
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 

 

King’s Research Portal 
 

DOI:
10.1109/ICT.2016.7500361

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Petropoulos, G., Sardis, F., Spirou, S., & Mahmoodi, T. (2016). Software-defined inter-networking: Enabling
coordinated QoS control across the internet. 2016 23rd International Conference on Telecommunications (ICT) ,
Article 7500361. https://doi.org/10.1109/ICT.2016.7500361

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 28. Dec. 2024

https://doi.org/10.1109/ICT.2016.7500361
https://kclpure.kcl.ac.uk/portal/en/publications/2b16ec64-3571-44ca-9bb4-d03b27a3a252
https://doi.org/10.1109/ICT.2016.7500361


Software-Defined Inter-networking: Enabling
Coordinated QoS Control Across the Internet

George Petropoulos∗, Fragkiskos Sardis∗∗, Spiros Spirou∗ and Toktam Mahmoodi∗∗
∗ Intracom Telecom, Peania, Greece, {geopet, spis}@intracom-telecom.com

∗∗ Department of Informatics, Kings College London, UK, {fragkiskos.sardis, toktam.mahmoodi}@kcl.ac.uk

Abstract—Software-Defined Networking can be used to easily
provision paths for business applications. However, such pro-
visioning is static and is furthermore lost when application
flows cross over to another operator domain. This paper pro-
poses an online mechanism (SDNI) that considers application
requirements and uses SDN to negotiate traffic policies between
neighbouring operator domains. Hence, SDNI enables the hop-
by-hop creation of end-to-end paths that are appropriately
provisioned for application flows. A prototype and a small-scale
testbed have been implemented to assess SDNI’s feasibility. Early
results show that SDNI overhead does not affect application
performance in various use cases, while the benefits of SDNI
are evident.

I. INTRODUCTION

The administrative boundary of a Software-Defined Net-
working (SDN) deployment is limited by the boundary of
the Network Service Provider (NSP) domain. At the intercon-
nection between domains, any local policy set through SDN
becomes invalid. This can have a detrimental effect on ser-
vices and applications that transcend domains because traffic
policies are typically different between domains. To address
this problem, we propose SDN Inter-networking (SDNI): an
interface between SDN Controllers belonging to neighbouring
domains for coordinating traffic policies. Given QoS require-
ments from an application, the neighbouring SDN Controllers
use SDNI to negotiate a bilateral policy and its configuration,
especially on border SDN Switches. This negotiation takes
into account any local policy, as well as network capabilities
and does not expose sensitive business information.

SDNI stitches across NSP domains an inter-network that
can grow or shrink dynamically and enables inter-domain QoS
provisioning. As a use case, an NSP that doubles as a Content
Service Provider (CSP) (e.g., an NSP offering intra-domain
IPTV) can use SDNI to expand the service footprint to a
peering NSP, without deploying extra equipment and without
offline re-negotiation of Service-Level Agreements (SLAs).
That footprint grows dynamically as more NSPs decide to join.
The ensuing, loosely-federated content delivery network can
be made available to other CSPs, as an alternative to centrally-
managed content delivery networks like Akamai. Thus, the
value of SDNI really lies in its empowerment of NSPs to
offer more than Internet connectivity.

This work has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No 671648
(VirtuWind).

The rest of the paper is outlined as follows: Section II
provides background information on SDN and QoS provision-
ing. Section III discusses the design of SDNI, the functions
involved in achieving inter-domain policy negotiations and
the related communication interfaces. Section IV presents
the experimental implementation and preliminary performance
measurements along with a discussion and interpretation of the
results. Finally, Section V concludes the paper with a summary
of contributions and future work.

II. RELATED WORK

In this section we look at some approaches in the areas of
application control, inter-domain QoS coordination and SDN
interconnection which are relevant to SDNI.

Participatory Networking (PANE) [1] is an API that allows
applications to have restricted control over an SDN-enabled
network. It provides applications with an interface to apply
their policies, dynamically request resources and query the
state of the network. Accepted application requests are mate-
rialized on the network by configuring flow rules in the SDN
Switches. However, PANE is limited to a single administrative
domain. SDNI incorporates the semantics of the PANE API
and focuses on the negotiation of application requirements
between multiple domains.

Bandwidth Brokers (BBs) have been defined within the
scope of DiffServ [2] for the purpose of cross-domain resource
allocation and traffic differentiation. A BB monitors its domain
topology, resources, policies and SLAs and optimizes the use
of internal resources in order to satisfy resource allocation
requests made by applications or peering networks. BB imple-
mentations differ on whether the domain control is centralized,
distributed, or hybrid [3]. BBs assume that NSP domains
operate with DiffServ, whereas SDNI can work with any traffic
differentiation mechanism.

Path Computation Elements (PCEs) [4] perform constraint-
based path computation in Multiprotocol Label Switching
(MPLS) and Generalized MPLS (GMPLS) networks. A PCE
keeps track of its domain topology, resources and policies
and computes intra-domain paths. The PCE communication
protocol (PCEP) [5] is used for the interaction of PCEs with
network devices and adjacent PCEs to compute and manage
end-to-end (e2e) paths. The PCEP protocol is currently im-
plemented as an OpenDaylight (ODL) module [6] and allows
topology notifications and Label-Switched Path (LSP) setup,



while SDNI aims to be agnostic to each domain’s traffic
differentiation mechanisms.

SDN-i [7] was proposed at the IRTF SDN Research Group
for interfacing SDN domains that belong to the same NSP
domain. It sketched a protocol for coordinating the behaviour
between SDN Controllers and for exchanging reachability,
capability and flow information across multiple SDN do-
mains, according to information given from applications. In
a single NSP domain, SDN Controllers trust each other and
can exchange sensitive information. Our work focuses on
multiple NSP domains where controllers’ negotiation with
limited information is required.

DISCO [8] proposed a distributed control plane and de-
signed a message-oriented communication bus which enables
SDN Controllers of different domains to exchange topology
information and provide e2e services. Its architecture and
mechanisms are a solid basis for our design, but it focuses
on inter-domain routing over SDN.

Our work goes beyond the state of the art as it proposes
protocol and mechanisms for the interconnection of SDN Con-
trollers, offering more than inter-domain routing. It defines an
online negotiation scheme which allows dynamic interaction
with applications, enables NSPs to negotiate traffic flows and
provision high-QoS paths locally, eventually achieving inter-
domain e2e service provisioning.

III. ARCHITECTURE DESIGN

Section I sketched one of the use cases we have considered
for SDNI. Based on those use cases, we have identified a
number of requirements to drive the design of SDNI. The
main requirements are:

1) An NSP should be able to configure its internal policies.
2) Business applications should be able to inform the

network about flows and their QoS characteristics and also
receive network capabilities.

3) Upon reception of an application request, neighbouring
NSPs should negotiate the treatment of the application flow
based on their internal policies, without exposing strategic and
sensitive information.

4) After successful negotiation, NSPs must configure their
network, apply their traffic differentiation mechanism and
mark ingress and egress flow packets accordingly.

5) Interfaces must be secure to prevent harmful behaviour.
SDN provides means to differentiate and apply different

QoS to certain traffic flows. OpenFlow [9] supports egress
queues to prioritize types of traffic and guarantee the minimum
bit rate of packets leaving a switch port. Hence, queues can
also be applied to limit ”greedy” application flows. Meters are
another OpenFlow feature that allows rate-monitoring of traffic
based on its ingress rate. Depending on the meter status and
traffic rates, certain policies can be applied such as packet
(re)marking or drop. Meters have the advantage that they
can be configured dynamically and added to flows by SDN
Controllers while queues are set up on switches bootstrapping.

Each NSP can apply their own traffic differentiation mech-
anisms such as DiffServ, MPLS, and map them to specific

Data 
Plane

Control
Plane

Application
Plane

Domain B
Domain A

SDN Controller A

SDN Controller B

Application

Content Server

Client

Application Interface

Negotiation Interface

NSP A
Front-end

NSP B
Front-end

Operator 
Interface Operator 

Interface

Openflow Openflow

Fig. 1. The SDNI high-level architecture.

queues or meters. NSPs, via their respective SDN Controller,
set up long-term flows to the switches to meet local policies
and SLAs. New and dynamic application requests could either
map to such existing flow rules or require short-term instal-
lation of new ones. For fine-grained control of traffic, flows
use layer 2 and 3 header fields matching, hence scalability and
resilience aspects need to be taken into account with regards to
the installation of new flows or aggregation of existing flows
in large networks.

The high-level SDNI architecture shown in Figure 1 consists
of 3 planes: the Application plane, where application and NSP
front-ends and servers reside, the Control plane, where the
SDN Controllers operate and communicate using SDNI and
finally the Data plane where traffic is forwarded. Our approach
exposes 3 interfaces: the Operator Interface which is used by
the NSP to set up internal policies, the Application Interface,
allowing applications to convey traffic requirements and char-
acteristics and the Negotiation Interface, usually referred in
literature as East-West API, allowing peering SDN Controllers
to negotiate application requirements and set up e2e paths.

A. Interfaces

SDN Controllers offer an Operator Interface for managing
the SDNI within the domain. In traditional NSP networks, this
could be expressed as the interface towards the NSP’s Network
Management System (NMS). In this paper, we will define only
the interface semantics, which are essential to our design.

Applications can be registered, providing their identifier,
type and QoS requirements (bandwidth, jitter, packet loss and
packet delay). Applications can also be authorized or blocked
per request. Generic application types and their characteristics
are also essential for enabling their mapping to internal poli-
cies, as well as easing flow aggregation. Network infrastructure
management tasks can also be performed, enabling the NSP to
set up traffic prioritization mechanisms, such as queues, meters
and their maximum rates and to define the protocols, such as
MPLS, DiffServ and their mapping to these frameworks. The
inter-domain links and adjacent domains are also configured,
providing the domain’s border switch, queues and meters, the
adjacent SDN Controller IP address and billing information.

Business applications will use the provided Application
Interface to specify traffic flows which require e2e paths with



TABLE I
SDNI INTERFACES, MESSAGES AND SEMANTICS

Interface Messages Semantics

Operator

Application appId, appType, edgeSwitch, protocol, bw, packetLoss, packetDelay, jitter
Allow Application appId, true/false
Application Type appType, bw, packetLoss, packetDelay, jitter, queue/meter
Policy protocol, queues/meters thresholds, strategy
Border Data domain, borderSwitch, port, neighbourSdnController, queues/meters, billingInfo

Application Application Requirements appId, srcIp, srcPort, dstIp, dstPort, protocol, start, duration, bw, packetLoss, packetDelay, jitter

Negotiation
Negotiation Request appId, reqId, srcIp, srcPort, dstIp, dstPort, protocol, start, duration, bw, packetLoss, packetDelay, jitter
Negotiation Response appId, reqId, ACCEPT/REJECT/NEGOTIATE, diffBw, diffPacketLoss, diffPacketDelay, diffJitter
Negotiation Notification appId, reqId, CONFIRM/CANCEL

certain QoS. A unique flow is characterized by {source IP
address, destination IP address, source port, destination port,
protocol}. Application requests also include the required e2e
QoS parameters for a specific flow and its time constraints.
Requests trigger the SDNI logic and lead to a unique request
ID, which is returned to the business applications to receive
the request status and monitoring data. Application requests for
specific traffic flows can be sent either proactively or in real-
time depending on the application type, the existing utilization
of the underlying network or due to an emergency event.

Negotiation Interface is used by the SDN Controllers to ex-
change application requirements and reserve e2e inter-domain
paths. It partially follows patterns proposed within the scope
of Generic Autonomic Signaling Protocol (GRASP) [10],
specifically its negotiation messages and procedures. Three
types of messages are exchanged:

• Negotiation Request: This is either the first message
of the negotiation protocol or the updated offer after
an unsuccessful negotiation round. It is identical to the
application request, including the requested flow data,
their QoS parameters and time constraints.

• Negotiation Response: This message is sent as a response
to a Negotiation Request, including the outcome of the
request, ACCEPT, REJECT, NEGOTIATE and in the
latter case, the bandwidth, packet loss, delay and jitter
which can be served in the peer domain, in terms of deltas
of the originally requested ones.

• Negotiation Notification: This message is used to inform
the adjacent domain of the negotiation outcome or other
events, in order to reserve or release resources and
configure its network accordingly.

Table I presents the key data structures, messages and seman-
tics for each interface. The sections that follow provide techni-
cal details on the defined interfaces’ supporting mechanisms.

B. Intra-Domain Functionalities

Upon reception of an application request, the intra-domain
admission control mechanism takes over. The SDN Controller
checks whether the application is registered and authorized to
perform such requests or blocked due to harmful or greedy
behaviour in the past. The requested QoS parameters are also
checked against the already defined profiles for such types of
applications. In case that the request violates these profiles,
the operation is aborted.

Available configured paths are checked to determine if they
can serve the requested traffic flow. In case this is not feasible
and the requested e2e path is within the domain, the intra-
domain path computation process is executed. The algorithm
receives as input the intra-domain graph, latest measurements
of QoS metrics, retrieved by Openflow counters, and the
requested ones. It then calculates the constrained shortest path,
pruning the links that violate the application requirements, and
calculating the best available path using the Dijkstra algorithm.

Finally new flow rules are configured to the selected SDN
Switches. These flow rules consist of the source and destina-
tion IP prefix, protocol and ports and include the mapping
to the domain’s traffic differentiation mechanism and are
configured for the specified duration. The SDN Controller
keeps track of configured flow rules and requested resources
and is able to remove and release them or renew their duration
upon relevant request. In the case the destination address is in
a foreign domain, the negotiation process has to be triggered,
which will be described further in the following section.

SDN Controllers periodically monitor their underlying net-
work infrastructure and measure QoS parameters, to ensure
that active application requests’ requirements are continuously
met internally. In addition, they listen for internal topology up-
dates, equipment failures and react in such cases by triggering
the path computation process to recalculate optimal paths.

C. Inter-Domain Functionalities

Multi-domain e2e paths are constructed in a hop-by-hop
fashion, with bilateral negotiation taking place in each hop. An
alternative would be to assume the existence of a centralized
platform (an orchestrator), in which all underlying domains
agree to participate and share information with and coordinates
the calculation and establishment of multi-domain e2e paths.
However, this might not be desirable for NSPs, which do not
want to expose sensitive information, such as their status and
policies to third parties. In addition it’s hard to decide who
will own the orchestrator. Our distributed approach has the
advantage that negotiation parties exchange only application
request parameters and decide their next-hop based on their
own information. Which one of these architectures is more fea-
sible, efficient and could be applied in existing NSP domains
is a matter for evaluation and future work.

The negotiation takes over when the application request
includes external source or destination IP addresses. Using



Negotiation Request

Check intra-domain policies & status
Calculate intra-domain paths

Check inter-domain status

Configure switches

Negotiation Notification

Negotiation Response

Configure switches

SDN Controller A SDN Controller B

Fig. 2. Two-hop negotiation sequence diagram.

available routing and border information, the SDN Controller
selects the next hop and starts negotiating with it to get the re-
quired resources. The lifecycle of an inter-domain negotiation,
which is loosely based on GRASP negotiation procedures [10],
is described below and illustrated in Figure 2.

The Controller of Domain A identifies that the destination
address of the application request is external. Based on BGP
data, it identifies that one of the best next-hops is Domain B,
retrieves the border data from its local data store and sends
a Negotiation Request to the SDN Controller of Domain B
which includes the e2e application requirements.

When Controller B receives such a message, it compares
the request to Domain B’s internal policies and performs
intra-domain admission control as described in section III-B.
If there are configured internal paths which can be applied
to the request, it then updates them to meet the additional
requirements. Otherwise, it will calculate new paths, retrieve
measured QoS and compare it to the requested. Furthermore, it
will also check the peering link statistics. If there are available
resources and the request is compliant with internal policies,
it then replies to Controller A with an ACCEPT Negotiation
Response, otherwise with a REJECT. There is also the option
that Controller B responds with a NEGOTIATE message,
when there are available resources but initial application
requirements cannot be fully met. Then the response will
include the alternative values which are feasible internally.

If Controller A receives ACCEPT, then the two-domain ne-
gotiation is considered successful. If the response is REJECT,
the application will be served with best effort QoS. When
NEGOTIATE is received, Controller A could either accept the
offered values, considering its latest links statistics and the
generic QoS requirements for the application type, or propose
new values with another Negotiation Request message. The
bidding process between two domains should not take more
than two rounds, to prevent delaying the e2e negotiation.

When the two negotiation parties agree on the specified
values, they can both configure their intra-domain paths and
peering link. Each controller configures its SDN Switches with
appropriate flow rules and applies its internal traffic differenti-
ation mechanism, using Openflow or OVSDB protocol. If the
destination address is not part of Domain B, then it is assumed

that Controller B will repeat the process.
Eventually, a multi-domain e2e path is set up. SDN Con-

trollers will inform their peers that the reservations are still
valid, by sending a CONFIRM Notification. If negotiation
between any parties has failed and there was no alternative,
CANCEL Notifications are sent backwards so that SDN Con-
trollers can release resources and delete inserted flows.

After a successful negotiation, inter-domain link status
and QoS metrics are periodically checked, ensuring that ap-
plication QoS requirements and SLA parameters are met.
Applications may also monitor their end-points, check the
received e2e QoS and react with new requests. In case of
inter-domain link failure, a few measures are taken. If the
affected domains have other additional links, then CANCEL
negotiation notifications are sent, in order to release resources
and delete configured flows. Then the next best one is selected
based on its current status and statistics and the two controllers
renegotiate using the aforementioned process in order to agree
on the inter-domain interface and reconfigure their internal
paths. When the negotiation is not successful, then the whole
inter-domain e2e path has to be released, using CANCEL
negotiation notifications and calculated from the beginning. A
complete e2e negotiation has to be executed, which might lead
to lost packets until e2e paths are set up. Another approach
assumes that domains might keep a proactive plan for such
cases, with less-prioritized flow rules, activated for such cases.

IV. IMPLEMENTATION AND EVALUATION

We implemented a proof-of-concept prototype for SDNI
and used a virtualised testbed to validate and demonstrate
the feasibility of the approach designed. We estimated the
performance of the prototype by measuring the time it takes
to negotiate resources between two domains.

A. Prototype

SDNI implementation is based on ODL Lithium SR3, a
versatile, production-quality controller supported by the Linux
Foundation. Its modular architecture allows us to use only the
services we need and load them as modules that perform spe-
cific network functions and implement southbound protocols.

Functionalities of the implemented prototype include the
logic for the Operator, Application and Negotiation interfaces
and depend on certain ODL modules to monitor the underlying
topology, retrieve link statistics, calculate intra-domain paths,
QoS metrics and configure SDN Switches. The three interfaces
are exposed as extensions of ODL’s HTTP REST API and
are defined and generated using YANG configuration files.
Minimal resilience implementation has been done to detect
intra-domain link failures and setup new paths in real-time.

B. Evaluation Setup

The evaluation topology shown in Figure 3 comprises of
two physical servers, each one emulating a single domain,
interconnected through a virtual router which in our case is
passive and does not participate in the resource allocation
scheme. Each domain consists of 5 virtual machines (VMs),



Domain A
Domain B

OVS2

OVS1

SDN Controller A

Content Server Client A

EdgeOVS1
EdgeOVS2

OVS3

OVS4

Client B

SDN Controller B

Fig. 3. The SDNI testbed.

three SDN Switches, one SDN Controller and one client. All
VMs are configured with 1 vCPU, 10GB HDD and 1GB RAM,
(except SDN Controllers which have 4 vCPUs and 6GB RAM)
and have Ubuntu 14.04 installed. Each SDN Switch is an Open
vSwitch (OvS) version 2.0.2 [11], acting as a single bridge
with as many ports as their virtual interfaces and provides an
additional management interface to connect with their attached
SDN Controller. Two queues have been set up on all the
switches: one for best effort and one for premium traffic. This
mode of operation aims to show the validity of our approach
with real and generated application traffic.

For the evaluation of our approach, we validate that ap-
plication requests are negotiated between the two domains
using a Python script which performs thousands of them. It
measures the time needed for two peering domains to negotiate
and eventually configure the inter-domain switches. Besides
measuring the internals of our implemented ODL module,
OpenFlow packets are captured in the management interface of
inter-domain switches using Wireshark [12] and the additional
configuration time from SDN Controller to OvS is monitored.

C. Results

We consider the signalling time for two domains to negotiate
and setup a path as the key performance indicator for SDNI.
Three time intervals are identified and measured in order to
evaluate the proposed approach:

1) The time between the application request arriving and the
negotiation request being sent to the peer domain, tintra. This
time includes the checking of intra-domain and inter-domain
link capabilities and path calculation.

2) The time between sending a negotiation request and
receiving a response, tneg .

3) The time needed to configure the border switch with the
relevant flow rules, tswitch.

For 5674 requests performed with a rate of 10 re-
quests/second, average values were tintra = 2.5ms, tneg =
8.59ms and tswitch = 1.62ms, resulting in average overall
setup time of toverall = 11.16ms, with a 95% confidence
interval 10.99 to 11.33ms. Negotiation time includes the time
required by the peering SDN Controller to monitor and setup
its internal path and configure its switches and the RTT
between the two domains. Average ping time between the two
Controllers was measured to 3.77ms, hence the internal oper-
ations in the adjacent domain require similar time compared

to the one which started the negotiation. We admit that the
negotiation time is affected by the number of AS hops and
RTT between controllers. Complex intra-domain topologies
would also impact our results. Initial findings for two domains
would not affect most business applications. Future work will
evaluate our approach under more realistic conditions.

V. CONCLUSION

We presented a lightweight protocol that employs SDN
Controllers belonging to neighbouring NSP domains in order
to negotiate the reservation of e2e resources for business ap-
plications. Negotiation is performed in a hop-by-hop fashion,
exchanging only the required QoS and traffic characteristics.
SDN Controllers map those characteristics to domain-local
policies and resources, without exposing sensitive information
to other parties. A proof-of-concept prototype has been im-
plemented and a testbed emulating two domains has been set
up. Preliminary results show that negotiation overhead is small
enough to leave most business applications unaffected.

As future work, the authors will look into resilience and
scalability aspects, such as properly handling inter-domain link
failures and aggregating flow rules. Those will be evaluated
for the multi-domain case in order to understand how they
affect application traffic. In addition, the existing testbed will
be extended to emulate more domains and inter-domain links,
as well as more complex intra-domain topologies. The aim is
to evaluate and validate the hop-by-hop approach under more
realistic conditions and to compare it with the orchestrator-
based approach. A longer-term goal includes submitting a draft
to the IRTF SDN Research Group.

REFERENCES

[1] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krishnamurthi,
“Participatory Networking: An API for Application Control of SDNs,”
SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, pp. 327–338, Aug.
2013. [Online]. Available: http://doi.acm.org/10.1145/2534169.2486003

[2] K. Nichols, S. Blake, F. Baker, and D. Black, “Definition of
the Differentiated Services Field (DS Field) in the IPv4 and
IPv6 Headers,” December 1998, RFC2474. [Online]. Available:
http://tools.ietf.org/rfc/rfc2474.txt

[3] S. Sohail and S. Jha, “The Survey of Bandwidth Broker,” School of
Computer Science and Engineering, University of New South Wales,
Sydney, Australia, Tech. Rep., 2002.

[4] A. Farrel, J.-P. Vasseur, and J. Ash, “A Path Computation
Element (PCE)-Based Architecture,” August 2006, RFC4655. [Online].
Available: http://tools.ietf.org/rfc/rfc4655.txt

[5] J. Vasseur and J. L. Roux, “Path Computation Element (PCE)
Communication Protocol (PCEP),” March 2009, RFC5440. [Online].
Available: http://tools.ietf.org/rfc/rfc5440.txt

[6] “Opendaylight.” [Online]. Available: https://www.opendaylight.org
[7] H. Yin, H. Xie, T. Tsou, D. Lopez, P. Aranda, and R. Sidi,

“SDNi: A Message Exchange Protocol for Software Defined Networks
(SDNS) across Multiple Domains,” IRTF, Internet-Draft, 2012. [Online].
Available: https://tools.ietf.org/html/draft-yin-sdn-sdni-00

[8] K. Phemius, M. Bouet, and J. Leguay, “DISCO: Distributed Multi-
domain SDN Controllers,” CoRR, vol. abs/1308.6138, 2013. [Online].
Available: http://arxiv.org/abs/1308.6138

[9] “The OpenFlow Switch Specification.” [Online]. Available:
http://OpenFlowSwitch.org

[10] B. E. Carpenter, B. Liu, and D. C. Bormann, “A Generic Autonomic
Signaling Protocol (GRASP),” IETF, Internet-Draft, 2016. [Online].
Available: https://tools.ietf.org/html/draft-ietf-anima-grasp-04

[11] “Open vSwitch.” [Online]. Available: http://openvswitch.org
[12] “Wireshark.” [Online]. Available: https://www.wireshark.org


