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ABSTRACT: Elucidating the interplay between shape, chemical composition,
and catalytic activity is an essential task in the rational nanocatalyst design process.
We investigated the activity of MgO-supported PtNi nanoalloys of ∼1.5 nm
toward the oxygen reduction reaction using first-principles simulations.
Cuboctahedral-shaped particles result to be more active than truncated octahedra
of similar sizes, and alloying produces a quantitative improvement in the catalytic
activity independent of the catalyst morphology. Our results suggest a practical
recipe for catalyst nanoengineering controlling the chemical composition at the
metal/oxide interface. Indeed, Ni atoms in contact with the oxide support reduce
the binding energy of molecular oxygen at different adsorption sites.

KEYWORDS: ORR, Pt, nanoparticle, nanoalloy, core−shell, generalized coordination number, PEMFC, catalyst-by-design

■ INTRODUCTION

Nanocatalysis is a rapidly growing technology widely applied in
chemical synthesis and energy storage. Heterogeneous nano-
catalysts are composed by metallic nanoparticles (NPs) ranging
from aggregates of tens of atoms to nanoarchitectures of several
thousands, dispersed or encapsulated onto supports.1 The
control of particle size, morphology, and chemical composition,
while ensuring thermal and chemical stability, allows the
production of selective long-lifetime nanocatalysts that present
high activity, compared to bulk materials. Understanding the
molecular mechanisms behind the high catalytic activity of
metallic nanoalloys, together with the prediction of their
structural stability, are key steps in engineering alternative
materials with same or improved catalytic performance but
presenting lower manufacturing costs and higher poisoning
resistance.2−4

Pt nanoparticles are widely employed as nanocatalysts. For
example, they are the active constituent of electrodes used in
proton exchange membrane fuel cells (PEMFCs). However,
they exhibit sluggish kinetics for the reduction of molecular
oxygen (oxygen reduction reaction, ORR), the semireaction at
the cathode, which is one of the main hindrances for their
application in the automotive industry.5,6 The ORR rate can be
improved via deposition of a thin Pt shell over a transition-
metal core7 of Au,8 Cu,9 and Ni,10−13 in place of the pure Pt
electrode. Moreover, alloyed and doped Pt nanoclusters display
a better resistance to poisoning.14,15 It was recently shown that
platonic shapes,16 but also dealloyed17 nanoporous structures,
yield to very active PtNi nanocatalysts for ORR reaction. One
of the open questions is then related to the description of a
“catalyst-by-design” route instead of a “mixing and baking” or
“trial and error” procedure.

The structural characterization of a metallic nanoparticle and
the mapping of its active sites, the so-called “chemisorption”
map, provides a path to rationalize and manipulate the
physicochemical properties of a cluster. Numerical modeling
based on density functional theory (DFT) is a very robust aid
in nanocatalyst design, which allows one to discern and
disentangle the effect of shape, chemical composition, and
interaction with the support.18

This work focuses on the molecular oxygen adsorption, the
starting point of any mechanisms for the ORR, and it aims to
clarify how the morphology and the chemical ordering of
supported PtNi clusters affects the chemisorption of O2 at
different sites. According to the Sabatier principle19 and
following the observation that the rate-limiting steps for the
ORR upon Pt3Ni and PtNi surfaces are the dissociation and/or
protonation of molecular oxygen,20,21 a rational design of these
nanoalloys will seek to weaken the O2 interaction with the
metallic NP. Free and small PtNi nanoalloys, up to ∼50 atoms,
bind O2 too strongly and therefore undergo significant
adsorbate-induced distortions, resulting in an inability to
catalyze ORR.22 MgO-supported nanoparticles at sizes smaller
than 58 atoms still show severe rearrangements, making the
alloying effect not so clear.23 Here, we considered a
cuboctahedron (CO) of 86 atoms and a truncated octahedron
(TO) of 82 atoms, with an approximate diameter of 1.5 nm,
both soft-landed on MgO(100). For those larger sizes, we did
not observe any severe rearrangements, even after the
adsorption of O2. The adsorption map of the supported
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bimetallic nanoparticles is proposed and discussed in terms of
the generalized coordination number (GCN). The GCN,
recently introduced by Sautet and co-workers, is a new
descriptor as robust as the center of the d-band, which
establishes a direct link between geometry and adsorption map
as well as activity.24−26 At the best of our knowledge, this is the
first study where the GCN is calculated and used for oxide-
supported bimetallic systems.
Interestingly, we found that the chemical composition at the

oxide interface tunes the chemisorption map and then likely the
catalytic activity. A few Ni atoms in contact with the MgO
substrate turn a PtNi cuboctahedron into a very promising
nanocatalyst for ORR.

■ COMPUTATIONAL METHOD

We perform periodic density functional theory (DFT)
calculations using a slab model approach. All calculations are
performed using the VASP package.27 We consider two
different geometries: a cuboctahedron (CO) and a truncated
octahedron (TO) of 86 and 82 atoms, respectively (see Figure
1). They are both obtained from larger CO and TO of 147 and
201 atoms, cut and deposited along the {100} plane. We
considered PtshellNicore systems give Pt a tendency to segregate
to the uppermost shell, because of its larger dimensions and
lower surface energy.20 According to recent computer
simulations and experiments, the lack of vacancies in the Nicore
reduces the Ni dissolution rate substantially, stabilizing
PtshellNicore chemical ordering.28−30 Since very small Ni clusters
have a tendency to flatten and oxidize,31 it is likely that Ni
atoms try to segregate at the interface instead of at the cluster
surface. Therefore, two chemical arrangements are examined:

the “sandwich” configuration, a proper PtshellNicore ordering
with a pure Pt monolayer in contact with the substrate and the
“Ni at the interface (Ni@I)”, where mainly Ni atoms are
touching the oxide. We considered a Pt65Ni21 (sandwich) and a
Pt56Ni30 (Ni@I) with CO86 morphology, corresponding to
75.6% Pt and 65% Pt, respectively; a Pt69Ni13 (sandwich) and a
Pt53Ni29 (Ni@I) for the TO82 shape, where the Pt loading is at
84% and 65%, respectively. A schematic representation of our
systems and their chemical ordering is provided in Figure 1.
Each nanoarchitecture was deposited onto a MgO (7 × 7)

supercell composed by three atomic layers frozen in their
optimized bulk atomic position (a = 4.238 Å). Interaction
between replicas along the z-axis is avoided, separating them by
∼17 Å, while clusters are at least ∼5 Å far apart in the xy-plane.
Although magnesium oxide may be not the best material for

an electrode, it provides a very good platform to tackle the
epitaxial strain effects induced into the metallic systems. Among
other oxide substrates, it acts as a paradigmatic example of an
almost rigid, strongly interacting support. It has a single, well-
characterized, nonreducible crystal phase showing a stable
nonpolar (001) surface. MgO is widely used in experiments,32

and from the computational point of view, it can be accurately
treated with standard ab initio methods, because it does not
have any peculiar magnetic behavior. Within the standard DFT
framework, the exchange and correlation contribution to the
total energy of the system has been estimated using the PBE
flavor of the generalized gradient approximation.33 The valence
electrons of the system are represented using a plane wave
(PW) basis set whose associated maximum kinetic energy did
not exceed the value of 380 eV, whereas the core electrons have
been described according to the projected augmented wave

Figure 1. TO82 and CO86 are shown in the top and bottom rows, respectively. The central column reports the top and side view of the clusters,
where (100) facets are shadowed. A pictorial decomposition along the direction perpendicular to the substrate is sketched on the left and right panels
for the Ni@I and sandwich chemical orderings, respectively. Pt atoms are shown in gray, Ni are shown in blue, and red and pink represent O and Mg
atoms, respectively.
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(PAW) approximation.34 Thus, 2 valence electrons have been
considered explicitly for each Mg atom, 6 for each O atom, and
10 for each Ni or Pt atom. Sampling in the reciprocal space has
been performed at the Γ-point. The self-consistent procedure
for the optimization of the wave function was performed until
the energies calculated in two subsequent steps differed by <1
meV.
Spin polarization was included to properly describe the open-

shell nature of the oxygen molecule and the magnetic behavior
of Ni and Pt at the nanoscale.35,36 Dipole correction was
applied perpendicularly to the oxide surface. Deposited
nanoparticles showed a finite magnetic moment in the range
of 26−37 Bohr magnetons. In Table SI 1 in the Supporting
Information, we compare the total magnetization of pure Pt,
pure Ni, and PtNi NPs in the gas phase and oxide-supported.
During each geometrical optimization, the metallic cluster and
the molecule were relaxed using a conjugate-gradient algorithm
until forces on atoms were <0.05 eV/Å. This computational
setup proved to be accurate enough for a description of the
basic physics of the system and for the purpose of this work.
Test calculations using stricter convergence criteria (maximum
kinetic energy of <415 eV, forces of <0.03 eV/Å) produce tiny
variations in the calculated adsorption energies and geometries,
while retaining the relative energy order among adsorption
sites.
We would like to briefly comment on the stability of the

PtshellNicore systems. A rather detailed investigation of the
mechanism and kinetic of degradation is presented in ref 17.
However, it has been observed that the core−shell chemical
ordering has a sufficiently long lifetime to be detected
experimentally,37 and, generally speaking, chemical reordering
can be a complex and slow process.38 In the eventuality that Ni
atoms migrate from the core to the uppermost layer, one can
expect a stronger binding of the oxygen molecule, as it has been
shown in the gas phase.22 The stability of supported PtNi
nanoalloys can be also discussed in terms of their adhesion
energy (Eadh), defined as the energy difference between the
relaxed structure after/before the deposition. As reported in
Table SI 2 in the Supporting Information, Eadh has a tendency
to increase when Ni atoms are present at the interface. TO82
and CO86 have 32 and 25 interfacial atoms, respectively, with a
Eadh value per contact atom of ∼0.4−0.6 eV. Note that the
considered shapes have different wetting angles, calculated as
the dihedral angle between the vector normal to the surface of
the nanoparticle and the vector lying on the MgO(001) surface.
For (111) facets, the wetting angle varies between 126.8° to
135°, following the order CO (sandwich) < TO (sandwich) ≤
TO (Ni@I) ≪ CO (Ni@I).
The extent of the interaction between the oxygen molecule

and the nanoparticle, hereafter referred as adsorption or
chemisorption energy (Eads), is calculated as

= − − −+E E E E( )ads supN O supN O2 2 (1)

where EsupN+O2
is the total energy of the supported nanocluster

and adsorbed O2 molecule system and EsupN and EO2
are the

energies of the clean supported metallic nanoparticle and of the
relaxed O2 molecule, respectively. According to this definition,
a stronger interaction is associated with a more positive value of
Eads. Adsorption involving Pt atoms of the inferior layer of the
NP in direct contact with the oxide was intentionally
disregarded.

In order to differentiate the chemical environment of each
adsorption site, despite the shape, composition, and size of the
cluster, we calculate the generalized coordination number
(GCN) per each site.24,25 The GCN of a site i is defined as its
coordination number weighted by the coordination of its
neighboring atoms:

∑=
=

i
j

GCN( )
CN( )
CNj

n

1 max

i

(2)

where the sum runs over all nearest neighbors ni of each atom i
of a given site. Each neighbor counts then as its coordination
number divided by the maximum coordination number of that
adsorption site. The threshold distance to calculate the
coordination number is based on the pair distribution function
(see Figure SI 1 in the Supporting Information). It is important
to note that, besides the mismatch between Pt and Ni, it is
possible to clearly identify the peak of the first neighbor shell.
We found that it is not necessary to explicitly differentiate the
two chemical species, as discussed in the Supporting
Information. Indeed, the effect of a different weight per each
chemical species based on their Pauling electronegativity has a
negligible effect on the linear fitting of the chemisorption
energies against the GCN (see Figure SI 2 in the Supporting
Information). Therefore, we opt to use the simplest
formulation, as described in eq 2.
In our case, we keep CNmax = 18, because the molecular

oxygen adsorption always occurs in a on-top on-top
configuration, over two atoms of the Ptshell. GCN can
distinguish symmetrically equivalent sites, rationalizing their
different chemisorption energies since weaker interaction
occurs where generalized coordination is higher.26 Hence, it
is possible to define ranges for which adsorption is favored but
still weak enough to improve the ORR activity, compared to
pure Pt. The GCN allows to analyze the Eads as a function of
the coordination of the adsorption site, to directly compare
nanoclusters with different compositions, and to discriminate
the effect of the substrate.

■ RESULTS AND DISCUSSION
Despite their reduced dimensions, PtNi clusters exhibit a
variety of nonequivalent adsorption sites (NEAS) intrinsic in
their morphology. We count 7 and 9 NEAS for the TO82 and
CO86, respectively. We consider only on-top on-top sites,
where each O atom of the molecule interacts with one Pt atom.
For the sake of clarity, we group NEAS on the basis of the
geometrical position of the Pt-bridge underneath O2, as
depicted in Figure 2. For example, “Vertex-Edge” means that
O2 adsorbs on a vertex and one of its nearest neighbor along an
edge; similarly, (111)2 and (100)2 stand for a molecule upon a
(111) or (100) facet, respectively.
The same nomenclature in Figure 2 is used in Figure 3,

where the adsorption energies are reported and compared
against pure Pt and Ni cuboctahedra and truncated octahedra.
As expected, the adsorption on pure Ni is much stronger than
Pt, and generally TO82 has a tendency to bind O2 more than
CO86.
Figure 3 forecasts an improvement in the ORR activity after

alloying. On ∼1.5 nm PtNi nanoalloys (red and black symbols)
the adsorption energies range is 0.1−1.5 eV, which is usually
weaker than on pure Pt clusters (blue symbols), and, on
average, it is reduced, compared to extended Pt surfaces (green
dotted lines from ref 39). Surprisingly, the contact between the
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Nicore and the oxide reduces the O2 adsorption energy on all
sites. For example, upon a TO82(111) facet, Eads is reduced
from 0.4 eV for “sandwich” chemical ordering to 0.2 eV for the
Ni@I case. On sites where O2 bridges an atom of the (100)
facet with one of the edge, Eads changes from 0.9 eV to 0.7 eV.
A similar trend is observed on the CO86. Furthermore, the
presence of Ni atoms at the interface in the TO broadens the
adsorption energy window, with respect to the sandwich
chemical ordering, from 0.8 eV to 1.3 eV. We would like to
note that the number of sites within an adsorption energy range
can be tuned by the chemical composition of the interface layer.
Referring to the upper limit for the binding energy of molecular
oxygen on Pt(111),19,40 the number of sites with Eads ≤ 0.75 eV
increases from two to three on the TO82 and from four to five
on the CO86 when Ni atoms touch the MgO. We would like to
highlight the size and the support effects. Decreasing the NP

size seems to produce an increase in Eads, while the presence of
the oxide support results in a general weakening of the
interaction with O2. DFT calculations on supported PtNi
nanoparticles with <58 atoms show an adsorption energy
window of 0.2−1.9 eV;23 whereas, in the gas phase, the
adsorption energy window of PtNi nanoalloys (magenta lines in
Figure 3) is 0.5−2.2 eV.22

As expected, the less-coordinated sites, featuring edge or
vertex atoms, show stronger binding. Notwithstanding, the
relationship between the calculated adsorption energy and
nominal total coordination number is far from straightforward.
A quantitative analysis of the geometrical strain, induced by a
different chemical composition at the interface and by the
presence of the support, can be rationalized in terms of the
generalized coordination number, as defined in eq 2. The GCN
of same type of adsorption site may vary largely from one
structure to another, depending on the alloying and on the
interaction with the support, leading to important changes in
the final adsorption energy. The full list of GCN values per
each class of adsorption sites is reported in Table SI 2 in the
Supporting Information.
A scatter diagram of the adsorption energy versus generalized

coordination number is sketched in Figure 4. First, we can

generalize what has been observed for free and pure Pt
nanoparticles.25 Indeed, less-generalized coordinated sites bind
a molecule stronger, even on alloyed and supported clusters.
We note that an adsorption energy of <0.75 eV is ensured on
sandwich structures for sites with a GCN > 8 and the same
condition is satisfied when GCN ≥ 7 if we consider a Ni@I
chemical ordering. Looking at the linear fitting of the calculated
adsorption energies (indicated by the dashed lines in Figure 4),
it is evident that (i) the interaction with molecular oxygen is
weaker on CO than TO, and (ii) it is further reduced for Ni@I
chemical ordering. The intercept seems to be dependent mostly
on the chemical composition at the interface instead of the
morphology.
The adsorption energy trends seen in Figures 3 and 4 can be

partially rationalized in terms of the d-band center calculated

Figure 2. Nonequivalent adsorption sites nomenclature. In the left and
middle panels, the color-code distinguishes geometrically equivalent
atomic positions; atoms on facet are orange, atoms on the edge are
blue; atoms on the vertex are gray. Each adsorption site is defined
following the legend on the right panel. A full orange (blue) circle
refers to the adsorption on two Pt atoms of a facet (edge); the two-
color symbols indicate adsorption over two geometrical different
atoms: vertex−edge (gray−blue), vertex−facet (gray−orange), and
edge−facet (blue−orange).

Figure 3. DFT-calculated adsorption energy (Eads) (eV) for O2 on
CO86 (circles, ○) and TO82 (squares, □) for pure Pt (blue) and Ni
(orange) and for PtNi Ni@I (black) and sandwich (red) clusters. Each
adsorption site follows the nomenclature given in Figure 2. For
reference, green dotted lines are values for adsorption on Pt(111) and
stepped Pt(321), taken from ref 39; magenta lines refer to the weakest
and strongest adsorption on the gas phase PtNi clusters, taken from ref
22.

Figure 4. Adsorption energy, Eads (eV) vs GCN for all different sites
on TO82 (top panel) and CO86 (bottom panel), and for sandwich
(circles, ○) and Ni@I (squares, □) chemical ordering. Circle and
square symbols are colored according to Figure 2. The red (green)
dashed line refers to the linear fit for sandwich (Ni@I) data.
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for the supported PtNi systems (see Table SI 5 in the
Supporting Information). A comparison between Ni and Pt
monometallic d-centers confirms that pure Ni clusters bind O2
much stronger than pure Pt, and there is evidence of a
weakening of the adsorption of an oxygen molecule onto Ni@I,
compared to the sandwich chemical ordering. Nonetheless, the
GCN captures the small atomic distortions, caused by alloying
and chemical ordering, better. Therefore, it seems to be a more
robust descriptor to distinguish the huge variety of adsorption
sites of a nanoparticle, and finally for its rational design as a
nanocatalyst.
Taking into account the GCN values calculated for the gas

phase monometallic nanoparticles,25 we can claim that the
oxide support and Ni alloying shift the GCN from a 2−7
window toward a 5−11 window, with a net decrease in the O2
adsorption energy from a range of 0.5−2.2 eV to a range of
0.1−1.5 eV. Considering then our results and the activity-
coordination plot in ref 26, although a direct comparison is not
straightforward, PtNi nanoparticles with a diameter of at least
1.5 nm and an engineered chemical interface seem to be very
promising nanocatalysts to improve the sluggish ORR reaction.
In order to gain some insights on the predominant mechanism
of the ORR on our supported PtNi systems, we calculated the
adsorption map for a OOH molecule upon a limited number of
sites. Adsorption energies and GCN values for the OOH
adsorption are reported in Table SI 6 in the Supporting
Information. We can summarize our findings as follows:

(i) The OOH is not stable on sites characterized by a low
GCN and spontaneously dissociates to form an O atom
and a OH group; and

(ii) The OOH is stable on high GCN sites, with an
adsorption energy, with respect to the gas-phase
molecular oxygen and hydrogen, of 3.5−3.8 eV.

We further estimate a difference in the activation barrier for the
dissociation of molecular oxygen of ∼0.4 eV between high and
low GCN sites. Although a full kinetic study is still needed,
there is an indication that the associative/dissociative
mechanisms are linked to high/low generalized coordination
sites, respectively.

■ CONCLUSIONS

Although it is often claimed that the nanominiaturization of Pt
catalysts is a practical way to reduce costs, as well as improve
performance, the a priori identification of a route is not so
obvious, because of many different effects. Here, we showed
how the substrate and alloying effects influence the adsorption
properties of PtshellNicore nanoparticles supported on a rigid
oxide, such as MgO(100). Indeed, we found that, already, at
sizes as small as 1.5 nm, PtshellNicore structures present a variety
of nonequivalent sites and the O2 adsorption varies widely from
one site to another, respecting the general rule “lower site
coordination = stronger interaction”. We showed that, overall,
the site coordination can be tuned by changing the chemical
composition at the interface with the support. This relationship
has been quantified by means of the generalized coordination
number (GCN), which can distinguish symmetry-equivalent
sites and establish a link between geometry, adsorption, and
activity.26 Our results can be summarized as follows:

(i) The support and the alloying shifts the GCN adsorption
window (5−11) at a higher values, with respect to the
gas phase (2−7);25

(ii) Hence, there are several sites characterized by a
promising adsorption energy;

(iii) Molecular oxygen has a tendency to interact less on a
cuboctahedral geometry than on an octahedral geometry;

(iv) Ni atoms in contact with the oxide support reduce the
adsorption energy of molecular oxygen;

(v) there is an indication that the OOH formation occurs
only on high GCN sites; and

(vi) there is an indication that the activation barrier for O2
dissociation is strongly dependent on the GCN.

The choice of a Pt dopant with a large mismatch (e.g., Cu, Ni,
Fe) works in the direction of increasing the generalized
coordination of adsorption sites. The interaction strength
window can be tuned by the design of the nanoparticle and by
the chemical composition at the interface (which causes small
rearrangements and then a different coordination of the
adsorption sites). We hope that our observations based
essentially on geometrical properties of supported bimetallic
nanoparticles will open new routes to the rational design of
multipurpose nanocatalysts.
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