
Optimal bounds for computing α-gapped repeats

Maxime Crochemore1, Roman Kolpakov2,?, and Gregory Kucherov3

1 King’s College London, London WC2R 2LS, UK and Université Paris-Est, France,
Maxime.Crochemore@kcl.ac.uk

2 Lomonosov Moscow State University, Leninskie Gory, Moscow, 119992 Russia,
foroman@mail.ru

3 LIGM/CNRS, Université Paris-Est, 77454 Marne-la-Vallée, France,
Gregory.Kucherov@univ-mlv.fr

Abstract. Following (Kolpakov et al., 2013; Gawrychowski and Manea,
2015), we continue the study of α-gapped repeats in strings, defined as
factors uvu with |uv| ≤ α|u|. Our main result is the O(αn) bound on the
number of maximal α-gapped repeats in a string of length n, previously
proved to be O(α2n) in (Kolpakov et al., 2013). For a closely related
notion of maximal δ-subrepetition (maximal factors of exponent between
1+δ and 2), our result implies the O(n/δ) bound on their number, which
improves the bound of (Kolpakov et al., 2010) by a logn factor.

We also prove an algorithmic time bound O(αn+ S) (S size of the out-
put) for computing all maximal α-gapped repeats. Our solution, inspired
by (Gawrychowski and Manea, 2015), is different from the recently pub-
lished proof by (Tanimura et al., 2015) of the same bound. Together with
our bound on S, this implies an O(αn)-time algorithm for computing all
maximal α-gapped repeats.

1 Introduction

Notation and basic definitions. Let w = w[1]w[2] . . . w[n] = w[1 . . n] be an arbi-
trary word. The length n of w is denoted by |w|. For any 1 ≤ i ≤ j ≤ n, word
w[i] . . . w[j] is called a factor of w and is denoted by w[i . . j]. Note that notation
w[i . . j] denotes two entities: a word and its occurrence starting at position i in
w. To underline the second meaning, we will sometimes use the term segment.
Speaking about the equality between factors can also be ambiguous, as it may
mean that the factors are identical words or identical segments. If two factors
u, v are identical words, we call them equal and denote this by u = v. To ex-
press that u and v are the same segment, we use the notation u ≡ v. For any
i = 1 . . . n, factor w[1 . . i] (resp. w[i . . n]) is a prefix (resp. suffix) of w. By posi-
tions on w we mean indices 1, 2, . . . , n of letters in w. For any factor v ≡ w[i . . j]
of w, positions i and j are called respectively start position and end position
of v and denoted by beg(v) and end(v) respectively. Let u, v be two factors of w.

? The author was partially supported by Russian Foundation for Fundamental Re-
search (Grant 15-07-03102).

Factor u is contained in v iff beg(v) ≤ beg(u) and end(u) ≤ end(v). Letter w[i]
is contained in v iff beg(v) ≤ i ≤ end(v).

A positive integer p is called a period of w if w[i] = w[i + p] for each i =
1, . . . , n−p. We denote by per(w) the smallest period of w and define the exponent
of w as exp(w) = |w|/per(w). A word is called periodic if its exponent is at least 2.
Occurrences of periodic words are called repetitions.

Repetitions, squares, runs. Patterns in strings formed by repeated factors are
of primary importance in word combinatorics [1] as well as in various applica-
tions such as string matching algorithms [2, 3], molecular biology [4], or text
compression [5]. The simplest and best known example of such patterns is
a factor of the form uu, where u is a nonempty word. Such repetitions are
called squares. Squares have been extensively studied. While the number of
all square occurrences can be quadratic (consider word an), it is known that
the number of primitively-rooted squares is O(n log n) [3], where a square uu
is primitively-rooted if the exponent of u is not an integer greater than 1. An
optimal O(n log n)-time algorithm for finding all primitively-rooted squares was
proposed in [6].

Repetitions can be seen as a natural generalization of squares. A repetition
in a given word is called maximal if it cannot be extended by at least one letter
to the left nor to the right without changing (increasing) its minimal period.
More precisely, a repetition r ≡ w[i . . j] in w is called maximal if it satisfies the
following conditions:

1. w[i− 1] 6= w[i− 1 + per(r)] if i > 1,
2. w[j + 1− per(r)] 6= w[j + 1] if j < n.

For example, word cababaaa has two maximal repetitions: ababa and aaa. Max-
imal repetitions are usually called runs in the literature. Since any repetition
is contained in some run, the set of all runs can be considered as a compact
encoding of all repetitions in the word, and can then be used to efficiently in-
fer various useful properties related to repetitions [7]. For any word w, we de-
note by R(w) the number of maximal repetitions in w and by E(w) the sum
of exponents of all maximal repetitions in w. Let R(n) = max|w|=nR(w) and
E(n) = max|w|=n E(w). The following statements are proved in [8].

Theorem 1. E(n) = O(n).

Corollary 1. R(n) = O(n).

A series of papers (e.g., [9, 10]) focused on more precise upper bounds on E(n) and
R(n) trying to obtain the best possible constant factor behind the O-notation.
A breakthrough in this direction was recently made in [11] where the so-called
“runs conjecture” R(n) < n was proved. To the best of our knowledge, the
currently best upper bound R(n) ≤ 22

23n on R(n) is shown in [12].
On the algorithmic side, an O(n)-time algorithm for finding all runs in a word

of length n was proposed in [8] for the case of constant-size alphabet. Another
O(n)-time algorithm, based on a different approach, has been proposed in [11].

The O(n) time bound holds for the (polynomially-bounded) integer alphabet
as well, see, e.g., [11]. However, for the case of unbounded-size alphabet where
characters can only be tested for equality, the lower bound Ω(n log n) on com-
puting all runs has been known for a long time [13]. It is an interesting open
question (raised over 20 years ago in [14]) whether the O(n) bound holds for an
unbounded linearly-ordered alphabet. Some results related to this question have
recently been obtained in [15].

Gapped repeats and subrepetitions. Another natural generalization of squares are
factors of the form uvu where u and v are nonempty words. We call such factors
gapped repeats. For a gapped repeat uvu, the left (resp. right) occurrence of u is
called the left (resp. right) copy, and v is called the gap. The period of this gapped
repeat is |u| + |v|. For a gapped repeat π, we denote the length of copies of π
by c(π) and the period of π by p(π). Note that a gapped repeat π = uvu may
have different periods, and per(π) ≤ p(π). For example, in string cabacaabaa,
segment abacaaba corresponds to two gapped repeats having copies a and aba

and periods 7 and 5 respectively. Gapped repeats forming the same segment but
having different periods are considered distinct. This means that to specify a
gapped repeat it is generally not sufficient to specify its segment. If u′, u′′ are
equal non-overlapping factors and u′ occurs to the left of u′′, then by (u′, u′′)
we denote the gapped repeat with left copy u′ and right copy u′′. For a given
gapped repeat (u′, u′′), equal factors u′[i . . j] and u′′[i . . j], for 1 ≤ i ≤ j ≤ |u′|,
of the copies u′, u′′ are called corresponding factors of repeat (u′, u′′).

For any real α > 1, a gapped repeat π is called α-gapped if p(π) ≤ αc(π).
Maximality of gapped repeats is defined similarly to repetitions. A gapped repeat
(w[i′ . . j′], w[i′′ . . j′′]) in w is called maximal if it satisfies the following conditions:

1. w[i′ − 1] 6= w[i′′ − 1] if i′ > 1,
2. w[j′ + 1] 6= w[j′′ + 1] if j′′ < n.

In other words, a gapped repeat π is maximal if its copies cannot be extended
to the left nor to the right by at least one letter without breaking its period
p(π). As observed in [16], any α-gapped repeat is contained either in a (unique)
maximal α-gapped repeat with the same period, or in a (unique) maximal rep-
etition with a period which is a divisor of the repeat’s period. For example, in
the above string cabacaabaa, gapped repeat (ab)aca(ab) is contained in maxi-
mal repeat (aba)ca(aba) with the same period 5. In string cabaaabaaa, gapped
repeat (ab)aa(ab) with period 4 is contained in maximal repetition abaaabaaa

with period 4. Since all maximal repetitions can be computed efficiently in O(n)
time (see above), the problem of computing all α-gapped repeats in a word can
be reduced to the problem of finding all maximal α-gapped repeats.

Several variants of the problem of computing gapped repeats have been stud-
ied earlier. In [17], it was shown that all maximal gapped repeats with a gap
length belonging to a specified interval can be found in time O(n log n + S),
where n is the word length and S is output size. In [18], an algorithm was pro-
posed for finding all gapped repeats with a fixed gap length d running in time
O(n log d + S). In [16], it was proved that the number of maximal α-gapped

repeats in a word of length n is bounded by O(α2n) and all maximal α-gapped
repeats can be found in O(α2n) time for the case of integer alphabet. A new
approach to computing gapped repeats was recently proposed in [19, 20]. In par-
ticular, in [19] it is shown that the longest α-gapped repeat in a word of length n
over an integer alphabet can be found in O(αn) time. Finally, in a recent pa-
per [21], an algorithm is proposed for finding all maximal α-gapped repeats in
O(αn + S) time where S is the output size, for a constant-size alphabet. The
algorithm uses an approach previously introduced in [22].

Recall that repetitions are segments with exponent at least 2. Another way to
approach gapped repeats is to consider segments with exponent smaller than 2,
but strictly greater than 1. Clearly, such a segment corresponds to a gapped re-
peat π = uvu with per(π) = p(π) = |u|+ |v|. We will call such factors (segments)
subrepetitions. More precisely, for any δ, 0 < δ < 1, by a δ-subrepetition we mean
a factor v that satisfies 1 + δ ≤ exp(v) < 2. Again, the notion of maximality
straightforwardly applies to subrepetitions as well: maximal subrepetitions are
defined exactly in the same way as maximal repetitions. The relationship be-
tween maximal subrepetitions and maximal gapped repeats was clarified in [16].
Directly from the definitions, a maximal subrepetition π in a string w corre-
sponds to a maximal gapped repeat with p(π) = per(π). Futhermore, a maximal
δ-subrepetition corresponds to a maximal 1

δ -gapped repeat. However, there may
be more maximal 1

δ -gapped repeats than maximal δ-subrepetitions, as not every
maximal 1

δ -gapped repeat corresponds to a maximal δ-subrepetition.

Some combinatorial results on the number of maximal subrepetitions in a
string were obtained in [23]. In particular, it was proved that the number of max-
imal δ-subrepetitions in a word of length n is bounded by O(nδ log n). In [16], an
O(n/δ2) bound on the number of maximal δ-subrepetitions in a word of length n
was obtained. Moreover, in [16], two algorithms were proposed for finding all
maximal δ-subrepetitions in the word running respectively in O(n log logn

δ2) time
and in O(n log n+ n

δ2 log 1
δ) expected time, over the integer alphabet. In [22], it is

shown that all subrepetitions with the largest exponent (over all subrepetitions)
can be found in an overlap-free string in time O(n), for a constant-size alphabet.

Our results. In the present work we improve the results of [16] on maximal
gapped repeats: we prove an asymptotically tight bound of O(αn) on the number
of maximal α-gapped repeats in a word of length n (Section 2). From our bound,
we also derive an O(n/δ) bound on the number of maximal δ-subrepetitions
occurring in a word, which improves the bound of [23] by a log n factor. Then,
based on the algorithm of [19], we obtain an asymptotically optimal O(αn) time
bound for computing all maximal α-gapped repeats in a word (Section 3). Note
that this bound follows from the recently published paper [21] that presents
an O(αn + S) algorithm for computing all maximal α-gapped repeats. In this
work, we present an alternative algorithm with the same bound that we obtained
independently.

2 Number of maximal repeats and subrepetitions

In this section, we obtain an improved upper bound on the number of maximal
gapped repeats and subrepetitions in a string w. Following the general approach
of [16], we split all maximal gapped repeats into three categories according to
periodicity properties of repeat’s copy: periodic, semiperiodic and ordinary re-
peats. Bounds for periodic and semiperiodic repeats are directly borrowed from
[16], while for ordinary repeats, we obtain a better bound.

Periodic repeats. We say that a maximal gapped repeat is periodic if its copies
are periodic strings (i.e. of exponent at least 2). The set of all periodic maximal
α-gapped repeats in w is denoted by PPα. The following bound on the size of
PPα was been obtained in [16, Corollary 6].

Lemma 1. |PPk| = O(kn) for any natural k > 1.

Semiperiodic repeats. A maximal gapped repeat is called prefix (suffix) semi-
periodic if the copies of this repeat are not periodic, but have a prefix (suffix)
which is periodic and its length is at least half of the copy length. A maximal
gapped repeat is semiperiodic if it is either prefix or suffix semiperiodic. The
set of all semiperiodic α-gapped maximal repeats is denoted by SPα. In [16,
Corollary 8], the following bound was obtained on the number of semiperiodic
maximal α-gapped repeats.

Lemma 2 ([16]). |SPk| = O(kn) for any natural k > 1.

Ordinary repeats. Maximal gapped repeats which are neither periodic nor semiperi-
odic are called ordinary. The set of all ordinary maximal α-gapped repeats in
the word w is denoted by OPα. In the rest of this section, we prove that the
cardinality of OPα is O(αn). For simplicity, assume that α is an integer number
k.

To estimate the number of ordinary maximal k-gapped repeats, we use the
following idea from [24]. We represent a maximal repeat π ≡ (u′, u′′) from OPk
by a triple (i, j, c) where i = beg(u′), j = beg(u′) and c = c(π) = |u′| = |u′′|.
Such triples will be called points. Obviously, π is uniquely defined by values i, j
and c, therefore two different repeats from OPk can not be represented by the
same point.

For any two points (i′, j′, c′), (i′′, j′′, c′′) we say that point (i′, j′, c′) covers

point (i′′, j′′, c′′) if i′ ≤ i′′ ≤ i′ + c′/6, j′ ≤ j′′ ≤ j′ + c′/6, c′ ≥ c′′ ≥ 2c′

3 . A point
is covered by a repeat π if this it is covered by the point representing π. By V [π]
we denote the set of all points covered by a repeat π. We show that any point
can not be covered by two different repeats from OPk.

Lemma 3. Two different repeats from OPk cannot cover the same point.

Proof. Let π1 ≡ (u′1, u
′′
1), π2 ≡ (u′2, u

′′
2) be two different repeats from OPk

covering the same point (i, j, c). Denote c1 = c(π1), c2 = c(π2), p1 = per(π1),
p2 = per(π2). Without loss of generality we assume c1 ≥ c2. From c1 ≥ c ≥ 2c1

3 ,

c2 ≥ c ≥ 2c2
3 we have c1 ≥ c2 ≥ 2c1

3 , i.e. c2 ≤ c1 ≤ 3c2
2 . Note that w[i] is

contained in both left copies u′1, u
′
2, i.e. these copies overlap. If p1 = p2, then

repeats π1 and π2 must coincide due to the maximality of these repeats. Thus,
p1 6= p2. Denote ∆ = |p1 − p2| > 0. From beg(u′1) ≤ i ≤ beg(u′1) + c1/6 and
beg(u′′1) ≤ j ≤ beg(u′′1) + c1/6 we have

(j − i)− c1/6 ≤ p1 ≤ (j − i) + c1/6.

Analogously, we have

(j − i)− c2/6 ≤ p2 ≤ (j − i) + c2/6.

Thus ∆ ≤ (c1 + c2)/6 which, together with inequality c1 ≤ 3c2
2 , implies ∆ ≤ 5c2

12 .
First consider the case when one of the copies u′1, u

′
2 is contained in the other,

i.e. u′2 is contained in u′1. In this case, u′′1 contains some factor û′′2 corresponding
to the factor u′2 in u′1. Since beg(u′′2)− beg(u′2) = p2, beg(û′′2)− beg(u′2) = p1 and
u′′2 = û′′2 = u′2, we have

|beg(u′′2)− beg(û′′2)| = ∆,

so ∆ is a period of u′′2 such that ∆ ≤ 5
12c2 = 5

12 |u
′′
2 |. Thus, u′′2 is periodic which

contradicts that π2 is not periodic.
Now consider the case when u′1, u

′
2 are not contained in one another. Denote

by z′ the overlap of u′1 and u′2. Let z′ be a suffix of u′k and a prefix of u′l where
k, l = 1, 2, k 6= l. Then u′′k contains a suffix z′′ corresponding to the suffix z′

in u′k, and u′′l contains a prefix ẑ′′ corresponding to the prefix z′ in u′l. Since
beg(z′′)− beg(z′) = pk and beg(ẑ′′)− beg(z′) = pl and z′′ = ẑ′′ = z′, we have

|beg(z′′)− beg(ẑ′′)| = |pk − pl| = ∆,

therefore ∆ is a period of z′. Note that in this case

beg(u′k) < beg(u′l) ≤ i ≤ beg(u′k) + ck/6,

therefore 0 < beg(u′l)− beg(u′k) ≤ ck/6. Thus

|z′| = ck − (beg(u′l)− beg(u′k)) ≥ 5

6
ck ≥

5

6
c2.

From ∆ ≤ 5
12c2 and c2 ≤ 6

5 |z
′| we obtain ∆ ≤ |z′|/2. Thus, z′ is a periodic suffix

of u′k such that |z′| ≥ 5
6 |u
′
k|, i.e. πk is either suffix semiperiodic or periodic which

contradicts πk ∈ OPk.

Denote by Qk the set of all points (i, j, c) such that 1 ≤ i, j, c ≤ n and
i < j ≤ i+ (3

2k + 1
4)c.

Lemma 4. Any point covered by a repeat from OPk belongs to Qk.

Proof. Let a point (i, j, c) be covered by some repeat π ≡ (u′, u′′) from OPk.
Denote c′ = c(π). Note that w[i] and w[j] are contained respectively in u′ and

u′′ and n > c′ ≥ c ≥ 2c′

3 > 0, so inequalities 1 ≤ i, j, c ≤ n and i < j are obvious.
Note also that

j ≤ beg(u′′) + c′/6 = beg(u′) + per(π) + c′/6 ≤ i+ kc′ + c′/6,

therefore, taking into account c′ ≤ 3c
2 , we have j ≤ i+ (3

2k + 1
4)c.

From Lemmas 3 and 4, we obtain

Lemma 5. |OPk| = O(nk).

Proof. Assign to each point (i, j, c) the weight ρ(i, j, c) = 1/c3. For any finite
set A of points, we define

ρ(A) =
∑

(i,j,c)∈A

ρ(i, j, c) =
∑

(i,j,c)∈A

1

c3
.

Let π be an arbitrary repeat from OPk represented by a point (i′, j′, c′). Then

ρ(V [π]) =
∑

i′≤i≤i′+c′/6

∑
j′≤j≤j′+c′/6

∑
2c′/3≤c≤c′

1

c3

>
c′2

36

∑
2c′/3≤c≤c′

1

c3
.

Using a standard estimation of sums by integrals, one can deduce that
∑

2c′/3≤c≤c′
1
c3 ≥

5
32

1
c′2 for any c′. Thus, for any π from OPk

ρ(V [π]) >
1

36

5

36
= Ω(1).

Therefore, ∑
π∈OPk

ρ(V [π]) = Ω(|OPk|). (1)

Note also that

ρ(Qk) ≤
n∑
i=1

∑
i<j≤i+(3

2k+
1
4)c

n∑
c=1

1

c3

< n(
3

2
k +

1

4
)c

n∑
c=1

1

c3
< 2nk

n∑
c=1

1

c2
< 2nk

∞∑
c=1

1

c2
=
nkπ2

3
.

Thus,

ρ(Qk) = O(nk). (2)

By Lemma 4, any point covered by repeats from OPk belongs to Qk. On the
other hand, by Lemma 3, each point of Qk can not be covered by two repeats
from OPk. Therefore, ∑

π∈OPk

ρ(V [π]) ≤ ρ(Qk).

Thus, using 1 and 2, we conclude that |OPk| = O(nk).

Putting together Lemma 1, Lemma 2, and Lemma 5, we obtain that for any
integer k ≥ 2, the number of maximal k-gapped repeats in w is O(nk). The
bound straightforwardly generalizes to the case of real α > 1. Thus, we conclude
with

Theorem 2. For any α > 1, the number of maximal α-gapped repeats in w is
O(αn).

Note that the bound of Theorem 2 is asymptotically tight. To see this, it is
enough to consider word wk = (0110)k. It is easy to check that for a big enough α
and k = Ω(α), wk contains Θ(α|wk|) maximal α-gapped repeats whose copies
are single-letter words.

We now use Theorem 2 to obtain an upper bound on the number of maximal
δ-subrepetitions. The following proposition, shown in [16, Proposition 3], follows
from the fact that each maximal δ-subrepetition defines at least one maximal
1/δ-gapped repeat (cf. Introduction).

Proposition 1 ([16]). For 0 < δ < 1, the number of maximal δ-subrepetitions
in a string is no more then the number of maximal 1/δ-gapped repeats.

Theorem 2 combined with Proposition 1 immediately imply the following
upper bound for maximal δ-subrepetitions that improves the bound of [23] by a
log n factor.

Theorem 3. For 0 < δ < 1, the number of maximal δ-subrepetitions in w is
O(n/δ).

The O(n/δ) bound on the number of maximal δ-subrepetitions is asymptot-
ically tight, at least on an unbounded alphabet : word ab1ab2 . . . abk contains
Ω(n/δ) maximal δ-subrepetitions for δ ≤ 1/2.

3 Computing all maximal α-gapped repeats

We now turn to the algorithmic question how to efficiently compute all maximal
α-gapped repeats in a given word. Recall (cf Introduction) that an algorithm
with running time O(α2n+S) has been proposed in [16] for this problem, which
becomes O(α2n)-time taken into account the bound on S. On the other hand,
it was shown in [19] that computing the longest α-gapped repeat can be done
in time O(αn). It is therefore a natural question whether all maximal α-gapped

repeats can be computed in time O(αn + S). Here we answer this question
positively. Together with the the S = O(αn) bound of Theorem 2, this implies
the following result.

Theorem 4. For a fixed α > 1, all maximal α-gapped repeats in a word of
length n over a constant alphabet can be computed in O(αn) time.

The proof of Theorem 4 can be found in the full version of this work [25]. It
is based on a case analysis and uses ideas of [19].

We note that independently of our work, another O(αn+ S)-time algorithm
for computing all maximal α-gapped repeats has been recently announced in [21].

Note that, as mentioned earlier, a word can contain Θ(αn) maximal α-gapped
repeats, and therefore the O(αn) time bound stated in Theorem 4 is asymptot-
ically optimal.

4 Concluding remarks

In this work, we proved the tight O(αn) bound on the number of maximal α-
gapped repeats in a word. We note that while submitting this paper, manuscript
[26] appeared that proves that the number of maximal α-gapped repeats is
bounded by 18αn. From our bound, we obtain an O(n/δ) bound on the number
of maximal δ-subrepetitions in a word, which improves the bound of [23] by
a log n factor. We also presented an O(αn)-time algorithm (obtained indepen-
dently from [21]) for computing all maximal α-gapped repeat in a word.

Besides gapped repeats we can also consider gapped palindromes which are
factors of the form uvuR, where u and v are nonempty words and uR is the
reversal of u [27]. A gapped palindrome uvuR in a word w is called maximal
if w[end(u) + 1] 6= w[beg(uR) − 1] and w[beg(u) − 1] 6= w[end(uR) + 1] for
beg(u) > 1 and end(uR) < |w|. A maximal gapped palindrome uvuR is α-
gapped if |u|+ |v| ≤ α|u| [19]. It can be shown analogously to the results of this
paper that for α > 1 the number of maximal α-gapped palindromes in a word
of length n is bounded by O(αn) and for the case of constant alphabet, all these
palindromes can be found in O(αn) time4.

In this paper, we consider maximal α-gapped repeats with α > 1. However,
this notion can be formally generalized to the case of α ≤ 1. In particular,
maximal 1-gapped repeats are maximal repeats whose copies are adjacent or
overlapping. It is easy to see that such repeats form runs whose minimal periods
are divisors of the periods of these repeats. Moreover, each run in a word is
formed by at least one maximal 1-gapped repeat, therefore the number of runs
in a word is not greater than the number of maximal 1-gapped repeats. More
precisely, each run r is formed by bexp(r)/2c distinct maximal 1-gapped repeats.
Thus, if a word contains runs with exponent greater than or equal to 4 then
the number of maximal 1-gapped repeats is strictly greater than the number

4 Note that in [19], the number of maximal α-gapped palindromes was conjectured to
be O(α2n).

of runs. However, using an easy modification of the proof of “runs conjecture”
from [11], it can be also proved the number of maximal 1-gapped repeats in a
word is strictly less than the length of the word. Moreover, denoting by R1(n)
the maximal possible number of maximal 1-gapped repeats in words of length n,
we conjecture that R(n) = R1(n) since known words with a large number of
runs have no runs with big exponents. We can also consider the case of α < 1
for repeats with overlapping copies and, in particular, the case of maximal 1/k-
gapped repeats where k is integer greater than 1. It is easy to see that such
repeats form runs with exponents greater than or equal to k + 1. It is known
from [11, Theorem 11] that the number of such runs in a word of length n is less
than n/k, and it seems to be possible to modify the proof of this fact to prove
that the number of maximal 1/k-gapped repeats in the word is also less than
n/k = αn. These observations together with results of computer experiments
for the case of α > 1 leads to a conjecture that for any α > 0, the number
maximal α-gapped repeats in a word of length n is actually less than αn. This
generalization of the “runs conjecture” constitutes an interesting open problem.
Another interesting open question is whether the obtained O(n/δ) bound on
the number of maximal δ-subrepetitions is asymptotically tight for the case of
constant alphabet.

References

1. Lothaire, M.: Combinatorics on Words. Addison Wesley (1983)
2. Galil, Z., Seiferas, J.I.: Time-space-optimal string matching. J. Comput. Syst. Sci.

26(3) (1983) 280–294
3. Crochemore, M., Rytter, W.: Sqares, cubes, and time-space efficient string search-

ing. Algorithmica 13(5) (1995) 405–425
4. Gusfield, D.: Algorithms on Strings, Trees, and Sequences - Computer Science and

Computational Biology. Cambridge University Press (1997)
5. Storer, J.A.: Data Compression: Methods and Theory. Computer Science Press

(1988)
6. Crochemore, M.: An optimal algorithm for computing the repetitions in a word.

Inf. Process. Lett. 12(5) (1981) 244–250
7. Crochemore, M., Iliopoulos, C.S., Kubica, M., Radoszewski, J., Rytter, W., Walen,

T.: Extracting powers and periods in a string from its runs structure. In Chávez, E.,
Lonardi, S., eds.: String Processing and Information Retrieval - 17th International
Symposium, SPIRE 2010, Los Cabos, Mexico, October 11-13, 2010. Proceedings.
Volume 6393 of Lecture Notes in Computer Science., Springer (2010) 258–269

8. Kolpakov, R., Kucherov, G.: On maximal repetitions in words. J. Discrete Algo-
rithms 1(1) (2000) 159–186

9. Crochemore, M., Ilie, L., Tinta, L.: Towards a solution to the ”runs” conjecture. In
Ferragina, P., Landau, G.M., eds.: Combinatorial Pattern Matching, 19th Annual
Symposium, CPM 2008, Pisa, Italy, June 18-20, 2008, Proceedings. Volume 5029
of Lecture Notes in Computer Science., Springer (2008) 290–302

10. Crochemore, M., Kubica, M., Radoszewski, J., Rytter, W., Walen, T.: On the
maximal sum of exponents of runs in a string. J. Discrete Algorithms 14 (2012)
29–36

11. Bannai, H., I, T., Inenaga, S., Nakashima, Y., Takeda, M., Tsuruta, K.: A new
characterization of maximal repetitions by Lyndon trees. CoRR abs/1406.0263
(2014) intermediate version presented to SODA’2015.

12. Fischer, J., Holub, S., I, T., Lewenstein, M.: Beyond the runs theorem. CoRR
abs/1502.04644 (2015)

13. Main, M., Lorentz, R.: An O(n logn) algorithm for finding all repetitions in a
string. J. of Algorithms 5(3) (1984) 422–432

14. Breslauer, D.: Efficient string algorithmics. PhD thesis, Columbia University (1992)
15. Kosolobov, D.: Lempel-Ziv factorization may be harder than computing all runs.

In Mayr, E.W., Ollinger, N., eds.: 32nd International Symposium on Theoretical
Aspects of Computer Science, STACS 2015, March 4-7, 2015, Garching, Germany.
Volume 30 of LIPIcs., Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)
582–593

16. Kolpakov, R., Podolskiy, M., Posypkin, M., Khrapov, N.: Searching of gapped
repeats and subrepetitions in a word. CoRR abs/1309.4055 (2013) presented to
CPM’2014.

17. Brodal, G.S., Lyngs, R.B., Pedersen, C.N.S., Stoye, J.: Finding maximal pairs with
bounded gap. J. Discrete Algorithms 1(1) (2000) 77–104

18. Kolpakov, R.M., Kucherov, G.: Finding repeats with fixed gap. In: SPIRE. (2000)
162–168

19. Gawrychowski, P., Manea, F.: Longest α-gapped repeat and palindrome. In
Kosowski, A., Walukiewicz, I., eds.: Fundamentals of Computation Theory - 20th
International Symposium, FCT 2015, Gdańsk, Poland, August 17-19, 2015, Pro-
ceedings. Volume 9210 of Lecture Notes in Computer Science., Springer (2015)
27–40

20. Dumitran, M., Manea, F.: Longest gapped repeats and palindromes. In Italiano,
G.F., Pighizzini, G., Sannella, D., eds.: Mathematical Foundations of Computer
Science 2015 - 40th International Symposium, MFCS 2015, Milan, Italy, August 24-
28, 2015, Proceedings, Part I. Volume 9234 of Lecture Notes in Computer Science.,
Springer (2015) 205–217

21. Tanimura, Y., Fujishige, Y., I, T., Inenaga, S., Bannai, H., Takeda, M.: A faster
algorithm for computing maximal α-gapped repeats in a string. In Iliopoulos,
C.S., Puglisi, S.J., Yilmaz, E., eds.: String Processing and Information Retrieval -
22nd International Symposium, SPIRE 2015, London, UK, September 1-4, 2015,
Proceedings. Volume 9309 of Lecture Notes in Computer Science., Springer (2015)
124–136

22. Badkobeh, G., Crochemore, M., Toopsuwan, C.: Computing the maximal-exponent
repeats of an overlap-free string in linear time. In Calderón-Benavides, L.,
González-Caro, C.N., Chávez, E., Ziviani, N., eds.: String Processing and Informa-
tion Retrieval - 19th International Symposium, SPIRE 2012, Cartagena de Indias,
Colombia, October 21-25, 2012. Proceedings. Volume 7608 of Lecture Notes in
Computer Science., Springer (2012) 61–72

23. Kolpakov, R., Kucherov, G., Ochem, P.: On maximal repetitions of arbitrary
exponent. Inf. Process. Lett. 110(7) (2010) 252–256

24. Kolpakov, R.: On primary and secondary repetitions in words. Theor. Comput.
Sci. 418 (2012) 71–81

25. Crochemore, M., Kolpakov, R., Kucherov, G.: Optimal searching of gapped repeats
in a word. CoRR abs/1509.01221 (2015)

26. Gawrychowski, P., I, T., Inenaga, S., Köppl, D., Manea, F.: Efficiently finding all
maximal $α$-gapped repeats. CoRR abs/1509.09237 (2015)

27. Kolpakov, R., Kucherov, G.: Searching for gapped palindromes. Theor. Comput.
Sci. 410(51) (2009) 5365–5373

