∑
e∈E

l(e)fi(e).

Let C∗i (λ, l) (also abbreviated as C∗i) denote the minimum cost flow of com-
modity i under capacities λc(e). We also define:

C∗(λ, l) =
k∑
i=1

C∗i (λ, l).

An ε-approximate minimum-cost flow f̂ ∗i of a commodity i with demand di

from source si to destination ti is defined as the flow with cost

Ĉ∗i ≤
1

(1− ε)
C∗i ,

and satisfying capacities ĉ(e) = 1
(1−ε)c(e).

As in [65] we define the edge length function to be

lf (e) =
eαλf (e)

c(e)
, for each e ∈ E, (7.1)

96

but we modify α to fit our analysis:

α =
1

2
(1 + ε)λ−1ε−1 ln(mε−1),

where λ is an upper bound on the optimal congestion λ∗ and λ(e) is the congestion
of the current flow on edge e.

The algorithm starts by computing a maximum flow for each commodity i

independently and scaling these flows to the demands of the commodities. These
flows give the initial concurrent flow. Then the termination conditions (in the
while loop) are checked, as given in Algorithm 3 below. If they hold, the algorithm
terminates and the current flow is returned. We will prove later that this flow is
actually ε-approximate. If the conditions are not satisfied, the algorithm proceeds
in iterations. In each iteration each commodity is considered one by one. First, an
approximate minimum cost flow is calculated using the Successive Shortest Path
algorithm on network Gδ (Algorithm 2). Then, the algorithm checks whether
the current cost of the flow is close to its approximate minimum cost. If it is,
nothing happens and the next commodity is considered. If not, a small fraction
of the flow of commodity i is rerouted onto the minimum cost flow paths. This
iterative procedure continues until the congestion has significantly dropped down
or a significant improvement has been made on the potential function. If these
conditions are not met when all commodities have been considered, the algorithm
terminates and returns the current flow. The modified pseudocode of the round-
robin algorithm proposed by Radzik [65] is given below. We refer to this algorithm
as the MRR algorithm. The step value σ, which specifies the fraction of flow that
is rerouted, is (ε2/ log n).

97

Algorithm 3: Modified Round-Robin Algorithm (MRR)
Input: Network G = (N,E), source-sink pairs (si, ti), demands di
Concurrent flow f = (f1, f2, . . . , fk), ε > 0, λ← λf σ = ε/(4αλ)

Output: Flow f where either λ(f) ≤ (1− ε)λ or f is (9ε)-approximate
f (0) = f , l(0) = lf ,Φ(k) = Φf , Φ(0) = 2Φf

while λf ≥ (1− ε/3)λ and Φ(0) − Φ(k) ≥ (ε2/8)Φ(0) do
Φ(0) = Φ(k)

for i = 1 to i = k do
f̂ ∗i ← Call SSP Algorithm 2 on network Gδ to find an ε-approximate
minimum cost flow of commodity i within capacities (1 + 2ε)λc(e)

if ci − ĉ∗i ≥ εci then
f ′i ← (1− σ)fi + σf̂ ∗i

end
else

f ′i ← fi

end
f (i) = (f ′1, f

′
2, . . . , f

′
i , fi+1, . . . , fk)

Φ(i) ← Φ(f (i))

end
f ← f (k)

end

7.2.1 Analysis of the Modified Round-Robin Algorithm

To implement the SSP algorithm fast we need to search for an approximate
minimum cost flow in the modified network Gδ. Recall from Section 7.1.1 that
we search for a minimum cost flow that satisfies demand (1− ε)di and scale the
flow up by (1− ε). Thus, we result in increasing the capacities by 1/(1− ε) in the
original network. In [65] the approximate minimum cost flow is calculated using
capacities that are scaled by a factor of (1 + ε/3). We need to modify this part
of the algorithm so that the SSP algorithm fits correctly. In the modified version

98

we search for an approximate minimum cost flow within capacities

c′(e) =
1 + ε/2

1− ε
c(e) = (1 + 2ε)c(e).

This modification has implications on the whole analysis of the algorithm in
[65]. We therefore need to adjust the main theorems in [65] appropriately and
show that our proposed method of calculating minimum cost flows still results
in an ε-approximate solution. To prove our main theorems we inevitably need
to replicate some parts of the proofs in [65]. Some lemmas in [65] can be used
without modification but we include these parts here for completeness.

Lemma 4 ([65]). Let f be a concurrent flow and let l be a length function. Then

λΦl ≥ C(l, f) ≥ C∗(λ, l).

The following corollary is a simple consequence of Lemma 4.

Lemma 5 ([65]). For any length function l and any λ ≥ λ∗,

λ∗ ≥ C∗(λ, l)

Φl

. (7.2)

In the following theorem we prove that when the algorithm terminates we get
a 9ε-approximate flow.

Theorem 8. (Approximate Optimality Conditions)
Let λ ≥ λ∗ and ε ≤ 1/12. If a concurrent flow f and a length function l are such
that the following inequalities hold

λf ≤ (1 + 2ε)λ (7.3)

C∗(λ, l) ≥ (1− 4ε)λΦl (7.4)

then flow f is (9ε)-approximate.

Proof. Let f be a concurrent flow and l be a length function such that the two
inequalities (7.3) and (7.4) hold. Then from (7.2) and (7.4) we get that

λ∗ ≥ (1− 4ε)λ.

99

Using this result we have

λf ≤ (1 + 2ε)λ ≤ 1 + 2ε

1− 4ε
λ∗ ≤ (1 + 9ε)λ∗.

The last inequality follows from the assumption that ε ≤ 1/12.

We have shown that if C∗(λ, l) ≥ (1 − 4ε)λΦl and our edge flows are within
(1 + 2ε)λ factor of the capacities, we get a (9ε)-approximate solution. All we
need to show now to prove that when the algorithm terminates we get a (9ε)-
approximate flow is to show that our stopping conditions imply Inequality (7.4).
First, we need to measure the level of improvement in each iteration.

Lemma 6 ([65]). For each iteration of the outer loop of MRR algorithm and for
each i, i = 1, 2, . . . , k, we have

Φ(i) ≤ Φ(i−1), (7.5)

λf (i) ≤ (1 + 2ε)λ, (7.6)

and if the flow of commodity i has changed during this iteration, then

λ
(
Φ(i−1) − Φ(i)

)
≥ ε

8
(Ci − Ĉ∗i). (7.7)

We omit the proof of this lemma as it would be an exact replication of the
proof in [65]. Using Lemma 6 we can prove that if the algorithm terminates, the
resulting flow is (9ε)-approximate. To show the correctness of our algorithm we
show that if the potential function does not decrease substantially (by a factor of
(1 − Ω(ε2))) during one iteration of the while loop, then the value of C∗(λ, l) is
close to λΦl. We prove this in the following lemma.

Lemma 7. If at the end of one iteration of the outer loop of MRR algorithm
λf ≥ (1− ε/3)λ and Φ(0) − Φ(k) ≤ (ε2/8)Φ(0), then

C∗(λ; l) < (1− 4ε)λΦl. (7.8)

Proof. Consider one iteration of the outer loop and assume that at the end of
this iteration the two conditions above hold. Inequality (7.8) follows from the

100

following four inequalities

C∗(λ, l) ≥ (1− ε/3)
k∑
i=1

C∗i , (7.9)

C∗ ≥ (1− ε)
k∑
i=1

Ĉ∗i , (7.10)

k∑
i=1

Ĉ∗i ≥ (1− ε)
k∑
i=1

Ci − (4/3)ελΦl, (7.11)

k∑
i=1

Ci ≥ (1− (4/3)ε)λΦl. (7.12)

Using these four inequalities we get

C∗(λ, l) ≥ (1− ε/3)(1− ε)
k∑
i=1

C∗i

≥ (1− ε/3)(1− ε)
k∑
i=1

Ci − (4/3)ελΦl

≥ (1− ε/3)(1− ε)(1− (4/3)ε)λΦl − (4/3)ελΦl

≥ (1− 4ε)λΦl.

We showed (7.10) in Section 7.1.1, Lemma 2. Inequalities (7.9), (7.11) and
(7.12) have essentially the same proofs as in [65], so we do not repeat them here.
This ends the proof of the lemma.

Lemma 7 together with Theorem 8 prove that when the MRR algorithm
terminates we have either improved the congestion by at least a factor of (1−ε/3),
or we have computed an (9ε)-approximate flow.

7.2.2 Running time

Recall that we modify the way we compute the minimum cost flows in each
iteration with respect to [65]. The rest of the computation of the MRR Algorithm
is the same as the Round Robin Algorithm introduced in [65].

101

Theorem 9. The running time of the MRR algorithm is Õ(ε−3km2).

Proof. The improvement within each iteration is exactly the same as in [65] so
we can bound it using similar arguments. Radzik [65] proves that the round-
robin algorithm terminates after O(ε−2 log n) iterations of the outer loop. Each
of these iterations is dominated by k computations of approximate minimum cost
flows. The initial concurrent flow formed from the (scaled) maximum flows of
individual commodities has a maximum congestion at most kλ∗. Since the MRR
algorithm reduces the congestion at least by a factor of (1 − ε/3) (if it does
not, then we know that we have already a 9ε-approximate flow), then repeat-
ing this algorithm O(ε−1 log k) times gives a 9ε-approximate flow. Thus using
the MRR algorithm, we can compute a 9ε-approximate concurrent flow within
the time of O(kε−3 log n log k) single-commodity approximate minimum cost flow
computations. This can be improved to O(k log n(ε−2 + log k)) single-commodity
approximate minimum cost flow computations using the scaling process proposed
by Leighton et al. [55]. The SSP algorithm described in Section 7.1 computes a
single-commodity minimum cost flow in O(ε−1m2) time. Hence using the SSP
algorithm, we compute a 9ε-approximate concurrent flow in Õ(ε−3km2) time.

This running time is comparable with the Õ(ε−2kmn) running time of the
algorithm analyzed by Radzik [65], if the input network is sparse and ε is a
constant. We believe that the analysis of the MRR algorithm could be improved
by analyzing together the number of iteration in all k applications (for all k
commodities) of the SSP algorithm in one iteration of the MRR algorithm.

7.3 Summary

We have presented the two main combinatorial methods for solving the Maximum
Concurrent Flow problem. The two approaches, though different in design and
execution, seem to have similar properties and produce analogous results. In
both methods a length function is used to find paths for routing the flow. In the
incremental method the length function is used to estimate shortest paths whereas
in the rerouting method it is used to compute a minimum cost-flow path.

102

In terms of execution, the incremental method starts with a zero flow and
builds the flow gradually assigning a length function on each edge which depends
on the previous updates of the flow on this edge. After the first phase, the demand
of each commodity is routed from its source to its destination, and the lengths are
updated. The rerouting approach uses an exponential length which only depends
on the current flow of an edge.

We have shown in Chapter 6 that we can use an exponential length function
to track the improvement in the incremental framework. This length function
is similar to the one used in the rerouting framework (monotonically increasing,
direct interdependence with the flow). In fact, the incremental framework us-
ing the exponential length function can be viewed as an instance of the rerouting
framework. The transportation of di units of flow for each commodity i can be re-
garded as a preprocessing phase corresponding to what the initial maximum flow
estimation is for the rerouting approach. After this first calculation of a feasible
flow, the incremental algorithm sends di units of flow again and again,through
the shortest paths under the current exponential length function, until the ter-
mination condition is met. In the final step the flow is scaled down so that it is
feasible. Essentially what the algorithm does is rerouting some flow through less
costly paths since at each phase the amount of flow of each commodity sent in
the network is a small fraction of the total current flow in the network.

We have also shown in Chapter 7 how we can use the SSP algorithm to cal-
culate minimum cost flows in the rerouting framework. The execution of the
SSP algorithm is similar to the execution of the incremental algorithm. To find
a minimum cost flow, the SSP algorithm starts with zero flow and incrementally
sends flow through shortest paths until the whole commodity has been sent. This
is exactly the execution performed in one iteration of the incremental framework.
The rerouting algorithm then sends a small fraction of its current flow to this
minimum cost flow paths. Again, this is similar to the execution of the incremen-
tal algorithm where in each iteration the amount of flow sent for a commodity i
is a small fraction of the total amount of flow sent in all the previous iterations.

103

Part III

Analysis of Distributed Algorithms

104

Chapter 8

Distributed Computing Models

Contents
8.1 Definition and Characteristics 106

8.2 Features . 107

8.3 Distributed Models 108

8.4 Previous Work . 110

8.5 Summary . 118

The computing industry has evolved since the birth of the first computing
machine. The first computing model of sequential processing was in time com-
plemented with parallel computing models and then with distributed models of
computation. Distributed computing arose from the integration of computer and
networking technologies. This model has given the power to solve large and
complex problems fast and precisely.

In this chapter we introduce the main concepts related to distributed com-
puting, focusing on the synchronous model of computation. In Section 8.1 we
give the definition of a distributed system and its distinct characteristics which
differentiate it from other computational models. In Section 8.2 we describe the
major features of a distributed system that need to be considered when designing
computation. In Section 8.3 we compare the two main types of communication
mechanisms, the Synchronous and the Asynchronous communications. Finally,
in Section 8.4 we give an overview of previous work on the Multicommodity Flow

105

Problem algorithms for distributed computing models. For further reading on
the foundations of the area of Distributed Computing we refer the reader to the
textbooks "Introduction to Distributed Systems" by Thampi [73] and "Distributed
Computing: Principles, Algorithms and Systems" by Kshemkalyani and Singhal
[51].

8.1 Definition and Characteristics

The motivation for constructing and using distributed systems comes from the in-
herent availability of low-priced, high performance computers and network tools.
Connecting a number of computers together to perform a common task may lead
to capabilities much more powerful than a supercomputer.

Definition 12 ([51]). A distributed system is a collection of independent entities
that cooperate to solve a problem.

A distributed system typically consists of a collection of autonomous com-
puters which have their own memory and run their own operating system. The
computers are loosely-coupled together via middleware. The middleware acts as
a communication network through which the computers can cooperate to solve a
specific task.

Generally, a system is considered to be distributed if it has the following
characteristics [51]:

No shared memory: The processors of the system do not share their memory.
They have their own memory and execute protocols without being able to
coordinate with each other, except through the communication network.
The processors of the system might share address space via the abstraction
of distributed shared memory.

No common physical clock: This also follows from the notion of no shared
memory. The processors of the system cannot access a Global Clock and
cannot perfectly synchronize their executions. They rather perform their
individual tasks asynchronously and communicate with each other through
message passing at the end of their current execution stage.

106

Autonomy: Each component has its own memory and its own operating system.
They may run at different speeds and with different power. The processors
are not part of one dedicated system, they rather cooperate with each other
to solve a common problem.

Physical Separation: Usually the processors are wide apart. They are often
set in different locations and perform different tasks. The middleware is
what connects the processors and what makes the distributed computation
available. The processors do not need to be separated in distinct geograph-
ical locations. For example, they could be a part of a Local Area Net-
work as well. The separation of processors, even if only over a small local
area, means that communication between processors may be expensive, so
it should be kept to a minimum.

8.2 Features

A distributed system has a number of properties which make it attractive to be
used.

Fault-Tolerance: A system is fault-tolerant if it can mask the presence of
faults. Distributed systems should recover from processor failures quickly
without the need of restarting the whole procedure. This is desirable es-
pecially when designing distributed algorithms for the World Wide Web
(WWW), because of the continuous changes of the network’s topology and
demand. Usually fault-tolerance is achieved by providing redundancies in
hardware and/or software. By adding such extra processors we can ensure
that the service will run uninterrupted since any fault in the system would
be replaced immediately by the extra processors. Fault-tolerance of dis-
tributed algorithms means that their computation is correct even if some
processors malfunction (though there would always be a limit on the type
and number of failures which can be tolerated).

Scalability: The topology of the distributed system allows it to be scalable. New
processors can be added without creating a bottleneck in the communica-

107

tion network. To ensure that the system can continue to operate properly
when new processors are added, techniques like replication are employed.
Multiple copies of resources are placed throughout the system so that the
load is spread when new entities are added.

Enhanced Reliability: Replicating resources and executions in a distributed
system can make it less vulnerable to crashes and malfunctions.

Self-Stabilization Regardless of the initial state of the system or the changes
that could occur during the execution of processes, the distributed system
should converge to a legitimate state without external intervention.

8.3 Distributed Models

Several different models of distributed systems exist depending on the archi-
tecture of the system. The most significant characteristics of such models are
synchronous or asynchronous execution and communication based on message
passing or shared memory. In this section we briefly examine and compare these
characteristics.

Message-passing systems involve a set of processors which use their own
memory and perform their own computation. The processors communicate with
each other via Send and Receive operations. On the other hand in a dis-
tributed shared memory system the communication is performed via Read
and Write operations on a shared address space. The two models are illustrated
in Figure 8.1.

Distributed models can also be classified in terms of the level of synchronisa-
tion of the execution of individual processors. Full synchronisation would mean
that all processors run the same set of operations at the same time in parallel.
In each global time step all processors would perform the same simple operation.
However, this kind of synchronisation is not attainable in a distributed system.
The model used in the distributed algorithms studied in this thesis introduces the
notion of a round. Processors execute tasks in asynchronous way but synchronise
their execution at the beginning of each round by waiting for all processors to
finish their previous round. This is in some sense a virtually synchronous process,

108

Figure 8.1: Message Passing System versus Shared Memory System

where the processors execute their tasks in an asynchronous manner for a period
of time and then they synchronise their next set of instructions using the notion
of the round. We note that the notion of a round should be viewed as a property
of an algorithm.

There are similarities between this model (the details of the synchronisation
process are given later in subsection 8.4.2) and the general characteristics of the
Bulk Synchronous Parallel (BSP) model and its variants [74, 77]. The general
idea of the BSP model is that the computation is organised in "supersteps" and
the communication between the processors occurs only between these supersteps.
The computation within one superstep is asynchronous. The running time in the
BSP model combines the cost of the local computation, the number of supersteps
and the cost of communication between the processors into one global running
time. The analysis of algorithms for our distributed model is predominantly
focused on minimizing the number of rounds. The analysis may also include
bounding the total "sequential" running time, which is simply the running time
of the local computation summed up over all processors. The bounding of the
total running time sequentially is done so that it can be easily compared with the
running time of existing sequential algorithms. We stress that the main objective
is to minimize the number of rounds. Our model does not explicitly consider the
communication cost of synchronising the processors at the end of a round because

109

it is assumed to be negligible in comparison to the running time of one round.
The model we consider in this thesis is based on the Distributed Shared Mem-

ory Model with perfectly synchronised starting time of each round but asyn-
chronous execution of the tasks within the rounds. There is no co-ordination
between the processors within one round. The only co-ordination that exists
is at the beginning of a round when processors are allowed to communicate by
first "posting" data to the shared address space and then reading off some ag-
gregate of the posted data. The type of aggregation of the data depends on a
particular problem and would come from the restrictions of the assumed physical
computational environment. For example, for the MCF problem, each processor
is responsible for computing the flow of one commodity, posts the current flow
of this commodity at the end of each round, but can read only the total (sum)
of the flows of all commodities. This restriction is motivated by the assumption
that a processor may have access to the information about the total traffic on
any particular link in a (global) network, but might not know who contributes to
this traffic. Further details are given in subsection 8.4.2.

8.4 Previous Work

By distributed algorithms for multicommodity flow problems we mean algorithms
that route flow of all commodities in a parallel but uncoordinated manner. The
framework is similar for all of the existing algorithms. Certain restrictions exist
depending on the model used. Consider a network G = (N,E), where n is the
number of nodes and m is the number of edges. We have k commodities with
associated demands di, i = 1, 2, ..., k. Commodity imust be routed from its source
si to its destination(sink) ti.

Two types of distributed models for the maximum concurrent flow problem
have been described depending on the way decisions of how to send the flow are
made:

M1 The algorithms in which decisions are made in parallel at the nodes,

M2 The algorithms in which decisions are made in parallel for each commodity.

110

We next discuss the algorithmic framework for distributed algorithms for the
MCF problem in the more traditional model M1. Then we introduce the details
of the second modelM2, which was proposed by Awerbuch et al. [7] and is referred
to as the Billboard Model. The MCF algorithms for this model are the subject
of Chapters 9 and 10.

8.4.1 Decisions at the Nodes

Awerbuch and Leighton [5] proposed the first distributed algorithm for solving
the Maximum Concurrent Flow Problem. Their algorithm relied on the queues
of the flows of different commodities on each edge. Informally, the algorithm tries
to push one unit of flow along each edge in each round in an attempt to balance
the flow on this edge. The algorithm simply tries to send flow through an edge
e = (u, v), if the queue of a commodity at u is greater than the queue of the same
commodity at v. The queue of a commodity at a node v is defined as the amount
of flow of that commodity stacked at node v. Contention between commodities is
resolved by sending the commodity with the largest disparity between the ends
of each edge. If the flow reaches the right sink, it is removed from the network.
Awerbuch and Leighton [5] prove that the algorithm is stable by showing that
the height of any queue at any round is bounded. The nature of the algorithm
makes it appropriate for use in decentralized networks where link failures can
occur. The algorithm terminates in Õ(ε−3Lm3k5/2) steps where L denotes the
size of the longest flow path. One round consists of the following phases.

Phase 1: Add (1 + ε)diδ
−1
i units of flow on each of the δi edges incident to

each source si.

Phase 2: Push flow fi(u, v) of commodity i across each edge (u, v) ∈ E,
from the tail of the edge u to its head v such that the following term is
maximized:

k∑
i=1

fi(u, v)(qi(u)− qi(v)− fi(u, v))d−2
i

111

subject to

fi(u, v) ≥ 0, ∀ 1 ≤ i ≤ k,∑
1≤i≤k

fi(u, v) ≤ c(u, v),

fi(u, v) = 0 if c(u, v) ≤ εdi/m.

qi(u) and qi(v) denote the height of the queue of commodity i at the tail
and head of edge (u, v), respectively.

Phase 3: Remove flow from sinks.

Phase 4: Rebalance at nodes by reallocating flows so that the edge queues
for each commodity are equal within each node.

To measure the progress of the algorithm the following potential function is
introduced

Γ =
∑

(u,v)∈E

∑
1≤i≤k

(
qi(u)

di

)2

+

(
qi(v)

di

)2

(8.1)

Based on the same distributed computing model, Awerbuch and Leighton [6]
managed to improve the running time to Õ(ε−1Lkm) steps by approaching the
problem more carefully. Instead of using the potential function (8.1) they use an
exponential potential function

φi(q) = exp(αi · q), (8.2)

where αi ≡ ε
8Ldi

and q denotes the height of the queue. It can be shown that
maximizing (8.1) is equivalent to minimizing

k∑
i=1

[
(qi(u)− fi(u, v))2 − (qi(v) + fi(u, v))2] ,

so the objective of one round of the algorithm from [5] is, for each edge (u, v), to
minimize the sum of the squares of the sizes of the queues associated with this

112

edge. The objective of one round of the algorithm from [6] is to minimize the
sum of the potentials of the queues associated with edge (u, v), that is, to send
across edge (u, v) flows fi(u, v) such that the following sum is minimized:

k∑
i=1

[
φi (qi(u)− fi(u, v))2 − φi (qi(v) + fi(u, v))2] .

Awerbuch and Leighton [6] also introduce a change in the way queues are
built. Instead of allowing all queues to have arbitrary sizes, they now fix the
capacities of the queues at the source node si to some specified value Qi and
allow for an overflow buffer. They define the potential of an overflow buffer of
size b to be

σi(b) = φ′i(Qi) · b = αi · b · exp(ai ·Qi). (8.3)

Using this refined method of approaching the problem they show that no overflow
buffer ever gets too large. Hence, after a significant number of rounds the flow
remaining in the queues is negligible with respect to the flow delivered at the
sinks.

Muthukrishnan and Suel [60] propose a method, which they call second-order
method, to improve the running time of the algorithms proposed in [5] and [6].
They show experimentally that this method gives better actual running times.
They use a framework similar to [5] with the difference being in the amount of
flow pushed across each edge. In [5], the flows fi(u, v) pushed across edge (u, v)

are selected to maximize

k∑
i=1

fi(u, v)(∆i(u, v)− fi(u, v)),

where ∆i(u, v) = qi(u)− qi(v). In [60], the selected values fi(u, v) maximize the
expression

k∑
i=1

fi(u, v)(∆′i(u, v)− fi(u, v)),

113

where ∆′i(u, v) is defined in the following way:

∆′i(u, v) = β ·∆i(u, v) + 2 · (β − 1) · f ′i(u, v), (8.4)

and f ′i(u, v) denotes the amount of flow of commodity i sent along edge (u, v)

in the previous iteration and 1 ≤ β ≤ 2. Note that when β = 1, the value of
∆′i(u, v) is exactly the same as in [5]. They run their experiments for different
inputs, iterating β by increments of 0.05. They show that when β is between
1.95 and 1.99 their method converges to within 16 digits of precision while the
algorithm of Awerbuch and Leighton [5] is more than 10% away from the exact
solution. For values of β > 2 the algorithm becomes unstable and does not
converge.

8.4.2 The Billboard Model

The billboard distributed computation model for multicommodity flow problems
was proposed by Awerbuch et al. [7]. Each commodity is associated with one
agent. A "billboard" maintains the current total flows on the edges of the network.
The agents are allowed to read the values from the billboard at the beginning of
each round and decide how to reroute the flows of their commodities. Each agent
has information about the total edge flows (from the billboard) and the edge
flows of its commodity (from the local state), that is, they cannot distinguish
between the flows of each commodity on a given edge. At the end of each round
they submit (post) their flows to the billboard again. This model falls within the
broad category of the distributed shared memory models, as discussed in Section
8.3, but the agents (processors) have access only to the "aggregate" of data (in
our case they have access only to the total flow on edges).

The agents are not allowed to co-ordinate with each other in any other way
than through the billboard, that is, they cannot read other agents’ flows or have
information about their current decisions. The only co-ordination that exists is
that the agents synchronize the start of their executions using the notion of a
round. Decisions are made in parallel at each round. Each agent executes the
same local program and decides how to update the flow of its commodity subject
to certain constraints depending on the algorithm used. More precisely, each

114

agent knows the topology and parameters of the common underlying network (the
edges of the network and their capacities) and the specification of its commodity
(the source, the destination and the demand of this commodity). The agents, and
the commodities, do not have their "identities". They perform the same program
but on their own data. For example, they may start the computation finding
the shortest path from the source to the destination. The agents know when the
current round ends, from the parameters of the executed algorithm, the upper
bound on the (local) time of one round of any agent.

Two maximum concurrent flow algorithms were proposed for this model [7, 4].
Both algorithms work in the general model outlined above, but the Greedy Dis-
tributed algorithm (GDR-MCF) of [4] uses a weaker (more restrictive) synchro-
nization process. In the model used in [7] for the Approximate Steepest Descent
(DGD-MCF) algorithm, the global clock counts the rounds starting from 1. That
is, all agents start at the same time (round 1) and their computation can refer
to the current round number. The computation terminates after a fixed number
of rounds. In the model used in [4] for the Greedy Distributed algorithm the
clock informs the agents only that the next round starts but does not provide the
counter of the rounds. This means that the computation in each round cannot
depend on the index of the round. The computation only terminates once a sta-
bilisation is achieved (certain stopping criteria have been met). Distributed MCF
algorithms which have this property are considered in [4] as stateless algorithms.

The first algorithm under the above framework was proposed by Awerbuch
et al. [7]. They describe approximate distributed MCF algorithm which is based
on the Steepest Descent method for global optimization and was inspired by
the sequential MCF algorithm proposed by Garg and Koenemann [30]. In the
distributed MCF algorithm of [7], a tiny amount of flow of all commodities on all
edges needs to be placed initially and later it is increased in a multiplicative way.
More precisely, initially the flow fi(e) for each edge e is set to fi(e) = εc(e)/k.
This might affect the flow conservation conditions but since the flow is at most
εc(e) on each edge the violation is not significant, and can be easily corrected at
the end of the computation.

The computation is done in phases. In each phase an amount of ε2di/ logm

is pushed into the network for each commodity i. A phase consists of rounds. In

115

each round a blocking flow of commodity i for some small edge capacities ci(e)
is computed by sending flows along ε-approximate shortest paths from si to ti
according to the length function given by

l(e) =
(m1/ε)λ(e)

c(e)
. (8.5)

To avoid oscillations, a condition that the flow of each commodity on each
edge increases at most by a multiplicative factor (1 + δ) for an appropriately
small δ(or by a polynomially small additive amount) is introduced. This is done
by allowing the flow of commodity i to increase on an edge e by at most

ci(e) =
ε2fi(e)

logm

in each round. This condition is sufficient to avoid unpredictable oscillations
because the total flow on each edge in one round increases by at most a factor
of (1 + ε2/ logm). The algorithm runs in Õ(L/ε4) rounds, each round running in
Õ(m2/ε2) time, giving the total of Õ(Lm2/ε6) time.

The second algorithm based on the distributed model was proposed by Awer-
buch and Khandekar [4]. They describe the first stateless greedy algorithm for
the distributed multi-commodity concurrent flow problem with the number of
rounds poly-logarithmic in the size of the input and linear in the parameter L
(same as in [7]).

A routing metric is introduced to indicate the cost of an edge with respect to
its congestion. This is given by the derivative of the potential function

φe,µ(f(e)) = m
f(e)
c(e)·µ ,

where µ is a value associated with the maximum congestion in the network. The
agent of commodity i reads the flow values from the billboard at the beginning of
each round. Then the costs of all edges are calculated. The shortest path B ∈ Pi,
where Pi is the set of paths of commodity i, is then found. The cost of this path is
compared with the average cost of the flow of commodity i in the network which
can be found by adding the total cost of commodity i on all edges and dividing
this by its demand di. If the cost of path B is smaller than (1 − (ε)) times the

116

average cost and the allowed push forward flow for this commodity is greater
than zero the agent reroutes a portion of flow of commodity i from all paths to
path B. The procedure proceeds until a desired fraction of the flow is rerouted or
until no path can be found with cost significantly smaller than the average path
cost. At this stage the commodity writes its new flow on the billboard and waits
for the beginning of the next round (that is, waits until all agents complete the
current round). The algorithm runs in Õ(L/ε8) rounds, each round running in
Õ(m2) time, giving a computation overhead of Õ(Lm2/ε8) for each commodity.

To deal with the instability that can arise by routing all the flows simultane-
ously (an edge flow could repeatedly sharply increase and then sharply decrease)
”speed limits” are imposed. These limits control the maximal amount a flow can
increase or decrease on an edge. This way oscillations are prevented and the
system converges. The interesting aspect of the algorithm in [4] is that a more
restrictive ”speed limit” is enforced on the way down rather than on the way up,
which is opposite to the intuition that increase is more ”dangerous" than decrease.
The flow on a path is allowed to increase much more rapidly than it is allowed to
decrease.

The property of the GDR-MCF of being stateless has potential benefits. Such
an algorithm is more robust because each decision is taken based entirely on
information that comes at the current point of time, without reference to the past.
The agents do not rely on the global clock and do not rely on initialization. This
feature makes the GDR-MCF algorithm attractive for internet applications since
the internet protocol itself is an example of stateless interaction. In contrast, in [7]
a global clock needs to be maintained because the DGD-MCF algorithm crucially
depends on maintaining a state and also depends on the appropriate initialization.
If, for example, changes occur in the network topology or demands, the DGD-
MCF algorithm proposed in [7] needs to be initialized (restarted) again, whereas
the GDR-MCF algorithm proposed in [4] can adjust its flows locally without
disrupting the flows that are not affected.

117

8.5 Summary

In this chapter we have introduced the distributed computation model and we
have described its main characteristics. We have also described the previous lit-
erature on distributed algorithms for the MCF problem. Finally, we have intro-
duced the billboard distributed model which is the model used by the algorithms
we examine in more detail in this thesis. In the next two chapters we are analyz-
ing the two main distributed algorithms (DGD-MCF and GDR-MCF) proposed
for the MCF problem and we propose heuristic improvements to speed up their
running time.

118

Chapter 9

The Approximate Steepest Descent
Framework

Contents
9.1 The Approximate Steepest Descent Algorithm . 120

9.2 A Worst Case Input 123

9.3 Balancing Distributed MCF algorithm 141

9.4 Summary . 161

Awerbuch et al. [7] describe a framework for approximate distributed algo-
rithms for the multicommodity flow problem, which was based on the Steepest
Descent method for global optimization and was inspired by Garg and Koen-
emann’s [30] sequential algorithm for this problem. The model of distributed
computing used by this framework is described in Section 8.4. The upper bound
on the running time of the algorithm proposed in [7] depends linearly on the
maximum path size L. The main open question here is to reduce the dependency
of the running time on L, from linear to ideally logarithmic. The first question
in this direction is whether the algorithms such as in [7] and [4] do achieve this
upper bound in the worst case. The upper bound analysis in both [7] and [4] was
based on the analysis of the flow change on one edge on the shortest path. In
each iteration, there is one edge with an increase of flow by at least some small
amount. These increases are totalled to get the flow change for the whole path.

119

The upper bound on the number of rounds then follows from an upper bound
on flow on a simple path. However, it is natural to expect that those individual
increases would be happening in parallel in the same round on many edges. This
expectation is reasonable because of the distributed nature of the algorithm.

If those edge increases had to happen in parallel, then the derived upper
bound would not be tight. In the following chapters we construct a worst case
input which shows that the upper bounds of the algorithms in [7, 4] are actually
tight, up to polylogarithmic factors. We then propose a heuristic where each
agent balances its flow in each round among available shortest paths. We show
that for our worst-case example network ΥL, the first phase of the Approximate
Steepest Descent algorithm runs in O(polylog(L)) rounds with our heuristic, but
Ω̃(L) rounds are needed by the original version of the algorithm. While this does
not provide a full analysis of our proposed heuristic (the full analysis remains
an open challenge), it does indicate potential for better performance than the
previous algorithms.

The rest of the chapter is structured as follows. In Section 9.1 we review the
DGD-MCF algorithm proposed by Awerbuch et al. [7] and analyze its computa-
tion. In Section 9.2 we give an input for which we prove that the algorithm runs
in Ω̃(L) rounds. Our worst-case input helped us to identify where the bottleneck
in the computation may occur. This led to a heuristic to avoid the bottleneck of
the Gradient Descent Framework. We describe this heuristic in Section 9.3 and
prove that it significantly speeds up, at least the first phase, the computation on
network ΥL.

9.1 The Approximate Steepest Descent Algorithm

The distributed computation model for the Approximate Steepest Descent Frame-
work proposed in [7] is described in subsection 8.4.2. The pseudo-code of the
algorithm proposed by Awerbuch et al. [7] is given below. The agents may finish
the current phase in different rounds. This means that the agents may have a
few "idle" rounds at the end of a phase to make sure that all agents complete
this phase and can start together the next phase. This is done by waiting until
the number of rounds in the phase reaches Tp = O(L(log2m log(k/ε))/ε4). It

120

is proven in [7] (see Lemma 8) that this number of rounds is sufficient to route
ε2di/ logm units of flow for each commodity i.

Algorithm 4: DGD-MCF algorithm
Input: Network G = (N,E), Capacities c(e), Commodities i with source si,

destination ti, demand di, i = 1, 2, . . . , k

Initialization: Set fi(e) = εc(e)/k for each edge e, for each commodity i;
for O((logm)/ε2) phases do

for each commodity i in parallel
while commodity i has not yet routed ε2di/ logm flow do

1. Define capacities ci(e) = ε2fi(e)/ logm;
2. Compute a blocking flow under capacities ci(e) from si to ti
along ε-approximate shortest paths;
3. Route the blocking flow computed;

end
Synchronization: Wait until the total number of rounds in this phase
is Tp

end

We now sketch the analysis of this algorithm given in [7]. For simplicity,
assume that the demands are scaled so that the maximum congestion, λ, is
1. Recall from Section 3.3.1 that the congestion λ(e) of an edge e is given by
λ(e) =

∑
i fi(e)/c(e). The improvement is measured using the following potential

function Φ which is exponential with respect to the edge congestion

Φ =
∑
e

(m1/ε)λ(e). (9.1)

It is shown in [7] (Lemma 2.1) that Φ is approximated within a factor of mO(1)

at the end of the algorithm. This gives an O(ε) approximation of the maximum
congestion. Indeed, if the optimum potential Φopt is approximated within a factor
of mO(1) then

121

λ ≤ ε

logm
log Φ (9.2)

≤ ε

logm
log(mO(1)Φopt)

≤ O(ε) +
ε

logm
log(m · (m1/ε)λ

∗
)

≤ 1 +O(ε)

where λ∗ = 1 denotes the optimal congestion. The inequality (9.2) holds because
(9.1) implies that Φ ≥ (m1/ε)λ.

Lemma 8 (Awerbuch et al. [7]). The number of rounds needed to route ε2di/ logm

units of flow for each commodity i is O(L(log2m log(k/ε))/ε4).

Proof. Consider a commodity i. A phase does not end until each commodity
sends ε2di/ logm units of flow. We are going to argue that this phase ends after
O(L(log2m log(k/ε))/ε4) rounds. During one round, each commodity computes ε
approximate shortest paths under the current length function and finds a blocking
flow. The blocking flow is bounded by the capacities ci(e) = ε2fi(e)/ log2m. So,
each blocking flow saturates at least one edge on each approximate shortest path,
increasing its flow by a factor of 1 + ε2/ logm. Since the initial flow on the
edge is εc(e)/k and can be increased to at most (1 + O(ε))c(e), an edge can be
saturated at most O(logm log(k/ε)/ε2) times. Hence, since any path has at most
L edges we know that after O(L(logm log(k/ε)/ε2)) rounds the length of the
shortest path has increased by a factor of 1 + ε. Since the shortest path length
cannot increase by a factor greater than mO(1)+1/ε during the entire algorithm,
recall that such an increase would imply an optimum flow, we conclude that
after O(L(log2m log(k/ε)/ε4)) rounds commodity i has pushed at least ε2di/ logm

units of flow.

Lemma 8 gives the following overall number of rounds of the Distributed
Gradient Descent algorithm.

Theorem 10 (Theorem 1.1 in [7]). The overall number of rounds of the Dis-
tributed Gradient Descent algorithm is O(L(log3m log(k/ε)/ε6))

122

The overall complexity of the algorithm is O(L(log3m log(k/ε)/ε6)Tbf), where
Tbf = Õ(m2) is the time needed to compute a blocking flow. This follows from
the fact that in each phase we send ε2di/ logm units of flow and thus we need
logm/ε2 phases to route di units of flow.

9.2 A Worst Case Input

The analysis of the DGD-MCF algorithm given in [7] left the question whether
the obtained upper bound on the running time was tight in the worst case. The
analysis of the upper bound of the DGD-MCF algorithm was based on the flow
updates on one edge on the shortest path. The upper bound analysis was only
counting the increases of flow on the saturated edges. When the flow is updated
on long paths (in terms of size), then in addition to (at least one) saturated edge,
the flow would increase on all edges of the path. To show that the upper bound
is tight, one has to show an input such that in most of the iterations, if flow
is increased on a path P , then increase on most of the edges of P is negligible.
Constructing such an input turned out to be a major challenge.

We have constructed a worst case example which shows that the upper bound
in [7] is tight up to polylogarithmic factors. The difficulty in constructing such
a network comes from the distributed nature of the algorithm: we have to take
into account the changes of flow coming from all agents. We needed to create a
network which would "force" the algorithm to behave in a sequential manner, i.e.
saturate only one edge of the shortest path in each round while increasing the
flow on other edges only by a small amount in relation to their current capacities.
To get such a behaviour we needed to force the algorithm not only to block the
shortest path in the current round but also block all the other shortest paths at
the same time thus, not letting any other edges to be saturated during the same
round.

Our graph has regular structure and unit edge capacities, implying that the
high running time comes from the structure of the graph and not from the vari-
ation of the edge capacities.

For an integer L ≥ 3 we construct a directed network ΥL = (N,E) with
|N| = Θ(L2) nodes and |E| = Θ(L2) edges with unit capacities. In this network

123

Figure 9.1: Example of Network ΥL

we have L commodities with unit demand and source sink pair (si, t). The set N
consists of the following nodes:

• t, the destination of all commodities;

• si, i = 1, 2, . . . , L (the source of commodity i);

• vp,q, p = 1, 2, . . . , L− 1 and q = p+ 1, p+ 2, . . . , L;

• wi,p, p = 1, 2, . . . , L and i = 1, 2, . . . , L.

The set of directed edges E is the union of the following six disjoint sets:

E1 = {(vp,q, vp,q+1) : p = 1, 2, . . . , L− 2 and q = p+ 1, p+ 2, . . . , L },

E2 = {(vp,L, t) : p = 1, 2, . . . , L− 1 },

E3 = {(si, wi,p) : p = 1 },

E4 = {(wi,p, t) : p = L },

124

E5 = {(wi,p, wi,p+1) : p = 1, 2, . . . , L− 1 }, and

E6 = {(wi,p, vp,p+1) : p = 1, 2, . . . , L− 1 }.

Figure 9.1 shows the structure of network ΥL. Observe that each source-to-
destination path in ΥL has exactly L + 1 edges. Each commodity i has L paths
which it can use. Among those, it has the "exclusive" path Pi:

Pi = {(si, wi,1), (wi,1, wi,2), (wi,2, wi,3), . . . , (wi,L, t)}.

No edge of this path can be used by any other commodity. The exclusive paths
are shown in Figure 9.1 by the dashed-line edges. The edges of the exclusive
paths form the subset E3

⋃
E4

⋃
E5. Figure 9.2 shows such a path for commodity

1.
Commodity i can also use (L − 1) paths, Pi,j, for j = 1, 2, . . . , L − 1 defined

in the following way:

Pi,j =

(si, wi,1) connecting source i to the network
(wi,1, wi,2), . . . , (wi,j−1, wi,j) the initial part of path Pi
(vj,j+1, vj,j+2), . . . , (vj,L, t) the "shared" part

Such a path consists of the edge connecting the source si to the network,
namely (si, wi,1). Then it has j − 1 edges of path Pi and L − j edges shared by
all commodities. The edges of path Pi,j form the subset E1

⋃
E2

⋃
E3

⋃
E5

⋃
E6.

The network is symmetric with respect to each commodity, meaning that each
sub-network Υi

L in which each commodity i can send flow has the same struc-
ture as all other sub-networks Υi

L. Figure 9.2 shows the sub-network "visible" by
commodity i. The optimal congestion is 1, and this can be achieved by saturat-
ing the exclusive paths for each commodity. This is not the only way of getting
congestion 1 since some flows can be sent along shared paths as well. This net-
work is difficult for the DGD-MCF algorithm because the agent i responsible for
commodity i does not know that the exclusive path Pi cannot be used by other
commodities, and is the best choice for commodity i. Using shared paths creates
contention among the agents which may require a significant number of rounds
to resolve.

125

Figure 9.2: Network for One Commodity

9.2.1 Analysis of the DGD-MCF algorithm on network ΥL

We consider only the first phase of the algorithm; when ε2/ logm flow of each
commodity is routed (recall di = 1). The algorithm starts by setting the flow
on each edge to be fi(e) = ε/k for all commodities i. Then a blocking flow is
calculated using ε-approximate shortest paths. The computed blocking flow is
added to the accumulated flow of commodity i until a total of ε2/ logm flow is
routed for each commodity.

126

Algorithm 4: Computation of phase 1 of DGD-MCF algorithm on ΥL

Computation for Agent i (controlling commodity i);
Initialization Round: Set fi(e) = ε/L ;
while commodity i has not yet routed ε2/ logm flow do

1. Set the length of the edges as in (8.5);
2. Define capacities ci(e) = ε2fi(e)/ logm;
3. Compute a blocking flow gi from si to t along ε-approximate
shortest paths, considering the paths in the order Pi,1, Pi,2, . . . , Pi,j;
4. Route the computed blocking flow gi

end

Initially in our network all of the paths are shortest paths since they have the
same flow, the same number of edges and the same(unit) capacities. Since each
commodity computes a blocking flow without any coordination or co-operation
with other commodities, the worst case would be such that all commodities pick
the paths with the same shared part. In particular during the initial rounds we
force all agents to use paths Pi,1. We force the agents to augment on paths Pi,1
for as long as these paths are available, that is, their length has not yet increased
by a factor more than (1 + ε). Saturating these paths gives us blocking flows, so
no other paths will be used at this initial stage.

Note that at the time when paths Pi,1 have increased their length by a (1 + ε)

factor all other paths have increased their length by the same amount. That is, all
other paths available for each commodity are the shortest paths with exactly the
same length. When paths Pi,1 are not available, we force the agents to take the
next available approximate shortest path Pi,j. In particular, they choose paths
Pi,2 and follow the same pattern: saturating paths Pi,2 gives blocking flows, so
no other paths will be used. Then the agents move to the paths Pi,3, and so on,
until they route ε2/ logm units of flow, which marks the termination of a phase.

In the remainder of this section, we prove the lower bound on the running
time of the DGD-MCF algorithm on network ΥL. We view the computation as
a sequence of stages, each stage consists of a number of rounds. The next stage
begins when the next shared path is picked up by the agents. We assume from

127

now on that ε ≤ logm and L ≥ 7.

Definition 13. The Stage h for h = 1, 2, . . . , L begins at the round when the
path Pi,h is used for the first time for augmentation.

To establish the running time of the DGD-MCF algorithm, we need a bound
on the number of rounds required to terminate a Stage h, which is proven in
Lemma 12. However, in order to show the main ideas and to establish some
formulas, we analyze separately Stage 1 (Lemma 9). Then we consider the general
Stage h.

Let Π
(h,r)
i,j and Π

(h,r)
i denote the lengths of paths Pi,j and Pi at Stage h after

round r respectively.

Lemma 9. In Stage 1 the length of path Pi,1 at the end of round r is

Π
(1,r)
i,1 ≤

(
1 + 2 logm

(
(1 +

ε2

logm
)r − 1

))
Π

(1,0)
i,1 , (9.3)

and the number of rounds in this stage is Ω(ε−1).

Proof. Consider the initial augmentation of the algorithm for all commodities i.
They all pick path Pi,1 to augment, as described above. Note that by choosing
this path, no other paths can be used during the round since augmentations along
these paths saturate edges(si, wi,1) giving blocking flows (All edge capacities on
paths Pi,1 are the same, so all edges on these paths get saturated).

The following result (9.4) holds for any flow change in a path and we prove
this separately because we are going to use it repeatedly in our derivations later.
If the flow on an edge e increases by ∆f(e), and the congestion increases from
λ(e) to λ′(e), then for any path P , the new length Π′ of this path is

Π′ =
∑
e∈P

(m1/ε)λ
′(e)

=
∑
e∈P

(m1/ε)f(e)+∆f(e)

=
∑
e∈P

(m1/ε)λ(e)m∆f(e)/ε

≤
∑
e∈P

(m1/ε)λ(e)

(
1 + 2

logm

ε
∆f(e)

)
. (9.4)

128

Recall that initially fi(e) = εc(e)/k = ε/L, λ(e) = ε and ci(e) = ε2fi(e)/ logm

= ε3/L logm.
We compute the change in the path length resulting from the initial augmen-

tation of all commodities.

Initially
Π

(1,0)
i,j =

∑
e∈Pi,j

(m1/ε)λ(e) = Lm. (9.5)

During the first round, the total flow of all commodities sent along the shared
part of the paths Pi,1 is ε3/ logm. Thus using (9.4) the length of paths Pi,1 in-
crease to the following Π

(1,1)
i,1 :

Π
(1,1)
i,1 ≤

∑
e∈Pi,1

(m1/ε)λ(e)

(
1 + 2

logm

ε
∆f(e)

)

=
∑
e∈Pi,1

(
(m1/ε)λ(e)

)
+ 2(L− 2)

logm

ε

ε3

logm
m+ 4

ε3

L logm
m (9.6)

≤
∑
e∈Pi,1

(m1/ε)λ(e) + 2Lε2m

= Π
(1,0)
i,1 + 2ε2Π

(0)
i,1 (9.7)

= (1 + 2ε2)Π
(1,0)
i,1 . (9.8)

In line (9.6), we consider separately the first two edges of path Pi,1, which
have new flows of ε3/(L logm), and the remaining L−2 shared edges, which have
new flows of ε3/ logm (each commodity contributes flow ε3/(L logm)). Equality
(9.7) follows from (9.5).

Let ∆f (h,r)(e) denote the total flow change on edge e at stage h at the end of
round r. The flow of each commodity increases by a factor of (1 + ε2/ logm) in
each round in Stage 1 and thus at the end of any round r the total flow change
on a shared edge e of path Pi,1 is

129

∆f (1,r)(e) = L
((

1 + ε2/ logm
)r ε
L
− ε

L

)
= ε

(
(1 +

ε2

logm
)r − 1

)
. (9.9)

Hence at any round r using (9.4) and (9.9),

Π
(1,r)
i,1 ≤

∑
e∈Pi,1

(m1/ε)λ(e)

(
1 + 2

logm

ε
∆f(e)

)
≤
(

1 + 2
logm

ε
∆f (1,r)(e)

)
Π

(1,0)
i,1

=

(
1 + 2

logm

ε
ε

((
1 +

ε2

logm

)r
− 1

))
Π

(1,0)
i,1

=

(
1 + 2 logm

(
(1 +

ε2

logm
)r − 1

))
Π

(1,0)
i,1 . (9.10)

The above shows that the bound (9.3) holds.
A path is used as long as it is ε-approximate and the flow increase on a single

edge has not exceeded ε2/ logm. Using the general formula for the increase in
path length (9.3) and noting that initially the path is ε-approximate we can lower
bound the number of rounds needed to increase its length by (1 + ε) and thus
make the path unavailable. Stage 1 has at least r rounds, where r is the largest
integer such that

Π
(1,r)
i,1 ≤ (1 + ε)Π

(1,0)
i,1 .

Thus, using (9.3), the number of rounds is at least the largest integer r such that(
1 + 2 logm

(
(1 +

ε2

logm
)r − 1

))
Π

(1,0)
i,1 ≤ (1 + ε)Π

(1,0)
i,1 .

Thus the number of rounds needed to terminate stage S1 is at least

130

ε−2 log

(
1 +

ε

2 logm

)
logm ≥ ε−1

4
. (9.11)

The final bound follows from the assumption that ε ≤ logm.

In Lemma 9, we derived an upper bound on the length of path Pi,1. All other
paths are also affected by augmenting flow on Pi,1, that is, all the paths Pi,j(for
j 6= 1) and the exclusive path Pi. On these paths only the flow of one edge
(si, wi,1) is affected; see in Figure 9.2. Next lemma gives a bound on the length
of these paths at the end of round r in Stage 1. This bound will be used in the
proof of Lemma 12.

Lemma 10. The lengths Π
(1,r)
i,j of paths Pi,j(for j 6= 1) and the length Π

(1,r)
i of

the exclusive path Pi at the end of round r in stage 1 are

Π
(1,r)
i,j = Π

(1,r)
i ≤

(
1 + 2

logm

L2

(
(1 +

ε2

logm
)r − 1

))
Π

(1,0)
i,j . (9.12)

Proof. In stage 1, the flow of commodity i is increased by a factor of (1+ ε2

logm
) in

each round. Since initially flow of commodity i is ε/L the total flow on the first
edge (si, wi,1) at the end of round r is ε(1 + ε2

logm
)r/L. Using (9.4), the lengths of

paths Pi,j and Pi increase by the end of round r to

Π
(1,r)
i,j = Π

(1,r)
i ≤

∑
e∈Pi,j

(m1/ε)λ(e)

(
1 + 2

logm

ε
∆f(e)

)

= Π
(1,0)
i,j + 2m

logm

ε
·
(

(1 +
ε2

logm
)r − 1

)
ε

L
(9.13)

= Π
(1,0)
i,j + 2m

logm

L

(
(1 +

ε2

logm
)r − 1

)
(9.14)

=

(
1 + 2

logm

L2

(
(1 +

ε2

logm
)r − 1

))
Π

(1,0)
i,j (9.15)

The equality (9.14) holds because the flow changes only on one edge (si, wi,1) of
the path, so ∆f(e) = 0 for all other edges. The equality (9.15) holds because
Π

(1,0)
i,j = Lm.

To prove our main Lemma 12 we use induction. Since we need to maintain

131

both the upper and lower bound on the path lengths we need to find the bounds
for the first stage for both cases. The next lemma gives a lower bound on the
path length and on the number of rounds needed to terminate stage S1.

Lemma 11. In Stage 1 the length of path Pi,1 at the end of round r is

Π
(1,r)
i,1 ≥

(
1 +

L2 − 2L+ 2

L2
logm

(
(1 +

ε2

logm
)r − 1

))
Π

(1,0)
i,1 , (9.16)

and the number of rounds in this stage is

Θ(ε−1),

and the lower bound on the length Π
(1,r)
i,j of the paths Pi,j for j > 1 is

Π
(1,r)
i,j = Π

(1,r)
i ≥ Π

(1,0)
i,j + logm

L

(
(1 + ε2

logm
)r − 1

)
,

Proof. The following result 9.17 holds for any flow change in a path and we prove
this separately because we are going to use it repeatedly in our derivations later.
If the flow on an edge e increases by ∆f(e), and the congestion increases from
λ(e) to λ′(e), then for any path P , the new length Π′ of this path is

Π′ =
∑
e∈P

(m1/ε)λ
′(e)

=
∑
e∈P

(m1/ε)f(e)+∆f(e)

=
∑
e∈P

(m1/ε)λ(e)m∆f(e)/ε

≥
∑
e∈P

(m1/ε)λ(e)

(
1 +

logm

ε
∆f(e)

)
(9.17)

132

Applying (9.17) to path Pi,1 and the first round of the first stage we get,

Π
(1,1)
i,1 =

∑
e∈Pi,1

(m1/ε)λ(e)m∆f(e)/ε

≥
∑
e∈Pi,1

(m1/ε)λ(e)

(
1 +

logm

ε
∆f(e)

)
(9.18)

=
∑
e∈Pi,1

(m1/ε)λ(e) + (L− 2)
logm

ε

ε3

logm
m+ 2

logm

ε

ε3

L logm
m (9.19)

≥
∑
e∈Pi,1

(m1/ε)λ(e) +
(L2 − 2L+ 2)

L
ε2m

= Π
(1,0)
i,1 +

L2 − 2L+ 2

L2
ε2Π

(1,0)
i,1

= (1 +
L2 − 2L+ 2

L2
ε2)Π

(1,0)
i,1 (9.20)

For (9.19), we use the changes of flow ∆f(e) as explained after the derivations
(9.6)-(9.8).

Recall that ∆f (1,x)(e) denotes the total change in flow at edge e up to round
x in Stage 1. At any round r from (9.9) and (9.18) the path length change is
given by

Π
(1,r)
i,1 ≥

∑
e∈Pi,1

(m1/ε)λ(e)

(
1 +

logm

ε
∆f (1,r)(e)

)

=

(
1 +

L2 − 2L+ 2

L2

logm

ε
ε

(
(1 +

ε2

logm
)r − 1

))
Π

(1,0)
i,1

=

(
1 + logm

L2 − 2L+ 2

L2

(
(1 +

ε2

logm
)r − 1

))
Π

(1,0)
i,1 (9.21)

Thus (9.16) holds.
For the first stage to terminate the length of path Pi,1 must increase to (1 +

ε)Π
(1,0)
i,1 , that is

Π
(1,r)
i,1 ≥ (1 + ε)Π

(1,0)
i,1 .

Substituting the bound from (9.16)we get that the length of path Pi,1 increases

133

by a factor (1 + ε) in t rounds, where

t ≤
(
ε−2 logm log

(
1 +

L2ε

2(L2 − 2L+ 2) logm

))
≤ 3

4
ε−1. (9.22)

The last inequality above holds because L ≥ 7 and ε ≤ logm. From (9.11) and
(9.22) we deduce that the first stage needs Θ(ε−1) rounds to terminate.

Similarly as before (see Lemma 10) this change in the length of path Pi,1

affects all paths Pi,j : j > 1, and paths Pi. The change in flow affects one edge of
these paths and hence the total change in length is given by

Π
(1,r)
i,j = Π

(r)
i ≥ Π

(1,0)
i,j +

logm

L

(
(1 +

ε2

logm
)r − 1

)
(9.23)

The next lemma is essential for proving the lower bound on the running time
of the DGD-MCF algorithm on network ΥL. It gives us both the upper and lower
bound on the number of rounds of a general Stage h. It also gives us un upper
bound on the total flow change during the execution of the algorithm. Recall
that Π

(h,r)
i and Π

(h,r)
i,j denote the lengths of paths Pi and Pi,j respectively at the

end of round r of stage h.

Lemma 12. At the beginning of Stage h for 1 ≤ h ≤ L/3, the length Π
(h,0)
i,j of

any path Pi,j, for h ≤ j ≤ L and the length Π
(h,0)
i of path Pi, that is, the length

of any path that has not yet been chosen to augment flow is

Π
(h,0)
i,j = Π

(h,0)
i ≤

(
1 + 2

h− 1

L
ε

)
Π

(1,0)
i,j . (9.24)

The total change in flow of commodity i up to stage h is given by

∆f
(h,0)
i ≤ 3

4

h− 1

L

ε2

logm
. (9.25)

Finally, the number of rounds rh in Stage h is

1

6ε
≤ rh ≤

3

4ε
. (9.26)

134

Proof. To prove Lemma 12 we are going to use induction. We are first going to
use the assumptions at the beginning of stage h (9.24) and (9.25) to show that
the total number of rounds is bounded from above and below as in (9.26). Then
using these bounds we are going to prove that at the beginning of stage h+ 1 the
path length and total flow sent are given by (9.24) and (9.25).

Recall that ∆f (h,x)(e) denotes the change(increase) of the total flow on edge
e during the first x rounds of Stage h. As in (9.9), we have for each shared edge
e,

∆f (h,x)(e) = ε

(
(1 +

ε2

logm
)x − 1

)
.

This is because the capacities start at the initial ε/L for each commodity at each
edge and then they are saturated in each round(as it happened in stage 1 for path
Pi,1; see the proof of Lemma 9). Observe that in any given stage the saturation
will come from the shared part of the path being used. This happens because of
the construction of the network ΥL. The shared part of a path not yet being used
has no flow, besides the initial artificial flow, in contrast to the exclusive edges
of the paths that have being used in the previous stages. Thus, the capacities
are tighter on the shared part of the path, and so the saturation happens at this
part. Since we have L commodities sharing each edge we get the above change
in flow in each round.

For all other edges the flow increases at most ε ((1 + ε2/ logm)x − 1) /L. As
we want to find an upper bound on the path length Π

(h,x)
i,h we use the change in

flow in the shared part as an upper bound for the change in flow at the exclusive
part. Using (9.4) the length of path Pi,h at the end of round x within Stage h is

135

bounded by (here λh(e) is the congestion at edge e at the beginning of stage h)

Π
(h,x)
i,h ≤

∑
e∈Pi,h

(m1/ε)λh(e)

(
1 + 2

logm

ε
∆f (h,x)(e)

)
∑
e∈Pi,h

(m1/ε)λ(e)

(
1 + 2

logm

ε
ε

(
(1 +

ε2

logm
)x − 1

))
(9.27)

= Π
(h,0)
i,h

(
1 + 2 logm

(
(1 +

ε2

logm
)x − 1

))
≤
(

1 + 2
h− 1

L
ε

)(
1 + 2 logm

(
(1 +

ε2

logm
)x − 1

))
Π

(1,0)
i,h . (9.28)

Stage h ends when the length of path Pi,h increases to (1 + ε)Π
(1,0)
i,h . The total

number of rounds rh needed to terminate stage h is the largest integer t for which

Π
(h,t)
i,h ≤ (1 + ε)Π

(1,0)
i,h . (9.29)

Hence rh is at least the largest integer t such that

(
1 + 2

h− 1

L
ε

)(
1 + 2 logm

(
(1 +

ε2

logm
)t − 1

))
≤
(

1 +
L− 2h+ 2

L
ε− ε2

)(
1 + 2

h− 1

L
ε

)
.

The above inequality is equivalent to(
1 + 2 logm

(
(1 +

ε2

logm
)t − 1

))
≤
(

1 +
L− 2h+ 2

L
ε− ε2

)
,

since the RHS is less than (1 + ε). In the following derivations each line implies
the next one.

136

(
1 +

ε2

logm

)t
≤ 1 +

1

2 logm

(
L− 2h+ 2

L
ε− ε2

)
t log

(
1 +

ε2

logm

)
≤ log

(
1 +

1

2 logm

(
L− 2h+ 2

L
ε− ε2

))
t ≤ 1

log
(

1 + ε2

logm

) log

(
1 +

1

2 logm

(
L− 2h+ 2

L
ε− ε2

))

t ≤ 1
ε2

2 logm

(
1

2 logm

(
L− 2h+ 2

L
ε− ε2

))
t ≤

(
L− 2h+ 2

L
− ε
)

1

ε

This gives the following lower bound on rh provided that h ≤ L/3 and ε ≤ 1/6,

rh ≥
(
L− 2h+ 2

L
− ε
)

1

ε
≥ 1

6ε
,

as in (9.26).
Using similar arguments we are going to prove the upper bound on the number

of rounds rh in Stage h. From the derivations in (9.17) we have

Π
(h,x)
i,j ≥

∑
e∈Ph,j

(m1/ε)λh(e)

(
1 +

logm

ε
∆f (h,x)(e)

)
=
∑
e∈Ph,j

(m1/ε)λh(e) +
logm

ε

∑
e∈Ph,j

(m1/ε)λh(e)∆f (h,x)(e)

≥ Π
(h,0)
i,j +

logm

ε
(L− h− 1)

∑
e∈Ph,j

(m1/ε)λ1(e)∆f (h,x)(e)

≥ Π
(1,0)
i,j + (L− h− 1)

logm

ε
ε

((
1 +

ε2

logm

)
− 1

)
m

=

(
1 +

L− h− 1

L
logm

((
1 +

ε2

logm

)
− 1

))
Π

(1,0)
i,j .

To find the upper bound on the number of rounds rh in stage h we need to find

137

the smallest integer x such that

Π
(h,x)
i,j ≥ (1 + ε)Π

(1,0)
i,j .

Hence rh is at most the smallest integer x such that

1 +
L− h− 1

L
logm

((
1 +

ε2

logm

)x
− 1

)
≥ 1 + ε

As before each inequality implies the inequality in the subsequent line.

L− h− 1

L
logm

((
1 +

ε2

logm

)x
− 1

)
≥ ε((

1 +
ε2

logm

)x
− 1

)
≥ L

(L− h− 1) logm
ε(

1 +
ε2

logm

)x
≥ 1 +

L

(L− h− 1) logm
ε

x ≥ 1

log
(

1 + ε2

logm

) log

(
1 +

L

(L− h− 1) logm
ε

)

x ≥ 1
ε2

logm

L

2(L− h− 1) logm
ε

x ≥ L

2(L− h− 1)

1

ε
.

This gives us the upper bound on the number of rounds rh for h ≤ L/3,

rh ≤
L

2(L− h− 1)

1

ε
≤ 3

4ε
.

as in (9.26).
Using the upper bound on the number of rounds in stage h we can bound the

total flow sent on paths Pi,j for j ≥ h. The flow sent during stage h is given by

138

fhi =
ε

L

(
(1 +

ε2

logm
)rh − 1

)
<

ε

L

3ε

4 logm

=
3ε2

4L logm
. (9.30)

Adding this to the assumption (9.25) gives us the required upper bound on the
total flow change up to Stage h.

∆f
(h+1,0)
i = fhi + ∆f

(h,0)
i

≤ 3

4

h− 1

L

ε2

logm
+

3ε2

4L logm

=
3hε2

4L logm
.

To prove the upper bound on the path length of the exclusive path Πi and of
the shared the paths Pi,j for j ≥ h+ 1 we use the derivations (9.4),

Π
(h+1,0)
i,j ≤

∑
e∈Pi,j

(m1/ε)λ1(e)

(
1 + 2

logm

ε
∆

(h+1,0)
i (e)

)

≤
∑
e∈Pi,j

(m1/ε)λ1(e)

(
1 + 2

logm

ε

3hε2

4L logm

)
≤
(

1 + 2
h

L
ε

)
Π

(1,0)
i,j .

Thus (9.24) holds for h+ 1. This completes the proof of Lemma 12.

Using Lemma 12 we now establish the number of rounds of the DGD-MCF
algorithm on the network ΥL.

Theorem 11. One phase of the DGD-MCF algorithm applied to network ΥL

requires Ω(Lε−1) rounds to terminate for each commodity i.

Proof of Theorem 11. A phase ends when we send ε2/ logm flow of commodity i
or there is no approximate shortest path available. We are going to prove that

139

up to Stage h, h ≤ L/3 the stoping requirements have not yet been met.
Up to Stage L/3, using our upper bound on the length of the path Π

(h,0)
i,j , for

all j > L/3 we have

Π
(L/3,0)
i,j ≤

(
1 + 2

L
3

L
ε

)
Π

(1,0)
i,j (9.31)

≤
(

1 +
2ε

3

)
Π

(1,0)
i,j . (9.32)

Hence all the paths with index j > h are still approximate shortest paths and
thus can be used for augmentation.

The flow sent in each stage up to stage h for h ≤ L/3 is given by

fhi =
ε

L

((
1 +

ε2

logm

)rh)
≤ ε

L

((
1 +

ε2

logm

) 3
4ε

)

=
3

4

ε2

L logm
.

Hence for h stages and for h ≤ L/3 the total flow sent is

∆f
(h,0)
i ≤ h

3

4

ε2

L logm

≤ ε2

4 logm
.

Since there still exist approximate shortest paths to augment flow and we have
not yet sent the required flow, we conclude that the phase after L/3 stages has
not yet been terminated. It follows from the fact that in each stage the number
of rounds is Ω(ε−1) that the number of rounds to terminate a phase is at least
Ω(Lε−1).

We have proved above that the number of rounds needed to terminate phase 1

of the DGD-MCF agorithm on network ΥL is at least Ω(Lε−1). This result shows

140

that the upper bound of the DGD-MCF algorithm proposed in [7] is actually
tight, up to polylogarithmic factors. In the next section we propose a heuristic
improvement of the DGD-MCF algorithm and show that it significantly reduces
the number of rounds, at least on network ΥL.

9.3 Balancing Distributed MCF algorithm

The running time of the worst-case computation of the DGD-MCF algorithm
on ΥL linearly depends on L, as proved in Section 9.2.1, even in the simple
case of unit capacities. The bottleneck appears due to the fact that most of the
approximate shortest paths cannot be used in one round since they are blocked
by the flow sent on the prior paths. This causes a very slow increase in the flow
augmented on these paths when they are visited later on and thus a direct linear
dependence of the running time to the maximum path size L.

The analysis of the execution of the DGD-MCF algorithm on network ΥL

suggests that by spreading the flow evenly on all available approximate shortest
paths we could avoid this bottleneck and thus decrease the dependence on L.
Below we present a way of augmenting the flow under the Distributed Gradient
Descent algorithm framework that improves the running time of the algorithm
by removing the polynomial dependence on L.

The key to our improvement lies in the calculation of the blocking flow, which
tries to distribute flow to all available approximate shortest paths. This results
in a much more aggressive increase of the flow in the subsequent iterations of
the algorithm, which leads to a reduced total running time of the algorithm on
network ΥL. We do not know whether this always improves the running time in
general, so we treat this algorithm as a heuristic. However, as an indication of the
potential of this heuristic, we show that the proposed distribution on flow reduces
the running time from Õ(Lm2) to Õ(m2) for the first phase on network ΥL. In
other words, this heuristic reduces the linear dependence on the parameter L to
poly-logarithmic for this part of the computation.

Note that if all available approximate shortest paths were to be considered
explicitly, in the process of distributing the flow, then we might get an expo-
nential running time due to the number of paths. We overcome this problem

141

by computing only one "maximum capacity" approximate shortest path for each
edge of the network. Then we route the flow along the computed paths, scaling
it down by the number of shortest paths found for each commodity. This way we
ensure that we have a feasible solution, that is within the capacities, and at the
same time we send at least c(Pi)/q units of flow, where c(Pi) is the capacity of
path Pi and q ≤ m is the number of computed approximate shortest paths. We
show how our algorithm handles the approximate shortest paths available that
were not discovered by our search. In fact we are going to argue that even in
these paths we send at least c(Pi)/q units of flow.

The properties of the blocking flows which are used in the analysis of the
running time of the DGD-MCF algorithm also hold for the blocking flows selected
in the BD-MCF algorithms. This means that the upper bound for the DGD-MCF
algorithm given in Theorem 8 applies also for the BD-MCF algorithm. We also
show that one round of the BD-MCF algorithm can be implemented to have
the same running time bound (up to a logarithmic factor) as one round of the
DGD-MCF algorithm.

The remainder of the section is divided into two main parts. In Subsec-
tion 9.3.1 we describe our Balancing Distributed Multicommodity Flow algorithm
(BD-MCF algorithm), and provide the pseudocode for it. In Subsection 9.3.2 we
analyze the running time of the BD-MCF algorithm on our worst-case network
ΥL.

9.3.1 Description of the BD-MCF algorithm

Our BD-MCF algorithm fits in the framework of the Distributed Gradient Descent
algorithm in [7]. It differs only in the way the blocking flows are calculated.

The overall structure of the BD-MCF algorithm is the same as the DGD-
MCF algorithm. Initially we route a small amount of flow of all commodities
on all edges. Then the algorithm proceeds in phases each one consisting of a
number of rounds. During each phase, each agent i has to route ε2di/ logm

flow of commodity i. Each round starts by setting the capacities to be ci(e) =

ε2fi(e)/ logm, where fi(e) is the current flow of commodity i on edge e. Then
we compute a blocking flow under the current capacities and route the computed

142

flow.
To compute the blocking flow, we first call the Maximum Capacity Path

algorithm (MCP-algorithm) to get the set of edges F, and the set of paths
P = ∪e∈F{P SP

e }, where F denotes the set of edges for which an approximate
shortest path passing through them exists, and P SP

e denotes an approximate
shortest path passing through e. Let c(P SP

e) denote the capacity of path P SP
e .

Then we let flow g̃i be the sum of the flows of values c(P SP
e)/|F| along the paths

P SP
e . Scaling the flows down by a factor |F| ensures that g̃i is a feasible flow for

the edge capacities ci(e). If the calculated flow g̃i is not a blocking flow under
the current capacities, we increase the flow using available approximate shortest
paths. We stop when we cannot find an approximate shortest path with a resid-
ual capacity. Below we give the pseudo-code of the BD-MCF algorithm.

Algorithm 5: Balancing Distributed MCF algorithm (One phase)

Computation for Agent i (controlling commodity i);
while commodity i has not yet routed ε2di/ logm flow do

1. Set the lengths of the edges as in (8.5);
2. Set the capacities to be ci(e) = ε2fi(e)/ logm;
3. Compute a blocking flow ;
3a. Call Maximum Capacity Path algorithm to get the set of edges
F ⊆ E and the set of paths P = {P SP

e : e ∈ F};
3b. Let ci(P SP

e) be the capacity of path P SP
e ;

3c. Let g̃i be the updating flow from si to ti obtained by sending
c(P SP

e)/|F| flow along path P SP
e , for each e ∈ F ;

3d. Increase gi to a blocking flow gi, which uses only ε-approximate
shortest paths: start with gi = g̃ and while there is an ε-approximate
shortest path P with residual capacity, increase gi by saturating path
P ;
4. Route the computed blocking flow gi;

end

The MCP algorithm works in the following way. The input is a graph G =

(N,E) with n nodes andm edges with capacity ci(e) and length l(e). We initialize

143

the algorithm by finding the shortest path P SP from si to ti and its cost ΠSP

using Dijkstra’s algorithm. Then for each edge e = (u, v) ∈ E we calculate the
shortest path from si to ti which passes through that edge. To do this we call
Dijkstra’s algorithm twice, once to calculate the shortest path from si to u and
once from v to ti. Let x denote the capacity of the computed path. If the length
of the path is greater than 1 + ε times the shortest path length ΠSP , that is, the
path is not an approximate shortest path from si to ti, then we move to the next
edge. Otherwise we add e to F and find the maximum capacity approximate
shortest path through this edge. To do this we perform a binary search between
the capacity of the shortest path x and the upper bound y = x ·m2/ε+1 on the
capacity of any path that can pass through e. One iteration of the binary search
checks whether there is an ε-approximate shortest path with capacity greater
than z = x+y

2
which passes through e. This is done in the following way: we

remove all the edges with capacities less than z and calculate a shortest path
from si to ti through e (using the remaining edges). If such a path exists and it
is ε-approximate shortest path, we set x = z and P SP

e to this path. If it does not
exist we set y = z. We keep repeating this procedure until the interval between
x and y becomes less than εx. Then we add P SP

e to P and proceed to the next
edge. The pseudocode for the Maximum Capacity Path algorithm is given below.

144

Algorithm 6: Maximum Capacity Path algorithm
Input: Graph G = (N,E), n nodes, m edges with capacity ci(e) and length

l(e)

Output: Set of edges F ⊆ E, and set of paths P = {P SP
e : e ∈ F ⊆ E}

1. Initialize F ← ∅ and P← ∅;
2. Compute the shortest paths from si to all other nodes and from all
nodes to ti (two Dijkstra’s algorithm computations);
3. Let the shortest path P SP from si to ti;
4. Set ΠSP to be the shortest path length from si to ti;
for each edge e = (u, v) ∈ E do

Let P SP
e be the shortest path from si to ti passing through e (This is a

shortest path from si to u and from v to ti);
if ΠSP

e ≤ (1 + ε)ΠSP then
1. F ← F ∪ {e};
2. Set x = c(P SP

e), y = x ·m1/ε+1;
while y − x > εx do

3. Set z = x+y
2
;

4. Let G̃ be the graph resulting from removing from G all edges
with capacity < z;
5. Find a shortest path P̃ SP

e in G̃ from si to ti which passes
through edge e;
if such path exists and its length is ≤ (1 + ε)ΠSP then

1. P SP
e ← P̃ SP

e ;
2. x← z;

end
else

y ← z;

end

end
5. P← P ∪ {P SP

e };
end

end

We show below the validity of the upper bound and the stopping condition

145

for the binary search.

Lemma 13. Let the length of the shortest path P SP through edge e be ΠSP and
let its bottleneck capacity be x. Also let the length of the maximum capacity
path P SP

e passing through e be ΠSP
e and similarly let its capacity be y. Then the

maximum capacity of path P SP
e is bounded above by

y ≤ x ·m1/ε+1

Proof. From the definition of the shortest path P SP and the maximum capacity
path P SP

e we have
ΠSP ≤ ΠSP

e .

From the definition of the path length we get the following inequalities

ΠSP =
∑
e∈PSP

(m1/ε)λ(e)

c(e)
≥ (m1/ε)λ(x)

x

≥ 1

x
.

Also

ΠSP
e =

∑
e∈PSPe

(m1/ε)λ(e)

c(e)
≤ m · (m1/ε)λ(y)

y

≤ m1/ε+1

y
.

From the above equations we get our bound for the maximum capacity path

1

x
≤ m1/ε+1

y

⇒ y ≤ x ·m1/ε+1.

Corollary 3. If the stopping condition of the MCP algorithm is met the output
maximum capacity path for each edge e is ε-approximate.

146

Proof. The correctness of our stopping condition lies in the fact that the capacity
of the shortest path through an edge e is less than or equal to the maximum
capacity of any path passing through e. Moreover, our upper and lower bounds
for the capacity from the MCP algorithm are within an εx additive factor from
the optimal solution. Therefore the output capacity z lies in the range

y − εy ≤ z ≤ y + εy,

i.e. our solution is ε-approximate.

Below we show that the running time of one round of the BD-MCF algorithm
is not much higher than the running time of one round of the DGD-MCF algo-
rithm. To show this we calculate the time needed to distribute a blocking flow
across approximate shortest paths which determines one round.

Lemma 14. One round of the BD-MCF algorithm terminates in Õ(m
2

ε
) time.

Proof. We consider the computation time of the MCP algorithm. Initially Di-
jkstra’s algorithm is performed to calculate the shortest path from si to ti. Let
e = (u, v) be the current edge considered during the computation of the MCP
algorithm. One iteration of the binary search requires two calls to Dijkstra’s algo-
rithm, one to find a shortest path from the source s to u and one to find a shortest
path from v to the destination t in graph G̃. This computation takes Õ(m) time.
The binary search is performed over the range [x, x ·m1/ε+1] and stops when the
search interval becomes less than εx. Thus the number of iterations of the binary
search is O(log(x·m

2/ε+1−x
ε·x)) = O(ε−1 logm + log(ε−1)) = O(ε−1 logm). Finally,

since we consider each edge we need to perform at most m binary searches. Thus
one round requires O(ε−1m logm) calls of Dijkstra’s algorithm, so it terminates
in Õ(m2ε−1) overall time.

9.3.2 Execution of the BD-MCF Algorithm on ΥL

In this section we analyze the execution of our BD-MCF algorithm on the network
ΥL. We show that the Õ(Lε−1) bound on the number of rounds in the first phase
of the DGD-MCF algorithm improves to a polylogarithmic bound Õ(ε−2 log2m)

147

in the BD-MCF algorithm. We don’t know the running time of the BD-MCF
algorithm in a general network so, we treat the algorithm as a heuristic. We show
however that in our worst-case input it is significantly faster than the DGD-MCF
algorithm.

The crucial improvement our algorithm achieves, with respect to the DGD-
MCF algorithm, is that by distributing the flow across all available approximate
shortest paths, we circumvent the bad case we had before that most of the avail-
able paths remain empty for a significant amount of time. This way we ensure
that the increase of the flow in later stages will be much more aggressive, thus
reducing the running time. It is essential for our proof to show that the flow keeps
increasing on all paths in each round. Our algorithm ensures that we have a rel-
atively balanced distribution of the blocking flow along all available approximate
shortest paths. This way we ensure that we have two effects:

1. The more congested paths stay available for much longer than previously.

2. When the congested paths become unavailable the rest of the available
approximate shortest paths have already a sufficient amount of flow to carry
out a more aggressive increase of flow.

More specifically, we prove the bound on the number of rounds in the first
phase given in the following lemma.

Lemma 15. The first phase of the Balancing Distributed Multicommodity Flow
Algorithm on ΥL, which delivers Θ(ε2/ logm) fraction of each commodity, termi-
nates in O(ε−2 logm log(Lε/ logm)) rounds.

To prove this bound we proceed in a similar fashion to the previous section.
First, we look at the first iteration only and establish a lower bound on the
length of paths at the end of this iteration. Then we generalize this bound to the
subsequent rounds in the first phase and use it to prove Lemma 15.

We can consider the flow of only one commodity i, since the network is
symmetrical from the point of view of each commodity, meaning that the sub-
networks for individual commodities look the same (see Figure 2.2). We do,
however, need to take into account the flows of all commodities when we es-
timate the lengths of edges. Initially fi(e) = εc(e)/k = ε/L, λ(e) = ε and

148

ci(e) = ε2fi(e)/ logm = ε3/L logm. As in Section 9.2.1, Π
(1,r)
i,j denotes the length

of path Pi,j after round r at Stage 1.
We first look at the change of flow and path length in the first round. This

should be helpful in following more detailed derivations we will need when con-
sidering a general round r. The total number of available approximate shortest
paths q in the first round is equal to

q =

j=L∑
j=2

j =
(L− 1)(L+ 2)

2
, (9.33)

which is the number of the edges in the part of the network available to this
commodity (as shown in Figure 9.2).

In the first round, the g̃i flow calculated in line 3c of Algorithm 7 is actually
a blocking flow. This happens because initially all paths have the same capacity,
they all are shortest paths and they all pass through the first edge (si, wi) (see
Figure 9.2). Thus each agent sends ε3/(qL logm) flow to each path. Observe
that these q paths can be combined to form the L paths Pi,j as defined in Section
9.2. It is easy to observe that the approximate shortest paths calculated for the
shared edges of Pi,j are in fact the same path Pi,j. We can assume that for each
exclusive edge (wi,j, wi,j+1), the computed approximate shortest path is Pi,j+1.
This is because by making this assumption we "force" the paths which congest
faster, i.e. the "top" paths in Figure 9.2), to even faster congestion, obtaining
the worst case behavior. The change in length of path Pi,j at the end of round r
is bounded by (see (9.17)):

Π
(1,r)
i,j ≥

∑
e∈Pi,j

(m1/ε)λ(e)

(
1 +

logm

ε
∆f (1,r)(e)

)
= Π

(1,0)
i,j +

∑
e∈Pi,j

m

(
logm

ε
∆f (1,r)(e)

)
, (9.34)

where ∆f 1,r(e) denotes the total change in flow up to round r. We remind that
Π

(1,0)
i,j = Lm, and initially λ(e) = ε.

149

In the first round the capacity of each path P SP
e computed by MCP algorithm is

c(e) =
ε3

L logm
(9.35)

Our algorithm scales this flow so that it becomes feasible by dividing by the total
number of approximate shortest paths q. The path Pi,j in network ΥL consists of
L − j − 1 "shared" edges and j + 1 "exclusive edges", as defined in Section 9.2.
The flow change (increase) of one commodity on each edge e of the shared part
of the path Pi,j is

∆f
(1,r)
i (e) =

L− j + 1

q
c(e). (9.36)

This holds because in the MCP algorithm the path Pi,j is assigned to L− j + 1

edges: L− j − 1 shared edges of Pi,j and 2 edges, the exclusive edge (wi,j−1, wi,j)

and the connecting edge (wi,j, vj,j+1) from the exclusive part of Pi,j. For each
edge e of the shared part of Pi,j, all L commodities send the same flow (9.35), so
the total increase of the flow on e is equal to

∆f (1,r)(e) =
L(L− j + 1)

q
c(e). (9.37)

The path also has j + 1 "exclusive" edges in which the flow changes due to one
commodity only. For the lower bound of the path length we can simply ignore
this change. Hence from (9.34), (9.36) and (9.37) the total change in path length
in the first round is bounded as

Π
(1,1)
i,j ≥ Lm+ (L− j + 1)(L− j − 1)

logm

ε

ε3

L logm

L

q
m

=

(
1 +

(L− j + 1)(L− j − 1)

L

ε2

q

)
Lm (9.38)

=

(
1 +

(L− j + 1)(L− j − 1)

L

ε2

q

)
Π

(1,0)
i,j . (9.39)

To prove Lemma 15 we need to find a lower bound on the total flow sent in
each round. This will enable us to find un upper bound on the total number
of rounds needed to terminate a phase. We also need to find a lower bound on

150

the path length increase so that we ensure that the blocking flow is given by the
expression in Claim 3. Notice that to find the upper bound on the number of
rounds needed for a phase to terminate we need to maintain both the upper and
lower bounds on the flow change in the network (Lemma 4).

Before we proceed with our proof we need to set up some notation that we
are going to use. We are going to drop the index i for convenience since our
results for a single commodity hold for every commodity. Hence, Pj stands for
the jth path Pi,j and f

(r)
j is the flow of one commodity on path Pj at the end

of round r. Let c(r)(e) denote the capacity of edge e at the beginning of round
r. The capacity of path Pj at the beginning of round r is denoted by c(r)(Pj)

and is equal to the capacity c(r)(e) of all the "shared" edges e of path Pj. This
holds because the capacity of path Pj comes from the capacity of the edges of
the "shared" part which is the minimum over all the edges of the path. Let δf (r)

j

denote the amount of flow of one commodity calculated by the MCP-algorithm
to be sent on path Pj at time round r, and let δf (r) denote the total amount
of flow of this commodity calculated by the MCP-algorithm to be sent at this
round. Also let ∆f

(r)
j denote the actual amount of flow of one commodity sent on

path Pj in this round after the flow is scaled to become a blocking flow. Observe
that in round 1, δf (1)

j = ∆f
(1)
j as discussed previously. For any round r ≥ 2,

δf
(1)
j ≤ ∆f

(1)
j . Finally let f (r)

BF be the value of blocking flow sent in round r.

Claim 3. For as long as all paths in ΥL are ε-approximate shortest paths, the
blocking flow of one commodity computed in round r saturates edge (si, wi,1),
and its value is given by the following expression

f
(r)
BF =

ε3

L logm

(
1 +

ε2

logm

)r−1

. (9.40)

Proof. Our claim states that the blocking flow at any round r is the flow that
saturates edge (si, wi,1). Consider the flow at the beginning of round r. Recall
that f (r)

j is the flow of path Pj at the end of round r, and F (r)
j be the flow on the

"exclusive" edge (wi,j−1, wi,j) at the end of round r. Initially the flow on every

151

edge was ε/L, so

f
(r)
j =

ε

L
+

r∑
s=1

∆f
(s)
j (9.41)

and

F
(r)
j =

ε

L
+

L−1∑
x=j

r∑
s=1

∆f (s)
x (9.42)

The formula (9.42) holds because the flow on an edge of the exclusive part is equal
to the total flow sent on the paths that pass through that edge by construction
of the network ΥL. The capacity of path Pj in round r is determined by the flow
f

(r)
j on the "shared" part of the path, that is for each j:

c(r)(Pj) =
ε2

logm
min

{
f

(r)
j , F

(r)
j , F

(r)
j−1, . . . , F

(r)
1

}
=

ε2

logm
f

(r)
j . (9.43)

This is straightforward because for x = 1, 2, . . . , j the value F (r)
x is at least f (r)

j ;
see (9.41) and (9.42).

A blocking flow saturates at least one edge on each s − t path. Let Cj be
a s − t cut obtained by removal of the "exclusive" edge (wi,j−1, wi,j) and one
(arbitrary) edge from the "shared" part of the each of the paths P1, P2, . . . , Pj−1.
The capacity of the cut Cj is :

ε2

logm

(
F

(r)
j +

j−1∑
i=1

f
(r)
j

)
. (9.44)

A flow saturates at least one edge of each path if and only if it saturates one of
the cuts C1, C2, . . . , CL. Hence the value of the blocking flow on any round r is
given by

f
(r)
BF =

ε2

logm
min

{
L−1∑
i=1

f
(r)
i ,

L−2∑
i=1

f
(r)
i + F

(r)
L−1, . . . , f

(r)
1 + F

(r)
2 , F

(r)
1

}
(9.45)

152

Then using (9.41) and (9.42) we have (setting F (r)
L ≡ 0)

f
(r)
BF =

ε2

logm
min
j

{
F

(r)
j +

j−1∑
i=1

f
(r)
j

}

=
ε2

logm
min
j

{
j−1∑
i=1

(
ε

L
+

r∑
s=1

∆f
(s)
i

)
+
ε

L
+

L−1∑
i=j

r∑
s=1

∆f
(s)
i

}

=
ε2

logm
min
j

{
jε

L
+

L−1∑
i=1

r∑
s=1

∆f
(s)
i

}

=
ε2

logm

{
ε

L
+

L−1∑
i=1

r∑
s=1

∆f
(s)
i

}

=
ε2

logm
F

(r)
1 . (9.46)

Hence the blocking flow at round r is the flow which saturates edge (si, wi,1).
The flow on edge (si, wi,1) is initially ε/L and since it is saturated in every

round x up to round r, then the flow and the capacity of this edge increase in
each round by a factor of (1 + ε2

logm
). Therefore, the capacity of edge (si, wi,1) at

the beginning of round r is

c(r)(si, wi,1) =
ε3

L logm

(
1 +

ε2

logm

)r−1

.

Since the blocking flow saturates edge (si, wi,1) its value at the beginning of round
r is given by the above expression.

Claim 3 gives us the exact increase of flow of one commodity in any round r.
We need also the flows on individual paths Pj, or at least good lower and upper
bounds on these flows, to estimate their lengths. These bounds are essential to
prove our main Lemma 15.

Claim 4. The flow of one commodity on any path Pj, j = 1, 2, ..., L − 1 at
the end of round r, while all paths are ε-approximate shortest paths and r ≤
ε−2 logm log(L/4), has the following upper and lower bounds:

f
(r)
j ≤

ε

L

(
1 + 2

L

q

((
1 +

ε2

logm

)r
− 1

))
(9.47)

153

and
f

(r)
j ≥

ε

L

(
1 +

1

4

L− j + 1

q

((
1 +

ε2

logm

)r
− 1

))
. (9.48)

Proof. We are going to prove these bounds by induction. Initially the flow is set
so that f (0)

j = ε/L. Hence, the allowed increase of flow on any edge in the first
round is

c(1) =
ε2

logm
f

(0)
j =

ε3

L logm
.

Using the expression for the flow change in the first round (9.36) we get

δf
(1)
j =

L− j + 1

q
c

(1)
j =

L− j + 1

q

ε3

L logm

In the first round the updating flow is actually the blocking flow(no scaling is
needed, so δf (1)

j = ∆f
(1)
j). This happens because all the edges have initially the

same capacity. We note that this will not hold for subsequent rounds. Later on
the updating flow will have to be scaled up to become a blocking flow. Thus the
total flow in path Pj at the end of the first round is

f
(1)
j = f

(0)
j + δf

(1)
j =

ε

L

(
1 +

L− j + 1

q

ε2

logm

)
This means that (9.47) and (9.48) hold for r = 1. Now assume that (9.47)

and (9.48) hold for some 1 ≤ r ≤ ε−2 logm log(L/4), that is, the total flow f
(r)
j

on path Pj is bounded as in (9.47) and (9.48).
Then the allowed increase of flow at round r + 1 is given by

c(r+1)(Pj) =
ε2

logm
f

(r)
j ≤

ε3

L logm

(
1 + 2

L

q

((
1 +

ε2

logm

)r
− 1

))
and

154

c(r+1)(Pj) =
ε2

logm
f

(r)
j ≥

ε3

L logm

(
1 +

1

4

L− j + 1

q

((
1 +

ε2

logm

)r
− 1

))
(9.49)

Hence, using similar arguments as in (9.36), the updating flow on path Pj

computed by the BD-MCF algorithm in round r + 1 is

δf
(r+1)
j =

L− j + 1

q
c(r+1)(Pj) ≤

L

q
c(r+1)(Pj)

≤ ε3

q logm

(
1 + 2

L

q

((
1 +

ε2

logm

)r
− 1

))
(9.50)

and

δf
(r+1)
j =

L− j + 1

q
c(r+1)(Pj)

≥ L− j + 1

q

ε3

L logm

(
1 +

1

4

L− j + 1

q

((
1 +

ε2

logm

)r
− 1

))
Then

δf (r+1) =
L−1∑
j=1

δf
(r)
j

≤
L−1∑
j=1

L

q

ε3

L logm

(
1 + 2

L

q

((
1 +

ε2

logm

)r
− 1

))
(9.51)

≤ 2
ε3

L logm

(
1 +

4

L

((
1 +

ε2

logm

)r
− 1

))
. (9.52)

Inequality (9.52) follows from (9.33).

155

Similarly

δf (r+1) =
L−1∑
j=1

δf
(r)
j

≥
L−1∑
j=1

L− j + 1

q

ε3

L logm

(
1 +

L− j + 1

4q

((
1 +

ε2

logm

)r
− 1

))

=
ε3

L logm

(
1 +

L−1∑
j=1

(L− j + 1)2

4q2

((
1 +

ε2

logm

)r
− 1

))

≥ ε3

L logm

(
1 +

1

3L

((
1 +

ε2

logm

)r
− 1

))
. (9.53)

Inequality (9.53) follows from the fact that
∑L

i=1 i
2 = L3

3
(1 + o(1)).

Now we have to scale the updating flow δf (r+1) to the blocking flow ∆f
(r+1)
j .

According to Claim 3 the value of the blocking flow computed in round r + 1 is
given by

f
(r+1)
BF =

ε3

L logm

(
1 +

ε2

logm

)r
. (9.54)

It can be easily checked that the bound (9.52) is smaller than the blocking flow

(9.54) and thus the algorithm scales the updating flow up by the factor of f
(r+1)
BF

δf (r+1) .
Hence we have

∆f
(r+1)
j =

f
(r+1)
BF

δf (r+1)
δf

(r+1)
j , (9.55)

156

So the flow sent on path Pj at round r + 1 is given by

∆f
(r+1)
j =

f
(r+1)
BF

δf (r+1)
δf

(r+1)
j

≤
ε3

L logm

(
1 + ε2

logm

)r
ε3

L logm

(
1 + 1

3L

((
1 + ε2

logm

)r
− 1
))

× ε3

q logm

(
1 + 2

L

q

((
1 +

ε2

logm

)r
− 1

))

=
ε3

q logm

(
1 +

ε2

logm

)r
×

(
1 + 2L

q

((
1 + ε2

logm

)r
− 1
))

(
1 + 1

3L

((
1 + ε2

logm

)r
− 1
))

≤ ε3

q logm

(
1 +

ε2

logm

)r (
1 +

(
2
L

q
− 1

3L

)((
1 +

ε2

logm

)r
− 1

))
(9.56)

≤ ε3

q logm

(
1 +

ε2

logm

)r (
1 +

11

3L

((
1 +

ε2

logm

)r
− 1

))
(9.57)

≤ 2
ε3

L logm

L

q

(
1 +

ε2

logm

)r
. (9.58)

In (9.56) we have used the fact that for x ≥ y ≥ 0,

1 + xz

1 + yz
=

1 + xz + yz − yz
1 + yz

= 1 +
xz − yz
1 + yz

≤ 1 + (x− y)z,

substituting x = 2L/q, y = 1/3L and z =
(

1 + ε2

logm

)r
− 1. In inequality (9.57)

we have used the fact that L
q
≤ 2

L
, and

11

3L

((
1 +

ε2

logm

)r
− 1

)
≤ 1,

for r ≤ ε−2 logm log(L/4).
Note that the upper bound (9.58) on the flow change on path Pj is less than the
lower bound of the capacity of the path (9.49). This means that we can scale up
all the flows to obtain the blocking flow by one scaling without saturating any

157

individual path.
Assuming, by induction, that (9.47) holds for r, adding (9.58) we can bound

the flow on path Pj at the end of round r + 1

f
(r+1)
j = f

(r)
j + ∆f

(r+1)
j

≤ ε

L

(
1 + 2

L

q

((
1 +

ε2

logm

)r
− 1

))
+ 2

ε3

q logm

(
1 +

ε2

logm

)r
=

ε

L

(
1 + 2

L

q

((
1 +

ε2

logm

)r
+

ε2

logm

(
1 +

ε2

logm

)r
− 1

))
=

ε

L

(
1 + 2

L

q

((
1 +

ε2

logm

)r+1

− 1

))
(9.59)

Using (9.50) and (9.52) we get a lower bound on the flow sent in round r + 1

on path Pj

∆f
(r+1)
j =

f
(r+1)
BF

δf (r+1)
δf

(r+1)
j

≥ ε3

L logm

L− j + 1

q

(
1 +

ε2

logm

)r (1 +
(

1
4
L−j+1

q

)((
1 + ε2

logm

)r
− 1
))

2
(

1 + 4
L

((
1 + ε2

logm

)r
− 1
))

≥ ε3

L logm

L− j + 1

q

(
1 +

ε2

logm

)r
1

2
(

1 + 4
L

((
1 + ε2

logm

)r
− 1
))

≥ 1

4

ε3

L logm

L− j + 1

q

(
1 +

ε2

logm

)r
(9.60)

Inequality (9.60) holds because 4
L

(1 + ε2

logm
)r ≤ 1, for r ≤ ε−2 logm log(L/4). As

before,using (9.48) and (9.60), we now get a lower bound on the flow sent in
round r + 1 on path Pj

158

f
(r+1)
j = f

(r)
j + ∆f

(r+1)
j

≥ ε

L

(
1 +

1

4

L− j + 1

q

((
1 +

ε2

logm

)r
− 1

))
+

1

4

ε3

L logm

L− j + 1

q

(
1 +

ε2

logm

)r
=

ε

L

(
1 +

1

4

L− j + 1

q

((
1 +

ε2

logm

)r
+

ε2

logm

(
1 +

ε2

logm

)r
− 1

))
=

ε

L

(
1 +

1

4

L− j + 1

q

((
1 +

ε2

logm

)r+1

− 1

))
(9.61)

Bounds (9.59) and (9.61) mean that (9.47) and (9.48) hold with r+1 substituted
for r.

We have proved that the upper bound of the flow increase at any time round r
is given by the formula in Claim 4. Using this claim and the lower bound on the
path length increase due to a change in flow given in (9.17) we can get a bound
on the path length at any time round r. Using this bound we are going to prove
our main Lemma 15.

Proof of Lemma 15. For each edge on the shared part of Pi,

∆f (r)(e) =
∑
i

f
(r)
i,j (e)− ε = L

(
f

(r)
j −

ε

L

)
. (9.62)

159

From (9.4) the length of path Pj at the end of round r is bounded by

Π
(r)
j ≤

∑
e∈Pj

(m1/ε)λ(e)

(
1 + 2

logm

ε
∆f (r)(e)

)
=
∑
e∈Pj

(m1/ε)λ(e)

(
1 + 2

logm

ε
L
(
f

(r)
j −

ε

L

))
=
∑
e∈Pj

(m1/ε)λ(e) + 2
logm

ε
L
∑
e∈Pj

(m1/ε)λ(e)
(
f

(r)
j −

ε

L

)
= Π

(0)
j + 2

logm

ε
Lm

∑
e∈Pj

(
f

(r)
j −

ε

L

)

= Π
(0)
j

2
logm

ε

∑
e∈Pj

(
f

(r)
j −

ε

L

)
Since the top path(j = 1) congests more rapidly than any other path we are

interested in the number of rounds needed so that it is no longer an approximate
shortest path. Remember that the value of the blocking flow is given by (3)
for as long as all paths in ΥL are ε-approximate shortest paths. From Claim 4
(Inequality (9.47)) the length of the top path is given by

Π
(r)
1 ≤

(
2

logm

ε
L
(
f

(r)
j −

ε

L

))
Π

(0)
1

≤
(

2
logm

ε
L(

ε

L

(
1 + 2

L

q

((
1 +

ε2

logm

)r
− 1

))
− ε

L
)

)
Π

(0)
1

=

(
4 logm

L

q

((
1 +

ε2

logm

)r
− 1

))
Π

(0)
1

≤
(

8
logm

L

((
1 +

ε2

logm

)r
− 1

))
Π

(0)
1 .

If the length of P1 has not increased by a factor (1 + ε) by the end of round
r, then

8
logm

L

((
1 +

ε2

logm

)r
− 1

)
≤ 1 + ε

Hence the total number of rounds needed for path P1 to increase its length

160

by a (1 + ε) factor is

r = Ω

(
ε−2 logm log

(
Lε

logm

))
, (9.63)

provided that ε2 = O(logm).
The total flow change at any round r is given by the value of the blocking

flow and it is
f

(r)
BF =

ε

L

(
1 +

ε2

logm

)r
(9.64)

The top path is no longer ε-approximate after Ω
(
ε−2 logm log

(
Lε

logm

))
rounds.

Within this number of rounds we have proven that the value of the blocking flow
is given by (9.64). Substituting for r we get that until the time that the top path
becomes unavailable we have sent at least ε2/ logm flow. Hence the first phase
terminates in Θ

(
ε−2 logm log

(
Lε

logm

))
rounds.

9.4 Summary

In this chapter we have shown that the number of rounds needed to terminate
the first phase of the DGD-MCF algorithm on network ΥL is at least Ω(Lε−1).
This shows that the upper bound of the DGD-MCF algorithm proposed in [7] is
actually tight, up to polylogarithmic factors. To overcome the bottleneck of the
DGD-MCF algorithm we have proposed the BD-MCF algorithm and proved that
first phase on network ΥL terminates in time polylogarithmic in L. This shows
that our algorithm significantly improves the running time when implemented on
our worst-case network ΥL. More specifically, we reduce the running time from
Õ(Lm2) to Õ(m2) for the first phase on network ΥL, or in other words, we reduce
the linear dependence on the parameter L to poly-logarithmic.

161

Chapter 10

The Distributed Rerouting
Algorithm

Contents
10.1 The Greedy Distributed Rerouting Algorithm . 163

10.2 The Upper Limit on the Increase of Flow in One
Round . 169

10.3 Running Time of Greedy Distributed Algorithm 171

10.4 The Greedy Balancing Distributed Algorithm . 179

10.5 Summary . 186

In this chapter we are going to examine the Greedy Distributed Rerouting
(GDR-MCF) algorithm proposed by Awerbuch and Khandekar [4]. In the first
Section we are going to to describe the GDR-MCF algorithm and provide some
main theorems from [4] to help us in the analysis of the algorithm. In Section 10.2
we propose a new upper limit on the flow change which is monotonically increasing
with respect to the flow, unlike the previous upper limit on flow proposed in [4].
In Section 10.3 we show that the number of rounds needed for the algorithm
to terminate using the current bounds on the flow change is proportional to
L. In fact, we show that the number of rounds of the GDR-MCF algorithm
is proportional to L when executed on our worst-case network ΥL, even when
removing the limit on the flow decrease.

162

10.1 The Greedy Distributed Rerouting Algorithm

Awerbuch and Khandekar [4] describe the first stateless greedy algorithm for the
distributed multi-commodity concurrent flow problem with the number of rounds
poly-logarithmic in size of the input and linear in the parameter L. We refer to
this algorithm as GDR-MCF algorithm. Agents, each one representing the flow
of a single commodity, operate in a cooperative but uncoordinated manner. The
agents perform their computations in an asynchronous manner and only synchro-
nize at the start of a round. The computation model used is the Distributed
Shared Memory model described in Section 8.3. More details about the model
used in [4] can be found in subsection 8.4.2.

A routing metric is introduced to indicate the cost of an edge with respect to
its congestion. This is given by the derivative of the potential function

Φ =
∑
e∈E

φe,µ(f(e)),

where
φe,µ(f(e)) = m

f(e)
c(e)·µ ,

and µ ≈ ε · λ. The number c(e) is the capacity of edge e ∈ E, f(e) is the total
flow on edge e and µ is parameter associated with the maximum congestion in the
network. Observe that this potential function is exactly the same as the potential
function of the DGD-MCF algorithm when λ = 1; see (9.1).

To deal with the instability problem that can arise by routing all the flows
simultaneously ”speed limits” on the changes of edge flows are imposed. These
limits control the maximum amount by which a flow can increase or decrease on
an edge. This way oscillations are prevented and the flows will converge. It is
remarkable that a more restrictive ”speed limit” is enforced on the decrease of the
edge flows than on the increase which is opposite to the intuition that increase is
more ”dangerous" for oscillations than decrease.

More specifically, the algorithm maintains an upper bound ∆+
i (e) and a lower

bound ∆−i (e) on the total flow change on an edge e within one round. The bounds

163

at the beginning of the round, are set to:

∆−i (e) = fi(e)
β

4L
, (10.1)

∆+
i (e) = max{β · fi(e), (1 + β) · f̈i(e)}, (10.2)

where f̈i(e) is an initial additive limit set for edges with small or no flow. The
bounds change throughout the round while the flow changes on the edges.

The main execution of the algorithm during one round proceeds in the fol-
lowing way. An agent i reads the total edge flow values from the billboard at the
beginning of each round. Then the costs of all edges are calculated as:

φ
′

e,µ(f(e)) =
logm

c(e) · µ
m

f(e)
c(e)·µ ,

and remain fixed throughout this round. The shortest path P SP from si to ti and
its cost are computed. This cost is compared with the average cost of the flow
of commodity i in the network, which can be found by adding the total cost of
commodity i on all edges and dividing this by its demand di:

(1 + α) · φ′f (P) <
di∑

e∈E
fi(e)φ

′

e,µ(e).

If the cost of path P SP is significantly smaller than the average cost and the
upper and lower flow limits are not violated a small amount of flow is rerouted
from all paths to path P SP . The procedure proceeds until no paths which satisfy
the flow limit constraints can be found or until no path can be found with cost
significantly smaller than the average path cost. At this point the agent i writes
the new flow of commodity i on the billboard and waits for the next round to
begin. Pseudocode of one round of the GDR-MCF algorithm is given below as
Algorithm 7.

The following theorem, proved in [4], describes the performance of the GDR-
MCF Algorithm .

Theorem 12 (Theorem 1 from [4]). The GDR-MCF algorithm achieves an ε-

164

Algorithm 7: Greedy Distributed Rerouting algorithm [4]
// One round, commodity i //
Input: flow vectors fi, f and µ
Output: flow vectors fi
Part 1 // Calculation of cost function //

1. Calculate λmax;
2. Calculate µ← min{µ, 2blog2(ε·λmax)c} or 2blog2(ε·λmax)c if µ is not set;

3. Calculate φ′e,µ(f(e)) ≡ m
f(e)
c(e)·µ for all e ∈ E ; /* Cost of e */

4. Define φ′f (Pi,j) ≡
∑

e∈Pi,j φ
′
e,µ(f(e));

Part 2 */ Calculation of residual capacities*/

1. α← ε
40 logm

;
2. β ← Θ(α · ε

logm
);

3. f̈i(e)← µ
log2m

· c(e)
(1+β)k

· log2(1 + α
8
);

4. upon each round initialize for all e ∈ E;
(a) ∆−i (e)← fi(e)

β
4L
;

(b) ∆+
i (e)← max{β · fi(e), (1 + β) · f̈i(e)};

Part 3 // Updating the flow //

while
∑

ν∈V ∆−i (si, ν) > 0 and ∃ P ∈ Pi s.t.
mine∈P∆+

i (e) > 0, and
(1 + α) · φ′f (P) <

(∑
e∈E fi(e)φ

′
e,µ(e)

)
/di do

1. Set P ∗ ← argmin φ
′

f (P) over set Pi,j ∈ P satisfying the above
conditions ;
2. δ ← min

{
mine∈P ∗ ∆+

i (e),
∑

ν∈V ∆−i (si, ν)
}
;

3. fi(e)← fi(e)− δ · fi(e)di
, for all e ∈ E ;

4. ∆−i (e)← ∆−i (e)− δ · fi(e)
di

, for all e ∈ E ;
5. fi(e)← fi(e) + δ and ∆+

i (e)← ∆+
i (e)− δ, for all e ∈ P ∗ ;

end

165

approximation within Õ(L) rounds. The running time of each round of the GDR-
MCF algorithm is Õ(m2) for each commodity.

Below we prove a couple of lemmas which are not explicitly given in [4] but
are important in the analysis of the algorithm. Let f (r,j)

i (e) denote the value of
the flow of commodity i on edge e at the end of the jth step of round r. Also,
let δf (r,j)

i denote the amount of flow of commodity i rerouted at the jth step of
round r.

Lemma 16. The flow of each commodity i on each edge e at the end of a round
never decreases by more than a β/4L fraction of this flow at the start of the
round. That is,

f
(r+1,0)
i (e) ≥

(
1− β

4L

)
f

(r,0)
i (e). (10.3)

Moreover, the upper bound of the amount of flow of commodity i rerouted at
step j is given by the following expression, which is always non-negative,

∆−i,j =
∑
ν∈V

∆−i,j(si, ν) =
β

4L
di −

j∑
q=1

δf
(r,q)
i . (10.4)

Proof. We first prove (10.4).
Let ∆−i,j be the value of

∑
ν∈V ∆−i,j(si, ν) at the end of step j. To prove our

claim we need to establish a formula for the upper bound on the flow change at
any step.

We prove by induction that formula (10.4) holds and that is always non-
negative. Initially,

∆−i,0 =
∑
ν∈V

∆−i (si, ν) =
∑
ν∈V

β

4L
fi(si, ν) =

β

4L
di ≥ 0.

Assume that (10.4) holds for some step j ≥ 0 and it is non-negative. Then at

166

step j + 1, the change of flow is given by

δf
(j+1)
i = min

{
min
e∈P ∗

∆+
i (e),∆−i,j

}
= min

{
min
e∈P ∗

∆+
i (e),

β

4L
di −

j∑
q=1

δf
(r,q)
i

}
. (10.5)

Then, using the formula for updating ∆−i,j(e) and the inductive hypothesis, we
have

∆−i,j+1 =
∑
ν∈V

(
∆−i,j(si, ν)− δf

(r,j+1)
i

di
fi(si, ν)

)

=
β

4L
di −

j∑
q=1

δf
(r,q)
i −

∑
ν∈V

δf
(r,j+1)
i

di
fi(si, ν)

=
β

4L
di −

j∑
q=1

δf
(r,q)
i − δf (r,j+1)

i (10.6)

=
β

4L
di −

j+1∑
q=1

δf
(r,q)
i .

The value (10.6) is non-negative because of (10.5), so (10.4) holds for j + 1 and
is non-negative.

167

Now we prove (10.3). The flow at any step j ≥ 1 is given by

f
(r,j)
i (e) ≥ f

(r,j−1)
i (e)− δf

(r,j)
i

di
f

(r,j−1)
i (e)

=

(
1− δf

(r,j)
i

di

)
f

(r,j−1)
i (e)

=

j∏
q=1

(
1− δf

(r,q)
i

di

)
f

(r,0)
i (e)

≥

(
1−

j∑
q=1

δf
(r,q)
i

di

)
f

(r,0)
i (e)

≥
(

1− β

4L

)
f

(r,0)
i (e)

The above lemma proves that at any round we reroute at most β/4L fraction
of the demand and at any edge the flow at the end of the round is not decreased
by more than this fraction. We show in our next lemma that if we have not
managed to reroute a β/4L fraction of the demand then all approximate shortest
paths have at least one saturated edge.

Lemma 17. If the round ends and the amount of the rerouted flow of commodity
i is less than diβ/4L, then each ε-approximate shortest path P has at least one
saturated edge, that is,

f
(r+1,0)
i (e) = f

(r,0)
i (e) + ∆+

i (e) = (1 + β)f
(r,0)
i (e), (10.7)

for some e ∈ P .

Proof. We are going to prove this lemma by contradiction. Assume that at some
step j within a round the rerouted flow is less than diβ/4L, and there exists an
ε-approximate shortest path P SP that has no saturated edge.

If the rerouted flow
∑j

q=1 δf
(r,q)
i < diβ/4L, then from Lemma 16, ∆−i,j > 0,

that is, the round does not end.

168

10.2 The Upper Limit on the Increase of Flow in

One Round

Awerbuch and Khandekar [4] define speed limits for the allowed increase and
decrease of the flow on one edge in one round. In our analysis of their algorithm
we discovered a behavior in the function ∆+

i (e) of the allowed increase which is
not monotonic: it linearly decreases when fi(e) increases from 0 to f̈(e), and
then increases. Usually the function on the allowed flow sent in each round is
monotonically increasing. In other words, in each round we are allowed to send
more flow than the previous one. This happens because in each round we take
advantage of the knowledge we gain while distributing the flow in the previous
rounds, which results in more aggressive increase of the flow and thus faster
termination of the algorithm. In [4] this is not the case. The function of the
allowed increase is given by

∆+
i (e)← (1 + β) ·max{fi(e), f̈(e)} − fi(e) (10.8)

where
f̈(e) =

µ

log2m
· c(e)

(1 + β)k
· log2(1 +

α

8
) (10.9)

The allowed increase in the flow in one round is β · fi(e) except in the cases
where the flow is small, i.e. when fi(e) ≤ f̈(e), in which case an additive flow
(1+β)·f̈(e)−fi(e) is allowed to be sent. In Figure 10.1 we can observe graphically
this behavior. Note that if the flow is zero the allowed capacity of the edge starts
at (1+β)·f̈i(e) and in the subsequent rounds it decreases. It only starts increasing
at the point when the flow on this edge is equal to its additive limit f̈i(e). This
non-monotonic behavior could force the algorithm to perform a significant number
of rounds when edge flow is less or near the threshold value of f̈(e), i.e. before a
significant amount of flow is sent along edges with small or zero flow initially so
that the multiplicative increase starts.

We propose a new upper limit on the increase of the flow defined as follows

∆+
i (e) = β · fi(e) + (1 + β) · f̈(e)

169

This definition would not affect any of the properties of the upper limit on the
increase of the flow or the analysis of the Greedy Distributed Rerouting algorithm,
but it would reduce the number of rounds needed for the algorithm to properly
initialize and it is much simpler. We will analyze the main lemmas involving the
additive upper limit in [4] below. In fact we are showing that the "gain" is even
better using this definition.

By setting the additive increase to be equal to

f̈(e)← µ

log2m
· c(e)

(1 + β)k
· log2

(
1 +

α

8

)
,

they allow only a fraction α/8 increase/decrease in the cost φ′. For all k com-
modities the total additive increase in the flow is at most

(1 + β)k · f̈(e) ≤ µ

log2m
· c(e) · log2

(
1 +

α

8

)
,

which gives a multiplicative increase in the cost of

m
1

c(e)·µ
µ

log2m
·c(e)·log2(1+α

8) = 1 +
α

8
.

The multiplicative speed limit on the increase of the flow β · fi(e) gives an extra
α/8 increase in the cost φ′.

Lemma 18. The cost φ′e,µ(f(e)) of each edge e increases (respectively decreases)
within a round by at most (1 + α

8
)2 (respectively by at most (1 + α

8
)) factor.

Proof. The upper limit on the multiplicative flow increase (decrease) from [4]
causes the cost to increase (decrease) by at most (1 + α

8
). The additive increase

gives an extra factor of at most (1 + α
8
).

We conclude that changing the allowed increase function would not affect the
analysis of the algorithm in [4] but it would give us a more regular behavior of
the upper limit function and a simpler definition than the previous one (10.8).

The graph below shows the behavior of the old upper limit function with
respect to the one we propose in this thesis.

170

Figure 10.1: Old v New Upper Limit on the Increase of Flow

10.3 Running Time of Greedy Distributed Algo-

rithm on ΥL

10.3.1 The GDR-MCF Algorithm with the Flow-Decrease

Constraints

The upper bound on running time of the GDR algorithm shown by Awerbuch
and Khandekar [4] depends linearly on the maximum path size L. Awerbuch and
Khandekar [4] claim that on the Internet only short paths are used (less than
10 hops) so the linear dependence of the running time on L is not a problem in
practice. We would like to investigate this dependence further for the case when
the maximum path size is actually large (in the worst case of the order of n). It
is easy to show that the worst-case running time is linearly dependent on L if
the decrease constraints are used. We show this result on network ΥL shown in
Figure 9.1. We use the notation for network ΥL as introduced in Section 9.2.

Lemma 19. The worst-case number of rounds during the computation of the

171

Greedy Distributed Rerouting algorithm with the flow-decrease constraints is
Ω(L log2m/ε2).

Proof. From Lemma 16 the flow increase on an edge e at any round is given by

f
(r+1,0)
i (e) ≥

(
1− β

4L

)
f

(r,0)
i (e). (10.10)

Now consider the network in Figure 9.1 with k commodities. The demand for
each commodity is now given by di = 1 and initially all the flow is on the top
path Pi,1 for each commodity i. The capacity of all edges is c(e) = 1. Thus at
the beginning the maximum congestion is λmax = k and the optimal congestion
is λopt = 1. To achieve an ε-approximate solution, that is to achieve a congestion
λ < 1 + ε, a total flow of at least k − (1 + ε) needs to be rerouted from the top
path to the lower paths. The flow of commodity i at round j in the top path is
given by

f
(j,0)
i (e) ≥

(
1− β

4L

)j
>

(1 + ε)

k
.

To get an ε-approximate solution at round R the flow of commodity i at the top
path must decrease to

f
(R,0)
i (e) ≤

(
1− β

4L

)j
≤ (1 + ε)

k
.

Thus the number of rounds, R is bounded by

1− β

4L
R ≤ (1 + ε)

k

⇒ R ≥ 4L

β
(1− (1 + ε)

k
)

⇒ R ≥ 2L

β
.

Hence the number of rounds needed for the algorithm to terminate is Ω(Lε−2 ·
log2m).

172

10.3.2 The GDR Algorithm Without the Flow-Decrease

Constraints

It is easy to see that the flow-decrease constraints will cause a linear dependence of
the number of rounds on L because in any round only a fraction of O(1/L) of flow
is allowed to be rerouted. For this reason we would like to investigate the behavior
of the algorithm on ΥL without this restriction. No current upper bounds exist
for this case. More specifically we modify the algorithm and remove all references
to the flow-decrease bounds ∆−i (e). We abbreviate the new, modified algorithm
without the flow-decrease constraints GDR+ algorithm. Thus now if a path Pi,j
is chosen, the flow on this path will now increase by

δ ← min
e∈Pi,j

∆+
i (e) (10.11)

To show the worst-case behavior of the GDR+ algorithm on ΥL we modify the
network to fit to our analysis. We add an artificial edge of capacity c(si, t) = 1

from each commodity source si to the destination t. We denote this path by Pi,0
to fit with the description of the other paths. The demand for each commodity
is now di = 2.

The optimal congestion is λopt = 1 and each optimal flow f ∗ has f ∗i (si, t) = 1

and f ∗i (si, wi,1) = 1. Recall that f (r,0)
i,j denotes the flow of commodity i on path

Pi,j at the beginning of round r. Initially all the flow of each commodity is
concentrated on edge (si, t), that is f (1,0)

i,0 = 2 and f
(1,0)
i,j = 0, j ≥ 1. We also

alter the number of edges of each path by adding one edge on the "shared" part
of each path. This way all of the paths Pi,j have L + 2 edges now instead of
L+ 1. The exclusive path Pi remains unchanged. The reason for this is to force
the commodities to choose the exclusive path for their initial augmentation. The
topology and the capacities of all of the edges remain unchanged. Figure 10.2
shows the network Υ′L from the point of view of one commodity.

Initially all of the flow of each commodity i is on edge (si, t). All of the remaining
edges are empty. This way we have a similar setting to the one in Section 9.2.1.
Our aim is to simulate the behaviour of the GDR algorithm with the Distributed

173

Figure 10.2: Network Υ′L for One Commodity

Gradient Descent algorithm to be able to compare their execution. The flow in
this situation, as before, is zero everywhere in the network ΥL and it builds up
gradually. The goal is to show that the algorithm needs to visit at least L paths
before it achieves the required optimal solution.

The fact that the congestion initially is λinit = 2 and the final congestion
achieved by the algorithm is λfinal ≥ 1 means that we only have one phase in the
algorithm. Recall that the parameter

µ← min{µ, 2blog2(ε·λmax)c}

only changes when the congestion drops by a factor of 2, at which case the phase
changes. Since the congestion only drops by a factor of 2 when we achieve the ac-
tual optimal solution we conclude that there is only one phase of the algorithm on
the current setting of the network Υ′L. Hence, assuming without loss of generality

174

that ε = 2−i for a positive integer i we have

µ = 2blog2(ε·λmax)c

= 2blog2(ε·2)c

= 2ε.

Informally the algorithm proceeds as follows. First it calculates the cost of all
edges for a commodity i. Then it picks the shortest path and compares its cost
with an average of the total cost. If the cost of the path is less than (1− α) the
average cost, i.e. there exists an α benefit on the cost if this path is used, then
the commodity is allowed to reroute on this path an amount of flow δ. After the
augmentation the allowed flow that can be sent on all edges of the path chosen
is recalculated. The chosen path might be using edges of other paths as well so
the allowed flow that can be pushed can change. As long as there exists a path
with positive minimum allowed increase of its edges and it is beneficial (its cost
is significantly smaller than the average total cost) the algorithm keeps choosing
this path and augments flow. The round terminates when no other path can be
found satisfying this constraint. At this point the commodity writes its flow on
the billboard and starts the procedure again until an approximate optimal flow
is achieved. We are going to show that the algorithm in fact does not terminate
before Ω(L) rounds have passed.

Theorem 13. For the network Υ′L and the initial flows f0 the Greedy Dis-
tributed Rerouting algorithm (GDR+) needs at least Ω(L) rounds to reach an
ε-approximate flow.

First we are going to sketch our proof. This theorem will follow directly from
Lemma 22, which follows from Lemmas 20 and 21. Agent i at the beginning
of a round picks the shortest path from si to ti and reroutes as much flow of
commodity i as allowed by the push residual capacities ∆+

i (e). At the beginning
of the first round (round 0) all of the paths, besides the exclusive path Pi, in the
network Υ′L have the same length since there is no flow, they have the same size
and all edges have the same capacity. The exclusive path has the smallest length
because it is one edge shorter than the other paths. Each agent categorizes all

175

of the paths as available but it chooses the exclusive one as the shortest path.
The length of the shortest path is L and the lengths of the other paths are L+ 1.
The length of the longest path Pi,0 is m1/ε so all the paths are beneficial initially,
that is, their cost is significantly smaller than the cost of the longest path (see
the second line of the "while" loop of Algorithm 7). Since there is no flow on the
shortest path Pi the allowed increase is given by

δ = min
e∈Pi

∆+
i (e) = (1 + β) ·min

e∈Pi
f̈i(e) = (1 + β) · f̈

No other paths are used in round 0 since the flow sent along path Pi saturates
edge (si, wi,1). The values f̈i(e) are equal for all the edges e ∈ Pi because all edges
have the same capacities. We abbreviate f̈ = f̈i(e) to simplify notation.
In the next round each commodity picks the top path Pi,1 first to augment flow.
This happens because the top path is the shortest path in this round. The cost
of a path is given by

φ
′

f (Pi,j) ≡
∑
e∈Pi,j

φ
′

e,µ(f(e)) (10.12)

All of the paths Pi,j have a shared part and an exclusive part (and one edge
connecting the two parts). Path Pi,j has j edges on the exclusive part and L− j
edges on the shared part as defined in Section 9.2. Since only the exclusive edges
have positive flow, then the path with the smallest number of exclusive edges will
be the shortest, that is path Pi,1. Rerouting the flow onto path Pi,1 saturates edge
(si, wi,1), so no other path is used in this round. In round 2 the shortest path
is Pi,2 for similar reasons as above, so flow is rerouted onto this path saturating
edge (wi,1, wi,2). At this round some further flow can be rerouted also onto the
path Pi,1 if the conditions are satisfied. This pattern continues during subsequent
rounds: In round r first the path Pi,r is chosen and rerouting of flow saturates
the edge (wi,r−1, wi,r). Then some further flow can be also rerouted onto some of
the paths. Pi,1, Pi,2, . . . , Pi,r−1, but no flow will be rerouted onto any path Pi,j for
j > r. We show in Lemmas 20 and 21 that in each round only one new path can
be used to reroute flow. Following from these two lemmas, Lemma 22 says that
after L/4 rounds we still do not have an ε-approximate flow.

Lemma 20. If path Pi,r is used for the first time in round t, then paths Pi,j, j > r

176

could not be used in the previous rounds 1, 2, . . . , t− 1.

Proof. If any path Pi,j, j > r was used in any of the previous rounds 1, 2, . . . , t

then by construction of the network Υ′L path Pi,r would also be used. The algo-
rithm picks the shortest path first in each round to augment flow. Then if the
constraints are satisfied it can augment flow in more paths. Now consider the
two paths Pi,r and Pi,j, j > r at some round s < t and assume that no flow has
been sent yet to any of the two paths. Then the cost of each path is given by

φ
′

f (Pi,j) =
∑
e∈Pi,j

φ
′

e,µ(f(e))

= φ
′

e,µ(si, wi,1) + φ
′

e,µ(wi,1, wi,2) + . . .

+ φ
′

e,µ(wi,r−1, wi,r) + . . .+ φ
′

e,µ(wi,j−1, wi,j) + L− j.

Comparing the two paths we can observe that the cost of path Pi,r is broken down
into the following parts

φ
′

f (Pi,r) = φ
′

e,µ(si, wi,1) +
r∑
l=1

φ
′

e,µ(wi,l−1, wi,l) + L− r.

and the cost of path Pi,j is given by

φ
′

f (Pi,j) = φ
′

e,µ(si, wi,1) +
r∑
l=1

φ
′

e,µ(wi,l−1, wi,l)

+

j∑
l=r+1

φ
′

e,µ(wi,l−1, wi,l) + L− j.

So in any round s, s = 1, 2, . . . , t path Pi,r would be chosen first since its cost
is less than the cost of path Pi,j, j > r. This holds because both paths have a
common part of the same length and a part with the same size, but in contrast to
path Pi,r there are some edges in the second part of path Pi,j which have positive
flow. Thus if path Pi,r is chosen for the first time in round t paths Pi,j, j > r

could not be used in the previous rounds by construction.

Lemma 21. Path Pi,r is first chosen at round r.

177

Proof. We are going to prove this result by induction. Consider the set of paths
Pi = {Pi,1, Pi,2, . . . , Pi,L} for each commodity i. At first the exclusive path Pi

is chosen. For simplicity of our arguments we are going to define this round as
round 0. In round 1 path Pi,1 is chosen for the reasons stated above. We assume
that for j ≥ 1 path Pi,s is first chosen in round s. We need to show that in round
s+ 1 path Pi,s+1 is chosen for the first time.

Lemma 20 implies that path Pi,s+1 is not used in round s. We are going to
argue that path Pi,s+1 is the shortest path in round s+ 1. Remember that a path
Pi,j is given by its exclusive part and its shared part. Path Pi,j, j ≥ s + 1 has
L − j edges on the exclusive part and j edges on the shared part. Lemma 20
implies that no flow has yet been rerouted on any of the paths Pi,j, j ≥ s + 1 so
the flow in the shared part is 0. Therefore the cost of any path Pi,j, j ≥ s + 1 is
given by

φ
′

f (Pi,j) =
∑
e∈Pi,j

φ
′

e,µ(f(e))

= φ
′

e,µ(si, w1) + φ
′

e,µ(wi,1, wi,2) + . . .

+ φ
′

e,µ(wi,s, wi,s+1) + . . .+ φ
′

e,µ(wi,j−1, wi,j) + L− j

= φ
′

f (Pi,s+1) + φ
′

e,µ(wi,s+1, wi,s+2) + . . .

+ φ
′

e,µ(wi,j−1, wi,j)− (L− s− 1).

Since for all paths j > s+ 1 the exclusive edges have positive flow it follows that
Pi,j is the shortest path if and only if j = s + 1. Therefore path Pi,s+1 is first
chosen in round s+ 1.

Corollary 4. Path Pi,r is used for the first time in round r, and no paths Pi,j, j >
r are used in this round.

Proof. This is straightforward since if path Pi,r is used for the first time in round t
it means that edge (wi,s, wi,s+1) is saturated. Thus by construction of the network
Υ′L no subsequent paths can be used.

Lemma 22. After L/4 rounds the congestion achieved is not yet ε-approximate,
that is λmax > 1 + ε.

178

Proof. Assume that after a number of rounds L/4 we have an optimal flow. This
suggests that we have a congestion λ ≤ 1+ε. Lemma 20, Lemma 21 and Corollary
4 suggest that the flow is distributed in the top L/4 paths for all commodities i.
Now, the capacity of the cut containing the top L/4 paths is equal to L/4 since
the capacity of each path is equal to 1. Thus the total flow of each commodity
i which is equal to 2 units is distributed among these paths. Then the best
congestion that can be achieved is by rerouting x flow, where x is the solution to
the following equation

2− x =
Lx
L
4

Thus we get a maximum congestion equal to 8/5. The optimal congestion that
can be achieved is less than or equal to 1 + ε so the congestion achieved is not
ε-approximate, in fact we still need to decrease the congestion by a factor of 5/8.

Theorem 13 follows from Lemma 22 since the GDR+ needs at least Ω(L)

rounds to reach an optimal solution on network Υ′L.

10.4 The Greedy Balancing Distributed Algorithm

The analysis of the Greedy Distributed Algorithm on the network Υ′L suggests
that in order to reduce the number of rounds we need to find a way to avoid
the bottleneck imposed by the "exclusive" path of Υ′L and remove the flow de-
crease constraints (see Section 10.3.1). As in Chapter 9 a number of approximate
shortest paths cannot be used to reroute flow in the same round because they are
blocked by prior paths. Again we are going to avoid this bottleneck by spread-
ing the flow among all available approximate shortest paths using the Maximum
Capacity Path (MCP) algorithm algorithm.

In this section we are going to analyze the Balancing Distributed Rerouting
Multicommodity Flow algorithm (BDR-MCF) on network Υ′L. Our algorithm fits
exactly in the framework of the GDR+ algorithm with the only change being the

179

way we reroute flow. Instead of rerouting flow iteratively on shortest path we are
distributing the flow among a number of approximate shortest paths, calculated
using the MCP algorithm. Our analysis is similar to the analysis of the BD-MCF
algorithm in Chapter 9.

10.4.1 Analysis of the Greedy Balancing Distributed Algo-

rithm on Υ′L

In this section we are going to prove that using the MCP algorithm to calculate
and distribute flow among approximate shortest paths leads to reducing the num-
ber of rounds from Õ(L) to Õ(logL). We are going to first show how the flow is
distributed in the first round and then prove the general case.

Recall that on network Υ′L the demand for each commodity is di = 2 and
the whole flow of each commodity is initially on the edge (si, t). The maximum
congestion is λinit = 2 and the final congestion achieved by the algorithm is
λfinal ≥ 1. This means that we only have one phase in the algorithm. Remember
that the parameter

µ← min{µ, 2blog2(ε·λmax)c}

Hence µ in all rounds, assuming without loss of generality that ε = 2−i for a
positive integer i is given by

µ = 2blog2(ε·λmax)c

= 2blog2(ε·2)c

= 2ε.

Initially, since fi(e) = 0 for all the edges e ∈ E except the edge (si, t), the
upper limit on flow increase ∆+

i (e) is given by

∆+
i (e) = (1 + β)f̈ ,

where
f̈ =

2ε

log2m

1

(1 + β)L
log2(1 +

α

8
).

180

All paths are approximate shortest paths at the beginning of the first round.
Remember that the cost of a path is given by

φ(P) =
∑
e∈P

m
f(e)
c(e)·µ = (L+ 1)m.

For a path to be an approximate shortest path its cost must be smaller than the
average cost, that is

(1 + α)φ(P) <

(∑
e∈E

fi(e)φ
′

e,µ(e)

)
/di = 2m1/ε.

The inequality clearly holds for ε < 1/2 since L < m1/2. Thus the number of
approximate shortest paths calculated using the MCP algorithm is

σ =

j=L∑
j=2

(j + 1) =
L(L+ 3)− 4

2
. (10.13)

Flow is then rerouted according to the size of each path. As in Section 10.5
we are going to assume that for each exclusive edge (wi,j, wi,j+1), the computed
approximate shortest path is Pi,j+1. By making this assumption we "force" the
top paths that congest faster, i.e. the top paths in Figure 10.2, to even faster
congestion, obtaining the worst case behaviour. This holds because we "force"
more flow to be sent to the top paths in each round. Recall that in each round
we calculate a shortest path for each edge and if the path is ε-approximate we
send flow through the path. Hence, if an ε-approximate path has more edges it
will get more flow.

Let f (r)
i,j (e) denote the amount of flow of commodity i on edge e at the end of

round r on path Pi,j. The total flow rerouted in each path Pi,j in the first round
is given by

f
(1)
i,j =

L+ 2− j
σ

(1 + β)f̈ . (10.14)

We can calculate whether the capacity of the edge (si, w1,1) is violated by

181

summing the flow over all the paths.

f (1)(si, w1,1) =
L∑
j=2

L+ 2− j
σ

(1 + β)f̈ = (1 + β)f̈ , (10.15)

where f (r)(u, v) denotes the amount of flow on edge (u, v) at the end of round r.
Thus, in the first round edge (si, w1,1) is saturated for each commodity i.

The flow of each commodity i is concentrated at edge (si, t) initially and it is
rerouted from this edge to the lower paths in the subsequent rounds. Effectively,
the execution of the BDR-MCF algorithm on network Υ′L simulates the execution
of the BD-MCF on network ΥL. More specifically, the paths in the lower part
of the network Υ′L are initially empty and flow is gradually built up from zero
(similar to the BD-MCF algorithm on network ΥL). Thus, we expect the two
algorithms to have exactly the same execution.

Flow rerouted from the top path Pi,0 to the lower part of network Υ′L will
saturate edge (si, w1,1) for as long as the top path Pi,1 is an approximate shortest
path, that is as long as all paths Pi,j are approximate shortest paths. Since edge
(si, w1,1) is saturated in every round it follows that the total flow on edge (si, w1,1)

at the end of round r is

f (r)(si, w1,1) = (1 + β)rf̈ . (10.16)

The flow rerouted from the top path Pi,0 to the lower part of network Υ′L saturates
edge (si, w1,1) for as long as the path Pi,1 is an approximate shortest path. To
find a bound on the number of rounds we need to first find a bound on the flow
change on path Pi,1.

Lemma 23. The upper and lower bound on the flow of commodity i on path Pi,j
at the end of round r, as long as all paths Pi,j are approximate shortest paths, is
given respectively by

f
(r)
i,j ≥

L+ 2− j
σ

(1 + β)rf̈ . (10.17)

and,

f
(r)
i,j ≤ 2

L+ 2− j
σ

(1 + β)rf̈ . (10.18)

182

Proof. We prove the upper bound on the flow at the end of round r. We can
prove the lower bound using similar arguments. For the first round the proof is
trivial. At the end of round r the flow of paths Pi,j is given by the expressions
(10.17) and (10.18). This means that the upper bound on the upper limit on flow
increase of path Pi,j at round r + 1 is

∆
(r)
i,j ≤ 2β

L+ 2− j
σ

(1 + β)r+1f̈ .

The total flow of commodity i sent on path Pi,j, calculated by the MCP
algorithm, is

δf
(r)
i,j ≤ 2

(L+ 2− j)2

σ2
β(1 + β)r+1f̈ .

Summing over all paths Pi,j we get the flow on edge (si, wi,1)

f (r)(si, wi,1) ≤
L∑
j=1

2
(L+ 2− j)2

σ2
(1 + β)r+1f̈

≤ L(2L2 + 9L+ 13)

6σ2
(1 + β)r+1f̈

≤ 2(2L2 + 9L+ 13)

3L(L+ 3)2
(1 + β)r+1f̈

≤ 2

L
(1 + β)r+1f̈ .

It can be easily verified using similar arguments that the lower bound of the flow
on edge (si, wi,1) is

f (r)(si, wi,1) ≥ 1

L
(1 + β)r+1f̈ .

Thus, the flow needs to be scaled by a factor of Θ(L) for edge (si, wi,1) to be
saturated. Scaling everything by L/2 we get that the upper bound on the flow

183

of path Pi,j at the end of round r is

f
(r)
i,j ≤

L

2
· 2(L+ 2− j)2

σ2
β(1 + β)r+1f̈

≤ L

2

L+ 2− j
σ

· 2(L+ 2− j)
σ

β(1 + β)r+1f̈

≤ 2
(L+ 2− j)

σ
β(1 + β)r+1f̈ .

We can now find the time needed for the top path to no longer be an ε-
approximate shortest path.

Lemma 24. Path Pi,0 stops being an ε-approximate shortest path after
2ε−2 log2m log

(
ε−2 log2m

)
rounds.

Proof. The flow rerouted keeps saturating edge (si, wi,1) for as long as the top
path Pi,1 is available, that is, for as long as the length of path Pi,1 satisfies the
following condition

(1 + α) · φ′f (Pi,1) <

(∑
e∈E

fi(e)φ
′

e,µ(e)

)
/di. (10.19)

The cost φ′f (Pi,1) of path Pi,1 is given by

φ
′

f (Pi,1) =
∑
e∈Pi,1

m
f(e)
µc(e)

=
∑
e∈Pi,1

m
f(e)
2ε

≤ (L+ 1)m
L(L+1)
εσ

β(1+β)r+1f̈

≤ (L+ 1)m2β(1+β)r f̈ . (10.20)

In the third line we have substituted the upper bound on the flow of edge e. Note
that we multiply this flow by L since all commodities send flow at the shared
part of path Pi,1.

184

Since in every round r we reroute β(1 + β)rf̈ flow from path Pi,0 to the rest
of the paths, the total flow on path Pi,0 at the end of round r is

f(Pi,0) = 2− (1 + β)rf̈ .

Thus, the cost of path Pi,0 at the end of round r is

φ
′

f (Pi,0) = m
2−(1+β)rf̈

2ε .

Hence, as long as (1 + β)rf̈ ≥ 1(∑
e∈E

fi(e)φ
′

e,µ(e)

)
/di ≥ (2− (1 + β)rf̈) ·m

2−(1+β)rf̈
2ε

≥ m
2−(1+β)rf̈

2ε . (10.21)

We can find the number of rounds needed for the top path to stop being ε-
approximate shortest path by substituting (10.20) and (10.21) in inequality (10.19).
We get

2β(1 + β)rf̈ ≤ 2− (1 + β)rf̈

2ε

⇒ r =
2

log(1 + β)
log f̈

⇒ r = 2ε−2 log2m log
(
ε−2 log2m

)
.

Theorem 14. The BDR-MCF algorithm terminates inO
(
ε−2 log2m log

(
ε−2 log2m

))
rounds.

Proof. For the algorithm to terminate we need to reroute one unit of flow from
path Pi,0 to the rest of the paths. For as long as the top path Pi,0 is available the
flow rerouted is equal to the flow of the edge (si, wi,1) and is given by

f(si, wi,1) = (1 + β)rf̈ . (10.22)

185

Thus, the flow rerouted is greater than one unit of flow in

r ≥ ε−2 log2m log
(
ε−2 log2m

)
. (10.23)

Since the total time needed to reroute one unit of flow to the lower paths is less
than the total time needed for the top path Pi,1 not to be ε-approximate shortest
path we conclude that the algorithm terminates in O

(
ε−2 log2m log

(
ε−2 log2m

))
rounds.

10.5 Summary

In this part we have presented the main distributed algorithms for the Maximum
Concurrent Flow problem. We have introduced the the main design concepts of
distributed algorithms in general and described some of their applications. For
the Maximum Concurrent Flow problem we have examined a special distributed
model which uses a billboard for communication. More specifically, we analyzed
the main algorithms for solving the MCF problem under this model, the DGD-
MCF algorithm [7] and the GDR-MCF Algorithm [4]. We have constructed a
worst case input for both cases and proved that the bounds on the number of
rounds are tight. We have also proposed a heuristic to avoid the bottleneck
of these algorithms, the Balancing Distributed MCF algorithm. The algorithm
instead of calculating a path to distribute flow in each round it calculates a set
of suitable paths and tries to balance the flow evenly among them. This enables
more aggressive flow increase in the later stages of the algorithm, thus reducing
the total running time.

186

Chapter 11

Conclusions

11.1 Summary

In this thesis we have examined the Maximum Concurrent Flow problem. Several
approximation algorithms, both sequential and distributed, have been proposed
in the literature to solve this problem. We have examined both computational
models and contributed towards finding relations between sequential MCF algo-
rithms and towards further analysis of distributed MCF algorithms.

Two frameworks have been developed to solve the Maximum Concurrent Flow
problem using sequential algorithms: the rerouting and the incremental. These
frameworks have been previously considered as distinct. In this thesis we have
shown that the two methods are more closely related to each other than previ-
ously considered. We have shown that each method can be viewed as a variation
of the other method. Moreover, the implementation of our proposed algorithms is
more practical. For the incremental method we have proposed a new edge length
function which is exponential in the edge flows. This length function is similar
to the one used in the rerouting method. Using this length function we can view
the incremental method as an instance of the rerouting method. We have proved
that we can use this length function in the original incremental algorithm with-
out increasing the running time of the algorithm. For the rerouting algorithm
we have proposed a different method for computing minimum cost flows than in
the original algorithm. We have shown how we can do this using the Successive
Shortest Path algorithm. The Successive Shortest Path algorithm has an expo-

187

nential worst case running time. We have shown how we can modify the network
so that we can achieve a polynomial running time. The execution of the algorithm
is similar to that of the incremental framework and its implementation is better
in practise than the algorithms proposed in the literature to find minimum cost
flows.

Recently two distributed algorithms were proposed to solve the Maximum
Concurrent Flow problem. These algorithms deviate from the "classic" dis-
tributed computing. Decisions for flow changes are not taken locally in each node
but more "globally" for each commodity. Commodities communicate with each
other via a billboard instead of the classical method of message passing. The
two algorithms proposed are similar in execution to the sequential algorithms
proposed for solving the Maximum Concurrent Flow problem. They involve in-
cremental building and rerouting of flows as in the sequential algorithms. In
this thesis we have analyzed the two distributed MCF algorithms. We have con-
structed a worst case input for both algorithms which shows that their running
time bounds are tight. We have shown that the bottleneck computation of the
algorithms comes from the way they distribute the flow. We have proposed a
heuristic improvement to overcome this bottleneck by distributing the flow more
evenly. We have shown that our heuristic can improve the running time at least
for our worst case network.

11.2 Future Work

We have proposed a heuristic improvement (the Balancing Distributed Algo-
rithm) for the Distributed Gradient Descent Algorithm and the Greedy Dis-
tributed Algorithm which improves the number of rounds from Õ(L) to Õ(logL)

on networks ΥL and Υ′L respectively. Our heuristic speeds up the process for cer-
tain types of inputs but we would like to prove these bounds on general networks.

The bottleneck of the two distributed algorithms proposed in [7, 4] is due to
the way they handle the distribution of flow on available paths. On our worst-case
input both algorithms could not distribute flow to "lower" paths for a substan-
tial number of rounds because the "top" paths were blocking the flow. As a

188

consequence the build up of flow in subsequent rounds was slow. We managed
to overcome this bottleneck by carefully balancing the flow through all available
approximate shortest paths in each round. An interesting question is whether it
is possible to achieve a well balanced blocking flows by some appropriate random-
ized process. Since the agents, associated with the commodities, are operating
independently and in parallel, a randomized selection of commodities (as used
in sequential MCF algorithms) does not seem feasible. However, a randomized
selection of paths to distribute flow in each round might work.

We believe that the running time of the Greedy Distributed algorithm [4]
could be improved by computing minimum cost flows instead of shortest paths
to reroute flow in each round. A minimum cost flow computation might lead to
bigger improvements in each round, thus reducing the total number of rounds
needed for the algorithm to terminate. Finally, we believe that the analysis of
sequential MCF algorithms could be further improved. For example, we do not
know whether the O(ε−3km2) bound on the running time of the MRR algorithm
presented in Chapter 7 is tight. We believe that this bound can be improved by
considering the commodities which share the same source together and calling
the SSP algorithm only once for all of them at the same time.

189

Notation

∆f (h,r)(e) total flow change on edge e at stage h at the end of round r p. 129

δf (r) total amount of flow of one commodity calculated by the MCP-algorithm
to be sent at round r p. 151

∆f
(r)
j actual amount of flow of one commodity sent on path Pj in round r p. 151

δf
(r)
j amount of flow of one commodity calculated by the MCP-algorithm to be

sent on path Pj at time round r p. 151

δf
(r,j)
i amount of flow of commodity i rerouted at the jth step of round r p. 166

∆f
(h,0)
i total change in flow of commodity i up to stage h p. 134

∆f sp,i(e) flow sent on edge e at step s of iteration i, phase p p. 70

∆+
i (e) upper bound on the total flow change allowed on an edge e within one

round p. 164

∆−i (e) lower bound on the total flow change allowed on an edge e within one
round p. 164

∆i(u, v) difference between the height of the queue of commodity i at the tail
and at the head of the edge (u, v) p. 113

λ∗ optimal congestion p. 42

λf congestion of a given flow f p. 28

190

λf (e) congestion of edge e for a given flow f p. 28

R+ set of non-negative real numbers p. 9

E set of edges p. 8

GR residual network p. 11

G graph consisting of a set of nodes N and a set of edges E p. 8

Gδ modification of network G = (N,E) with the capacities of all edges e ∈ E

rounded down to the units of δ = εd/m p. 93

N set of nodes p. 8

Pi set of paths between vertices si and ti p. 30

P union of all the set of paths Pi p. 30

P i longest active path from si to ti for commodity i p. 55

Φl potential under the length function l p. 96

ΠSP length of the shortest path P SP through edge e p. 146

ΠSP
e length of the approximate shortest path P SP

e through edge e p. 146

Π
(h,r)
i,j length of path Pi,j at Stage h after round r p. 128

Π
(h,r)
i length of path Pi at Stage h after round r p. 128

ρ(S) sparsity ratio p. 34

f concurrent flow p. 42

ΥL worst-case network for the DGD-MCF algorithm p. 123

f̂ ∗i ε-approximate minimum-cost flow of commodity i p. 96

c(P) capacity of path P p. 142

c(u, v) capacity of edge (u,v) p. 9

191

C∗i (λ) minimum cost flow of commodity i, subject to costs l(e) p. 58

c(r)(e) capacity of edge e at the beginning of round r p. 151

Ci cost of the current flow of commodity i under the length function l p. 58

cR(u, v) residual capacity p. 11

di demand of commodity i p. 23

distl(si, ti) shortest path distance from si to ti with respect to the edge length
l(u, v) p. 29

f(P) amount of flow sent along path P p. 30

f(e) flow on edge e p. 28

f(u, v) flow of edge (u, v) p. 10

f ∗ minimum cost-flow of a single commodity in network G p. 93

f (r)(u, v) amount of flow on edge (u, v) at the end of round r p. 182

f
(r)
BF value of blocking flow sent in round r p. 151

f
(r)
i,j (e) value of the flow of commodity i on edge e at the end of round r on path

Pi,j p. 181

f
(r)
j flow of one commodity on path Pj at the end of round r p. 151

f
(r,j)
i (e) value of the flow of commodity i on edge e at the end of the jth step of

round r p. 166

f δ∗ minimum cost-flow of a single commodity in network Gδ p. 93

fhi total flow sent for commodity i at stage h p. 139

fi flow of commodity i p. 28

fi(e) flow of commodity i on edge e p. 28

fi(u, v) flow of commodity i on edge (u, v) p. 28

192

fmaxi maximum flow of commodity i if routed independently p. 71

F
(r)
j value of the flow on the edge (wi,j−1, wi,j) at the end of round r p. 152

fopt optimal flow p. 54

f sp,i(e) total flow on edge e at the end of step s in phase p, iteration i p. 83

k number of commodities p. 23

k∗ number of different sources si p. 57

L maximum path size p. 4

l(e) length of edge e p. 31

l(P) length of path P p. 53

l(u, v) length of edge (u, v) p. 29

lsp,i(e) length of edge e at step s of iteration i, phase p p. 70

m number of edges p. 8

n number of nodes p. 8

P SP
i shortest path from si to ti for commodity i p. 55

Pi exclusive path for commodity i on network ΥL p. 125

P SP
e approximate shortest path passing through edge e p. 143

Pi,j shared paths for commodity i on network ΥL p. 125

qi(v) height of the queue of commodity i at node v p. 112

rh number of rounds in Stage h p. 134

s source (origin) p. 10

si source of commodity i p. 23

t sink (destination) p. 10

193

ti destination of commodity i p. 23

fi(e) flow of commodity i on edge e p. 23

194

Glossary

ε-approximate . 16

ε-approximate flow . 42

ε-bad . 59

ε-good . 59

active paths . 54

blocking flow . 11

capacity of a path . 11

cut . 10

directed graph . 8

distributed shared memory system . 108

distributed system . 106

fault-tolerant . 107

flow . 10

maximum concurrent flow problem . 24

maximum multicommodity flow problem . 23

195

Glossary

Message-passing systems . 108

minimum-cost multicommodity flow problem . 23

network . 9

path . 10

queue . 111

residual capacity . 11

residual network . 11

saturated edge . 11

stateless . 115

subgraph . 9

undirected graph . 8

196

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice-Hall, Inc., 1993. 8, 91

[2] C. Albrecht. Global routing by new approximation algorithms for multicom-
modity flow. Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, 20(5):622–632, 2001. 35

[3] Y. Aumann and Y. Rabani. An O(log k) approximate min-cut max-flow
theorem and approximation algorithm. SIAM Journal on Computing, 27(1):
291–301, 1998. 40

[4] B. Awerbuch and R. Khandekar. Greedy distributed optimization of multi-
commodity flows. In Proceedings of the twenty-sixth annual ACM Symposium
on Principles of Distributed Computing, PODC ’07, pages 274–283. ACM,
2007. 3, 4, 5, 6, 115, 116, 117, 119, 120, 162, 163, 164, 165, 166, 169, 170,
171, 186, 188, 189

[5] B. Awerbuch and T. Leighton. A simple local-control approximation algo-
rithm for multicommodity flow. In Proceedings of the 34th Annual Sympo-
sium on Foundations of Computer Science, pages 459–468, 1993. 111, 112,
113, 114

[6] B. Awerbuch and T. Leighton. Improved approximation algorithms for the
multi-commodity flow problem and local competitive routing in dynamic
networks. Journal of Computer and System Sciences, pages 487–496, 1994.
112, 113

197

REFERENCES

[7] B. Awerbuch, R. Khandekar, and S. Rao. Distributed algorithms for multi-
commodity flow problems via approximate steepest descent framework. In
Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA),
2007. 3, 4, 5, 6, 111, 114, 115, 116, 117, 119, 120, 121, 122, 123, 141, 142,
161, 186, 188

[8] C. Barnhart, C. A. Hane, E. L. Johnson, and G. Sigismondi. A column
generation and partitioning approach for multi-commodity flow problems.
Telecommunication Systems, 3(3):239–258, 1994. 36

[9] M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali. Linear Programming and
Network Flows. Wiley, 2011. 8

[10] K. A. Berman and J. L. Paul. Algorithms: Sequential, Parallel, and Dis-
tributed. Thomson/Course Technology, 2005. ISBN 9780534420574. 19

[11] D. P. Bertsekas. Network Optimization: Continuous and Discrete Models.
Athena Scientific Belmont, 1998. 7, 8

[12] D. Bienstock and O. Raskina. Asymptotic analysis of the flow deviation
method for the maximum concurrent flow problem. Mathematical Program-
ming, 91(3):479–492, 2002. 49

[13] T. Brunsch, K. Cornelissen, B. Manthey, and H. Röglin. Smoothed analysis
of the successive shortest path algorithm. In Proceedings of the Twenty-
Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1180–
1189. SIAM, 2013. 4, 90

[14] R. Buyya and M. Murshed. Gridsim: A toolkit for the modeling and simula-
tion of distributed resource management and scheduling for grid computing.
Concurrency and Computation: Practice and Experience, 14(13-15):1175–
1220, 2002. 20

[15] R.C. Carden and C. Cheng. A global router using an efficient approximate
multicommodity multiterminal flow algorithm. In Proceedings of the 28th
ACM/IEEE Design Automation Conference, DAC ’91, pages 316–321. ACM,
1991. 35

198

REFERENCES

[16] P. Christiano, J. A. Kelner, A. Madry, D. A. Spielman, and S. Teng. Electri-
cal flows, laplacian systems, and faster approximation of maximum flow in
undirected graphs. In Proceedings of the forty-third annual ACM symposium
on Theory of computing, pages 273–282. ACM, 2011. 49

[17] T. G. Crainic and J. Rousseau. Multicommodity, multimode freight trans-
portation: A general modeling and algorithmic framework for the service
network design problem. Transportation Research Part B: Methodological,
20(3):225 – 242, 1986. 35

[18] G. B. Dantzig. Application of the simplex method to a transportation problem.
Wiley, 1951. 38

[19] G. B. Dantzig. Maximization of a Linear Function of Variables Subject to
Linear Inequalities, in Activity Analysis of Production and Allocation. Wiley,
New York, 1951. 41

[20] G. B. Dantzig, L. R. Ford, and D. R. Fulkerson. A Primal-Dual Algorithm
for Linear Programs. Linear Inequalities and Related Systems, Annals of
Mathematics Study No. 38. Princeton University Press, 1956. 43

[21] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008. 20

[22] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M. Su,
K. Vahi, and M. Livny. Pegasus: Mapping scientific workflows onto the grid.
In Grid Computing, pages 11–20. Springer, 2004. 20

[23] E. A. Dinic. Algorithm for Solution of a Problem of Maximum Flow in a
Network with Power Estimation. Soviet Math Doklady, 11:1277–1280, 1970.
38

[24] P. Elias, A. Feinstein, and C.E. Shannon. A note on the maximum flow
through a network. Information Theory, IRE Transactions on, 2(4):117–
119, 1956. 38

199

REFERENCES

[25] L. K. Fleischer. Approximating fractional multicommodity flow independent
of the number of commodities. SIAM Journal on Discrete Mathematics, 13
(4):505–520, 2000. 48, 71, 74, 75, 87

[26] L. R. Ford and D. R. Fulkerson. Maximal Flow through a Network. Canadian
Journal of Mathematics, 8:399–404, 1956. 38

[27] L. R. Ford and D. R. Fulkerson. Flows in networks. Princeton University
Press, 1962. 40

[28] L. Fratta, M. Gerla, and L. Kleinrock. The flow deviation method: An
approach to store-and-forward communication network design. Networks, 3
(2):97–133, 1973. 48, 49

[29] D. R. Fulkerson. Flows in networks. In Recent Advances in Mathematical
Programming, McGraw-Hill, pages 319–332, 1963. 39

[30] N. Garg and J. Koenemann. Faster and simpler algorithms for multicommod-
ity flow and other fractional packing problems. SIAM Journal on Computing,
37:630–652, 2007. 48, 49, 52, 68, 69, 70, 71, 72, 73, 74, 75, 81, 82, 87, 115,
119

[31] N. Garg, V. V. Vazirani, and M. Yannakakis. Approximate max-flow min-
(multi)cut theorems and their applications. SIAM Journal on Computing,
25:698–707, 1993. 39

[32] A. V. Goldberg. Efficient graph algorithms for sequential and parallel com-
puters. PhD thesis, Massachusetts Instutute of Technology, Dept. of Electri-
cal Engineering and Computer Science, 1987. 38

[33] A. V. Goldberg. A natural randomization strategy for multicommodity flow
and related algorithms. Inf. Process. Lett., 42(5):249–256, July 1992. 64, 65

[34] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow
problem. Journal of the ACM (JACM), 35(4):921–940, 1988. 38

200

REFERENCES

[35] A. V. Goldberg and R. E. Tarjan. Solving minumum-cost flow problems by
successive approximation. Mathematics of Operations Research, 15:430–466,
1990. 90

[36] M. T. Hajiaghayi and H. Räcke. An-approximation algorithm for directed
sparsest cut. Information Processing Letters, 97(4):156–160, 2006. 34

[37] N. J. Harvey, R. D. Kleinberg, and A. R. Lehman. Comparing network
coding with multicommodity flow for the k-pairs communication problem.
Technical report, Massachussetts Institute of Technology, Computer Science
and Artificial Intelligence Laboratory, November 2004. 36

[38] T. C. Hu. Multi-commodity network flows. Operations Research, 11(3):
344–360, 1963. 39, 40

[39] J. Jádá. An introduction to parallel algorithms. Addison Wesley, 1992. 19

[40] A. Kamath and O. Palmon. Improved interior point algorithms for exact
and approximate solution of multicommodity flow problems. In SODA, vol-
ume 95, pages 502–511. Citeseer, 1995. 41

[41] L. V. Kantorovich. Mathematical methods of organizing and planning pro-
duction. Management Science, 6(4):pp. 366–422, 1960. 41

[42] G. Karakostas. Faster approximation schemes for fractional multicommodity
flow problems. ACM Transactions on Algorithms, 4:13:1–13:17, 2008. 48,
72, 73, 75

[43] N. Karmarkar. A new polynomial-time algorithm for linear programming.
In Proceedings of the Sixteenth Annual ACM Symposium on Theory of Com-
puting, pages 302–311. ACM, 1984. 41

[44] J. A. Kelner, G. L. Miller, and R. Peng. Faster approximate multicommodity
flow using quadratically coupled flows. In Proceedings of the forty-fourth
annual ACM symposium on Theory of computing, pages 1–18. ACM, 2012.
49

201

REFERENCES

[45] J. A. Kelner, Y. T. Lee, L. Orecchia, and A. Sidford. An almost-linear-time
algorithm for approximate max flow in undirected graphs, and its multicom-
modity generalizations. In Proceedings of the Twenty-Fifth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 217–226. SIAM, 2014. 49,
50

[46] J. L. Kennington. A survey of linear cost multicommodity network flows.
Operations Research, 26(2):209–236, 1978. 39

[47] L. G. Khachiyan. Polynomial algorithms in linear programming. USSR
Computational Mathematics and Mathematical Physics, 20(1):53–72, 1980.
41

[48] V. Klee and G. J. Minty. How good is the simplex algorithm. Technical
report, DTIC, 1970. 41

[49] P. Klein, A. Agrawal, R. Ravi, and S. Rao. Approximation through mul-
ticommodity flow. In Foundations of Computer Science, Proceedings of the
31st Annual Symposium, volume 2, pages 726–737, 1990. 39, 40

[50] P. Klein, S. Plotkin, C. Stein, and E. Tardos. Faster approximation algo-
rithms for the unit capacity concurrent flow problem with applications to
routing and finding sparse cuts. SIAM Journal on Computing, 23(3):466–
487, 1994. 47, 48, 55, 56, 57, 58, 59, 64, 65

[51] A. D. Kshemkalyani and M. Singhal. Distributed Computing: Principles,
Algorithms, and Systems. Cambridge University Press, 2008. 106

[52] H. W. Kuhn. The hungarian method for the assignment problem. Naval
Research Logistics Quarterly, 2(1-2):83–97, 1955. 43

[53] S. Lai, L.and Ho. Simultaneously generating multiple keys and multi-
commodity flow in networks. In Proceedings of the 2012 IEEE Information
Theory Workshop (ITW 2012), Lausanne, Switzerland, Sep. 3-7 2012. 36

[54] T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and
their use in designing approximation algorithms. 46(6), 1999. 34, 39, 40

202

REFERENCES

[55] T. Leighton, F. Makedon, S. Plotkin, C. Stein, E. Tardos, and S. Tragoudas.
Fast approximation algorithms for multicommodity flow problems. Journal
of Computer and System Sciences, 50:228–243, 1995. 48, 49, 57, 58, 59, 60,
63, 64, 65, 102

[56] F. Y. Lin and J. R. Yee. A new multiplier adjustment procedure for the
distributed computation of routing assignments in virtual circuit data net-
works. INFORMS Journal on Computing, 4(3):250–266, September 1992.
36

[57] A. Madry. Faster approximation schemes for fractional multicommodity flow
problems via dynamic graph algorithms. In Proceedings of 42nd ACM sym-
posium of Theory of Computing, pages 121–130, 2010. 48, 74, 75

[58] D. W. Matula and F. Shahrokhi. Sparsest cuts and bottlenecks in graphs.
Discrete Applied Mathematics, 27(1-2):113–123, 1990. ISSN 0166-218X. 34

[59] R. D. McBride and J. W. Mamer. Solving the undirected multicommodity
flow problem using a shortest path-based pricing algorithm. Networks, 38
(4):181–188, 2001. 36

[60] S. Muthukrishnan and T. Suel. Second-order methods for distributed ap-
proximate single- and multicommodity flow. In Proceedings of the 2nd Int.
Workshop on Randomization and Approximation Techniques in Computer
Science, pages 369–384, 1998. 113

[61] A. Nagurney and W. Zhang. Mathematical models of transportation and
networks. In Mathematical Models in Economics, Encyclopedia of Life Sup-
port Systems, UNESCO, 2007. 36

[62] J. B. Orlin. Max flows in O(nm) time, or better. Proceedings of the Forty-fifth
Annual ACM Symposium on Theory of Computing, pages 765–774, 2013. 71

[63] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algo-
rithms and Complexity. Courier Corporation, 1998. 16, 43, 45

[64] Serge A. Plotkin and É. Tardos. Improved bounds on the max-flow min-cut
ratio for multicommodity flows. In STOC, pages 691–697, 1993. 40

203

REFERENCES

[65] T. Radzik. Fast deterministic approximation for the multicommodity flow
problem. Mathematical Programming, 78:43–58, 1997. 6, 48, 64, 65, 90, 91,
92, 95, 96, 97, 98, 99, 100, 101, 102

[66] P. Raghavan. Integer programming in vlsi design. Discrete Applied Mathe-
matics, 1992. 35

[67] D. Ronen. Cargo ships routing and scheduling: Survey of models and prob-
lems. European Journal of Operational Research, 12(2):119–126, 1983. 35

[68] M. Sarrafzadeh and C.K. Wong. An Introduction to VLSI Physical Design.
McGraw-Hill Higher Education, 1996. 35

[69] A. Schrijver. On the history of the transportation and maximum flow prob-
lems. Mathematical Programming, 91(3):437–445, 2002. 38

[70] F. Shahrokhi and D.W. Matula. The maximum concurrent flow problem.
Journal of the Association for Computing Machinery, 37:318–334, 1990. 47,
48, 53, 54, 55, 56, 57, 58, 65

[71] D. B. Shmoys. Cut problems and their application to divide-and-conquer.
Approximation algorithms for NP-hard problems, pages 192–235, 1997. 34

[72] K. Steiglitz and C. H. Papadimitriou. Combinatorial optimization: Algo-
rithms and complexity. Prentice Hall, New Jersey, 5:231–246, 1982. 45

[73] S. M. Thampi. Introduction to distributed systems. CoRR, abs/0911.4395,
2009. 106

[74] A. Tiskin. The bulk-synchronous parallel random access machine. Theoretical
Computer Science, 196:109–130, 1998. 109

[75] S. Tragoudas. VLSI Partitioning Approximation Algorithms Based on Mul-
ticommodity Flow and Other Techniques. PhD thesis, University of Texas at
Dallas, 1991. 39

[76] P.M. Vaidya. Speeding-up linear programming using fast matrix multiplica-
tion. In Foundations of Computer Science, 1989., 30th Annual Symposium
on, pages 332–337, 1989. 41

204

REFERENCES

[77] L. G. Valiant. A bridging model for parallel computation. Communications
of the ACM, 33:103–111, 1990. 109

[78] J. G. Wardrop. Some theoretical aspects of road traffic research-road paper.
In Proceedings of the Institution of Civil Engineers, volume 1, pages 325–362.
Road Engineering Division, 1952. 36

[79] W. W. White and A. M. Bomberault. A network algorithm for empty freight
car allocation. IBM Systems Journal, 8(2):147–169, 1969. 35

[80] D. P. Williamson. The primal-dual method for approximation algorithms.
Mathematical Programming, 91(3):447–478, 2002. 43

[81] D. P. Williamson and D. B. Shmoys. The Design of Approximation Algo-
rithms. Cambridge University Press, 2011. 8

[82] N. E. Young. Randomized rounding without solving the linear program. In
Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 170–178, 1995. 68, 69

[83] N. Zadeh. A bad network problem for the simplex method and other mini-
mum cost flow algorithms. Mathematical Programming, 5(1):255–266, 1973.
93

[84] M. Zaharia, M.and Chowdhury, M. Franklin, S. Shenker, and I. Stoica.
Spark: Cluster computing with working sets. In Proceedings of the 2nd
USENIX conference on Hot topics in cloud computing, pages 10–10, 2010.
20

[85] Z.Király and P. Kovács. Efficient implementations of minimum-cost flow
algorithms. CoRR, abs/1207.6381, 2012. 4, 90

205

	Contents
	List of Figures
	I Introduction and Background
	1 Introduction
	1.1 Context of the Research
	1.2 Algorithmic Approaches
	1.3 Contributions of the Thesis
	1.4 Outline of the Thesis

	2 Network Flows: Background and Terminology
	2.1 Graphs
	2.2 Networks and Flows: The single-commodity case
	2.3 Residual Networks and Blocking Flows
	2.4 Exact and Approximation Algorithms
	2.5 Efficiency and Complexity
	2.6 Computational Models
	2.6.1 Sequential Computing
	2.6.2 Parallel Computing
	2.6.3 Distributed Computing

	2.7 Summary

	3 Multicommodity Flows and the Maximum Concurrent Flow Problem
	3.1 Definition
	3.2 A Simple Example
	3.3 Two Formulations of the MCF Problem
	3.3.1 Edge based formulation
	3.3.2 Path based formulation

	3.4 Applications of Multicommodity Flow Problems
	3.4.1 The Sparsest Cut Problem
	3.4.2 VLSI Circuit
	3.4.3 Transportation and Distribution Networks
	3.4.4 Computer and Communication Networks
	3.4.5 Other Applications

	3.5 Summary

	4 Solution Methods and Previous Results
	4.1 Exact Solution Algorithms
	4.2 Approximation Algorithms
	4.2.1 The Primal-Dual Approach
	4.2.2 Previous Work

	4.3 Summary

	II Analysis of Sequential Algorithms
	5 The Main Solution Algorithms
	5.1 The Rerouting Method
	5.1.1 Description of Shahrokhi and Matula
	5.1.2 Klein's Proposal
	5.1.3 Leighton's Proposal for Arbitrary Capacities
	5.1.4 Goldberg's Proposal
	5.1.5 Radzik's Proposal
	5.1.6 A Rerouting Example

	5.2 The Incremental Method
	5.2.1 Young's Proposal
	5.2.2 Garg and Koenemann's proposal
	5.2.3 Fleischer's Proposal
	5.2.4 Madry's Proposal
	5.2.5 An Incremental Example

	5.3 Summary

	6 The Incremental Method with an Exponential Length Function
	6.1 Exponential Length Function
	6.2 Correctness of the Algorithm
	6.3 Running Time
	6.4 Summary

	7 Rerouting based on Shortest Paths
	7.1 The Successive Shortest Path Algorithm
	7.1.1 Approximation Algorithm for Minimum Cost Flow

	7.2 A Modification of the MCF Round-Robin Algorithm
	7.2.1 Analysis of the Modified Round-Robin Algorithm
	7.2.2 Running time

	7.3 Summary

	III Analysis of Distributed Algorithms
	8 Distributed Computing Models
	8.1 Definition and Characteristics
	8.2 Features
	8.3 Distributed Models
	8.4 Previous Work
	8.4.1 Decisions at the Nodes
	8.4.2 The Billboard Model

	8.5 Summary

	9 The Approximate Steepest Descent Framework
	9.1 The Approximate Steepest Descent Algorithm
	9.2 A Worst Case Input
	9.2.1 Analysis of the DGD-MCF algorithm on Worst Case Input

	9.3 Balancing Distributed MCF algorithm
	9.3.1 Description of the BD-MCF algorithm
	9.3.2 Execution of the Algorithm

	9.4 Summary

	10 The Distributed Rerouting Algorithm
	10.1 The Greedy Distributed Rerouting Algorithm
	10.2 The Upper Limit on the Increase of Flow in One Round
	10.3 Running Time of Greedy Distributed Algorithm
	10.3.1 The GDR-MCF Algorithm with the Flow-Decrease Constraints
	10.3.2 The GDR Algorithm Without the Flow-Decrease Constraints

	10.4 The Greedy Balancing Distributed Algorithm
	10.4.1 Analysis of the Algorithm

	10.5 Summary

	11 Conclusions
	11.1 Summary
	11.2 Future Work

	References

