

King’s Research Portal

DOI:
10.1137/15M1014097

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Lee, C. J., Cookson, A., Roy, I., Kerfoot, E. D., Asner, L., Vigueras Gonzalez, G. A., Sochi, T. M., Deparis, S.,
Michler, C., Smith, N. P., & Nordsletten, D. (2016). Multiphysics Computational Modeling in CHeart. SIAM
JOURNAL ON SCIENTIFIC COMPUTING, 38(3), C150-C178. https://doi.org/10.1137/15M1014097

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 01. Jan. 2025

https://doi.org/10.1137/15M1014097
https://kclpure.kcl.ac.uk/portal/en/publications/04ff3392-5c27-452c-9270-94aa648dced2
https://doi.org/10.1137/15M1014097

SIAM J. SCI. COMPUT. c⃝ 20XX Society for Industrial and Applied Mathematics
Vol. 0, No. 0, pp. 000–000

MULTIPHYSICS COMPUTATIONAL MODELING IN CHeart∗

J. LEE† , A. COOKSON†, I. ROY† , E. KERFOOT† , L. ASNER† , G. VIGUERAS† ,

T. SOCHI† , S. DEPARIS‡ , C. MICHLER† , N. P. SMITH§ , AND D. A. NORDSLETTEN¶

Abstract. From basic science to translation, modern biomedical research demands computa-
tional models which integrate several interacting physical systems. This paper describes the infra-
structural framework for generic multiphysics integration implemented in the software CHeart, a
finite-element code for biomedical research. To generalize the coupling of physics systems, we intro-
duce a framework in which the geometric and operator relationships between the constituent systems
are rigorously defined. We then introduce the notion of topological interfaces and define specific
operators encompassing many common model coupling requirements. These interfaces enable the
evaluation of weak form integrals between mesh subregions of arbitrary finite-element bases’ orders,
types, and spatial dimensions. Equation maps are introduced which provide abstract representations
of the individual physics systems that can be automatically combined to permit a monolithic matrix
assembly. Flexible solution strategies for the resulting coupled systems are implemented, permitting
fine-tuning of solution updates during fixed point iterations, and subgrouping where several prob-
lems are being solved together. Partitioning of coupled mesh domains for optimal load balancing is
also supported, taking into account the per-processor cost of the entire coupled problem within the
graph problem. The demonstration of the performance is illustrated through important real-world
multiphysics problems relevant to cardiac physiology.

Key words. cardiac modeling, multiphysics, parallel computing, coupled problems, modeling
software

AMS subject classifications. 92-04, 92-08, 74F10, 74S05, 76M10, 68W10, 92C30

DOI. 10.1137/15M1014097

1. Introduction. Computational modeling of biophysical phenomena has be-
come a common approach for investigating problems that arise in medical sciences.
From subcellular processes [22, 86] to whole-organ function [65, 81], mathematical
models continue to demonstrate their capacity to predict physiology, provide added
insight, and address questions of both scientific and clinical interest. The demand
for solving computational models has led to the development of a variety of soft-
ware packages [82, 83, 43, 74, 59, 24, 52, 73, 47, 71, 10, 75]. The success of many
of these tools stems from their ability to offer efficient and scalable computation
for specific physics problems. These packages widely employ finite-element methods

∗Submitted to the journal’s Software and High-Performance Computing section March 27, 2015;
accepted for publication (in revised form) March 28, 2016; published electronically DATE. This work
was supported by the British Heart Foundation (NH/11/5/29058), the Engineering and Physical
Sciences Research Council (EP/G0075727/2), and the European Commission funded euHeart project
(FP7-ICT-2007-224495:euHeart). It was also supported by the Wellcome Trust-EPSRC Centre of
Excellence in Medical Engineering (WT 088641/Z/09/Z) and the NIHR Biomedical Research Centre
at Guy’s and St.Thomas’ NHS Foundation Trust and KCL. The views expressed are those of the
authors and not necessarily those of the NHS, the NIHR, or the DoH.

http://www.siam.org/journals/sisc/x-x/M101409.html
†Department of Biomedical Engineering, King’s College London, London, UK (jack.lee@kcl.ac.uk,

andrew.cookson@kcl.ac.uk, ishani.roy@kcl.ac.uk, eric.kerfoot@kcl.ac.uk, liya.asner@kcl.ac.uk,
guillermo.vigueras gonzalez@kcl.ac.uk, taha.sochi@kcl.ac.uk, christian.michler@kcl.ac.uk).

‡Mathematics Institute of Computational Science and Engineering, EPFL, Lausanne, Switzerland
(simone.deparis@epfl.ch).

§Department of Biomedical Engineering, King’s College London, London, UK, and Faculty of
Engineering, University of Auckland, Auckland, New Zealand (np.smith@auckland.ac.uk).

¶Corresponding author. Department of Biomedical Engineering, King’s College London, London,
UK (david.nordsletten@gmail.com).

C1

http://www.siam.org/journals/sisc/x-x/M101409.html
mailto:jack.lee@kcl.ac.uk
mailto:andrew.cookson@kcl.ac.uk
mailto:ishani.roy@kcl.ac.uk
mailto:eric.kerfoot@kcl.ac.uk
mailto:liya.asner@kcl.ac.uk
mailto:guillermo.vigueras_gonzalez@kcl.ac.uk
mailto:taha.sochi@kcl.ac.uk
mailto:christian.michler@kcl.ac.uk
mailto:simone.deparis@epfl.ch
mailto:np.smith@auckland.ac.uk
mailto:david.nordsletten@gmail.com

C2 LEE ET AL.

Fig. 1.1. An example of finite-element meshes used for multiphysics simulations. Illustrated
is the coupling between overlapping domains (hexahedral (1) and tetrahedral meshes (5, 6) for solid
mechanics, monodomain, and poroelasticity problems) and over partially overlapping domains (en-
docardial (2) and cavity mesh (3) for fluid-structure interaction (FSI) problems and vascular mesh
(4) for the coronary flow model).

(FEMs) for numerical approximation of differential equations and have introduced a
range of techniques that span the computational spectrum. From support for low
order h-refined techniques [82, 83], to high order p-FEMs [43], to varied mixed meth-
ods [24, 10, 33] and h-adaptive techniques [73, 52], diverse approaches for problem
solving have been enabled. A number of software packages also utilize mesh parti-
tioning (such as ParMETIS [44], Scotch [72], or Zoltan [19]) and parallel linear solver
libraries (such as Trilinos [34] and PETSc [5, 4, 6]) for efficient multicore paralleliza-
tion. These strategies for scability are necessary to address the computational chal-
lenges presented by many mathematical models (e.g., hemodynamics [74, 43, 52, 24]
and electrophysiology [59, 82, 83, 73]).

Despite these advances, the seemingly simple task of multiphysics modeling by in-
tegrating existing computational models remains challenging. For a general coupling
between arbitrary problems, many aspects of the individual problem—including nu-
merical discretization and solution schemes, disparate solution domains, and data ac-
cessibility issues—have to be formalized, presenting new implementational challenges.
For instance, in the context of cardiac modeling a variety of numerical techniques are
employed (see Figure 1.1), spanning from the one dimensional (1D) network mani-
folds used in vascular flow modeling [79], to curvilinear high order elements used in
mechanics [61], to extremely refined tetrahedral meshes used in electrophysiology [62].
The resulting equations also require the ability to solve large scale linear systems as
well as highly nonlinear systems. The varied nature of these physical models leads to
many different forms of coupling, where integrated models may require equating kine-
matics/force (as found in fluid-solid interaction), mass transport/force (as found in
poromechanics or multilevel transport), or strain/tension (as found in electromechan-

MULTIPHYSICS COMPUTING IN CHeart C3

ics) between models on heterogeneous domains. The permutation of these factors
has made the generalized coupling of multiphysics systems a significant challenge to
the scientific community. While the integration of specific physical systems has been
explored in the literature [24, 52, 33], there is still much that can be gained from
a focused examination of the fundamental design that consolidates a multiphysics
solver.

In this paper we describe an infrastructural framework for generalizing the integra-
tion of physical phenomena within CHeart, a multiphysics software engine developed
at King’s College London. To date, it has been used to solve a variety of problems in
physiological modeling, including the Navier–Stokes equations for fluid flow [17], non-
linear solid and porous mechanics [13, 32, 31, 3, 2], scalar transport equations [60, 41],
elastic wave mechanics [49], pressure Poisson for approximating pressure from Navier–
Stokes using known velocities [48, 20], and electrophysiology [84]. These essential
single-physics building blocks provide the components for assembly and linking to
form multiphysics models. This is achieved through a software infrastructure using
what we call object-sets that act as generic sets to store different core FEM objects
that may be constructed, used, or shared by any multiphysics problem. This strat-
egy is used to manage bases, meshes and variables, topological interfaces, equation
abstraction through equation mappings, and a series of general physics couplings to
flexibly interlink heterogeneous physical models. These processes enable partitioned
coupling, monolithic coupling, or a mixed approach for different components of the
physical systems allowing for a multitude of possible solution strategies. The infra-
structural organization outlined has enabled the interlinking of a variety of models,
including fluid-solid coupling [67, 68, 70, 56, 18, 57, 58], vascular-porous flow [50, 51],
and electromechanics [84].

The remainder of the paper will describe a general strategy for multiphysics inte-
gration and demonstrate its application. In section 2 we outline the physics systems
which provide core simulation components for multiphysics integration. The general
object-set approach, construction of function and variable spaces as well as the intro-
duction of topological interfaces, is provided in section 3. A series of single-physics
coupling strategies is described in section 4. The generic construction and handling
of these different systems is introduced in section 5 with particular emphasis on their
abstraction through the use of equation mappings. In section 6, we propose a graph
parallelization strategy which enables efficient multicore processing. These techniques
are then validated and demonstrated on a series of multiphysics systems relevant to
cardiac physiology (see the online supplement (M101409 01.pdf [local/web 4.23MB])),
with a specific example for fluid-structure interaction (FSI) provided in section 8.2.

2. Core single-physics module. In the finite-element framework the govern-
ing equations for physical systems are provided in standard weak form. In this section
we introduce a generic notation used for defining operators, or functionals, for dif-
ferent physical systems. These functionals provide the building blocks for integrated
multiphysics systems.

Different physical systems and their weak form functionals vary in the terms,
function spaces, number of variables, and their inclusion of different fields. Here we
consider each problem as a specialization of a general weak functional, f : V h(Ωh)×
Y h(Ωh) → R,
(2.1)

f(vh,yh;Ωh) =

∫

Ωh

a(vh) · yh + c(vh) : ∇yh dΩh, vh ∈ V h(Ωh), yh ∈ Y h(Ωh),

http://epubs.siam.org/doi/suppl/10.1137/15M1014097/suppl_file/M101409_01.pdf

C4 LEE ET AL.

Table 2.1
Summary of available options for different physics systems and physics-based operations.

Physics-based operators & operations

ODE/DAE systems Adaptive time stepping, implicit/explicit schemes (Euler, RK4, etc.)
Lumped parameter cardiovascular models (incl. [77, 85])
Various cell models (incl. ten Tusscher 2006 [80], Luo–Rudy 1991 [53])
Dynamic loading of precompiled cell models

Solid mechanics Incompressible, penalty, weak penalty, nearly incompressible formulations
Arbitrary mixed formulations: displacement, velocity, pressure
Arbitrary constitutive laws (isotropic, orthotropic, anisotropic laws)
Summable constitutive laws, i.e., σ(x) =

∑
k wk(x)σk(x)

Scalar transport Static/transient, inclusion/exclusion of advection and/or reaction
Optional SUPG stabilization
Solve as linear or nonlinear system

Fluid mechanics Stokes and Navier–Stokes, static and transient
Eulerian and arbitrary Lagrangian–Eulerian (ALE) formulations
Conservative and nonconservative ALE formulations
General mixed formulations
SUPG formulation for all forms

1D fluid flow Static/transient linear/nonlinear formulations
Area-flow or area-velocity formulations
Riemann invariant or compatibility-based boundary condition formulations
Simplification to Poiseuille network flow (compliant and rigid vessel wall)
Accommodates arbitrary wall constitutive models
Primitive variable or Windkessel-type boundary conditions

Pressure Poisson Stokes and Navier–Stokes, static and transient

Elastic wave equation Linear and nonlinear formulations

Norms & measures Compute L2, H1 norms/seminorms of variable expressions
Compute general inner-product expressions

Projections Compute L2, H1, and Hdiv projection operators

Parameter estimation Reduced-order unscented Kalman filter
Support for arbitrary spatially varying parameters

where vh is an n-dimensional variable (which may consist of one or more state vari-
able(s)), yh is the nth-dimensional test function, V h(Ωh) and Y h(Ωh) are the set of
trial and test spaces, respectively, and Ωh ⊂ Rd is the FEM domain description. Here,

a : V h →
[
L2(Ωh)

]n
, c : V h →

[
L2(Ωh)

]n×d
are specific functionals of the variable,

vh, which depend on the underlying physical system. In a single-physics example, the
functional f would be used to find the solution vh in the weak form statement: find
vh ∈ V h(Ωh) such that

(2.2) f(vh,yh;Ωh) = 0 ∀ yh ∈ Y h(Ωh).

As the variability between physics arises predominantly in the a and c functionals, this
abstract definition of the weak form problem enables generic handling of the core FEM
procedures. In the remainder of this section we introduce the specific core physics
currently implemented in CHeart. A summary of these modules is also provided in
Table 2.1.

2.1. Scalar transport. The conduction of electrical current, movement of me-
tabolites, and conduction of simple flow potential problems are a few examples of
a wide group of transport processes. Their simulation can be achieved through the
solution of the transient scalar advection-diffusion-reaction equation or some simpli-
fication of it (see Table 2.1). As a result, scalar transport equations encompass a
broad range of problems ranging from the most simplified form, Laplace, to the full
transport system. In the case of a transient advection-diffusion-reaction equation

David Nordsletten

MULTIPHYSICS COMPUTING IN CHeart C5

discretized using the backward Euler scheme, the operators in (2.1) have the form
a(vh) := 1

δt
(vkh − vk−1

h) + u · ∇vkh − λvkh + s, c(vh) := D∇vkh, where vkh ∈ V h = V h

is the unknown scalar value at the kth time step, δt is the time step interval, u is an
advective velocity field, λ is a linear reaction coefficient field, D is a tensor diffusion
coefficient field, and s is a source/sink field.

2.2. Solid mechanics. Solid mechanics in cardiac applications is solved us-
ing large strain finite deformation theory [55, 9, 7] within quasi-static or transient
frameworks. The specific formulations can vary depending on whether the material
is modeled as compressible, incompressible, or nearly incompressible [32] as well as
the specific selection of constitutive laws (see Table 2.1). As an example, a quasi-
static incompressible material can be modeled by (2.1) using the a and c opera-
tors a(uh, ph) := (ρb, det |∇uh + I| − 1), c(uh, ph) := (σ(uh) − phI, 0), where
(uh, ph) ∈ Uh × Wh = V h are displacement and pressure, ρ and b denote mate-
rial density and body force, respectively, σ(uh) is the deviatoric Cauchy stress tensor
which may be defined as an arbitrary sum of core constitutive laws (see Table 2.1)
scaled by a weighting field, and I is the identity tensor. Currently, a collection of
isotropic (i.e., neo-Hookean, Mooney–Rivlin [9]), general anisotropic constitutive laws
(i.e., Costa [14], Guccione [30], and Holzapfel–Ogden [36]) and viscoelastic models are
implemented and can be selectively applied to the total or the deviatoric component
of the strain tensor. Extensions to the existing constitutive laws are achieved by the
generalized implementation of the stress tensor, enabling straightforward inclusion of
new materials.

2.3. Fluid mechanics. Fluid mechanics can be solved for a variety of prob-
lems in the heart (see Table 2.1), ranging from steady Stokes flow in small coronary
vessels to the more complex arbitrary Lagrangian–Eulerian (ALE) form of Navier–
Stokes equations [35, 40, 37, 64, 25, 66, 70] in the cardiac heart chambers. As an
example, in the nonconservative form of the Navier–Stokes equations discretized
using backward Euler, the operators a and c of (2.1) are written as a(vh, ph) :=
(ρ
δt
(vk

h − vk−1
h) + ρ(vk

h −wk
h) · ∇vk

h, ∇ · vk
h), c(vh, ph) := (µσ(vk

h) − pkhI, 0), where

(vk
h, p

k
h) ∈ V h ×Wh = V h are the fluid velocity/pressure at the kth time step with

step-size δt; ρ, µ are the density and viscosity; and σ(vh) is the stress operator (see
Table 2.1). By using various bases, V h × Wh may be defined for a wide range of
inf-sup stable spaces (see section 3.4), such as Pκ − Pκ−1 Taylor–Hood elements [11],
Qκ − Pκ−1 Nicolaides–Boland [8] elements, and Crouzeix–Raviart [16] spaces as well
as others. Time step handling, in general, is consistent with that shown in [70] for
ALE formulations. Further, as stabilization is often required for practical problems,
the test and trial spaces may be different, enabling general introduction of streamline
upwinding Petrov–Galerkin (SUPG) methods [38].

2.4. Darcy flow. Darcy’s law in combination with conservation of mass is used
to model the flow of a fluid through a permeable porous medium [15, 60, 13]. In the
steady form, the operators a and c of (2.1) are written as a(vh, ph) := (µK−1vh, ∇ ·
vh−s), c(vh, ph) := (−ph, 0), where (vh, ph) ∈ V h×Wh = V h are the Darcy velocity
and pore pressure, respectively, µ is the dynamic viscosity, K is the permeability
tensor, and s is a volumetric flow rate source or sink. Currently, this implementation
relies on inf-sup stable spaces V h and Wh.

2.5. 1D fluid flow. The 1D fluid flow equations in an elastic vessel can be ob-
tained from the incompressible Navier–Stokes equations written in cylindrical coordi-
nates by assuming axisymmetric flow and by absorbing the dependence on the radial

David Nordsletten

David Nordsletten

David Nordsletten

David Nordsletten

C6 LEE ET AL.

coordinate into a lumped parameter [39, 26, 76]. This results in an equation set defined

by a (Qh, Ah) := (
Qk

h−Qk−1
h

δt
+κQk

h

Ak
h
,

Ak
h−Ak−1

h
δt

), c(Qh, Ah) := −(α (Qk
h)

2

Ak
h

+
∫
c2wdA, Q

k
h),

where (Qk
h, A

k
h) ∈ V h × Wh = V h is the fluid volumetric flow rate/vessel cross-

sectional area at the kth time step with step-size δt, κ is a friction coefficient, cw
is the local pulse wave velocity, and α is the momentum correction factor which de-
pends on the assumed fluid velocity profile. At junctions where branching occurs,
the above equations are further augmented by a set of coupling conditions, i.e., mass
conservation and the Bernoulli equation [76].

2.6. ODE and DAE systems. Various systems of ordinary differential equa-
tions (ODEs) and differential algebraic equations (DAEs) ranging from 0DWindkessel
models [85, 78, 1] to tissue-level cell models [23, 53, 80] can be described using the
equation v′ = g(v), where g is known as the rate function. The solution of such
problems can be obtained using explicit, semi-implicit, or implicit time integration
with constant time steps or adaptive time stepping. For example, the standard ex-
plicit Euler scheme can be written in the form of (2.1) using the a and c operators,
a(vh) :=

1
δkt
(vk+1

h − vkh)− g(vkh), c(vh) := 0, where vkh ∈ V h = V h is the state variable,

and δkt is the step-size at the kth time step. The domain of the problem is normally
either a point or a series of points which effectively decouples the solution to individual
nodes or modes (i.e., for a system with n variables, vh ∈ [L∞(Ωh)]n).

In practice, directly incorporating a wide spectrum of ODE and DAE models into
the code base requires frequent editing and recompilation. Flexibility is achieved in
CHeart through dynamic loading of user-defined rate functions g. This allows, for
example, a direct C-code export from online model repositories such as CellML1 to
be integrated without global recompilation.

3. FEM weak form construction. The core physics-based operators intro-
duced in the previous section rely on a series of routines common to all FEM codes.
The additional challenge of multiphysics comes with the efficient reuse, integration,
and cross-communication of fields, domains, and weak form functionals. Critical to
this is the formation of object-sets—representing a collection of core objects—that may
be reused freely. An illustrated example of how different object-sets within CHeart
interact together is shown in Figure 3.1.

In this section we review the core routines implemented to facilitate multiphysics
integration. As basis interpolation schemes may be widely different, we formulate a
basis object-set for which we developed a single strategy for computation and interpo-
lation of different basis functions. These basis tools form the foundation for the gen-
eration of topologies—meshes with specified interpolation—which are integrated into
a topology object-set forming flexible structures to house meshes of different order,
size, dimension, etc. To enable cross-communication between fields and topologies, we
introduce a general construct of interfaces that allows the formulation of functionals
which relate variables defined on different topologies. With these tools, we construct
variable object-sets, which may be used in the general functionals introduced above
to assemble weak form statements.

3.1. Basis generation. The core physics modules presented in section 2 re-
quire a range of different interpolation functions that may rely on different refer-
ence elements, interpolation orders, and expansion types. This is handled by con-
struction of a basis object-set B with each individual basis object, B, being defined

1www.cellml.org

David Nordsletten

David Nordsletten

www.cellml.org

MULTIPHYSICS COMPUTING IN CHeart C7

VARIABLES PHYSICS SOLVER SOLUTION DOMAIN

Solver
matrix
(FSI)

Solver
matrix
(ALE)

Sequential
f ixed-point

(l ine search)

Math
Expression
Section 3.5

Basis
Function

Section 3.1

Mesh
Topology

Section 3.2

Solver
Matrix

Section 5.3

Solve
Group

Section 5.5

Interface
Section 3.3

Equation
Section 2

Variable
Section 3.4

Id
en

ti
ty

 Linear f luid
domain

Id
en

ti
ty

 Cubic solid
domain

Quadratic
solid domain

In
je

ct
iv

e
Fluid pressure

Fluid velocity

Fluid Space

Domain velocity

Boundary Space

Lagrange multipl ier

Solid displacement

Solid pressure

Navier-
Stokes

Solid
mechanics

ALE
problem

Coupling
problem

(LM)

Linear
tetrahedral

Quadratic
tetrahedral

Quadratic
triangular

Cubic
hexahedral

Quadratic
hexahedral

Quadratic
f luid domain

Boundary
surface

Fig. 3.1. Illustration relating various object-sets used by CHeart to solve physics problems.
In this case, we consider the coupled fluid-solid interaction (see Results). The fluid is solved on
a tetrahedral grid using P2 − P1 Taylor–Hood elements and the ALE Navier–Stokes formulation
introduced in section 2.3. The solid is solved on a hexahedral curvilinear grid using Q3−Q2 Taylor–
Hood elements and the solid mechanics formulation from section 2.2. Object-set B is constructed
using five basis object types with varying order shape and dimension. These are used with five
topology objects comprising T , and the interface I object-set is composed of two identity and two
injective interfaces. V is then built from eight variables used in the four core problems feeding into
the monolithic solver.

Table 3.1
Summary of available element/basis specifications in CHeart. Options are available in any

combination (excluding point element types which cannot support interpolation).

Element/basis specifications

Element types point, line, quadrilateral, triangle, tetrahedral, hexahedral, prism

Basis types nodal, continuous/discontinuous, order (0–5)

modal, continuous/discontinuous, order (1–15)

user specified‡

Quadrature schemes Gauss–Legendre, integrable order (0–60)

Keast–Lyness, integrable order (0–10)

‡: User defined basis enables usage of alternative basis definitions, including bubble and Crouzeix–
Raviart element types, which are supplied using a simple text file containing basis coefficients and
powers (i.e., α and β).

as B = {τ, {ϕ1, . . . ,ϕK}, Q}. Here τ denotes the master (or reference) element,
{ϕ1, . . . ,ϕK} is a set of K-basis functions used to construct finite-dimensional func-
tion spaces, and Q = {(wp, ξp), p = 1, . . . , Np} defines the quadrature rule via the list
of weights wp ∈ R+ and points ξp ∈ τ . The full list of available options is detailed in
Table 3.1. All bases defined for a specific problem constitute the basis object-set B.

A wide range of basis types, including modal [43], nodal [28, 88], Crouzeix–Raviart
[16], and bubble functions [28], can be written using the cardinal expansion. If M is
the total number of unique polynomial terms of B, d = dim(τ), and K is the number
of functions in the basis B, then ϕi (i = 1, . . . ,K) and its derivatives can be computed

C8 LEE ET AL.

as

ϕi(ξ) =
M∑

j=1

α(i, j)
d∏

k=1

ξβ(k,j)
k ,(3.1)

∂ϕi(ξ)

∂ξn1
1 · · ·∂ξnd

d

=
M∑

j=1

α(i, j)
d∏

k=1

D(βkj , nk) ξ
β(k,j)−nk

k ,

where ξ = (ξ1, . . . , ξd)T is a local coordinate in τ , α ∈ RK×M is the sparse coeffi-
cient matrix, β ∈ Rd×M is the corresponding powers in the cardinal expansion, and
D(p, n) =

∏n−1
k=0 (p− k), D(p, 0) = 1. As shown in (3.1), the derivatives can be auto-

matically evaluated and refactored as a new sparse cardinal expansion with adjusted
coefficients. Here we note that for nodal Lagrange and modal basis functions the
number of terms in the cardinal expansion is equivalent to the number of basis func-
tions (i.e., K = M). However, in the case of bubble or Crouzeix–Raviart elements,
this is not the case.

The coefficient matrix α may either be user-supplied or constructed algorithmi-
cally. For example, for nodal Lagrange polynomials, α = A−T is the inverse transpose
of the Vandermonde matrix (i.e., A(i, j) =

∏d
k=1(ξ

i
k)

β(k,j) with ξ1, . . . , ξK ∈ τ being
nodal coordinates).

Furthermore, tensor-based expansions can be written in a similar form,

ϕi(ξ) =
d∏

k=1

K1/d∑

j=1

α(γ(i, k), j) ξβ(j)
k ,

∂ϕi(ξ)

∂ξn1
1 · · ·∂ξnd

d

=
d∏

k=1

K1/d∑

j=1

α(γ(i, k), j)D(β(j), nk) ξ
β(j)−nk

k ,

where α ∈ RK×K1/d
and β ∈ RK1/d

are the 1D sparse expansions, and γ ∈ RK×d

is an index array defining the corresponding 1D basis. For efficient computation the
expansion for each basis function is written as a sum of the nonzero components of
α.

Due to the arbitrary degree of the basis, a range of quadrature schemes is required.
Schemes specifically for triangular and tetrahedral elements, such as those by Lyness
and Jespersen [54] and Keast [46], were integrated based on the source code provided
by [63]. Higher order Gauss–Legendre schemes are also available based on finding the
roots of the Jacobi polynomials [43], and using tensor product expansion/collapsed
expansions to integrate up to 60th order. In addition to these built-in bases, CHeart
supports arbitrary user-defined bases and/or quadrature schemes to be provided via
a simple text file.

3.2. Topologies. Similar to the outlined basis object-set B, an object-set of
topologies T is constructed. A topology object T ∈ T in CHeart is constructed
using a specific basis B ∈ B and provides the mapping between mesh element indices
and global basis function (node or mode) indices used to evaluate fields over elements.
Specifically, the topology T = {E, B,NE , NN} is comprised of NE and NN , denoting
the total number of elements and global basis functions, respectively, B being the
basis used to perform field evaluations, and E ∈ NNE×K the element mapping such
that N = E(e, k) for some e ∈ {1, . . . , NE}, k ∈ {1, . . . ,K}, N ∈ {1, . . . , NN}.

MULTIPHYSICS COMPUTING IN CHeart C9

Fig. 3.2. Types of interfaces supported in CHeart. (a) Identity interfaces between linear,
quadratic, and cubic quadrilateral meshes. (b) Injective interface. (c) Injective interface via an
intermediary. (d) An injective interface between nonconforming meshes through a conforming in-
termediary. (e) A degenerate interface between a 1D vessel terminal and the boundary face of the
cylinder.

3.3. Interfaces. By default, each topology T ∈ T is defined as a singular entity
with an unknown relation to others in the object-set. However, in many cases, such
as mixed formulations or multiphysics interactions, it is desirable for a well-defined
relationship to exist between topologies, enabling the transfer of data from one to the
other. This may be accomplished by defining an interface object Ii→j ∈ I (with I
being the interface object-set) which effectively maps element indices and local element
coordinates from Ti to Tj , Ti, Tj ∈ T . Each interface object Ii→j = {Ti, Tj, ei,j , I

i,j}
contains components to construct a mapping. Letting NE,i and NE,j be the numbers
of elements, and τi and τj the master elements in Ti and Tj, respectively, then ei,j ∈
NNE,i defines the relationship between element indices in the two topologies, and
Ii,j ∈ RNE,i×K the relationship between local coordinates. The mapping can be fully
described by the mapping ζi→j : {1, . . . , NE,i}× τi → {1, . . . , NE,j}× τj ,

(3.2) ζi→j(e, ξ) =

(
ei,j(e),

K∑

m=1

Ii,j(e,m)ϕi,m(ξ)

)
= (e′, ξ′),

for some (e′, ξ′) ∈ {1, . . . , NE,j} × τj and (e, ξ) ∈ {1, . . . , NE,i} × τi. The mapping
ζi→j enables interpolation and evaluation of fields and field derivatives as will be
discussed in section 3.4.

In CHeart all interfaces are assumed to be null mappings by default, i.e., no
mapping exists between topologies. Various kinds of interfaces may, subsequently, be
defined. These are outlined below and illustrated in Figure 3.2.

Identity interface. The most commonly used interface in FEMs is the identity
interface, given in Definition 3.1 and shown in Figure 3.2a, which simply returns the
same element and local element coordinates. Here, the associated basis of each topol-
ogy must be compatible in that their respective master elements must be geometrically
equivalent and their number of elements identical.

Definition 3.1 (identity interface). Let Ti, Tj ∈ T with NE,i = NE,j = NE

and τi = τj = τ . An interface Ii→j ∈ I is called an identity interface if for any
(e, ξ) ∈ {1, . . . , NE} × τ the mapping function ζi→j(e, ξ) = (e, ξ), where ζi→j is
defined by (3.2).

C10 LEE ET AL.

This is often employed for classic mixed-element formulations, such as those used
in fluid mechanics or solid mechanics formulations, where velocity/displacement share
the same mesh as pressure variables but use different interpolations (i.e., different
topologies).

Topology groups. As topologies linked by an identity interface share many
commonalities, it is often useful to define topology groups (see Definition 3.2), which
link these objects together. This is particularly convenient, as more complex interfaces
may then be defined for one member of the topology group and used for all other group
topologies.

Definition 3.2 (topology group). Let Tg ⊆ T ; then Tg is a topology group if
there exists an identity interface Ii→j ∈ I for every Ti,Tj ∈ Tg. Further, Tg(i) is
referred to as the topology group of Ti if Ti ∈ Tg(i).

Injective interface. In multiphysics simulations the interconnectivity of topolo-
gies is often more complex. For this injective interface, mappings may be introduced
which provide a continuous map between element/local coordinate data and topolo-
gies. This may be on a portion of a domain, as in FSI where exchange between the
fluid and solid occurs on an interface. Definition 3.3 specifies the details of injective
interfaces which are also illustrated graphically in Figure 3.2b–d.

Definition 3.3 (injective interface). Let Ti, Tj ∈ T . An interface Ii→j ∈ I is
called injective if for every (e, ξ) ∈ {1, . . . , NE,i} × τi there exists a unique (e′, ξ′) ∈
{1, . . . , NE,j}× τj such that ζi→j(e, ξ) = (e′, ξ′), where ζi→j is defined by (3.2).

This type of interface provides a mapping for all element/local coordinate pairings
from Ti into some or all pairings from Tj . As a result, the injective interface allows for
the embedding of refined grids or lesser dimensional manifolds into another topology.
This formulation enables a wide range of associations between topologies. Injective
maps can be used to couple subsets of two topologies where only a portion of each is
interfaced by introducing an intermediary topology which is injective to both over the
desired subsets (see Figure 3.2c). This need arises in fluid-solid coupling, for example,
where the interaction between fluid and solid domains occurs on some portion of the
domain boundaries (see section 8.2). Further, injective interfaces can be easily ex-
tended to fully nonconforming grids by introducing an additional polygonal topology
nested within the intersections of the interfacing topologies (see Figure 3.2d).

An important property of injective interfaces is their transferability to the associ-
ated topology groups, which facilitates data transfer between single-physics problems
employing mixed interpolation spaces. As shown in Lemma 3.4, it is clear that an
injective interface Ii→j = {Ti, Tj , ei,j , I

i,j} can be extended to any Tk ∈ Tg(Ti) using
the mapping ζi→j .

Lemma 3.4. Suppose Ti, Tk ∈ Tg(i) and Ii→j ∈ I is injective. Then, there is an
implicit mapping Ik→j ∈ I that is injective.

Proof. Since Ti, Tk ∈ Tg(i), then ζk→i(e, ξ) = (e, ξ) and Ik→i is an identity in-
terface. The mapping for Ik→j can therefore be constructed as ζk→j(e, ξ) = ζi→j ◦
ζk→i(e, ξ) = ζi→j(e, ξ) for all (e, ξ) ∈ {1, . . . , NEk} × τk. Since the interface Ii→j is
an injective interface, Ik→j is also an injective interface.

An important subset of identity and injective interfaces includes those which
are complete (see Definition 3.5). By definition, all identity interfaces are complete.
However, in general, an injective interface enables linking one topology Ti to a subset
of another Tj. A complete interface ensures that this subset extends to the entirety

MULTIPHYSICS COMPUTING IN CHeart C11

of Tj. This is particularly important for FEM weak form statements which must be
held over a defined domain which may require interfaces to other variables.

Definition 3.5 (complete interface). An injective interface Ii→j ∈ I is called
complete if ζi→j is bijective.

If an injective interface Ii→j ∈ I is defined between two topologies Ti, Tj ∈ T , then
an inverse mapping can be implicitly evaluated and constructed (see Definition 3.6).
However, explicitly constructing Ij→i in the form shown in (3.2) is not, in general,
straightforward. Instead, the inverse of an injective interface is computed procedurally
by CHeart based on the provided injective interface.

Definition 3.6 (inverse interface). For an injective interface Ii→j ∈ I we may
implicitly define an inverse interface Ij→i that for some (e′, ξ′) ∈ {1, . . . , NE,j} × τj
there exists a unique (e, ξ) ∈ {1, . . . , NE,i}× τi such that ζi→j(e, ξ)− (e′, ξ′) = (0,0).

Degenerate interface. In certain cases, the requirements of injective interfaces
or their inverses can be too restrictive, requiring the construction of degenerate inter-
faces (see Definition 3.7), where a topology may be mapped nonuniquely. This case
arises when reduced-dimensional formulations are coupled to full-dimensional prob-
lems, such as 1D blood vessel flow coupled to three-dimensional (3D) fluid flow (see
Figure 3.2e). Clearly, the reverse of this mapping is ill-posed and can only be obtained
in simplified instances.

Definition 3.7 (degenerate interface). An interface Ii→j = {Ti, Tj, ei,j , I
i,j}

is called degenerate if for some (e1, ξ1), (e2, ξ2) ∈ {1, . . . , NE,i} × τi there exists a
single pair (e′, ξ′) ∈ {1, . . . , NE,j}×τj such that ζi→j(e1, ξ2) = (e′, ξ′), ζi→j(e2, ξ2) =
(e′, ξ′).

An object-set of well-defined interfaces plays a crucial role in reusability of
a single-physics code within coupled problems, as it enables the abstraction of
interpolation-specific implementations as well as cross-talk between different com-
putational domains.

3.4. Variables and function spaces. Using the basis, topology, and interface
structures outlined, it is possible to formally construct interpolated variables as well
as discrete function spaces. As with previous structures, an object-set of variables V
may be defined, enabling the construction or calculation of numerous quantities that
are either required for solving physical systems or desired as outputs. Each variable
object V ∈ V is defined as V = {TV ,CV }, where TV = {EV , BV , NE , NN} ∈ T is the
topology, and CV ∈ Rn×NN the coefficient matrix, so that a finite-element variable
can be computed as

(3.3) v̂h(e, ξ) =
n∑

l=1

K∑

k=1

CV (l,EV (e, k))ϕk(ξ)el, (e, ξ) ∈ {1, . . . , NE}× τV ,

where {ϕ1, . . .ϕK} ∈ BV , e1, . . . , en ∈ Rn are the unit base vectors for Rn. Here we
add a hat (̂), distinguishing the variable from those introduced in section 2, as it is
principally a function of the element index and master element coordinate. All fields
in CHeart, including the mesh coordinates, are specified in this way, enabling the use
of any topology defined for these fields. In the case of spatial domains, this flexibility
allows for the construction of standard simplex and hexahedral domains as well as
the use of curvilinear grids. We assume each domain variable D = {CD, TD} ∈ V
is well constructed (i.e., continuous, nonoverlapping, locally invertible), enabling the

C12 LEE ET AL.

construction of a computational domain,

(3.4) Ωh :=
{
x ∈ Rd

∣∣ x = x̂(e, ξ) ∀(e, ξ) ∈ {1, . . . , NE}× τD
}
,

where the definition of x̂ follows from (3.3) using the appropriate domain topology
TD (and its components) as well as the scaling array CD.

However, unlike standard variables, domains have additional properties enabling
them to represent different spatial reference frames, for example, Eulerian/Lagrangian
[55] or ALE [21]. This is accomplished by allowing the domain Ωh to be considered
as a function of time Ωh(t) where the spatial positions of x ∈ Ωh are summed with an
additional variable V = {TV ,CV } ∈ V to give the current x(t) ∈ Ωh(t), i.e., x(t) =

x̂(e, ξ, t) =
∑d

l=1(
∑KD

k=1 CD(l,ED(e, k))ϕD,k(ξ)+
∑KV

k=1 CV (l,EV (e, k))
∣∣
t
ϕV,k(ξ))el,

where {ϕm,1, . . . ,ϕm,Km} ∈ Bm for m = {D,V }. We note that ID→V is assumed to
be an identity interface to enable summing.

Variable-space pairing. While (3.3) outlines the nth-dimensional vector func-
tion v̂h as a function of local element index and local coordinates, it is desirable
in FEMs to instead define vh : Ωh → Rn as a function of the spatial domain Ωh.
Whether this definition is possible depends on if the variable-space pairing (v̂h,Ωh)
is well defined.

Definition 3.8. A variable-space pairing (v̂h,Ωh) (defined in (3.3) and (3.4))
is well defined if the spatial domain Ωh is well constructed (i.e., continuous, non-
overlapping, locally invertible), and there exists a topology Tr ∈ T and interfaces
Ir→D, Ir→V ∈ I, where Ir→D is complete and Ir→V is an identity or injective inter-
face. In this case, Tr is called a root topology.

The stipulations of Definition 3.8 ensure that for each x ∈ Ωh there exists a unique
corresponding pair (e, ξ) ∈ {1, . . . , NEr}× τr . The existence of a root topology Tr as
outlined implies that the composition

(3.5) vh(x) = v̂h ◦ ζr→V (e, ξ), x = x̂ ◦ ζr→D(e, ξ)

is well defined for all x ∈ Ωh. As a result, Tr provides a topology for which vh and
Ωh can be related. The completeness requirement for Ir→Ω ensures that each x has
a corresponding vh; however, Ir→V need not be complete, allowing for conditions or
weak equations on subsets of a variable field (i.e., use of constraints along boundaries
or interior regions).

Discrete function spaces. Using the definition of discrete variables as shown
in (3.3), and the concept of variable-space pairings introduced in Definition 3.8 and
(3.5), it is natural to define the discrete function spaces introduced in (2.1) as

V h(Ωh) =
{
vh ∈ [L2(Ωh)]

n
∣∣ vh(x) = v̂h ◦ ζr→V (e, ξ), x = x̂ ◦ ζr→D(e, ξ)

∀(e, ξ) ∈ {1, . . . , NEr}× τr, ∀CV ∈ Rn×NN

}
.

The properties of the discrete space V h(Ωh), such as the smoothness and order, depend
on the underlying connectivity of TV given by EV , the choice of basis, as well as the
spatial domain over which the space is defined.

3.5. Expressions. Often during a modeling process, it is desirable to conduct
algebraic computations with the variables defined over the finite-element meshes at

David Nordsletten

David Nordsletten

MULTIPHYSICS COMPUTING IN CHeart C13

runtime. This functionality is implemented in CHeart through an object-set of plain-
text mathematical expressions provided at problem specification time. The expres-
sions can take variable pointers, time, and other expressions as inputs and produce
outputs that can be assigned to set boundary conditions, material and source fields,
and other variables as part of partitioned solver strategies and postprocessing. The
parsing of expressions is implemented using an internal bytecode-compiler.2 Based
on an algebraic expression provided by the user, the internal compiler decomposes
the string into its component operators which are then stored as a sequence of simple
bytecode instructions. This conversion occurs only once, when the problem is set up,
and so in this way the expressions can be evaluated at key points in the computation
phase of execution with a minimal amount of runtime overhead. The user can specify
both scalar and vector expressions that contain standard algebraic and trigonomet-
ric functions as well as logical and conditional operators, modulo max/min and data
interpolation.

3.6. General weak form systems. Multiphysics systems are comprised of mul-
tiple weak form operators which act on different variables. These operators, outlined
for specific physics in section 2, are constructed as needed and built into an object-set
F , where each operator f ∈ F is defined as in (2.1).

Remark 3.9. In the case of Lagrangian or arbitrary Lagrangian–Eulerian (ALE)
domains, functionals can be defined as f(vh,yh;Ωh(t)) =

∫
Ωh(t)

a(vh) · yh + c(vh) :
∇yh dΩh, enabling definition of the weak form on a specific reference frame. In the
case of conservative ALE formulations [25, 70],

f(vh,yh;Ωh) =

∫

Ωh(t+δt)
a0(vh) · yh dΩh −

∫

Ωh(t)
a1(vh) · yh dΩh

+

∫ t+δt

t

∫

Ωh(s)
a2(vh) · yh + c(vh) : ∇yh dΩh ds

is used with functionals a0, a1, and a2.

Remark 3.10. Boundary conditions may be introduced to operators f ∈ F as
discussed in section 4.2.

Each operator f ∈ F may be combined with others to form multiphysics systems.
This is done by defining the summed operator f ⊆ F ,

(3.6) f(vh,yh) :=
∑

k

fk(vh,k,yh,k;Ωh,k), fk ∈ F ,

where fk and Ωh,k are the kth operator/domain and (vh,k,yh,k) its respective variables
(where vh,k ∈ vh and yh,k ∈ yh). Importantly, the operator f and its variables,
vh,yh, do not reside on a single domain. This enables the merger of operators which
span different Ωh,k, as often occurs in multiphysics systems. Each operator f denotes
a specific system for which we look to find vh ∈ V h so that

(3.7) f(vh,yh) = 0 ∀yh ∈ Y h,

where V h,Y h denote the complete trial/test spaces.

2http://fparser.sourceforge.net/

David Nordsletten

David Nordsletten

http://fparser.sourceforge.net/

C14 LEE ET AL.

4. Physics coupling. In sections 2 and 3 we introduced the formulation of
single-physics operators as well as their construction through a series of object-sets.
To further enable flexible multiphysics integration, this section discusses a series of
coupling strategies developed to formally link operators (as shown in (3.7)) which
represent multiphysics weak form systems. Here we define a coupling as a functional
relationship between single-physics systems within a problem, the examples of which
can be found in Table 4.1. While this may occur in numerous instances, here we
identify three principal mechanisms:

(1) functional dependence of existing operators on evolving variables from an-
other problem,

(2) functional dependence of boundary conditions on evolving variables from an-
other problem, and

(3) new coupling operators which effectively link problems together.
These approaches are all made possible using different couplings methods.

4.1. Coupling via existing operators. As full access to all variables in V
is available to any problem, the inclusion of variables through existing operators is
straightforward. For example, the diffusion coefficient in a scalar transport problem
may be linked to any variable in V , including one which is solved for within a different
system (e.g., as is the case in strongly coupled electromechanics). This enables the
automatic coupling of systems. Further, as different solve strategies may be applied as
discussed in section 5.5, CHeart enables this coupling to be either explicit or handled
through a fixed point iteration.

4.2. Coupling via boundary conditions. Each operator (see section 3.6) may
be linked to any number of boundary conditions. Steady or time-dependent Dirichlet
or Neumann boundary conditions may be applied to different portions of the domain
boundary (typically a series of user-defined nodes or element faces).

CHeart boundary conditions may be specified using variables as well as numeric
expressions, so that the solution of one problem may be provided as the boundary
data for another problem. This is often required in partitioned ALE Navier–Stokes
where the domain motion can be computed independently from the flow while the two
problems are coupled along portions of the domain boundary. This type of coupling is
also common in FSI, where the motion of the interface between fluid and solid domains
is set as a Dirichlet condition and the traction on fluid is applied as a Neumann-type
condition to the solid.

4.3. Coupling via expressions. While the integration of multiple physics us-
ing variables provides a powerful tool for coupling systems, this is not always sufficient
as the coupling may require algebraic or differential manipulation of a variable. This
feature is enabled in CHeart via expression strings (see section 3.4) which may be
provided by users to define the specific mathematical form of coupling.

In many cases, such as with boundary conditions, expressions and variables may
be used interchangeably. In addition, CHeart allows the casting of expressions to
variables, which enables the coupling of certain operations which would otherwise
need to be hardcoded.

4.4. Monolithic integration via coupling operators or Lagrange multi-
pliers. Multiphysics integration often necessitates the inclusion of additional terms
or constraints in the system. In some cases, as in partitioned approaches, this merely
involves adding a source or augmenting boundary conditions. In other approaches,
the coupling may be imposed via coupling operators , or by the introduction of La-

MULTIPHYSICS COMPUTING IN CHeart C15

Table 4.1
Summary of available coupling options for different styles of multiphysics.

Physics coupling operators/options

Simple coupling Coupling via shared variables
Coupling via algebraic expressions
Coupling via boundary conditions

Lagrange coupling Coupling one or more variables to a constraint
Coupling variable or variable rate, i.e., Du = u or Du = ∂u/∂t
Coupling all components or normal components, i.e., L(u) = u or L(u) = u · n
User defined constraint expressions available
Support for constraints on 1D, 2D, and 3D manifolds or volumes

Volume coupling Linear coupling through reaction terms
Support for 2D, 3D

grange multipliers. In these cases, the additional elements are considered as separate
physical problems which augment traditional single-physics examples. The modular
implementation of these coupling problems in CHeart promotes code reuse in various
types of multiphysics problems.

Coupling operators. In CHeart coupling operators provide a link between
variables from distinct physics problems through the addition of new terms or op-
erators into the weak form. Considering a set of variables (u1, . . . ,um) ∈ Uh

1 ×
· · · × Uh

m which have been introduced for a set of physics problems, the general
form of a in equation (2.1) for coupling operators is given by a(u1, . . . ,um) :=
(
∑m

k=1 γ1kL1kuk, . . . ,
∑m

k=1 γmkLmkuk), where γik is a scalar coefficient detailing
the coupling between ui and uk and Lik the corresponding linear operator (see Ta-
ble 4.1). As a result, the weak form defined for ui is augmented with

∑m
k=1 γikLikuk,

which may be tailored to address a specific type of coupling. One classical example
of the use of coupling operators is in Boussinesq convection, where the Navier–Stokes
equations are coupled to advection-diffusion through the advective velocity field and
a temperature-based forcing term.

Lagrange multipliers. Lagrange multipliers are typically used for the addi-
tion of new constraint equations which may augment a single-physics system or link
multiple systems. Specifically, an additional variable λ ∈ Mh is added to the set
of variables (u1, . . . ,um) in order to weakly impose over some domain or manifold,
Ωh, that the variables satisfy

∑
k wkLk(Dkuk) − s = 0, where Lk and Dk are the

kth linear algebraic and differential operators, respectively (see Table 4.1), wk is
the kth scalar weight, and s is some provided source. The additional constraint
terms can be included using the operator a of (2.1) defined as a(u1, . . . ,um,λ) :=
(w1L1(λ), . . . , wmLm(λ),

∑
k wkLk(Dkuk) − s), where (u1, . . . ,um,λ) ∈ Uh

1 × · · · ×
Uh
m ×Mh. This enables a broad range of coupling using multipliers and may also be

used to construct projection operators for iterative fixed point schemes. Examples of
this approach are found in the imposition of complex physical constraints as well as
fluid-solid coupling.

5. Assembly, matrix operations, and building. Efficient and flexible ma-
trix assembly operations are a principal enabler of multiphysics integration in finite-
element modeling and a key engine driving its computational performance. The core
CHeart library provides automated functionalities and standardized interfaces to en-
able rapid and extensible developments. The process by which the topology group,
equation map, and variable are used to build and populate sparse matrices is described
below.

David Nordsletten

David Nordsletten

David Nordsletten

C16 LEE ET AL.

5.1. FEM element assembly. FEM element assembly of residuals, matri-
ces, and other objects (see section 3) is usually handled by an element loop over
a mesh. In the code, CHeart contains a single element loop routine, using a series of
procedure pointers—Setup, LocalElementCalculate, LocalElementAssemble, and
CleanUp procedures—to control the tasks executed. These procedure pointers may
be linked (or nullified) before execution of the element loop and altered accord-
ing to the desired assembly task (i.e., residual evaluation, Jacobian construction,
norm calculations, etc.). Setup and CleanUp procedures are commonly used to ex-
tract tasks which need not be repeated during the element loop—such as dynami-
cally allocating/deallocating memory or constructing/destroying access shortcuts to
data required for FEM assembly—to optimize computational performance. The
Calculation and Set routines are established to do tasks which may vary by ele-
ment, with the Calculation step involving the computation of a physics-dependent
element-level matrix or residual, for example. The Set step is a low-level, abstracted
task used to incorporate element-level data into global matrix structures.

Beyond the standard steps followed in FEM assembly, the presence of merged
functionals and interface mappings necessitates important extensions. As the weak
form functional for a physical system may be a sum of multiple physical systems
(see (3.6)), the general assembly occurs over each individual functional fk ∈ f , for
which we define a symbolic variable dependence using equation maps, E(fk). Cru-
cially, this equation map contains a root topology Tr, over which element-level proce-
dures may be computed.

Since integral evaluations of weak form equations (see (2.1)) are computed over
Tr, all other topologies used as part of the problem governed by fk must be evaluated
on Tr. This list may be automatically compiled by recording the usage of various
topologies as problems are defined by the user. The completeness of Tr ensures the
looping process covers the indicated spatial domain.

In addition, the corresponding basis functions and their gradients of all involved
terms must be evaluated on Tr. If Ir→k for Tk ∈ T is an identity interface (see
Definition 3.1), no mapping is required, and pre-evaluations of the basis functions
(and their derivatives) can be used directly. However, when Ir→k is a more complex
mapping, such as an injective interface, then the basis on Tk must be mapped onto
Tr (see (3.6)). Users can elect to either execute these computations on the fly or have
the program precompute these quantities into fast access cached lists.

Algorithm (FEM LOOP)
for all fk ∈ f

call SetupProcedure

for all e ∈ Tr ⇐ E(fk)

for all Ti ∈ {Tk}
Compute needed ϕ,∇rϕ, . . . at Qr for all ϕ ∈ Bi

end for

call LocalElementCalculateProcedure

call LocalElementAssembleProcedure

end for

call CleanUpProcedure

end for

5.2. Equation mappings. The translation of weak form operators f into dis-
crete finite-element equivalents may be achieved via the use of equation maps (Defini-
tion 5.1). An equation map is an abstraction of the dependence of weak form operators

MULTIPHYSICS COMPUTING IN CHeart C17

on their spaces, which completely encapsulates the row-column variable mappings
necessary to construct the local element tensors. Considering (2.2), the equation
mapping defines whether f(v′

h,y
′
h;Ωh) ̸= 0 for some v′

h = (0, . . . ,vh,i, . . . ,0) and
y′
h = (0, . . . ,yh,j, . . . ,0) with vh,i ∈ V h

i and yh,j ∈ Y h
j , that is, whether there are

operators in f which pair the ith and jth trial and test spaces.

Definition 5.1 (equation map). Let {V h
1 , . . . , V h

m} and {Y h
1 , . . . , Y h

n } be well-
defined function spaces on Ωh. Then, if f is a functional form as shown in (2.2) on
the discrete finite-element spaces, the equation map E(f) of f is defined for each row
variable i ∈ {1, . . . , n} by Ei(f) where Ei(f) := { j ∈ {1, . . . ,m} | f(vh,yh;Ωh) ̸=
0 for some (vh,yh) ∈ V h

j × Y h
i }, denoting the symbolic nonzero dependence of terms

in f on {V h
1 , . . . , V h

m}× {Y h
1 , . . . , Y h

n }.
Remark 5.2. In Definition 5.1, the equation map E(f) implies that the operator,

f , operates on well-defined spaces on Ωh (with topology TD ∈ T). Hence, there is
a root topology, Tr, which links all topologies of variables in E(f). That is, Ir→D is
complete and Ir→K is nonnull for each Tk ⇐ E(f).

Encoding the operators of f , the equation map E(f) enables the generalization
of many lower-level routines and operations which require knowledge of the weak
form structure, such as linearized system assembly, merger, etc. In addition to the
symbolic dependence outlined, the equation map E(f) of f also labels the structure
of each term as identity, trace, or full. This relates to the pairing of vector variables,
which, due to operators, may share components in different ways (see Definition 5.3).
For example, the standard inner-product of two vector variables may be classified as
having trace structure, while the standard inner-product of two scalar variables is a
full structure operator.

Definition 5.3 (equation map structure). Let E(f) be the equation map of the
operator f given in Definition 5.1. Considering the variable pairing Vj ×Yi, for some
j ∈ Ei(f), suppose each vh ∈ V h

j and yh ∈ Y h
i takes vh : Ωh → Rs and yh : Ωh → Rr.

Letting vn,k
h ∈ V h

j denote the nth basis function in the kth component and, similarly,

letting ym,p
h ∈ Y h

i denote the mth basis function in the pth component, the structure
of the variable pairing is defined as

(Identity) if f(vn,k
h ,ym,p

h) ̸= 0 for some n = m, k = p,

(Trace) if f(vn,k
h ,ym,p

h) ̸= 0 for some n,m, k = p,

(Full) if f(vn,k
h ,ym,p

h) ̸= 0 for some n, k,m, p,

where the least generic structure applicable is selected for the specific functional f .

While the equation mapping of an operator enables the construction of a generic
template for FEM calculations, its dependence on a single domain, Ωh, is limiting,
particularly in multiphysics contexts where multiple domains are linked together. As
a result, the multiphysics operator f is enabled through the formation of equation
map sets where the final structure is the union of each equation map automatically
evaluated from the individual maps provided, i.e., E(f) :=

⋃
k E(fk). An example of

this process is illustrated in Figure 5.1. In these cases, operations are done on each
individual equation map, E(fk), and their results are combined to emulate the final
mapping, E(f).

5.3. Matrix assembly and monolithic integration. The final weak form
system shown in (3.7) may be solved in a variety of ways. This is achieved, in part,

David Nordsletten

C18 LEE ET AL.

v

p

u

q

v

u

λ

 v

p

u

q
λ

Fluid mechanics

Solid mechanics

Lagrange multiplier coupling Monolithic coupled system

Fig. 5.1. Illustration of three separate equation maps—incompressible Navier–Stokes with ve-
locity and pressure variables (v, p), incompressible solid mechanics with displacement and pressure
variables (u, q), and Lagrange multiplier coupling, λ, between (v,u)—combined into a single equa-
tion map to form the monolithically coupled system used in FSI; see section 8.2.

by allowing single-physics or other operators to be integrated into a single monolithic
problem which may be solved implicitly. Importantly, not all operators of the total
problem f need be monolithic, thereby allowing partitioned solving of some/all physics
systems.

For problems with monolithic integration, their implicit solution requires the for-
mulation of a Jacobian matrix (or some approximation to it) which may be inverted
or iteratively solved to give the solution or a solution update (as in Newton–Raphson
methods [57, 32]). Similar to other structures, we construct an object-set M of ma-
trices. Each matrix, M ∈ M, is assembled on an underlying equation mapping E(f)
which may be composed of a simple physical system or a more complex multiphysics
system spanning multiple domains and variables. From the equation map definition,
we seek to assemble M in compressed sparse row (CSR) format [27] by determining
the connectivity between a series of rows and columns. In this sense, the matrix,

(5.1) M = {Vr,Vc, E },

is a graph with row/column vertices (Vr and Vc) and edges (E) which provide their
connectivity. In the case of structurally simple equation maps—such as that which
arises from scalar Laplace—the matrix construction process is straightforward. In
this case, if the solution variable is U = {U, T } ∈ V with NN nodes/modes, then by
computing the inverse mapping of the topology array E ∈ T (the node-to-element
map), E−1(n) = {e ∈ {1, . . . , NE} | n = E(e, k), for some k ∈ {1, . . . ,K}}, n ∈
{1, . . . , NN} one can effectively determine the interdependence of nodes/modes on
elements. Subsequently, the inverse map can be used to directly compute the matrix
graph M = {Vr,Vc, E }. Here Vr = Vc is defined so that, for n ∈ {1, . . . , NN},
Vr(U, n) = n and
(5.2)
E (n) = {m ∈ {1, . . . , NN}|m = E(e, k) for some k ∈ {1, . . . ,K} and e ∈ E−1(n)}.

Remark 5.4. In the case of discontinuous Galerkin assembly, Ẽ
−1

is defined and

used in place of E−1 in (5.2) with Ẽ
−1

(n) = {e ∈ {1, . . . , NE} | n = E(el, k) for some
k ∈ {1, . . . ,K}, and el ∈ N (e)}, n ∈ {1, . . . , NN},and N (e) denoting the set of
neighboring element indices of e and e itself.

In a multiphysics environment, this approach must be adapted to deal with ad-
ditional (potentially multidimensional) variables, multiple equation maps (i.e., f =

MULTIPHYSICS COMPUTING IN CHeart C19

Fig. 5.2. An illustration of monolithic matrix assembly procedure. Top left: Two topologies
(quadrilateral and triangle types) with node numbers indicated. The equation maps for the individual
systems are E(f1(U)) and E(f2(V)). When the two systems are coupled, the coupling operator
provides the additional functionals, f3, and equation maps, E(f3), linking the variables. Following
the formation of the monolithic E(f), the matrix connectivity E can be determined through their
common mapping to the root topology Tr. Assuming full sparsity in all mappings, for the element
indicated in yellow in the above example rows and columns 4, 5, 7, 8, 13, 14, and 16 become
populated, as shown on the right.

{fk}), and complex interfaces. However, the construction of more complex linear
systems can be efficiently managed using both the equation mapping E(f) as well as
the underlying interface mappings, I. E(f) provides details of how the set of i-row
variables, Y = {Y1, . . . , Yi} ⊆ V , as well as j-column variables, V = {V1, . . . , Vj} ⊆ V ,
is interrelated. Using this data, we may construct a variable-matrix mapping for both
rows and colums. That is, for any Y = {C, T } ∈ Y and n ∈ {1, . . .NN}, we define the
row mapping Vr(Y, n) = R, R ∈ {1, . . . , NVr}, where NVr is the total number of rows
(and similarly for the column mapping). We note that, in this case, R is uniquely
paired to Y and n. This definition effectively orders how nodes/modes associated
with specific variable spaces are mapped to the linear system.

Remark 5.5. Construction of Vr and Vc mappings follows element clustering,
where all variables are ordered according to elements, or variable clustering, where
each variable is ordered sequentially, depending on the parallelization strategy.

Subsequently, assembly is managed by constructing the matrix connectivity, E , as
seen in Definition 5.6. Here, the connection between row and column variables is ex-
tracted by first operating on each equation mapping E(fk) resulting from functionals
fk ∈ f . This provides a link to the root topology Trk over which all row and column
variables of E(fk) are related. Each element of the root topology Trk then acts as
the common point, enabling mapping through the defined interfaces to determine the
corresponding elements in the topology used by all variables in the mapping. By col-
lating these nodes/modes, it is then possible to construct the collective connectivity,
E , as given in Definition 5.6 and illustrated in Figure 5.2.

Definition 5.6 (matrix connectivity). Let E denote the connectivity of a matrix
M ∈ M based on the equation mapping E(f) with preconstructed matrix-topology
mappings for both rows and columns (Vr and Vc, respectively). Suppose E(f) contains
row variable Y = {Y1, . . . , YI} and column variable V{V1, . . . , VJ} and the functional
f is comprised of multiple functionals fk ∈ f for which E(fk) is a proper equation
mapping with root topology Trk = {Ek

r , B
k
r , N

k
E,r, N

k
N,r} (see section 5.2). Then the

connectivity E (R) of any row R = Vr(Yi, n) corresponding to the variable Yi ∈ Y and

C20 LEE ET AL.

node/mode n ∈ {1, . . . , NN,i} is defined as

E (R) =
{
C ∈ {1, . . . , NVc} | C = Vc(Vj ,m) for some m ∈ {Ej(e

rk,j(e), p), p = 1, . . . , Kj}

erk,i(e) ∈ E−1
i (n), j ∈ Ei(fk), and fk ∈ f

}
,

where er
k,j ∈ Irk→j, e

rk,i ∈ Irk→i, and Ei ∈ Ti ∈ Yi and Ej ∈ Tj ∈ Vj.

This process is automatically handled using the internal FEM LOOP routine,
thereby removing any burden on the developer’s part in the assembly procedure.
Looping over each functional fk ∈ f and the resulting root topology Trk , we
may construct local node/mode lists for each element (done through a generic
LocalElementCalculate procedure). These values may then subsequently be used to
update the connectivity structure E (done through a general LocalElementAssemble
procedure).

With both row/column vertices and edges defined, the matrix seen in (5.1) can
be constructed. When variable spaces are comprised of vectors, the structure of the
equation mapping E(f) (see Definition 5.3) is used to evaluate the sparsity. Here,
which components of a vector variable appear in the functional is outlined as either
full, trace, or identity. This can be efficiently used to decipher which nodes/modes to
include in E .

5.4. Matrix and residual evaluations. Construction of different matrix/
residual evaluations is achieved by selecting an appropriate LocalElementCalculate
procedure for each functional fk ∈ f . This procedure is set locally by physics-specific
code which manages the calculation of element-level matrix/residual entries. As vari-
ables may stem from different topologies, use different interpolation schemes, etc.,
each variable required for fk is implicitly prebuilt at the lower level, efficiently link-
ing required element-level data needed on the root topology Trk . In cases where no
complex interfaces are present, this step involves assigning pointers to prebuilt data
structures significantly limiting the overhead incurred by this generalized formulation.
As a result, element-level construction within different physics-based modules involves
standard quadrature loops and term evaluation procedures seen in all FEM codes.

Integration of element-level data through LocalElementAssemble procedures is
managed by lower-level routines. Using the equation mapping structure E(fk), entries
of element-level data may be seamlessly integrated into the global matrix/residual
structures. Adding additional terms within a single-physics routine is straightforward,
requiring only adaptation of the equation map for the adapted functional fk.

5.5. Solution strategies. While the summed operator, f , introduced in (3.7)
implies the monolithic integration of the full set of operators fk ∈ f in a given
multiphysics problem, it is often undesirable (and, indeed, limiting) to rely purely
on monolithic forms. As detailed below, CHeart allows a broader range of solution
strategies.

To solve the problems constructed, we enable the decomposition of the set of
operators F into a solve group S. The object-set S is constructed of a series of
mutually exclusive subgroup objects, Sg ∈ S. While F provides all operators and
problems, S provides order and structure for carrying out the numerical solution. S
is related to F by
(5.3)

Sg = {fg} ⊆ F , F =
⋃

g

Sg, Sg ∈ S, and Si ∩ Sj = ∅, i ̸= j, Si, Sj ∈ S.

MULTIPHYSICS COMPUTING IN CHeart C21

Each subgroup is used to update the solutions for each of its problems, f ⊆ F . This is
done by first assigning to each problem an update method, which may be a Newton–
Raphson scheme, a linearized explicit scheme, or some combination, within a time
step. With an update method defined, CHeart updates the subgroup using either a
synchronous or a sequential manner—analogous to the difference between Jacobi and
Gauss–Seidel methods—which is based on previous data (synchronous) or the most
current updated data (sequential).

The application of updates to the subgroup either may be done once or may
be repeated using a fixed point criterion. The criteria used to terminate the fixed
point iteration may be defined to depend on the size of computed updates, residual
error, or some combination of the two (for more details, see [57]). In addition, when
linked with a fixed point procedure, the subgroup may also use line search [57], which
effectively scales all updates by a single scalar α ∈ (0, 1] to minimize residual error.
These procedures defined for each Sg are applied to each member of S sequentially.

6. Graph partitioning and parallelization. Efficient parallelization of FEM-
based procedures relies on an optimal mesh decomposition that minimizes communi-
cation overhead and achieves a good load balance amongst the processors. Often the
decomposition utilizes graph partitioning [12, 45], whereby the computational domain
is decomposed into a number of regions appropriate for the number of processors used.
This requires the construction of a graph G = {V ,E} which is composed of a set of
vertices V and edges E , and we seek to minimize the number of edge cuts required
to split G into N -partitions (with N being the number of parallel processors). Then,
a set of {V1, . . . ,VP } vertices is returned to the P -processes and is used to define a
final partitioning, {Ṽ1, . . . , ṼP }.

Most FEMs use elements within a mesh (or, in our case, topology) to denote the
vertices V of G, and define the edges E as the dual of the mesh,

(6.1) D(T)(e) = {ek ∈ {1, . . . , NE} | e and ek are neighbors }, e ∈ {1, . . . , NE},

where D(T) defines the neighboring elements for each element in the topology. The
final graph G = {{1, . . . , eT }, D(T)} can then be broken into N -partitions using
graph partitioning libraries, determining the set of vertices (or elements) {V1, . . . ,VP }
assigned to each processor. While this approach is standard, there are numerous
strategies for determining the final partitioning strategy {Ṽ1, . . . , ṼP }.

A common approach is so-called ghosting, where each set of vertices Vk on rank
k is used to construct the final element partition, Ṽk, by requiring that
(6.2)

Ṽk = {e ∈ {1, . . . , NE}|e and ei share a corner, edge, or face for some ei ∈ Vk}.

As a result, all coefficients which map into an element-level computation on Vk may
have their contribution entirely computed on the kth processor. However, as FEM-
based computations are, in general, heavily dependent on element-level computations
for which the time is dependent on factors such as interpolations/quadrature schemes
elected, this strategy has limited scalability potential. This is due to the facts that
Vk ⊂ Ṽk and that dim(Vk)/ dim(Ṽk) >> 1 as N >> 1. That is, the number of sur-
rounding elements grows, while the number of interior elements shrinks. In addition,
the introduction of ghost elements requires communication of all coefficients affili-
ated with these elements—a burden which also increases as the number of processors
increases. An alternative strategy, followed here, involves defining the element-level
graph partitioning Ṽ = V and adopting optimized communication strategies to relate
data across ranks (as outlined in [87]).

C22 LEE ET AL.

Color Rank

dark
blue

1–25

light
blue

26–50

green
51–75

yellow
76–100

red
100–125

Fig. 6.1. Left: Tetrahedral mesh of the heart consisting of 582K elements. Right: Half-section
of the heart with partitions labeled illustrating global graph partitioning across fluid-solid interfaces.

In our case, a global graph is constructed over the set of topologies Tp ⊆ T ,
making the vertices V = {1, . . . , NTp} of G equivalent to the total number of elements
NTp across all topologies in Tp. Here Tp uses a single representative topology for each
topology group to ensure that all one-to-one topologies are equivalently partitioned.
Moreover, we define a local to global element index map g(T, e) = E mapping each
element e of T ∈ Tp into a global element index E ∈ V . In our case, we define edges
E as the dual of the mesh/interface constructs. That is,

(6.3) D(Tp)(Ti, e) =

{
g(Ti, ek), where g(Ti, e) and g(Ti, ek) are neighbors

g(Tj, ek), where ek = ei,j(e) and Tj ∈ Tp\T

}
.

The final graph G = {V , D(Tp)} is then broken into N -partitions and the elements

{Ṽ1, . . . , ṼP } = {V1, . . . ,VP }. By construction, the global graph enables the incorpo-
ration of multiphysics coupling across different topologies (see Figure 6.1) to be built
into the partitioning strategy. To further improve balancing, different element-level
weights may be assigned to each topology (by default, this is based on the calcu-
lated cost of computing a mass matrix), allowing a priori balancing based on different
demands stemming from the physics.

7. Software implementation. CHeart is implemented in FORTRAN 2003 [42]
as a distributed parallel application using Message Passing Interface (MPI) [29] for
interprocess communication. Further detail regarding the implementation can be
found in the online supplement (M101409 01.pdf [local/web 4.23MB]).

8. Results. To illustrate the efficiency of the base infrastructure presented, a
series of parallel scalability tests is presented in section 8.1. To demonstrate the gener-
ality of the coupling infrastructure outlined, examples of major multiphysics problems
in cardiac modeling research are presented in the online supplement (M101409 01.pdf
[local/web 4.23MB]) along with a specific example for FSI given in section 8.2.

8.1. Parallel scalability performance. Parallel scaling tests were conducted
for fluid mechanics, solid mechanics, monodomain, and FSI problems. The details of
each simulation setup are summarized in Figure 8.1. These results were obtained on
HECToR, the National Supercomputing Service provided by UK research councils.
The Cray XE6 system features nodes with two 16-core AMD Opteron 2.3GHz Interla-
gos processors, each with access to 16GB RAM, and were coupled with a Cray Gemini

http://epubs.siam.org/doi/suppl/10.1137/15M1014097/suppl_file/M101409_01.pdf
http://epubs.siam.org/doi/suppl/10.1137/15M1014097/suppl_file/M101409_01.pdf

MULTIPHYSICS COMPUTING IN CHeart C23

S
p
e
e
d
u
p

Transient Navier–Stokes Solid Mechanics
S
p
e
e
d
u
p

Fluid-Structure Interaction Monodomain

32 64 128 256 512 1024
1

2

4

8

16

32

Total exec
Total solve
Residual
Mat build

Number of Processors

Physics Problem
Solver +
Preconditioner

Mesh Size +
DOFs

Element Type

Transient
Navier–Stokes

GMRES + BFBT
262K elements
2.4M DOFs

Quadratic/Linear
quadrilateral

Solid mechanics GMRES + ASM
122K elements
3M DOFS

Quadratic/Linear
hexahedra

Fluid-structure
interaction (FSI)

GMRES + ASM
582K elements
7.4M DOFS

Quadratic/Linear
Crouzeix–Raviart

Monodomain with
ten Tusscher (2006)

GMRES + Boomer-
AMG

63M elements
214M DOFS

Linear tetrahedra

Fig. 8.1. Parallel scaling results for fluid and solid mechanics, FSI, and monodomain problems.
The solid red line indicates linear scaling. Total execution time includes residual evaluation, matrix
build, and solve steps.

communications chip achieving node-to-node latency of 1–1.5µs. All simulations were
repeated at least three times, and the optimal results were used for the analysis. The
total execution time is defined as the sum of residual evaluation, matrix build, and
solve times but excludes initial setup, partitioning, and I/O times. In Navier–Stokes,
monodomain, and solid mechanics problems, linear scaling was observed in the total
execution time. In the FSI problem, a deviation from linear scaling was observed,
caused by the increased time spent in the linear solve steps. Residual and matrix
build times did not exhibit a significant loss in scalability.

8.2. Passive filling of left ventricle: FSI. In this example, we consider the
simulation of fluid-solid interaction in the passive left ventricle [68]. Due to an in-
creased pressure (preload), the left ventricular chamber of the heart fills with blood.

C24 LEE ET AL.

(a) t = 0.15 s (b) t = 0.30 s (c) t = 0.45 s

Fig. 8.2. Simulation of left ventricular filling under passive inflation, showing fluid streamlines
in the chamber and displacement in the fiber direction at different time points through diastole.

The passive tissue response of the heart wall is modeled using the nonlinear hypere-
lastic Costa law [14], which relies on the definition of local tissue microstructure using
an additional fiber field [69]. The blood flow was modeled using a conservative ALE
formulation [25] of the Navier–Stokes equations. Interpolation of both fluid and solid
phases used inf-sup stable pairings, with the fluid interpolated by P2 − P1 and the
solid by Q3 −Q2 elements.

Integration of this multiphysics system was achieved using monolithic coupling
(see Figure 5.1), where an additional Lagrange multiplier allows coupling between
the tetrahedral fluid and hexahedral solid grids (as detailed in [67]). The coupling
is enforced weakly with respect to the trace of the velocity space on the fluid-solid
boundary (i.e., using quadratic triangular elements). A coupling problem, introduced
in section 4.4, was used to enforce coupling, and variables were equated on the common
boundary using an injective interface onto the volume surface of the fluid and solid.

In addition to the monolithic fluid-solid-Lagrange multiplier system, the domain
motion during filling requires the solution of a grid motion problem to appropriately
adapt the fluid mesh. In this case, the ALE grid motion was solved using a sim-
ple Laplacian problem, where the boundary velocity was given by the solid motion
(although other options are available; see Table 2.1). This problem was seamlessly
integrated using a sequential fixed point solver strategy (see section 5.5), where the
monolithic system is solved, the ALE system is solved, and the updates are applied
simultaneously via a line search algorithm [57].

The results in Figure 8.2 show the passive filling cycle, marked by an initial pulse
of blood flow, the formation of a ring vortex, and a relaxation of inflow, followed by
a second pulse and second ring vortex [68].

9. Conclusion. In this work we have developed a generic and extensible compu-
tational modeling platform which successfully addresses the existing major challenges
in multiphysics coupling. CHeart overcomes the implementational challenges of cou-
pling different physics and mesh topologies through formal definitions of interfaces and
operator-, boundary condition– or Lagrange multiplier–based coupling procedures in
a generic manner. The matrix assembly procedure for the coupled system is handled
through the use of equation maps, which, through its modular design, gives users full
algorithmic configuration access without the need to engage in the lower-level details.

MULTIPHYSICS COMPUTING IN CHeart C25

The example provided for the FSI problem in the heart demonstrates the flexible
utility of partitioned and monolithic algorithms for multiphysics coupling combined
with efficient parallel scalability.

REFERENCES

[1] T. Arts, T. Delhaas, P. Bovendeerd, X. Verbeek, et al., Adaptation to mechanical load
determines shape and properties of heart and circulation: The circadapt model, Am. J.
Physiol., 288 (2005), pp. H1943–H1954.

[2] L. Asner, M. Hadjicharalambous, R. Chabiniok, D. Peresutti, E. Sammut, J. Wong,
G. Carr-White, P. Chowienczyk, J. Lee, A. King, N. Smith, R. Razavi, and D. Nord-
sletten, Estimation of passive and active properties in the human heart using 3D tagged
MRI, Biomech. Model. Mechan., (2015), http://dx.doi.org/10.1007/s10237-015-0748-z.

[3] L. Asner, M. Hadjicharalambous, J. Lee, and D. Nordsletten, Stacom challenge: Simu-
lating left ventricular mechanics in the canine heart, in Statistical Atlases and Computa-
tional Models of the Heart-Imaging and Modelling Challenges, Springer, New York, 2015,
pp. 123–134.

[4] S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. Gropp, D. Kaushik, M. Knepley,
L. Curfman McInnes, B. Smith, and H. Zhang, PETSc Users Manual, Tech. report
ANL-95/11 - Revision 3.3, Argonne National Laboratory, Lemont, IL, 2012.

[5] S. Balay, J. Brown, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C.
McInnes, B. F. Smith, and H. Zhang, PETSc Web Page, http://www.mcs.anl.gov/petsc
(2012).

[6] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, Efficient management of paral-
lelism in object oriented numerical software libraries, in Modern Software Tools in Scientific
Computing, E. Arge, A. M. Bruaset, and H. P. Langtangen, eds., Birkhäuser, Basel, 1997,
pp. 163–202.

[7] K. Bathe, Finite Element Procedures, Prentice–Hall, Englewood Cliffs, NJ, 1996.
[8] J. Boland and R. Nicolaides, Stability of finite elements under divergence constraints, SIAM

J. Numer. Anal., 20 (1983), pp. 722–731, http://dx.doi.org/10.1137/0720048.
[9] J. Bonet and R. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis, Cam-

bridge University Press, Cambridge, UK, 1997.
[10] C. Bradley, A. Bowery, R. Britten, V. Budelmann, O. Camara, R. Christie, A. Cook-

son, A. F. Frangi, T. B. Gamage, T. Heidlauf, S. Krittian, D. Ladd, C. Lit-
tle, K. Mithraratne, M. Nash, D. Nickerson, P. Nielsen, Ø. Nordbø, S. Omholt,
A. Pashaei, D. Paterson, V. Rajagopal, A. Reeve, O. Röhrle, S. Safaei, R. Se-
bastián, M. Steghöfer, T. Wu, T. Yu, H. Zhang, and P. Hunter, OpenCMISS: A
multi-physics and multi-scale computational infrastructure for the VPH/physiome project,
Prog. Biophys. Mol. Biol., 107 (2011), pp. 32–47.

[11] F. Brezzi and R. Falk, Stability of higher-order Hood–Taylor methods, SIAM J. Numer. Anal.,
28 (1991), pp. 581–590, http://dx.doi.org/10.1137/0728032.

[12] C. Chevalier and F. Pellegrini, PT-scotch: A tool for efficient parallel graph ordering,
Parallel Comput., 34 (2008), pp. 318–331.

[13] A. N. Cookson, J. Lee, C. Michler, R. Chabiniok, E. Hyde, D. A. Nordsletten, M. Sin-
clair, M. Siebes, and N. P. Smith, A novel porous mechanical framework for modelling
the interaction between coronary perfusion and myocardial mechanics, J. Biomech., 45
(2012), pp. 850–855.

[14] K. Costa, J. Holmes, and A. McCulloch, Modelling cardiac mechanical properties in three
dimensions, Phil. Trans. R. Soc. Lond. A, 359 (2001), pp. 1233–1250.

[15] O. Coussy, Poromechanics, Wiley, New York, 2004.
[16] M. Crouzeix and P. Raviart, Conforming and nonconforming finite element methods for

solving the stationary Stokes equations I, Rev. Française Automat. Informat. Recherche
Opérationnelle Ser. Rouge, 7 (1973), pp. 33–75.

[17] A. de Vecchi, A. Gomez, K. Pushparajah, T. Schaeffter, D. A. Nordsletten, J. M. Simp-
son, G. P. Penney, and N. P. Smith, Towards a fast and efficient approach for modelling
the patient-specific ventricular haemodynamics, Prog. Biophys. Mol. Biol., 116 (2014),
pp. 3–10.

[18] A. de Vecchi, D. Nordsletten, E. Remme, H. Bellsham-Revell, G. Greil, J. M. Simp-
son, R. Razavi, and N. P. Smith, Inflow typology and ventricular geometry determine
efficiency of filling in the hypoplastic left heart, Ann. Thorac. Surg., 94 (2012), pp. 1562–
1569.

http://dx.doi.org/10.1007/s10237-015-0748-z
http://www.mcs.anl.gov/petsc
http://dx.doi.org/10.1137/0720048
http://dx.doi.org/10.1137/0728032

C26 LEE ET AL.

[19] K. Devine, E. Boman, R. Heaphy, B. Hendrickson, and C. Vaughan, Zoltan data manage-
ment services for parallel dynamic applications, Comput. Sci. Eng., 4 (2002), pp. 90–97.

[20] F. Donati, C. A. Figueroa, N. P. Smith, P. Lamata, and D. A. Nordsletten, Non-invasive
pressure difference estimation from PC-MRI using the work-energy equation, Medical Im-
age Analysis, 26 (2015), pp. 159–172.

[21] J. Donea, An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-
structure interactions, Comput. Methods Appl. Mech. Engrg., 33 (1982), pp. 689–723.

[22] D. Endy and R. Brent, Modelling cellular behaviour, Nature, 409 (2001), pp. 391–395.
[23] M. Fink, S. A. Niederer, E. M. Cherry, F. H. Fenton, J. T. Koivumäki, G. Seemann,

R. Thul, H. Zhang, F. B. Sachse, D. Beard, E. J. Crampin, and N. P. Smith, Cardiac
cell modelling: Observations from the heart of the cardiac physiome project, Prog. Biophys.
Mol. Biol., 104 (2011), pp. 2–21.

[24] L. Formaggia, J. F. Gerbeau, and C. Prud’homme, LifeV Developer Manual, The LifeV
Project, EPFL, INRIA, Polytechnico Di Milano, 2001–2010; available online from https://
github.com/lifev/lifev/blob/master/doc/manual/lifev-manual.pdf.

[25] L. Formaggia and F. Nobile, Stability analysis of second-order time accurate schemes for
ALE-FEM, Comput. Methods Appl. Mech. Engrg., 193 (2004), pp. 4097–4116.

[26] L. Formaggia, F. Nobile, A. Quarteroni, and A. Veneziani, Multiscale modelling of the
circulatory system: A preliminary analysis, Comput. Vis. Sci., 2 (1999), pp. 75–83.

[27] G. H. Golub and C. F. Van Loan, Matrix Computations, Vol. 3, Johns Hopkins University
Press, Baltimore, MD, 2012.

[28] P. Gresho and R. Sani, Incompressible Flow and the Finite Element Method I: Advection-
Diffusion, John Wiley and Sons, New York, 1998.

[29] W. Gropp, E. Lusk, and R. Thakur, Using MPI-2: Advanced Features of the Message-
Passing Interface, MIT Press, Cambridge, MA, 1999.

[30] J. Guccione, K. Costa, and A. McCulloch, Finite element stress analysis of left ventricular
mechanics in the beating dog heart, J. Biomech., 28 (1995), pp. 1167–1177.

[31] M. Hadjicharalambous, R. Chabiniok, L. Asner, E. Sammut, J. Wong, G. Carr-White,
J. Lee, R. Razavi, N. Smith, and D. Nordsletten, Analysis of passive cardiac consti-
tutive laws for parameter estimation using 3D tagged MRI, Biomech. Model. Mechan., 14
(2015), pp. 807–828.

[32] M. Hadjicharalambous, J. Lee, N. P. Smith, and D. A. Nordsletten, A displacement-
based finite element formulation for incompressible and nearly-incompressible cardiac me-
chanics, Comput. Methods Appl. Mech. Engrg., 274 (2014), pp. 213–236.

[33] M. Heil and A. Hazel, oomph-lib—an object-oriented multi-physics finite-element library,
in Fluid-Structure Interaction, Lect. Notes Comput. Sci. Eng. 53, Springer, Berlin, 2006,
pp. 19–49.

[34] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda,
R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger,
H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring, A. Williams, and K. S. Stan-
ley, An overview of the Trilinos project, ACM Trans. Math. Softw., 31 (2005), pp. 397–423.

[35] C. W. Hirt, A. A. Amsden, and J. L. Cook, An arbitrary Lagrangian-Eulerian computing
method for all flow speeds, J. Comput. Phys., 14 (1974), pp. 227–253.

[36] G. A. Holzapfel and R. W. Ogden, Constitutive modelling of passive myocardium: A
structurally based framework for material characterization, Philos. Trans. A, 367 (2009),
pp. 3445–3475.

[37] A. Huerta and W. Liu, Viscous flow with large free surface motion, Comput. Methods Appl.
Mech. Engrg., 69 (1988), pp. 277–324.

[38] T. J. R. Hughes and A. N. Brooks, A theoretical framework for Petrov-Galerkin methods,
with discontinuous weighting functions: Application to the streamline upwind procedure, in
Finite Elements in Fluids, Vol. 4, John Wiley and Sons, Chichester, UK, 1982, pp. 47–65.

[39] T. J. R. Hughes and J. Lubliner, On the one-dimensional theory of blood flow in the larger
vessels, Math. Biosci., 18 (1973), pp. 161–170.

[40] T. J. R. Hughes, W. Liu, and T. K. Zimmermann, Lagrangian-Eulerian finite element formu-
lation for incompressible viscous flows, Comput. Methods Appl. Mech. Engrg., 29 (1981),
pp. 329–349.

[41] E. R. Hyde, A. N. Cookson, J. Lee, C. Michler, A. Goyal, T. Sochi, R. Chabiniok,
M. Sinclair, D. A. Nordsletten, J. Spaan, J. P. H. M. van den Wijngaard, M. Siebes,
and N. P. Smith, Multi-scale parameterisation of a myocardial perfusion model using
whole-organ arterial networks, Ann. Thorac. Surg., 42 (2014), pp. 797–811.

[42] ISO/IEC 1539-1:2004, Fortran – Part 1: Base Language, ISO, Geneva, Switzerland, 2004.
[43] G. Karniadakis and S. Sherwin, Spectral/hp Element Methods for Computational Fluid Dy-

https://github.com/lifev/lifev/blob/master/doc/manual/lifev-manual.pdf
https://github.com/lifev/lifev/blob/master/doc/manual/lifev-manual.pdf

MULTIPHYSICS COMPUTING IN CHeart C27

namics, Oxford University Press, Oxford, UK, 2005.
[44] G. Karypis and V. Kumar, A parallel algorithm for multilevel graph partitioning and sparse

matrix ordering, J. Parallel Distrib. Comput., 48 (1998), pp. 71–95.
[45] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irreg-

ular graphs, SIAM J. Sci. Comput., 20 (1998), pp. 359–392, http://dx.doi.org/10.1137/
S1064827595287997.

[46] P. Keast, Moderate degree tetrahedral quadrature formulas, Comput. Methods Appl. Mech.
Engrg., 55 (1986), pp. 339–348.

[47] R. C. P. Kerckhoffs, S. N. Healy, T. P. Usyk, and A. D. McCulloch, Computational
methods for cardiac electromechanics, Proc. IEEE, 94 (2006), pp. 769–783.

[48] S. Krittian, U. Janoske, H. Oertel, and T. Bhlke, Partitioned fluid–solid coupling for
cardiovascular blood flow: Validation study of pressure driven fluid–domain deformation,
Ann. Biomed. Engrg., 38 (2010), pp. 2676–2689.

[49] S. A. Lambert, S. P. Näsholm, D. A. Nordsletten, C. Michler, L. Juge, J.-M. Serfaty,
L. Bilston, B. Guzina, S. Holm, and R. Sinkus, Bridging three orders of magnitude:
Multiple scattered waves sense fractal microscopic structures via dispersion, Phys. Rev.
Lett., 115 (2015), 094301.

[50] J. Lee, A. Cookson, R. Chabiniok, S. Rivolo, E. Hyde, M. Sinclair, C. Michler, T. Sochi,
and N. Smith, Multiscale modelling of cardiac perfusion, in Modeling the Heart and the
Circulatory System, Springer, New York, 2015, pp. 51–96.

[51] J. Lee, D. Nordsletten, A. Cookson, S. Rivolo, and N. P. Smith, In silico coronary
wave intensity analysis: Application of an integrated one-dimensional and poromechanical
model of cardiac perfusion, Biomech. Model. Mechanobiol., (2016), pp. 1–21.

[52] A. Logg, K.-A. Mardal, and G. N. Wells, Automated Solution of Differential Equations by
the Finite Element Method, Springer, New York, 2012.

[53] C.-H. Luo and Y. Rudy, A model of the ventricular cardiac action potential. Depolarization,
repolarization, and their interaction, Circ. Res., 68 (1991), pp. 1501–1526.

[54] J. Lyness and D. Jespersen, Moderate degree symmetric quadrature rules for the triangle,
IMA J. Appl. Math., 15 (1975), pp. 19–32.

[55] L. E. Malvern, Introduction to the Mechanics of Continuous Medium, Prentice–Hall, Engle-
wood Cliffs, NJ, 1969.

[56] M. McCormick, D. Nordsletten, D. Kay, and N. Smith, Modelling left ventricular func-
tion under assist device support, Internat. J. Numer. Methods Biomed. Engrg., 27 (2011),
pp. 1073–1095.

[57] M. McCormick, D. Nordsletten, D. Kay, and N. Smith, Fluid–solid coupling methods
for simulating LV function through the full cardiac cycle, J. Comput. Phys., 244 (2013),
pp. 80–96.

[58] M. McCormick, D. Nordsletten, P. Lamata, and N. Smith, Computational analysis of the
importance of flow synchrony for cardiac ventricular assist devices, Comput. Biol. Med.,
49 (2014), pp. 83–94.

[59] R. McFarlane and I. V. Biktasheva, Beatbox - a computer simulation environment for
computational biology of the heart, in Proceedings of the BCS Int. Acad. Conf., 2008,
pp. 98–110.

[60] C. Michler, A. N. Cookson, R. Chabiniok, E. Hyde, J. Lee, M. Sinclair, T. Sochi,
A. Goyal, G. Vigueras, D. A. Nordsletten, and N. P. Smith, A computationally
efficient framework for the simulation of cardiac perfusion using a multi-compartment
Darcy porous-media flow model, Internat. J. Numer. Methods Biomed. Engrg., 29 (2013),
pp. 217–232.

[61] M. Nash and P. Hunter, Computational mechanics of the heart, J. Elasticity, 61 (2000),
pp. 113–141.

[62] S. A. Niederer, E. Kerfoot, A. P. Benson, M. O. Bernabeu, O. Bernus, C. Bradley,
E. M. Cherry, R. Clayton, F. H. Fenton, A. Garny, E. Heidenreich, S. Land,
M. Maleckar, P. Pathmanathan, G. Plank, J. F. Rodŕıguez, I. Roy, F. B. Sachse,
G. Seemann, O. Skavhaug, and N. P. Smith, Verification of cardiac tissue electrophysiol-
ogy simulators using an N-version benchmark, Philos. Trans. A, 369 (2011), pp. 4331–4351.

[63] A. Nijenhuis and H. Wilf, Combinatorial Algorithms for Computers and Calculators, Aca-
demic Press, New York, 1978.

[64] F. Nobile, Numerical Approximation of Fluid-Structure Interaction Problems with Application
to Haemodynamics, Ph.D. thesis, École Polytechnique Fédérale de Lausanne, Lausanne,
Switzerland, 2001.

[65] D. Noble, Modeling the heart—from genes to cells to the whole organ, Science, 295 (2002),
pp. 1678–1682.

http://dx.doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.1137/S1064827595287997

C28 LEE ET AL.

[66] D. Nordsletten, P. Hunter, and N. Smith, Conservative and non-conservative arbitrary
Lagrangian-Eulerian forms for ventricular flows, Internat. J. Numer. Methods Biomed.
Engrg., 56 (2008), pp. 1457–1463.

[67] D. Nordsletten, D. Kay, and N. Smith, A non-conforming monolithic finite element method
for problems of coupled mechanics, J. Comput. Phys., 20 (2010), pp. 7571–7593.

[68] D. Nordsletten, M. McCormick, P. Kilner, D. Kay, and N. P. Smith, Fluid-solid coupling
for the investigation of diastolic and systolic human left ventricular function, Internat. J.
Numer. Methods Biomed. Engrg., 27 (2011), pp. 1017–1039.

[69] D. Nordsletten, S. Niederer, M. Nash, P. Hunter, and N. P. Smith, Coupling multi-
physics models to cardiac mechanics, Prog. Biophys. Mol. Biol., 104 (2011), pp. 77–88.

[70] D. Nordsletten, N. Smith, and D. Kay, A preconditioner for the finite element approxima-
tion to the arbitrary Lagrangian–Eulerian Navier–Stokes equations, SIAM J. Sci. Comput.,
32 (2010), pp. 521–543, http://dx.doi.org/10.1137/08072958X.

[71] The OpenFOAM Foundation, OpenFOAM - The Open Source CFD Toolbox - User Guide,
OpenFOAM Foundation, Bracknell, UK, available online from http://www.openfoam.com/
documentation/user-guide/ (2016).

[72] F. Pellegrini and J. Roman, Scotch: A software package for static mapping by dual recursive
bipartitioning of process and architecture graphs, in High-Performance Computing and
Networking, Lecture Notes in Comput. Sci. 1067, H. Liddell, A. Colbrook, B. Hertzberger,
and P. Sloot, eds., Springer, Berlin, Heidelberg, 1996, pp. 493–498.

[73] J. Pitt-Francis, P. Pathmanathan, M. O. Bernabeu, R. Bordas, J. Cooper,
A. G. Fletcher, G. R. Mirams, P. Murray, J. M. Osborne, A. Walter, S. J. Chap-
man, A. Garny, I. M. M. van Leeuwen, P. K. Maini, B. Rodŕıguez, S. L. Waters,
J. P. Whiteley, H. M. Byrne, and D. J. Gavaghan, Chaste: A test-driven approach
to software development for biological modelling, Comput. Phys. Commun., 180 (2009),
pp. 2452–2471.

[74] J. P. Schmidt, S. L. Delp, M. A. Sherman, C. A. Taylor, V. S. Pande, and R. B. Altman,
The Simbios national center: Systems biology in motion, Proc. IEEE, 96 (2008), pp. 1266–
1280.

[75] G. Seemann, F. B. Sachse, M. Karl, D. L. Weiss, V. Heuveline, and O. Dössel, Frame-
work for modular, flexible and efficient solving the cardiac bidomain equations using
PETSc, in Progress in Industrial Mathematics at ECMI 2008, Mathematics in Industry,
A. D. Fitt et al., eds., Springer, Berlin, Heidelberg, 2010, pp. 363–369.

[76] S. J. Sherwin, V. Franke, J. Peiró, and K. Parker, One-dimensional modelling of a vas-
cular network in space-time variables, J. Engrg. Math., 47 (2003), pp. 217–250.

[77] Y. Shi and T. Korakianitis, Numerical simulation of cardiovascular dynamics with left heart
failure and in-series pulsatile ventricular assist device, Art. Organs, 30 (2006), pp. 929–948.

[78] Y. Shi, P. Lawford, and R. Hose, Review of zero-D and 1-D models of blood flow in the
cardiovascular system, Biomed. Eng. Online, 10 (2011), 33.

[79] N. P. Smith, A. J. Pullan, and P. J. Hunter, An anatomically based model of transient
coronary blood flow in the heart, SIAM J. Appl. Math., 62 (2002), pp. 990–1018, http://
dx.doi.org/10.1137/S0036139999355199.

[80] K. H. ten Tusscher and A. V. Panfilov, Alternans and spiral breakup in a human ventricular
tissue model, Am. J. Physiol. Heart Circ. Physiol., 291 (2006), pp. H1088–H1100.

[81] N. A. Trayanova, Whole-heart modeling applications to cardiac electrophysiology and elec-
tromechanics, Circ. Res., 108 (2011), pp. 113–128.

[82] E. J. Vigmond, C. Clements, D. McQueen, and C. Peskin, Effect of bundle branch block
on cardiac output: A whole heart simulation study, Prog. Biophys. Mol. Biol., 97 (2008),
pp. 520–542.

[83] E. J. Vigmond, M. Hughes, G. Plank, and L. J. Leon, Computational tools for modeling
electrical activity in cardiac tissue, J. Electrocardiol., 36 (2003), pp. 69–74.

[84] G. Vigueras, I. Roy, A. Cookson, J. Lee, N. Smith, and D. Nordsletten, Toward GPGPU
accelerated human electromechanical cardiac simulations, Int. J. Numer. Methods Biomed.
Eng., 30 (2014), pp. 117–134.

[85] N. Westerhof, J.-W. Lankhaar, and B. E. Westerhof, The arterial Windkessel, Med.
Biol. Eng. Comput., 47 (2009), pp. 131–141.

[86] J. H. Yang and J. J. Saucerman, Computational models reduce complexity and accelerate
insight into cardiac signaling networks, Circ. Res., 108 (2011), pp. 85–97.

[87] M. Zhou, O. Sahni, H. Kim, C. Figueroa, C. A. Taylor, M. S. Shephard, and K. E. Jansen,
Cardiovascular flow simulation at extreme scale, Comput. Mech., 46 (2009), pp. 71–82.

[88] O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, Elsevier, Amsterdam,
2000.

http://dx.doi.org/10.1137/08072958X
http://www.openfoam.com/documentation/user-guide/
http://www.openfoam.com/documentation/user-guide/
http://dx.doi.org/10.1137/S0036139999355199
http://dx.doi.org/10.1137/S0036139999355199

	Introduction
	Core single-physics module
	Scalar transport
	Solid mechanics
	Fluid mechanics
	Darcy flow
	1D fluid flow
	ODE and DAE systems

	FEM weak form construction
	Basis generation
	Topologies
	Interfaces
	Variables and function spaces
	Expressions
	General weak form systems

	Physics coupling
	Coupling via existing operators
	Coupling via boundary conditions
	Coupling via expressions
	Monolithic integration via coupling operators or Lagrange multipliers

	Assembly, matrix operations, and building
	FEM element assembly
	Equation mappings
	Matrix assembly and monolithic integration
	Matrix and residual evaluations
	Solution strategies

	Graph partitioning and parallelization
	Software implementation
	Results
	Parallel scalability performance
	Passive filling of left ventricle: FSI

	Conclusion
	References

