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Cortico-Muscular Coherence with Time Lag with
Application to Delay Estimation

Yuhang Xu, Verity M. McClelland, Zoran Cvetković, and Kerry R. Mills

Abstract—Functional coupling between the motor cortex and

muscle activity is usually detected and characterised using the

spectral method of cortico-muscular coherence (CMC). This

functional coupling occurs with a time delay which, if not

properly accounted for, may decrease the coherence and make

the synchrony difficult to detect. In this paper we introduce the

concept of cortico-muscular coherence with time lag (CMCTL),

that is the coherence between segments of motor cortex elec-

troencephalogram (EEG) and electromyography (EMG) signals

displaced from a central observation point. This concept is

motivated by the need to compensate for the unknown delay

between coupled cortex and muscle processes. We demonstrate

using simulated data that under certain conditions the time lag

between EEG and EMG segments at points of local maxima of

CMCTL corresponds to the average delay along the involved

cortico-muscular conduction pathways. Using neurophysiological

data, we then show that CMCTL with appropriate time lag

enhances the coherence between cortical and muscle signals, and

that time lags which correspond to local maxima of CMCTL

provide estimates of delays involved in cortico-muscular coupling

that are consistent with the underlying physiology.

Index Terms—Cortico-muscular coherence (CMC), electroen-

cephalogram (EEG), electromyogram (EMG), motor control

system, global time delay.

I. INTRODUCTION

T

HE spectral technique of cortico-muscular coherence
(CMC) has become one of the primary methods for quan-

tifying functional coupling between the motor cortex and mus-
cle activity [2]–[6] since Conway found the initial evidence
in humans of significant coherence between the motor cortex
electroencephalogram (EEG) and the surface electromyogram
(EMG) of the first dorsal interosseous (FDI) muscle during
constant isometric contractions [7]. EEG and EMG events
that are coherent do not occur simultaneously, but with a time
delay which reflects signal propagation time between the brain
and the muscle and possible information processing. If not
accounted for, this delay may decrease the level of coherence
[8], and thus make the cortico-muscular coupling difficult
or impossible to detect. In this paper we propose a cortico-
muscular coherence with time lag (CMCTL) function, that is
the coherence between segments of motor cortex EEG and
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EMG signals displaced from a central observation point, and
show that it enhances the level of CMC and provides a more
detailed information about the temporal structure of cortico-
muscular interactions than the conventional CMC. Then we
propose an algorithm for the estimation of the delay between
coherent EEG and EMG events. The algorithm amounts to
finding the the time lag which maximises local coherence. In
addition to its relevance to enhancing the CMC, knowing the
time delay between the motor cortex and the periphery can re-
veal important information about the communication between
motor cortex and muscles by characterising the direction via
which the oscillations propagate and/or by differentiating the
cortico-spinal pathways via which the activity is transmitted.
This is important not only for increasing our fundamental
understanding of the physiology of cortex-muscle interations,
but also for increasing the potential utility of cortico-muscular
coherence as a clinical and research tool.

A method which is widely used for identification of time
delays in biological systems is based on the estimation of the
slope of the phase of the cross spectral density of consid-
ered processes [9]–[12]. This approach has however produced
conflicting results [3], [13]–[15] and also suffers from some
methodological problems. In particular, the slope of the cross
spectral density is well defined only if the two processes are
connected via a linear-phase system, which is in general not
satisfied by cortico-muscular pathways. This issue has been
addressed by Lindemann et al. [11] who proposed using the
Hilbert transform to identify and remove the phase component
which is not linear and then estimate the delay from the re-
maining linear component. Unfortunately, their work has rarely
been used in physiological studies, which could be due to
its technical sophistication and underlying assumptions which
are difficult to verify in practice. Further, there is evidence of
bidirectional connectivity in the motor control system [15]–
[17] and the delay estimated from phase spectrum is subject to
errors if the coupling is bidirectional in the estimated period
[18], [19]. Although some groups have considered directed
coherence based on the Granger causality [15], [20]–[22]
which in principle can discern different propagation directions,
the results vary much from individual to individual. Moreover,
there could be more than one event in the observation period
and the delay of each event could be different. Finally, many
groups perform EMG rectification prior to calculation of CMC,
which introduces nonlinear distortion of the EMG signal,
including its phase spectrum [23].

The concept of delay estimation via the time offset that max-
imises coherence of two signals has been previously applied
successfully to acoustic signals [24]. It has also been used in
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the context of cortico-muscular interactions, but with a limited
success [25] and under the assumption of continuous constant-
delay flow of information in narrow frequency bands, which
may not be applicable to biological signals such as EEG and
EMG [25]. The authors conclude that further work is needed
to make the method applicable to non-stationary events. We
revisit the concept and introduce a series of modifications
that make it yield delay estimates consistent with underlying
physiology. More importantly, we study the interpretation of
the results provided by the method in the context of multi-path
propagation, which is a more realistic model of the channels
of cortico-muscular communications.

The paper is organised as follows. In Section II, we intro-
duce a model of motor control system, review relevant aspects
of coherence analysis, and principles of the delay estimation
based on the analysis of the phase spectrum of EEG-EMG
cross spectral density. In Section III, we introduce the cortico-
muscular coherence with time lag (CMCTL) and the method
for the delay estimation. Section IV presents examples of
CMCTL applied to physiological data and results of delay
estimation. Finally, Section V draws some conclusions.

II. BACKGROUND

A. Simplified Model of Motor Control System

Cortical events propagate to the periphery and motor cortex
also receives input from the periphery [2], [5], [17]. Let us
consider first a scenario in which the information transmis-
sion is unidirectional, from the cortex to the periphery. This
transmission is not instantaneous, but with a delay, which
reflects at least neural conduction time. Cortical activity is
transmitted to the motoneurones within the spinal cord via
the corticospinal tract, which contains nerve fibres of differing
conduction velocities. Therefore, each of them may introduce a
different delay and attenuation. Each motorneurone innervates
multiple fibres within the muscle, comprising a motor unit. The
response y

i

(t) of a motor unit i can thus be represented as a
linear combination of delayed and attenuated versions of the
cortical signal x(t), that is y

i

(t) =

P
K

i

k=0 ↵i,k

x(t�T

i

�⌧

i,k

) ,

where a

i,k

are attenuations, while T

i

and ⌧

i,k

are delays of in-
dividual nerve fibres, defined so that T

i

is equal to the minimal
delay within the motor unit and 0 = ⌧

i,0  ⌧

i,1  . . .  ⌧

i,K

i

.
Within the pick up area of an electrode, there are several motor
units that would be recruited by the same cortical activity [26]–
[29]. Therefore, surface EMG (sEMG) signal y(t) is a linear
combination of several motor unit signals, as well as signals
unrelated to the considered cortical activity, which we will
collectively refer to as noise. Surface EMG signal thus has the
form y(t) =

P
I

i=1 �i

y

i

(t) +n(t) , where �

i

factors represent
the attenuation of the pathways between particular motor units
and the electrode, while n(t) is the noise. Expressed in terms
of the cortical event x(t) the surface EMG signal therefore
has the form

y(t) =

IX

i=1

K

iX

k=1

�

i

↵

i,k

x(t� T

i

� ⌧

i,k

) + n(t) , (1)

that is, y(t) is a sum of delayed and amplitude-scaled versions
of x(t). To simplify the notation, in the following we will

express the above model as

y(t) =

NX

i=1

b

i

x(t�D

i

) + n(t) . (2)

One can introduce more complex models of individual fibres,
and the propagation between motor units and the electrode,
but as long as all stages along the path are modelled as
linear filters, the overall system between the cortex and the
sEMG electrode will be a causal, finite-impulse-response,
linear time-invariant system, the most general form of which
is given by (2). Under excitations of small amplitude and
within limited time intervals many biological systems can be
well approximated by linear time-invariant systems. Besides,
coherence analysis applies only to processes connected via
linear-time invariant systems, hence our model is not any more
restrictive than the fundamental assumptions of coherence
analysis.

An analogous model can be established for transmission
of sensory events from the periphery. Hence in the case of
bidirectional signalling sEMG signal has the form

y(t) = y0(t) +

N

xX

i=1

b

x,i

x0(t�D

x,i

) + n

y

(t) , (3)

while the EEG signal has the form

x(t) = x0(t) +

N

yX

i=1

b

y,i

y0(t�D

y,i

) + n

x

(t) , (4)

where x0(t) is the cortical event that performs muscle control,
whereas y0(t) is the sensory event which is transmitted to the
cortex, while n

x

(t) and n

y

(t) are noise components.

B. Coherence Analysis

Cortico-muscular coupling is commonly detected and quan-
tified by means of coherence analysis. Coherence C

xy

(!)

between two stationary processes x(t) and y(t) is defined
as C

xy

(!) = |S
xy

(!)|2/ (S
xx

(!)S

yy

(!)) where S

xx

(!) and
S

yy

(!) are their power spectral densities, and S

xy

(!) is their
cross spectral density [30].

The coherence between non-stationary processes is esti-
mated via the short-time Fourier transform (STFT) [31], which
segments signals into intervals over which their statistical
properties remain fairly constant. To that end, a window of
finite duration T is placed at a discrete set of time instants,
t

c

= n�t, n 2 Z, and for each window position, the discrete
Fourier transform of the windowed signal is computed at
frequencies !

c

= 0,�!, . . . , (M � 1)�!, �! =

⌦
s

M

where
⌦

s

is the sampling frequency, and M is the size of the discrete
Fourier transform. In this manner time-frequency representa-
tions X(t

c

,!

c

) and Y (t

c

,!

c

) are obtained, where X(t

c

,!

c

)

and Y (t

c

,!

c

) reflect events within the time-frequency support
of the window centred around (t

c

,!

c

). In neurophysiological
studies, the STFT is typically estimated using windows of
length T = 500 ms, with shifts �t between 250 ms and
500 ms. Some transient events, however, are much shorter
and could be easily obscured by such short-time Fourier
analysis as it reflects cumulative effects of all events within the
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window. Shorter windows would therefore be more suitable
for the analysis of transient phenomena. However, a better
time resolution comes at the expense of a worse frequency
resolution, and it is important to ensure that the bandwidth of
the window does not exceed considerably the frequency range
of interest.

Effects of time-frequency resolution trade-offs in CMC
analysis are illustrated in Fig. 1 using EEG and EMG signals
collected during a controlled motor task (see Section IV).
Signals are sampled at 1024 Hz. The STFT used for the
CMC plot in Fig. 1(a) is computed using Hanning window of
length T = 500 ms (512 samples), at M = 512 frequencies,
corresponding to �! = 2 Hz, and with �t = 250 ms
(256 samples). The coherence plot in Fig. 1(b) is obtained
using the same STFT parameters, except that in attempt to
refine the time resolution of the analysis �t is reduced to
�t = 9.8 ms (10 samples). For the CMC analysis plotted in
Fig. 1(c), the STFT is computed using Hanning window of
length T = 125 ms (128 samples), whereas the time shift
is kept at �t = 9.8 ms. The coherence plot in this figure
suggests that communication between the brain and the muscle
involves a sequence of transient events, which on the plots in
Fig. 1(a) and Fig. 1(b), corresponding to the 500 ms analysis
window, are merged into what appears to be one longer event,
even when the shift between consecutive analysis windows is
decreased to �t = 9.8 ms. The effect of reducing the length
of the analysis window further is illustrated in Fig. 1(d),
which shows the CMC plot obtained using Hanning window
of length T = 62.5 ms (64 samples), with �t = 9.8 ms.
The time-frequency resolution of the STFT in this case does
not match well that of the cortico-muscular signals, which
results in lower coherence levels, in addition to poor frequency
resolution. Fig. 1(e) shows the CMC plot of the same events
with spectral estimation performed in the wavelet-transform
domain. Morlet wavelet centred at 24 Hz is used, to capture
the frequency band of the highest coherence. One can observe
that the wavelet analysis due to its low time resolution at
low frequencies fails to capture significant coherence patterns
below 10 Hz.

Once adequate time-frequency resolution of spectral anal-
ysis is decided upon, the time varying power spectra and
cross-spectral densities are estimated by averaging the STFT
magnitude spectra over different epochs (trials): ˆ

S

xx

(t

c

,!

c

) =

1
L

P
L

n=1 |Xn

(t

c

,!

c

)|2, and analogously for ˆ

S

yy

(t

c

,!

c

), while
ˆ

S

xy

(t

c

,!

c

) =

1
L

P
L

n=1 Xn

(t

c

,!

c

)Y

⇤
n

(t

c

,!

c

), where L

is the number of epochs. Therefore, the coherence be-
tween x(t) and y(t) is estimated as C

xy

(t

c

,!

c

) =

| ˆS
xy

(t

c

,!

c

)|2/
⇣
ˆ

S

xx

(t

c

,!

c

)

ˆ

S

yy

(t

c

,!

c

)

⌘
. Significant coher-

ence can be defined by setting the 95% confidence limit (CL)
which is estimated as CL(a%) = 1 �

�
1 � ↵

100

� 1
(L�1) where

↵ is set to 95 and L is again the number of trials used in the
estimation of auto- and cross-spectra [32].

The value of coherence is between zero and one. There
are several factors that could make CMC so small that the
synchrony between EEG and EMG would be difficult to detect.
One of the factors is the noise components, which include
not only the environmental noise but also the components
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Fig. 1. CMC plots obtained with different time-frequency resolutions of
spectral estimation, illustrating its effect on the information revealed by the
subsequent coherence analysis. The STFT is computed at M = 512 frequen-
cies using Hanning windows of different lengths T and with different shifts
�t between consecutive windows. CMC values below the 95% confidence
limit are set to zero. (a) T = 500 ms, �t = 250. (b) T = 500 ms, �t = 9.8
ms. (c) T = 125 ms, �t = 9.8 ms; two most prominent peaks, marked by
⇥ signs, will be referred to in Section IV. (d) T = 62.5 ms, �t = 9.8 ms.
(e) Wavelet coherence using Morlet wavelet centred at 24 Hz.

unrelated to the process of interest [23]. Another factor is
the time delay between synchronised events in the brain
and the muscle which can be described as the bias due to
misalignment. The effect of misalignment is best illustrated in
the case of two processes x(t) and y(t), one of which is a



4

delayed version of the other,

y(t) = bx(t�D) + n(t) , (5)

where n(t) is additive noise. If the coherence is estimated
within an observation window of duration T , the coherence is
decreased by a factor, which depends on the ratio between
the delay and the duration of the observation window [8],
specifically

E[

ˆ

C(!)] ⇡
✓
1� |D|

T

◆2

C

max

(!), |D|  T (6)

where E[

ˆ

C(!)] is the estimated coherence and C

max

(!) is
the maximum coherence without misalignment. The estimated
coherence would be maximal when there is no time lag.
This dependence of coherence level on temporal alignment
of considered processes motivates the CMCTL analysis and
the delay estimation methodology studied in the next section.

C. Estimation of time delay

The traditional way of time delay estimation is based on
the phase model [3], [9]–[15]. The cross-spectrum S

xy

(!) is
complex valued and can be expressed in the polar form as
S

xy

(!) = |S
xy

(!)|ej�xy

(!) where �

xy

(!) is the phase angle
between the two processes. If y(t) is a delayed and amplitude-
scaled version of x(t), y(t) = bx(t �D) , the phase follows
a straight line given by the equation �

xy

(!) = �

xy

(0)� !D.

Under this model of cortico-muscular signalling pathways,
several regression methods have been used so far [33], [34] to
estimate the delay between the two processes as the slope of
the phase spectrum.

In the traditional procedures, the phase estimate is taken in
one or several periods that altogether last for a few seconds,
during which a numbers of events could occur. There are
several pieces of evidence showing that not only cortex could
lead muscle, but also muscle could lead cortex in some
circumstances [15], [35], [36]. Thus if the connection between
two processes contains components of opposite directions,
the phase spectrum represents a complex combination of
both. On a more fundamental level, phase estimates can be
used when the system follows the single-path propagation
model. However, the cortico-muscular conduction system, as
modelled in (2) is not a linear-phase system, and moreover,
since cortical events propagate to muscles via multiple paths,
each of which might introduce a different delay, the question
that naturally arises is whether this delay is actually well
defined, and if so, what it would be, and how to estimate
it. These problems are addressed in the next section.

III. METHODS

A. Cortico-Muscular Coherence with Time Lag

Towards achieving time alignment between EEG and EMG
events, we propose to consider coherence between their ver-
sions shifted in time, in particular we propose the following
cortico-muscular coherence with time lag (CMCTL) function

C

xy

(t

c

, ⌧1, ⌧2,!) =
| ˆS

xy

(t

c

+ ⌧1, tc + ⌧2,!)|2
ˆ

S

xx

(t

c

+ ⌧1,!)
ˆ

S

yy

(t

c

+ ⌧2,!)
(7)

where t

c

is the reference observation time instant, while
⌧1 and ⌧2 are displacements of x(t) and y(t) observations,
respectively, from that reference point. Hence, the observation
windows for x(t) and y(t) are centred at t

c

+ ⌧1 and t

c

+ ⌧2,
respectively. In this manner the compensated time delay be-
tween these two processes is ⌧ = ⌧2 � ⌧1.

There are several points regarding CMCTL worth noting:
• Cortico-muscular processes are not stationary and often

involve transient events which could be much shorter than
the window of the underlying short-time Fourier analysis.
Consequently, the fact that two pairs of displacements
(⌧1, ⌧2) and (⌧

0
1, ⌧

0
2) satisfy ⌧2 � ⌧1 = ⌧

0
2 � ⌧

0
1 does not

imply that C
xy

(t

c

, ⌧1, ⌧2,!) = C

xy

(t

c

, ⌧

0
1, ⌧

0
2,!).

• Apparently, one of CMCTL time variables, t

c

, ⌧1, and
⌧2, is redundant, however, having all of them feature
explicitly makes the CMCTL function easier to read.

• A convenient way to visualise the CMCTL function is
by plotting it in the (⌧1, ⌧2) plane for a pair of fixed
(t

c

,!

c

) parameters. Fig. 2(a) shows an example of the
conventional CMC plot with two prominent peaks marked
by ⇥ signs, while Fig. 2(b) shows the CMCTL plotted for
fixed t

c

= 3.441 s and !

c

= 24 Hz which are coordinates
of the second prominent peak (we consider here the
second peak just as an illustration, whereas both peaks
are discussed in Section IV). The sampling frequency of
data acquisition is ⌦

s

= 1024 Hz, while the STFT is
evaluated at N = 128 frequencies using the T = 125

ms Hanning window (128 samples). Each point on this
plot thus reflects events situated within the corresponding
125 ms interval, and within the 11 Hz frequency band (the
bandwidth of the window) centred around 24 Hz.

• Whereas t
c

is not explicitly represented on CMCTL plots
centred around a fixed (t

c

,!

c

) pair, it evolves along the
line ⌧1 = ⌧2. Hence, the conventional CMC is given by a
sequence of regular samples of CMCTL along this line.

Fig. 2 illustrates benefits of the CMCTL compared to the
conventional CMC, it terms of either enhancing the coherence
or providing additional insights. In particular:

• The coherence maxima do not occur along the line ⌧1 =

⌧2, but are seen at points away from this line.
• All local coherence peaks are on the same side of the

line ⌧1 = ⌧2, suggesting signalling in the same direction;
this information is absent from the conventional CMC.

• The duration of cortico-muscular coupling events is al-
ways longer if considered along the line of their maximal
coherence as opposed to the the line ⌧1 = ⌧2.

B. Delay Estimation

According to the formula for the coherence bias in (6), in the
case of a single-path system the CMCTL is maximised when
the time lag ⌧ = ⌧2 � ⌧1 is equal to the delay between the
two processes. However, cortico-muscular interactions involve
signalling over multiple paths, as modelled in (2), which blurs
the notion of the delay. We propose to introduce the notion
of the global delay, D

g

, and in analogy with the single-
path case define it as the time lag between the two processes
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Fig. 2. Examples the conventional CMC and CMCTL. (a) The conventional
CMC for a controlled motor tasks with two prominent coherence peaks
marked by ⇥ signs, which will be referred to in Section IV. (b) CMCTL
plotted around fixed (tc,!c), in this case the coordinates of the second
prominent peak. In this plot the x-axis represents ⌧1 and the y-axis represents
⌧2 in samples. Note that local maxima of the CMCTL are found away from the
⌧1 = ⌧2 line, demonstrating coherence enhancement achieved via CMCTL.
Observe also that all local maxima of the CMCTL are situated on the same
side of the ⌧1 = ⌧2 line, suggesting signalling in one direction.

corresponding to a local maximum of C
xy

(t

c

, ⌧1, ⌧2,!):

D

g

:

= ⌧

⇤
2 � ⌧

⇤
1 , (⌧

⇤
1 , ⌧

⇤
2 ) = argmax

⌧1,⌧2

C

xy

(t

c

, ⌧1, ⌧2,!) . (8)

We will illustrate in the following that under some reason-
able assumption the global delay coincides with the mean of
the distribution of the delays in the multi-path system.

The CMCTL is a four-dimensional function which is diffi-
cult visualise and unnecessary to compute over the full range
of its variables t

c

, ⌧1, ⌧2, and !. We found it practical to
first compute the conventional CMC, identify peaks in the
(t

c

,!

c

) plane, and then compute CMCTL for t

c

and !

c

corresponding to the locations of the peaks. Fig. 2 illustrates
the procedure. The top plot shows the conventional CMC,
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Fig. 3. The procedure of time delay estimation. Here we see the CMCTL
plot from Fig. 2(b) at a finer scale. Again, the x-axis represents ⌧1 and the y-
axis represents ⌧2 in samples. The dashed line through the origin corresponds
to ⌧1 = ⌧2 and the asterisk marks the local maximum of the coherence. The
dashed line going through this local maximum, with the slope equal to one
intersects the axes at coordinates which are equal to the estimated delay.

where two prominent peaks are identified. The bottom plot
then shows the CMCTL centred around the peak at t

c

= 3.441

s, !

c

= 24 Hz. Fig. 3 then shows the same CMCTL at a
finer scale. Displacement pairs (⌧1, ⌧2) with the same delay
are situated along the lines parallel to ⌧1 = ⌧2, while the
corresponding delay is equal to the coordinate of the crossing
of such lines with the ⌧2 axis (or the ⌧1 axis, but with the
reversed sign of the delay). We can read from the plot in
Fig. 3 that the estimated delay is approximately 25 ms.

The concept of the estimation of the delay between two
processes via the time lag that maximises their coherence has
been previously proposed in the context of cortico-muscular
coherence by Govindan et al. [25]. The authors proposed it
for the estimation of the delay between stationary narrow-
band signals, which inherently involves spectral estimation
over relatively long time segments, and assumes constant-
delay flow of information from one process to the other.
The authors conclude that these assumptions are frequently
violated in biological systems and that further work is needed
to address the dynamic nature of cortico-muscular interactions.
Our method is designed to specifically deal with non-stationary
processes, by using much shorter analysis windows (an order
of magnitude shorter), which consequently cover a broader
range of frequencies, and performing the estimation around
local peaks of the CMC in the time-frequency plane. Further,
due to the assumed stationarity, in [25] the authors estimate
the delay by considering only time lags along ⌧1 and ⌧2 axes,
whereas we consider the CMCTL in the whole (⌧1, ⌧2) plane,
and we will see in Section IV that the maximum is always
found away from the axes. Another major methodological
difference is that in [25] the authors propose rectification of
EMG signals, which we avoid due to its non-linear nature
and the resulting modification of the spectral content of EMG
signals [23]. As a result of all these modifications we obtain
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delay estimates which are in much closer agreement with
underlying physiology (see Section IV). Finally, we provide an
interpretation of delay estimates in the context of multi-path
propagation, and that is discussed in the next subsection.

C. Physical Interpretation of the Global Delay

According to (6), which is derived for two processes x(t)

and y(t) such that y(t) = bx(t � D) + n(t), if in order to
compensate for the delay we shift y(t) by D

s

in the opposite
direction, the bias ratio of the coherence becomes
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Apparently, the coherence would be maximal when D

s

is
equal to the delay. However, if we consider the model of motor
control system in (2), surface EMG signal has the form y(t) =P

N

i=1 bix(t�D

i

)+n(t), which is a sum of several delayed and
amplitude-scaled versions of the EEG signal x(t) and additive
noise. If we introduce a shift D

s

in y(t), the sEMG signal
becomes y(t+D

s

) =

P
N
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where R

xx

is the autocorrelation function of x(t). By letting
g = u� v and assuming R

xx

is narrow, we obtain that
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In such a scenario, where the output is a sum of several
delayed versions of the input, we cannot compensate all
involved delays D1, D2, ..., DN

, but we can just find D

g

which maximises the coherence. The bias ratio between the
coherence and its maximum in this case has the following
form
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It can be shown that the same expression is valid also for the
more general model described by (3) and (4) under the follow-
ing two assumptions: (i) concurrent sensory and cortical events
x0(t) and y0(t) are uncorrelated, (ii) S

x0,x0(!) ⇡ S

y0,y0(!).
The first assumption amounts to the fact that the brain cannot
respond instantaneously to sensory input, while the second
would be satisfied if both R

x0,x0 and R

y0,y0 are narrow so

that their spectra are approximately flat. The difference in the
the bias ratio formula in (12) between the unidirectional and
bidirectional signalling scenarios is in that delays D

i

take only
positive values in the former case, whereas in the latter case
they can have both positive and negative values. Finding an
analytical solution for the time lag D

g

which maximises the
coherence seems very challenging. Below we simulate such a
multi-path system and investigate the impact of parameters of
the distribution of the delays on D

g

and the drop-off of the
coherence away from its maximum.

The physiological data which we use in this study pertain
to movement control of the hand, so in simulations of (12)
we will set parameters to reflect signal propagation between
the cortex and hand muscles. The scale factors and delays
in the above models are influenced by several factors which
include conduction velocity, fibre length, fibre diameter etc.
[37], [38]. Based on the conduction velocity values of the
nerve fibres, which is around 50 � 65 m/s in the arms [39]–
[41], and setting the distance between the scalp and the hand
to around 1.2 m, we obtain that most of the delays D

i

are
between 18 ms to 24 ms. To introduce the effects of other
factors, such as the conduction velocities of other kinds of
fibres and the differences of their lengths, in the first instance
we will assume that D

i

follow Gaussian distribution with mean
of 20 ms and standard deviation of 4 ms, which means about
95% of the delays are between 12 ms and 28 ms. It has
long been held that the surface myoelectric activity assumes
a Gaussian amplitude distribution [42]–[46], hence we will
draw attenuation parameters b

i

also according to a Gaussian
distribution normalised between 0.05 and 0.95.

Fig. 4 shows results of simulations of the multi-path formula
in (12) for different propagation scenarios. The curve corre-
sponding to the single-path bias formula in (9) is represented
by the dashed blue line, as a reference case where the delay
is unambiguously defined. In Fig. 4(a) we show first the case
when D

i

have Gaussian distribution with mean 20 ms and
standard deviation 4 ms. The global delay D

g

which max-
imises the coherence is in this case equal to the mean delay and
the coherence has a relatively sharp peak at this value of D

g

.
We obtained almost identical plots for D

i

distributed according
to the mixture of three Gaussians, with means at 15 ms, 20 ms,
and 25 ms, with equal standard deviations of 4 ms, and weights
equal to 0.25, 0.5 and 0.25 respectively. Fig. 4(b) illustrates
the case when each path involves also several branches. In
particular, we simulate explicitly the model in (1), which
considers T

i

and ⌧

i,k

separately. We show the cases when
T

i

have Gaussian distribution with mean 20 ms and standard
deviation 4 ms, while ⌧

i,k

have Gaussian distribution with
different means and different standard deviations. This case
also represents a model which involves linear time-invariant
filtering along each path. In Fig. 4(b), the global delay of each
case is the sum of the means of T

i

and ⌧

i,k

, that is again the
overall mean propagation time.

Finally we investigate effects of bidirectional signalling
during the observation window. Fig. 5(a) shows the scenario in
which one quarter of D

i

are reversed, that is D

i

is distributed
according to a mixture of two Gaussians, one with mean
�20 ms and the other with mean 20 ms, both with the same
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Fig. 4. Coherence bias curves in (12) for different distributions of delays
between the brain and the muscle, along with the curve corresponding to the
single-path case in (9) (dashed-blue). Each solid curve consists of 1000 curves,
each of which is a different simulation of (12). The delay in the reference
equation (9) is set to be the same as the corresponding global delay Dg of
(12). (a) Di assume Gaussian distribution with mean of 20 ms and standard
deviation of 4 ms. (b) The delays are modelled according to (1), where Ti
assume Gaussian distribution with mean of 20 ms and standard deviation of
4 ms, while for ⌧i,k four cases are considered: ⌧i,k are all set to zero (red),
which gives again the curves plotted in (a), and then ⌧i,k assume Gaussian
distributions with mean of 2 ms and standard deviation of 1 ms (green),
mean of 5 ms and standard deviation of 1 ms (pink), and mean of 10 ms and
standard deviation of 2 ms (black). The frequency f is set to 24 Hz and T is
set to 125 ms. In all considered cases, coherence bias curves have maxima at
time shifts Dg which coincide with means of propagation delay distributions.

standard deviation of 4 ms, and with weights equal to 0.25

and 0.75, respectively. The value of D
g

is now 19 ms, which
is slightly smaller than the mean value of the delays in the
dominant direction of propagation. The other example is an
extreme situation illustrated in Fig. 5(b), corresponding to the
mixture of the same two Gaussians but with equal weights.
Whereas there are now four local maxima of the coherence,
at D

g

equal to �13 ms, �12 ms, 12 ms or 13 ms, they are
not prominent, and in fact the most prominent feature of the
curve is its plateau which extends from �20 ms to 20 ms.

IV. EXPERIMENTAL RESULTS

A. Signal Acquisition

The proposed methodologies were applied to data collected
from healthy subjects in an experiment designed to investigate
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Fig. 5. Coherence bias curves in (12) for bidirectional coupling scenarios.
(a) Di are distributed according to a mixture of two Gaussians with standard
deviation of 4 ms, and means of 20 ms and �20 ms, with weights equal to
0.75 and 0.25, respectively. Coherence bias curves in this case have prominent
peaks, but their locations yield underestimates of mean delays of propagation
in the dominant direction. Note, however, that although as much as 25% of
signalling propagates in the opposite direction, the estimate of the mean delay
in the dominant direction is not far from the actual value, i.e. 19 ms as opposed
to 20 ms. (b) Di are distributed according to a mixture of two Gaussians
with standard deviation of 4 ms and means of 20 ms and �20, ms with equal
weights. In this case there is no dominant direction of propagation. Coherence
bias curves exhibit multiple local maxima, as marked on the plot, but these are
not prominent. Instead, the curves exhibit a plateau which extends between
the means of delays in the two directions. In all simulations, the frequency f
is set to 24 Hz and T is set to 125 ms.

the modulation of cortico-muscular coherence by peripheral
stimuli [47].

Subjects sat comfortably at a table and performed a simple
motor task with their right hand, holding a 15 cm plastic ruler
in a key grip between the thumb and index finger, keeping
the ruler parallel to and 2 cm above the table surface. Me-
chanical perturbations to the motor task were provided from
an electromechanical tapper that generated pulses of lateral
displacement of the ruler, giving the subjects the sensation
that their grip on the ruler may be lost. The subjects were
asked to hold the ruler gently against the stylus of the tapper to
maintain its position as well as they could throughout each run.
A single trial lasted 5 seconds, with the stimulus delivered 1.1

s after the start of the data collection period. The stimuli were
delivered at pseudorandom intervals varying between 5.6 s and
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8.4 s (mean 7 s) so that subjects could not anticipate the arrival
of the next stimulus. Up to 200 epochs of data were collected
for each subject. EMG was recorded using adhesive electrodes
in a belly-tendon montage over first dorsal interosseous (FDI)
of the dominant hand. Bipolar EEG was recorded from the
scalp overlying the contralateral motor cortex. EMG and EEG
signals were amplified and bandpass filtered (0.5 - 100 Hz for
EEG; 5 - 500 Hz for EMG). Raw EEG signals were scrutinized
off-line by eye and any epochs of data containing movement
artefacts were rejected from further analysis [47].

For the original neurophysiology study [47], we recruited
12 healthy subjects. The coherence observed in a majority of
subjects was however very weak. One such instance of weak
coherence is illustrated in Fig. 9. It can be noted that except
in a short interval immediately following the stimulus, the
coherence is weak and, moreover, the time-frequency region
where the CMC is present is very sparse. For the development
and validation of the methodology presented in this study, we
therefore considered 5 subjects with pronounced coherence
patterns, such as the one illustrated in Fig. 1.

B. Time-Frequency Analysis

Signals collected in the experiment were analysed using the
short-time Fourier and wavelet transforms with time-frequency
resolutions described in Section II-B, as illustrated in Fig. 1 for
signals corresponding to subject J. The STFT using Hanning
window of length T = 125 ms, with time shifts of �t = 9.8

ms between consecutive analysis windows (Fig. 1(c)) provided
the most suitable time-frequency resolution in terms of being
able to discriminate between consecutive transient events
without a considerable drop in coherence levels and it will be
used in all experiments reported in this section. Fig. 1(c) shows
most pronounced coherence in the frequency band centred at
24 Hz, and two prominent coherence peaks, which will refer
to as Peak 1 and Peak 2. With the other four subjects, we also
observed two prominent coherence peaks (see Fig. 2 for data
of Subject B). Centre frequencies, time instants, and levels
of prominent coherence peaks of each subject are shown in
Table I. It can be noticed that the first prominent peak always
appears between 1.5 s and 2.5 s while the second one appears
between 2.5 s and 3.5 s.

C. Delay Estimation and Coherence Enhancement

After the two most prominent peaks are identified, we
considered the CMCTL at time instants t

c

and frequencies
!

c

corresponding to these peaks. Delay parameters ⌧1 and
⌧2 were varied in increments of 4 samples points (about 3.9
ms) each. Before presenting results of delay estimation, it
is of interest to investigate the drop-off of CMCTL away
from local maxima. To that end we fixed ⌧1 at the value
corresponding to a local maximum of CMCTL and varied ⌧2.
Fig. 6 shows the drop-off curves obtained in this manner for
both prominent peaks for two subjects. The drop-off curves
corresponding to Peak 2 both subjects are close to the drop-off
profiles in Fig. 4 that correspond to unidirectional propagation,
whereas the drop-off curves corresponding to Peak 1 are much
wider, resembling more scenarios with bidirectional signalling

illustrated in Fig. 5. A possible explanation is that Peak 1 is
situated within a short time interval following the mechanical
stimulus, when there could be more pronounced bidirectional
signalling before movement control stabilises.
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Fig. 6. Comparison between the bias ratio of Peak 1 (black), Peak 2 (blue)
and the averaged values from the curves in Fig. 4(b) (pink). (a) Subject K
(b) Subject L. The curves around Peak 2 are close to the drop-off profiles in
Fig. 4(b) (pink), which correspond to unidirectional propagation, whereas the
drop-off curves around Peak 1 are much wider, resembling more scenarios
with bidirectional signalling illustrated in Fig. 5.

Fig. 7 shows the CMCTL around Peak 1 for two subjects (J
and N). We can observe from these plots and the data in Table
II that the CMCTL practically does not change in the small
neighbourhood of the origin (⌧1, ⌧2) = (0, 0), which based on
the analysis in Section III-C and simulations shown in Fig. 5
suggests bidirectional signalling, and hence delay estimates
that are lower than actual delays. It can be also noticed in
Fig. 7(c) that there are areas of CMCTL increase on both
sides of the ⌧1 = ⌧2 line, supporting further the presence of
signalling in both directions. Fig. 7(b)(d) shows at a finer scale
CMCTL regions around their local maxima, which are marked
by ”⇤”. The intersection of the dashed-line passing though
the coherence maximum with the ⌧2 line in Fig. 7(b)(d) then
gives an estimate of the corresponding delays. Fig. 8 shows the
CMCTL around Peak 2 for the same two subjects. It is evident
from the figure and data in Table II that now the CMCTL
increases significantly away from the origin (⌧1, ⌧2) = (0, 0),
and also that the highest coherence is found on the same side
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TABLE I
LOCATIONS OF THE PROMINENT PEAKS OF THE CMC ACROSS SUBJECTS.

Subject Peak 1 Peak 2

Time (s) Value Frequency (Hz) Time (s) Value Frequency (Hz)

B 1.898 0.1575 24 3.441 0.1356 24
J 2.162 0.1107 24 2.963 0.0842 24
K 1.674 0.1856 24 2.689 0.1490 24
L 2.123 0.0897 16 2.680 0.0771 16
N 1.957 0.0839 16 3.256 0.0578 32

TABLE II
ESTIMATES OF GLOBAL TIME DELAYS AND LEVELS OF CMCTL INCREASE AT LOCAL MAXIMA COMPARED TO THE ORIGIN.

Subject
Peak 1 Peak 2

Global time delay (ms) Coherence increase (%) Global time delay (ms) Coherence increase (%)

B 23.4 ±3.9 4.88 23.4 ±3.9 13.01
J 15.6 ±3.9 1.86 23.4 ±3.9 19.51
K 7.8 ±3.9 2.00 15.6 ±3.9 4.39
L 11.7 ±3.9 5.58 19.5 ±3.9 8.20
N -11.7 ±3.9 2.72 15.6 ±3.9 19.45

of the line ⌧1 = ⌧2, suggesting signalling in one direction
and more accurate and reliable delay estimates. The global
time delays estimated in this manner around Peak 1 and Peak
2 for the five subjects are shown in Table II (recall that the
time resolution of the CMCTL used for delay estimation is
3.9 ms). All delays estimated around Peak 2 are in the region
19.5±3.9 ms which agrees with physiological facts discussed
earlier. Delay estimates around Peak 1 are on average smaller,
but still within the 19.5±3.9 ms region except for Subject K.
These lower delay estimates could be attributed to bidirectional
signalling.

Next we compare the above delay estimates to those ob-
tained using the linear phase model approach [9], its variation
which estimates the non-linear component of the phase using
the Hilbert transform [11], and the existing method based on
maximising coherence [25]. Following the argument presented
in [9], we applied a weighted least squares regression in
the frequency range of significant coherence to fit a straight
line through the phase of the cross-spectral density between
EEG and EMG signals. Only data collected in post-stimulus
periods from 1.5 s to 4.5 s were used. These recordings
were divided into three 1 s long non-overlapping segments.
The time delays obtained in this manner vary widely across
subjects. In order to decrease the effects caused by the non-
stationarity of the signals and make the comparison with
our algorithm more direct, we applied the phase method to
different time intervals separately too. Then we applied the
modified algorithm based on the Hilbert transform. Finally,
we used the existing method based on maximising coherence.
Table III shows the estimated time delays in different intervals
with these three approaches. Note that delays shorter than 10

ms are physiologically impossible given conduction velocities
in nerve fibres [48]. Our results in Table II are most directly
comparable to the results of the other three methods in the

1.5 � 2.5 s and 2.5 � 3.5 s ranges as Peak 1 and Peak 2
which are selected to estimate the global time delay around
are located in these intervals for all the subjects. Comparing
Table II with Table III, shows that results of our method are
both more mutually consistent and in closer agreement with
the underlying physiology.

D. Further Considerations

Physiological studies have found that around 10 � 25% of
healthy subjects do not express significant cortico-muscular
coherence. A question that naturally arises is whether in such
cases the CMCTL can enhance the cortico-muscular coherence
to a level above significance threshold. As we pointed out in
Section II-B, there are two known factors that could make
CMC fall below the significance threshold: one is the bias
due to misalignment, and the other is the contamination
of EEG and EMG signals with noise and processes which
are unrelated to the monitored activity [23]. The CMCTL
methodology can compensate the bias due to misalignment,
and in some cases that would be sufficient to reveal coherence
which is normally not expressed. However, CMCTL cannot
remove noise and other irrelevant EEG and EMG components,
and if their combined level is high enough compared to the
process of interest, the CMCTL alone will not be able to
bring the coherence above significance threshold. Whereas
we are presently investigating de-noising techniques, it is
worth noting that adequate time-frequency resolution of spec-
tral estimation which precedes coherence evaluation has the
capability of implicitly enhancing the ratio between relevant
signals and noise. To observe the underlying mechanism, note
that the STFT transform is a two-dimensional sequence of
correlations between a signal of interest and time-frequency
atoms �

t

c

,!

c

(t) = w(t � t

c

)e

j!

c

t

, where w(t) is the STFT
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Fig. 7. Examples of CMCTL and time delay estimation around Peak 1. The x axis represents the shift of EEG, while the y axis represents the shift of EMG
in samples, and the colour represents relative increase of coherence compared with that at the origin (⌧1, ⌧2) = (0, 0). Plots on the right are zoomed versions
of the plots on the left. Local maxima are marked by ”⇤” signs. Lines going through the maxima intersect the vertical axis at coordinates which are equal to
the delay estimates.

TABLE III
TIME DELAY ESTIMATES OBTAINED BY USING STATE-OF-THE-ART METHODS

Methods Subject Time delay (ms) of different time intervals

1.5 - 4.5 s 1.5 - 2.5 s 2 - 3 s 2.5 - 3.5 s 3 - 4 s

Phase-based estimation [9]

B 29.76 34.68 34.98 30.73 23.95
J 1.52 2.07 0.94 2.31 5.69
K 5.93 2.96 5.16 7.95 12.01
L 19.17 8.76 28.36 52.59 53.99
N -2.71 21.48 14.47 4.38 10.33

Hilbert transform [11]

B -29.3 -32.23 -31.25 -32.23 -32.23
J -16.60 -18.55 -19.53 -18.55 -19.53
K 11.72 11.72 10.74 9.77 -31.25
L -37.11 -40.04 -37.11 -36.13 -39.06
N 17.58 -51.76 15.63 -55.66 -55.66

Maximising coherence [25]

B 99.61 109.38 -17.58 57.62 28.32
J -7.81 -0.94 46.88 30.27 82.03
K -26.37 -49.80 0 -10.74 -94.73
L -52.73 0 -30.27 89.84 79.10
N -118.16 -186.52 21.48 -126.95 75.20
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Fig. 8. Examples of CMCTL and time delay estimation around Peak 2. The x axis represents the shift of EEG while the y axis represents the shift of EMG
in samples, and the colour represents relative increase of coherence compared with that at the origin (⌧1, ⌧2) = (0, 0). Plots on the right are zoomed versions
of the plots on the left. Local maxima are marked by ”⇤” signs. Lines going through the maxima intersect the vertical axis at coordinates which are equal to
the delay estimates.

window function. The shape of the window function, its
position in time t

c

, and its centre frequency !

c

allow for
some level of adaptation that could potentially increase the
correlation of �

t

c

,!

c

(t) with the signal of interest, and/or
reduce its correlation with the noise, and thus increase the
coherence. Fig. 1(e) shows an example of the opposite effect,
where the time-frequency resolution of the spectral analysis
at low-frequencies does not match well the synchronised EEG
and EMG events, which results in the drop of the coherence
below the significance level.

We noticed instances of the CMCTL revealing significant
coherence in time-frequency regions where the conventional
CMC was not expressed, however, that issue could not be
investigated extensively using our data. Three of the subjects
recruited for the original study [47] indeed did not express
baseline CMC in the � range (14 � 36 Hz), which was
of primary interest there, however, they all exhibited �-
range CMC above the 95% confidence level following the

stimulus. Moreover, the spectral analysis using windows of
length T = 125 ms, performed here, brought the coherence
above significance level in some additional regions of the time-
frequency plane, where it was not detected in the physiological
study for which longer windows, T = 500 ms, were used [47].

Fig. 9 illustrates the enhancement of cortico-muscular co-
herence via a combined effect of adequate time-frequency
resolution of the underlying spectral analysis and the CMCTL
methodology. While significant coherence in the � range is not
expressed in the time interval after 3 s when spectral analysis
is performed using Hanning window of length T = 500 ms,
with �t = 250 ms shifts, (see Fig. 9(a)), the plot in Fig. 9(b)
shows that the coherence in the same time-frequency region
is revealed when Hanning window of length T = 125 ms is
used, and shifted in time with �t = 9.8 ms increments.Then
we performed the CMCTL around the peak which emerged
at t

c

= 3.461 s and !

c

= 24 Hz, which increased the level
of coherence by another 24%, as shown in Fig. 9(c), bringing
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it ultimately to the 0.05 level. It is worth noting also that as
a result of employing the time-frequency resolution provided
by the shorter window, the coherence is enhanced everywhere
in the � range, however it disappeared at frequencies below
10 Hz in the 3� 3.5 s interval, suggesting that optimal time-
frequency resolution needs to be non-uniform, and that finding
optimal solutions merits further research.
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Fig. 9. Coherence enhancement achieved via adequate time-frequency
resolution of spectral estimation combined with CMCTL. (a) The CMC plot
obtained via the STFT computed at M = 512 frequencies, using Hanning
window of length T = 500 ms, with �t = 250 ms shifts between consecutive
windows. The coherence is very weak, and cannot be observed in the � band
in the interval after 3 s. (b) The CMC plot obtained via the STFT which is
computed using Hanning window of length T = 125 ms, with �t = 9.8
ms shifts between consecutive windows. The coherence is enhanced almost
everywhere in the time-frequency plane, and becomes evident in the � band,
in the interval after 3 s. (c) The CMCTL performed around the peak which
emerged at tc = 3.461 s, !c = 24 Hz. It increases the maximum coherence
value by another 24% bringing to 0.05. The colour scale in this plot represents
the relative increase of the CTMCTL with respect to the CMCTL at the origin.
CMC values below the 95% confidence limit are set to zero in both plots.

V. CONCLUSION

In this paper we introduced the concept of cortico-muscular
coherence with time lag (CMCTL), that is the coherence

between EEG and EMG segments taken with a time lag
from a central observation point. Using physiological data,
we illustrated the potential of the CMCTL function to increase
coherence levels and provide information about finer temporal
structures of cortico-muscular interactions compared to the
conventional cortico-muscular coherence. Then we proposed
an algorithm for estimating the delay between coupled cortical
and muscular events as the time lag corresponding to local
maxima of the CMCTL function, and provided its analysis
and interpretation in the context of multi-path propagation,
which is a more realistic model of cortico-muscular path-
ways than the commonly assumed single-path system. Delay
estimates obtained by applying the proposed algorithm to
physiological data are in close agreement with underlying
physiology, whereas in situations when that is not the case,
the discrepancies are in agreement with the analysis provided
in the paper.
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