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1 Introduction

Warped AdS5 backgrounds of 10- and 11-dimensional supergravity theories are of particular

interest within the AdS/CFT correspondence as they are dual to 4-dimensional supercon-

formal theories, see [1] for a review. The most celebrated example of such correspondence

is the statement that IIB superstring theory on the maximally supersymmetric AdS5 × S5

background is dual to N = 4 supersymmetric gauge theory in four dimensions [2]. AdS

spaces have also been used in supergravity compactifications, for a review see [3].

To establish such dualities to other 4-dimensional superconformal theories with less

than maximal supersymmetry requires the construction of AdS5 supergravity backgrounds

preserving less than 32 supersymmetries. Recently it has been shown in [4–6] that AdS5

backgrounds preserve 8, 16, 24 or 32 supersymmetries in type II 10-dimensional super-

gravities and in 11-dimensional supergravity.1 The maximally supersymmetric AdS5 back-

grounds have been classified in [7] where it has been shown that no such backgrounds exist

1There are no supersymmetric AdS5 backgrounds in either heterotic or type I supergravities.

– 1 –



J
H
E
P
0
6
(
2
0
1
6
)
1
2
6

in either 11-dimensional or (massive) IIA supergravities, and all maximally supersymmet-

ric AdS5 backgrounds in IIB supergravity are locally isometric to the previously known

AdS5×S5 solution of the theory, see [8] and reference within. To our knowledge there is no

classification of AdS5 backgrounds preserving 16 or 24 supersymmetries. The geometry of

AdS5 solutions preserving 8 supersymmetries has been investigated in [9, 10], after assum-

ing that the fields are invariant under the so(4, 2) symmetry of AdS5 together with some

additional restrictions2 on the form of Killing spinors. Moreover, many AdS5 solutions

have been found, see for example [11]–[23]. In [4–6] a different approach to investigate the

geometry of AdS backgrounds was proposed, which was based on earlier work on black

hole near horizon geometries [24] which has the advantage that all additional restrictions

are removed and the only assumption that remains is the requirement for the fields to be

invariant under the so(4, 2) symmetry of AdS5.

In this paper, we shall demonstrate, under the assumptions we describe in detail below,

that there are no AdS5 solutions in 11-dimensional and (massive) IIA supergravities that

preserve 24 supersymmetries. Furthermore we shall show that all AdS5 solutions of IIB

supersgravity that preserve 24 supersymmetries are locally isometric to the maximally

supersymmetric AdS5 × S5 background.

One application of our results is in AdS/CFT and in particular on the existence of

gravitational duals for strictly N = 3 superconformal theories in four dimensions. It is

known for sometime that the field content and component actions of N = 3 and N = 4

superconformal theories with rigid supersymmetry are the same. As a result N = 3 super-

conformal symmetry classically enhances to N = 4. Quantum mechanically, the picture

is more involved as the quantization of these theories with manifest N = 3 and N = 4

supersymmetry will require the use of techniques like harmonic superspace [25, 26], and

these are different for these two theories. Nevertheless the interpretation of the equivalence

of the classical actions is that perturbatively the two quantum theories are indistinguish-

able.3 Therefore if a theory exists with strictly N = 3 superconformal symmetry, it must

be intrinsically non-perturbative. The properties of such N = 3 superconformal theories

have been investigated in [28] and an F-theory construction for such a theory has been

proposed in [29]. In this context our results imply that, unlike the N = 4 superconformal

theories, there are no smooth gravitational duals, with compact without boundary internal

spaces, for strictly N = 3 superconformal theories in four dimensions.

The proof of the above result utilizes the near horizon approach of [4–6] for solving the

Killing spinor equations (KSEs) of supergravity theories for AdS backgrounds as well as a

technique developed for the proof of the homogeneity conjecture in [30]. Furthermore, to

prove our results we make certain smoothness and global assumptions. In particular apart

2Typically it is assumed that the Killing spinors factorize as Killing spinors on AdS and Killing spinors

along the internal space. A factorization of this type has been investigated in [4–6] and it was found that

it imposes more restrictions on the backgrounds than those required for invariance under the isometries of

AdS. Therefore the generality of the factorization approaches must be re-investigated on a case by case basis.
3In fact it may be possible to prove this by demonstrating via Ward identity techniques like those in [27]

that N = 3 superconformal symmetry quantum mechanically always enhances to N = 4. We would like to

thank Paul Howe for suggesting this.
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from implementing the so(4, 2) symmetry on the fields, we also assume that the warped

AdS5×wM
D−5 backgrounds, forD = 10 orD = 11, satisfy the following conditions:4 (i) All

the fields are smooth, and (ii) the internal space MD−5 is connected5 and compact without

boundary. Both these additional restrictions, apart from the connectness of MD−5, can be

replaced with the assertion that the data are such that the Hopf maximum principle applies.

These assumptions are essential as otherwise there are for example AdS5 backgrounds in

11-dimensions which preserve more than 16 supersymmetries, see also section 2.

This paper is organized as follows. In section 2, we prove the non-existence of AdS5

backgrounds preserving 24 supersymmetries in 11-dimensional supergravity, and in sec-

tion 3, we demonstrate the same result for both standard and massive IIA supergravities.

In section 4, we show that the AdS5 backgrounds that preserve 24 supersymmetries in IIB

supergravity are locally isometric to the maximally supersymmetric background AdS5×S5.

In section 5, we give our conclusions and explore an application to AdS/CFT. Furthermore,

in appendix A we briefly summarize some of our conventions, and in appendix B for com-

pleteness we present a technique we use to derive our results which has been adapted from

the proof of the homogeneity conjecture.

2 AdS5 ×w M6 solutions in D=11

We begin by briefly summarizing the general structure of warped AdS5 solutions in 11-

dimensional supergravity, as determined in [4], whose conventions we shall follow through-

out this section. Then we shall present the proof that there are no such solutions preserving

24 supersymmetries. The metric and 4-form are given by

ds2 = 2du(dr + rh) +A2

(

dz2 + e2z/ℓ
2
∑

a=1

(dxa)2

)

+ ds2(M6) ,

F = X , (2.1)

where we have written the solution as a near-horizon geometry [24], with

h = −
2

ℓ
dz − 2A−1dA , (2.2)

(u, r, z, x1, x2) are the coordinates of the AdS5 space, A is the warp factor which is a function

on M6, and X is a closed 4-form on M6. A and X depend only on the coordinates of M6,

ℓ is the radius of AdS5.

The 11-dimensional Einstein equation implies that

Dk∂k logA = −
4

ℓ2
A−2 − 5∂k logA∂k logA+

1

144
X2 , (2.3)

where D is the Levi-Civita connection on M6. The remaining components of the Einstein

and gauge field equations are listed in [4], however we shall only require (2.3) for the analysis

4We also assume the validity of the homogeneity conjecture for massive IIA supergravity. This has not

been proven as yet but it is expected to hold.
5In factMD−5 is required to be path connected but all manifolds are path connected if they are connected

since they are locally path connected. From now on, we shall assume that MD−5 is always connected.
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of the N = 24 solutions. In particular, (2.3) implies that A is everywhere non-vanishing

on M6, on assuming that M6 is connected and all fields are smooth.

We adopt the following frame conventions; ei is an orthonormal frame for M6, and

e+ = du , e− = dr + rh , ez = Adz , ea = Aez/ℓdxa . (2.4)

We use this frame in the investigation of KSEs below.

2.1 The Killing spinors

The Killing spinors of AdS5 backgrounds are given by

ǫ = σ+ − ℓ−1
2
∑

a=1

xaΓazτ+ + e−
z

ℓ τ+ + σ− + e
z

ℓ

(

τ− − ℓ−1
2
∑

a=1

xaΓazσ−

)

−ℓ−1uA−1Γ+zσ− − ℓ−1rA−1e−
z

ℓΓ−zτ+ , (2.5)

where we have used the light-cone projections

Γ±σ± = 0 , Γ±τ± = 0 , (2.6)

and σ± and τ± are 16-component spinors that depend only on the coordinates of M6. We

do not assume that the Killing spinors factorize as Killing spinors on AdS5 and Killing

spinors on M6.

The remaining independent Killing spinor equations (KSEs) are:

D
(±)
i σ± = 0 , D

(±)
i τ± = 0 , (2.7)

and

Ξ(±)σ± = 0 , Ξ(∓)τ± = 0 , (2.8)

where

D
(±)
i = Di ±

1

2
∂i logA−

1

288
/ΓXi +

1

36
/X i ,

Ξ(±) = −
1

2
ΓzΓ

i∂i logA∓
1

2ℓ
A−1 +

1

288
Γz /X . (2.9)

In particular algebraic KSEs (2.8) imply that σ+ and τ+ cannot be linearly dependent. For

our Clifford algebra conventions see also appendix A.

2.2 Counting the Killing spinors

In order to count the number of supersymmetries, note that if σ+ is a solution of the

σ+ KSEs, then so is Γ12σ+. Furthermore, τ+ = ΓzΓ1σ+ and τ+ = ΓzΓ2σ+ are solutions

to the τ+ KSEs. The spinors σ+,Γ12σ+,ΓzΓ1σ+,ΓzΓ2σ+ are linearly independent. The

positive chirality spinors also generate negative chirality spinors σ−, τ− which satisfy the

appropriate KSEs. This is because if σ+, τ+ is a solution, then so is

σ− = AΓ−Γzσ+ , τ− = AΓ−Γzτ+ , (2.10)

– 4 –
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and also conversely, if σ−, τ− is a solution, then so is

σ+ = A−1Γ+Γzσ− , τ+ = A−1Γ+Γzτ− . (2.11)

So for a generic AdS5 ×w M6 solution, all of the Killing spinors are generated by the

σ+ spinors, each of which gives rise to 8 linearly independent spinors via the mechanism

described here. The solutions therefore preserve 8k supersymmetries, where k is equal to

the number of σ+ spinors.

2.3 Non-existence of N = 24 AdS5 solutions in D=11

To consider the AdS5 solutions preserving 24 supersymmetries, we begin by setting

Λ = σ+ + τ+ , (2.12)

and defining

Wi = A〈Λ,Γz12ΓiΛ〉 . (2.13)

Then (2.7) implies that

D(iWj) = 0 , (2.14)

so W is an isometry of M6. In addition, the algebraic conditions (2.8) imply that

1

288
〈Λ, /ΓXiΛ〉 −

1

2
‖ Λ ‖2 A−1DiA− ℓ−1A−1〈τ+,ΓiΓzσ+〉 = 0 . (2.15)

Also, (2.7) implies that

Di ‖ Λ ‖2= − ‖ Λ ‖2 A−1DiA+
1

144
〈Λ, /ΓXiΛ〉 . (2.16)

Combining (2.15), and (2.16) we have

Di ‖ Λ ‖2 −2ℓ−1A−1〈τ+,ΓiΓzσ+〉 = 0 . (2.17)

In addition (2.7) implies that

Di
(

A〈τ+,ΓiΓzσ+〉
)

= 0 . (2.18)

Hence, on taking the divergence of (2.17), we find

DiDi ‖ Λ ‖2 +2A−1DiADi ‖ Λ ‖2= 0 . (2.19)

A maximum principle argument then implies that ‖ Λ ‖2 is constant. Substituting these

conditions back into (2.16), we find the condition

iWH = 6 ‖ Λ ‖2 dA , (2.20)

– 5 –
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where

H = ⋆6X , (2.21)

and ⋆6 denotes the Hodge dual on M6.

To prove a non-existence theorem for N = 24 solutions, we consider spinors of the type

Λ = σ+ + τ+ . (2.22)

For a N = 24 solution, there are 12 linearly independent spinors of this type, because of

the algebraic conditions (2.8). Next, consider the condition (2.20). This implies that

iWdA = 0 , (2.23)

where W is the isometry generated by Λ as defined in (2.13).

A straightforward modification of the reasoning used in [30], which we describe in

appendix B, implies that for N = 24 solutions, the vector fields dual to the 1-form bilinears

W generated by the Λ spinors span the tangent space of M6. Then the condition iWdA = 0

implies thatA is constant, and furthermore, (2.20) implies that iWH = 0, which also implies

that H = 0, and so X = 0.

However, the Einstein equation (2.3) admits no AdS5 solutions for which dA = 0 and

X = 0, so there can be no N = 24 AdS5 solutions.

We should remark that the two assumptions we have made on the fields to derive this

result are essential. This is because any AdSd+1 background can locally be written as a

warped product ds2(AdSd+1) = dy2+A2(y)ds2(AdSd) for some function A which has been

determined in e.g. [31]. For d = 2, this has previously been established in [32]. As a result

the maximally supersymmetric AdS7 × S4 solution of 11-dimensional supergravity can be

seen as a warped AdS5 background. This appears to be a contradiction to our result.

However, the internal space M6 in this case is non-compact and so it does not satisfy the

two assumptions we have made.

3 AdS5 ×w M5 solutions in (massive) IIA supergravity

As in the 11-dimensional supergravity investigated in the previous sections, there are no

N = 24 AdS5 backgrounds in (massive) IIA supergravity. We shall use the formalism

and follow the conventions of [6] in the analysis that follows. Imposing invariance of the

background under the symmetries of AdS5 all the fluxes are magnetic, ie their components

along AdS5 vanish. In particular the most general AdS5 background is

ds2 = 2du(dr + rh) +A2

(

dz2 + e2z/ℓ
2
∑

a=1

(dxa)2
)

+ ds2(M5) ,

G = G , H = H , F = F , Φ = Φ , S = S , h = −
2

ℓ
dz − 2A−1dA , (3.1)

where we have denoted the 10-dimensional fluxes and their components along M5 with the

same symbol, A is the warp factor, Φ is the dilaton and S is the cosmological constant

– 6 –
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dressed with the dilaton. A, S and Φ are functions of M5, while G , H and F are the

4-form, 3-form and a 2-form fluxes, respectively, which have support only on M5. The

coordinates of AdS5 are (u, r, z, xa) and we introduce the frame (e+, e−, ez, ea) as in (2.4).

The fields satisfy a number of field equations and Bianchi identities which can be found

in [6]. Those relevant for the analysis that follows are the field equation for the dilaton

and the field equation for G

D2Φ = −5A−1∂iA∂iΦ+ 2(dΦ)2 +
5

4
S2 +

3

8
F 2 −

1

12
H2 +

1

96
G2 , (3.2)

∇ℓGijkℓ = −5A−1∂ℓAGijkℓ + ∂ℓΦGijkℓ , (3.3)

respectively, and the Einstein equations both along AdS5 and M5

D2 lnA = −4ℓ−2A−2 − 5A−2(dA)2 + 2A−1∂iA∂
iΦ+

1

96
G2 +

1

4
S2 +

1

8
F 2, (3.4)

R
(5)
ij = 5∇i∇j lnA+ 5A−2∂iA∂jA+

1

12
G2

ij −
1

96
G2δij (3.5)

−
1

4
S2δij +

1

4
H2

ij +
1

2
F 2
ij −

1

8
F 2δij − 2∇i∇jΦ ,

respectively, where D is the Levi-Civita connection of M5 and R
(5)
ij is the Ricci tensor of

M5. The former is seen as the field equation for the warp factor A.

3.1 Killing spinor equations

The killing spinors of IIA AdS5 backgrounds are given as in (2.5) where now σ± and τ±
are 16-component spinors that depend only on the coordinates of M5. The remaining

independent conditions are the gravitino KSEs

∇
(±)
i σ± = 0 , ∇

(±)
i τ± = 0 , (3.6)

the dilatino KSEs

A(±)σ± = 0 , A(±)τ± = 0 , (3.7)

and the algebraic KSEs

Ξ±σ± = 0 , Ξ±τ± = ∓ℓ−1τ± , (3.8)

where

∇
(±)
i = Di +Ψ

(±)
i ,

A(±) = /∂Φ+
1

12
/HΓ11 +

5

4
S +

3

8
/FΓ11 +

1

96
/G ,

Ξ± = ∓
1

2ℓ
+

1

2
/∂AΓz −

1

8
ASΓz −

1

16
A/FΓzΓ11 −

1

192
A/GΓz , (3.9)

and where D is the spin connection on M5 and

Ψ
(±)
i = ±

1

2A
∂iA+

1

8
/H iΓ11 +

1

8
SΓi +

1

16
/FΓiΓ11 +

1

192
/GΓi , (3.10)

see appendix A for our Clifford algebra conventions. The counting of supersymmetries is

exactly the same as in the D=11 supergravity described in the previous sections.
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3.2 N = 24 AdS5 solutions in (massive) IIA supergravity

Before we proceed with the analysis, the homogeneity conjecture6 [30] together with the

results [33, 34] on the classification of (massive) IIA backgrounds imply that both Φ and S

are constant functions over the whole spacetime which we shall assume from now on. Next

let us set

Λ = σ+ + τ+ , (3.11)

and define

Wi = A〈Λ,ΓzxyΓiΛ〉 . (3.12)

Then (3.6) implies that

D(iWj) = 0 , (3.13)

so W is an isometry of M5.

After some straightforward computation using the gravitino KSEs, one finds

Di ‖ Λ ‖2= −A−1∂iA ‖ Λ ‖2 −
1

4
S〈Λ,ΓiΛ〉 −

1

8
〈Λ, /ΓF iΓ11Λ〉 −

1

96
〈Λ, /ΓGiΛ〉 . (3.14)

On the other hand (3.8) gives

(

/∂AΓz −
1

4
ASΓz −

1

8
A/FΓzΓ11 −

1

96
A/GΓz

)

Λ = −ℓ−1τ+ + ℓ−1σ+ . (3.15)

Using this, (3.14) can be written as

Di ‖ Λ ‖2= 2ℓ−1A−1〈τ+,ΓiΓzσ+〉 . (3.16)

Furthermore using (3.6), one can show that

Di(A〈τ+,ΓiΓzσ+〉) = 0 . (3.17)

Taking the covariant derivative of (3.16) and using the above equation, one finds that

DiDi ‖ Λ ‖2 +2A−1DiADi ‖ Λ ‖2= 0 . (3.18)

This in turn implies after using the maximum principle that ‖ Λ ‖2 is constant.

Using the constancy of ‖ Λ ‖2, (3.14) and (3.16) imply that

−A−1∂iA ‖ Λ ‖2 −
1

4
S〈Λ,ΓiΛ〉 −

1

8
〈Λ, /ΓF iΓ11Λ〉 −

1

96
〈Λ, /ΓGiΛ〉 = 0 , (3.19)

and

〈τ+,ΓiΓzσ+〉 = 0 . (3.20)

6Strictly speaking the homogeneity conjecture has not been proven for massive IIA supergravity, but it

is expected to hold.
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Next taking the difference of the two identities below

〈τ+,Ξ+σ+〉 = 0 , 〈σ+, (Ξ+ + ℓ−1τ+〉 = 0 , (3.21)

and upon using (3.20), we find

〈τ+, σ+〉 = 0 , (3.22)

ie τ+ and σ+ are orthogonal.

To continue, multiply Ξ+Λ = −ℓ−1τ+ with Γxy, and using the fact Γxyτ+ is again a

type τ+ Killing spinor, and the equation above, one obtains that

W i∂iA = 0 . (3.23)

As straightforward modification of the argument used in [30] to prove the homogeneity

conjecture, see also appendix B, one can show that the vector fields W span the tangent

spaces of M5. As a result, the above equation implies that A is constant.

Next using the dilatino KSE (3.7) to eliminate the G-dependent term in (3.19) and

that A = const, one finds

4S〈Λ,ΓiΛ〉+ 〈Λ, /ΓF iΓ11Λ〉+
1

3
〈Λ, /ΓH iΓ11Λ〉 = 0 . (3.24)

In what follows, we shall investigate the standard and massive IIA supergravities separately.

3.2.1 Standard IIA supergravity with S = 0

In the case for which S = 0, the dilatino KSEs (3.7) imply that

〈Λ, /GΓ11Λ〉 = 0 , (3.25)

or equivalently, W ∧G = 0. As the W span the tangent space of M5, it follows that G = 0.

Then, using the dilatino KSE (3.7) to eliminate the F terms from (3.24), we obtain

〈Λ, /ΓH iΓ11Λ〉 = 0 , (3.26)

which implies that W ∧H = 0. As the W span the tangent space of M5, it follows that

H = 0 also. The dilaton field equation (3.3) then implies that F = 0 as well. However,

for S = 0, G = 0, H = 0 and F = 0, the the warp factor field equation (3.4) becomes

inconsistent, and so there are no AdS5 solutions in standard IIA supergravity that preserve

24 supersymmetries.

3.2.2 Massive IIA supergravity with S 6= 0

On writing G = ⋆5X, where X is a 1-form on M5, the condition

5

4
S〈Λ,Γ11Λ〉+

1

96
〈Λ, /GΓ11Λ〉 = 0 , (3.27)

which is derived from the dilatino KSE (3.7), can be rewritten as

5

4
S〈Λ,Γ11Λ〉 −

1

4
A−1iWX = 0 . (3.28)
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Furthermore, the G field equation implies that dX = 0, and we assume7 that LWG = 0

which implies LWX = 0. This condition, together with dX = 0, gives that iWX is constant.

Then it follows from (3.28) that 〈Λ,Γ11Λ〉 is also constant.

On differentiating the condition 〈Λ,Γ11Λ〉 = const using the gravitino KSEs, we obtain

the condition

−
1

4
Fij〈Λ,Γ

jΛ〉+
1

24
〈Λ,Γ11 /GiΛ〉 = 0 , (3.29)

and hence

XiFij〈Λ,Γ
jΛ〉 = 0 . (3.30)

However, using an argument directly analogous to that used to show that the vector fields

W span the tangent space of M5, it follows that the vectors 〈Λ,ΓjΛ〉∂j also span the

tangent space of M5, see appendix B. Therefore,

iXF = 0 . (3.31)

Next, act on the right-hand-side of the dilatino equation (3.7) with /XΓ11 and take the

inner product with Λ. On making use of iXF = 0, we find the condition

〈Λ, Xℓ1Hℓ2ℓ3ℓ4Γ
ℓ1ℓ2ℓ3ℓ4Λ〉 = 0 , (3.32)

and hence

〈Λ,Γ11ΓxyzΓqΛ〉ǫ
qℓ1ℓ2ℓ3ℓ4Xℓ1Hℓ2ℓ3ℓ4 = 0 . (3.33)

Again, as the vectors 〈Λ,Γ11ΓxyzΓ
jΛ〉∂j span the tangent space of M5, this condition

implies that

X ∧H = 0 . (3.34)

Another useful condition is to note that LWX = 0 implies that

LW (DiXi) = 0 , (3.35)

and as the W span the tangent space of M5, it follows that DiXi must be constant.

However the integral of DiXi over M
5 vanishes, and hence it follows that

DiXi = 0 , (3.36)

ie X is co-closed. As it is also closed, X and so G are harmonic. This condition, together

with dX = 0, imply that one can write

D2X2 = 2DiXjDiXj + 2Xj(DiDj −DjDi)X
i = 2DiXjDiXj + 2XiXjR

(5)
ij . (3.37)

7The invariance of G under the vector fields constructed as Killing spinor bilinears has not been proven

for massive IIA in complete generality, but it is expected to hold.
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On using the Einstein equation (3.5), together with the conditions iXF = 0, X ∧H = 0,

we find

D2X2 = 2DiXjDiXj +X2

(

−
1

48
G2 −

1

2
S2 −

1

4
F 2 +

1

6
H2

)

, (3.38)

which can be written as

D2X2 = 2DiXjDiXj +X2

(

2S2 +
3

2
F 2

)

, (3.39)

on using the dilaton equation (3.3) to eliminate the G2 term. As the right-hand-side of

this expression is a sum of non-negative terms, an application of the maximum principle

implies that X2 is constant8 and

X2S2 = 0 . (3.40)

As S 6= 0, it follows that X2 = 0, and hence G = 0. Then (3.27) implies that

〈Λ,Γ11Λ〉 = 0 , (3.41)

for all Killing spinors Λ. However, this is a contradiction.

To see this, let the 12-dimensional vector space spanned by the Killing spinors Λ be

denoted by K. Then the above condition implies that

〈Λ1,Γ11Λ2〉 = 0 , (3.42)

for all Λ1,Λ2 ∈ K. Denoting

Γ11K = {Γ11Λ : Λ ∈ K} , (3.43)

the condition (3.42) implies that Γ11K ⊆ K⊥, where

K⊥ = {Ψ : 〈Ψ,Λ〉 = 0 for all Λ ∈ K} . (3.44)

The dimension of space of all Majorana Spin(9, 1) spinors ζ satisfying the lightcone pro-

jection Γ+ζ = 0 is 16. As K has dimension 12, K⊥ has dimension 4. As Γ11K is 12-

dimensional it cannot be included in K⊥ as required by the assumption (3.41). Therefore

there are no AdS5 solutions in massive IIA supergravity which preserve 24 supersymmetries.

We would like to remark that the proof of this result is considerably simpler if M5 is

simply connected. As has already been proven, G is harmonic. On a simply connected M5,

G vanishes. In such a case, (3.27) again implies (3.41). Then the non-existence of such

AdS5 backgrounds follows from the argument produced above that (3.41) cannot hold for

all Killing spinors.

8The condition X
2 = const also follows from LWX

2 = 0 together with homogeneity.
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4 AdS5 ×w M5 solutions in IIB supergravity

The active fields of AdS5 ×w M5 IIB backgrounds as well as the relevant field and KSEs

have been determined in [5]. In particular, in the conventions of [5], the metric and other

form field strengths are

ds2 = 2du(dr + rh) +A2

(

dz2 + e2z/ℓ
2
∑

a=1

(dxa)2

)

+ ds2(M5) ,

G = H, P = ξ, F = Y
(

A3e
2z

ℓ du ∧ (dr + rh) ∧ dz ∧ dx ∧ dy − dvol(M5)
)

, (4.1)

where again we have written the background as a near-horizon geometry [24], with

h = −
2

ℓ
dz − 2A−1dA , (4.2)

A is the warp factor which is a smooth function on M5, G is the complex 3-form, P encodes

the (complexified) axion/dilaton gradients, F is the real self-dual 5-form and Y is a real

scalar. The AdS5 coordinates are (u, r, z, xa) and we introduce the frame (e+, e−, ez, ea)

as in (2.4).

For the analysis that follows, we shall use the Bianchi identities

d(A5Y ) = 0, dH = iQ ∧H − ξ ∧ H̄ , (4.3)

and the 10-dimensional Einstein equation along AdS5 which gives the field equation

A−1∇2A = 4Y 2 +
1

48
‖ H ‖2 −

4

ℓ2
A−2 − 4A−2(dA)2 , (4.4)

for the warp factor A. The remaining Bianchi identities and bosonic field equations, which

are not necessary for the investigation of N = 24 solutions, can be found in [5]. We also

assume the same regularity assumptions as for the eleven dimensional solutions, and remark

that (4.4) implies that A is nowhere vanishing on M5.

4.1 The Killing spinors

Solving the KSEs of IIB supergravity for AdS5 ×w M5 backgrounds along AdS5, one finds

that the Killing spinors can be written as in (2.5), where now σ± and τ± are Weyl Spin(9, 1)

spinors which depend only on the coordinates of M5 that obey in addition the lightcone

projections Γ±σ± = Γ±τ± = 0.

The remaining independent KSEs are the gravitino parallel transport equations

D
(±)
i σ± = 0, D

(±)
i τ± = 0 , (4.5)

where

D
(±)
i = Di ±

1

2
∂i logA−

i

2
Qi ±

i

2
Y ΓiΓxyz +

(

−
1

96
/ΓH i +

3

32
/H i

)

C∗ , (4.6)
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together with the dilatino KSEs
(

1

24
/H + /ξC ∗

)

σ± = 0,

(

1

24
/H + /ξC ∗

)

τ± = 0 , (4.7)

and some additional algebraic conditions which arise from the integration of the KSEs

along the AdS5 subspace

Ξ(±)σ± = 0,
(

Ξ(±) ± ℓ−1
)

τ± = 0 , (4.8)

where

Ξ(±) = ∓
1

2ℓ
−

1

2
Γz /∂A±

i

2
AY Γxy +

1

96
AΓz /HC∗ , (4.9)

and C is the charge conjugation matrix. Again, we have not made any assumptions on the

form of the Killing spinors.

The counting of the Killing spinors, and the way in which one can construct the σ±,

τ± spinors from each other proceeds in exactly in the same way as for the D = 11 AdS5

solutions. So, again, for a generic AdS5 ×w M5 solution, all of the Killing spinors are

generated by the σ+ spinors, each of which gives rise to 8 linearly independent spinors.

The solutions therefore preserve 8k supersymmetries, where k is equal to the number of

σ+ spinors.

4.2 N = 24 AdS5 solutions in IIB

To proceed with the analysis first note that as a consequence of the homogeneity conjec-

ture proven in [30] is that the solutions with 24 supersymmetries must be locally homoge-

neous, with

ξ = 0 . (4.10)

Then, we set

Λ = σ+ + τ+ , (4.11)

and define

Wi = A〈Λ,ΓzxyΓiΛ〉 . (4.12)

Then (4.5) implies that

D(iWj) = 0 , (4.13)

so W is an isometry of M5. Next, using (4.5), we find

Di ‖ Λ ‖2= − ‖ Λ ‖2 A−1DiA+
1

48
Re〈Λ, /ΓH iC ∗ Λ〉 . (4.14)

Furthermore, the algebraic condition (4.8) implies that

1

48
/HC ∗ Λ =

(

A−1ΓjDjA− iY Γxyz

)

Λ + ℓ−1A−1Γz

(

σ+ − τ+
)

. (4.15)
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On substituting this condition back into (4.14) we find

Di ‖ Λ ‖2= 2ℓ−1A−1Re〈τ+,ΓiΓzσ+〉 . (4.16)

However, (4.5) also implies that

Di (ARe〈τ+,ΓiΓzσ+〉) = 0 . (4.17)

So combining this condition with (4.16), we find

DiDi ‖ Λ ‖2 +2A−1DiADi ‖ Λ ‖2= 0 . (4.18)

A maximum principle argument then implies that ‖ Λ ‖2 is constant. Then (4.14) and (4.16)

imply

− ‖ Λ ‖2 A−1DiA+
1

48
Re〈Λ, /ΓH iC ∗ Λ〉 = 0 , (4.19)

or, equivalently

Re〈τ+,ΓiΓzσ+〉 = 0 . (4.20)

Next, we shall show that the spinors σ+, τ+ are orthogonal with respect to the inner

product Re <,>. To see this, note that (4.8) implies that

〈τ+,Ξ
(+)σ+〉 = 0, 〈σ+,

(

Ξ(+) + ℓ−1
)

τ+〉 = 0 . (4.21)

On expanding out, and subtracting these two identities, one finds that the real and imagi-

nary parts of the resulting expression imply

ℓ−1Re〈τ+, σ+〉+Re〈τ+,ΓzΓ
iDiAσ+〉 = 0 , (4.22)

and

Y Re〈τ+,Γxyσ+〉 = 0 , (4.23)

respectively. On substituting (4.20) into (4.22), we find that

Re〈τ+, σ+〉 = 0 . (4.24)

For N = 24 solutions there are 6 linearly independent σ+ spinors, and 6 linearly indepen-

dent τ+ spinors, hence the spinors of the type Λ = σ+ + τ+ span a 12 dimensional vector

space over R, which we shall denote by K.

It is also particularly useful to note that the algebraic condition (4.8) implies

1

2ℓ
〈Λ,Γxy(τ+ − σ+)〉 −

1

2
〈Λ,ΓxyzΓ

iDiAΛ〉

−
i

2
AY ‖ Λ ‖2 +

A

96
〈Λ,Γxyz /HC ∗ Λ〉 = 0 . (4.25)
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On taking the real part of this expression, one finds

W iDiA = 0 , (4.26)

where we have used the identity 〈Λ,ΓxyzΓijkC ∗ Λ〉 = 0.

The condition (4.26) implies that

dA = 0 . (4.27)

This is because, by a straightforward adaptation of the analysis in [30], it follows that

the isometries W generated by the spinors Λ ∈ K span the tangent space of M5, see also

appendix B. So A is constant, and the condition (4.19) implies that

Re〈Λ, /ΓH iC ∗ Λ〉 = 0 . (4.28)

To proceed further, take the divergence of this expression. On making use of the Bianchi

identity for H given in (4.3), together with the KSE (4.5), we find the following condition:

Re

〈

Λ,

(

9

8
Hℓ1ℓ2iH̄ℓ3ℓ4

iΓℓ1ℓ2ℓ3ℓ4 −
3

4
Hℓ1mnH̄ℓ2

mnΓℓ1ℓ2 +
1

4
Hℓ1ℓ2ℓ3H̄

ℓ1ℓ2ℓ3

)

Λ

〉

= 0 , (4.29)

where H̄ is the complex conjugate of H. Furthermore, the algebraic condition (4.7) im-

plies that

Re〈Λ,
1

24
/̄H /HΛ〉 = 0 . (4.30)

On expanding this expression out, and adding it to (4.29), one obtains the condition

Re〈Λ, Hℓ1ℓ2iH̄ℓ3ℓ4
iΓℓ1ℓ2ℓ3ℓ4Λ〉 = 0 , (4.31)

or equivalently

W iǫi
ℓ1ℓ2ℓ3ℓ4Hℓ1ℓ2jH̄ℓ3ℓ4

j = 0 . (4.32)

Again, as the W isometries span the tangent space of M5, one obtains

H[ℓ1ℓ2|i|H̄ℓ3ℓ4]
i = 0 . (4.33)

Furthermore, on substituting this condition back into

〈C ∗ Λ, /̄H /HΛ〉 = 0 , (4.34)

which follows from (4.7), we find

〈C ∗ Λ,Λ〉 ‖ H ‖2= 0 . (4.35)

So either H = 0, or 〈C ∗Λ,Λ〉 = 0 for all Λ ∈ K. We shall prove that 〈C ∗Λ,Λ〉 = 0 cannot

be satisfied for all Λ.
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Indeed, suppose that 〈C ∗ Λ,Λ〉 = 0 for all Λ ∈ K. We remark that 〈C ∗ Λ1,Λ2〉 is

symmetric in Λ1,Λ2, and so 〈C ∗ Λ,Λ〉 = 0 for all Λ ∈ K implies that

〈C ∗ Λ1,Λ2〉 = 0 , (4.36)

for all Λ1,Λ2 ∈ K. If we define

K̄ = {C ∗ Λ : Λ ∈ K}, K⊥ = {Ψ : Re〈Ψ,Λ〉 = 0 for all Λ ∈ K} , (4.37)

then the condition (4.36) implies that K̄ ⊂ K⊥. However, this is not possible, because K̄

is 12 dimensional, whereas K⊥ is 4-dimensional. So, one cannot have 〈C ∗Λ,Λ〉 = 0 for all

Λ ∈ K.

It follows that

H = 0 (4.38)

and hence the spinors Λ satisfy

DiΛ =

(

i

2
Qi −

i

2
Y ΓiΓxyz

)

Λ , (4.39)

for constant Y , Y 6= 0, with

Y 2 =
1

ℓ2A2
, (4.40)

as a consequence of (4.4). The integrability condition of (4.39) implies that

(

Rijmn − Y 2(δimδjn − δinδjm)
)

ΓmnΛ = 0 , (4.41)

where we have used the Bianchi identity dQ = 0. Then (4.41) gives that

Re
〈

Λ,Γxyz

(

Rijmn − Y 2(δimδjn − δinδjm)
)

ΓnΛ
〉

= 0 , (4.42)

or equivalently

Wn
(

Rijmn − Y 2(δimδjn − δinδjm)
)

= 0 . (4.43)

As the isometries W span the tangent space of M5, it follows that

Rijmn = Y 2(δimδjn − δinδjm) , (4.44)

and hence M5 is locally isometric to the round S5.

It follows that all (sufficiently regular) AdS5 solutions with N = 24 supersymmetries

are locally isometric to AdS5 × S5, with constant axion and dilaton, and G = 0. This

establishes that there are no distinct local geometries for IIB AdS5×M5 backgrounds that

preserve strictly 24 supersymmetries.
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5 Concluding remarks

We have proven, under some assumptions, a non-existence theorem for AdS5×wM
D−5, D =

10, 11, backgrounds that preserve strictly 24 supersymmetries in all 10- and 11-dimensional

supergravity theories. In particular we have demonstrated that such backgrounds cannot

exist in 11-dimensional and (massive) IIA supergravities, and all such IIB backgrounds must

be locally isometric to the maximally supersymmetric AdS5 × S5 solution of the theory.

Our assumptions are that the fields must be smooth and the internal space MD−5

must be connected, compact and without boundary. Alternatively, these assumptions can

be summarized by saying that the data are such that the maximum principle applies. It

turns out that these assumptions are required to establish our results. It is known that

if the compactness assumption for M6 is removed, then the maximally supersymmetric

AdS7 × S4 solution of 11-dimensional supergravity can be written locally as a warped

AdS5 ×w M6 solution. This would appear to be a contradiction to our result for eleven

dimensions, but for such a solution M6 is not compact [31]. Because of this, it is not

apparent that the smoothness and global assumptions on MD−5 can be removed. This

in particular leaves open the possibility that there are AdS5 ×w MD−5 backgrounds in

10- and 11-dimensional supergravities but such backgrounds would either be singular or

MD−5 will not be compact and without boundary. Another possibility for constructing

AdS5 backgrounds in IIB with 24 supersymmetries is to take appropriate orbifolds of the

maximally supersymmetric AdS5 × S5 solution of the theory. Though such a possibility

cannot be ruled out, it is unlikely. It is also supported by the results of [28], that there are

no relevant N = 3 deformations of N = 4 theory.

The existence of a smooth AdS5 background with compact without boundary internal

space in a 10- or 11-dimensional supergravity theory with distinct local geometry from

that of maximally supersymmetric backgrounds would have raised the expectation that it

should have been the AdS/CFT dual to a 4-dimensionalN = 3 superconformal theory. This

would have been in parallel with the well known duality that string theory on AdS5 × S5

is AdS/CFT dual to N = 4 U(N) gauge theory. Because both N = 3 and N = 4

theories have the same classical action, it is believed that in perturbation theory the two

theories are indistinguishable. Though such a proof is not known, it may be possible to

demonstrate this by proving that quantum mechanically N = 3 Ward identities imply,

using for example techniques similar to [27], that the symmetry enhances to N = 4. In any

case assuming that perturbatively the two theories cannot be distinguished, the possibility

that remains is that if a theory exists with strictly N = 3 superconformal symmetry, it has

to be intrinsically non-perturbative. The properties of such a theory have been investigated

in [28] and non-perturbative constructions have been proposed in [29]. Our results prove

that the gravitational duals of strictly N = 3 superconformal theories, if they exist, cannot

be smooth with compact without boundary internal spaces. This is unlike the gravitational

duals of many other superconformal theories that preserve more than 16 supersymmetries.

It would be of interest to understand why this is the case.
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A Notation and conventions

Our form conventions are as follows. Let ω be a k-form, then

ω =
1

k!
ωi1...ikdx

i1 ∧ · · · ∧ dxik , ω2
ij = ωiℓ1...ℓk−1

ωj
ℓ1...ℓk−1 , ω2 = ωi1...ikω

i1...ik . (A.1)

We also define

/ω = ωi1...ikΓ
i1...ik , /ωi1

= ωi1i2...ikΓ
i2...ik , /Γωi1 = Γi1

i2...ik+1ωi2...ik+1
, (A.2)

where the Γi are the Dirac gamma matrices.

The inner product 〈·, ·〉 we use on the space of spinors is that for which space-like

gamma matrices are Hermitian while time-like gamma matrices are anti-hermitian, ie the

Dirac spin-invariant inner product is 〈Γ0·, ·〉. For more details on our conventions see [4–6].

B Homogeneity of internal spaces

In this appendix, we prove that for the N = 24 AdS5 solutions in eleven-dimensional

supergravity, the isometries on M6 generated by the Λ spinors via

W = 〈Λ,ΓiΓxyzΛ〉 ∂i , (B.1)

span the tangent space of M6. The proof for this is a straightforward adaptation of a

similar result used in the proof of the homogeneity conjecture [30]. To begin, let K denote

the 12-dimensional vector space spanned by the Killing spinors Λ.

Define the map ϕ : K ⊗K → TM6 by

ϕ(Λ1,Λ2) = 〈Λ1,Γ
iΓxyzΛ2〉∂i . (B.2)

As ϕ(Λ1,Λ2) = ϕ(Λ2,Λ1), it follows that the W span T (M6) iff ϕ is surjective. However,

ϕ is surjective iff the only vector V ∈ T (M6) satisfying

V iϕ(Λ1,Λ2)i = 0 , (B.3)

for all Λ1,Λ2 ∈ K is V = 0, i.e. the perpendicular complement of the image of ϕ is trivial.
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Suppose, for a contradiction, that the perpendicular complement of the image of ϕ is

not trivial. Then there exists nonzero V ∈ T (M6) such that

V iΓiΓxyzΛ ∈ K⊥ , (B.4)

for all Λ ∈ K, where

K⊥ = {Ψ : 〈Ψ,Λ〉 = 0 for all Λ ∈ K} . (B.5)

Observe that K⊕K⊥ is a 16-dimensional vector space spanned by the Majorana Spin(10, 1)

spinors ζ that satisfy the lightcone projection Γ+ζ = 0. Thus as K is 12-dimensional, K⊥

is a 4-dimensional subspace.

As V 6= 0, the kernel of the map V iΓiΓxyz : K → K⊥ is zero and so it is injective.

However this is not possible as the image V iΓiΓxyz(K) is 12-dimensional while K⊥ is 4-

dimensional. Thus the hypothesis that V 6= 0 is not valid and ϕ is surjective, and so the

vectors W span the tangent space of M6.

The argument for the AdS5 backgrounds of massive IIA supergravity is the same

as that described above upon replacing M6 with M5. It also generalizes for the AdS5

solutions in IIB supergravity, after replacing the norm <,> with Re <,>, and M6 with

M5 throughout.
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