
This electronic thesis or dissertation has been

downloaded from the King’s Research Portal at

https://kclpure.kcl.ac.uk/portal/

Take down policy

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing

details, and we will remove access to the work immediately and investigate your claim.

END USER LICENCE AGREEMENT

Unless another licence is stated on the immediately following page this work is licensed

under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

licence. https://creativecommons.org/licenses/by-nc-nd/4.0/

You are free to copy, distribute and transmit the work

Under the following conditions:

 Attribution: You must attribute the work in the manner specified by the author (but not in any
way that suggests that they endorse you or your use of the work).

 Non Commercial: You may not use this work for commercial purposes.

 No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and

other rights are in no way affected by the above.

The copyright of this thesis rests with the author and no quotation from it or information derived from it

may be published without proper acknowledgement.

Touch Based Object Pose Estimation For Robotic Grasping

Bimbo, Joao Maria

Awarding institution:
King's College London

Download date: 28. Dec. 2024

King’s College London

Doctoral Thesis

Touch Based Object Pose
Estimation For Robotic Grasping

Author:

João Bimbo

Primary Supervisor:

Dr. Hongbin Liu

Secondary Supervisor:

Prof. Kaspar Althoefer

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy

in the

Centre for Robotics Research

Department of Informatics

May 2016

http://www.kcl.ac.uk
http://www.dcs.kcl.ac.uk/pg/joaobimbo/
http://nms.kcl.ac.uk/core/?page_id=23
http://nms.kcl.ac.uk/core/?page_id=7
http://www.kcl.ac.uk/nms/depts/informatics/research/robotics/index.aspx
http://www.dcs.kcl.ac.uk

Declaration of Authorship

I, João Bimbo, declare that this thesis titled, ’Touch Based Object Pose Estima-

tion For Robotic Grasping’ and the work presented in it are my own. I confirm

that:

� This work was done wholly or mainly while in candidature for a research

degree at this University.

� Where any part of this thesis has previously been submitted for a degree or

any other qualification at this University or any other institution, this has

been clearly stated.

� Where I have consulted the published work of others, this is always clearly

attributed.

� Where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed

myself.

Signed:

Date:

1

KING’S COLLEGE LONDON

Abstract
Centre for Robotics Research

Department of Informatics

Doctor of Philosophy

Touch Based Object Pose Estimation For Robotic Grasping

by João Bimbo

Robot grasping and manipulation require very accurate and timely knowledge of

the manipulated object’s shape and pose to succesfully perform a desired task.

One of the main reasons current systems fail to carry out complex tasks in a

real, unstructured environment is their inability to accurately determine where

in the object the fingers are touching. Most systems use vision to detect the

pose of an object, but the performance of this sensing modality deteriorates as

soon as the robot grasps the object. When the robot hand contacts an object,

it partially occludes it, which makes it difficult for vision systems to track the

object’s location. This thesis presents algorithms to use the robot’s available

tactile sensing to correct the visually determined pose of a grasped object. This

method is extended to globally estimate the pose of the object even when no initial

estimate is given.

Two different tactile sensing strategies have been employed: single-point and dis-

tributed, and measurement models for these two strategies are presented. Different

optimisation algorithms are developed and tested to minimise the output of these

measurement models and find one or more poses that satisfy current tactile mea-

surements. Results show that the method is able to successfully estimate the pose

of a grasped object with high accuracy, even for objects with a high degree of

geometric complexity. Other applications of the method are proposed, such as

determining grasp stability or identifying the grasped object, as well as future

research directions.

http://www.kcl.ac.uk
http://www.kcl.ac.uk/nms/depts/informatics/research/robotics/index.aspx
http://www.dcs.kcl.ac.uk

Acknowledgements

I would like to thank all the friends I have made during the course of these years

at King’s College London. I will always remember fondly the lunch breaks with

Andreas, Ankur, Angela, Dimitris, Greg, Hugo, Neil and Vahid and our endless

discussions on the balcony of Somerset House. You have made my days at King’s

very pleasant.

A big thanks to my colleagues and staff in the Centre for Robotics Yohan, Agostino,

Shan, Helge, Xiaojing, Junghwan, Thomas, Lukas, Ali, Sina, Jim Trotter, Prof.

Lakmal Seneviratne, and Dr. Thrishantha Nanayakkara.

I would also like to thank my co-authors and collaborators Dr. Petar Kormushev,

Dr. Véronique Perdereau, Dr. Guillaume Walck, Dr. Mohamed Abderrahim,

Silvia Rodŕıguez Jiménez and Dr. Nicolas Burrus. My gratitude goes also to the

people at Shadow Robot Company: Mark Addison, Toni Oliver and Rich Walker,

for giving me the opportunity to work with their robot hand and for the experience

in the “real world”.

My biggest gratitude goes also to my supervisors Prof. Kaspar Althoefer for his

trust and support and to Dr. Hongbin Liu for his mentoring, his patience and

most of all, his friendship.

Finally, I would like to thank my family for their love: Pai, Mãe, Avó, Nuno, Luis,

Vânia and Ana Maria.

3

Contents

Declaration of Authorship 1

Abstract 2

Acknowledgements 3

Contents 4

List of Figures 7

List of Tables 11

Symbols and Definitions 12

1 Introduction 15

1.1 Scope and Motivation . 15

1.2 Problem Presentation . 17

1.3 Research Contributions . 21

1.4 List of Publications . 22

1.5 Thesis Structure . 24

2 Background 25

2.1 Robot Grasping and Manipulation 26

2.2 Tactile Sensing . 29

2.2.1 Intrinsic Tactile Sensing . 31

2.2.2 Tactile sensing arrays . 35

2.3 Sensor Fusion . 38

2.4 Object Pose Estimation . 40

2.4.1 Vision-based Object Pose Estimation 40

2.4.2 Tactile-based Pose Estimation 42

2.5 Conclusions . 48

2.6 Mathematical Background . 51

4

Contents 5

2.6.1 Rigid Body Motions . 51

2.6.1.1 Coordinate Frames and Matrix Representation . . 51

2.6.1.2 Euler Angles . 53

2.6.1.3 Quaternions . 55

2.6.2 Optimisation . 58

2.6.2.1 Introduction . 58

2.6.2.2 Gradient-Based . 59

Gradient Descent . 61

Levenberg-Marquardt 61

2.6.2.3 Stochastic . 62

2.6.2.4 Other Methods . 65

2.6.3 k -d Trees . 65

2.6.3.1 Definition . 65

2.6.3.2 Construction . 66

2.6.3.3 Searches . 66

2.6.3.4 Computational Remarks 68

2.6.4 Principal Component Analysis 69

2.6.4.1 Definition . 69

2.6.4.2 Computing the Principal Components 70

3 Pose Correction using Local Optimisation 72

3.1 Introduction . 73

3.2 Methods . 74

3.2.1 Algorithm . 74

3.2.2 Distance-based optimisation 76

3.2.2.1 Objective Function 76

3.2.2.2 Simulation Results 77

3.2.3 Addition of Normal Force Information 80

3.2.3.1 Contact Normal 80

3.2.3.2 Objective function 82

3.2.3.3 Simulation Results 83

3.3 Results . 84

3.3.1 Analysis of Simulation Results 84

3.3.2 Results on a Real System 89

3.3.2.1 System Overview 89

3.3.2.2 Using Distance Information 91

3.3.2.3 Using Distance and Normal Information 92

3.4 Discussion . 96

4 Pose Estimation using Global Optimisation 98

4.1 Introduction . 99

4.2 Methods . 100

4.2.1 Algorithm Setup and Cost Function 100

4.2.2 Search Algorithm . 101

Contents 6

4.2.3 Generation of the Initial Population 102

4.2.4 Re-sampling scheme . 105

4.2.5 Noise addition . 108

4.2.6 Minimisation of the objective function 110

4.2.7 Post processing of results . 111

4.3 Results . 112

4.3.1 Simulation Results . 112

4.3.1.1 Pose correction . 113

4.3.1.2 Global pose estimation 116

4.3.2 Results Using a Real System 118

4.3.2.1 Experimental Setup 118

4.3.2.2 Pose correction from vision 119

4.3.2.3 Global Pose Estimation – Hand Over and Place . . 120

4.4 Discussion . 122

5 Pose Estimation from tactile arrays 124

5.1 Introduction . 125

5.2 Methods . 126

5.2.1 PCA on Tactile Data . 126

5.2.2 Selection of Scaling Parameter 128

5.2.3 Computing the Eigenbasis 131

5.2.4 Matching tactile to 3D point cloud covariance 132

5.2.5 Object Pose Estimation From Descriptor 136

5.3 Results . 138

5.3.1 System overview . 138

5.3.2 Pose Estimation Results . 139

5.4 Conclusions . 147

6 Conclusions 149

6.1 Main Contributions . 150

6.2 Applications . 152

6.2.1 Object Identification . 152

6.2.2 Grasp Stability . 153

6.3 Discussion and Critique . 154

6.4 Future Work . 157

Bibliography 159

List of Figures

1.1 Camera’s point of view, visualisation of the robot’s posture and
vision-acquired object pose overlaid in yellow. 17

1.2 Thesis objective scheme – f1...3 shows the robot finger positions, the
blue object is the initial estimate and the red object is the resulting
pose, matching the contact information 18

1.3 Thesis objective scheme – f1...3 shows the robot finger positions, the
blue object is the initial estimate and the red object is the resulting
pose, matching the contact information 20

2.1 Grasp stability diagrams. 27

2.2 Intrinsic Tactile Sensing scheme – acting force in green, measured
quantities in red, computed parameters in blue 32

2.3 Intrinsic Tactile Sensing diagram – a force is exerted in the xoy plane 32

2.4 Overview of the Intrinsic Tactile sensor 34

2.5 Intrinsic force-torque sensor with soft rubber layer 36

2.6 Rigid Transformation . 52

2.7 Ambiguities in Euler Angle representation 55

2.8 Interpretation of quaternions as axis-angle 56

2.9 Function f(x, y) and minimum point 58

2.10 Gradient Descent on a scalar function 60

2.11 Estimating the value of π through Monte Carlo simulation 64

2.12 k -d tree data structure principle . 67

2.13 Principal Components of a Distribution. 1st, 2nd and 3rd compo-
nents in red, green and blue respectively 70

3.1 Problem overview – Finding a transformation x that displaces the
object from an initial estimate . 73

3.2 Regions created in the object point cloud to minimise the compu-
tational effort . 75

3.3 Results of Gradient Descent using simulated data – Object point
cloud in black. Original (�) , displaced (Ö) and corrected (�) finger
tip locations. 78

3.4 Progress of the algorithm in a cubic object using Gradient Descent.
Each color represents the distance between object at the estimated
pose for a finger contact. 78

7

List of Figures 8

3.5 Results of Levenberg-Marquardt using simulated data – Object
point cloud in black. Original (�) , displaced (Ö) and corrected
(�) finger tip locations. 79

3.6 Progress of the algorithm for a cylidrical shaped object using Levenberg-
Marquardt. Each color represents the distance between object at
the estimated pose for a finger contact. 79

3.7 Rigid contact . 81

3.8 Mesh triangle normal . 81

3.9 Results of Levenberg-Marquardt with normal force information –
Object point cloud in black. Original (�) , displaced (Ö) and cor-
rected (�) finger tip locations. 83

3.10 Progress of the algorithm for a cylidrical shaped object using Levenberg-
Marquardt. Each color represents the distance between object at
the estimated pose for a finger contact 84

3.11 Simulation results – green represents the ground truth, gray the
initial misplaced pose and yellow the resulting object pose. 85

3.12 Initial vs Final MDTS using Gradient Descent 88

3.13 Initial vs Final MATN using Gradient Descent 88

3.14 Initial vs Final RME using Gradient Descent 88

3.15 Initial vs Final MAE using Gradient Descent 88

3.16 Initial vs Final MDTS using Levenberg-Marquardt 88

3.17 Initial vs Final MATN using Levenberg-Marquardt 88

3.18 Initial vs Final RME using Levenberg-Marquardt 88

3.19 Initial vs Final MAE using Levenberg-Marquardt 88

3.20 Overview of the experimental setup of the multi-modal sensing system 89

3.21 Results using real data. Initial estimate in grey, solution in pink . . 91

3.22 Visualisation of a grasped object scene. The green point cloud
represents the object in the pose detected by the vision system and
the pink point cloud represents the object after its pose has been
corrected using our approach . 93

3.23 Ground truth measurement method 93

3.24 Experimental results: blue and green represent the components x
and y. Rings plot the pose obtained by vision and lines the pose
estimated by the proposed method. Red and cyan dots are recorded
ground truth . 95

3.25 Initial vs. Final error with large initial error when using Gradient
Descent . 97

3.26 Initial vs. Final error with large initial error when using Levenberg-
Marquardt . 97

4.1 Cost to Weight Function . 106

4.2 Re-sampling scheme . 107

4.3 Computation time to generate each thousand particles 108

4.4 Noise added to particles over algorithm iterations 109

4.5 Progress of the global optimisation algorithm – cost over iterations 110

List of Figures 9

4.6 Collision checker for valid poses. Blue/green: object point cloud in
valid pose, red: invalid pose . 111

4.7 Pose correction. Initial estimate in red, ground truth in orange and
resulting estimated pose in blue . 114

4.8 Histograms for initial and final errors on rotation and translation
for pose correction . 114

4.9 Mean errors after pose correction for different number of contacts
and noise levels . 115

4.10 Rate of success for pose correction for different number of contacts
and noise level. A trial is considered successful if the error is under
1 cm and 15◦. 115

4.11 Global pose estimation. Initial estimate in red, ground truth in
green and result pose in orange, force normals are displayed as red
arrows . 117

4.12 Mean error in global pose estimation for different number of con-
tacts and noise levels . 118

4.13 Rate of success for global pose estimation different number of con-
tacts and noise level. A trial is considered successful if the error is
under 1 cm and 15◦. 118

4.14 Pose correction result – Vision based tracking results in yellow be-
fore and after occlusions are created by the grasp. The pose cor-
rected using the proposed method is displayed in purple 119

4.15 Pose correction results with different objects 120

4.16 Robot grasping a pencil, object model overlaid with point cloud . . 120

4.17 Result of estimation of a pencil’s pose 121

4.18 Hand over and place experiment . 121

4.19 Particle Landscape . 122

4.20 Initial vs. Final Error for global search 123

5.1 Principal Components of a tactile sensor frame 127

5.2 Finite Element Analysis . 128

5.3 Effect of pressure scaling value α in the tactile profile 129

5.4 Cross-section of the pressure profile and largest principal component
for different values of α . 130

5.5 Pressure profile and main principal component for different inden-
tation depths . 131

5.6 Finger model, interpolated tactile data, principal components axes
and object pointcloud patch . 133

5.7 Evaluation of the matching. Active tactile elements in red, principal
components in blue, red and yellow, and local object geometry in
green . 135

5.8 Comparison of tactile data with and without silicon layer 139

5.9 Pose estimation overlaid on a picture of the grasp. Blue pointcloud
shows the result when minimising distance from the surface to the
contacts. Red pointcloud shows the result when using the proposed
method . 141

List of Figures 10

5.10 Result with horizontal thermal bottle. Blue pointcloud shows the
result when minimising only the distance from contacts to surface.
Red pointcloud shows the result when using the proposed method . 142

5.11 Evaluation of proposed the cost function versus a benchmark based
on distance alone. Clockwise from the top: grasping scenario, dif-
ferent poses evaluated, proposed cost function, distance based cost
function. Note: the colors in the lower plots match the pose hy-
potheses on the upper right . 143

5.12 Result of cost function vs. angle error 144

5.13 Result of a global search using the proposed descriptor (grasp (f) in
Table 5.3)– red pointcloud: initial pose; green pointcloud: resultant
pose. 146

5.14 Results of applying ICP to fit a line to a plane and two planes. . . . 148

6.1 Object identification using the proposed method 153

6.2 Grasp quality according to the Grasp Wrench Space metric. 154

6.3 Grasp quality improvement. Blue – Improve quality Red – Reduce
quality . 154

6.4 Example of a situation that might cause the algorithm to fail. Parts
of the object surface coincide almost perfectly in two different poses.
Ground truth is shown in pink. 155

6.5 Proposed system for pose estimation. 156

List of Tables

2.1 Comparison of existing tactile pose estimation methods in the lit-
erature . 48

3.1 Comparison of optimisation methods 87

5.1 PCA angle error for α = 9.66 · 10−4 130

5.2 Comparison of optimisation techniques 138

5.3 Comparison of cost functions – mean error, error at minimum cost
and cost vs. error correlation coefficient 145

6.1 Comparison of existing tactile pose estimation methods 151

11

Symbols and Definitions

x : rigid transformation parameters

m : number of fingers touching the object

~t : 3-dimensional translation vector

q : rotation quaternion

a.u. : arbitrary units

~F : contact force

~F = [fx, fy, fy]
T

pc : contact location

∇S : surface gradient

n̂ : normal unit vector

p(a|b) : conditional probability

R : rotation matrix

T : homogenous transformation matrix

A
BT : homogenous transformation matrix from frame A to frame B

12

Symbols and Definitions 13

JG(x) : Jacobian matrix of function G(x)

J̃G(x) : approximate Jacobian matrix of function G(x)

A+ : pseudo-inverse of matrix A

CM : covariance matrix of M

Dedicado a

Manuel Bimbo

14

Chapter 1

Introduction

1.1 Scope and Motivation

Robot grasping, and particularly the fine manipulation of an object by a robot,

require very accurate sensing of the object’s pose and acting forces. In fact, even

for a human, tactile sensing is fundamental for performing tasks that require a

great deal of accuracy. This was shown by Rothwell [1], who studied a man

with neurological damage who, despite not having any motor problem and able

to perform most tasks using only vision to control his movements, failed when

asked to perform fine manipulation tasks such as fastening a button or using a

pen to write. Similarly, a robot equipped with a camera can perform simple

grasps but it must possess a very accurate sense of touch, that not only senses the

contact location but also the direction of the force, in order to carry out precise

manipulation tasks.

Among the essential information needed by a robot to be able to manipulate an

object is knowledge of the object’s pose (position and orientation), with respect to

the robot hand or gripper. Typically, stereo cameras and RGB-D sensors are em-

ployed to provide this information. However, the pose estimate provided by vision

might be inaccurate due to hardware limitations or bad calibration. Moreover, in

a robot grasping and manipulation setting, as the robot reaches and grasps the

15

Chapter 1. Introduction 16

object, its body – arm, hand and fingers – will cover the object. In this situation,

the target object is said to be occluded – it cannot be entirely seen by the vision

system – which introduces added difficulties for the tracking of its pose.

In summary, robot manipulation, i.e. the physical interaction between a robot

and an object, requires accurate tracking of the object pose but at the same time

creates occlusions which can severely compromise the accuracy and robustness of

any vision based pose estimation approach. Figure 1.1 illustrates this problem.

Figure 1.1(a), shows, on the left, a grasping situation before the robot reaches to

grasp the target object (a red thermal bottle). The object is sitting on the top of

a table, clearly visible by the RGB-D camera from which this image was obtained.

The vision system is able to accurately identify the object pose, which is shown

as the yellow overlay on the right image.

When the robot reaches and grasps the object and the robot fingers envelop the

object, the vision system can only partially see the object and it does not easily

distinguish points belonging to the robot body from those belonging to the object.

This situation is shown in Figure 1.1(b) where the object is inside the robot hand

but vision wrongly estimates it to be intersecting the robot fingers.

This thesis deals with this problem, prevalent in robot grasping and manipulation

applications, by using the robot’s kinematics and sense of touch to improve the

accuracy of the object’s pose estimation. To this end, the two most common tactile

sensing modalities are considered: intrinsic tactile sensing, which is detailed in

Section 2.2.1, and distributed tactile arrays.

Besides the combination of vision and tactile sensing, where tactile sensing is used

to rectify a coarse pose obtained from vision, this thesis also presents how the

same methodology can be employed to estimate a grasped object’s pose when no

vision input is available. This is useful, not only because it provides redundancy

in case of a camera malfunction, but also for situations where vision systems

are unusable or very unreliable. Circumstances where this limitation is present

include hazardous environments such as disaster scenarios where there may be fire

Chapter 1. Introduction 17

(a) Object pose estimation obtained from vision when the object is clearly visible on top of the
table

(b) Effect of the occlusions created by the robot hand in pose estimation accuracy

Figure 1.1: Camera’s point of view, visualisation of the robot’s posture and
vision-acquired object pose overlaid in yellow.

and smoke, underwater and complete darkness. This method can also be applied

to the manipulation of transparent objects, which are very difficult to track by

vision or RGB-D systems.

1.2 Problem Presentation

The object of this thesis is the development of methods that use a robot’s sense

of touch to improve its knowledge about the in-hand position and orientation of a

grasped object.

Chapter 1. Introduction 18

This estimation of the object pose is done using the following methodology: given

an object geometry, the current contact information and possibly a coarse pose

estimate (commonly provided by vision), find a new estimate for the pose that

matches that contact sensing data. Figure 1.2 schematically outlines the approach

followed in this thesis. In this figure, f1...3 represent a robot’s three fingers touching

the object. This contact generates sensory inputs which are encoded into what is

referred to as the contact information. The blue object represents the initial pose,

usually obtained from a computer vision system. This pose can be displaced from

its real pose, as previously shown in Figure 1.1. In other situations, where there is

no prior pose estimate available, the initial pose can be chosen to be anywhere in

the proximity of the robot hand. Starting from this initial estimate, a new pose is

calculated which places the object in a position that is coherent with the current

contact information. In other words, the objective is to find the transformation

T, which satisfies the current tactile sensory inputs.

Pv

Pt

x

y

x

y

T

f1

f2

f3
x

y

Figure 1.2: Thesis objective scheme – f1...3 shows the robot finger positions,
the blue object is the initial estimate and the red object is the resulting pose,

matching the contact information

This problem is formulated as an optimisation problem requiring the following in-

puts: 1) the object’s geometry, either known a priori and loaded from a database

or acquired online before the grasp is initiated, 2) the current robot hand posture,

Chapter 1. Introduction 19

obtained from forward kinematics, 3) the contact information from at least two

fingers touching the object.

An objective (or cost) function is devised according to the current tactile sensing

inputs and the expected contact information if the object was at a candidate

solution. This candidate solution is a pose parametrised by a translation vector ~t

and a rotation quaternion q. These parameters x are introduced in (1.1).

x =
[
q,~t

]T
x = [qw, qx, qy, qz, tx, ty, tz]

T

(1.1)

Thus, the object of this study is to firstly devise cost functions such that their

minimisation leads to a correct estimation of the object’s location, and secondly

to design and implement optimisation methods that allow that minimum to be

found.

In order to reduce computation time, the problem can be postulated as finding a

transformation not on the object pointcloud that matches current contact informa-

tion, but instead find a transformation on the contacts that matches the object’s

geometry. This allows that, at every function evaluation, the transformation is cal-

culated only for m contacts, instead of transforming the object pointcloud, which

is typically made of tens of thousands of points. This transformation, obtained

through solving the optimisation problem, is then inverted and applied on the

object.

It is important to point out that this estimation is not done continuously, but

instead relies on a single measurement. This choice was made due to the high-

dimensionality of the problem as well as the inherent difficulties in predicting the

movement of an object under multiple external disturbances caused by the robot

fingers. Thus, the methods presented in this thesis rely heavily on the usage and

interpretation of rich contact information. Exploiting the capabilities of different

Chapter 1. Introduction 20

Pv

Pt

x

y

x

y

T−1

f1

f2

f3

x

y

Figure 1.3: Thesis objective scheme – f1...3 shows the robot finger positions,
the blue object is the initial estimate and the red object is the resulting pose,

matching the contact information

tactile sensing technologies allows local shape features to be captured. Optimi-

sation algorithms are then used to find poses of the object such that the local

features of each contact match the obtained contact information. This method-

ology differs from most of the existing implementations in literature, which often

use limited contact information (e.g. contact location alone) and rely on explo-

ration to estimate the object’s pose. Active exploration of a grasped object entails

however a number of challenges. First, the aforementioned difficulty of predicting

the movement of a grasped object when exploring it. Also, robot hands may not

possess the needed dexterity to touch different parts of the object while keeping a

stable grasp.

While continuous estimation of the object pose is possible under this approach,

simply using the previous resultant pose as the initial pose estimate instead of

using the input from vision, this work aims not to be a definitive solution to the

real-time time tracking of a manipulated object. Instead, it can be seen as a

building block to achieve that purpose, which can be combined, for example in a

Bayesian Filter, with an object motion model which performs the prediction step,

Chapter 1. Introduction 21

essential in this type of recursive estimation [2].

Besides estimating the pose of the object, the methods presented in this thesis

can also be used to identify an unknown object through the sense of touch, from a

set of possible objects whose geometries are known a priori. Another application

of the proposed approach is related to grasp quality metrics such as those based

in the convex hull of the grasp wrench space, which require the knowledge of the

object’s centre of mass location. Therefore, assessing grasp quality also becomes

possible after the accurate estimation of the object pose.

1.3 Research Contributions

The scientific contribution of this thesis to the body of knowledge in robotics and

particularly in the field of sensing for robot grasping and manipulation can be

summarised by the following achievements:

� Development of a method for object pose estimation in grasping and ma-

nipulation settings that rectifies an initial approximate pose using tactile

sensing using local optimisation;

– The description of this work is presented in chapter 3 and was pre-

sented initially at the 2012 IEEE Conference on Multisensor Fusion

and Integration for Intelligent Systems (MFI)[3], and was further ex-

tended and presented at the 2013 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS) [4];

� Design of a global optimisation method that can estimate the pose of a

grasped object with or without an approximate estimate;

– The details of this work were published in Autonomous Robots, 39(1),

25–41, 2015 [5] and are presented in chapter 4

� Formulation of a descriptor for distributed tactile array data that can be

used to match to local object geometry;

Chapter 1. Introduction 22

– This work is presented in chapter 5 and its results for object pose esti-

mation were published in IEEE Robotics and Automation Letters, 1(1),

570–577, 2016 [6]

1.4 List of Publications

Journal Papers

• Joao Bimbo, S. Luo, K. Althoefer, and H. Liu, “In-hand

object pose estimation using covariance-based tactile to geometry

matching,” IEEE Robotics and Automation Letters, 1(1), 570–577 ,

http://doi.org/10.1109/LRA.2016.2517244, 2016.3

• Joao Bimbo, P. Kormushev, K. Althoefer, and H. Liu, “Global estimation

of an object’s pose using tactile sensing,” Advanced Robotics, 29(5), 363–374.

http://doi.org/10.1080/01691864.2014.1002531, 2015.2

• H. Liu, K. C. Nguyen, V. Perdereau, Joao Bimbo, J. Back, M. Godden,

L. D. Seneviratne, and K. Althoefer, “Finger contact sensing and the appli-

cation in dexterous hand manipulation,” Autonomous Robots, 39(1), 25–41.

http://doi.org/10.1007/s10514-015-9425-4, 2015.

Papers in Peer-Reviewed Conferences

• J. Back, Joao Bimbo, Y. Noh, L. Seneviratne, K. Althoefer, and H. Liu,

“Control a contact sensing finger for surface haptic exploration,” in 2014

IEEE International Conference on Robotics and Automation (ICRA). IEEE,

2014, pp. 2736–2741.

Chapter 1. Introduction 23

• Joao Bimbo, L. D. Seneviratne, K. Althoefer, and H. Liu, “Combining

touch and vision for the estimation of an object’s pose during manipulation,”

in 2013 IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems (IROS). IEEE, 2013, pp. 4021–4026.1

• Joao Bimbo, S. Rodriguez-Jimenez, H. Liu, X. Song, N. Burrus, L. D.

Senerivatne, M. Abderrahim, and K. Althoefer, “Object pose estimation and

tracking by fusing visual and tactile information,” in 2012 IEEE Conference

on Multisensor Fusion and Integration for Intelligent Systems (MFI). IEEE,

2012, pp. 65–70.1

• H. Liu, X. Song, Joao Bimbo, K. Althoefer, and L. Senerivatne, “Intel-

ligent fingertip sensing for contact information identification,” Advances in

Reconfigurable Mechanisms and Robots I, pp. 599–608, 2012.

Presentations in Workshops

• Joao Bimbo, K. Althoefer, and H. Liu, “Object pose estimation using

tactile to geometric covariance matching,” in IROS Late Breaking Results

Session [Poster], 2015.3

• Joao Bimbo and H. Liu, “Soft fingers for robotic grasping,” in Perceptions

on Soft-based Contact workshop at IEEE CASE 2015 [Talk], 2015.

• J. Back, Joao Bimbo, M. Addison, U. Cupcic, G. Cassidy, R. Walker,

L. D. Seneviratne, K. Althoefer, and H. Liu, “Finger surface following control

through intrinsic contact sensing,” in Autonomous Grasping and Manipula-

tion: An Open Challenge at ICRA [Poster], 2012.

• Joao Bimbo, S. Rodriguez-Jimenez, H. Liu, N. Burrus, L. D. Senerivatne,

M. Abderrahim, and K. Althoefer, “Fusing visual and tactile sensing for

manipulation of unknown objects,” in Mobile Manipulation Workshop on

Interactive Perception at ICRA 2013 [Poster], 2013.1

Chapter 1. Introduction 24

• Joao Bimbo, H. Liu, L. D. Senerivatne, M. Abderrahim, and K. Althoefer,

“Active perception of objects for robot grasping,” in Closing the Action-

Perception Loop Workshop at IROS 2012 [Presentation], 2012.1

• Joao Bimbo, “Managing coordinate frames with ROS,” in Handling ROS

Introductory tutorial to ROS and its use for robot in-hand manipulation

Workshop at IROS [Workshop], 2012.

1.5 Thesis Structure

Having outlined the purpose of this thesis, the next chapter provides a literature

review on grasping, tactile sensing and object pose estimation in the context of

robot grasping. It also provides an overview of the mathematical background

required to understand the concepts presented in this thesis.

Chapters 3, 4 and 5 contain the main body of this thesis and detail the research

contributions detailed in Section 1.3. Each of these chapters begins with a short

introductory summary of its contents and ends with some concluding remarks on

the results obtained. The last chapter discusses the thesis’ findings and limitations,

and also proposes future research directions.

1 The contents of these articles is presented in chapter 3
2 The contents of these articles is presented in chapter 4
3 The contents of these articles is presented in chapter 5

Chapter 2

Background

Chapter Summary

This chapter presents some introductory concepts and reviews the literature rele-

vant for the understanding of this thesis. It contains a general overview of the field

of robot grasping and manipulation and an outline of different tactile sensing ap-

proaches used in the field. A literature review on methods to estimate an object’s

pose from different sensing sources is also provided along with an introduction to

pertinent mathematical concepts.

25

Chapter 2. Background 26

2.1 Robot Grasping and Manipulation

Man’s dominion over Nature can be partially attributed to his ability to grasp

and manipulate objects. It was through the crafting and handling of artifacts that

human beings began shaping the world around them, and it should come as no

surprise that a large part of the human motor cortex is dedicated to manipula-

tion [7]. The importance of manipulation in the human brain also serves as an

indication of the complexity that is associated with this task.

Providing a robot with a similar capability to grasp and manipulate objects in

complex, unstructured environments, i.e. where there is significant uncertainty,

has proven to be one of the biggest challenges in present-day robotics. To date,

the ability to skillfully wield objects of different shapes, sizes and other physical

properties at a human-like level of dexterity is yet to be attained by robots.

One of the first notable examples of a design of a robotic hand was the 1962 pa-

per by Tomovic and Boni [8], who proposed a design and control scheme for an

artificial limb that could be used both as a prosthetic or an autonomous hand.

The work by Hanafusa and Asada [9] presents one of the earliest designs for an

autonomous robot hand with compliant fingers with focus also on grasp planning

and stability. Salisbury and Craig [10] introduced a tendon-driven sensorised robot

hand, together with a control scheme and introduced the concept of a Grasp Ma-

trix. An extended taxonomy of human grasps and their transferability to robots

was presented by Cutkosky [11, 12] who, along with Mason [13] undertook pio-

neering work on grasping, particularly from the robot hand design and mechanical

analysis point of view.

A formal definition of the necessary conditions for the stability of a grasp was

presented by Fearing [14] that take into account the forces applied ~F and contact

locations ~r of every ith finger touching the object, as well as the friction coefficient

µ. Fn and Ft denote the normal and tangential force respectively. These conditions

are:

1. No net force or torque:
∑

i
~Fi = 0,

∑
i ~ri × ~Fi = 0

Chapter 2. Background 27

2. No slippage – all forces within the friction cone: µFn > |Ft|

3. Any arbitrary applied force can be resisted by increasing the grasping force.

This last criterion conveys, if extended to wrenches, what is commonly referred to

as force-closure [15]. This concept laid the foundation for the computation of the

finger positions in a grasp, i.e. grasp synthesis. Nguyen developed a method to

compute force-closure grasps using the space spanned by the contact wrenches [16].

This approach was also followed Ferrari and Canny, who proposed a criterion for

grasp quality based on the construction of the convex hull generated by the set

of all possible wrenches [17]. Both the total volume and the radius of the largest

hypersphere centered at the origin that can be contained inside this convex hull can

be used to give an indication of grasp quality. Figure 2.1 outlines these concepts,

where in Figure 2.1(a) three fingers are sufficient to maintain a force-closure grasp

on the object O. Figure 2.1(b) shows the quality criterion according to Ferrari

and Canny in 3-D, where the sphere is tangent to one of the planes generated

by the convex hull. In a real scenario, a six dimensional hypersphere is used to

accommodate both force and moment.

f1

f2

f3

O

(a) Force-closure in planar case

x

y

z

(b) Grasp quality criterion

Figure 2.1: Grasp stability diagrams.

Given the large size of the Grasp Wrench Space (GWS) – the space of possible

wrenches that can be applied on an object –, this requirement becomes very strict

and computationally expensive. More recently, more relaxed criteria have been

Chapter 2. Background 28

put forward, such as the Object Wrench Space (OWS) [18] and the Task Wrench

Space (TWS) [19]. Instead of testing that the current finger positions can oppose

any arbitrary force, these concepts limit the possible space, respectively, to the set

of wrenches that are possible to be applied on the grasped object, or that arise from

performing the desired task. Other strategies relying on a similar methodology and

concepts, but without specifically computing the convex hull have been proposed in

[20] and [21], resulting in a decrease in the computation time required to synthesise

force-closure grasps.

While analytical techniques were predominant in earlier research efforts, recent

advances in artificial intelligence and machine learning have lead to the devel-

opment of alternative approaches to robot grasping and manipulation. Robots

can learn how to grasp objects through human demonstration [22, 23], or with

human aid [24]. These approaches rely on humans performing grasps, with the

finger movements being learned by the robot and the knowledge transferred to the

robot as motor skills. Due to the high dimensionality of the task, and to cope

with the number of degrees-of-freedom (DOF) in the human – and possibly the

robot – hand, a technique that encodes grasp synergies was proposed by Santello

et al. [25]. Grasp synergies, also known as postural synergies and eigengrasps,

are the directions of highest variance in the joint space obtained from applying

Principal Component Analysis (PCA) [26] on the joint angles of the hand in a

number of trial grasps. It is shown that two principal components account for

80% of the variance in grasps performed in 57 objects of different shapes and

sizes. This dimensionality reduction allows the control of hand movement along

the directions of these principal components, greatly decreasing the computational

effort required to learn and reproduce grasps [27] and also allows their easier gen-

eralization [28, 29].

Besides kinaesthetic learning, reinforcement learning can also be used using data

that is obtained from other sensing sources. A robot can learn to stably grasp

an object by repeatedly grasping a number of objects and finding the sensory

inputs which correspond to stable grasps [30]. Vision is another source of sensory

inputs that can be used to choose grasping points which are likely to lead to

Chapter 2. Background 29

stable grasps [31], even when the object shape is not accurately known [32] or not

known at all, finding only regions in the object surface where to place the robot

fingers [33, 34].

Machine learning strategies have shown remarkable results in the field of robotics,

endowing robots with the capability of performing complex behaviours, which are

inherent in robot grasping and manipulation tasks. However, these approaches

suffer from a number of drawbacks, chiefly the lack of transparency they provide

to the user, as the inner workings of a learned strategy may not be meaningful

to a human observer. The problem of overfitting and the difficulty to transfer

these tasks to different settings, such as working with different hardware becomes

difficult and usually requires re-training on the new robot platform. In the par-

ticular case of robot grasping, machine learning may not be able to cope with

subtle changes in the task. For example, it would be difficult for a machine learn-

ing strategy to accommodate for changes if two similar object possess slightly

different physical properties, such as friction or weight, that would require com-

pletely different grasps. An approach that combines analytical computations with

machine learning elements is likely to be the key for the success of future robot

grasping and manipulation systems.

2.2 Tactile Sensing

Research in tactile sensing has developed hand-in-hand with research in grasping

and manipulation. From the beginning, it was clear to researchers in the field

that, similarly to humans, who struggle to perform complicated manipulation tasks

when their sense of touch is impaired [1, 35, 36], a robot would also require an

acute sense of touch in order to manipulate objects [8, 10]. This sensing modality is

what allows humans (and robots) to detect, measure and characterise the physical

interactions with themselves and the environment. We humans rely on the sense

of touch for three types of activities: manipulation, exploration and response [37].

While the entirety of our bodies’ surface is covered with mechanoreceptors (nerve

Chapter 2. Background 30

endings responding to mechanical stimuli), the glabrous skin in our hands and

particularly our fingertips possess a much larger density of afferents [38]. Four

type of afferents are present in our glabrous skin which are tasked with sensing

different events [39]:

� FA-I (fast adapting type I) Meissner’s corpuscles are sensitive to high fre-

quencies (∼ 5− 50 Hz)

� SA-I (slow adapting type I) Merkel’s discs are sensitive to low frequencies

(< 5 Hz) and static forces

� FA-II (fast adapting type II) Pacinian corpuscles sense transients and higher

frequency vibrations (∼ 40− 400 Hz)

� SA-II (slow adapting type II) Ruffini endings detect static forces and skin

stretch

During manipulation tasks, these different afferents “fire” at different times and

with different intensities, allowing us to experience the weight of the object, feel

its texture, detect its slippage, sense its shape, etc.

Currently, no single tactile sensing technology exists that can provide the same

richness of information we have available at our fingertips, with all these different

properties and events being perceived simultaneously [40]. However, when dealing

with only one single tactile perception task at a time, it is not uncommon for robots

to match or even outperform humans. An example of this can be seen in any com-

mercial force-torque sensor, which is likely to have a much higher sensitivity and

resolution than our fingertips when quantifying interaction forces. Distinguishing

between similar materials such as brass, aluminium and steel may be challenging

for a human, but robots have no problem identifying these materials through their

friction properties [41] or texture [42]. Incipient slip can be detected very rapidly

by robots [43, 44] and slippage can be prevented altogether by predicting the force

ratio at which break-away will occur [45].

Chapter 2. Background 31

Different taxonomies exist for classifying tactile sensors. The classification can be

based on the technology used [46] – optical, conductive elastomer or silicon strain

gauges –, sensor dimensionality [47] – zero, one or two dimensions –, sensing

principle [48] – array sensors and force-torque sensors –, or the location of the

sensor [49] – intrinsic and extrinsic tactile sensing. The two last classification

arrangements – by sensing principle or by the location of the sensors – can be

thought of being somewhat coincident and allow a parallel to be drawn between

robot and human tactile sensing [49]. In this metaphor, intrinsic tactile sensing,

which is obtained from force-torque sensors mounted within the body of the robot,

corresponds to the kinaesthetic sensing of humans, while extrinsic tactile sensing

is given by tactile arrays distributed over the robot surface and is analogous to

human cutaneous sensing [50]. This classification seems the most appropriate for

this overview of tactile sensing as it also determines the two different approaches

for pose estimation presented in the next chapters.

2.2.1 Intrinsic Tactile Sensing

Intrinsic sensors are located within the mechanical structure of a robot [51], such

as force-torque or joint angle sensors. Bicchi et al. introduced a sensing scheme to

obtain tactile information from an intrinsic six axes force-torque sensor mounted at

the robot fingertips, under a rigid parametrisable convex surface [52]. By assuming

that the contact is approximately rigid, that there is only one contact surface

acting on the fingertip and that the force is always compressive, one can obtain

the following tactile information from this scheme [53]:

� contact centroid on the fingertip (a point always within the contact area) pc

� magnitude of the normal component of the contact force ~Fn

� magnitude and direction of the friction force ~Ft

� torque generated around the contact normal direction ~τ

Chapter 2. Background 32

y

z

x

S

FT Sensor

~F ~τ
~Fn

~Ft
pc

[fx, fy, fz,mx,my,mz]

Figure 2.2: Intrinsic Tactile Sensing scheme – acting force in green, measured
quantities in red, computed parameters in blue

Figure 2.2 shows a diagram of this tactile sensing approach. Given a contact

force ~F in green, the force-torque sensor mounted under the surface S registers

the forces fx, fy, fz and the moments mx, my, mz. A force balance allows the

computation of the line in space where the force is acting, and the contact point

can be calculated when the surface equation is added.

For a better understanding, consider the situation in Figure 2.3, where a force is

being exerted in the xy plane and thus only two forces fx, fy and one moment mz

are present. Measuring these three quantities and applying the force balance in

Equation (2.1), the dashed line on the figure can be obtained. The intersection

between this line and the surface equation identifies the contact location uniquely,

since the surface is convex and only compressive forces are allowed.

~M = ~r × ~F ⇐⇒ mz = rx · fy − ry · fx (2.1)

x

y

z
mz

~F

fx, fy

~F

~r

Figure 2.3: Intrinsic Tactile Sensing diagram – a force is exerted in the xoy
plane

Chapter 2. Background 33

In the general case, another unknown q is added, which is the torque around

the surface normal, generated by friction forces. Thus, finding the contact point

pc = [x, y, z] is done simply by solving the system of equations in Equation (2.2),

which describes the force balance for a single contact and the surface equation:


pc × ~F + ~τ = ~M

S(x, y, z) = 0

(2.2)

Separating these equations for each dimension and putting them in the relaxed

form yields (2.3), which is the system of equations that needs to be solved to find

the contact location pc = [x, y, z] and k which is proportionally related to ~τ .

~H(x, y, z) =



k∇Sx − fyz + fzy −mx

k∇Sy − fzx+ fxz −my

k∇Sz − fxy + fyx−mz

S(x, y, z) = 0


= 0 (2.3)

After finding the contact location pc, it becomes trivial to find the normal and

tangential components ~Fn and ~Ft. The normal vector n̂, coinciding with the surface

normal at point pc, is obtained simply by the gradient of the surface equation S
at that point, normalised as shown in Equation (2.4)

n̂ =
∇S(pc)

‖∇S(pc)‖
(2.4)

The normal component of the contact force is obtained by projecting the total

force onto the normal direction vector n̂, while the tangential force is simply the

rejection of this vector, as shown in Equation (2.5) and Equation (2.6)

Chapter 2. Background 34

~Fn =
~F · n̂
n̂ · n̂ · n̂ (2.5)

~Ft = ~F − ~Fn (2.6)

Figure 2.4 shows an implementation of the Intrisic Tactile sensing scheme, where

Figure 2.4(a) shows the hardware implementation with hemispherical fingertips.

Figure 2.4(b) shows a visualization tool depicting that hemispherical fingertip,

with the total force vector as a red cone. The lines coming out of the tip of the

cone are the normal and tangential components of the force, and the arrow on top

of the cone is the magnitude of the local torque. This sensor was evaluated by Liu

et al. [54], where the Levenberg-Marquardt algorithm [55, 56] was used to solve

the system of equations in Equation (2.3), and presented an accuracy of 266 µm,

running at frequencies over 800 Hz.

(a) Barrett Hand with Force-Torque sensors
mounted on the fingertips

(b) Intrinsic Tactile sensing visualisa-
tion

Figure 2.4: Overview of the Intrinsic Tactile sensor

This Intrinsic Tactile sensing strategy provides very accurate results in terms of

contact location, as well as information on the normal and tangential force, which

is crucial for manipulation tasks. It has successfully been used for surface identi-

fication [41], slippage detection and prevention [45, 57], surface following [58], etc.

However, it is limited to a single contact point or surface, as the intrinsic sensor

can only measure the net force acting on the sensing area and it also assumes

Chapter 2. Background 35

that the contacts are rigid. This latter limitation implies that the contact cannot

generate a very large friction force, which is essential for manipulation. To address

this restriction, Liu et al. devised and validated a method that can deal with small

deformations on the fingertip [59], achieving an accuracy on the contact location

of 320 µm on a fingertip covered with a thin rubber layer which provides friction

and compliance.

In summary, implementing an intrinsic tactile sensing scheme on the fingertips of

a robot hand presents significant advantages for robot grasping. The rich infor-

mation provided by this method has been demonstrated to enable or facilitate the

following abilities:

� directly measure the magnitude and direction of external forces, enabling

safe interaction with the environment

� obtain an accurate measurement of normal force which can be used for force

control

� explore an object surface through the simultaneous control of normal and

tangential forces [58]

� accurate contact location estimation – 266µm [60]

� slippage detection and prediction [57]

� surface material classification through its friction parameters [61]

� increase grasp robustness [53]

� assess grasp quality (force and form closure), from the contact locations and

normals.

2.2.2 Tactile sensing arrays

Tactile sensors usually refer to sensors distributed over a robot’s surface that de-

tect and measure local contact information. This class of sensors are also termed

Chapter 2. Background 36

Figure 2.5: Intrinsic force-torque sensor with soft rubber layer

as extrinsic tactile sensors and are deployed to convey cutaneous information,

mimicking the role of the skin in humans and other animals [49]. Tactile sensors

can be used to measure a number of different physical quantities, mainly pressure,

skin deformation and skin acceleration, or a combination of these [37]. These dif-

ferent modalities also mirror the previously mentioned afferents present in human

glabrous skin (FA-I, SA-I, FA-II and SA-II).

The main requirements put forward in the literature for distributed tactile sensing

technologies intended for robot grasping applications are [49, 62]:

� Spatial resolution around 1 mm;

� High force sensitivity and range of 1 to 1000 gram-force;

� Low hysteresis

� Frequency response up to 400 Hz.

Dynamic tactile sensing is typically carried out by embedding piezoelectric [44] or

accelerometers [43] into a soft fingertip, detecting the vibrations associated with

transient events such as contact, lift or incipient slip, which is characterised by

stick-and-slip phenomena [63]. This approach of embedding accelerometers [64]

or force-torque sensors [65] in a soft medium was also successfully employed to

identify surface materials. Given the object of this thesis, the dynamic response

Chapter 2. Background 37

of tactile sensors is not as important as the measurement of distributed forces,

pressures and skin deformation on a robot fingertip.

Different technologies have been studied in terms of sensing principle and manu-

facturing technology, with the main contributions to the design of tactile sensors

coming from the fields of medical robotics and robot manipulation. The most

widespread type of tactile sensor is the distributed pressure array [37]. These

sensors are commonly distributed in a deformable matrix of elements and mea-

sure the pressure exerted in the normal direction in each element – also known as

taxels. Common sensing principles of this class of sensors include piezoresistive,

capacitive, optical and MEMS barometers. Covering a large part of a robot finger

surface, these sensors can detect contact location and, after appropriate modelling

and calibration, also estimate normal force and surface shape.

Distributed pressure array devices can already be considered a mature technol-

ogy, with capacitive touch sensors existing in current touch screens and touch-

pads and FSR (Force Sensing Resistors) being used in devices like joysticks.

For researchers, also “off-the-shelf” commercial solutions are available, such as

PPS [66], Tekscan [67], Weiss sensors [68] and Takktile [69]. Other prominent

examples of distributed tactile sensors exist, such as the ROBOSKIN modular

sensor patches [70], the DEXMART robotic hand force/tactile sensor [71], the op-

tical based TACTIP [72] and the biomimetic BioTac [73]. Other tactile sensors

able to measure normal and tangential force were presented by D’Amore [74] and

Yousef [75]. Extensive literature reviews have been carried out over the years, with

the ones from Nicholls [47], Dahiya [49], Yousef [76] and Kappassov [62] standing

out as very complete and thorough.

Representing and interpreting the data from distributed tactile sensors in an effec-

tive way is also an open challenge in tactile sensing. A common way of handling

data from a tactile array is to treat the data as a “tactile picture”, and apply

methods which are inspired by those commonly used in computer vision. In these

methods, each tactile element is considered a pixel, different features are extracted

from the tactile image [77] and descriptors such as SIFT are used to encode the

Chapter 2. Background 38

data [78]. A framework which maps sensing elements on the robots in a 2D so-

matosensory map has been proposed by Cannata [79], inspired by the human

brain. Machine learning approaches to represent tactile data [80] also exist, with

dimensionality reduction techniques such as PCA being applied, which treat every

tactile element as a dimension [81–84] or take the spatial location of the elements

into account [85].

Besides grasp control, which is present in nearly every study, tactile sensing has

seen other uses in the field of robot grasping and manipulation. Tactile data has

been used to detect events in a pick-and-place scenario, automatically triggering

transitions between the different phases of this task (grasp, lift, replace, unload,

etc.) [86]. The inverse dynamics of a humanoid robot were learned using a dis-

tributed tactile array that covered the robot’s arm. As the robot arm collided with

the environment, tactile and force/torque data was used as an input to learn the

robot’s joint torques, outperforming an analytical approach [87]. Tactile sensors

have also been used to analyse surface shapes and textures [88] and for object

recognition and pose estimation [89, 90]. A data-driven method was presented by

Bekiroglu [30] that was able to predict grasp stability based on tactile data and

without any analytical consideration such as the ones presented in Section 2.1.

2.3 Sensor Fusion

It is impossible or unfeasible for a robot to know the complete state of its sur-

roundings when it is operating within an unstructured environment. By equipping

a robot with sensors that provide different types of information, which may be in-

dependent, complementary or even overlapping, an intelligent system can increase

its knowledge of the world around it [91]. Multiple sensing sources can grant a

synergistic effect, with the data from one sensor serving as cues for the operation

of other sensors, and also contribute to a more robust system, through the redun-

dancy in the information which allows the fusing of data to reduce sensor error

and noise, or persistance in case of malfunction [92].

Chapter 2. Background 39

In the field of robot grasping, the fusion of multiple sensing sources has been the

object of extensive research. Besides tactile and force sensing, vision also plays

an important role in grasping and manipulation, particularly during the pre-grasp

phase, when the grasp is planned and the robot hand approaches the object [93].

This is similar to the approach taken by humans, who also use vision to plan the

positioning of the fingers on an object, while relying mainly on their sense of touch

during the grasp [94].

Peter K. Allen from Columbia University was one of the early researchers that

combined vision, force and tactile sensing in the context of robot grasping [95, 96].

A robot hand was equipped with a tactile sensor suite and a real-time vision

tracking module was added to the system, besides the native joint sensor and strain

gauges which measure the load on the finger’s outer link. In different experiments

vision was used to detect contact location, measure joint angles, find the position

of the fingers relative to the object, and drive a manipulation task through visual

servoing of the fingers, using force and tactile sensing to ensure a tight grasp [97].

One of the first instances of autonomous grasping was presented by Kragic, Miller

and Allen, who combined a real-time object tracking system with the GraspIt! [98]

grasp planner. In this work, the object pose is first detected from vision, using the

previously known object geometry [99]. The object and the robot hand models are

used by the grasp planner to compute a stable grasp, according to the GWS criteria

(see Section 2.1). After the grasp is finished, vision is again used to monitor the

execution of the task and to servo the robot arm to reach a desired object pose.

In a work that reinforced the understanding of the importance of integrating these

three sensing modalities (force, vision and tactile), Prats et al. [100] compared the

effectiveness of different combinations of these sensors. Using a mobile manipula-

tion platform consisting of a mobile robot, a 7 degree of freedom redundant arm,

a robot hand with force/torque and tactile sensing, and an external camera, the

robot was tasked with opening a sliding door. The task was carried out and a com-

parison was made between using force alone, using vision and force and combining

vision, force and tactile sensing. When combining all three sensing modalities,

tactile sensing was used to ensure that the door handle was aligned with the robot

Chapter 2. Background 40

hand, with this combination outperforming the other two cases, with the robot

succeeding in opening the door in all experiments.

Vision and tactile sensing are also used in the work by Bekiroglu et al., with vision

being used to estimate the pose of the object and tactile data for assessment of

grasp stability in a data-driven fashion [101].

An approach to determine the location of contacts in space and the interaction

forces between a robot and an object, which combined different sensing modalities,

was proposed by Felip et al. [102]. This framework discretised the 3D space into

voxels, and contact hypotheses from different sensing sources – force-torque, tac-

tile, visual, depth – were added to this hypotheses space. Each sensing modality

has a measurement model, which attributes a value of likelihood for the readings.

When hypotheses from multiple sources coincided at the same voxel, these were

fused together using the combination of their likelihoods.

2.4 Object Pose Estimation

2.4.1 Vision-based Object Pose Estimation

One of the key factors in the success of a grasping task is the accurate estimation

of an object’s pose. When a robot operates in an unstructured environment, the

position and orientation of the target objects in the environment are not known a

priori and require their robust estimation [103]. Even small errors when estimating

the location of the target object can lead to the wrong placement of the fingers

on the object, create false assumptions on grasp stability and even compromise

the success of a grasping task. This requirement is even more imperative during

manipulation tasks that, by definition, aim to modify an object’s position and

orientation [104].

The most common means to obtain an object’s pose in robot systems designed for

robot grasping is through the use of computer vision – single, multiple (stereo) or

Chapter 2. Background 41

RGB-D cameras. The work by Kragic et al., previously discussed in Section 2.3,

details one of the first occurences of using vision to estimate an object’s pose in

the context of robot grasping [105]. The same author further developed a method

that used stereo and foveal cameras, which could focus the gaze of the robot on

the desired object. The proposed system could segment, identify the object and

estimate its pose [106].

Stereo vision is also featured on the head of the ARMAR humanoid robot, devel-

oped in the Karlsruhe Institute of Technology. This vision system relied on the

combination of model and appearance-based methods [107]. Model based meth-

ods use the object’s 3D geometric model while methods based on appearance use

visual features such as color and texture [108].

It is also possible to estimate the object pose using the object’s 3D model and a

single camera image, by finding the 2D-3D point correspondences through min-

imisation [109]. In a work by Detry et al., vision was used to estimate the pose

of the object to be grasped, together with cues which might indicate affordance

locations [110]. These affordances are geometrical patterns present in object parts

that when gripped lead to stable grasps. Examples of affordances include the grip

of a frying pan, the stem of a glass or the handle of a mug.

With the generalised availability of RGB-D cameras, providing synchronised color

and depth information in real-time, computer vision approaches for robot grasping

systems have seen remarkable developments. These systems use a structured light

pattern projection, come at a low price and are extremely suited for robot grasping,

which is typically done indoors, with the camera at a distance between 1 and 2

meters of the target object.

Burrus [111] proposed a method to recognise and estimate the pose of objects

using this type of camera, furthermore reconstructing the object’s geometry from

the visible points. It is pointed out in this early work, as far as structured light

RGB-D cameras have been used, that both object recognition and pose estimation

greatly improve when using depth sensing.

Chapter 2. Background 42

Other object pose estimation and tracking methods have been developed in recent

years, which take advantage of these new cameras [112–114], along with libraries

such as the Point Cloud Library (PCL), that incorporate trackers as well as com-

mon tools to operate these depth images [115]. A very detailed survey of object

tracking using traditional cameras was done by Yilmaz et al., providing also an

introduction to the topic [116].

2.4.2 Tactile-based Pose Estimation

As previously discussed in Section 1.1, vision alone may not ensure the required

accuracy for pose estimation when the object is placed inside the robot hand.

Figure 1.1 exemplified how a vision-based object tracker may provide an accurate

estimate of the object pose when the item is sitting on top of a table, and a large

part of it is seen by the camera. The occlusions generated by the robot body hide

a significant part of the object, impairing the performance of the vision system.

Besides, vision may not be suited for estimating the pose of objects that are trans-

parent, or too small to be detected by vision. Some environments may also hinder,

or even prevent the usage of vision systems, such as underwater [117] or hazardous

scenarios with fire, smoke and debris [118]. The importance of redundancies and

synergies created by the combination of different sensing sources, highlighted in

Section 2.3, supply further demonstration of the advantages of using tactile sensing

to estimate the object’s position and orientation [119].

The possibility of recognising and estimating the pose of an object using tactile

sensing, with or without the support of a vision system, was present from the early

days of research in manipulation. Gaston and Lozano-Pérez [120] introduced the

concept of an “interpretation tree”, where an object’s identity, possible poses and

relations between the object surfaces and contacts were laid out. The problem of

recognising and locating the object was solved through taking measurements that

pruned this intepretation tree and matched the contact points obtained with the

edges of the tree. This search-tree approach was followed by Siegel et al. [121] to

www.pointclouds.org

Chapter 2. Background 43

find the pose of an object whose geometric model is known a priori, using only

joint position and joint torque sensors. Contact locations were assigned to different

object vertices where the distance between the contacts were consistent with the

distance between vertices.

A robot system, consisting of a robot arm, a gripper with array sensors, and a

camera, was used to recognise an object sitting on a surface, by creating a tree

of possible objects based on feature vectors [122]. These feature vectors were

generated using the image moments from the camera and the tactile array data,

which was also treated as an image. The tree was traversed using the features

in the camera image first, and then the tactile images. If the object was not yet

discriminable, it would be moved into another position and the process restarted.

Tactile exploration was introduced around the same time, with a theoretical frame-

work to recognise and localise objects using tactile sensing that used the same in-

terpretation tree approach. This strategy used 2D planar objects and sequentially

found paths for probing the object that necessarily discriminate between the pos-

sible objects and poses using the geometric intersection of these possibilites [123].

A method that fused vision and tactile sensing was presented by Honda et al.,

which used a multi-fingered hand and a stereo camera to determine an object’s

pose [124]. An initial pose of a cylindrical object was obtained from vision, by

projecting a light pattern onto the surface of the object to generate visual features.

The contact locations between the fingers and the object were obtained from tactile

sensing and forward kinematics and the object’s pose was determined through the

minimisation of the distance between the contact locations and the object surface.

An approach that matched finger contact locations to object facets using the DLR

hand was presented by Haidacher and Hirzinger [125], where a description for

each object was generated offline, that contained the relations between its facets.

During contact, the tactile measurements from the robot fingers were used to

search the database for consistent matches to the relationships between facets.

Chapter 2. Background 44

More recently, methods to locate a grasped object using tactile sensing have posed

the question as a state estimation problem solved through Bayesian Filtering.

This approach aims to continuously estimate the object state (its pose) through

recursively updating the probability distribution over possible states, given a set

of measurements. Bayesian Filtering requires the system to satisfy the Markov

property, i.e. the current state xt depends only on the previous state xt−1 and

action ut or, in other words, there is no memory of past actions u and measurements

z. It also requires an update (or motion) model (p(xt|xt−1, ut), i.e. the probability

of transitioning to a state given the previous state and action) and a measurement

(or observation) model (p(zt|xt), i.e. the probability of measuring zt given that

the world is in state xt). The posterior belief (bel(xt)) is recursively updated by

first integrating the product of the previous belief and the motion model, and

multiplying it by the measurement model. This Bayesian Filter method is shown

in Equation (2.7) and (2.8), where η is a normalisation factor [2].

bel(xt) =

∫
p(xt|xt−1, ut) bel(xt−1) dx (2.7)

bel(xt) = η p(zt|xt) bel(xt) (2.8)

Bayesian filtering, and in particular particle filters, where the posterior is repre-

sented by a set of samples drawn from the distribution instead of a parametric

form (e.g. a Gaussian distribution), has been extensively and successfully used in

estimation problems such as localising a mobile robot [126]. However, estimating

the 6-DOF pose of an object (3 dimensions for position and 3 for orientation)

with a particle filter becomes unfeasible due to the “curse of dimensionality” that

exponentially increases the required number of particles used for estimation. As

an example, if a 3-DOF problem such as mobile localisation (2 dimensional posi-

tion and one orientation angle) takes 1 second to achieve a desired accuracy, the

corresponding 6-DOF problem would take 1.5 years [127]. This presents a major

difficulty for applying the standard particle filter to this problem, to which many

alternatives have been suggested to simplify the computation.

Chapter 2. Background 45

Sensing data from a stereo camera, a force-torque sensor mounted at the wrist

of a robot hand with joint encoders was fused in the measurement vector of an

Extended Kalman Filter (EKF), that estimated the discrete contact modes [128].

These contact modes were the space of all possible combinations between fingers

in contact and the surfaces of the object, which restricts the usage of this strategy

to objects of simple geometry.

Corcoran and Platt [129] developed an approach based on Bayesian filtering which

incorporates a measurement model of “negative” contacts, i.e. the likelihood of not

touching the object in a region outside of the object surface. This was implemented

along with a closed form approximation of the “positive” contacts measurement

model, which assumed the likelihood of contacts to follow a Gaussian distribution.

The work by Petrovskaya and Khatib [127, 130] presents a very interesting ap-

proach to using Bayesian state estimation to the problem of object localisation.

In this work, a probe mounted on a robot arm served as a single robot finger which

explored the object and collected measurements of contact locations and normals.

The proposed method, termed Scaling Series (SS), combines a special particle filter

with an annealing technique that “heats up” the measurement model, making the

distribution broader (noisier) and easier to sample from, requiring less particles.

The main feature of this work is that in this particle filter-like approach, parti-

cles do not represent single hypotheses but rather a region in the search space.

These particles increase granularity (shrink) with the progress of the algorithm,

increasing the accuracy of the estimation, while also pruning regions with low

probability. The combination of these features leads to the acquisition of accurate

pose estimates while also allowing a trade-off between the desired accuracy and

run time.

Starting from a pose estimate obtained by vision, a particle filter was implemented

that used a collision detector and tactile sensing as measurement models and the

grasp matrix as the update model [131]. As the robot contacts the object, the

weight of each particle representing a pose is determined by whether the object’s

Chapter 2. Background 46

geometry does not penetrate any of the robot links’ and the distance between the

contacts and the object surface.

The discriminatory nature of tactile sensors, i.e. they either detect contact or

the absence of it, results in a very “spiky” measurement model, which can lead

to poor performance of particle filters for object pose estimation based on tactile

sensing. This problem was tackled by Koval et al. [132] through combining both

observations (contact and no-contact) into a measurement model and the intro-

duction of a manifold particle filter. This particle filter takes advantage of the

fact that, during contact between a robot and an object, all the possible object

poses lie on the lower dimensional contact manifold. This manifold is built from

the robot and object geometries and represents the boundary between the space of

poses which penetrate the robot geometry and the poses which do not activate any

tactile sensor. Assuming that the object is lying on a surface, the robot sweeps

the surface to find the object and estimates its 3 DOF pose.

Exploring the object to increase the available information about the object pose

and/or identity can also be included within a Bayesian Filtering approach. A strat-

egy for exploring an object’s edges using tactile information and, with this data,

identify the object from a large number of possibilities stored in a database and es-

timate its pose was done for underwater applications [90]. This approach, termed

BRICPPF (Batch RANSAC, ICP, Particle Filter), combined a batch RANSAC

(RANdom SAmple Consensus) to match detected object features with the objects

in the database, a particle filter that continuously estimated the the 7 DOF (object

identity and 6 DOF pose), and Iterative Closest Point (ICP) matching to locally

minimise the distance between the spatial tactile data and the object point cloud.

Object exploration was also implemented within a strategy that sequentially planned

and executed arm trajectories, deviating from the shortest trajectory in order to

gain information on the object pose that placed the robot hand in a stable grasping

posture. While executing this reaching motion, if an observation occurs that was

not expected if the object was at its most likely pose, the belief state is updated,

the robot hand is pulled back and a new trajectory is planned [133]. Framing the

Chapter 2. Background 47

problem as a POMDP (Partially Observable Markov Decision Process), Hsiao et

al. [134] defined the state as the 3 DOF object pose and used a Bayesian Filter for

estimation. Actions were defined as WRT (World Relative Trajectories), which

represent robot poses in the object frame and can be used to grasp the object,

explore it or re-orient it. Actions are selected according to their look-ahead cost

of executing given the current belief state.

A framework for grasping was presented by Laaksonen [135] which aims to achieve

a high probability for a stable grasp by marginalising over the possible object

poses. In this work, two probability distributions are required: the probability

of a stable grasp S, given a grasp G and an object pose O: P (S|G,O) and the

measurement model P (O|G, T), where T is the tactile data. These distributions

were obtained through the collection of grasping data and using Gaussian Process

Regression (GPR). The robot continually attempts to grasp the object at the point

of maximum probability of a stable grasp and updates its knowledge on the object

pose until the probability of a stable grasp is above a threshold value, wherein the

grasp is executed and the object is lifted.

Vazquez et al. [136] compared the performance of in-hand object pose estimation

using different sensor types, contact sensors, torque sensors, distributed arrays and

force sensors, and applied different techniques, such as particle filters and ICP.

Table 2.1 summarises the assumptions and results (when present) of the most

relevant articles described in this section. The accuracy and speed of each method

is detailed along with its most important features. Namely, the ability to: a) fully

estimate the object pose in six dimensions; b) deal with objects composed of

thousands of polygons; c) compute the pose without any prior estimate; d) can

estimate the pose from a single measurement or requires exploration of the object

through a series of touches e) enable the identification of the object f) take into

account the object movement caused by the contacts.

None of the reviewed articles completely fulfills the stated abilities and, most

importantly, approaches which can deal with complex objects require the imple-

mentation of some exploration strategy. This limitation raises issues due to the

Chapter 2. Background 48

fact that, in real grasping settings, the extent to which the robot can explore

the object is limited by the dexterity of the robot and the possibility of drop-

ping the object. Furthermore, the object displacement caused by these multiple

simultaneous contacts becomes difficult to predict.

The accuracy and computation time for each study where it is stated is also

compared, with results in the range of a few millimetres and durations in the

range of seconds. An exception to this are the results by Honda et al. [124], which

were taken in a very controlled environment, where a vision system provided a

very accurate pose estimate to begin with (≈1mm).

Reference 6-DOF
Complex
Objects

Global
Pose

No
Explor.

Object
Ident.

Moving
Object

Accuracy
[mm/°]

Speeda

[s]

Aggarwal[90] 4 4 4 6 4 4 <5/– –

Chalon[131] 4 6 6 6 6 4 ≈10/10 –

Corcoran[129] 6 6 6 6 6 6 ≈3/8 3

Hebert[128] 4 6 6 4 6 4 6/2 –

Honda[124] 4 6 6 4 6 4 0.5/2 0.033

Petrovskaya[127] 4 6 4 6 6 4 5/3 30

Koval[132] 6 6 4 6 6 4 <20/– 1

Laaksonen[135] 6 6 6 6 6 6 – –

Zito[133] 4 4 6 6 6 6 – 200

Pezzementi[137] 4 4 4 6 4 6 4/≈30 –

aRun times are merely indicative, as the experiments were run in different hardware

Table 2.1: Comparison of existing tactile pose estimation methods in the
literature

2.5 Conclusions

In this chapter, the topics of robot grasping, tactile sensing and object pose esti-

mation were introduced and a review of the relevant literature was provided.

Chapter 2. Background 49

The knowledge of the location of the object within the robot hand is essential for

the manipulation of objects, as it allows the computation of grasp stability and

quality, as well as the planning of finger placements and forces to manoeuvre the

object. Tactile sensing plays a very important role in manipulation tasks, not only

for the control of finger forces but because it can also aid the perception of the

hand-object system state. Given the different nature of the information provided

by different tactile sensors, the strategies to process and interpret this information

need to be adapted to the existing hardware.

Using tactile sensing to estimate the position and orientation of an object is still

very much an open problem in the field of robot grasping and manipulation. Most

robot systems currently available employ vision alone for the determination of

the object pose, but this approach presents some drawbacks during manipulation

tasks, where the robot body occludes the target object and the visible parts of

the object are not sufficient to accurately estimate its location. Different tech-

niques to estimate the object pose using tactile sensing have been proposed, with

different advantages and also with some disadvantages. Early analytical methods

cannot deal with objects with arbitrary geometric complexity, and their compu-

tational cost becomes impractical for objects composed of thousands of planes, as

may be the case in household objects. Recently, most strategies aim to continu-

ously estimate the object pose relying on Bayesian Filters such as Particle Filters.

This approach has been proven to be very reliable in localisation problems, par-

ticularly in the context of mobile robotics, and has naturally been extended to

the field of in-hand object pose estimation with promising results. However, and

unlike in the field of mobile robots, this approach has not yet provided a defini-

tive solution to this problem and, while theoretically sound, it has not shown the

level of robustness that is suited for real world robot situations. The hindrances

presented by using Bayesian Filtering depend greatly on the form in which the

problem is stated, which researchers have tried to tackle using different formula-

tions. As with analytical methods, object complexity can present difficulties to

this approach, and render the problem untractable, and research has focussed on

simple geometries. Another issue arises with the multi-dimensional nature of this

Chapter 2. Background 50

problem, which requires a great deal of computational power. Thus, some solu-

tions present assumptions to reduce the pose to only three dimensions. Particle

starvations and the fact that contact sensing is extremely discriminative (i.e. if a

candidate pose places the object one millimetre away from the contact sensor there

is no contact and thus the measurement model should report no contact) are also

added difficulties for the use of Particle Filters when compared to mobile robots,

which use range sensors and can always report a distance measurement. Bayesian

Filters also require and are highly dependent of the existence of a transition (or

motion) model. These models predict the evolution of a particular state given the

current state and the action performed in a probabilistic manner. While these

models can be computed for systems with wheels, or a single kinematic body, the

nature of robot manipulation with multiple fingers, inaccurate friction models and

objects of unknown properties makes it particularly complicated to predict the

relative motion of the object with respect to the robot. As such, Bayesian Filters

use simplified motion models which do not accurately predict the motion of the

object or assume the object is immobile altogether, which is unrealistic for the use

in real world scenarios.

A simpler solution, that attempts to estimate the pose of objects using tactile

sensing in combination with vision and on its own, that can deal with objects of

arbitrary complexity and use only a “frame” of tactile data (instead of continuous

estimation) and thus do not rely on motion models, is the objective of this thesis.

It aims to find object pose(s) that are coherent with current tactile information by

stating the problem as the minimisation of this incoherence and using optimisation

techniques that can rectify a coarse object pose estimate provided by a vision

system or without any prior information.

Different strategies that attempt to solve the problem in these different scenarios,

where vision may or may not be available, and in the presence of different contact

sensing modalities are explored in the next chapters, after a brief overview of

required mathematical concepts.

Chapter 2. Background 51

2.6 Mathematical Background

2.6.1 Rigid Body Motions

2.6.1.1 Coordinate Frames and Matrix Representation

In 3D Euclidean space, proper rigid motions are transformations f : R3 → R3

which preserve distance between points and handedness. The set of all such trans-

formations forms the special Euclidean group SE(3), which can be represented in

matrix form by the 4×4 homogenous coordinate transform matrices containing the

rotation and translation parts of the transformation, as shown in Equation (2.9).

These matrices represent the pose of a coordinate system with respect to another,

where R is the 3 × 3 rotation matrix and t is the three-dimensional translation

vector [138] .

T =


R

3×3
t
3×1

0 0 0 1


(2.9)

In this representation, a 1 is appended to the coordinates of a point and a zero to

the coordinates of a vector, to obtain vectors in R4. R is an orthogonal matrix

of determinant 1 and contains the unit vector coordinates of the target Cartesian

frame as its columns. An important aspect of any orthogonal matrix is the fact

that its inverse equals its transpose, which represents the inverse rotation.

For a thorough description of rigid body motions, the books by Craig [139] and

Murray [140] provide very complete analyses on the topic. In this chapter, it

suffices to state the properties of transformations and present the different repre-

sentations for rotations. Figure 2.6 shows a system with two coordinate frames

Chapter 2. Background 52

y

z

x A

B

y′
z′

x′

p′

Bp′

p

Ap

A
BT

Bp

Ap′

Figure 2.6: Rigid Transformation

with the same object represented in each. The same point p is shown for the two

poses to highlight the following identities:

Let A
BT be the transformation from frame A to frame B, represented by a homoge-

nous transform matrix and Ap the coordinates of point p in frame A:

� The transformation from frame A to frame B is obtained through the inverse

of A
BT

B
AT =A

B T−1 =

 RT −RT~t

0 0 0 1

 (2.10)

� The coordinates of point p′ in frame B coincide with the coordinates of Ap.

Bp′ ≡A p (2.11)

Chapter 2. Background 53

� The coordinates of point p′ in frame A are obtained through transformation

A
BT (left-multiplication) of point Bp′

Ap′ =A
B TBp′ (2.12)

� The coordinates of point p in frame B are obtained through the transforma-

tion B
AT (left-multiplication) of point Ap

Bp =A
B T−1 Ap (2.13)

� Transformations can be concatenated through matrix multiplication

A
DT =A

B T B
CT C

DT (2.14)

Rotation matrices contain 9 elements to represent the 3 DOF orientation of a

coordinate frame with respect to another. Different formalisms exist to represent

rotations in a more compact manner, with the most popular being Euler angles,

axis-angle and quaternions.

2.6.1.2 Euler Angles

Euler angles describe rotations through three parameters (φ, θ, ψ), sometimes re-

ferred to as roll-pitch-yaw, representing the rotation angle around each axis. In

order to operate rotations using this convention, these parameters are used to con-

struct three rotation matrices which are then used to perform the transformation.

This construction is done as follows:

Rx(φ) = Roll(φ) =


1 0 0

0 cosφ − sinφ

0 sinφ cosφ


(2.15)

Chapter 2. Background 54

Ry(θ) = Pitch(θ) =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ


(2.16)

Rz(ψ) = Yaw(ψ) =


cosψ − sinψ 0

sinψ cosψ 0

0 0 1


(2.17)

While each rotation matrix is uniquely defined by its axis and angle, this notation

carries a number of ambiguities. Since matrix multiplication is not a commutative

operation, the order of rotations needs to be defined, as different rotation orders

will result in different poses. Also, Euler angles can describe rotations with either

extrinsic (fixed) or intrinsic (rotating) axes. This means that after one of the rota-

tions has been applied, the following axis of rotation can be either from the initial

or from this intermediate frame. When using intrisic frames, the matrices should

be multiplied in the rotation order to obtain the total transformation matrix. The

equivalent rotation using extrinsic frames requires the order of rotations to be

reversed. In other words, if using extrinsic frames and with the order of rotation

z−y−x, or yaw-pitch-roll, the same rotation can be achieved with intrinsic frames

if the order is reversed to x − y − z. In both cases, the resulting rotation matrix

is the one in Equation (2.18).

R = Rx(φ)Ry(θ)Rz(ψ) (2.18)

Figure 2.7(a) shows how transforming object A with angles (φ, θ, ψ) = (90◦, 90◦, 0◦)

can result in two different poses, if the rotation around x is performed first (case

B), or last (case C). Figure 2.7(b) shows a sequence of rotations z − y − x with

intrinsic axes, where each rotation is performed using the rotated axes, i.e. the

Chapter 2. Background 55

second rotation is around y1, whereas if using extrinsic axis it would be around y0.

A problem arising when using this representation is known as the “gimbal-lock”,

which arises when the pitch θ = ± π/2. In this situation, the roll axis becomes

parallel to the yaw axis, losing one degree of freedom and breaking the unique

correspondence between a pose and a set of parameters (φ, θ, ψ), which can lead

to computational problems.

x

y

z

A

B
C

(a) Difference of rotation axes
order

(b) Difference of fixed vs. rotating axes

Figure 2.7: Ambiguities in Euler Angle representation

2.6.1.3 Quaternions

Quaternions are a generalisation of complex numbers in 4 dimensions, which can

be used to represent rotations. A quaternion is composed of a scalar, or real

part qw ∈ R and an imaginary, or vector part ~q = [qx, qy, qz]. Rotations can be

represented by a quaternion of norm 1, where the quaternion qI = [1, 0, 0, 0] is the

identity rotation (a zero angle rotation).

Since every rotation or sequence or rotations can be represented as a single rotation

of angle θ around an axis ~u, quaternions can be interpreted as a rotation axis

represented by its imaginary part and a rotation angle related to the real part, as

shown in Figure 2.8. More precisely, ~u = ~q/
√

1− q2w and θ = 2 · cos−1(qw). The

correspondence between the quaternion representation and its equivalent rotation

matrix is shown in Equation (2.19).

Chapter 2. Background 56

x

y

z

~uθ

Figure 2.8: Interpretation of quaternions as axis-angle

T =


1− 2 · (q2y + ·q2z) 2 · (qx · qy − qz · qw) 2 · (qx · qz + qy · qw)

2 · (qx · qy + qz · qw) 1− 2 · (q2x + ·q2z) 2 · (qy · qz − qx · qw)

2 · (qx · qz − qy · qw) 2 · (qy · qz + qx · qw) 1− 2 · (q2x + q2y)


(2.19)

Quaternions possess an algebra where the product is defined as the operation in

(2.23). The operation of rotation defined by a quaternion and the inverse rotation

are defined in (2.21) and (2.22), where q∗ denotes the conjugate operation, shown

in (2.20). It can be seen that it not only requires fewer calculations when compared

to rotating using a transformation matrix but also the computations involved to

perform a rotation with quaternions are much easier for a computer to deal with,

as there are no trigonometrical operations such as sine or cosine, improving the

overall computational speed of a calculation.

The computational costs of using quaternions vs. homogenous matrices have been

compared by Salamin [141] and Funda et al. [142], highlighting the advantages of

quaternions for representing rotations, particularly when re-normalisation is often

required. They also point out the more intuitive nature of quaternions to represent

rotations according to the definition shown in Figure 2.8.

q∗ = [qw,−qx,−qy,−qz]T (2.20)

Chapter 2. Background 57

~v′ = q

 0

~v

q∗ (2.21)

~v = q∗

 0

~v′

q (2.22)

p · q =



pwqw − pxqx − pyqy − pzqz

pwqx + pxqw + pyqz − pzqy

pw ∗ qy − pxqz + pyqw + pzqx

pw ∗ qz + pxqy − pyqx + pzqx


(2.23)

While both Euler angles and quaternions present advantages and disadvantages,

the quaternion representation was chosen in this thesis because, although it adds

an extra variable (a quaternion consists of four parameters, while some other rep-

resentations can be defined with only three), it presents advantages in terms of

computational efficiency and suitability for optimisation methods. Ude proposed

a method to improve iterative least squares optimisation when using unit quater-

nions [143]. This approach consists of mapping R4 quaternions into an S3 sphere

manifold and force the iteration steps to be taken along that manifold. A technical

report by Wheeler [144] also discusses the application of quaternions in gradient-

based searches, in particular for the problem of pose estimation, arriving also to

the conclusion that it is more advantageous than other rotation representations.

The possibility of reducing the rotation parameters to three by taking advantage

of the fact that the quaternion must have a unit norm exists, and its application

to nonlinear least squares problems has been investigated [145]. This parametri-

sation requires the initial computation of an R3 vector basis and provides the

formulae to map these 3-vectors into unit quaternions.

Chapter 2. Background 58

2.6.2 Optimisation

2.6.2.1 Introduction

Optimisation is the branch of mathematics that deals with finding the best solution

to a given problem. These problems are commonly stated in terms of finding the

minimum (or maximum) of a function, or the arguments that minimise/maximise

a given function, possibly subjected to a number of constraints. This function

is typically called the “objective” function, or “cost” in case of a minimisation.

Figure 2.9 shows an example of a function with two variables f : R2 → R stated

in Equation (2.24).

f(x, y) = 0.2y2 + 0.1 sin(y + x2)− e(−(x+0.3)2−(y+0.1)2) + 10) (2.24)

-2

0

x

• ← minimum

221

y

0-1-2

10

9.5

9

11

10.5

f(
x
,y

)

Figure 2.9: Function f(x, y) and minimum point

The search for the (x, y) values at the minimum c, shown in Figure 2.9, is an

optimisation problem, which can be stated as Equation (2.25), and has a solution

at c = (−0.2707,−0.1264).

c = arg min
(x,y)∈[−2,2]

f(x, y) (2.25)

The subject of optimisation comprises a large part of the applied mathematics

field, with usages in nearly every aspect of science and engineering. Depending on

the nature of the problem different techniques can be employed, with sub-fields

Chapter 2. Background 59

including Linear, Stochastic, Quadratic, Integer, etc. Different optimisation ap-

proaches are presented in this section which are relevant to the following chapters.

These approaches can be either local or global, deterministic or stochastic.

2.6.2.2 Gradient-Based

Gradient-based optimisation methods are iterative algorithms which, starting from

an initial point in the search space, take steps in the direction of the negative of

the gradient evaluated at the current point, until a local minimum is found. This

approach is highly dependent on the starting point, as it will converge to the first

local minimum it encounters.

Figure 2.10 shows an example of gradient descent on a scalar function. The func-

tion and its derivative are evaluated at x1 and the next estimate x2 is calculated

according to the update rule in Equation (2.26). where λ is a learning rate that

controls the size of each step. Care should be taken in choosing λ so that it is not

too high, as it may “skip” over the minimum value, or too low as it will converge

too slowly to the minimum. Green lines represent the slope of the line tangential

to the function at point xn.

xn+1 = xn − λ∇f(xn) (2.26)

When dealing with objective/cost functions which are vector functions of several

variables (G : Ra 7→ Rb, a > 1, b > 1), the equivalent to the gradient of a scalar

function in this type of functions is the Jacobian Matrix. The Jacobian matrix

contains the derivatives of each element of G(x) with respect to each variable. In

other words, the Jacobian is the matrix where the rows are the gradients of each

element of the vector function.

Chapter 2. Background 60

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−1

−0.5

0

0.5

1

1.5

x1

x2

x3x8

← ∇f(x1)

x 2
=
x 1
−
λ∇
f
(x

1
)

x3
=
x2
− λ
∇f(x2

)

Figure 2.10: Gradient Descent on a scalar function

Jg(x) =



∂g1
∂x1

(x)
∂g1
∂x2

(x) . . .
∂g1
∂xa

(x)

...
...

. . .
...

∂gb
∂x1

(x)
∂gb
∂x2

(x) . . .
∂gb
∂xa

(x)


(2.27)

However, in some cases, the objective function is not differentiable and an approx-

imate Jacobian needs to be calculated at every step. This can be done using the

forward difference derivative [146], where the j-th column is calculated following

(2.28), where h is a small number and êj is the unit vector in the direction of the

j-th dimension.

J̃G(x) = (∇hG)(x)j =
G(x + hêj)−G(x)

h
(2.28)

Chapter 2. Background 61

Gradient Descent

The simplest example of gradient-based optimisation is Gradient Descent, which

uses the update rule given in (2.29). At each iteration, the approximate Jacobian

Matrix is calculated using the formula in (2.28) and a step is taken in the direction

and proportion of the negative of the gradient JG(x(i))TG(x(i)).

x(i+1) = x(i) − λ(JG(x(i))TG(x(i))) (2.29)

Two conditions are evaluated to determine the convergence of the algorithm:

1. a solution is found: max(G(x(i))) < εg

2. a maximum number of iterations is reached: i > maxi

The step size λ can be defined experimentally and will make the convergence faster

or more accurate.

Levenberg-Marquardt

This method was developed in 1944 by Kenneth Levenberg and improved by Don-

ald Marquardt in 1963 [55] and combines the advantages of the Gradient Descent

and the Gauss-Newton methods, interpolating between the behaviour of these two

methods. If, at the current iteration, the parameters are far from an optimal

value, this method acts in a similar way to Gradient Descent. As it approaches a

solution, its behaviour becomes closer to the Gauss-Newton method. The update

rule for the Levenberg-Marquardt method, is shown in (2.30).

x(i+1) = x(i) −
(
JTJ + λ · diag[JTJ]

)+ (
JTG(x(i))

)
(2.30)

This update rule is slightly modified from the standard Levenberg-Marquardt

method that is used to solve least-square problems. Firstly, the Jacobian is approx-

imated using forward differences due to the inability to differentiate the objective

Chapter 2. Background 62

function. Also, the approximate Hessian matrix calculated as JTJ can become

singular and, as such, not invertible. The alternative is to use the Moore-Penrose

[147, 148] pseudo-inverse A+, calculated using Singular Value Decomposition as

shown in (2.31). Σ+ is a diagonal matrix obtained by replacing each of the non-zero

elements in the diagonal by its multiplicative inverse, leaving the zeros unchanged

and U∗ is the conjugate transpose of U

A = UΣV∗ =⇒ A+ = VΣ+U∗ (2.31)

The learning parameter λ is set dynamically at each iteration following the rule:

if the error decreases from the previous iteration, λ is reduced by a factor of ten,

otherwise, if the error increases, the step is rejected and λ increased by the same

factor. The stopping criteria to determine the convergence of the algorithm are

the same as for Gradient Descent detailed in Section 2.6.2.2, with the additional

criterion where the optimisation is stopped if the learning rate λ exceeds a large

number: 10100.

2.6.2.3 Stochastic

While the gradient-based methods previously presented are local (they converge

to local minima), and deterministic (using the same parameters will always result

in the same outcome), another class of methods exist which stochastically tries

to find the minimum (or maximum) of a given function. Stochastic methods use

random variables and heuristics to determine a function’s global minimum, which

is often difficult due to the existence of multiple local minima.

A simple method to increase the chances of finding the global minimum consists

of using one of the previously mentioned gradient-based methods with multiple,

random initial points. Although this approach is not guaranteed to find the global

minimum, it can greatly increase the odds of finding it, depending on the number

of searches and the distribution of initial points within the search space, presenting

the added possibility of being done in parallel.

Chapter 2. Background 63

A class of algorithms known as Monte Carlo methods can be used to approximate

a distribution, find the global minimum of a function or to extract underlying

properties of a mathematical function. Monte Carlo methods rely on randomly

drawing samples from a distribution, which can be combined with heuristics to

determine the search direction in order to move towards the solution. This class

of algorithms was first developed by Metropolis and Ulam [149] in the 1940’s,

and applied in mathematical physics problems, but have seen applications rang-

ing from the simulation of stochastic processes, approximating the expected value

of a probabilistic event and optimisation, where the objective is to estimate a

set of parameters that minimise a devised objective function. This latter appli-

cation has seen extensive application within the field of robotics, with notable

examples of the usage of this class of algorithms in localisation problems in mo-

bile robotics [2, 126, 150] and reinforcement learning, where optimal policies were

found using Monte Carlo methods [151, 152]. A simple example that illustrates

well this class of algorithms is its usage for the calculation of the constant π. A

circle is inscribed within a square of known size and points lying inside the square

are picked randomly. Counting the number of points that lie inside and outside

the circle gives a ratio r that can be used to calculate π with very high accuracy.

Figure 2.11(a) displays an example of one thousand 2-D points p sampled from a

uniform distribution such that p = (x, y), x, y ∈ [−1, 1]. Points within the circle

of radius 1 are colored in red and are chosen such that
√
x2 + y2 < 1. The ratio

between the points in red, which satisfy this radius condition, and the total points

approximates the ratio between the area of the square As = 1 and the area of the

circle Ac = π · r2. In the case plotted in Figure 2.11(a), the result of calculating

π is 0.786 = π̃ · 0.52 ⇔ π̃ = 3.144. Performing this operation ten thousand times

results in the histogram shown in Figure 2.11(b), with the average approximating

the value of π.

The forerunning work of the application of Monte Carlo methods was presented

by Metropolis et al. [153], where the equations of state describing the position

of a set of particles that minimised the total energy of the system, according to

thermodynamical laws. In this work, which was later generalized by Hastings [154],

Chapter 2. Background 64

(a)

3.06 3.08 3.1 3.12 3.14 3.16 3.18 3.2 3.22
0

500

1,000

1,500

2,000

2,500

3,000

3,500

(b)

Figure 2.11: Estimating the value of π through Monte Carlo simulation

an initial arrangement is chosen and the total energy is calculated. A new, random

state is selected according to a proposal distribution and if the energy in this new

state is lower this step is accepted and the process is repeated. If this new state

has a higher energy, the transition to this new state is done with a probability

related with the difference in energy the two states.

One notable adaptation of this formulation for the problem of finding a global

minimum or maximum is Simulated Annealing (SA) [155]. This method makes an

analogy to the process of increasing and decreasing the temperature of a metal,

where this heating corresponds to an increased possibility of accepting steps to

states that are worse than the current state. As the temperature becomes lower,

the algorithm starts progressively rejecting more transitions to “worse” states.

Within Monte Carlo methods, a subclass of algorithms take inspiration from Dar-

win’s theory of natural selection and are referred to as Evolutionary or Genetic

algorithms [156]. This approach starts by randomly generating a set of candidate

solutions and uses the concept of the “survival of the fittest”, where fitness re-

lates with the value of the function in that candidate and whether the problem

is a maximisation or minimisation. Candidates with higher fitness will reproduce

and generate a new set of candidate solutions – the offspring. These new solu-

tions will inherit the features of the candidates which originated them, sometimes

termed chromosomes, with modifications generated by different genetic operations

Chapter 2. Background 65

which are also based in biological processes. Typically, these modifications can be

crossovers, where the offspring will inherit chromosomes from multiple parents,

and have a set of parameters which is a combination of the chromosomes of its

parents. Another operation is termed mutations and correspond to slight modi-

fications of the parameters which occur randomly, with a given probability. The

candidates with lower fitness will have a high probability of perishing without

generating any offspring. As the algorithm progresses, candidates with high fit-

ness will survive and reproduce, and generate new candidates with higher fitness,

increasing the probability of converging to the function’s global maximum.

2.6.2.4 Other Methods

Another class of methods exist which are deterministic and are able to find the

global maximum without the need of calculating derivatives. One such method

is DIRECT [157], which divides the search space into rectangles, and performs

both local and global searches simultaneously and requires virtually no tuning of

parameters.

Besides the methods approached in this section, other algorithms exist, such as

particle swarm, which also belong to the class of Monte Carlo methods, interior

point, Nelder-Mead, or Branch-and-Bound methods. Since these methods are not

important for the understanding of this thesis, they are left out of this chapter.

2.6.3 k-d Trees

2.6.3.1 Definition

k -d trees are data structures designed to partition the space, organising k -dimensional

points to enable quick range and nearest neighbour searches. This technique was

introduced by Bentley et al. in the 1970’s [158] and it consists of creating a binary

tree, where each tree node represents a point. Every non-leaf node in the tree

represents also a plane which splits the space in two parts. As one traverses the

Chapter 2. Background 66

tree, each layer relates to one of the dimensions of the points, cycling between

them. Queries using this data structure can be efficiently performed through the

immediate pruning of large areas of the tree.

2.6.3.2 Construction

A k -d tree is built recursively, sequentially calculating the median of a group of

points. Figure 2.12(a) shows the method to construct a two-dimensional tree, and

the resulting tree is shown in Figure 2.12(b).

The root node is selected as the median point according to an arbitrary chosen

dimension. Commonly, when the k -d tree represents points in space, the first

dimension is x. After choosing this root node, a line/plane/hyperplane along the

chosen dimension passing through the node separates all the child points in two

sides. Points with the chosen dimension larger than the root node sit on the right

side of the root with the others sitting on the left side of the root. In the example

of Figure 2.12, the median point along the x dimension (point (3, 4)) is chosen

as the root node, splitting the space along that dimension with the red line. The

median of the points to the left of the red line along the y dimension is chosen

(point (2, 3)) and added as a left child of the root. This sub-space is again divided

along this median (blue line). The same is done to the points on the right of the

red line, and this process is repeated recursively until all the points are included

in the tree.

2.6.3.3 Searches

k -d trees are particularly suited for range and nearest neighbour searches. Range

searches are queries that search for the points within a rectangular region, i.e. find

the set of points Pr = {(x, y)|x1 < x < x2, y1 < y < y2}. Given a desired range,

one can obtain all the points in a k -d tree that lie within that region using the

following heuristics:

Chapter 2. Background 67

(1,2)

(3,4)

(1,6)

(4,2)

(2,3)

(5,1)

(5,6)

(a) Space partition method (b) Binary Tree

Figure 2.12: k -d tree data structure principle

1. Start at root node;

2. If the desired range rectangle lies on the left/below of the splitting line/-

plane/hyperplane search only left child;

3. idem if range lies on the right/above side;

4. If the divider intersects the range rectangle search both children nodes.

Nearest neighbour queries can be used to either find the nearest point to query

point p or find the n points closest to p. To find the nearest point to a query point,

a similar algorithm to range searches is followed:

1. Start at root node, record current smallest distance;

2. If it is possible that a closer point is located within a region, keep this region

as searchable.

3. Direct the search towards the query point, i.e. if query point is to the

left/below of divider, proceed to the left child.

4. As the current closest point is updated, more regions can be pruned.

Chapter 2. Background 68

For the situation in Figure 2.12, for an example query point pn(0.5, 3.1), the search

begins at point (3, 4) and the smallest distance d = 2.6571 is saved. Since there

are points on both sides of this divider that can be nearer to point pn, both regions

are kept, but the search continues on the left direction. Point (2, 3) is at a distance

of 1.5033, becoming the new nearest point, with both sides of this divider possibly

containing nearer points. Next, given that 3.1 > 3, the point to the right (1, 6)

is searched, with the distance being larger than the current minimum. However,

points below the blue line passing through (2, 3) can still be closer to pn, so it

is evaluated. The new minimum distance is then 1.2083, with no other region

possibly containing nearer points. Thus, point (1, 2) is the nearest neighbour of

point pn.

2.6.3.4 Computational Remarks

Creating a k -d tree is a O(n log(n)) operation, with insertion, deletion being on

average a O(log(n)), with the worst case being O(n). For a balanced tree, range

searches are typically O(R+ log(n)), with the worst case at O(R+
√
n), where R

is the number of points inside the range. Nearest neighbour searches are usually

performed in O(log n), with the worst case being O(n) [159]. Multiple implemen-

tations exist for the construction of k -d trees and the fast computation of nearest

neighbours. In some situations, it is acceptable to obtain a neighbour that is not

guaranteed to be the absolute closest point to the query. In these cases, Approxi-

mate Nearest Neighbor such as FLANN [115, 160] can be used, greatly improving

the computation time and memory requirements of the search. Nearest neighbour

searches using this k -d tree implementation are reported to achieve a speed-up of

1000-fold compared to a linear search in a database of 100 thousand elements [161].

Chapter 2. Background 69

2.6.4 Principal Component Analysis

2.6.4.1 Definition

Principal Component Analysis (PCA) is a statistical technique that operates in a

set of multidimensional data, finding the directions of highest variance which are

orthogonal between them. PCA takes a set of n-dimensional data that might be

correlated and finds up to n principal components, each one being an n-dimension

vector. This technique was first introduced by Karl Pearson in 1901 [162] and has

seen extensive application in many fields of science and data analysis.

An important feature of PCA is that the relative magnitudes among the principal

components translate into the percentage of variance that is “explained” by each

principal component. Thus, when dealing with some multidimensional problems,

selecting only a small subset of the larger principal components can enable the

problem to become much more tractable while still accounting for the majority of

variance in the original data [26]

Figure 2.13 shows an example of the three principal components in a 3 dimensional

distribution, represented by the red, green and blue arrow. Most of the variance

(72%) is present in the direction of the red arrow and a further 21% is explained

by the second largest principal component, shown in green.

Chapter 2. Background 70

30
20

Principal Components of a Distribution

10

y [a.u.]

0
-10

-20
-30

20

0

x [a.u.]

-10

-20

10

0

20

-20

z
 [

a
.u

.]

Figure 2.13: Principal Components of a Distribution. 1st,
2nd and 3rd components in red, green and blue respectively

Besides dimensionality reduction, PCA can be a powerful tool for representing

data in a compact and useful way, which is also easily computed.

2.6.4.2 Computing the Principal Components

The principal components can be obtained through the computation of the eigen-

vectors and eigenvalues of the covariance matrix of a set of data. Given a set p of

m data points, each point being n-dimensional, the covariance matrix is obtained

by first subtracting the mean from the original data as in Equation (2.32), and

then through the operation in Equation (2.33).

M =

[
(p1 − p̄1) , (p2 − p̄2) , . . . , (pn − p̄n)

]T
(2.32)

CM =
1

m− 1
MMT (2.33)

Since covariance matrices are, by definition, symmetric (i.e. Ci,j = Cj,i) it is pos-

sible to decompose the matrix using the method described in the LAPACK users’

Chapter 2. Background 71

guide [163] for Symmetric Eigenproblems, shown in Equation (2.34). The sym-

metric nature of the covariance matrix results in its eigenvectors being orthogonal

to each others, as is required in Principal Component Analysis.

CM = EΛET (2.34)

The columns of matrix E are the unit norm eigenvectors of the covariance matrix

CM, presented in (2.35)

E =

[
~e1 , ~e2 , ~e3

]
(2.35)

The eigenvalues of CM are the elements of the diagonal matrix Λ. To obtain the

Principal Components, the eigenvectors are sorted and scaled according to their

respective eigenvalue. The relative values of each eigenvalue translates into the

percentage of variance that is “explained” by the direction of its eigenvector.

Chapter 3

Pose Correction using Local

Optimisation

Chapter Summary

This chapter frames the problem presented in chapter 1: estimating an object’s

pose (position and orientation) using tactile sensing, as a local optimisation prob-

lem. It presents and compares two gradient-based optimisation methods to correct

a coarse pose estimate obtained from vision. The importance of rich contact in-

formation to increase the accuracy of the results is also investigated.

72

Chapter 3. Pose Correction using Local Optimisation 73

3.1 Introduction

The goal of this chapter can summarised as finding an object pose that is co-

herent with the current tactile data. This is achieved through the minimisation

of a defined cost function, given the current contact data obtained from an in-

trinsic tactile sensing scheme. This sensing approach, previously presented in

Section 2.2.1, is leveraged to obtain rich contact information, including contact

normal. The addition of this normal information is investigated and the results

compared with a minimisation that takes into account only the contact locations.

Starting from a coarse pose obtained from vision, the objective is to find a trans-

formation that improves the pose estimate given current tactile data, as shown in

Figure 3.1. This pose consists of a rotation quaternion and a translation vector,

as shown Equation (3.1).

f3

Corrected
Posef1

f2

Pose
from
vision

x

Figure 3.1: Problem overview – Finding a transformation x that displaces the
object from an initial estimate

x =
[
q,~t

]T
x = [qw, qx, qy, qz, tx, ty, tz]

T

(3.1)

The problem of finding a set of parameters x that mininimises a given objective

function (also known as cost function), is typically referred to as an optimisation

problem. As presented in Section 2.6.2, a prominent class of such optimisation

Chapter 3. Pose Correction using Local Optimisation 74

techniques are gradient-based methods. In this chapter, this class of optimisa-

tion algorithms was used to find the parameters that satisfy the current tactile

measurements.

Given that an object’s geometrical model usually contains thousands of points,

applying a transformation on the object would require all these points to be trans-

formed into a new pose. In order to facilitate the computation and reduce the

time to evaluate the cost function, the transformation defined by x is a transfor-

mation on the contacts to match the initial pose. When the result is obtained,

this transformation is inverted and applied to the object.

To evaluate the performance of the methods, simulation experiments were carried

out in MATLAB [164] to accurately test the methods against a ground truth

and draw comparisons between the different approaches. In this chapter, two

optimisation algorithms were implemented, tested and compared. Besides, a study

was carried out on the advantages of adding surface normal information to the cost

function.

The two gradient-based methods presented in Section 2.6.2 were implemented:

Gradient Descent (also known as Steepest Descent), and Levenberg-Marquardt.

These two algorithms were tested and their performance was compared in terms

of accuracy and speed of convergence. The initial point that is provided to the

algorithm is an initial coarse estimate of the parameters that, in this particular

case of estimating a grasped object’s pose, is typically obtained from a vision

system.

3.2 Methods

3.2.1 Algorithm

The first step of the method consists of describing the object and all the contact

locations into a common reference frame. Next, regions in the object surface are

Chapter 3. Pose Correction using Local Optimisation 75

selected as possible contact locations on the object. Each region consists of the

surface points within a neighbourhood of each contact at the object’s current pose.

This step aims at reducing the computation time of the algorithm by assuming

that the contact locations on the object at its real pose are within a distance εd

of the fingertip. In other words, it is assumed that the initial estimate from vision

will provide an approximate initial pose and, as such, it is not useful to test poses

where a finger is touching the farthermost parts of the object when at its initial

pose estimate.

Thus, this initial procedure creates regions in the object where each finger is

predicted to lie, so that the algorithm only iterates over these regions instead of

going through the whole object. This distance is dynamically set so that each finger

iterates over a minimum number of points in the object pointcloudO. For example,

finger 1 will iterate over the set S(1), which contains all the points s
(1)
1 , s

(1)
2 . . . s

(1)
n

with distances to the finger contact location f (1) within the neighbourhood εd.

S(k) = {s(k)i ∈ O : ‖s(k)i − f (k)‖ ≤ εd} , k ∈ {1 . . .m} (3.2)

Figure 3.2: Regions created in the object point cloud to minimise the compu-
tational effort

This step is described by equation (3.2) and shown in Fig. 3.2. In this case, there

are four fingers touching the object (m = 4) and the neighbourhood εd is set to

15 mm.

Chapter 3. Pose Correction using Local Optimisation 76

Figure 3.2 shows a simulated cubic object point cloud O plotted in black with

four fingers contacting the object surface. Each contact location is plotted as a

cross, and the selected neighbourhood regions S(m) in their respective colour. It

can be seen, that in this pose, the contacts do not sit on the object surface. This

is particularly noticeable on the blue contact, where there is a significant distance

between the contact and the object surface.

3.2.2 Distance-based optimisation

3.2.2.1 Objective Function

The simplest approach is to find a pose which minimises the distance between the

object surface and the contact locations. As such, the problem is formulated as

an optimisation problem where the objective is to find a set of parameters x that

define a transformation that minimises an objective function G(x).

As explained in Section 3.1, the parameters x describe a transformation on the

contact locations. The objective function G(x) to be minimised is then the set

of squared distances from each contact location to the nearest point s
(m)
i in its

respective region S(m), as described in equation (3.3). The operation qf (2)q∗ is

the rotation operation when using quaternions, described in Section 2.6.1.3.

G(x) =



min
i

(‖(qf (1)q∗ + ~t)− s(1)i ‖2)

min
i

(‖(qf (2)q∗ + ~t)− s(2)i ‖2)

...

min
i

(‖(qf (m)q∗ + ~t)− s(m)
i ‖2)

(3.3)

Chapter 3. Pose Correction using Local Optimisation 77

3.2.2.2 Simulation Results

In order to effectively compare the two optimisation algorithms, artificial data was

used, so that the object models were “ideal” and the “ground truth” on the real

contact locations was accurately known. Four points selected from the object’s

surface were displaced using an arbitrary rotation and translation, which was used

as the initial estimate for the pose correction. The resultant transformation should

then be the inverse transformation from this arbitrary displacement.

Two objects, one cubic and one cylindrical, were tested and the results are shown

in Figures 3.3 to 3.6, where the ground truth contact locations are plotted as a

filled circle (�), the displaced locations which serve as the initial estimate for the

algorithm (mimicking what a vision system might output) are represented by a

cross (Ö) and the final position of the optimisation is represented by a ring (�).

Gradient Descent

The results from applying gradient descent are pictured in Figure 3.3. It can be

seen that the algorithm converges to a pose that approximately matches the object

surface, although the final contact locations are not the initial ones. This is even

clearer if the object is revolute, such as a cylinder, where there may be infinite

solutions that minimise the distance to the object, as can be seen in Figure 3.3(b).

The progress of the algorithm for the cube-shaped object is shown in 3.4, for the

first 500 iterations, showing the convergence of the algorithm. The final distance

from contact locations to the object surface in this case was around 46% of the

initial distance.

Chapter 3. Pose Correction using Local Optimisation 78

(a) Gradient Descent – Cubic object (b) Gradient Descent – Cylindrical object

Figure 3.3: Results of Gradient Descent using simulated data – Object point
cloud in black. Original (�) , displaced (Ö) and corrected (�) finger tip locations.

Figure 3.4: Progress of the algorithm in a cubic object using Gradient Descent.
Each color represents the distance between object at the estimated pose for a

finger contact.

Levenberg-Marquardt

The same input was used to evaluate the Levenberg-Marquardt algorithm, with

the results being plotted in 3.5. The accuracy of the results using this method is

superior to those produced by Gradient Descent.

The progress of the algorithm is shown in 3.6, where it can be seen that the algo-

rithm successfully converged to a solution. The error was reduced by more than

Chapter 3. Pose Correction using Local Optimisation 79

(a) Levenberg-Marquardt – Cubic object (b) Levenberg-Marquardt – Cylindrical
object

Figure 3.5: Results of Levenberg-Marquardt using simulated data – Object
point cloud in black. Original (�) , displaced (Ö) and corrected (�) finger tip

locations.

90%, requiring also less iterations than the previously described Gradient Descent.

These results demonstrate what was intuitively expected: that the Levenberg-

Marquardt outperformed Gradient Descent in both accuracy and speed.

Figure 3.6: Progress of the algorithm for a cylidrical shaped object using
Levenberg-Marquardt. Each color represents the distance between object at

the estimated pose for a finger contact.

Chapter 3. Pose Correction using Local Optimisation 80

3.2.3 Addition of Normal Force Information

3.2.3.1 Contact Normal

The results presented in the previous section show that the estimation of the

pose of a grasped object can be improved by minimising the distance between

the contact locations, obtained through forward kinematics and contact sensing.

However, when attempting to determine the correct pose of an object, other con-

tact information can be useful. Understanding which facet of the object is being

touched by the robot finger is of the utmost importance when grasping an ob-

ject, as it has fundamental implications on grasp stability, as previously shown in

Section 2.1. Simply miminimising distance between the contact location and the

object’s surface can give an incorrect result if, for example, the contact is close

to a vertex of an edge of the object. An incorrect estimation in this case may

lead to wrong assumptions on the stability of the grasp and result in the failure

of a grasping or manipulation task. When minimising distance only, this aspect is

overlooked and there is the possibility that the resulting pose estimate, however

accurate in terms of distance, can yield an inadequate pose. In Figure 3.5(a),

the contact plotted in cyan is an example of that situation, where the resulting

contact location is near the correct point but not lying in the same facet of the

cube. Assessing grasp stability under these two situations (real and estimated),

would render very different results.

This problem can be overcome by making use of the rich contact information

provided by intrinsic tactile sensing, which by estimating the contact locations, is

able to also determine the normal and tangential components of the interaction

force. Having this normal force direction information and taking advantage of the

fact that, if the contact is assumed to be approximately rigid, the normal force

direction coincides with the normal direction of both the object surface and the

fingertip, one can estimate the pose of the object by trying to match the contact

locations with the object surface and also the surface normal with the normal force

direction.

Chapter 3. Pose Correction using Local Optimisation 81

Figure 3.7 shows a diagram where an object is touching the sensor’s hull, gener-

ating force and moment. Through the intrinsic tactile sensing scheme presented

in Section 2.2.1, the contact location pc and the normal force are calculated. The

direction of the normal force n̂ is also the perpendicular direction to the sensor

hull’s surface and to the object surface at that contact point. This direction is

commonly referred to as the contact normal.

y

z

x

n̂pc

Figure 3.7: Rigid contact

The object’s geometrical model is described by a polygonal mesh, consisting of

a list of vertices and triangles. The computation of the surface normal of each

triangle of the object’s polygonal mesh is done through the cross product of the

vectors defined by the triangle vertices, as shown in Figure 3.8 and Equation (3.4).

A

B

C
~u

~v

n̂

Figure 3.8: Mesh triangle normal

n̂ =
~u× ~v
‖~u× ~v‖ (3.4)

Thus, we can reformulate the problem to try to find a pose that satisfies both

these measurements – contact location and normal direction – to obtain not only

a more accurate estimate of the object’s pose but also an estimate that is more

meaningful in terms of assessing grasp stability.

Chapter 3. Pose Correction using Local Optimisation 82

3.2.3.2 Objective function

The objective function can then be reformulated to make use of the normal in-

formation. This desired function should converge to solutions that parametrise a

transform such that not only the distance from the contact locations to the object

surface, but also the angle between the measured normal force direction on the

finger tip sensor and the direction perpendicular to the object’s surface at that

point are minimised.

This objective function (3.5) was defined for each contact as the sum of a compo-

nent related with the distance between finger contact locations and the object’s

surface plus a component related with the angle between the sensed normal direc-

tion and the object’s surface normal direction at that contact point.

G(x) =



min(‖(qf (1)q∗ + ~t)− s(1)i ‖2 + wn|(1− 〈qû(1)q∗, n̂i〉)|

min(‖(qf (2)q∗ + ~t)− s(2)i ‖2 + wn|(1− 〈qû(2)q∗, n̂i〉)|

...

min(‖(qf (m)q∗ + ~t)− s(m)
i ‖2 + wn|(1− 〈qû(m)q∗, n̂i〉)|

(3.5)

The first component is, as before, the minimum squared distance ‖ · ‖2 between

the contact locations f transformed by the rotation and translation parameters

q and ~t and an object point s
(k)
i , belonging to the set S(k), where k ∈ {1 . . .m}.

The component related with the angle is calculated using the inner product 〈·, ·〉
of the contact normal force unit vector û rotated by q and the surface normal

at point s
(m)
i , denoted n̂i. The symbol |a| denotes the absolute value. This angle

component is bounded between 0 and 2, and approaches zero as the angle becomes

smaller.

These two components are mediated by a weighting factor wn, which is related to

the prior information of the object model. wn is tuned according the requirements

of the real system and how accurate we know the object model to be. By giving

Chapter 3. Pose Correction using Local Optimisation 83

a large value to wn, the algorithm will try to adjust the orientation of the object

to fit the normals more than it will try to minimise the distance.

3.2.3.3 Simulation Results

The same approach was taken to test the performance of the algorithm using

the new objective function that takes into account distance and normal force

information. Figure 3.9 shows the results of the optimisation. It can be seen in

Figure 3.9(a) that the algorithm converges to a pose where the estimated contacts

accurately sit on the true contact locations and that the contact plotted in cyan sits

at the correct facet of the cube, even if the initial pose was closer to an incorrect

facet. The cylindrical object in Figure 3.9(b) shows a higher distance between

contacts which is caused by the revolute nature of the object. In this situation,

infinite solutions are equally correct and the method converged to one of these

solutions.

(a) Levenberg-Marquardt with normal in-
formation – Cubic object

(b) Levenberg-Marquardt with normal in-
formation – Cylindrical object

Figure 3.9: Results of Levenberg-Marquardt with normal force information
– Object point cloud in black. Original (�) , displaced (Ö) and corrected (�)

finger tip locations.

The progress of the algorithm for the cylindrical object situation is shown in Figure

3.10. It should be noted that the objective function has changed from the previous

Chapter 3. Pose Correction using Local Optimisation 84

experiments and the cost plotted in the vertical axis is not comparable to the costs

shown in Section 3.2.2.2.

Figure 3.10: Progress of the algorithm for a cylidrical shaped object using
Levenberg-Marquardt. Each color represents the distance between object at

the estimated pose for a finger contact

These results show significant improvement when compared to the sole minimi-

sation of distance. The final output of the algorithm should be a transformation

applied on the object that matches the contact locations given by the kinematics

of the robot and the tactile sensors. Thus, the resulting transformation that was

obtained by transforming the contacts to match the object needs to be inverted

and applied to the object. Figure 3.11, shows the final result of the algorithm.

The grey point cloud shows the initial pose of the object, the green point cloud

represents the ground truth and the yellow point cloud shows the transformed pose

using the inverse of the resulting parameters from the optimisation. The resulting

pose of the object coincides almost perfectly with the ground truth.

3.3 Results

3.3.1 Analysis of Simulation Results

The previous section shows that Levenberg-Marquardt outperforms Gradient De-

scent and that the addition of contact normal information greatly improves the

accuracy of the result. In order to validade this statement, the algorithms were

Chapter 3. Pose Correction using Local Optimisation 85

(a) Box-shaped object (b) Cylinder-shaped object

Figure 3.11: Simulation results – green represents the ground truth, gray the
initial misplaced pose and yellow the resulting object pose.

run 100 times with different weights wn attributed to the normals information.

wn = 0 corresponds to the situation where only distance is minimised.

Different criteria were used to compare results, since there will typically exist mul-

tiple poses which correctly describe the pose of the object. This is mostly due to

the symmetric nature of the objects. To extensively characterise the performance

of the algorithms, the chosen criteria belong to two classes: the convergence of the

algorithm (poses that match contact information) and correctness with respect to

the ground truth.

Table 3.1 summarises the obtained results for each iterative method for similar

accuracies.

� MDTS stands for mean distance to surface and is the average distance

between the contact locations and the object’s surface.

� MATN stands for mean angle to normal and it is the angle between the

measured contact normal and the surface normal at the resultant contact

location.

� RME is the real mean distance error – the average distance from the result-

ing contact locations to the selected initial points.

Chapter 3. Pose Correction using Local Optimisation 86

� MAE is the mean angle error, which is the average angle between the surface

normal at the ground truth contact locations and the resultant angle at the

measured locations.

While the first two criteria characterise the convergence of the optimisation algo-

rithm, the latter two concern the difference between the found solution and the

ground truth. In a real situation, we do not know which point on the object the

robot is touching, so the algorithm tries to find a transform where each finger is

matching a point in the region chosen in equation (3.2). In this case of simu-

lated data, the points were selected a priori, so this ground truth is know. This

difference is fundamental for the understanding of this problem, as large values

of RME and MAE do not necessarily mean that the result is wrong. This is

particularly clear in the case of the cylindrical object, where the algorithm might

minimise the distance better but the result may be further away from the “real”

solution – the initial chosen points. This has to do with the fact that a cylinder is

a revolute object and will likely have infinite solutions that minimise the objective

function similarly. This is an inherent feature of this problem and, although it

can not be solved, it should not compromise the ability of a robot to find better

grasping points. From Table 3.1 we can also see that, when compared to the Gra-

dient Descent (GD), the Levenberg-Marquardt (LM) method is able to achieve

better results in fewer iterations and shorter time. It can also be seen from the

same table that the inclusion of the information on the normals reduces the real

error significantly, without significantly increasing the computation time. Since

the cost function is changed when adding the information on the surface normals,

the desired accuracy was changed accordingly for those experiments.

In order to evaluate the merits of this approach, one can also compare the initial

versus the final error. This way, it is possible to evaluate whether the proposed

method consistently improved the estimate of the object pose. Figures 3.12 to 3.19

compare initial and final error for both algorithms for the box-shaped object using

all four evaluation criteria. Blue dots show an improvement on the initial estimate

and the red crosses depict trials where the final pose estimate has larger error than

Chapter 3. Pose Correction using Local Optimisation 87

Table 3.1: Comparison of optimisation methods

Method wn Shape Its. MDTS MATN RME MAE Speed(s)

Initial –
Cube – 0.696 16.715° 1.534 9.015° –

Cylinder – 0.265 8.515° 0.772 9.148° –

Gradient
Descent

0
Cube 198.3 0.166 10.177° 0.589 4.802° 6.791

Cylinder 200 0.148 6.181° 0.574 7.070° 7.506

20
Cube 139.5 0.200 3.706° 0.399 2.832° 4.553

Cylinder 156.2 0.110 3.228° 0.426 4.995° 4.877

Initial –
Cube – 0.672 16.820° 1.465 8.867° –

Cylinder – 0.259 8.555° 0.759 9.062° –

Levenberg-
Marquardt

0
Cube 145.9 0.103 11.519° 0.765 6.847° 5.00

Cylinder 97.0 0.072 7.984° 0.633 7.481° 4.336

20
Cube 94.2 0.113 4.619° 0.572 4.638° 3.54

Cylinder 18.4 0.083 2.670° 0.397 4.925° 0.813

the initial pose. It can be seen that in the vast majority of the cases (> 95%), the

method improves the initial pose estimate regardless of the criterion chosen, when

the initial error is below 15◦ and 1.4 centimetres.

Both algorithms successfully minimise the distance to the object and consistently

improve an initial pose estimate. As expected, Levenberg-Marquardt performs

faster and achieves a better minimisation than Gradient Descent. Another aspect

that becomes clear from Figures 3.12 to 3.19 is that the quality of the result is

highly dependent on the initial estimate. This is expected when using gradient

based optimisation, where the solution is usually the first local minimum found

starting from the initial estimate.

Chapter 3. Pose Correction using Local Optimisation 88

Initial Distance Error [d.u.]

0 0.1 0.2 0.3 0.4 0.5

F
in

a
l
D

is
ta

n
c
e

 E
rr

o
r

[d
.u

.]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

improved

initial=final

Figure 3.12: Initial vs Final
MDTS using Gradient Descent

Initial Angle Error [degrees]

0 5 10 15

F
in

a
l
A

n
g

le
 E

rr
o
r

[d
e

g
re

e
s
]

0

5

10

15

improved

initial=final

worsen

Figure 3.13: Initial vs Final
MATN using Gradient Descent

Initial Distance Ground Truth Error [d.u.]

0 0.2 0.4 0.6 0.8 1 1.2 1.4

F
in

a
l
D

is
ta

n
c
e
 G

ro
u

n
d
 T

ru
th

 E
rr

o
r

[d
.u

.]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

improved

initial=final

worsen

Figure 3.14: Initial vs Final
RME using Gradient Descent

Initial Angle Ground Truth Error [degrees]

0 2 4 6 8 10 12 14

F
in

a
l
A

n
g

le
 G

ro
u

n
d
 T

ru
th

 E
rr

o
r

[d
e
g

re
e

s
]

0

2

4

6

8

10

12

14

improved

initial=final

worsen

Figure 3.15: Initial vs Final
MAE using Gradient Descent

Initial Distance Error [d.u.]

0 0.1 0.2 0.3 0.4 0.5

F
in

a
l
D

is
ta

n
c
e

 E
rr

o
r

[d
.u

.]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

improved

initial=final

Figure 3.16: Initial vs Final
MDTS using Levenberg-Marquardt

Initial Angle Error [degrees]

0 5 10 15

F
in

a
l
A

n
g
le

 E
rr

o
r

[d
e
g

re
e
s
]

0

5

10

15

improved

initial=final

Figure 3.17: Initial vs Final
MATN using Levenberg-Marquardt

Initial Distance Ground Truth Error [d.u.]

0 0.2 0.4 0.6 0.8 1 1.2 1.4

F
in

a
l
D

is
ta

n
c
e

 G
ro

u
n
d
 T

ru
th

 E
rr

o
r

[d
.u

.]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

improved

initial=final

worsen

Figure 3.18: Initial vs Final
RME using Levenberg-Marquardt

Initial Angle Ground Truth Error [degrees]

0 5 10 15

F
in

a
l
A

n
g
le

 G
ro

u
n

d
 T

ru
th

 E
rr

o
r

[d
e
g

re
e

s
]

0

2

4

6

8

10

12

14

16

improved

initial=final

worsen

Figure 3.19: Initial vs Final
MAE using Levenberg-Marquardt

Figures 3.12 to 3.19: Results for box-shaped object.

Chapter 3. Pose Correction using Local Optimisation 89

3.3.2 Results on a Real System

3.3.2.1 System Overview

Figure 3.20: Overview of the experimental setup of the multi-modal sensing
system

The proposed method was implemented in a real system using C++, under the

ROS platform [165]. The system is shown in Figure 3.20 and comprised:

� A 4 Degree of Freedom (DoF) Shadow robot arm.

� A 24-DoF Shadow hand with ATI Nano17 6-axis force/torque sensors in-

strumented on the fingertips.

� A Microsoft Kinect camera mounted on the left side of the robotic arm and

oriented to get a top view of the objects lying on a table.

The tactile sensing strategy used the approach described in Section 2.2.1, providing

contact location, normal and tangential components of the contact force and the

Chapter 3. Pose Correction using Local Optimisation 90

torque around the contact normal. The details of the tactile sensing strategy were

presented by Liu et al. [59]. The chosen common reference frame was not an

external fixed frame but the palm frame. This allowed that the object pose could

be tracked during a stable grasp, as the object will stay stationary with respect

to the palm, even if the robot arm is moving the object around the environment.

The object point cloud can be obtained either from a database, containing accurate

mesh representations of the geometry of a number of known objects or online, using

the object reconstruction method presented by Burrus and Rodriguez-Jimenez

[111, 166]. This visual tracking tool provided the initial estimate of the object’s

location. A model of the robot was used to obtain the contact locations, through

forward kinematics. This information was fed into the pose estimation algorithm,

summarised in Algorithm 3.1, which used the Levenberg-Marquardt minimisation

algorithm, and the results are presented in this section.

Algorithm 3.1 Pose correction

Input: Object point cloud and number of fingers touching the object ≥ 2.
for all fingers in hand do

if finger is in contact then
Transform contact point (f (m)) and contact normal û(m) to palm coordi-

nate frame
end if

end for
for all f (m) do

for all points pi in object do
j ← 0
while j < 50 do . If there are at least 50 points in neighbourhood εd

if ‖pi − f (m)‖ ≤ εd then

s
(m)
j = pi
j ← j + 1

end if
end while

end for
end for
Minimise G(x) in Equation (3.5) using the update rule in Equation (2.30).
if minimisation is successful then

Invert transformation defined by xi
Apply transformation to object

end if

Chapter 3. Pose Correction using Local Optimisation 91

Given the difficulty to benchmark the results against an accurate ground truth,

the results were evaluated qualitatively or using indirect methods. Two methods

to benchmark the results were used, both proving to be unable to successfully

obtain accurate ground truth values. Fiducial markers did not provide the degree

of accuracy required to correctly evaluate the algorithm. The usage of magnetic

trackers was also explored, but their accuracy dropped significantly when in close

distance to magnetic materials, particularly because of the presence of magnets in

the Hall-effect sensors used in the joint encoders of the Shadow hand.

3.3.2.2 Using Distance Information

Figure 3.21 shows the result of a minimisation that used distance only. The grey

object shows the initial pose estimate of the object, as obtained from the vision

system. The geometry of the object was obtained online, and as such, is not a

perfect model of the real object. It can be seen that this pose is displaced from

the fingertips which were touching the object, with a mean distance between the

contact locations and the object surface of 4.9 cm. The algorithm was run and

converged to a pose that matched the tactile sensing data, with a mean distance

between contact locations and object surface of 5 mm. Regarding computational

performance, the algorithm took 350 ms to converge to this solution.

Figure 3.21: Results using real data. Initial estimate in grey, solution in pink

Chapter 3. Pose Correction using Local Optimisation 92

3.3.2.3 Using Distance and Normal Information

Figure 3.22 shows the results of pose correction using both distance and normals

information for different objects and grasps. The robot model shows the robot at

its current posture and the point clouds show the object at the location estimated

by vision and after the pose correction using tactile information. The green point

clouds show the object at the location estimated by vision. This point cloud is

clearly away from the contact locations and is the result of the vision not being able

to segment the object from the robot body. Pink point clouds show the object at

the pose estimated by the method detailed in Section 3.2.3, using the Levenberg-

Marquardt optimization algorithm. Qualitatively, it is clear that the accuracy

of the estimate of the object’s pose is greatly increased by using this method,

and that the object sits correctly within the robot hand, coherently matching the

tactile information.

Due to the mentioned difficulty in having accurate and continuous ground truth,

validation was done manually using millimetre paper. The procedure consisted of

attaching a transparency to the object base, with squares marked on it, as shown

in 3.23. The object’s base centre coincided with the point p0, at the intersection

of the four squares drawn on the transparency. By moving the object close to the

millimeter paper and measuring the locations of square corner points p1 and p2,

the actual location and orientation of the object with respect to the robot base

can be determined, using Equation (3.6).

p0 = p2 +

0 −1

1 0

 (p1 − p2) (3.6)

Chapter 3. Pose Correction using Local Optimisation 93

(a) Large diameter grasp on a soda can

(b) Tripod grasp on a cuboidal tea box

Figure 3.22: Visualisation of a grasped object scene. The green point cloud
represents the object in the pose detected by the vision system and the pink
point cloud represents the object after its pose has been corrected using our

approach

(a) Soda can glued to marked transparency (b) Box-shaped object (Tea box) being

grasped

Figure 3.23: Ground truth measurement method

Chapter 3. Pose Correction using Local Optimisation 94

The object was grasped and moved between four locations, with the vision tracker

continuously estimating the pose of the object and the proposed pose correction

method correcting that estimate. Figures 3.24(a) and 3.24(b) show the x and y

position of the centre of the object’s base according to the different estimates.

Blue and green denote the x and y dimensions respectively, with the ring shapes

plotting the estimates from vision and the lines plotting the corrected object’s

base position after the pose estimation. Ground truth at the recorded locations

are plotted as dots in red and cyan for x and y. The fact that the corrected

estimate is continuous arises from the fact that the object pose is expressed in the

palm coordinate frame and the assumption that the grasp is stable and, as such,

there is no relative movement between the object and the hand.

The mean distance error was taken at the points that the ground truth was known,

and was reduced from 8.58 cm and 8.02 cm to 2.66 cm and 2.0 cm for the can and

the tea box respectively. This accuracy criterion corresponds to RME used in

Section 3.3.1. The running time of the algorithm was, on average, 0.171 seconds,

with an average 91.2 iterations.

Chapter 3. Pose Correction using Local Optimisation 95

(a) Results for the cylindrical can

(b) Results for the cuboid box.

Figure 3.24: Experimental results: blue and green represent the components
x and y. Rings plot the pose obtained by vision and lines the pose estimated

by the proposed method. Red and cyan dots are recorded ground truth

Chapter 3. Pose Correction using Local Optimisation 96

3.4 Discussion

During a manipulation task, the tracking of the grasped object cannot rely solely

on 3D vision. Occlusions created by the robot hand and fingers preclude the

accurate estimation of the object’s pose.

This chapter presented a method that, given an approximate estimate of the ob-

ject’s position and orientation, use contact sensing to correct this estimate through

a gradient-based optimisation. These methods start from the coarse pose obtained

by 3D vision and aim to find a pose that minimises a cost function that depends on

the matching between contact information and the object geometric information.

This chapter demonstrated that using the intrinsic tactile sensing scheme, one

can use normal force information to increase the accuracy of the pose estimate.

Besides, the Levenberg-Marquardt algorithm was shown to perform better than a

simple gradient descent in terms of accuracy and speed.

However, these local optimisation methods present an important drawback, since

they are heavily dependent on the starting point – in this case the initial estimate

provided by vision. If the initial estimate is too far off the object’s real pose or

if the object’s geometry presents a high degree of complexity, the algorithm will

converge to a local minimum, failing to find the object’s most likely pose, which

would be the cost function’s global minimum. Figures 3.25 and 3.26 show an

evaluation of initial vs. final error, starting from a large range of initial errors. It

can be seen that both Gradient Descent and Levenberg-Marquardt fail to converge

to an accurate estimate when the initial error is large.

In order to overcome this problem, a global search method is presented in the next

chapter.

Chapter 3. Pose Correction using Local Optimisation 97

Initial Distance Error [d.u.]

0 0.5 1 1.5 2 2.5 3 3.5

F
in

a
l
D

is
ta

n
c
e
 E

rr
o
r

[d
.u

.]

0

0.5

1

1.5

2

2.5

3
MDTS

improved

initial=final

worsen

Initial Angle Error [degrees]

0 10 20 30 40 50 60

F
in

a
l
A

n
g
le

 E
rr

o
r

[d
e
g
re

e
s
]

0

10

20

30

40

50

60
MATN

improved

initial=final

worsen

Initial Distance Ground Truth Error [d.u.]

0 1 2 3 4 5 6 7

F
in

a
l
D

is
ta

n
c
e
 G

ro
u
n
d
 T

ru
th

 E
rr

o
r

[d
.u

.]

0

1

2

3

4

5

6

7
RME

improved

initial=final

worsen

Initial Angle Ground Truth Error [degrees]

0 5 10 15 20 25 30 35 40

F
in

a
l
A

n
g
le

 G
ro

u
n
d
 T

ru
th

 E
rr

o
r

[d
e
g
re

e
s
]

0

10

20

30

40

50
MAE

improved

initial=final

worsen

Figure 3.25: Initial vs. Final error with large initial error when using Gradient
Descent

Initial Distance Error [d.u.]

0 0.5 1 1.5 2 2.5 3

F
in

a
l
D

is
ta

n
c
e
 E

rr
o
r

[d
.u

.]

0

0.5

1

1.5

2

2.5

3
MDTS

improved

initial=final

worsen

Initial Angle Error [degrees]

0 10 20 30 40 50

F
in

a
l
A

n
g
le

 E
rr

o
r

[d
e
g
re

e
s
]

0

10

20

30

40

50
MATN

improved

initial=final

worsen

Initial Distance Ground Truth Error [d.u.]

0 1 2 3 4 5 6

F
in

a
l
D

is
ta

n
c
e
 G

ro
u
n
d
 T

ru
th

 E
rr

o
r

[d
.u

.]

0

1

2

3

4

5

6
RME

improved

initial=final

worsen

Initial Angle Ground Truth Error [degrees]

0 5 10 15 20 25 30 35

F
in

a
l
A

n
g
le

 G
ro

u
n
d
 T

ru
th

 E
rr

o
r

[d
e
g
re

e
s
]

0

5

10

15

20

25

30

35
MAE

improved

initial=final

worsen

Figure 3.26: Initial vs. Final error with large initial error when using
Levenberg-Marquardt

Chapter 4

Pose Estimation using Global

Optimisation

Chapter Summary

This chapter presents a global optimisation algorithm to estimate the pose of a

grasped object. It aims at correcting a coarse estimate given from vision or esti-

mating the pose without any prior estimate. This algorithm is a stochastic Monte

Carlo optimisation method, and the details of its implementation are outlined,

along with results in simulation and in a real system.

98

Chapter 4. Pose Estimation using Global Optimisation 99

4.1 Introduction

As discussed in Section 3.4, local optimisation approaches fail to converge to the

correct or a satisfiable result if the initial estimate is too far off the real pose of

the object. This is due to the existence of local minima, where gradient-based

optimization methods tend to get trapped in. Besides, local methods are also un-

suitable for objects with complex geometries. If an object is composed of hundreds

or thousands of planes, vertices and edges, it becomes increasingly difficult to find

the object pose based on a limited number of contact points. Furthermore, there

are situations where vision information may be very unreliable or not available

at all. These include environments with reduced visibility, such as underwater,

disaster scenarios with smoke and debris, or complete darkness (in case of using

cameras) or fire (in case of infra-red sensors) [118]. These hazardous settings de-

mand that a system is able to stably grasp and manipulate objects without any

visual cues.

In this section, a method to estimate the object’s pose using a purpose-made global

optimisation algorithm is presented. This method presents several advantages

when compared to gradient-based optimisation, namely:

1. it avoids local optima

2. it is able to obtain the object’s pose without an initial estimate

3. it is capable of estimating the pose of objects with a high degree of complexity

This method may be used under two different scopes:

� Together with a vision-based object tracking system, correcting an initial

estimate obtained from this sensing modality. This is achieved by setting a

reduced search space, allowing a very fast rectification of the object pose,

even for very complex shaped objects.

� Without any initial knowledge of the object’s pose, searching the whole space

of positions and orientations around the robot hand, finding putative poses

Chapter 4. Pose Estimation using Global Optimisation 100

and ranking these poses according to how well they fit the tactile sensory

information.

The proposed algorithm belongs to the class of Monte Carlo stochastic optimi-

sation methods, previously presented in Section 2.6.2.3. In particular, it is an

evolutionary algorithm, also inspired by Simulated Annealing methods, where

the system “temperature” is related to the size of the jumps allowed inside the

search space. It also bears resemblances to the method proposed by Kormushev

et al. [151, 152], which was used in the context of reinforcement learning. This

chapter presents an overview of the method, along with the details of its imple-

mentation. Simulation results are presented and analysed along with results on a

real robot and possible applications of the method.

4.2 Methods

4.2.1 Algorithm Setup and Cost Function

The objective function to be minimised is similar to Equation (3.5) introduced in

Section 3.2.3.2. It takes into account both the distance between contact locations

f (m) and object surface S and the angle between the surface n̂ and the contact

normals û(m). While in gradient search methods it is valid to use a set of equations

(one for each contact), the re-sampling step of the global optimisation algorithm

requires the objective function to output a single positive scalar value. This is

obtained through the addition of the individual costs for each contact. Since the

distance component is always a positive value and the inner product of two unit

vectors is always in the range of [−1, 1], the objective function in Equation (4.1)

is guaranteed to return a positive value.

G(x) =
k∑

m=1

min
s(i)⊂S

(
‖(qf (m)q∗ + ~t)− s(i)‖+ wn(1− 〈qû(m)q∗, n̂(i)〉

)
(4.1)

Chapter 4. Pose Estimation using Global Optimisation 101

The first step of the algorithm consists of pre-processing the object in order to

allow faster computation of the cost function. This is essential for the method’s

performance, as the cost function in (4.1) is evaluated thousands of times. This

pre-processing stage consists of initially taking the polygon mesh of the object

and compute the unit normal vector for each triangle according to Figure 3.8 and

Equation (3.4). Then, the object pointcloud is used to construct a k -d tree, as

previously detailed in Section 2.6.3 using the PCL kdtree FLANN implementa-

tion [115, 160].

4.2.2 Search Algorithm

In order to find the set of parameters x that minimises the objective function in

Equation (4.1), a global optimisation algorithm was implemented. The method

proposed in this chapter can be classified as belonging to the class of Evolutionary

Algorithms, where the search for the set of parameters that minimise the objective

function is done through the sequential evaluation of this function with random

parameters. The resulting cost of each evaluation translates into the fitness of

these parameters. Each set of random parameters can be understood as a “guess”

that is being made, with lower values of the cost function corresponding to poses

that better explain the current sensing data. A guess and its associated cost are

paired and are henceforth in this thesis referred to as a particle. By re-sampling

these “guesses” according to their fitness and applying small modifications to the

parameters, the method converges to locations in the search space where the fitness

is higher, hence more likely to be the solution of the optimisation problem. Using

the terminology presented in 2.6.2.3, these particles are the candidate solutions,

with the parameters being the chromosomes. Due to the nature of the problem,

only mutations are allowed to occur, and these are termed noise.

Chapter 4. Pose Estimation using Global Optimisation 102

4.2.3 Generation of the Initial Population

Before the re-sampling scheme begins, an initial population needs to be created.

This initial population is created according to the desired application, as intro-

duced in Section 4.1. These can be either a pose rectification from an initial

estimate provided by a vision tracking system, or a pose estimation without any

prior knowledge of the object’s pose.

One of the main differences between these two usages of the global pose estimation

method lies in this initial phase. For the pose correction method, the initial popu-

lation is generated to lie within a limited search space around the initial estimate,

while for the global pose estimation without an initial “guess”, the population

must cover the whole space of positions and orientations around the robot palm.

Since this generation of new particles is heavily based on the generation of pseudo-

random numbers, functions to generate two types of random numbers were imple-

mented:

� Uniform pseudo-random numbers were generated using the C++ rand()

function, which generates a random integer from a uniform distribution.

Dividing this integer by the maximum random integer constant RAND MAX,

one obtains a uniform floating point random number in the range of [0, 1].

� Normally distributed pseudo-random numbers were generated using the Box-

Muller transform [167].

The Box-Muller transform generates a pair of normally distributed random num-

bers from a pair of uniform random floating point numbers in the range of [−1, 1].

This transform is explained in Equations (4.2) and (4.3), where two random num-

bers {z0, z1} are generated such that their squared sum is smaller than 1. These

two numbers are then used for the generation of the pair {r1, r2}:

Chapter 4. Pose Estimation using Global Optimisation 103


z0 = 2 · u1 − 1

z1 = 2 · u2 − 1

, s = z20 + z21 < 1 (4.2)

r =

√
−2 · log(s)

s
r1 = z0 · r

r2 = z1 · r

(4.3)

Different combinations of population generation were tested with both uniform

and normally distributed (or Gaussian) random numbers, with the best results for

each intended application being obtained using the following configurations:

Pose Correction

The initial population for correcting the pose requires only the creation of seven

normally distributed random numbers (r{1,...7}) through the Box-Muller trans-

form, shown in Equations (4.2) and (4.3). Setting the search spaces for rotation

ssr and translation sst, the values of the parameters are calculated according to

Equations (4.4) and (4.5), where the quaternion is normalised after being set. This

guarantees that the population of initial transformation parameters generated are

normally distributed around the initial estimate.

qw = 1− r1 · ssr

q{x,y,z} = r{2,3,4} · ssr

q = q/‖q‖

(4.4)

t{x,y,z} = r{5,6,7} · sst (4.5)

Chapter 4. Pose Estimation using Global Optimisation 104

Global Pose Estimation

For global pose estimation, the initial population needs to be carefully constructed

to make sure the whole search space is evenly covered. The first 30% of this initial

population is generated so that there are quaternions containing rotations of 90◦

and 180◦. This is done by setting at most two elements of the quaternion as

ones and the others as zero. After normalisation, these quaternions will represent

“straight” orientations (“upside down”, “right side up”, etc.). This is done in order

to have members of the initial population in these orientations which typically

everyday objects tend to be in.

The next 70% of the initial population is generated to make sure the search space

is evenly covered. The rotation quaternions are created through the method pre-

sented by Marsaglia [168], guaranteeing that the orientation search space is uni-

formly covered. This method, used to uniformly choose points from the surface of

an hypersphere, requires the generation of four uniform pseudo-random numbers

in the range of [−1, 1]. Equations (4.6) to (4.8) show the computation of each

random quaternion.


x1 = 2 · u1 − 1

y1 = 2 · u2 − 1

, s1 = x21 + y21 < 1


x2 = 2 · u3 − 1

x2 = 2 · u4 − 1

, s2 = x22 + y22 < 1

(4.6)

R =

√
1− s1
s2

(4.7)

q = [x1, y1, R · x2, R · y2] (4.8)

Chapter 4. Pose Estimation using Global Optimisation 105

The position vector is obtained through the generation of three uniform pseudo-

random numbers in the range [−sst, sst].

4.2.4 Re-sampling scheme

Monte Carlo optimisation and evolutionary methods depend heavily on the design

of good heuristic to re-sample the candidates. This procedure consists of, given a

population of sets of parameters and their associated cost with respect to a given

cost function, replicate the individuals according to their fitness/cost. Given that

the objective is to minimise a cost function, the function in Equation (4.9) was

devised, which translates the cost G(x), computed by the objective function in

Equation (4.1) into its weight W (x). This weight W relates inversely to the cost

and is then a measure of probability that this particle is re-sampled.

W (x) =

(
1 +

1

1 +G(x)

)pp

(4.9)

The parameter pp sets the relative importance between estimates and can be ad-

justed according to the desired application. The relationship between the cost

G(x) and weight W (x) and how it is affected by different values of pp is plotted

in Figure 4.1. Increasing pp increases the weight of the best particles relative to

others with higher cost, augmenting the probability that only the best particles

are re-sampled. This means that the search is more “aggressive” and is able to

converge quicker to a solution, trading off the possibility of finding multiple solu-

tions. This is suitable for pose rectification, as we know in advance that the real

pose of the object should be in the vicinity of the initial estimate.

A lower value of pp allows for slower convergence and a broader search, avoiding

convergence to a local minimum. This is desirable in the global search, where

there is no initial guess of the object’s pose and is essential to thoroughly explore

the whole search space.

Chapter 4. Pose Estimation using Global Optimisation 106

Figure 4.1: Cost to Weight Function

The re-sampling scheme was implemented with careful consideration of computa-

tional performance. The implementation followed a roulette wheel scheme, where

the size of each particle in the roulette wheel is equal to its weight. Each time a

particle is generated, its weight is saved into an array and added to an accumu-

lulated sum σW . To generate a new particle, a uniform pseudo-random number

rn ∈ [0, σW] is created. The particle to be replicated xd will be the one where, in

the n-length array of calculated weights,
∑n

k=dW (xk) > rn. This approach differs

from the typically used formula
∑d

k=0W (xk) > rn. This means that the linear

search for the particle to be replicated starts adding the weights from the end of

the array, taking advantage of the fact that, with the procession of the algorithm,

particles with higher weights (lower cost), will be located mainly at the end of the

array. The number of additions required by starting from the end of the array is

then much smaller than if the addition started from the beginning.

Figure 4.2 shows a diagram of what the weights array might look like, with the

weight of each element being represented by its width in the bar. The next particle

to be sampled sits somewhere in the middle of the array, at the location pointed

by the blue arrow, meaning that rn ≈ σW/2. Starting from the end of the array

will require far fewer additions to reach that location than if one would start from

the beginning of the array. This design choice allows a much faster resampling

while maintaing the conditions for fitness proportionate selection.

Chapter 4. Pose Estimation using Global Optimisation 107

rn

0 5 10 15 20 25 ·106

Figure 4.2: Re-sampling scheme

Differently from typical implementations of this type, for example in genetic algo-

rithms, every particle is maintained througout the duration of the search, instead

of replacing older particles with new ones. This choice was made due to both prac-

tical and computational reasons. Replacement of particles could lead to particle

deprivation [2] and the loss of diversity in the population. This means that the al-

gorithm might converge too quickly to one of the solutions, and reach a situation

where all the particles are very similar to each other. Keeping all the previous

particles maintains a diverse population and retains the probability, however low,

that worse particles can be resampled and converge to other solutions.

Computationally, this design does not require the weights array and its accumu-

lated sum to be entirely recalculated at each iteration. Only one addition is per-

formed and one insertion in the array. There is, however a computational trade-off

in this choice, as the memory requirements increase, since the system must store

the whole set of previous particles and their weights. Given the memory capacity

available in modern computers, this requirement does not present a major setback,

as the memory requirements to store this information is commonly in the range

of a few megabytes.

The columns in Figure 4.3 show the time required to generate each thousand par-

ticles. In this type of algorithms, the time to resample would normally increase

linearly as the number of particles that the algorithm samples from grows. By

using this resampling strategy, on the contrary, the time to generate new particles

slightly decreases with the progress of the algorithm. The reason for this nearly

constant duration is that, with the progress of the algorithm, better and better

Chapter 4. Pose Estimation using Global Optimisation 108

particles start being located at the end of the array, enabling their quick resam-

pling. The choice of pp also affects the performance of this step, as a higher value

and a more “aggressive” search means that the algorithm will run faster, as the

best particles quickly stack up at the end of the population array.

The example in Figure 4.3 was taken with a high value of pp, with the resampling

and modification of the particles (described in the next section) from a large

population is done even faster than the generation of an initial population.

1 2 3 4 5 6 7
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

C
o
m

p
u
ta

ti
o
n
 t
im

e
 [
s
]

n−th thousand particle

Figure 4.3: Computation time to generate each thousand particles

4.2.5 Noise addition

Another essential step of the algorithm is the slight modification of each resam-

pled particle. This change is referred to in the literature as noise, perturbation,

variation or, in the context of genetic algorithms, mutations. These changes in

the particles are what allows the searched to be carried out locally, in the vicinity

of the resampled particles.

This noise addition was done by producing two Gaussian pseudo-random values

with standard deviations that decrease throughout the progress of the algorithm.

These random values were created using the Box-Muller transform, already in-

troduced in Equations (4.2) and (4.3), which conveniently creates two normally

distributed random numbers with zero expected value and unit variance. Multi-

plying this random number by a scalar σ0, results in a pseudo-random number with

standard deviation of σ0, while keeping the mean at zero. This property arises

from the linearity of the expected value, as shown in Equations (4.10) and (4.11)

Chapter 4. Pose Estimation using Global Optimisation 109

. This is in turn multiplied by the size of the desired search space to ensure that

the search does not tend to go outside of the limits defined by the search space.

E[a ·X] = a · E[X] , σX =
√
E[(X − E[X])2] (4.10)

σaX =
√
E[(a ·X − E[a ·X])2] =⇒ σaX = a ·

√
E[(X − E[X])2]

∴ σaX = a · σX
(4.11)

One of these random values is added to the orientation quaternion and the other

to the translation vector. As mentioned, the variance of this added noise decreases

with the progress of the algorithm, starting from an initial value of σ0 and tending

to zero as it approaches the end of the runtime. So the noise added to the jth parti-

cle is shown in Equation (4.12) and an example is plotted in Figure 4.4 This makes

the search more coarse in the beginning of the runtime, increasing granularity as

the iterations approach their maximum number np. The search then becomes finer

with the progress of the algorithm, with the rate at which the standard deviation

of noise decreases depending on the design varible pn.

σj = σ0

(
1− j

np

)pn

(4.12)

Figure 4.4: Noise added to particles over algorithm iterations

Chapter 4. Pose Estimation using Global Optimisation 110

4.2.6 Minimisation of the objective function

Two stopping criteria were implemented: a maximum number of iterations np

was reached or the discovery of an accurate estimate. Since the output of the

cost function G(x) does not provide enough information on its own about the

quality of the estimate – it depends on wn and the number of contacts k – a

“confidence” indicator was put in place. It was calculated at every 1000 iterations

for the current best estimate and, if the confidence was above a desired value,

the algorithm stopped and a solution was assumed to be found. This confidence

indicator can be thought of as the inverse of the average error over the k contacts,

cancelling also the effect of wn and scaled to a range of [0, 100]. It is computed

through Equation (4.13).

C(x) = 100/

(
1 + 100

(
G(x)

k · (1 + wn)

))
(4.13)

The evolution of particle cost is plotted in Figure 4.5, with the cost for each

particle in the vertical axis (in log scale) plotted in blue, the average cost of the

last 200 particles is plotted in red and the minimum cost found in green. It can be

seen that the search converges to particles with lower cost, stopping after 15000

iterations. After the search is finished, the estimate with lower cost is saved, along

with the last 1% of the generated particles.

Figure 4.5: Progress of the global optimisation algorithm – cost over iterations

Chapter 4. Pose Estimation using Global Optimisation 111

4.2.7 Post processing of results

When estimating the pose of an object without having an initial estimate, multiple

solutions can be found simultaneously. This is due to symmetries in the object

or from having few fingers touching the object. Therefore, a number of possible

poses are kept for evaluation. This group of solutions is created by taking the

poses obtained in the last 1% of the generated particles and comparing them to

each other. This is done simply by finding the Euclidean distance between the

orientation quaternions ‖q1 − q2‖ and between the position vectors ‖~t1 − ~t2‖. If

a solution is deemed sufficiently different from every existing accepted solution it

is added as to the group. Then, a simple but fast collision detection method was

implemented, which evaluated each of the solutions in the group. This step was

made as simple as possible, for computational reasons, and required only that the

object point cloud in that pose do not have any of its points within a vicinity

of a number of points inside the robot (palm, knuckles, etc.). If a pose violates

this condition it is discarded. A diagram of this collision detector is shown in

Figure 4.6,

Collision

Detected!

Collision

Spheres

(a) (b)

Figure 4.6: Collision checker for valid poses. Blue/green: object point cloud
in valid pose, red: invalid pose

Finally, a Levenberg-Marquardt optimisation was performed on the best solution

to further improve this estimate, similarly to what is described in Section 3.2. This

Chapter 4. Pose Estimation using Global Optimisation 112

step ensures that the output of the algorithm is a minimum in that region.

4.3 Results

4.3.1 Simulation Results

This section presents the results obtained in a simulated environment. The sim-

ulator used is the Gazebo multi-robot simulator [169, 170], which allows us to

obtain of contact information similar to that which is available when using the

intrinsic contact sensing scheme – contact location and normal force direction.

The decision to carry out the experiments in a simulated environment was made

because it allows accurate quantitative validation of the results, given the direct

availability of ground truth values.

The simulated robot was made to securely grasp two objects and two types of

experiments were carried out:

� The first experiment took the object’s ground truth location and modified

that pose with a small rotation and translation from that pose. This step

simulated what is obtained in situations of reduced visibility of the object, as

is the case during a robot grasp, where the robot hand occludes the object,

deteriorating the performance of vision-based object tracking systems. In

this experiment a very complex shaped object was used.

� The second experiment used a simpler shaped object and no approximate

estimate of the object pose was provided to the algorithm.

On both experiments the data from the simulated tactile sensors was modified

with increasing Gaussian noise on both the contact location and the normals and

different number of fingers were made to grasp the object. This allowed a thor-

ough evaluation of the method, outlining its strenghts and limitations, despite the

amount of added noise being far greater than what is typically present in a real

Chapter 4. Pose Estimation using Global Optimisation 113

system, where both the joint encoders for the forward kinematics and the force-

torque sensors used for tactile sensing present a high degree of accuracy. Each

trial represents a one-shot estimate, and does not rely on previous estimates of

the object pose. This choice was done to evaluate the performance of the method

on its own, although in real applications the system could use the pose obtained

in the previous run as an initial estimate.

4.3.1.1 Pose correction

As mentioned earlier, the first scenario starts from a coarse estimate of the object’s

pose, obtained by applying a small transformation to the ground truth location.

In this scenario, a reduced the search space is set – an angle smaller than 45◦ and

a maximum translation of 5 cm. Also, the search was tuned to a more aggressive

convergence, setting the design parameter pp in Equation (4.9) to a high value.

An object of very complex geometry was used which, in principle, would pose

difficulties to the accuracy of the algorithm, as it creates a number of local minima

even within a small search space. The chosen object was a small 3D printed statue

of the poet Sapphoa , containing thousands of vertices.

One result of a pose correction experiment is shown in Figure 4.7, where the object

in its ground truth location is shown in orange, the initial estimate is in red and

the result of the pose correction is shown in purple. It can be seen that, despite

the high complexity of the object, the method correctly and accurately identifies

the object pose, with the estimate overlapping the ground truth almost perfectly.

The results of running the pose correction algorithm is shown in Figure 4.8, with

the upper row containing an histogram of the errors in the initial estimates pro-

vided to the algorithm for translation and rotation and the bottom row with the

histograms of the final translation and rotation error after applying the pose cor-

rection method.

a The bust of the poet Sappho was kindly provided by Artec3D – www.artec3d.com

Chapter 4. Pose Estimation using Global Optimisation 114

Figure 4.7: Pose correction. Initial estimate in red,
ground truth in orange and resulting estimated pose in

blue

Five fingers were touching the object and the sensor data was adulterated by

adding random Gaussian noise to the contact location and normal, with means of

0.9 mm and 5◦ respectively, which is higher but within the same order of magnitude

as the errors present in a real system using intrinsic tactile sensing.

The initial estimates have an average distance to the ground truth of 33.2 mm

and an initial rotation angular error of 16◦, which is comparable to the accuracies

typically encountered in vision tracking systems using RGBD cameras when the

object is being occluded. After applying the pose correction method the location

and orientation errors were reduced to an average of 4.05 mm and 5.0◦, with

standard deviations of 2.8 mm and 2.19◦. The average run time to obtain a

solution was 0.64 seconds on a Intel® Core i7, allowing that the object is tracked

at 1.5 Hz.

0 20 40 60 80
0

20

40

Error [mm]

F
re

q
u
e
n
c
y

Initial Translation Error

0 10 20 30 40
0

20

40

Error [deg]

F
re

q
u
e
n
c
y

Initial Rotation Error

0 5 10 15
0

20

40

60

Error [mm]

F
re

q
u
e
n
c
y

Final Translation Error

0 5 10 15
0

20

40

F
re

q
u
e
n
c
y

Error [deg]

Final Rotation Error

Figure 4.8: Histograms for initial and final errors on rotation and
translation for pose correction

Chapter 4. Pose Estimation using Global Optimisation 115

Further evaluation of the algorithm’s performance was made by increasing the

level of sensor noise and by grasping the object with three, four and five fingers.

An arbitrary threshold of 1 cm for position and 15◦ for orientation was set, in order

to consider a result successful if its error falls inside both these thresholds. The

position error is calculated as the distance between the origins of the object’s frame

of reference, which in the case of the statue lies at its base and the orientation

error is the total angle between orientations, calculated according to the formula

θ = 2cos−1(qw), which takes into account the angular error around every axis.

Figure 4.9 shows an histogram with the mean errors in position and orientation

dependent on the number of fingers touching the object and the level of noise

injected in the sensor data. Figure 4.10 shows the success rate when using the

previouly mentioned criteria of position error below 1 cm and orientation error

below 15 degrees.

0

5

10

15

20

25

Injected Noise [mm deg]

M
e
a
n
 E

rr
o
r

[m
m

]

[0.1 1] [0.9 5] [1.8 10] [2.6 15] [3.5 20] [4.4 24] [5.2 28]

3 Fingers
4 Fingers
5 Fingers

(a) Translation error

0

5

10

15

20

25

Injected Noise [mm deg]

M
e
a
n
 E

rr
o
r

[d
e
g
]

[0.1 1] [0.9 5] [1.8 10] [2.6 15] [3.5 20] [4.4 24] [5.2 28]

3 Fingers
4 Fingers
5 Fingers

(b) Rotation error

Figure 4.9: Mean errors after pose correction for different number of contacts and
noise levels

0

20

40

60

80

100

Injected Noise [mm deg]

R
a

te
 o

f
S

u
c
c
e

s
s
s
 [

%
]

Performance under different sensor noise levels
 (Success = error < 15deg. & 1cm))

[0.1 1] [0.9 5] [1.8 10] [2.6 15] [3.5 20] [4.4 24] [5.2 28]

3 Fingers
4 Fingers
5 Fingers

Figure 4.10: Rate of success for pose correction for different number of contacts
and noise level. A trial is considered successful if the error is under 1 cm and 15◦.

2978 tests were carried out, with the results showing that the success of the al-

gorithm is dependent on the number of fingers touching the object and obtains a

Chapter 4. Pose Estimation using Global Optimisation 116

correct estimate of the object’s pose over 80% of the time as long as the sensor

noise is below 1.8 mm and 10◦ and four fingers are touching the object.

4.3.1.2 Global pose estimation

If an initial estimate is not available, the pose of a grasped object can still be esti-

mated, relying only on the tactile sensing and proprioceptive data. This method

can be useful in situations where tracking an object using vision is unfeasible.

Such cases arise in environments with reduced visibility, such as disaster scenar-

ios, where smoke, debris or fire render the information of cameras, RGBD and

laser range finders unusable [118, 171]. An everyday example of another situation

where the estimation of an object’s pose using vision is unreliable is when dealing

with transparent objects. In this experiment, a wine glass was used which would

prove difficult to accurately track by a vision system.

The formulation of the problem is alike the problem of pose correction from an

initial estimate, with the object being placed arbitrarily in the region of the robot

palm. Since there is no approximate knowledge of the object’s pose, the search

space is augmented to fill all the possible orientations and positions around the

robot palm. The design parameter pp, in Equation (4.9) was also tuned to a lower

value, to ensure the search is not too “aggressive” and does not converge too

quickly to a solution which may not be the global minimum, but instead searches

the whole space thoroughly.

Figure 4.11 shows the result of one experiment, where the arbitrary initial location

of the object is shown in red, the ground truth is shown in green and the result of

pose estimation is shown in orange. In this trial the estimate of the object pose

accurately overlaps the real location of the object even if the initial location was

placed deliberately far away from the robot hand, further validating the ability of

the algorithm to converge to a satisfactory solution. It should be noted that in

this grasp posture the small finger touches the glass stem, which was done in order

to avoid that “upside down” poses yield similar costs and thus induce erroneous

results.

Chapter 4. Pose Estimation using Global Optimisation 117

Figure 4.11: Global pose estimation. Initial estimate in red, ground
truth in green and result pose in orange, force normals are displayed

as red arrows

The method was evaluated, as before, injecting noise in the sensing data and

touching the object with three, four and five fingers. In this case the accuracy of

the results depends very heavily on the number of fingers touching the object. This

is expected, as given the symmetries existing on the object a variety of poses that

coherently match the tactile sensing data are present if there is a small number of

contacts.

When five fingers are touching the object, the mean absolute error was 7.1 mm

for position and 3.72◦ for orientation. In this case, the angle error discarded the

error around the vertical axis, given that the object is revolute around this axis.

The average duration of the algorithm was 63 seconds.

The previously defined criteria to evaluate a trial as succesful was applied and

yielded a success rate over 75% when using at least four fingers and a sensor noise

below 0.9 mm and 5◦, which is commensurate with the error on the real system.

The number of tests carried out was 1329.

Chapter 4. Pose Estimation using Global Optimisation 118

0

20

40

60

80

Injected Noise [mm deg]

M
e
a
n
 E

rr
o
r

[m
m

]

[0.1 1] [0.9 5] [1.8 10] [2.6 15] [3.5 20] [4.4 24] [5.2 28]

3 Fingers
4 Fingers
5 Fingers

(a) Translation error

0

10

20

30

40

50

Injected Noise [mm deg]

M
e
a
n
 E

rr
o
r

[d
e
g
]

[0.1 1] [0.9 5] [1.8 10] [2.6 15] [3.5 20] [4.4 24] [5.2 28]

3 Fingers
4 Fingers
5 Fingers

(b) Rotation error

Figure 4.12: Mean error in global pose estimation for different number of contacts and
noise levels

0

20

40

60

80

100

Injected Noise [mm deg]

R
a

te
 o

f
S

u
c
c
e

s
s
s
 [

%
]

Performance under different sensor noise levels
 (Success = error < 15deg. & 1cm))

[0.1 1] [0.9 5] [1.8 10] [2.6 15] [3.5 20] [4.4 24] [5.2 28]

3 Fingers
4 Fingers
5 Fingers

Figure 4.13: Rate of success for global pose estimation different number of
contacts and noise level. A trial is considered successful if the error is under 1

cm and 15◦.

4.3.2 Results Using a Real System

4.3.2.1 Experimental Setup

The experimental setup consisted of a Mitsubishi RV6-SL industrial robot ma-

nipulator equipped with a Shadow Dextrous Hand [172] and a Microsoft Kinect

RGBD camera [173]. Force-torque sensors were mounted on three of the robot

hand fingertips with the scheme detailed in Section 2.2.1. Vision tracking was

done through the implementation of the Particle Filter point cloud tracker avail-

able with the PCL (Point Cloud Library) [115], which uses the depth information

from the Kinect sensor.

In this section, quantitative results are not provided due to the difficulty of ac-

quiring an accurate ground-truth benchmark. Since the available electromagnetic

tracking systems’ performance deteriorated significantly when in the vicinity of

the robot, due to the metal parts and magnets on the Hall effect sensors. Fiducial

Chapter 4. Pose Estimation using Global Optimisation 119

markers were also tested but did not provide the desired accuracy. Neverthe-

less, the pictures presented in this section should provide sufficient information

to qualitatively evaluate the performance of the method and validate the results

previously achieved in the simulated environment.

4.3.2.2 Pose correction from vision

The first set of experiments validate the method for the pose correction setting.

Figure 4.14 provides an example where the object is accurately tracked when it

is sitting on top of a table, where it is accurately tracked by the vision system.

On the left side of the picture, before the object is grasped, the yellow object

model almost perfectly overlays the red thermal bottle point cloud obtained by

the Kinect sensor. As soon as the the object is being grasped by the robot hand,

seen on the right side, the accuracy of this estimate decreases significantly. The

result of pose correction is shown in purple, where it can be seen corresponds to

the real pose of the object shown by the partial point cloud of the red object.

Figure 4.14: Pose correction result – Vision based tracking results in
yellow before and after occlusions are created by the grasp. The pose

corrected using the proposed method is displayed in purple

Figure 4.15 shows other examples of the pose correction results, displaying also

the sensed force as green arrows and the sensed contact normal as red arrows.

Chapter 4. Pose Estimation using Global Optimisation 120

Figure 4.15: Pose correction results with different objects

4.3.2.3 Global Pose Estimation – Hand Over and Place

In an experiment that aims to illustrate a possible application of the pose esti-

mation method, a robot receives a small object handed over by a human, placing

it in a predefined location. In this experiment, it is not possible to obtain any

initial estimate of the object pose, since before it is being grasped it is held by

the human collaborator and is not visible by the vision system. Besides, the small

size of the object poses another problem for the vision system, as the resolution

of the RGBD camera is not enough to allow the detection of the object. Figure

4.16 shows, on the left, the robot hand grasping the blue pencil and, on the right,

the sensed point cloud obtained by the 3-D camera overlaid with the robot model.

It can be seen that the object is not clearly visible by the camera, with very few

points belonging to the pencil being detected by the depth sensor, rendering it

impossible to be tracked by the vision system.

Figure 4.16: Robot grasping a pencil, object model overlaid with point cloud

Chapter 4. Pose Estimation using Global Optimisation 121

Given this shortcoming of the vision system, the estimation of the object pose

must rely solely on the tactile and proprioceptive data. The objective of the task

was to place the pencil inside a narrow hole (1.5 cm radius) in a box, requiring

the estimate to be very accurate, with errors over 1.5 cm or 15◦ jeopardising the

successful completion of the task.

Figure 4.17 shows the result of the pose estimation method, with the interaction

forces shown in green, contact normals shown in red and the object model at the

estimated pose in pink. The experiment is shown in Figure 4.18, where a pencil

is handed to the robot by a human collaborator, the pose is estimated and the

object successfully inserted through a narrow hole in a box.

Figure 4.17: Result of estimation of a pencil’s pose

Figure 4.18: Hand over and place experiment

Chapter 4. Pose Estimation using Global Optimisation 122

4.4 Discussion

Performing a global search to minimise the cost function parametrised by the ob-

ject geometry and current tactile information proved to significantly outperform

gradient based methods. Besides surmounting most of local methods’ shortcom-

ings, it enables the estimation of an object’s pose even without any vision based

tracking system.

Figure 4.19 shows the optimisation landscape for a pose estimation problem. This

figure shows, in the same scale, the cost of each parameter in x as a colored dot,

with the lowest cost for that parameter shown in a solid line. The particle with

minimum cost found (G(x) = 0.3) for this problem was:

x =

[
−0.58 0.4 0.027 −0.72 −0.065 0.028 −0.132

]
(4.14)

Figure 4.19: Particle Landscape

The “ruggedness” of this landscape is very noticeable, which indicates that it is

a difficult problem to find its global minimum [174]. Despite this, the proposed

method showed a high rate of convergence to a satisfiable solution. Figure 4.20

Chapter 4. Pose Estimation using Global Optimisation 123

shows the results for pose correction, when comparing initial and final error for

both rotation and translation. In this picture, points to the right side of the

green line represent improvements on the estimate error. It can be seen that the

algorithm successfully improved the object pose estimate, with only four instances

where the angle error was higher than the initial error. It should be pointed out

that these cases arise due to small initial angle errors and that the translation

error was improved in all trials.

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14

16

18

20

Initial Error [mm] and [deg]

F
in

a
l
E

rr
o
r

[m
m

]
a
n
d
 [
d
e
g
]

Translation
Rotation
Improvement

Figure 4.20: Initial vs. Final Error for global search

Chapter 5

Pose Estimation from tactile

arrays

Chapter Summary

This chapter presents a strategy to represent data from a distributed pressure

array sensor in a compact but meaningful way, which enables the detection of

a matching geometric shape. Using this descriptor, which is based on Principal

Component Analysis (PCA), a grasped object’s position and orientation can be

estimated by finding object poses where the geometry of local patches of the object

surface is consistent with the information provided by the tactile sensors.

124

Chapter 5. Pose Estimation from tactile arrays 125

5.1 Introduction

Pressure array sensors are a pervasive technology in robotics, being the most widely

used sensor type in modern robot hands [37]. These sensors provide infomation on

the distribution of forces on its surface, enabling the estimation of contact force

magnitude and location. Force direction and contact normal, however, cannot be

measured by present commercial sensors. Furthermore, the data obtained by these

distributed sensors is not easily interpretable by a machine, and the sensor capa-

bilities go often unexplored. This chapter contains a descriptor to encode tactile

data from distributed tactile arrays, which can be used to match the geometric

shape of the surface in contact with the sensor. The descriptor relies on Principal

Component Analysis (PCA) to find the directions of highest variance in the tactile

data.

The presented technique is based on previous work by Liu et al. [85], who used

a similar descriptor to classify the local contact shape (e.g. flat, edge, vertex,

sphere, etc.). This approach is further extended in this chapter to enable the

quantification of the coherence between tactile and an hypothesised local shape.

Through optimisation it is possible to find object poses that present a high degree

of matching in all the sensing areas of a robot hand.

An introduction to PCA was given in Section 2.6.4 and its application to tactile

data is detailed in Section 5.2.1 along with the rationale of this data descriptor.

Section 5.2.5 demonstrates the application of this method to the problem of pose

estimation and Sections 5.3 and 5.4 present the results and conclusions of this

approach.

Chapter 5. Pose Estimation from tactile arrays 126

5.2 Methods

5.2.1 PCA on Tactile Data

The application of Principal Component Analysis follows a similar approach to

the one presented by Liu et al. [85]. The input data is an m× 3 matrix containing

the spatial position of each active tactile element on the sensor plane as the first

two dimensions and the measured pressure, scaled by a factor α, as the third

dimension, as shown in Equation (5.1). (x̄, ȳ, p̄) are the mean values and the

parameter α scales the pressure values to be commensurate with the the other two

dimensions.

M =



(x1 − x̄) , (y1 − ȳ) , α(p1 − p̄)

(x2 − x̄) , (y2 − ȳ) , α(p2 − p̄)

... ,
... ,

...

(xm − x̄) , (ym − ȳ) , α(pm − p̄)



T

(5.1)

The covariance matrix CM of the above input tactile data can be decomposed into

the eigenvector and eigenvalue matrices as shown in Equations (5.2) and (5.3).

cov(M) = CM = EΛET (5.2)

CM =

~e1 ~e2 ~e3


·


λ1 0 0

0 λ2 0

0 0 λ3


·

~e1 ~e2 ~e3



T

(5.3)

Chapter 5. Pose Estimation from tactile arrays 127

Figure 5.1 shows an interpolated reading of a tactile array, overlaid with the calcu-

lated principal components as red green and blue lines. It can be seen that there

is a larger variance in the direction of the red line, and also significant variance in

the direction of the green line.

Figure 5.1: Principal Components of a tactile sensor frame

Describing the tactile information using these principal components and out-

putting only three vectors provides a compact description of the entire tactile

frame. This descriptor has been already employed succesfully to identify the

shape of a touched surface by looking at the resultant eigenvalues [85]. In this

chapter, the direction of the eigenvectors is also taken into account to assess the

match between tactile data and the local geometry of a contact. The variances

of a matching geometric shape will have a magnitude similar to the eigenvalues

in the directions given by their respective eigenvectors. From this measurement

model, the pose of a grasped object can be found such that there is a high degree

of match in every tactile sensor.

Chapter 5. Pose Estimation from tactile arrays 128

5.2.2 Selection of Scaling Parameter

While the x and y dimensions are the same for both tactile and geometrical data,

the pressure values need to be scaled to correspond with the spatial dimension

corresponding to the sensor’s normal axis. In order to accomplish that, a study

using Finite Element Analysis (FEA) was carried out in Abaqus [175] to find the

relationship between pressure data and the local geometry of an object .

Different shapes were pressed against a simulated tactile sensor, with angles of

0◦, 2◦, 5◦, and 7◦ to the sensing plane, as shown in Figure 5.2. The sensing area

was modelled as an hyperelastic, isotropic material, with density ρ = 990 Kg/m3,

using the Arruda-Boyce model [176] with parameters µ = 10000 and λm = 1.1.

(a) Cylinder (b) Thin flat surface

(c) Edge (d) Large flat surface

Figure 5.2: Finite Element Analysis

The Finite Element Analysis tests were done by Shan Luo

Chapter 5. Pose Estimation from tactile arrays 129

The objective of this study is to find a parameter α that scales the pressure values

so that one of the principal components is aligned with the slope of the object

geometry. Figure 5.3 shows the effect of the scaling parameter when a cylinder is

pressed against the sensing area. In each picture, the principal components are

shown as blue, red and yellow arrows.

(a) α = 2 · 10−2 (b) α = 1 · 10−2

(c) α = 1 · 10−3 (d) α = 1 · 10−4

Figure 5.3: Effect of pressure scaling value α in the tactile profile

From the pictures above, it can be seen that the value of α that better approx-

imates the slope of the object is the one in Figure 5.3(c), where α = 1 · 10−3.

Figure 5.4 shows a cross-section of the pressure profile (as dots) for the flat sur-

face at 5◦ (Figure 5.3(d)). The arrows indicate the direction of the main principal

component in this 2-D case for different values of α. A good scaling value will

have this principal component parallel to the object cross-section shown in black.

The selected value of α was α = −9.677 ·10−4, which, in this case yielded an angle

error of 0.14◦.

Chapter 5. Pose Estimation from tactile arrays 130

Figure 5.4: Cross-section of the pressure profile and largest principal compo-
nent for different values of α

Table 5.1 summarises the error for the different tested shapes and contact angles.

It can be seen that the error is kept always under 1◦.

Table 5.1: PCA angle error for α = 9.66 · 10−4

Shape 0◦ 2◦ 5◦ 7◦

(a) Cylinder 0 0.9 0.14 0.42

(b) L-shape 0.19 0.50 0.81 0.68

(c) Flat (wide) 0 0.4 0.07 0.5

(d) Flat (thin) 0 0.07 0 0.62

This relationship does not show any significant dependence on the contact force.

Figure 5.5 shows the pressure profile for the shape in Figure 5.2(d) pressed at the

same angle, with different indentation depths. As the object is pressed harder, the

number of active tactile elements increases, but the slope of its principal component

is approximately constant.

Chapter 5. Pose Estimation from tactile arrays 131

Figure 5.5: Pressure profile and main principal component for different in-
dentation depths

This relationship between pressure and indentation depth is dependent of the

tactile sensors used, the material properties of the soft layer above the sensor and

the shape of the local contact. However, in practice, an approximate value is

sufficient to obtain good results, since the variances in other directions are much

larger than along this normal direction.

5.2.3 Computing the Eigenbasis

As previously discussed in Section 2.6.4, the symmetry of the covariance matrix

leads to its eigenvectors being pair-wise orthogonal. As such, these vectors define

a basis that can be interpreted as a Cartesian coordinate system. This coordinate

system defined by the unit norm eigenvectors is commonly known as the eigenbasis.

Given that E is an orthogonal matrix (i.e. its columns are orthogonal and have

unit norm), then ETE = I, thus E−1 = ET . If we define M′ as the set of points

M described in its eigenbasis, matrix E can be used as the rotation matrix that

performs this transformation.

M′ = ET ·M (5.4)

Chapter 5. Pose Estimation from tactile arrays 132

The covariance matrix of these points when transformed into its eigenbasis M′

results in the equality in Equation (5.5) (again, note that ETE = I):

CM′ =
1

n− 1
M′M′T

=
1

n− 1
ETMMTE

= ETCME

= ETEΛETE

CM′ = Λ

(5.5)

Equation (5.5) demonstrate that the covariance matrix of a set of data points

transformed into its eigenbasis is the diagonal matrix containing the eigenvalues

in its main diagonal. This is in agreement with the fact that PCA is an orthogonal

transformation that converts a set of correlated data into a new space where the

components are uncorrelated.

5.2.4 Matching tactile to 3D point cloud covariance

The central idea of this descriptor is that when the sensor is in contact with a

geometric shape, the variances in the distribution of pressures in the tactile array

should resemble the variances on the geometry of the touched shape. In other

words, the eigenbasis of the tactile data covariance matrix should form a “good”

coordinate system for the points in the geometry of the local patch of the object

surface that is in contact with the sensor. Figure 5.6 shows a robot finger equipped

with a pressure sensor array. The interpolated tactile data is overlaid in the figure,

with its principal components shown in red, green and blue arrows. The pressure

data is scaled down by the parameter α in Equation (5.1). The local object

geometry is shown as the green point cloud and is the lateral strip of a cylindrical

object. Intuitively, it can be seen that the directions of highest variance in this

local patch should follow the same directions as in the tactile data.

Chapter 5. Pose Estimation from tactile arrays 133

Figure 5.6: Finger model, interpolated tactile data, principal components axes
and object pointcloud patch

In order to test the coherence between tactile and geometric data the principal

components of the tactile data are calculated and the eigenbasis is constructed

according to the method described in Section 5.2.3. Then, the patch of the object’s

point cloud that sits within the sensing region of the tactile sensor is cropped and

transformed using that eigenbasis, as detailed in Equation (5.4). The covariance

matrix of this set of points is calculated and, following (5.5), it should match

matrix Λ, presenting variances in the main diagonal similar to the eigenvalues of

the tactile data covariance. Also, the covariance values in the off-diagonal should

be small. In summary, if E is the orthogonal matrix with the eigenvectors of CM,

then the covariance of the points in the local geometry s ∈ S, transformed into

the the eigenbasis E should be similar to Λ.

S =


s1x s1y s1z

...

snx sny snz


(5.6)

CS′ = cov(ETS) ≈ Λ (5.7)

Chapter 5. Pose Estimation from tactile arrays 134

This similarity can be exploited to gauge the coherence between a frame of tactile

data and a patch of an object’s surface geometry, represented by a 3D point cloud,

by using the following approach:

Subtracting the eigenvalues from the covariance matrix of the surface pointcloud

in the eigenbasis CS′ . The resulting matrix can be interpreted as follows:

� Positive elements in the main diagonal – variances in the surface point cloud

which are not explained by the tactile data

� Negative elements in the main diagonal – variances in the tactile data not

present in the object point cloud

� Off-diagonal elements – covariances not explained by the principal compo-

nents.

The Frobenius norm of this matrix (the square root of the sum of the squared

matrix elements) can be used to obtain a cost function that takes into consideration

all three sources of inconsistency. The equation that assesses the quality of the

match between tactile and geometric data is then Equation (5.8)

q = ‖(CS′ −Λ)‖F =

√∑
i,j

(CS′ −Λ)2ij (5.8)

A numerical example of the application of this method is presented in Figure 5.7.

The active elements of a tactile array are plotted in red, its principal components

in blue, red and yellow and the point cloud of a patch of a cylinder in green.

The eigenvalues of the covariance matrix of the tactile data were calculated to be

λ1 = 34.56 · 10−6, λ2 = 7.86 · 10−6, λ3 = 0.76 · 10−6. The object point cloud was

transformed into the tactile eigenbasis and the covariance matrix found on the

object point cloud in the contact area is shown in Equation (5.9)

Chapter 5. Pose Estimation from tactile arrays 135

Figure 5.7: Evaluation of the matching. Active tactile elements in red, prin-
cipal components in blue, red and yellow, and local object geometry in green

CS′ =


34.15 −0.01 0.26

−0.01 7.55 −0.00

0.26 −0.00 0.15


· 10−6 (5.9)

This result shows a good correspondence between tactile and geometric data with

low values in the covariance matrix off-diagonal elements and variances similar to

the tactile data eigenvalues in the main diagonal. The cost, calculated through

Equation (5.8), is calculated in Equation (5.10) and shows a good degree of match-

ing between tactile and geometrical data.

q =

∥∥∥∥∥∥∥∥∥∥∥∥∥

0.41 0.01 −0.26

0.01 0.31 0

−0.26 0 0.61

∥∥∥∥∥∥∥∥∥∥∥∥∥
F

· 10−6 = 0.87846 · 10−6 (5.10)

Chapter 5. Pose Estimation from tactile arrays 136

5.2.5 Object Pose Estimation From Descriptor

A straightforward application of the detailed descriptor is the estimation of a

grasped object’s pose. The fact that the cost function presented in Equation (5.8)

outputs a positive scalar conveniently enables its direct usage in an optimisation

routine. The goal is then to find a set of parameters x, as defined in Equation (1.1),

which define an object pose (position and orientation), where the patches of the

object point cloud in the vicinity of each contact minimise the cost q. A description

of the method is presented below and summarised in Algorithm 5.2.

First, Principal Component Analysis is performed on the tactile array data, ob-

taining the eigenvalues and eigenvectors of its covariance matrix. A k -d tree

is constructed from the object point cloud, allowing faster nearest neighbour

searches [160]. A candidate pose is tested for its distance dl from the sensor con-

tact centroid to the object surface and rejected if the distance is above a threshold

of ε = 30mm. If there are surface points in the vicinity of contact, these points

are transformed into the local sensor coordinate frame and cropped according to

the sensor shape and inside a small height. The coordinate frame of this patch

of points is then changed into the eigenbasis, centered on the contact centroid

c = [x̄, ȳ, αp̄], using the transpose of matrix EH , shown in Equation (5.11). The

cost is obtained by applying the cost function in Equation (5.8) and the algorithm

is summarised in Algorithm 5.2. A distance element is added to the cost from the

mean value of S′, given the fact that the origin of the coordinate frame EH is at

the contact centroid. After transforming the points into this eigenbasis, a good

match will also result s̄′ ≈ (0, 0, 0), so the norm of the mean value is added to

the cost to ensure a small distance between the tactile and geometric centroids.

To improve the optimisation procedure, three design parameters h1, h2 and h3 are

added to the algorithm. h1 penalises poses that do not contain any points in the

vicinity of the sensor, h2 penalises poses where the object penetrates the finger

geometry and h3 is a multiplier to add importance to the weight in Equation (5.8).

Chapter 5. Pose Estimation from tactile arrays 137

EH =

~e1 ~e2 ~e3 c

0 0 0 1

 (5.11)

Algorithm 5.2 Pose estimation using covariance matching

Input: Pose {x}, object pointcloud {O}, PCA {EH , λ}
Output: {h1, h2, h3, ε}

1: Transform contacts using rotation, translation x
2: for all k contacts do
3: Find distance dl between O and c
4: if dl ≤ ε then
5: Get local patch of points l ⊂ O
6: Transform points l into tactile sensor frame
7: Collect points s within the sensing area (s ⊂ l)
8: if #s ≥ 3 then
9: for all si ∈ S do

10: r ← 0
11: Transform points s into eigenbasis EH

12: if siz < 0 then
13: r = r + (−sz · h2)
14: end if
15: end for
16: Compute covariance matrix CS′ of s′

17: Gk = ‖(CS′ − Λ)‖F · h3 + s̄′ + r
18: else
19: Gk = h1 · dl + ‖Λ‖F · h3
20: end if
21: else
22: Gk = h1 · dl‖Λ‖F · h3
23: end if
24: end for
25: return

∑
kGk

As in the previous chapter, the pose of the object was estimated considering two

different circumstances:

� One setting assumes the knowledge of the grasped object pose is approx-

imately known, having obtained a coarse estimate from a vision tracking

system.

Chapter 5. Pose Estimation from tactile arrays 138

� The other situation assumes that no initial estimate of the pose of the object

is known.

Different optimisation methods were tested under these two conditions. In the

first situation, the search was performed with a reduced search space, with an ori-

entation angle below 20°and translation below 1 cm. The second setting searched

all possible orientations and a position vector below 20 cm from the robot base.

Given the possibility of multiple local minima, only global optimisation methods

were used. Different global optimisation methods were tested, namely Simulated

Annealing [177], DIRECT [157, 178], and the method previously developed by the

authors [5], detailed in chapter 4. Table 5.2 compares the performance of these dif-

ferent optimisation methods, when using the same input data, for both conditions

– with and without an initial estimate.

Table 5.2: Comparison of optimisation techniques

Method
in [5]

DIRECT
Simulated
Annealing

PCA
based

Average Cost 0.1343 0.1058 0.1308

Average Duration 16.4901 10.7876 38.6335

distance
based

Average Cost 1.2877 1.1102 1.1513

Average Duration 20.7059 9.2987 30.7758

In this comparison, the DIRECT method shows better accuracy as well as im-

proved computational performance and, as such, it was selected for validation of

the pose estimation method presented in this chapter.

5.3 Results

5.3.1 System overview

This method was implemented in a real system, using a Barrett Hand� BH-

280 [179], which contains pressure sensor arrays with 24 tactile elements on each

Chapter 5. Pose Estimation from tactile arrays 139

of the fingers and on the palm. The software interface with the robot as well

as the algorithms were implemented in ROS [165], using the Eigen linear algebra

library [180] for calculations involving matrices.

The tactile sensors were covered with an Ecoflex® 00-10 soft silicone [181] to allow

a better distribution of the forces over the tactile elements. A comparison of the

distribution of contact pressures with and without using a soft silicone layer is

shown in Figure 5.8. For very similar grasps, it can be seen that, when using the

soft silicon layers, more tactile elements are active (the yellow and orange values

in the upper left corner), obtaining a much more detailed pressure distribution.

Figure 5.8: Comparison of tactile data with and without silicon layer

5.3.2 Pose Estimation Results

The object pose was estimated by having the robot hand grasp an object and

perform the minimisation using DIRECT, which was the method which yielded

the best results, as seen in Table 5.2. The cost function used for pose estimation

is shown in Algorithm 5.2, and is the sum of the costs for each tactile element.

This cost function took into account both the the covariance matching shown in

(5.8) and the distance between the contact and the object point cloud centroids.

The evaluation of the method was made against a benchmark method where the

cost function only took distance into account. This is an approach that resembles

Chapter 5. Pose Estimation from tactile arrays 140

the commonly employed Iterative Closest Point (ICP), while overcoming ICP’s

main drawback of getting trapped in local minima through the use of a global

optimisation method. The algorithm for distance minimisation resembles what is

typically used in this context [3, 90, 102, 124, 127, 133, 136]. This cost function

outputs the average squared distance between each tactile element and the nearest

point in the object surface and is detailed in Algorithm 5.3.

Algorithm 5.3 Pose estimation using distance

Input: Pose {x}, object pointcloud {S}, contacts {C(k)}
1: Transform contacts using rotation, translation x
2: for all k contacts do
3: for all i elements do
4: Find squared distance di between S and C

(k)
i

5: n← n+ 1
6: end for
7: Gk =

∑
i di/n

8: end for
9: return

∑
kGk

An initial qualitative evaluation was done using two different objects. In the first

experiment the robot was made to hold a box with clearly distinguishable features

– edges, vertices, rounded surfaces. The fingers were placed so that the tactile

sensors touched these different features. This grasp is shown in Figure 5.9(a),

with the features highlighted and labeled in red.

The result after applying this method is shown in Figure 5.9(b), with the picture

overlaid with the robot 3D model and the resulting pose using both the ICP-type

method and the covariance matching cost function approach. The result of the

method matches the tea box seen in the background, better than the benchmark. It

should also be pointed out that a correct estimate is obtained despite the significant

error seen in the right finger first joint angle. This error is mitigated by the fact

that the method can identify that the finger is touching a planar surface, increasing

the cost for estimates that do not match this geometry.

The red point cloud, which shows the point cloud of the object at the pose ob-

tained by using the covariance matching method matches the real location of the

Chapter 5. Pose Estimation from tactile arrays 141

(a) (b)

Figure 5.9: Pose estimation overlaid on a picture of the grasp. Blue pointcloud
shows the result when minimising distance from the surface to the contacts. Red

pointcloud shows the result when using the proposed method

object much closer than when minimising only distance. In this example, one ex-

planation for the mismatch obtained the ICP approach may be the small error in

the kinematics is present, and can be seen in the proximal angle of the right side

finger. While this small mistake in the kinematics compromises the performance

of the ICP-type approach, the covariance based matching method still yields an

acceptable result. This is due to the local shape information that is contained in

the covariance approach, allowing for this error, as it tries to match that finger

with a planar surface that satisfies the covariances measured in the tactile sensor

frame.

To further highlight the advantages of using this approach, a scenario was con-

structed that was predictably difficult to be tackled with the typical approaches

that use distance information only. A cylindrical thermal bottle was grasped with

the fingers being placed in a posture that was problematic to obtain the object

pose from. The contacts were positioned at opposite sides of the cylinder, with

the finger contacts being placed close together, with the palm contact at the other

side of the cylinder. The results are shown in Figure 5.10.

When using information on distance only, it is difficult to disambiguate between

poses around the vertical axis. This is because the distances between contact

Chapter 5. Pose Estimation from tactile arrays 142

Figure 5.10: Result with horizontal thermal bottle. Blue pointcloud shows
the result when minimising only the distance from contacts to surface. Red

pointcloud shows the result when using the proposed method

centroid and object surface are very similar for very different poses around this

axis. Using the covariance matching approach, however, allows to discriminate

between these poses, as the largest principal component on the two fingers grasping

the side of the bottle are aligned with the cylinder’s main axis, resulting in a pose

that aligns the bottle axis with those largest principal components.

Also, the method using principal components has an advantage over algorithms like

ICP in that it penalises points in the object model not present in the measurement,

i.e. surface points lying the sensing area where sensing elements are not active.

Figure 5.11 shows the evaluation of the cost function for diferent poses, with angles

around the vertical axis in the range of [−57◦, 57◦]. The cost was evaluated using

both cost functions in Algorithms 5.2 and 5.3, with the colours of the point cloud

in the upper right figure corresponding to the points in the plots below. While

the distance only cost function found the minimum around 20◦, the proposed

covariance based cost function successfully predicted the minimum to be around

0◦.

Quantitative evaluation was done using four different objects and six grasps. Ob-

taining an accurate ground-truth proved problematic, as electromagnetic trackers

are not reliable when metal and magnets are present in the surroundings. As

such, fiducial markers were used, and the pose was finely adjusted manually, since

the accuracy provided by the fiducial markers was insufficient for the evaluation

Chapter 5. Pose Estimation from tactile arrays 143

Figure 5.11: Evaluation of proposed the cost function versus a benchmark
based on distance alone. Clockwise from the top: grasping scenario, different
poses evaluated, proposed cost function, distance based cost function. Note:

the colors in the lower plots match the pose hypotheses on the upper right

of the method. The ground truth was displaced by a random rotation between

0◦ and 20◦ around each axis and a translation between 0 and 10 mm along each

direction [x, y, z]. This enabled to start the pose estimation from an approximate

pose, emulating the situation where vision provides a coarse pose estimate to be

corrected using tactile sensing. To evaluate the covariance-based matching against

the distance-only optimisation benchmark, three criteria were used:

� The mean angle and displacement between the minimisation results and

ground truth.

� The angle and displacement error at the lowest cost found in all trials

� The Spearman’s ρ correlation coefficient between cost and error.

The mean angle provides a good indicator for the success of the pose estimation

method. However, it is very dependent of the optimisation method used, as the

optimisation may converge to a local minima, which does not correspond to the

Chapter 5. Pose Estimation from tactile arrays 144

ground-truth. The Spearman’s ρ criterion, on the other hand, allows the assess-

ment of the descriptor independently of the optimisation method. By finding the

correlation between cost and error, the suitability of the descriptor becomes more

evident, as a good descriptor will have stronger correlation between lower costs

and higher accuracy in the results.

Spearman’s ρ is a measure for the dependence between two variables [182]. It

outputs a number between −1 and 1, quantifying the monotonicity between two

variables X and Y . In other words, if lower errors correspond to lower costs, the

Spearman’s ρ will be close to 1. The calculation of the Spearman’s ρ is done by

ranking the n values of X and Y into rank numbers xi, yi and then applying the

formula in Equation (5.12).

ρ = 1− 6
∑

(xi − yi)2
n(n2 − 1)

(5.12)

Figure 5.12 shows the resultant cost vs. the error for each of the 100 trials in

one grasp. A linear fit is added for easier visualisation. In this experiment, the

proposed descriptor shown in Fig. 5.12(b), displays a stronger correlation with

the angular error than the distance-based cost function in Fig. 5.12(a). This

stronger correlation demonstrates the advantages of using the proposed descriptor

in optimisation methods or as the measurement model, for example in recursive

Bayesian filtering methods.

Cost

0.2 0.4 0.6 0.8 1

E
rr

o
r

[d
e

g
]

0

10

20

30

40
Distance cost function

(a)

Cost

0.1 0.15 0.2 0.25

E
rr

o
r

[d
e

g
]

0

10

20

30

40
PCA cost function

(b)

Figure 5.12: Result of cost function vs. angle error

Chapter 5. Pose Estimation from tactile arrays 145

The results of the experiments for the different objects and grasps are shown in

Table 5.3, where the descriptor with best results is highlighted in bold.

Table 5.3: Comparison of cost functions – mean error, error at minimum cost
and cost vs. error correlation coefficient

Mean

Error

Minimum

Cost

Correlation

Coefficient

PCA distance PCA distance PCA distance

a) 4.73◦

7.8 mm

23.7◦

7.5 mm

1.24◦

0.5 mm

25.34◦

7.1 mm

0.70

0.57

0.41

0.31

b) 18.8◦

8.5 mm

22.9◦

16.2mm

20.2◦

15.4mm

24.7◦

26.4 mm

0.42

−0.03

0.07

−0.04

c) 11.61◦

5.5 mm

10.90◦

4.1 mm

10.53◦

4.6 mm

11.86◦

3.7 mm

0.71

0.02

0.31

−0.38

d) 8.30◦

11.2 mm

8.70◦

5.6 mm

2.74◦

5.1 mm

6.60

4.3 mm

0.56

0.71

0.52

0.4

e) 8.45◦

12.8mm

6.288◦

14.6mm

1.19◦

1.0 mm

0.92◦

11.5 mm

0.63

0.88

0.10

0.22

f) 10.3◦

7.8 mm

33.3◦

22 mm

6.01◦

3.7 mm

23.0◦

20.7 mm

0.80

0.56

−0.01

0.74

Chapter 5. Pose Estimation from tactile arrays 146

Similarly to the approach presented in chapter 4, the global pose of the object

can be estimated, even when an initial estimate is not available. This is done by

increasing the search space to all possible orientations and positions around the

robot hand and increasing the maximum number of iterations. Given the size

of the search space, it can take up to a minute to reach the global minimum.

Also, due to object symmetry, multiple global minima can be present and the

optimisation may converge to one that is not the global minimum. Figure 5.13

shows this global search for the grasp f) in Table 5.3, with the arbitrarily selected

initial estimate shown in red and the result of pose estimation in green. These two

results are local minima found by the optimisation algorithm. These two poses,

when evaluated using the cost function that depends only on distance, yield very

similar costs (0.0177 and 0.0170). When using the covariance-based cost function

presented in this chapter, it is possible to disambiguate between them, as the

correct pose results in a much lower cost (0.254 and 0.103 respectively).

(a) (b)

Figure 5.13: Result of a global search using the proposed descriptor (grasp (f)
in Table 5.3)– red pointcloud: initial pose; green pointcloud: resultant pose.

The computational performance was very similar for both algorithms, with the

average duration for pose correction being 9.06 seconds for the covariance-based

algorithm and 9.68 seconds for the distance minimisation. The duration for the

worst case timed during the experiments was similar for both algorithms, with the

proposed cost function being between 1.4 times slower to 4 times faster, with an

average duration of each evaluation of 500µs. The discrepancies in the duration

Chapter 5. Pose Estimation from tactile arrays 147

of the proposed algorithm are due to the resolution of the object point cloud,

since the calculations take longer when using point clouds with higher number

of points, whereas the benchmark algorithm performs a fixed number of distance

queries. However, it should be noted that the algorithm in Algorithm 5.2 can

potentially run much faster, as it relies on matrix operations. Besides, the kd-

tree implementation used in these experiments does not allow for range queries.

Using this type of query would speed-up significantly the selection of points within

the sensing region (i.e. steps 5 to 7 in Algorithm 5.2), which is one of the main

bottlenecks in the performance of the algorithm.

5.4 Conclusions

This chapter presented a new descriptor to interpret data from a distributed tactile

array, which was applied to the problem of estimating the pose of a grasped object.

The approach is based on Principal Component Analysis, a method that obtains a

set of vectors in the direction of highest variance in the data, orthogonal between

them. While this approach has been extensively used in many branches of science,

and robotics in particular, the common usage of PCA is with the aim of reducing

the dimensionality of multivariate data, with many notable examples of using PCA

to process tactile data [77, 89, 183, 184]. This method, on the other hand, follows

the approach by Liu et al. [85], preserving all the dimensions and is instead used

to match tactile and geometric data.

The results of pose estimation are presented both qualitatively and quantitatively,

showing higher accuracy than current standard techniques for this purpose, which

merely rely on the distance between finger contacts and object surface. One

paradigmatic example for this approach is the Iterative Closest Point [185, 186],

which was used for benchmark. When comparing both approaches, ICP presents

faster convergence but has a number of disadvantages, such as the fact that it

converges to a local minimum. Another problem when using ICP, is that, for ex-

ample, a sharp edge can be confused for a plane that contains that edge, as the

Chapter 5. Pose Estimation from tactile arrays 148

distance between active sensor elements and one point on the point cloud can be

very small.

Figure 5.14 shows an example where a ICP was performed to fit a line to plane

and a plane to another plane. This situation tries to emulate the active elements

in a tactile sensor (blue markers), and a patch of the geometric shape of an object.

Since PCA merely tries to minimise the distance between the points, a line will fit

just as well as a plane to another plane. In the line to plane fitting the resulting cost

of the algorithm was found to be lower (0.0408) than the error of fitting a plane to

another plane (0.0747). The proposed method, on the other hand, penalises both

cases where points in the measurement are not present in the object model and also

where surface points inside the sensing area are not present in the measurement.

This observation underlines some of the problems of using approaches similar to

ICP and highlights the advantages of using the covariance based method to match

geometric and tactile data.

1.5

1

0.5

x [a.u.]

ICP fit line to plane

0

-0.5

-1-1

-0.5

0

y [a.u.]

0.5

0

0.5

1

1

z
 [

a
.u

.]

Measurement

Model -- Initial

Model -- Final

(a) Fitting a line to a plane using ICP

2

1

x [a.u.]

ICP fit plane to plane

0

-1-1

0

y [a.u.]

1

2

1.5

1

0.5

0

2

z
 [

a
.u

.]

Measurement

Model -- Initial

Model -- Final

(b) Fitting two planes using ICP

Figure 5.14: Results of applying ICP to fit a line to a plane and two planes.

Chapter 6

Conclusions

Chapter Summary

This chapter presents the final remarks to this thesis. It reviews and comments

the main findings of this work, comparing it to other results in the literature. It

also contains a critique of the proposed method and the limitations of the work.

Suggestions and preliminary results for possible applications of the methods are

proposed, along with possible future research directions.

149

Chapter 6. Conclusions 150

6.1 Main Contributions

The main outcome of this thesis is the development of methods to estimate the pose

of a grasped object. These methods are based on a single instance of tactile data

and rely on optimisation to find a suitable pose. Two types of contact sensing data

were used: intrinsic tactile sensing and distributed tactile arrays. The different

information that is obtained from each of these sensing methods required the

development of cost functions that exploited that information.

For intrinsic tactile sensing, the contact locations and normals were used, taking

advantage of the fact that, for rigid contacts, the normal component of the contact

force coincides with the normal of the object surface. For distributed tactile arrays,

a descriptor that encoded the variances on the tactile data was created. Assuming

that the local geometry of the object at the contact location will follow similar

variances, a measure of this coherence allowed to find object poses which, for each

contact, matched the tactile information to the local geometry of the object at

that pose.

The proposed methods can be applied in two scenarios. If a coarse pose is available

from vision, the pose can be quickly rectified to match tactile data. Also, when no

initial pose is available, the global pose can be estimated by searching the whole

space of rotations and translations around the robot hand.

Table 6.1 compares the literature results with the results from each results chap-

ter in this thesis. While the accuracy and speed of the results are comparable to

the existing literature, a noticeable feature of the proposed approach is its ability

to estimate the 6-DOF pose of objects of arbitrary geometrical complexity, while

requiring no exploration of the object. Preliminary results on the proposed meth-

ods’ ability to identify the grasped object and assess grasp quality are presented

in Section 6.2. A discussion and critical analysis on the methods’ limitations is

presented in Section 6.3, with a number of possible improvements to the method

being suggested in Section 6.4.

Chapter 6. Conclusions 151

Reference 6-DOF
Complex

Objects

Global

Pose

No

Explor.

Object

Ident.

Moving

Object

Accuracy

[mm/°]

Speeda

[s]

Aggarwal[90] 4 4 4 6 4 4 <5/– –

Chalon[131] 4 6 6 6 6 4 ≈10/10 –

Corcoran[129] 6 6 6 6 6 6 ≈3/8 3

Hebert[128] 4 6 6 4 6 4 6/2 –

Honda[124] 4 6 6 4 6 4 0.5/2 0.033

Petrovskaya[127] 4 6 4 6 6 4 5/3 30

Koval[132] 6 6 4 6 6 4 <20/– 1

Laaksonen[135] 6 6 6 6 6 6 – –

Zito[133] 4 4 6 6 6 6 – 200

Pezzementi[137] 4 4 4 6 4 6 4/≈30 –

Chapter 3 4 4 6 4 6 6 20/ – 0.17

Chapter 4 (local) 4 4 6 4 6 6 4/5 0.64

Chapter 4 (global) 4 4 4 4 4b 6 7/3 63

Chapter 5 (local) 4 4 6 4 6 6 7.6/10.4 9.7

Chapter 5 (global) 4 4 4 4 4b 6 – / – 60

aRun times are merely indicative, as the experiments were run in different hardware
bPreliminary results

Table 6.1: Comparison of existing tactile pose estimation methods

Chapter 6. Conclusions 152

6.2 Applications

6.2.1 Object Identification

One possible application for the global pose estimation algorithms is to identify the

grasped object from within a number of possible objects in a database. This can

be achieved through running multiple instances of the pose estimation algorithm

in parallel. The final costs for each object can be ranked, with the lowest cost

corresponding to the most likely object. Figure 6.1 shows preliminary results

obtained from running the algorithm, using the grasp in Figure 6.1(b). The best

poses for each possible objects are shown in Figure 6.1(a), and the likelihood is

calculated according to the inverse of the cost: li = 1/Gi∑
k 1/Gk

. It can be seen that

the object is correctly identified (object 2), with the glass (object 4) resulting also

in a low cost, due to its similar shape and size.

These results, while still preliminary, show a possible application of the method,

but would profit greatly from the implementation of an exploratory strategy to

disambiguate between objects with similar geometry.

Chapter 6. Conclusions 153

(a)

(b) (c)

Figure 6.1: Object identification using the proposed method

6.2.2 Grasp Stability

Understanding the pose of a grasped object is also of critical importance to assess

the stability of a grasp. In order to apply the grasp stability criteria presented in

Section 2.1, the location of the object’s centre of mass must be accurately known.

Figure 6.2 shows a Shadow robot hand grasping a light bulb. Contact forces

are shown as green arrows and the normal directions are shown as red arrows.

The convex hull, according to the Grasp Wrench Space, previously presented in

Section 2.1, is shown in Figure 2.1(b), where green represents the forces and red

represent the torques that this grasp can resist.

Chapter 6. Conclusions 154

Figure 6.2: Grasp quality according to the Grasp Wrench Space metric.

This knowledge of the object pose can also allow the improvement of a grasp, by

choosing points in the object where the placement of a finger would improve grasp

quality. Figure 6.3 shows a robot hand grasping a glass. Points in the object are

shown in a scale from red to blue, where quality would improve or decrease if a

finger was moved to that position.

(a) (b)

Figure 6.3: Grasp quality improvement. Blue – Improve quality Red – Reduce
quality

6.3 Discussion and Critique

While the proposed methods can quickly and accurately estimate the pose of a

grasped object when an initial estimate is available, globally estimating the pose

Chapter 6. Conclusions 155

of the object without any prior estimate suffers from a number of issues.

Firstly, the computation time of the global pose estimate is excessively high. Sec-

ondly, ambiguities in the object pose can arise due, for example, to symmetries in

the object. Also, as the geometric complexity of the object increases, more object

poses are likely to satisfy current sensing data, in particular when few fingers are

touching the object. Figure 6.4 present one such case, where two poses (blue and

green) result in similar costs (blue and green). The true pose is shown in pink.

Figure 6.4: Example of a situation that might cause the algorithm
to fail. Parts of the object surface coincide almost perfectly in two

different poses. Ground truth is shown in pink.

Without an exploratory strategy, it is impossible to discriminate between these

two poses. However, finger exploration requires the manipulation of the object,

which will necessarily change the object pose. Pose changes due to small finger

movements can be accommodated using this strategy, by running the minimisation

continuously, using the previous estimation as the new initial estimate, or using

prediction models such as the grasp matrix. Realistic dynamic manipulation situa-

tions, however, require an accurate and computationally fast update model, which

can predict the state transitions from each possible pose.

Chapter 6. Conclusions 156

Furthermore, while exploring an object to estimate its pose, it is essential to take

into consideration the effects of a possible finger action in the stability of a grasp.

This duality between exploration of the object and its stability is key to solving the

problem of object pose estimation and the larger problem of object manipulation.

As mentioned in the Introduction of this thesis, this work does not presume to

be a definitive solution to the problem of object pose estimation, but can be

part of a larger system which comprises sensing, prediction, and decision-making.

Figure 6.5 presents a possible system architecture that can estimate the pose of the

object and take manipulative actions while keeping track of the object pose. This

architecture can rely on Bayesian inference to sequentially estimate the pose of the

object, given the available sensing data and a prediction on the object movement

given a finger movement action.

The yellow rectangle highlights the parts of this system that are the object of this

thesis. The output of the algorithms presented in this thesis can be a pool of

hypothesis poses, which can be further refined through Bayesian filtering.

Optimisation

Algorithm

Measurement

Model

Candidate

Poses

Update

Model

Exploration

cost
poses

particles

action

pose

particles

poses

particles

Figure 6.5: Proposed system for pose estimation.

An exploration strategy that can balance between the acquisition of information

and the maintaining of grasp stability is still an open problem. While there is

Chapter 6. Conclusions 157

significant work in planning trajectories that can maximise the information acqui-

sition [133, 187, 188], considerations regarding grasp stability have not yet been

included in these strategies. Also, creating an update model, i.e. a model that,

given a starting object pose and an action, can predict the movement of the ob-

ject is also of the utmost importance for robot manipulation and the estimation of

the pose. Analytic models, such as the grasp matrix, simulation-based [189, 190],

quasi-static analysis [191] or machine learning based methods [192] have been

developed, but are yet to become commonplace within the robot grasping and

manipulation community.

In summary, a system that is able to accurately track the pose of a grasped object

while it is being manipulated is yet to be accomplished. A possible architecture

for such a system would require the different modules shown in Figure 6.5 to be

integrated together and carry out the estimation using a Bayesian framework.

6.4 Future Work

The previous section proposed an overview of a system architecture that can es-

timate the pose of a grasped object through Bayesian recursive estimation. Also,

the applications presented in Section 6.2 present some possible applications that

can be further developed into more mature algorithms. This section suggests prac-

tical improvements to the methods developed in this thesis, focussing mostly on

the performance of the algorithms.

First, a parametrisation of quaternions that could reduce the search space to

6 dimensions, taking advantage of the fact that the quaternion must have unit

norm should be further investigated. While the strategies presented by Ude [143]

and Schmidt [145] were tested, the computational advantages were not evident.

However, finding an efficient implementation of this type of parametrisation can

bring about great improvements in the computational cost of the algorithm. The

number of dimensions can also be further reduced by exploiting the symmetries of

Chapter 6. Conclusions 158

the object. For example, if the object is a sphere, the search space can be reduced

to the 3 translational dimensions.

Parallelisation of the search algorithm in Section 4.2 can also greatly decrease the

computational time to search for solutions. To implement this solution a great

deal of care must be given to avoid race conditions and also ensure the correct

re-sampling of particles. A possible solution for this would be to re-sample and

evaluate in batches instead of sequentially, adding the weights and the particles

for the whole batch simultaneously.

For the descriptor presented in chapter 5, a k -d tree implementation that allowed

range searches would greatly reduce the computational time to evaluate the cost

function. Finally, this representation of tactile data could be used in other con-

texts, such as tactile exploration and grasp stability analysis.

Bibliography

[1] J. C. Rothwell, M. M. Traub, B. L. Day, J. A. Obeso, P. K. Thomas, and

C. D. Marsden. MANUAL MOTOR PERFORMANCE IN A DEAFFER-

ENTED MAN. Brain, 105(3):515–542, 1982. ISSN 0006-8950. .

[2] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics,

volume 45. The MIT Press, Sep 2002. ISBN 0262201623. .

[3] Joao Bimbo, Silvia Rodriguez-Jimenez, Hongbin Liu, Xiaojing Song, Nico-

las Burrus, Lakmal D. Seneviratne, Mohamed Abderrahim, Kaspar Althoe-

fer, Lakmal D. Senerivatne, Mohamed Abderrahim, and Kaspar Althoefer.

Object pose estimation and tracking by fusing visual and tactile informa-

tion. In IEEE International Conference on Multisensor Fusion and Inte-

gration for Intelligent Systems, pages 65–70. IEEE, IEEE, Sep 2012. ISBN

9781467325110. .

[4] Joao Bimbo, Lakmal D. Seneviratne, Kaspar Althoefer, Hongbin Liu, and

Hongbin Liu. Combining touch and vision for the estimation of an object’s

pose during manipulation. In IEEE International Conference on Intelligent

Robots and Systems (IROS), pages 4021–4026. IEEE, IEEE, Nov 2013. ISBN

978-1-4673-6358-7. .

[5] Joao Bimbo, Petar Kormushev, Kaspar Althoefer, and Hongbin Liu. Global

estimation of an object’s pose using tactile sensing. Advanced Robotics, 29

(5):363–374, Mar 2015. ISSN 0169-1864. .

159

Bibliography 160

[6] J. Bimbo, S. Luo, K. Althoefer, and H. Liu. In-hand object pose estimation

using covariance-based tactile to geometry matching. IEEE Robotics and

Automation Letters, 1(1):570–577, Jan 2016. ISSN 2377-3766. .

[7] A.M. Okamura, N. Smaby, and Mark R. Cutkosky. An overview of dexterous

manipulation. Proceedings 2000 ICRA. Millennium Conference. IEEE In-

ternational Conference on Robotics and Automation. Symposia Proceedings

(Cat. No.00CH37065), 1, 2000. ISSN 1050-4729. .

[8] R. Tomovic and G. Boni. An adaptive artificial hand. IRE Transactions on

Automatic Control, 7(3), 1962. ISSN 0096-199X. .

[9] Hideo Hanafusa and Haruhiko Asada. Stable prehension by a robot hand

with elastic fingers. In International Symposium on Industrial Robots, pages

361–368, Tokyo, 1977.

[10] J. Kenneth Salisbury and J. J. Craig. Articulated Hands: Force Control

and Kinematic Issues. The International Journal of Robotics Research, 1(1):

4–17, Mar 1982. ISSN 0278-3649. .

[11] M. Cutkosky and P. Wright. Modeling manufacturing grips and correlations

with the design of robotic hands. Proceedings. 1986 IEEE International

Conference on Robotics and Automation, 3:1533–1539, 1986. .

[12] Mark R. Cutkosky. On grasp choice, grasp models, and the design of hands

for manufacturing tasks. IEEE Transactions on Robotics and Automation,

5(3):269–279, 1989. ISSN 1042296X. .

[13] Matthew T Mason. Mechanics of Robotic Manipulation. MIT Press, Cam-

bridge, MA, USA, 2001. ISBN 1101200529205. .

[14] R.S. Fearing. Simplified Grasping and Manipulation with Dextrous Robot

Hands. IEEE Journal on Robotics and Automation, 2(4):188–195, Dec 1984.

ISSN 0882-4967. .

Bibliography 161

[15] Antonio Bicchi. On the Closure Properties of Robotic Grasping. The In-

ternational Journal of Robotics Research, 14(4):319–334, Aug 1995. ISSN

0278-3649. .

[16] V.-D. Van-duc Nguyen. Constructing Force- Closure Grasps. The Interna-

tional Journal of Robotics Research, 7(3):3–16, Jun 1988. ISSN 0278-3649.

.

[17] Carlo Ferrari and John Canny. Planning optimal grasps. Proceedings 1992

IEEE International Conference on Robotics and Automation, pages 2290–

2295, 1992. .

[18] Nancy S. Pollard. Synthesizing grasps from generalized prototypes. In Pro-

ceedings of IEEE International Conference on Robotics and Automation,

number April, pages 2124–2130, 1996. ISBN 0-7803-2988-0. .

[19] R. Krug, D. Dimitrov, K. Charusta, and B. Iliev. On the efficient compu-

tation of independent contact regions for force closure grasps. Intelligent

Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on,

pages 586–591, 2010. ISSN 2153-0858. .

[20] G I Boutselis, C P Bechlioulis, M V Liarokapis, and K J Kyriakopoulos. Task

specific robust grasping for multifingered robot hands. Intelligent Robots and

Systems (IROS 2014), 2014 IEEE/RSJ International Conference on, pages

858–863, 2014. ISSN 21530866. .

[21] Shuo Liu and Stefano Carpin. A Fast Algorithm for Grasp Quality Evalua-

tion Using the Object Wrench Space. In IEEE International Conference on

Automation Science and Engineering, Goteborg, 2015. IEEE.

[22] S. Ekvall and Danica Kragic. Interactive grasp learning based on human

demonstration. IEEE International Conference on Robotics and Automa-

tion, 2004. Proceedings. ICRA ’04. 2004, 4, 2004. ISSN 1050-4729. .

Bibliography 162

[23] Robert Krug and Dimitar Dimitrov. Representing movement primitives as

implicit dynamical systems learned from multiple demonstrations. 2013 16th

International Conference on Advanced Robotics (ICAR), pages 1–8, 2013. .

[24] Eric L. Sauser, Brenna D. Argall, Giorgio Metta, and Aude G. Billard.

Iterative learning of grasp adaptation through human corrections. Robotics

and Autonomous Systems, 60(1):55–71, 2012. ISSN 09218890. .

[25] M Santello, M Flanders, and J F Soechting. Postural hand synergies for

tool use. The Journal of neuroscience : the official journal of the Society for

Neuroscience, 18(23):10105–10115, Dec 1998. ISSN 0270-6474. .

[26] I.T. Jolliffe. Principal Component Analysis. Springer Science & Business

Media, 2002. ISBN 0387954422.

[27] Alexandre Bernardino, Marco Henriques, Norman Hendrich, and Jianwei

Zhang. Precision grasp synergies for dexterous robotic hands. In 2013 IEEE

International Conference on Robotics and Biomimetics (ROBIO), pages 62–

67. IEEE, Dec 2013. ISBN 978-1-4799-2744-9. .

[28] Giuseppe Cotugno, Vishawanathan Mohan, Kaspar Althoefer, and Thris-

hantha Nanayakkara. Simplifying Grasping Complexity through General-

ization of Kinaesthetically Learned Synergies. In 2014 IEEE International

Conference on Robotics and Automation (ICRA), pages 5345–5351. IEEE,

May 2014. ISBN 9781479936847. .

[29] Marek S. Kopicki, Renaud Detry, Maxime Adjigble, Rustam Stolkin, Ales

Leonardis, and Jeremy L. Wyatt. One shot learning and generation of dex-

terous grasps for novel objects. International Journal of Robotics Research,

Sep 2015. ISSN 0278-3649. .

[30] Yasemin Bekiroglu, Janne Laaksonen, Jimmy Alison Jorgensen, Ville Kyrki,

and Danica Kragic. Assessing Grasp Stability Based on Learning and Haptic

Data. IEEE Transactions on Robotics, 27(3):616–629, Jun 2011. ISSN 1552-

3098. .

Bibliography 163

[31] I. Kamon, T. Flash, and S. Edelman. Learning to grasp using visual infor-

mation. In Proceedings of IEEE International Conference on Robotics and

Automation, volume 3, pages 2470–2476. IEEE, 1999. ISBN 0-7803-2988-0.

.

[32] Miao Li, Kaiyu Hang, Danica Kragic, and Aude Billard. Dexterous grasping

under shape uncertainty. Robotics and Autonomous Systems, 2015. ISSN

09218890. .

[33] Ashutosh Saxena, Justin Driemeyer, and Andrew Y. Ng. Robotic Grasping of

Novel Objects using Vision. The International Journal of Robotics Research,

27(2):157–173, Feb 2008. ISSN 0278-3649. .

[34] Quoc V. Le, David Kamm, Arda F. Kara, and Andrew Y. Ng. Learning

to grasp objects with multiple contact points. Proceedings - IEEE Inter-

national Conference on Robotics and Automation, pages 5062–5069, 2010.

ISSN 10504729. .

[35] Catherine L. Reed, Richard J. Caselli, and Martha J. Farah. Tactile agnosia.

Underlying impairment and implications for normal tactile object recogni-

tion. Brain, 119(3):875–888, Jun 1996. ISSN 00068950. .

[36] Roberta L. Klatzky, Susan J. Lederman, and V a Metzger. Identifying

objects by touch: an ”expert system”. Perception & psychophysics, 37(4):

299–302, Apr 1985. ISSN 0031-5117.

[37] Bruno Siciliano and Oussama Khatib. Springer Handbook of Robotics.

Springer Berlin Heidelberg, Berlin, Heidelberg, Nov 2008. ISBN 978-3-540-

23957-4. .

[38] Roland S. Johansson and J Randall Flanagan. Coding and use of tactile

signals from the fingertips in object manipulation tasks. Nature reviews.

Neuroscience, 10(5):345–359, May 2009. ISSN 1471-003X. .

[39] Zhongkui Wang, Lijuan Wang, Van Anh Ho, Shigehiro Morikawa, and

Shinichi Hirai. A 3-D nonhomogeneous FE model of human fingertip based

Bibliography 164

on MRI measurements. IEEE Transactions on Instrumentation and Mea-

surement, 61(12):3147–3157, 2012. ISSN 00189456. .

[40] Robert D. Howe. Tactile sensing and control of robotic manipulation. Ad-

vanced Robotics, 8(3):245–261, Jan 1993. ISSN 0169-1864. .

[41] Hongbin Liu, Xiaojing Song, Joao Bimbo, Lakmal D. Seneviratne, and Kas-

par Althoefer. Surface material recognition through haptic exploration us-

ing an intelligent contact sensing finger. In IEEE International Confer-

ence on Intelligent Robots and Systems, pages 52–57. IEEE, 2012. ISBN

9781467317375. .

[42] Damith Suresh Chathuranga, Van Anh Ho, and Shinichi Hirai. A bio-

mimetic fingertip that detects force and vibration modalities and its ap-

plication to surface identification. 2012 IEEE International Conference on

Robotics and Biomimetics, ROBIO 2012 - Conference Digest, pages 575–581,

2012. .

[43] Mark R. Cutkosky and J M Hyde. Manipulation Control with Dynamic

Tactile Sensing. International Symposium on Robotics Research, 8:245–261,

1993.

[44] J.S. Son, E.a. Monteverde, and Robert D. Howe. A tactile sensor for local-

izing transient events in manipulation. Proceedings of the 1994 IEEE In-

ternational Conference on Robotics and Automation, 1994. ISSN 10504729.

.

[45] Xiaojing Song, Hongbin Liu, Kaspar Althoefer, Thrishantha Nanayakkara,

and Lakmal D. Seneviratne. Efficient break-away friction ratio and slip pre-

diction based on haptic surface exploration. IEEE Transactions on Robotics,

30(1):203–219, 2014. ISSN 15523098. .

[46] P Dario and D De Rossi. Tactile sensors and the gripping challenge. IEEE

Spectrum, 22(5):46–53, 1985. ISSN 00189235.

Bibliography 165

[47] H. R. Nicholls and M. H. Lee. A Survey of Robot Tactile Sensing Technology.

The International Journal of Robotics Research, 8(October):3–30, Jun 1989.

ISSN 0278-3649. .

[48] Robert D. Howe, N. Popp, P. Akella, I. Kao, and Mark R. Cutkosky. Grasp-

ing, manipulation, and control with tactile sensing. In Proceedings., IEEE

International Conference on Robotics and Automation, pages 1258–1263.

IEEE Comput. Soc. Press, 1990. ISBN 0-8186-9061-5. .

[49] Ravinder S. Dahiya, Giorgio Metta, Maurizio Valle, and Giulio Sandini.

Tactile sensing-from humans to humanoids. IEEE Transactions on Robotics,

26(1):1–20, Feb 2010. ISSN 15523098. .

[50] Jack M Loomis and Susan J Lederman. Tactual perception. Handbook of

perception and human performances, 2(2):2, 1986. ISSN 0004-8402. .

[51] Ravinder S. Dahiya and Maurizio Valle. Robotic Tactile Sensing. Springer

Netherlands, Dordrecht, 2013. ISBN 978-94-007-0578-4. .

[52] Antonio Bicchi, J. Kenneth Salisbury, and David L. Brock. Contact Sensing

from Force Measurements. The International Journal of Robotics Research,

12(3):249–262, Jun 1993. ISSN 0278-3649. .

[53] Antonio Bicchi, J. Kenneth Salisbury, and P. Dario. Augmentation of grasp

robustness using intrinsic tactile sensing. In Proceedings, 1989 International

Conference on Robotics and Automation, pages 302–307. IEEE Comput. Soc.

Press, 1989. ISBN 0-8186-1938-4. .

[54] Hongbin Liu, Xiaojing Song, Joao Bimbo, and Kaspar Althoefer. Intelligent

Fingertip Sensing for Contact Information Identification. In Proc. of the Sec-

ond ASME/IEEE International Conference on Reconfigurable Mechanisms

and Robots (ReMAR 2012), 2012.

[55] K Levenberg. A method for the solution of certain problems in least squares.

Quarterly of Applied Mathematics, 2:164–168, 1944.

Bibliography 166

[56] Donald W. Marquardt. An Algorithm for Least-Squares Estimation of Non-

linear Parameters. Journal of the Society for Industrial and Applied Mathe-

matics, 11(2):431–441, Jun 1963. ISSN 0368-4245. .

[57] Xiaojing Song, Hongbin Liu, Joao Bimbo, Kaspar Althoefer, and Lakmal

Senerivatne. A Novel Dynamic Slip Prediction and Compensation Approach

Based on Haptic Surface Exploration. In IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS), 2012.

[58] Junghwan Back, Yohan Noh, Lakmal Seneviratne, Kaspar Althoefer, Hong-

bin Liu, Joao Bimbo, Yohan Noh, Lakmal Seneviratne, Kaspar Althoefer,

and Hongbin Liu. Control a contact sensing finger for surface haptic explo-

ration. In 2014 IEEE International Conference on Robotics and Automation

(ICRA), pages 2736–2741. IEEE, May 2014. ISBN 978-1-4799-3685-4. .

[59] Hongbin Liu, Kien Cuong Nguyen, Véronique Perdereau, Joao Bimbo,

Junghwan Back, Matthew Godden, Lakmal D. Seneviratne, and Kaspar

Althoefer. Finger contact sensing and the application in dexterous hand

manipulation. Autonomous Robots, 39(1):25–41, Jan 2015. ISSN 0929-5593.

.

[60] Hongbin Liu, Xiaojing Song, Joao Bimbo, Kaspar Althoefer, and Lakmal

Senerivatne. Intelligent fingertip sensing for contact information identifica-

tion. pages 599–608, 2012.

[61] Xiaojing Song, Hongbin Liu, Joao Bimbo, Kaspar Althoefer, and Lakmal

Senerivatne. Object surface classificaiton based on friction properties for

intelligent robotic hands. In Proc. of World Automation Congress (WAC),

2012, 2012.

[62] Zhanat Kappassov, Juan-Antonio Corrales, and Véronique Perdereau. Tac-

tile sensing in dexterous robot hands — Review. Robotics and Autonomous

Systems, 74:195–220, Dec 2015. ISSN 09218890. .

Bibliography 167

[63] Van Anh Ho and Shinichi Hirai. Understanding slip perception of soft fin-

gertips by modeling and simulating stick-slip phenomenon. In Proceedings

of Robotics: Science and Systems, Los Angeles, CA, USA, 2011.

[64] Damith Suresh Chathuranga, Zhongkui Wang, and Shinichi Hirai. An an-

thropomorphic tactile sensor system with its applications in dexterous ma-

nipulations. In 2015 IEEE International Conference on Cyber Technology in

Automation, Control, and Intelligent Systems (CYBER), pages 1085–1090.

IEEE, Jun 2015. ISBN 978-1-4799-8728-3. .

[65] Van Anh Ho, Dzung Viet Dao, Susumu Sugiyama, and Shinichi Hirai. Devel-

opment and Analysis of a Sliding Tactile Soft Fingertip Embedded With a

Microforce/Moment Sensor. IEEE Transactions on Robotics, 27(3):411–424,

2011. ISSN 1552-3098. .

[66] PPS. http://www.pressureprofile.com/.

[67] Inc Tekscan. URL: http://www.tekscan.com/.

[68] Weiss Robotics. URL: http://www.weiss-robotics.de.

[69] Takktile. URL: http://www.takktile.com/.

[70] Aude Billard, Annalisa Bonfiglio, Giorgio Cannata, Piero Cosseddu, Tor-

bjorn Dahl, Kerstin Dautenhahn, Fulvio Mastrogiovanni, Giorgio Metta,

Lorenzo Natale, Ben Robins, and Others. The ROBOSKIN Project: Chal-

lenges and Results. Romansy 19–Robot Design, Dynamics and Control,

(October 2015):351–358, 2013.

[71] G. De Maria, Ciro Natale, and Salvatore Pirozzi. Tactile data modeling

and interpretation for stable grasping and manipulation. Robotics and Au-

tonomous Systems, 61(9):1008–1020, 2013. ISSN 09218890. .

[72] Craig Chorley, Chris Melhuish, Tony Pipe, and Jonathan Rossiter. Develop-

ment of a Tactile Sensor Based on Biologically Inspired Edge Encoding. In

Advanced Robotics, 2009. ICAR 2009. International Conference on, pages

1–6, 2009. ISBN 978-1-4244-4855-5.

http://www.tekscan.com/
http://www.weiss-robotics.de
http://www.takktile.com/

Bibliography 168

[73] SynTouch. URL: http://www.syntouchllc.com.

[74] Alberto D’Amore, Giuseppe De Maria, Luigi Grassia, Ciro Natale, Salvatore

Pirozzi, and Alberto D Amore. Silicone-rubber-based tactile sensors for the

measurement of normal and tangential components of the contact force.

Journal of Applied Polymer Science, 122(2011):3758–3770, 2011. .

[75] H. Yousef, J. P. Nikolovski, and E. Martincic. Flexible 3D force tactile sensor

for artificial skin for anthropomorphic robotic hand. Procedia Engineering,

25:128–131, 2011. ISSN 18777058. .

[76] Hanna Yousef, Mehdi Boukallel, and Kaspar Althoefer. Tactile sensing for

dexterous in-hand manipulation in robotics - A review. Sensors and Actua-

tors, A: Physical, 167(2):171–187, 2011. ISSN 09244247. .

[77] Hongbin Liu, Juan Greco, Xiaojing Song, Joao Bimbo, Lakmal Senerivatne,

Kaspar Althoefer, and Lakmal Seneviratne. Tactile Image based Contact

Shape Recognition using Neural Network. In IEEE International Conference

on Multisensor Fusion and Integration for Intelligent Systems (MFI), pages

138–143. IEEE, Sep 2012. ISBN 978-1-4673-2512-7. .

[78] Shan Luo, Wenxuan Mou, Kaspar Althoefer, and Hongbin Liu. Novel

Tactile-SIFT Descriptor for Object Shape Recognition. IEEE Sensors Jour-

nal, 15(9):5001–5009, Sep 2015. ISSN 1530-437X. .

[79] Giorgio Cannata, Simone Denei, and Fulvio Mastrogiovanni. A framework

for representing interaction tasks based on tactile data. In Proceedings -

IEEE International Workshop on Robot and Human Interactive Communi-

cation, pages 698–703. IEEE, Sep 2010. ISBN 9781424479917. .

[80] Marianna Madry, Liefeng Bo, Danica Kragic, and Dieter Fox. ST-HMP:

Unsupervised Spatio-Temporal feature learning for tactile data. In 2014

IEEE International Conference on Robotics and Automation (ICRA), pages

2262–2269. IEEE, May 2014. ISBN 978-1-4799-3685-4. .

http://www.syntouchllc.com

Bibliography 169

[81] G. Heidemann and M. Schopfer. Dynamic tactile sensing for object iden-

tification. In IEEE International Conference on Robotics and Automation,

volume 1, pages 813–818. IEEE, 2004. ISBN 0-7803-8232-3. .

[82] D. Goger, Nicolas Gorges, and H. Worn. Tactile sensing for an anthropo-

morphic robotic hand: Hardware and signal processing. In 2009 IEEE In-

ternational Conference on Robotics and Automation, pages 895–901. IEEE,

May 2009. ISBN 978-1-4244-2788-8. .

[83] Zachary Pezzementi, Erion Plaku, Caitlin Reyda, and Gregory D. Hager.

Tactile-object recognition from appearance information. IEEE Transactions

on Robotics, 27(3):473–487, Jun 2011. ISSN 15523098. .

[84] Yevgen Chebotar, Oliver Kroemer, and Jan Peters. Learning robot tactile

sensing for object manipulation. In 2014 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems, pages 3368–3375. IEEE, Sep 2014.

ISBN 978-1-4799-6934-0. .

[85] Hongbin Liu, Xiaojing Song, Thrishantha Nanayakkara, Lakmal D. Senevi-

ratne, and Kaspar Althoefer. A computationally fast algorithm for local

contact shape and pose classification using a tactile array sensor. IEEE In-

ternational Conference on Robotics and Automation, pages 1410–1415, May

2012. ISSN 10504729. .

[86] Joseph M. Romano, Kaijen Hsiao, Günter Niemeyer, Sachin Chitta, and

Katherine J. Kuchenbecker. Human-inspired robotic grasp control with tac-

tile sensing. IEEE Transactions on Robotics, 27(6):1067–1079, 2011. ISSN

15523098. .

[87] Roberto Calandra, Serena Ivaldi, Marc Peter Deisenroth, Elmar Rueckert,

and Jan Peters. Learning inverse dynamics models with contacts. In 2015

IEEE International Conference on Robotics and Automation (ICRA), pages

3186–3191. IEEE, May 2015. ISBN 978-1-4799-6923-4. .

[88] Benjamin Winstone, Gareth Griffiths, Tony Pipe, Chris Melhuish, and

Jonathon Rossiter. TACTIP - Tactile Fingertip Device, Texture Analysis

Bibliography 170

through Optical Tracking of Skin Features. In Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lec-

ture Notes in Bioinformatics), volume 8064 LNAI, pages 323–334. 2013.

ISBN 9783642398018. .

[89] Zachary Pezzementi, Caitlin Reyda, and Gregory D. Hager. Object mapping,

recognition, and localization from tactile geometry. In IEEE International

Conference on Robotics and Automation, pages 5942–5948. IEEE, May 2011.

ISBN 9781612843865. .

[90] Achint Aggarwal and Frank Kirchner. Object recognition and localization:

The role of tactile sensors. Sensors (Switzerland), 14(2):3227–3266, Jan

2014. ISSN 14248220. .

[91] Ren C. Luo. Guest Editorial. IEEE Transactions on Industrial Electronics,

43(3), 1996.

[92] Ren C. Luo, Ying Chih Chou Ying Chih Chou, and O. Chen. Multisen-

sor Fusion and Integration: Algorithms, Applications, and Future Research

Directions. In 2007 International Conference on Mechatronics and Automa-

tion, pages 1986–1991. IEEE, Aug 2007. ISBN 978-1-4244-0828-3. .

[93] J.S. Son, Robert D. Howe, J. Wang, and Gregory D. Hager. Preliminary

results on grasping with vision and touch. In Proceedings of IEEE/RSJ

International Conference on Intelligent Robots and Systems. IROS ’96, vol-

ume 3, pages 1068–1075, 1996. ISBN 0-7803-3213-X. .

[94] P Jenmalm and R S Johansson. Visual and Somatosensory Information

About Object Shape Control Manipulative Fingertip Forces. The Journal

of Neuroscience : The Official Journal of the Society for Neuroscience, 17

(11):4486–4499, 1997. ISSN 0270-6474.

[95] Peter K. Allen and R Bajcsy. Robotic Object Recognition Using Vision and

Touch, volume 34 of The Kluwer International Series in Engineering and

Computer Science. Springer US, Boston, MA, 1987. ISBN 978-1-4612-9196-

1. .

Bibliography 171

[96] Peter K. Allen, Andrew T Miller, P.Y. Oh, Brian S Leibowitz, E Peter, Allen

Andrew, T Miller Paul, and Y Oh Brian. Using tactile and visual sensing

with a robotic hand. In Proc. of 1997 IEEE International Conference on

Robotics and Automation, volume 1, pages 676–681. IEEE, 1997. ISBN 0-

7803-3612-7. .

[97] Peter K. Allen, Andrew T Miller, Paul Y Oh, and Brian S Leibowitz. In-

tegration of Vision , Force and Tactile Sensing for Grasping. International

Journal of Intelligent Machines, 4:129–149, 1999.

[98] A.T. Miller and Peter K. Allen. Graspit!: A Versatile Simulator for Robotic

Grasping. IEEE Robotics & Automation Magazine, 11(4):110–122, 2004.

ISSN 1070-9932. .

[99] Danica Kragic, Andrew T Miller, and Peter K. Allen. Realtime tracking

meets online grasp planning. Proceedings - IEEE International Conference

on Robotics and Automation, 3:2460–2465, 2001. ISSN 10504729. .

[100] Mario Prats, Pedro J. Sanz, and Angel P. Del Pobil. Vision-tactile-force in-

tegration and robot physical interaction. In 2009 IEEE International Con-

ference on Robotics and Automation, pages 3975–3980, May 2009. ISBN

978-1-4244-2788-8. .

[101] Yasemin Bekiroglu, Renaud Detry, and Danica Kragic. Learning tactile

characterizations of object- and pose-specific grasps. In IEEE International

Conference on Intelligent Robots and Systems, pages 1554–1560. IEEE, Sep

2011. ISBN 9781612844541. .

[102] Javier Felip, Antonio Morales, and Tamim Asfour. Multi-sensor and pre-

diction fusion for contact detection and localization. In 2014 IEEE-RAS

International Conference on Humanoid Robots, pages 601–607. IEEE, Nov

2014. ISBN 978-1-4799-7174-9. .

Bibliography 172

[103] Dov Katz, Jacqueline Kenney, and Oliver Brock. How can robots succeed

in unstructured environments? In Workshop on Robot Manipulation: Intel-

ligence in Human Environments at Robotics: Science and Systems, Zurich,

2008.

[104] Katharina Hertkorn, Maximo a. Roa, and Christoph Borst. Planning in-hand

object manipulation with multifingered hands considering task constraints.

Proceedings - IEEE International Conference on Robotics and Automation,

pages 617–624, 2013. ISSN 10504729. .

[105] Danica Kragic, Andrew T Miller, and Peter K. Allen. Realtime tracking

meets on line grasping planning. In IEEE International Conference on

Robotics and Automation (ICRA), volume 3, pages 2460–2465, 2001. ISBN

0780364759. .

[106] Danica Kragic, Mårten Björkman, Henrik I. Christensen, and Jan-Olof Ek-

lundh. Vision for robotic object manipulation in domestic settings. Robotics

and Autonomous Systems, 52(1):85–100, Jul 2005. ISSN 09218890. .

[107] Pedram Azad, Tamim Asfour, and Ruediger Dillmann. Stereo-based 6D

object localization for grasping with humanoid robot systems. In IEEE

International Conference on Intelligent Robots and Systems, pages 919–924.

IEEE, Oct 2007. ISBN 1424409128. .

[108] Huiyu Zhou, Yuan Yuan, and Chunmei Shi. Object tracking using SIFT

features and mean shift. Computer Vision and Image Understanding, 113

(3):345–352, Mar 2009. ISSN 10773142. .

[109] Chia-Ming Cheng, Hsiao-Wei Chen, Tung-Ying Lee, Shang-Hong Lai, and

Ya-Hui Tsai. Robust 3D object pose estimation from a single 2D image. 2011

Visual Communications and Image Processing (VCIP), pages 1–4, 2011. .

[110] Renaud Detry, E. Başeski, M. Popović, Y. Touati, N. Krüger, O. Kroemer,

J. Peters, and J. Piater. Learning object-specific grasp affordance densi-

ties. 2009 IEEE 8th International Conference on Development and Learning,

ICDL 2009, 2(1):1–17, 2009. ISSN 2080-9778. .

Bibliography 173

[111] Nicolas Burrus, M Abderrahim, Jorge Garcia, and Luis Moreno. Object Re-

construction and Recognition leveraging an RGB-D camera. In Proceedings

of the 12th IAPR Conference on Machine Vision Applications, volume c,

pages 3–6, 2011. ISBN 9784901122115.

[112] Anders Glent Buch, Dirk Kraft, Joni-kristian Kamarainen, Henrik Gordon

Petersen, and Norbert Kruger. Pose estimation using local structure-specific

shape and appearance context. In IEEE, editor, IEEE International Confer-

ence on Robotics and Automation (ICRA), pages 2080—-2087. IEEE, 2013.

[113] Rui Pimentel de Figueiredo, Plinio Moreno, and Alexandre Bernardino. Ef-

ficient pose estimation of rotationally symmetric objects. Neurocomputing,

150(2):126–135, Feb 2015. ISSN 09252312. .

[114] Eric Brachmann, Alexander Krull, Frank Michel, and Stefan Gumhold.

Learning 6D Object Pose Estimation using 3D Object Coordinates. Eccv,

pages 1–16, 2014. .

[115] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Library

(PCL). In International Conference on Robotics and Automation (ICRA),

pages 1–4. IEEE, May 2011. ISBN 978-1-61284-386-5. .

[116] Alper Yilmaz, Omar Javed, and Mubarak Shah. Object tracking. ACM

Computing Surveys, 38(4):13–es, 2006. ISSN 03600300. .

[117] Achint Aggarwal and Peter Kampmann. Tactile sensors based object recog-

nition and 6D pose estimation. In International Conference on Intelligent

Robotics and Applications, pages 406–416, 2012. .

[118] Joseph W. Starr and B. Y. Lattimer. Evaluation of Navigation Sensors in

Fire Smoke Environments. Fire Technology, 50(6):1–23, Aug 2013. ISSN

00152684. .

[119] S. Shekhar, Oussama Khatib, and M. Shimojo. Sensor fusion and object

localization. Proceedings. 1986 IEEE International Conference on Robotics

and Automation, 3:1623– 1628, 1986. .

Bibliography 174

[120] P C Gaston and T Lozano-Perez. Tactile recognition and localization using

object models: the case of polyhedra on a plane. IEEE transactions on

pattern analysis and machine intelligence, 6(3):257–266, 1984. ISSN 0162-

8828. .

[121] D.M. Siegel. Finding the pose of an object in a hand. Proceedings. 1991

IEEE International Conference on Robotics and Automation, (April):406–

411, 1991. .

[122] Ren Luo and Wen-Hsiang Tsai. Object recognition using tactile image ar-

ray sensors. In Proceedings. 1986 IEEE International Conference on Robotics

and Automation, volume 3, pages 1248–1253. Institute of Electrical and Elec-

tronics Engineers, 1986. .

[123] J. Schneiter. An objective tactile sensing strategy for object recognition and

localization. Proceedings. 1986 IEEE International Conference on Robotics

and Automation, pages 1262–1267, 1986. .

[124] Kyuhei Honda, Tsutomu Hasegawa, Toshihiro Kiriki, and Takeshi Matsuoka.

Real-time Pose Estimation of an Object Manipulated by Multi-fingered

Hand Using 3D Stereo Vision and Tactile Sensing. In Proceedings of the

1998 IEEE/RSJ Intl. Conference on Intelligent Robots and Systems, vol-

ume 3, pages 1814–1819, 1998. ISBN 0780344650. .

[125] S Haidacher and G Hirzinger. Estimating Finger Contact Location and Ob-

ject Pose from Contact Measurements in 3-D Grasping Institute for Robotics

and Mechatronics. In IEEE International Conference on Robotics and Au-

tomation (ICRA), pages 1805–1810, 2003. ISBN 0780377362. .

[126] Sebastian Thrun, Dieter Fox, Wolfram Burgard, Frank Dellaert, Sebastian

Thrun, Dieter Fox, Dieter Fox, Wolfram Burgard, Wolfram Burgard, Frank

Dellaert, and Frank Dellaert. Robust Monte Carlo localization for mobile

robots. Artificial Intelligence, 128(1-2):99–141, May 2001. ISSN 00043702. .

Bibliography 175

[127] Anna Petrovskaya and Oussama Khatib. Global localization of objects via

touch. IEEE Transactions on Robotics, 27(3):569–585, 2011. ISSN 15523098.

.

[128] Paul Hebert, Nicolas Hudson, Jeremy Ma, and Joel Burdick. Fusion of

stereo vision, force-torque, and joint sensors for estimation of in-hand object

location. In Proceedings - IEEE International Conference on Robotics and

Automation, pages 5935–5941, 2011. ISBN 9781612843865. .

[129] Craig Corcoran and Robert Platt. A measurement model for tracking hand-

object state during dexterous manipulation. In IEEE International Confer-

ence on Robotics and Automation (ICRA), pages 4302–4308, 2010. ISBN

978-1-4244-5038-1. .

[130] Anna Petrovskaya, Oussama Khatib, Sebastian Thrun, and Andrew Y Ng.

Touch Based Perception for Object Manipulation. In Robotics Science and

Systems, Robot Manipulation Workshop, pages 2–7, 2007.

[131] Maxime Chalon, Jens Reinecke, and Martin Pfanne. Online in-hand object

localization. In IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 2977–2984, Tokyo, 2013. ISBN 9781467363570.

[132] Michael C. Koval, Mehmet R. Dogar, Nancy S. Pollard, and Siddhartha S.

Srinivasa. Pose estimation for contact manipulation with manifold particle

filters. In IEEE International Conference on Intelligent Robots and Systems,

pages 4541–4548, Tokyo, 2013. ISBN 9781467363587. .

[133] Claudio Zito, Marek S. Kopicki, Rustam Stolkin, Christoph Borst, Florian

Schmidt, Maximo a. Roa, and Jeremy L. Wyatt. Sequential trajectory re-

planning with tactile information gain for dexterous grasping under object-

pose uncertainty. In IEEE International Conference on Intelligent Robots

and Systems, pages 4013–4020, Tokyo, 2013. ISBN 9781467363587. .

Bibliography 176

[134] Kaijen Hsiao, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Robust

grasping under object pose uncertainty. In IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS), volume 31, pages 253–268,

Jul 2011. .

[135] Jonna Laaksonen, Ekaterina Nikandrova, and Ville Kyrki. Probabilistic

sensor-based grasping. In 2012 IEEE/RSJ International Conference on In-

telligent Robots and Systems, pages 2019–2026. IEEE, Oct 2012. ISBN 978-

1-4673-1736-8. .

[136] Andres S. Vazquez, Raul Fernandez, Antonio Lopez, Enrique Valero, Ismael

Payo, and Antonio Adan. In-hand object localization: Simple vs. complex

tactile sensors. In Proc. of IEEE SENSORS, pages 1710–1713. IEEE, Nov

2014. ISBN 978-1-4799-0162-3. .

[137] Zachary Pezzementi and Gregory D. Hager. Tactile Object Recognition and

Localization Using Spatially-Varying Appearance. In International Sympo-

sium on Robotics Research (ISRR), pages 1–16, 2011.

[138] José-Luis Blanco. A tutorial on SE(3) transformation parameterizations and

on-manifold optimization. Sep 2010.

[139] John J Craig. Introduction to Robotics Mechanics and Control. Prentice

Hall, 3 edition, 2005. ISBN 0201182408. .

[140] Richard M Murray, Zexiang Li, and S Shankar Sastry. A Mathematical In-

troduction to Robotic Manipulation, volume 29. 1994. ISBN 9780849379819.

.

[141] Eugene Salamin. Application of quaternions to computation with rota-

tions. Technical report, Stanford University Artificial Intelligence Labo-

ratory, 1995.

[142] Janez Funda, Russell H. R.H. Taylor, and Richard P. R.P. Paul. On ho-

mogeneous transforms, quaternions, and computational efficiency. IEEE

Bibliography 177

Transactions on Robotics and Automation, 6(3):382–388, Jun 1990. ISSN

1042296X. .

[143] Ales Ude. Nonlinear least squares optimisation of unit quaternion func-

tions for pose estimation from corresponding features. Proceedings. Four-

teenth International Conference on Pattern Recognition (Cat. No.98EX170),

1(August):425–427, 1998. ISSN 1051-4651. .

[144] Mark D. Wheeler and Katsushi Ikeuchi. Iterative Estimation of Rotation

and Translation using the Quaternion. Technical report, 1995.

[145] Jochen Schmidt, Heinrich Niemann, and Fair Parametrizations. Using

Quaternions for Parametrizing 3-D Rotations in Unconstrained Nonlinear

Optimization. VISION, MODELING, AND VISUALIZATION 2001, 1

(Informatik 5):399 – 406, 2001.

[146] C. T. Kelley. Iterative methods for optimization. Number 18. 1999. ISBN

0898714338. .

[147] R Penrose. A generalized inverse for matrices. Mathematical Proceedings of

the Cambridge Philosophical Society, 51(03):406–413, Jul 1955. ISSN 1469-

8064.

[148] Adi Ben-Israel and Thomas Nall Eden Greville. Generalized Inverses: The-

ory and Applications. Springer, 2003. ISBN 0387002936.

[149] Nicholas Metropolis and Stanislaw Ulam. The Monte Carlo Method. Journal

of the American Statistical Association, 44(247):335–341, 1949. ISSN 0162-

1459. .

[150] Sebastian Thrun, D Fox, and W Burgard. Monte carlo localization with

mixture proposal distribution. AAAI/IAAI, 2000.

[151] Petar Kormushev and Darwin G. Caldwell. Simultaneous discovery of multi-

ple alternative optimal policies by reinforcement learning. In IS’2012 - 2012

6th IEEE International Conference Intelligent Systems, Proceedings, pages

202–207. IEEE, Sep 2012. ISBN 9781467327824. .

Bibliography 178

[152] Petar Kormushev and Dg Caldwell. Direct policy search reinforcement learn-

ing based on particle filtering. In . . . on Reinforcement Learning, number

2010, pages 1–13, 2012.

[153] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Au-

gusta H. Teller, and Edward Teller. Equation of State Calculations by Fast

Computing Machines. The Journal of Chemical Physics, 21(6):1087–1092,

1953. ISSN 00219606. .

[154] W. K. Hastings. Monte Carlo sampling methods using Markov chains and

their applications. Biometrika, 57(1):97–109, 1970. ISSN 0006-3444. .

[155] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by Simulated

Annealing. Science, 220(4598):671–680, 1983. ISSN 0036-8075. .

[156] James C. Spall. Stochastic Optimization. In Handbook of Computational

Statistics, pages 173–201. Springer Berlin Heidelberg, Berlin, Heidelberg,

2012. ISBN 3-540-40464-3. .

[157] Donald R Jones, Cary D Perttunen, and Bruce E Stuckman. Lipschitzian

optimization without the Lipschitz constant. Journal of Optimization Theory

and Applications, 79(1):157–181, 1993.

[158] Jon Louis Bentley. Multidimensional binary search trees used for associa-

tive searching. Communications of the ACM, 18(9):509–517, 1975. ISSN

00010782. .

[159] R Sedgewick and K Wayne. Algorithms. Pearson Education, 2011. ISBN

9780132762564.

[160] Jerome H. Freidman, Jon Louis Bentley, and Raphael Ari Finkel. An Algo-

rithm for Finding Best Matches in Logarithmic Expected Time. ACM Trans-

actions on Mathematical Software, 3(3):209–226, Sep 1977. ISSN 00983500.

.

[161] Marius Muja and David G. Lowe. Fast Approximate Nearest Neighbors with

Automatic Algorithm Configuration. International Conference on Computer

Bibliography 179

Vision Theory and Applications (VISAPP ’09), pages 1–10, 2009. ISSN

00301299. .

[162] K Pearson. On lines and planes of closest fit to systems of points in space.

Philosophical Magazine, 2(6):559–572, 1901.

[163] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,

J. Du Croz, A. Greenbaum, S. Hammerling, A. McKenney, and D. Sorensen.

LAPACK Users’ Guide: Third Edition. 1999. ISBN 0898714478.

[164] The Mathworks Inc. MATLAB, 2014.

[165] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy

Leibs, Rob Wheeler, and Andrew Ng. ROS: an open-source Robot Operating

System, 2009. URL: http://www.ros.org.

[166] Silvia Rodriguez-Jimenez, Nicolas Burrus, and Mohamed Abderrahim. 3D

Object Reconstruction with a Single RGB-Depth Image. In Proc. of Interna-

tional Conference on Computer Vision Theory and Applications (VISAPP

2013), 2013.

[167] G. E. P. Box and Mervin E. Muller. A Note on the Generation of Random

Normal Deviates. The Annals of Mathematical Statistics, 29(2):610–611,

1958. ISSN 0003-4851. .

[168] George Marsaglia. Choosing a Point from the Surface of a Sphere. The

Annals of Mathematical Statistics, 43(2):645–646, 1972. ISSN 0003-4851. .

[169] N. Koenig and A. Howard. Design and use paradigms for Gazebo, an open-

source multi-robot simulator. IEEE/RSJ International Conference on Intel-

ligent Robots and Systems (IROS), 3, 2004. .

[170] Open Source Robotics Foundation. Gazebo Simulator. URL: http://

gazebosim.org/.

[171] J. Pascoal, L. Marques, and A.T. de Almeida. Assessment of Laser Range

Finders in risky environments. In 2008 IEEE/RSJ International Conference

http://www.ros.org
http://gazebosim.org/
http://gazebosim.org/

Bibliography 180

on Intelligent Robots and Systems, pages 3533–3538. IEEE, Sep 2008. ISBN

978-1-4244-2057-5. .

[172] Shadow Robot Company. The Shadow Dextrous Hand. URL: http://www.

shadow.org.uk.

[173] Microsoft Corporation. Kinect sensor. URL: https://www.microsoft.com/

en-us/kinectforwindows/.

[174] Thomas Weise, Michael Zapf, Raymond Chiong, and Antonio J. Nebro. Why

is optimization difficult?, volume 193. 2009. ISBN 9783642002663. .

[175] Dassault Systemes. Abaqus. URL: http://www.3ds.com.

[176] Ellen M Arruda and Mary C Boyce. A three-dimensional constitutive model

for the large stretch behavior of rubber elastic materials. Journal of the

Mechanics and Physics of Solids, 41(2):389–412, 1993.

[177] Shawn Waldon and Everett Carter. SIMANN: Simulated Annealing library.

URL: https://github.com/CISMM/SimulatedAnnealing.

[178] D. E. Finkel. DIRECT optimization algorithm user guide. Center for Re-

search in Scientific Computation, North Carolina State University, 2:1–14,

2003.

[179] Barrett Technology Inc. Barrett Hand BH8-280. URL: http://www.

barrett.com.

[180] Gael Guennebaud, Benoit Jacob, and Others. Eigen v3.

http://eigen.tuxfamily.org, 2010. URL: http://eigen.tuxfamily.org.

[181] Smooth-on. Ecoflex. URL: http://www.smooth-on.com.

[182] C. Spearman. The Proof and Measurement of Association between Two

Things. The American Journal of Psychology, 15(1):72, Jan 1904. ISSN

00029556. .

http://www.shadow.org.uk
http://www.shadow.org.uk
https://www.microsoft.com/en-us/kinectforwindows/
https://www.microsoft.com/en-us/kinectforwindows/
http://www.3ds.com
https://github.com/CISMM/SimulatedAnnealing
http://www.barrett.com
http://www.barrett.com
http://eigen.tuxfamily.org
http://www.smooth-on.com

Bibliography 181

[183] Tadeo Corradi, Peter Hall, and Pejman Iravani. Tactile features: recognising

touch sensations with a novel and inexpensive tactile sensor. In Chris Mistry,

Michael and Leonardis, Aleš and Witkowski, Mark and Melhuish, editor,

Advances in Autonomous Robotics Systems, pages 163–172. Springer, 2014.

[184] Yi-Hung Liu, Yu-Tsung Hsiao, Wei-Teng Cheng, Yan-Chen Liu, and Jui-

Yiao Su. Low-Resolution Tactile Image Recognition for Automated Robotic

Assembly Using Kernel PCA-Based Feature Fusion and Multiple Kernel

Learning-Based Support Vector Machine. Mathematical Problems in En-

gineering, 2014:1–11, 2014. ISSN 1024-123X. .

[185] Y. Zhang and W.A. Gruver. Definition and force distribution of power

grasps. In IEEE International Conference on Robotics and Automation

(ICRA), volume 2, pages 1373–1378. IEEE, 1995. ISBN 0-7803-1965-6. .

[186] Hans Martin Kjer and Jakob Wilm. Evaluation of surface registration algo-

rithms for PET motion correction Bachelor thesis. PhD thesis, DTU, 2010.

[187] Lauren M. Miller and Todd D. Murphey. Trajectory optimization for con-

tinuous ergodic exploration. In 2013 American Control Conference, pages

4196–4201. IEEE, Jun 2013. ISBN 978-1-4799-0178-4. .

[188] Yonatan Silverman, Lauren M. Miller, Malcolm A Maciver, and Todd Mur-

phey. Optimal Planning for Information Acquisition. In IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems (IROS), pages 5974–

5980, Tokyo, 2013. ISBN 9781467363570.

[189] Svetoslav Kolev and Emanuel Todorov. Physically consistent state estima-

tion and system identification for contacts. In 2015 IEEE-RAS 15th Inter-

national Conference on Humanoid Robots (Humanoids), pages 1036–1043.

IEEE, Nov 2015. ISBN 978-1-4799-6885-5. .

[190] D. J. Duff, J. Wyatt, and R. Stolkin. Motion estimation using physical

simulation. In Robotics and Automation (ICRA), 2010 IEEE International

Conference on, pages 1511–1517, May 2010. .

Bibliography 182

[191] M. R. Dogar and S. S. Srinivasa. Push-grasping with dexterous hands: Me-

chanics and a method. In Intelligent Robots and Systems (IROS), 2010

IEEE/RSJ International Conference on, pages 2123–2130, Oct 2010. .

[192] Marek S. Kopicki, Sebastian Zurek, Rustam Stolkin, Thomas Mörwald, and

Jeremy Wyatt. Learning to predict how rigid objects behave under simple

manipulation. Proceedings - IEEE International Conference on Robotics and

Automation, pages 5722–5729, 2011. ISSN 10504729. .

	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Symbols and Definitions
	1 Introduction
	1.1 Scope and Motivation
	1.2 Problem Presentation
	1.3 Research Contributions
	1.4 List of Publications
	1.5 Thesis Structure

	2 Background
	2.1 Robot Grasping and Manipulation
	2.2 Tactile Sensing
	2.2.1 Intrinsic Tactile Sensing
	2.2.2 Tactile sensing arrays

	2.3 Sensor Fusion
	2.4 Object Pose Estimation
	2.4.1 Vision-based Object Pose Estimation
	2.4.2 Tactile-based Pose Estimation

	2.5 Conclusions
	2.6 Mathematical Background
	2.6.1 Rigid Body Motions
	2.6.1.1 Coordinate Frames and Matrix Representation
	2.6.1.2 Euler Angles
	2.6.1.3 Quaternions

	2.6.2 Optimisation
	2.6.2.1 Introduction
	2.6.2.2 Gradient-Based
	Gradient Descent
	Levenberg-Marquardt

	2.6.2.3 Stochastic
	2.6.2.4 Other Methods

	2.6.3 k-d Trees
	2.6.3.1 Definition
	2.6.3.2 Construction
	2.6.3.3 Searches
	2.6.3.4 Computational Remarks

	2.6.4 Principal Component Analysis
	2.6.4.1 Definition
	2.6.4.2 Computing the Principal Components

	3 Pose Correction using Local Optimisation
	3.1 Introduction
	3.2 Methods
	3.2.1 Algorithm
	3.2.2 Distance-based optimisation
	3.2.2.1 Objective Function
	3.2.2.2 Simulation Results

	3.2.3 Addition of Normal Force Information
	3.2.3.1 Contact Normal
	3.2.3.2 Objective function
	3.2.3.3 Simulation Results

	3.3 Results
	3.3.1 Analysis of Simulation Results
	3.3.2 Results on a Real System
	3.3.2.1 System Overview
	3.3.2.2 Using Distance Information
	3.3.2.3 Using Distance and Normal Information

	3.4 Discussion

	4 Pose Estimation using Global Optimisation
	4.1 Introduction
	4.2 Methods
	4.2.1 Algorithm Setup and Cost Function
	4.2.2 Search Algorithm
	4.2.3 Generation of the Initial Population
	4.2.4 Re-sampling scheme
	4.2.5 Noise addition
	4.2.6 Minimisation of the objective function
	4.2.7 Post processing of results

	4.3 Results
	4.3.1 Simulation Results
	4.3.1.1 Pose correction
	4.3.1.2 Global pose estimation

	4.3.2 Results Using a Real System
	4.3.2.1 Experimental Setup
	4.3.2.2 Pose correction from vision
	4.3.2.3 Global Pose Estimation – Hand Over and Place

	4.4 Discussion

	5 Pose Estimation from tactile arrays
	5.1 Introduction
	5.2 Methods
	5.2.1 PCA on Tactile Data
	5.2.2 Selection of Scaling Parameter
	5.2.3 Computing the Eigenbasis
	5.2.4 Matching tactile to 3D point cloud covariance
	5.2.5 Object Pose Estimation From Descriptor

	5.3 Results
	5.3.1 System overview
	5.3.2 Pose Estimation Results

	5.4 Conclusions

	6 Conclusions
	6.1 Main Contributions
	6.2 Applications
	6.2.1 Object Identification
	6.2.2 Grasp Stability

	6.3 Discussion and Critique
	6.4 Future Work

	Bibliography

