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Abstract 

Reduction in the sintering temperature of metal powders by lowering particle size into the 

nanoparticle range has resulted in a new class of porous sintered joining materials. 

Especially promising are sintered silver based materials which can be used to form bonds 

between wide-bandgap semiconductor die and circuit boards for use in high temperature 

applications. This work shows that for these materials the exterior sintered silver surface 

oxidizes preventing surface morphology changes, while the interior pore surfaces of the 

porous silver remain largely oxide-free. These pore surfaces facilitate fast atomic 

movement resulting in grain growth and changes in the internal microstructure. 

Morphology changes in the temperature range 200-400 °C are presented both as statistical 

averages of grain size and, uniquely in this type of study, by tracking individual pores and 

grains. It is shown that the internal structure will undergo changes during high 

temperature storage in contrast to the stable outer surface. A new technique, utilizing the 

electromigration effect to check the relative surface mobility of atoms in the interior pores 

and exterior surfaces was used to support the conclusions deduced from thermal ageing 
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experiments. Finally, we speculate that the stability of the exterior surface could be 

reproduced in the interior if the chemistry of the paste was altered to allow formation of a 

passivating layer on the interior pores during the final stages of the sintering process, 

resulting in formation of a stable die attach material for applications of up to 400 °C, for 

which there is an urgent need. 

Keywords: Grain Growth, Sintering, Porous Materials, Aging, Silver Nanoparticle Paste, 

Bonding. 
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1. Introduction 

The operating temperature of electronic materials in hybrid automotive, aerospace, 

space exploration, and deep oil and gas exploration can reach 300 °C and beyond [1]. 

Current high temperature die attach materials such as high temperature solders or Solid 

Liquid Inter-Diffusion (SLID) bonding materials suffer from high homologous temperatures 

and Pb content in case of high temperature solders or rapid reduction in mechanical 

strength by increase in temperature in case of SLID systems [2]. Therefore, there is a 

requirement for new joining materials that can be processed at low temperatures but that 

retains joint strength at high temperatures. 

One of the potential solutions involves utilization of the unique properties of 

nanoparticles. By reduction in particle size, the ratio between surface area and volume 

increases, contributing to a rise in surface energy and a melting point that is considerably 

lower than that of the bulk material [3]. For example, in the case of silver the melting point 

of bulk silver is 961 °C, while melting point of 2.4 nm silver particles is 350 °C [4]. This 

feature of nanoparticles has been researched in the past decade in order to decouple the 

processing temperature from operating temperature of high-temperature electronic 

packaging materials, with silver receiving special interest because of its desirable 

mechanical, electrical and thermal properties [4-9] as well as the noble metal nature of 

silver that prevents excessive oxide formation. In this case, the attachment or interconnects 

can be formed at considerably lower temperatures than the melting point of the bulk 

material which determines the ultimate operating temperature. The high surface energy 

available and noble metal surface of silver also allows sintering to take place without 
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pressure being placed on the die; an added benefit for manufacturers, but one which leads 

to the final sintered structure containing 20-30% of pores. 

Although many studies have been performed on the sintering behaviour of 

nanoparticles [10, 11], and also the mechanical properties of their sintered structures 

[8,9,12,13], there exists few detailed studies on the high temperature behaviour and 

stability of sintered silver at temperatures above 300 °C as a high temperature die attach 

(excepting [14-15]), while previous studies below 300 °C  concentrate on bulk mechanical 

properties and statistical averages of microstructural properties [8,9,16-20]. In the present 

work, we determine the nature and speed of microstructural changes in sintered silver 

throughout the 200-400 °C temperature range and investigate the atomic migration 

mechanisms that lead to these changes. Tracking of changes in individual grains and pores 

is found to be complicated by the fact that any exposure of the internal pore surfaces to air 

leads to rapid oxidation and freezing of the microstructure in its original state, similarly to 

the original exterior surface of the material. Therefore, we have utilized optical microscopy 

and a glass substrate to prevent the internal pore surfaces from oxidizing while enabling 

in-situ observations to take place.  These microstructural changes would in most cases lead 

to unreliability and weakening strength [9, 17-19] so that these studies are an innovative 

technique for understanding long term mechanical reliability and strength preservation of 

sintered silver for applications in the range 200-400 °C. 

2. Experimental 

In these studies, two commercially available silver nanoparticle pastes produced by 

NBE Tech under the names of NanoTach® X and NanoTach® N have been utilised. 
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NanoTach® N is recommended for small size die of 3×3 mm, while NanoTach® X is 

recommended for attachment of 10×10 mm die in a pressure-less sintering process. The 

composition of NanoTach® X is shown in Table 1 below. The assemblies, listed in Table 2, 

were all sintered using the recommended temperature profile from the paste manufacturer 

under zero applied pressure.  

Table 1: NanoTach® X composition. 
Components Weight Percent 

Silver 70-85 
Silver Oxide 0-10 

Cellulose 1-8 
Alpha Terpineol 5-20 

Menhaden Fish Oil 0-2 
Isopropanol <1 

Ethanol <1 

In a previous study [19], samples were cross sectioned after sintering, and aged at 

300 °C for 24, 100 and 500 h to track properties such as porosity and average pore size. In 

that study the evolution of individual pores and grains could not be tracked continuously. 

In the current experiments, in order to track changes occurring inside the sintered silver 

microstructure and investigate them continuously, samples were assembled by manual 

deposition of the NanoTach® X paste onto glass slides followed by placement of 

approximately 150 µm thick, 10×10 mm Menzel-Gläser cover-slips on top of the paste. To 

investigate the grain growth mechanisms of the sintered silver, these samples have been 

placed on a cartridge heater at 250, 300, 350 and 400 °C and the grain evolution has been 

observed in-situ for up to 7 h using an optical microscope (See Fig. 1), while one sample has 

been placed inside a furnace at 200 °C for 5 h. This experiment is referred to as sample set 

1.  
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Observation of high temperature behaviour of sintered silver structure through the 

cover-slip provides information on microstructural changes similar to those occurring 

inside non-sectioned samples which have not been exposed to air. The presence of the 

cover-slip planarizes the initial microstructure and may affect parameters such as local 

porosity. However, comparison with samples that have been aged at 300 °C and then cross-

sectioned [19] show qualitatively similar results indicating that the same mechanisms are 

active. The optical images were then analysed using Image J 1.46r coupled with the image 

processing toolbox in Matlab with a methodology [21] that allowed the microstructural 

evolution of sintered silver at high temperatures to be studied statistically (e.g. average 

grain size). In this method the optical images of the sintered structures have been 

segmented using an Image J predesigned function to separate the grains and their sizes 

have been measured using Matlab to calculate the average grain sizes. 

The second set of samples was prepared by deposition of the paste into wire shaped 

gaps with approximate dimensions of 1 mm by 1 mm cross-section and 3 mm length for the 

first sample and approximately 150 µm by 150 µm cross section and 4 mm length for the 

remaining samples of this set. The first sample was stored at 300 °C in air and the 

 Fig. 1. Schematic representation of the experimental setup for in-situ observation of the 
changes to the grain structure of sintered silver at high temperature. (Cartridge heater was 

inserted inside the brass) 
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remainder were stored at 300 and 400 °C inside a vacuum of 5 mPa and at 450 and 500 °C 

in air to study microstructural evolution of the free surfaces. 

The third sample set consisted of a single sample selected for thermal ageing after 

being first cross sectioned and polished in an attempt to observe evolution of the interior of 

sintered silver continuously. After the sintering step using NanoTach® N followed by cross 

sectioning, the sample was mounted using a hot mounting resin (LevoFast) from Struers, 

which consisted of melamine with minerals and glass filler. The sample was mechanically 

polished using successively finer grades of silicon carbide cloth before final polishing with 

water based suspensions of 3 and 0.25 micron mono-crystalline diamonds. The hot 

mounting resin was selected to withstand high temperature storage. The assembly was 

stored at 300 °C in air in an oven for 1, 4, 5, and 20 h consecutively (30 h in total), and 

observed under a Scanning Electron Microscope (SEM) to track changes.  

The fourth set of samples were prepared by sintering of the NanoTach® X paste 

inside glass sample holders, which were designed for surface cleaning of the samples by 

perchloric acid (effective for removing organic contamination on silver without causing 

damage from the utilised concentration [22, 23]) before high temperature storage. After 

manual deposition of paste into the holder and sintering, the samples were stored for 30 

minutes inside an aqueous solution containing 20% concentration of perchloric acid and 

then stored in deionised water before placement into the furnace for high temperature 

storage at 300 °C inside ~40 mPa vacuum for 5 h.  

The fifth set of samples were prepared using the NanoTach® X paste with the same 

dimensions as the third set for electromigration studies [24]. These samples were 

subjected to high current densities of 2.4×108 A/m2 for periods ranging from 20-25 days 
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before cross sectioning in order to compare atomic migration patterns on the surface and 

interior of the porous material.  

The free surfaces of the sintered silver were observed using a Hitachi S4000 SEM 

coupled with Electron Dispersive X-ray (EDX) for elemental analysis.  

Table 2: Sample sets. 
Sample 
set No. 

Purpose of experiment Paste type and surface 
dimensions 

1 Observation of microstructure evolution 
on a surface not exposed to air using 

optical microscope. 

NanoTach® X 
10 × 10 mm × 100 µm 

2 Observation of exterior surface evolution 
under different atmospheres using SEM. 

NanoTach® X 
150 × 150 µm × 4 mm and 1 

× 1 × 3 mm 
3 Observation of interior microstructure 

evolution after cross sectioning using 
SEM.   

NanoTach® N 
2.5 × 2.5 mm × 30 µm 

4 Observation of exterior surface evolution 
after acid cleaning using SEM. 

NanoTach® X 
𝑟 = 2 mm 

5 Comparison of exterior and interior 
atomic migration patterns during 

electromigration using SEM.  

NanoTach® X 
175 × 175 × 812 µm 

3. Results and Discussion 

 3.1. Observation of microstructural evolution in the absence of air. 

 Fig. 2 shows optical images from sample set 1 of three samples stored at constant 

temperatures of 250, 350 and 400 °C showing the continuous evolution of microstructure 

adjacent to the cover-slip. Fig. 3 is a more detailed examination of the 350 °C sample clearly 

showing coarsening of the microstructure. Using image processing software, the average 

grain sizes from the images were calculated and plotted in Fig. 4. For the 400 °C sample, the 

grain sizes go through three grain growth phases, each having a lower slope than the 

preceding grain growth phase as a result of increase in the initial grain sizes. The first 
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phase of grain growth is defined as the period between start of heating to the point where 

the grain growth rate has decreased to a constant, low value. The second growth phase 

starts when the grain growth rate increases again and ends where the growth rate 

stabilizes again at a low value. For the 350 °C sample, after the first growth phase the 

average grain size remains almost constant for about 3.5 hours before entering the second 

growth phase. This may be due to the fact that during this period reorientation of grains is 

required before further coalescence.  The 250 and 300 °C samples showed that grain sizes 

reached a similar stable point after an initial grain growth phase. However, there may be 

further growth phases outside the timescale of the current experiments for those samples. 

In contrast, the faster diffusion mechanisms at 400 °C have caused the shortening of the 

grain growth phases such that a larger number of phases are observable within the 

timescale of the experiment. At the lowest experimental temperature of 200 °C storage of 

sintered silver for 5 h did not indicate any grain growth implying greater stability of 

sintered silver material for such operating temperatures. Average grain size as a function of 

temperature is plotted in Fig. 5 for different storage times.  

Errors for the average grain sizes have been calculated by performing five separate 

calculations of average grain size on random areas of the 350 °C sample after 90 minutes 

storage, which would provide a roughly middle point example. The standard deviation of 

those measurements has been used as the error for the average grain size of that particular 

temperature and time. The errors for the remaining average grain sizes has the same ratio 

to their corresponding average grain size values of the ratio of the measured error to its 

original average grain size.  
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Fig. 2. Optical images of sintered silver under cover slip stored at high temperatures 
on top of a cartridge heater. (a-d) 250 °C storage. (e-h) 350 °C storage. (i-l) 400 °C 

storage. 
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Fig. 3. Optical images showing continuous microstructural evolution of sintered 
silver under cover slip at 350 °C.  
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 The general formula describing the rate of grain growth of the average grain size as 

a function of time can be written as [25]:  

 𝐺𝑛 − 𝐺0𝑛 = 𝑘𝑡 (1) 
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Fig. 5. Grain growth vs. temperature. 

Fig. 4. Grain growth vs. time. (The curves are fitted manually for improved illustration) 
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where 𝐺 is a parameter meauring linear grain size at time t and 𝐺0 is the grain size at time 

zero,  𝑛 is the grain growth exponent, and 𝑘 is a grain growth constant, and has the 

proportionality relationship below [26]:  

 𝑘 ∝  𝑒−𝑄/𝑅𝑇 (2) 

where 𝑄 is the grain growth activation energy, 𝑅 is the ideal gas constant and 𝑇 is the 

temperature.  

 Dannenberg (2000) [26] estimated the value of 𝑛 as 3 for grain growth of 

nanocrystaline silver and also for diffusion based grain growth, being applied here, it has 

been generally best fitted by 𝑛 = 3 as well [25]. Therefore, for the intial grain growth phase 

of the samples 𝐺3 has been ploted against 𝑡 to find the slope of the grain growth, shown in 

Fig. 6. For the second phases which have been found for the 350 and 400 °C sample, this 

relationship has been plotted in Fig. 7.    
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 By plotting the ln 𝑘 against 1/𝑇, the activation energy of the grain growth can be 

calculated from the slopes for each of the grain growth phases from Eq. 2 (Fig. 8). As the 

second growth phase only occurred for the 350 °C and 400 °C samples, Fig. 8 (b) only 

contains two points. Therefore the activation energy calculated from the slope should be 

treated with caution.  

Fig. 7. Grain growth vs. time of the second grain growth phase. 
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Fig. 6. Initial grain growth vs. time. 
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 The grain growth activation energies calculated for the first and second phases are 

53 ± 2 kJ/mol and 52 ± 2 kJ/mol respectively. These values are in accordance with the 

literature value of 53 kJ/mol [26].  

The cited literature value of the activation energy for grain growth was calculated 

for nano sized silver grains, and the initial size of the second grain growth phases were 

about twice the initial sizes for the first phase, but all provide the same activation energy. 

Therefore, these results indicate that the activation energies of grain growth are 

independent of the initial sizes up to ~2 µm2. Moreover, the similarity of the grain growth 

activation energy of the literature  value, for which the grains were sputter-deposited, with 

the activation energy of the silver sintered under a cover-slip also confirms minimal 

contribution of the cover-slip to the diffusion mechanism of silver and its growth 

mechanisms.  

 While the rate of change of grain growth should be theoretically linearly dependent 

on surface diffusion and molar volume of the diffusing materials, on dimensional grounds 

we might expect the dependence of 𝑘 on surface diffusitivity to vary as:  

Fig. 8. ln(𝑘) vs. reciprocal of temperature. (a) For the first grain growth phase. (b) For 
the second grain growth phase. 
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 𝑘 = 𝐶 
𝐷𝑆 γ 𝑉𝑚
𝑅 𝑇 

 (3) 

where 𝐷𝑆 is the surface diffusion (measured values shown in Fig. 9), γ is the surface energy, 

(measured to be 1.14 J/m2 [27]), 𝑉𝑚 is the molar volume (1.03 × 10-5 m3/mol),  and 𝐶 is a 

dimensionless constant (see e.g. [28] for a similar derivation).  Fig. 9 shows the 

experimentally determined 𝑘 value compared to the theoretical values computed from  Eq. 

3. The large discrepancy between the two shows that surface diffusion on a clean silver 

surface is not occuring and that a passivation layer on the interior pore surface also exists. 

The most likely explanation is that some organics from the silver paste remain on the 

interior pore surfaces after sintering or that partial oxidation of these surfaces has 

occurred. Future work is required to establish the exact composition of these surfaces. 

 

 3.2. Observation of microstructural evolution after exposure to air. 

 One sample from sample set 2 exhibited no change in the exposed exterior surface 

microstructure after 20 h storage at 300 °C in air. Another sample from this sample set 

were stored in vacuum and also exhibited no change in exterior microstructure even at 400 

Fig. 9. The comparison between the theoretical and experimental values of 𝑘, with the 
values of surface diffusion [29] shown in the accompanying table . 
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°C for 66 h. When the sample stored at 400 °C, indicating no change, was stored for a 

further 24 h at 500 °C, massive grain coalescence occurred, as seen in Fig. 10. Sample set 3 

consisted of samples that were sintered, cross sectioned to expose the interior and then 

aged at 300 °C. These samples too showed no change in microstructure. Sample set 4 

probed whether cleaning of the exterior surface by acid etching would enable 

microstructural evolution. However, since it was impossible to perform the acid etching in 

vacuum, the surface was exposed to water and air after etching and no microstructural 

evolution was observed after storage for 5 h at 300 °C. In summary, the common factor 

between sample sets 2-4 is that all have been exposed to air, while sample set 1 has not 

been exposed to air. Lack of microstructural evolution in the exterior is therefore caused by 

formation of a passivation layer after exposure to the atmosphere. By contrast, the surface 

under the cover slip underwent rapid evolution, and the changes in microstructure were 

similar to those observed previously [17-19] when the sintered silver is first aged at 300 °C 

and then cross sectioned to reveal changes compared to control samples.  
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The surface passivation layer blocks atomic surface diffusion, and therefore  

prevents the changes in grain structure seen in sample set 1 and in the interior of sintered 

silver in previous work [17-19]. The results indicate that after decomposition of the surface 

layer at 500 °C, the free movement of silver atoms on the surface of the sample resumed, 

leading to the morphological changes observed.  

Given the change in microstructural behaviour between 400 °C and 500 °C, further 

investigation of microstructure evolution at 450 °C was carried out on a sample from 

sample set 2. As can be seen from Fig. 11, 1 h storage of the sample in air did not result in 

any changes to the morphology of the sample, but after an additional 1.5 h the changes 

Fig. 10. SEM images of sintered silver from sample set 2. (a) Free surface of 
sintered silver at 0 h. (b) After storage for 24 h at 300 °C of (a). (c) Additional 
16 h at 300 °C and 66 h at 400 °C of area (a) in vacuum. (d) Additional 24 h at 

500 °C (not in vacuum, and area (a) could not be identified).  

  

(c) 

  

(d) 

  

(a) 
  

(b) 
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were significant. During the initial 1 h at 450 °C the surface layer may have decomposed, 

allowing diffusion and grain evolution to take place during subsequent heating.  

 

 

A further test of the presence of a passivating layer on free surfaces (as opposed to 

surfaces in the interior of the material or protected by glass) was carried out by passing a 

high current density through samples of sample set 5. Fig. 12 compares the free surface and 

internal structure of sintered silver before and after 25 days of application of 2.4 × 108 

A/cm2 current density through the material. Fig. 12 (a) and (b) show that on the free 

surface, electromigration results in the formation of nanorods due to atomic deposition in 

Fig. 11. SEM images of high temperature storage at 450 °C in air. (a) 0 h. (b) 
1 h (c) Additional 1.5 h (d) Additional 2.5 h (same area was not identified). 
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(b) 

  

(d) 

  

(c) 
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the interior of the grains causing stress build-up and eruption of material through the 

surface passivation layer. However, the overall shapes of the grains have not undergone 

any other transformation. Fig. 12 (c) and (d) were obtained by cross-sectioning samples 

before and after electromigration and indicate that in the interior of the material the 

morphology has radically changed. This shows the presence of a passivating layer on the 

exposed surfaces of sintered silver preventing the surface diffusion mechanisms, which are 

active in the interior of the sintered silver material. The temperature in the silver rose only 

to approximately 100 °C [24] and so electromigration experiments have not proven that 

the same passivating layer exists in the thermal ageing experiments, since the layer may 

decompose at the higher temperatures. They do however show that a low temperature 

passivating layer exists with the same characteristics as those found in the thermal 

experiments, preventing atomic surface diffusion only at the exterior of the porous 

material. 
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Considering the results from sample sets 1-5 as a whole, the passivating layer 

cannot be due purely to organic compounds from the original paste, as these exist also in 

the interior of the material, and would have been removed from the exterior by the 

perchloric acid solution.  The presence of oxygen on the free surface of sintered silver has 

been detected by EDX at room temperature in a similar study [24]. While some studies 

have shown that some silver oxides start to decompose at 160 °C [30], the second most 

common type of silver oxide AgO will transform into the most common type Ag2O at 300 °C 

[31], and Ag2O completely decomposes only at 400 °C [32]. Therefore, silver oxide is the 

most likely composition of the passivating layer.  

Fig. 12. SEM images for surface and interior evolution comparison. (a) Free 
surface before passing high current. (b) Free surface after passing high current. 

(c) Internal structure of a similar sample before passing high current. (d) 
Internal structure of a sample after passing high current. 
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4. Conclusions 

The microstructural behaviour of sintered silver at high temperatures has been 

investigated both in the absence of exposure to air and after exposure to air. In the absence 

of exposure to air, while 5 h exposure to 200 °C resulted in no evolution, rapid evolution 

was observed at temperatures of 250 °C and higher. Therefore, mechanical properties will 

remain stable, leading to higher reliability assurance for applications up to 200 °C. The 

grain structure evolution has been mapped out for different temperatures and it has been 

found that evolution consists of rapid growth stages interspersed with periods of relative 

stability. This evolution was studied in detail, tracking individual pores and grains. The 

activation energy of grain growth for the silver grains has been calculated as 52.5 (±2.5) 

KJ/mol, which agrees with the literature value. However, exposure to atmosphere of the 

sintered silver surface stops the surface diffusion of silver atoms and preserves the initial 

microstructure. This phenomenon results in a stable structure on the free surface of 

sintered silver even at 400 °C. The stabilizing passivation layer is most likely to be silver 

oxide. The presence of the passivation layer was independently confirmed using a novel 

electromigration based technique which probed surface diffusivity of atoms in the interior 

of the sample. Moreover, the studies on the mechanical properties of sintered silver 

associate the coarsening of the grain structure with deterioration of mechanical properties 

[7, 9, 17-19, 33, 34], so that if the passivation layer could be grown in the interior of the 

material at the last stage of the sintering process, utilizing temperature triggered oxidation 

agents in the paste, then joint lifetimes could potentially be increased. The final conclusion 

is that until methods for stabilizing the microstructure above 200 °C are found, extensive 

long-term testing of mechanical properties during storage is required to ensure that joints 
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formed from sintered silver retain adequate strength. Alternative solutions do also exist, 

but require the addition of interposers along with the sintered silver to produce a 

thermally stable die attach, increasing the high temperature reliability [35].  
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