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Abstract 

The branching pattern of the coronary vasculature is a key determinant of its function and plays a crucial 

role in shaping the pressure and velocity waveforms measured for clinical diagnosis. However, although 

multiple scaling laws have been proposed to characterize the branching pattern, the implications they have on 

wave propagation remains unassessed to date. To bridge this gap, we have developed a new theoretical 

framework by combining the mathematical formulation of scaling laws with the wave propagation theory in 

the pulsatile flow regime. This framework was then validated in multiple species using high-resolution 

Cryomicrotome images of porcine, canine and human coronary networks. Results demonstrate that the 

forward well-matchedness (no reflection for pressure/flow waves travelling from the coronary stem towards 

the microcirculation) is a salient feature in the coronary vasculature, and this result remains robust under 

many scenarios of the underlying pulse wave speed distribution assumed in the network. This result also 

implies a significant damping of the backward traveling waves especially for smaller vessels (radius <0.3 mm). 

Furthermore, the theoretical prediction of increasing area ratios (ratio between the area of the mother and 

daughters vessels) in more symmetric bifurcations found in the distal circulation was confirmed by the 

experimental measurements. No differences were observed by clustering the vessel segments in terms of 

transmurality (from epicardium to endocardium) or perfusion territories (left anterior descending, left 

circumflex and right coronary artery). 

New & Noteworthy: The validation of the proposed theory in multiple species reveals the equivalence 

between scaling laws and well-matchedness in the vasculature. Moreover, it captures the role of pulsatility in 

optimal vascular designs. This demonstrates the forward well-matchedness of the coronary bifurcations, 

whereas backward waves are damped asymmetrically at junctions. 

Keywords: wave propagation, branching pattern, coronary vasculature, scaling law. 
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1. Introduction 

The branching structure of the coronary network is an important determinant of its function. 

Understanding the distribution of flow, volume, resistance and the resulting pressure and velocity waveforms 

cannot be achieved without accounting for the underlying design of the vascular network. Since the pioneering 

work of Murray (40, 41), the morphometric relationships between branching vascular segments have been 

codified into different forms of mathematical relationships, or scaling laws (5, 13, 23, 24, 26, 76, 77, 78). 

Whereas Murray’s original work considered the vascular network as an energy-minimizing structure balancing 

flow delivery and metabolic costs, subsequent work has explored uniform wall shear stress (24, 76), 

myocardial mass (5), vascular volume and cumulative lengths (23, 76) as determinants underlying the design 

principles. 

The current leading theory in vascular network design principles is arguably the volume-scaling law (HK 

law) (23, 24), which, based on a set of biophysical assumptions coupled cumulative vessel volume and length 

with the vessel diameter. This approach produced equivalent results to an earlier minimum-energy model (76) 

that generalized Murray’s formulation from a single bifurcation to the whole arterial network. The 

discrepancies that were found among different vascular beds were explained on the basis of their varying 

metabolic-to-viscous power dissipation ratio (26). 

Quantitatively, these scaling laws serve a useful role in interpreting angiographic data in the context of 

growth (4), disease and inter-species comparison (26), in uncovering implied relationships between 

parameters (56) and estimating the distal flow resistance in myocardial blood flow, e.g. for CFD assessment of 

FFR (64). 

On the other hand, the branching parameters measured in real vascular networks exhibit a large scatter 

(46, 77). Moreover, the fitted power law exponents reported in the literature vary significantly depending on 

the range of vessel diameters analyzed (67). This heterogeneity had been characterized as possessing features 

of multifractality using human coronary data, leading to a speculation that such a property may endow the tree 

with an enhanced ability to distribute impedances along its structure (78). The existing scaling laws provide 

no explanation for the origin of such heterogeneity. Furthermore, there is evidence that the theoretical 

framework of scaling laws leads to a shallow optimum – that is to say, the cost of departure from the power 

law relationship is minimal over a very broad range of exponents (57). Combined with high heterogeneity, it 

undermines the significance of the putative design principles proposed. 

Aside from the physical organization of the vessel segments, pulsatility in flow is also a central feature that 

is strongly characteristic in the coronary circulation in both large (36, 55) and small vessels (66), in that the 

magnitude of the pulsatile component is not necessarily dominated by the steady component. Surprisingly, to 

date investigations of coronary network scaling laws have been conducted largely independent of the wave 
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phenomena. This is surprising given that it is the generation, propagation and the reflection of the pulse waves 

that shape the pressure and velocity dynamics throughout the network. In particular the rhythmic ejection of 

blood by the left ventricle and the cyclic myocardial contractions that squeeze the embedded vasculature are 

responsible for the proximal and distal generation of pressure and flow waves. These generated waves then 

propagate forward (from the coronary root towards the microcirculation) and backward throughout the 

network, where at each bifurcation encountered, partial wave reflections may alter the waveform shapes. The 

amplitude of the pulse wave measured at any point in the network therefore carries an imprint of the 

interaction the propagating wave has undergone with the underlying network structure. 

With newer research tools such as wave intensity analysis (WIA) gaining momentum in the clinical arena 

(8,62,63), the clinical diagnostic potential of altered arterial pulse waves in disease has received much 

attention in recent investigations (7–9, 55). Specifically, the cumulative energy (area of the waves) and peak 

energy (peak of the waves) have been used in the clinical settings to enhance our understanding of various 

disease processes affecting the coronary vasculature (e.g. aortic stenosis (7), LV hypertrophy (8)) and to define 

the impact of various interventions (e.g. biventricular pacing (34), intra-aortic balloon therapy (10)). Most 

recently, the demonstrated prognostic benefit of WIA in the setting of acute myocardial infarction has 

enhanced prediction of long-term myocardial recovery (9). However, while it is known that the LV 

ejection/suction are the principal factor generating the forward travelling waves, the main mechanisms 

underlying the backward travelling waves are yet to be elucidated, and confounds the conclusion derived by 

applying cWIA. Specifically, it is proposed that the myocardial compression/expansion on the intramural 

vessels and the diastolic reduction of resistance at the microcirculatory level are the two main contributors 

underlying the backward wave origin (8, 55). However, which of the two is the dominant mechanism and how 

this dominance varies depending on the transmural location and the vessel size is still under debate. 

At present little is known about how the branching structure of coronary vasculature is linked with the 

observed wave propagation behavior. A rare, and perhaps the earliest, work on this subject (1) was the first to 

propose that the branching structure and mechanical properties of the coronary vessels larger than 0.5mm of 

diameter are well-matched, so as to facilitate the forward-travelling waves to traverse a junction without being 

dampened significantly. The presented experimental evidences compared well with their theoretically optimal 

branching structure. However, this theory was based on an assumption of uniform distensibility in branching 

vessels, which has not been confirmed for consecutive generations of a given vascular network. This work, 

therefore, as with many other investigations in arterial wave propagation, suffered from difficulties in 

determining pulse wave speed and thus relied on extrapolation of results measured in larger segments. 

Accurate measurement of coronary pulse wave speeds is a challenge that persists even today, and there is a 

large scatter in the values employed in the literature ranging from 5-10 m/s in earlier studies (1, 77), to higher 

values 15-25 m/s estimated by more recent ComboWire measurements (48, 50). In the analysis below, we 

show that evoking the theory of scaling law can help to overcome this experimental difficulty.  
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In short, the existing scaling laws capture well the broad behavior of the vascular branching pattern in an 

averaged sense. Heterogeneity, however, is better addressed by assessing the wave reflections (and the 

encompassing theory) since they are inherently a local phenomenon. As demonstrated herein, the application 

of scaling laws to the interventionally-relevant epicardial segments results in a large spread that cannot be 

explained by the existing theory. By unifying the theoretical framework of the scaling law with those of 

pulsatility and wave propagation, we show that phasic aspects of coronary flow – which, after all is one of its 

defining characteristics – is an indispensable determinant of its structural design that can contribute to the 

observed heterogeneity. Accordingly what we propose here is not a new scaling law, but a generalized 

framework by which to elucidate vascular branching structures. 

The rest of the paper is organized as follows – we begin by recapitulating the theories of scaling laws and 

wave reflection in vascular networks, before developing the new unified model of the organization of 

branching structure under pulsatile flow. Following this, the physiological range of Womersley numbers is 

considered to incorporate the frequency-domain behavior into the analysis. Then, experimental validation 

comprising high-resolution imaging and segmentation of coronary networks from several species are 

described and applied to the proposed theory. Finally, model results are applied to the new and existing 

experimental data to explain the spread, to re-visit the well-matchedness hypothesis and to investigate regional 

and scale-specific differences in the coronary branching patterns. In addition, existing scaling laws that were 

constructed in the absence of pulsatile flow are reassessed to show that each proposed law implies a specific 

branching pattern, which has not been evaluated to date in terms of resulting wave propagation. 

2. Methods 

We begin with a brief presentation of the mathematical background of the scaling laws regarding the 

coronary branching pattern (23, 24, 40, 41, 78). Subsequently, the one-dimensional blood flow theory is 

introduced along with the concepts underlying wave reflection at bifurcations. These two theoretical 

frameworks are then combined together incorporating the impact of flow pulsatility (using Womersley’s 

approach) into the analysis. Finally the experimental protocol and imaging processing pipeline employed for 

coronary anatomical reconstruction are described, followed by the model validation. 

2.1. Theory of scaling law at bifurcations 

As described in the Introduction, a scaling law is an analytic formulation describing morphometric 

relationships, often parameterized by the vessel lengths, diameters and arterial volume between a feeding 

segment and the perfused subtree (13, 24, 78). Since the impact of a scaling law on wave reflection at 

bifurcations is of primary interest in this study, we focus on a specific aspect of the scaling laws: the relationship 

between the mother vessel diameter (dm) and the diameter of the daughter vessels (dd1, dd2) at each bifurcation. 

This relationship can be written in a generic form in terms of either diameter or cross-sectional area as 
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  (
𝑑𝑑1
𝑑𝑚
)
𝜏

+ (
𝑑𝑑2
𝑑𝑚
)
𝜏

= 1 (1) 

 (
𝐴𝑑1
𝐴𝑚
)

𝜏

2
+ (

𝐴𝑑2
𝐴𝑚
)

𝜏

2
= 1  (2) 

where the subscripts m, dd1 and dd2 denote the mother and daughter vessels respectively. τ is the scaling 

parameter which characterize the different scaling laws (13). The well-known Murray’s law was the first 

scaling law proposed, where τ = 3 was derived by minimizing the combined viscous power dissipation and the 

metabolic power expenditure across the vascular network (40, 41). Subsequent investigations (27, 76) 

demonstrated that the main limitation of the Murray’s law was that it considered each bifurcation in isolation 

instead of being part of a complete network and proposed successive improvements (based on the 

minimization of the cost of fluid conduction and fluid metabolism) culminating in the well-established HK law, 

with an exponent 𝜏 =
7

3
  (23, 24). In the analysis below, these two laws are considered in detail. 

2.2. 1D blood flow theory 

The mathematical background of the 1D blood flow formulation has been extensively described in literature 

(14, 36, 37, 58, 59). Importantly, the forward and backward wave reflection coefficients at a bifurcation derive 

from the following system of conservation equations (mass and momentum) in three variables: cross-sectional 

area, pressure and velocity (A,p,v) 

𝜕𝐴

𝜕𝑡
+
𝜕(𝐴𝑣)

𝜕𝑥
= 0      (3) 

𝜕𝑣

𝜕𝑡
+ 𝛼𝑣

𝜕𝑣

𝜕𝑥
+
1

𝜌

𝜕𝑝

𝜕𝑥
= −𝜅𝑣.    (4) 

where α is a non-dimensional correction factor for momentum flux, ρ is the blood density and κ represents the 

viscous resistance of the flow per unit length of vessel (60). This system is closed by a constitutive law relating 

pressure to area, derived from an elastic linear shell model (2), 

𝑝(𝑥, 𝑡) =  𝛽(𝑥)(√𝐴(𝑥, 𝑡) − √𝐴0(𝑥, 𝑡)) 

  (5) 

 𝛽(𝑥) =
√𝜋𝐸(𝑥)ℎ(𝑥)

(1−𝜈2)𝐴0(𝑥)
 (6) 

Here, A0 indicates the reference area and β the vessel material properties, which in turn are dependent on the 

Young’s modulus E, the vessel thickness h and the Poisson’s ratio ν which is usually taken as 0.5 since biological 

tissue is nearly incompressible(14, 59).  

The pulse wave speed (PWS), denoted as c, which is the speed at which the wavefront propagates through 

the vessel is derived from the characteristic analysis of the system of equations (3-4), as shown in Sherwin et 

al. (59) 
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 𝑐 = √
𝛽

2𝜌
𝐴
1

4 . (7) 

The formulation outlined above for a single blood vessel can be then extended to a vascular network by 

imposing suitable coupling conditions at the vessel junctions (58, 59). A common approach is to represent 

junctions as a single point and to disregard the impact of the branching angles and momentum loss, since it has 

been shown that they play only a minor role on wave propagation in the physiological range of pressure and 

velocity in the coronary vessels (14). 

2.3. Wave transmission theory 

In this work we employ a linearized wave transmission regime. Although this approximation is most 

accurate when the variation in the underlying hemodynamics is small, the tractability of the linear analysis can 

offer several important insights as demonstrated in Sherwin et al. (59). In this theory the reflection coefficient 

Rf  at a bifurcation is defined as the ratio of the amplitude of the reflected and incident waves, 

𝑅𝑓 =

1

𝑍0,𝑚
−

1

𝑍0,𝑑1
−

1

𝑍0,𝑑2
1

𝑍0,𝑚
+

1

𝑍0,𝑑1
+

1

𝑍0,𝑑2

                                                                    (8) 

where the characteristic impedance of a vessel Z0 relates the velocity or flow of a wave with the applied 

pressure and is defined as 

𝑍0 =
𝜌𝑐0

𝐴0
                                                                               (9) 

Consequently, the reflection coefficient Rf  can be rewritten in terms of cross-sectional area and PWS as 

𝑅𝑓 =

𝐴0,𝑚
𝑐0,𝑚

−
𝐴0,𝑑1
𝑐0,𝑑1

−
𝐴0,𝑑2
𝑐0,𝑑2

𝐴0,𝑚
𝑐0,𝑚

+
𝐴0,𝑑1
𝑐0,𝑑1

+
𝐴0,𝑑2
𝑐0,𝑑2

                                                                    (10) 

under the reasonable assumption of constant blood density. It is important to highlight that, from Eq. 7, the 

pulse wave speed in the reference configuration is 

𝑐0 = √
𝛽∗

2𝜌
𝐴0
−
1
4                                                             (11) 

 𝛽∗ = 𝛽𝐴0                                                                                 (12) 

Note that commonly in the definition of β (Eq. 6) the term A0 is included. However, since in this analysis A = A0 

due to linearisation, it is preferable to introduce an area-independent measure β∗. The backward reflection 

coefficients for the daughter vessels Rd1, Rd2 can be analogously derived by swapping in Eq. 10 the term related 

to the mother vessel  
𝐴0,𝑚

𝑐0,𝑚
 with 

𝐴0,𝑑1

𝑐0,𝑑1
 or 

𝐴0,𝑑2

𝑐0,𝑑2
. 
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2.4. Unified framework 

To explore their intrinsic relationship, the scaling law formulation and the wave transmission theory have 

to be brought into a common framework. This can be achieved by recasting the mathematical formulation of 

the two frameworks in terms of the area ratio σ and the symmetry ratio γ (see Fig. 1), defined as 

𝜎 =
𝐴𝑑1+𝐴𝑑2

𝐴𝑚
                                                                                   (13) 

 𝛾 =
𝐴𝑑2

𝐴𝑑1

        𝐴𝑑2 <  𝐴𝑑1 , 0 ≤ 𝛾 ≤ 1 (14) 

Here onwards, σ and γ are used as the main parameters in our model derivation. Note that γ = 0 implies no 

bifurcation whereas γ = 1 describes a perfectly symmetrical bifurcation. 

 

Figure 1 preferred placement 

Starting from the generic form of a scaling law (Section 2.1) and considering that 𝜎

1+𝛾
=
𝐴𝑑1
𝐴𝑚

 , Eq. 2 can be 

rewritten in terms of σ, γ as 

 (
𝜎

1+𝛾
)
𝜏
2
(1 + 𝛾

𝜏

2) = 1. (15) 

A closed form expression of σ in terms of γ can be then easily derived as 

 𝜎 =
1+𝛾

(1+𝛾
𝜏
2)

2
𝜏

. (16) 

Moving to the wave transmission theory (Section 2.3), assuming without loss of generality that A ≈ cξ the 

forward reflection coefficient can be rewritten as 

 𝑅𝑓 =
1−(

𝜎

1+𝛾
)

𝜏
2(1+𝛾

𝜏
2)

1+(
𝜎

1+𝛾
)

𝜏
2(1+𝛾

𝜏
2)

 (17) 

after the variable substitution 1 − 𝜉 =
𝜏

2
 . It is then evident that imposing Rf = 0 in Eq. 17, thus implying no 

reflections for forward travelling waves, provides the theoretical σ − γ relationship of Eq. 16, which has been 

derived from the scaling law framework. This is a crucial point of the analysis and will be extensively discussed 

in the Result section. The backward reflection coefficients Rd1, Rd2 can be rewritten in terms of σ and γ following 

the same steps as presented above. 

2.5. Impact of pulsatility 

The derivation above has unified the framework of scaling laws with the wave transmission theory, and 

enables the link between branching structure (as characterized by a specific scaling law) and wave propagation 
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to be investigated (Eq. 16-17). However, this result has been derived under the assumption of steady 

conditions thus neglecting the effect of flow pulsatility. In this section we apply Womersley’s analysis to 

generalise our derivation. To date, the impact that pulsatility has on the forward and backward reflection 

coefficients at each bifurcation has only been evaluated in the systemic arteries where the flow regime is 

different compared to the coronary vasculature (3). 

Specifically, the formulation presented above (Eq. 9-10) regarding the reflection coefficients at a bifurcation 

is commonly used in literature. However it is important to recall that it is valid only for Womersley’s number 

α > 10 (3, 46, 70, 71), where, as explained in Papageorgiou and Jones (46), the characteristic impedance Z0 can 

be adequately simplified into 𝑍0 =
𝜌𝑐0

𝐴0
 . Since lower Womersley numbers are typical in the coronary 

vasculature (28), the more general form of the characteristic impedance Z0, described in (3, 44, 46), should be 

considered when addressing the coronary circulation: 

 𝑍0 =
𝜌𝑐0

𝐴0

1

√𝑀0
′(1−𝜈2)

𝑒−
𝑖𝜖0
2  (18) 

where 𝑀0
′  and 𝜖0 are functions of the Womersley number α (70, 71). These functions have been introduced by 

Womersley (70) to obtain a more compact expression of the velocity profile in pulsatile flow (44). Full 

description and significance of each of these variables are briefly outlined in the Appendix, and more 

extensively in the references (44, 70, 71). Essentially, in this study the values of 𝑀0
′  and 𝜖0  for different values 

of α are derived from those tabulated in Womersley (70). 

Therefore, following the analysis presented in Brown (3), for a given Womersley number in the mother 

vessel αm, the corresponding values in the daughter vessels can be calculated as 

    𝛼𝑑1 = 𝛼𝑚√
𝜎

1+𝛾
     (19) 

 𝛼𝑑2 = 𝛼𝑚√
𝜎𝛾

1+𝛾
  (20)

  

This reveals that at each junction α may vary heterogeneously from segment to segment as a function of the 

area ratio and symmetry ratio. The reflection coefficient Rf  in Eq. 17 can be rewritten, following the same steps, 

as 

 𝑅𝑓 =
1−𝐷

1+𝐷
 (21) 

where 

 𝐷 = (
𝜎

1+𝛾
)

𝜏

2
(√

𝑀𝑑1
𝑀𝑚
𝑒−

𝑖(𝜖𝑑1
−𝜖𝑚)

2 + 𝛾
𝜏

2√
𝑀𝑑2
𝑀𝑚
𝑒−

𝑖(𝜖𝑑2
−𝜖𝑚)

2 )  (22) 
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The impact of varying Womersley number on wave propagation can now be assessed. It is important to 

highlight that D is a complex number but no reflections occur when Re(D) = 1 (3). The σ −γ relationship then 

becomes 

 𝜎 =  
1+𝛾

ℜ

(

 
 
(√

𝑀𝑑1
𝑀𝑚

𝑒
−
𝑖(𝜖𝑑1

−𝜖𝑚)

2 +𝛾
𝜏
2√
𝑀𝑑2
𝑀𝑚

𝑒
−
𝑖(𝜖𝑑2

−𝜖𝑚)

2 )

2
𝜏

)

 
 

. (23) 

2.6. Coronary anatomy reconstruction 

2.6.1. Experimental procedure 

Optical fluorescence cryomicrotome imaging is a modality that allows high-resolution, large-volume 

acquisition of vascular tissue injected with fluorescent contrast agents (35, 61). The vascular casting 

experimental procedure has been already presented in previous publications (16, 19, 25, 48, 67) where further 

details can be found. The three porcine cryomicrotome vasculature datasets in this work were obtained in 

strict accordance with the Institutional Animal Care and Use Committee (IACUC) of the University of 

Amsterdam in Netherlands. The canine heart was obtained in strict accordance with the IACUC of the 

University of Utrecht in Netherlands. The human heart was obtained postmortem from the Department of 

Pathology at the Academic Medical Center (University of Amsterdam) with consent from the patient’s relatives 

for organ donation and the code of good practice for use of human tissue in the Netherlands was observed. The 

subject was a male in his 40s, with the cause of death unrelated to cardiovascular disease. The hearts were 

surgically extracted and suspended, and flushed with adenosine-loaded (100µg/L) phosphate buffered saline. 

The excised hearts were in a diastolic state at the time of coronary filling. The porcine hearts were then 

perfused with Batson’s #17 vascular casting resin (Polysciences, Germany) containing fluorescent Potomac 

yellow dye at the average arterial pressure (90 mmHg). UV Blue dye (VasQtec, Zurich, Switzerland) was added 

to the casting resin for the human and canine heart. The injected casts were then allowed to harden for up to 

24h at ambient temperature. Following this, the heart was immersed and the ventricular chambers were filled 

with carboxymethylcellulose sodium solvent (Brunschwig Chemie, The Netherlands) and Indian ink (Royal 

Talens, The Netherlands) mixture, and stored at −20◦ C. The samples were then transferred to the 

cryomicrotome and sequentially sliced and imaged using fluorescent optical surface imaging (16, 19). The 

image stack of each vasculature was then imported into our custom-developed automatic vascular extraction 

software and the geometrical representation graph was obtained. The three porcine hearts processed were 

resampled to isotropic voxel size of 58µm, 54µm and 53µm respectively, while the original voxel size were half 

these dimensions. The voxel size of the human heart and the canine heart were 58µm and 50µm respectively. 
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2.6.2. Automatic vascular extraction 

Figure 2 preferred placement 

 

The main steps behind the custom 3D vessel segmentation pipeline are summarized in Figure 2. Note that 

the current work utilises an enhanced implementation, compared to the one presented in (16). 

To improve the quality of the original image stack (4000x4000x2000 image slices) image restoration 

techniques were initially applied including deconvolution algorithms to tackle blurring (16). Subsequently, the 

range of vessel sizes typical of the coronary vasculature were detected separately by applying multiscale 

Hessian-based filters and then combined together (15). In addition, the multi-scale vesselness descriptor was 

expanded by complementing it with the addition of the Sato vesselness measure (53). The centerline extraction 

was then performed by applying the medial surface/axis thinning algorithm on the binarized volume (39). 

Subsequently the vessel diameters were estimated and sub-voxel adjustment of the medial points were 

achieved by applying the Rayburst sampling algorithm (49) combined with a 3D core that follows the vessel 

centerline providing higher accuracy than the sphere fitting algorithm (16). The quality of the extracted 

vasculature network was further enhanced by a series of algorithms that prune out unphysiological structures 

across the vasculature, typically caused by cast leakage. 

2.7. Validation of the unified framework 

The newly developed theoretical framework presented above (see Section 2.4-2.5) is validated using 

anatomical measurements obtained from three high-resolution cryomicrotome volume images of ex-vivo 

porcine coronary vasculature, visualized in Fig. 3. These vascular trees provide anatomical measurements of ≈ 

80000 bifurcations with a radius range of 1.6mm−50µm. The data were obtained by a custom-developed 

experimental setup and vascular extraction pipeline which were described in the previous section. 

 

Figure 3 preferred placement 

 

The high resolution cryomicrotome volume images provide sufficient anatomical detail to be analyzed both 

from a hierarchical point of view (radius of the mother vessel) as well as separating the territories perfused by 

the large epicardial vessels (LAD, LCx, RCA). In addition, for each of the porcine vascular networks (see Fig. 4), 

the myocardium (comprising both the left and right ventricle) has been manually segmented (using ImageJ 

(54)), and tetrahedralized (using CGAL (65)). Following this step, the Laplace equation has been solved with 

Dirichlet boundary conditions comprising 0 and 1 as boundary condition on the epicardial and endocardial 

surfaces to obtain a linear transmural gradient through the myocardial wall. The transmural depth was then 

assigned to each bifurcation using a kd-tree based search algorithm (to find the k nodes of the ventricular mesh 
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closest to a vascular node) with k = 10 thus offering an additional classification of the extracted coronary 

networks in terms of transmurality. 

 

Figure 4 preferred placement 

 

From this data, the statistical distributions of both σ and γ were initially calculated. The spatial distributions 

of the area and symmetry ratios ware then investigated to assess whether these quantities correlate with 

different vessel scales, perfused territories or transmural location. The σ-γ theoretical relationship (Eq. 16-23) 

for the different scaling laws considered (Murray’s law and the HK law) was then compared with the 

measurements, including the impact of varying Womersley number. Following this analysis, the forward and 

backward reflection coefficients (Rf, Rd1 and Rd2) were calculated directly from the experimental data, using Eq. 

10, and compared with the theoretical predictions. However, note that Eq. 10 depends on the knowledge of 

both the anatomical measurements and the PWS (or alternatively the material properties β∗ ) in each vessel. 

Thus, the distribution of the PWS (or β∗) across the vasculature had to be hypothesized since it cannot be 

experimentally measured in every vessel at present. Therefore in the following, we examine several common 

hypotheses employed in the literature. Two simpler assumptions are to impose a constant uniform PWS (37) 

(which implies decreasing β∗ distally) or uniform material property (implying an increase in the PWS distally) 

(42) throughout the network. A third common approach (21, 43) relies on an empirical relationship described 

in Olufsen (45), based on measurements from mostly the systemic circulation 

 
𝐸ℎ

𝑟0
= 𝑘1𝑒

𝑘2𝑟0 + 𝑘3 (24) 

where k1 = 2 × 107g · s−2 · cm−1, k2 = −22.53cm−1 and k3 = 8.65 × 105g · s−2 · cm−1. Each of these three approaches 

was applied on the extracted porcine coronary vasculatures to calculate Rf, Rd1 and Rd2 at each bifurcation. 

Finally, the results derived from porcine vasculatures were compared with those from the other species (1 

human and 1 canine vasculature) to investigate possible inter-species variation. 

 

 

3. Results 

3.1. Unified framework 

The theoretical analysis described in the previous section (Eq. 14-17) has multiple implications. It 

demonstrates for the first time, to our knowledge, the equivalence between the adherence of a vascular 

network to a particular scaling law and the well-matchedness of its bifurcations, thereby closing the loop 

between vascular design and wave propagation dynamics. Moreover, if well-matchedness is assumed, then a 

σ-γ closed form analytical relationship is derived (Eq. 16) and can be used for validation, since it depends solely 
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on the anatomical measurements without requiring the knowledge of the pulse wave speed or the material 

properties in each segment, which are not experimentally measurable currently. 

 

Figure 5 preferred placement 

 

In Fig. 5a the theoretical σ-γ relationships for the two different scaling laws considered are visualized, along 

with experimental data points measured from human epicardial coronary vessels. If well-matchedness is 

assumed a priori then both Murray’s law and HK law predict that more symmetrical bifurcations (γ > 0.5) 

would exhibit higher area ratios – this can be tested against experimental measurements. It can be seen that 

Murray’s law predicts higher area ratios for a given symmetry ratio compared to the HK law, and neither law 

captures the spread of the data points adequately. Furthermore, the measurements from Finet et al. (12) and 

Russell et al. (52) cover a relatively small area ratio range (γ ≈ 0.8) and are limited to large vessels (d > 2 mm), 

which motivates the need for further experimental investigation. 

The impact of Womersley number α on the σ-γ relationship is visualized for the HK law (Fig. 5c) and 

Murray’s law (Fig. 5d). The shaded region represents the area spanned by the relationship for each law, when 

α is varied within a physiological range. The Womersley numbers considered, typical of the coronary 

vasculature, are 0.01 ≤ α ≤ 10 following Kassab et al. (28). Similarly to the systemic arteries (3), the theory 

predicts that a decrease in the Womersley number causes for a given symmetry ratio an increase in the area 

ratio necessary to achieve well-matchedness – i.e. for a given symmetry ratio smaller vessels should exhibit 

higher area ratios. Furthermore, this has an important implication for the validation of the theoretical 

framework. Since the exact Womersley number α for each bifurcation is unknown, but may vary 

heterogeneously in accordance with equations (19) and (20) for each scaling law, the σ-γ measurements 

derived from the porcine vasculatures should not be compared to the σ-γ relationship obtained for a specific 

α. More correctly, the area ratio and symmetry ratio measurements should be compared to the area spanned 

by the σ-γ relationship of a specific scaling law for the physiological range 0.01 ≤ α ≤ 10. This is the approach 

pursued below. 

Finally, in Fig. 5b the reflection coefficients for backward travelling waves (Rd1, Rd2) in the two daughter 

vessels are visualized, for both HK and Murray’s law. It is important to highlight that the shown relationships 

are valid under the assumption of forward well-matchedness. In symmetrical bifurcations backward wave 

transmission is impeded (Rd1 ≈ Rd2) in both daughter vessels to a similar degree, whereas in more asymmetrical 

bifurcations backward wave transmission through the junction is favored (Rd1 < Rd2) from the larger daughter 

vessel at the expense of the smaller daughter vessel. Therefore, from the point of backward waves, higher 

degree of asymmetry at bifurcations is more advantageous since it allows backward travelling waves to carry 

their information up further. Finally, the theory correctly predicts no reflection in the larger daughter vessel 

and full reflection in the smaller one when γ ≈ 0 (no bifurcation). 
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3.2. Vascular extraction results 

Before moving into the data analysis, the reliability of the vasculature extraction pipeline is compared against 

previous literature here. The percentage of bifurcations and n-furcations (with n > 2) in each extracted porcine 

vasculatures is ≈ 95% and ≈ 4% respectively, which is in good agreement with Kassab et al. (29). The 

trifurcations are excluded in the subsequent analysis due to their limited numbers in the coronary vasculature 

(29, 67). Moreover, as visualized in Fig. 6, the relationship between the mother and daughter vessels diameters 

in each network compare well with that of VanBavel and Spaan (67) demonstrating the reliability of the radius 

estimation step in the vascular extraction pipeline. Finally, since the statistical distributions of the area ratio 

and symmetry ratio visualized in Fig. 6 (last two columns), agree well with VanBavel and Spaan (67) and are 

qualitatively consistent between samples, the datasets were merged together for the remainder of the analysis. 

Figure 6 preferred placement 

3.3. Distribution of σ-γ across the vasculature 

As a precursor to the full validation, the variation in the area and symmetry ratios across the coronary 

vasculature were assessed, as they are the key variables governing wave propagation in the network. To do so, 

the data from the three porcine vascular networks were combined together and divided into clusters according 

to either the mother radius, the perfused territory (LAD/LCX/RCA) or the transmural location (three equal 

layers). 

There is a statistically significant (p<0.01, Wilcoxon signed-rank test) increase in the area ratio (from 1.05 

to 1.4) and symmetry ratio (from 0.3 to 0.7) moving from the large epicardial vessels to the small arteries and 

arterioles, as shown in Fig. 7. Furthermore, the percentage of asymmetric bifurcation (γ < 0.5) strongly 

decreases from ≈ 80% in the large vessels to ≈ 15% in the smaller ones (Fig. 7c-d). However, note that there is 

no statistically significant difference in area ratio and symmetry ratio when comparing different perfused 

territories (Fig. 7a-c) or transmural location (Fig. 7d-f) within the same vessel size range. These findings 

remain unchanged when the Rm interval divisions are adjusted, as changing the mother vessel radius ranges 

up to 20% causes only a minimal variation (< 5%) in the metrics analysed. 

3.4. Validation of theory 

The scaling law coefficient τ was fitted, using the spatial distribution of σ and γ across the coronary 

vasculature (Eq. 16). The fitting process was repeated 50 times for each cluster region and the solution τ 

providing the minimum mean squared error was chosen. As clearly visible in Fig. 8a, there is a statistically 

significant (p < 0.01) increase in the scaling law coefficient τ moving from large (τ ≈ 2.25) to small (τ ≈ 3.5) 

 

Figure 7 preferred placement 
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vessels, meaning that different scaling laws pertain to different scale of vessels. The increase in τ was 

monotonic in all cases except in the RCA, possibly due to the sparsity of data in that branch. Once more, no 

significant differences have been found when comparing the LAD, LCx and RCA perfused territories. 

 

Figure 8 preferred placement 

To validate the proposed theory of combined scaling law and wave propagation, the predictions of Eq. 23 

are compared with the measurements for Murray’s law and HK law here, taking into account the impact of 

varying degree of pulsatility as captured by the Womersley number. In Fig. 9 the range of area ratio symmetry 

ratio relationships for the Womersley number typical of the coronary vasculature is visualized for the HK law 

(shaded grey) and Murray’s law (striped pattern). Note that the lower end of Murray’s law  (α > 10) overlaps 

with the upper range of HK (α < 1). Note also that the theoretical prediction (see Eq. 23) of higher area ratio 

for higher symmetry ratio is confirmed by the measurements, in the scale Rm > 0.1 where the data exhibits a 

plateau of σ ≈ 1.4. The implication of this result will be explored further in the Discussion section. When 

including the impact of pulsatility, the model prediction for the HK law can accommodate the range where the 

data are found, for the large, medium and small vessel scale considered (see Fig. 9a-c) thus supporting the well-

matchedness hypothesis of the coronary bifurcations. Moreover, the theoretically predicted increase in the 

symmetry ratio for a given area ratio is confirmed by the experimental measurements, in line with the decrease 

in Womersley number expected in the smaller vessels. 

For Murray’s law, the theoretical predictions do not match the measurements for the large and medium 

scales (see Fig. 9a-b). For the small scales (see Fig. 9c) Murray’s law fits the measurements but underestimates 

the expected Womersley number since for that range of vessels, the expected α (from Kassab et al. (28)) is 

approximately 0.1 which is at the top edge of the striped area. 

To summarize, when the pulsatility of flow was disregarded in the analysis of coronary branching patterns, 

the analysis concluded that different scaling laws apply to different vessel scales (see Fig. 7). However, when 

the theoretical framework of scaling law was extended to incorporate the Womersley number, the HK law 

satisfactorily agreed with the anatomical data for vessels of radius larger than 0.1mm. The same conclusions 

were obtained when the vasculature was clustered according to the transmural depths, although the details 

are not shown here. 

Figure 9 preferred placement 

3.5. Reflection coefficients across the vasculature 

The forward (Rf) and backward (Rd1, Rd2) reflection coefficients were calculated for each mother vessel 

radius, perfusion territories or transmural location, for the three parametrizing approaches described in 

Section 2.7 (uniform PWS, uniform β∗ or a experimentally-fitted relationship). The outcomes were somewhat 
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surprising in that the proximal Rf, Rd1 and Rd2 were largely similar (< 10% variation) for all parametrization 

scenarios despite the fact that the assumed distribution in the PWS/β∗ varied significantly. Moreover, similar 

results were observed when clustering the bifurcations in terms of the mother vessel radius (Rm) or the Weibel 

generation number (29). As shown in Fig. 10a-d for the constant β∗ assumption, the forward reflection 

coefficient is small (Rf ≈ 0) thus supporting once more the well-matchedness hypothesis of the coronary 

bifurcations for vessels with a radius Rm > 0.1. Smaller vessels have a slightly more negative forward reflection 

coefficient of approximately -0.1. Moreover, due to the observed increase in symmetry ratio and area ratio for 

smaller vessels, the backward reflection coefficient Rd1 of the larger daughter vessel becomes more negative 

while the smaller daughter vessel coefficient becomes less negative. This is in good agreement with the 

theoretical predictions visualized in Fig. 5. 

Figure 10 preferred placement 

 

Species Comparison 

The analysis performed above was then repeated for the canine and human vasculatures (Fig. 11), to assess 

possible inter-species variation. Although the superficial appearance suggested a potentially different 

relationship (the human coronary vasculature is more tortuous compared to the canine and porcine 

counterparts), the same qualitative trends and quantitative results were confirmed, both regarding the σ, γ 

distribution across the vasculature and the satisfactory prediction of the σ − γ relationship by the HK law, when 

the impact of pulsatility was taken into account. 

 

Figure 11 preferred placement 

4. Discussion 

The key outcomes of the current study are as follows – the augmentation of the scaling laws with the wave 

transmission theory enabled the implications of specific scaling laws to be studied in an integrated manner, in 

terms of bifurcation morphology and wave reflections. The consequent validation using the pulsatile regime 

model offered a plausible explanation for the heterogeneity of branching morphology that was previously 

reported in literature (12, 52, 77). More importantly, the theoretical results and experimental data supported 

the hypothesis that the forward well-matchedness is a salient feature of coronary vascular structure. 

Furthermore, this observation has been shown to be robust to different assumed distributions of vessel 

material properties and PWS that have been trialed. This in turn implied that the backward well-matchedness 

is selective; that is, transmission is only preferred from the larger of the daughter vessels, and suppressed for 

the waves travelling up from the smaller daughter vessel. In the discussions below, we examine the theoretical 
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and experimental aspects of the current work and the physiological implications of our findings in greater 

detail. 

What new findings does the proposed framework offer? 

In this work, the unification of scaling laws and wave transmission theories led to a demonstration that 

assessing the well-matchedness of the vessel branching pattern is equivalent to assessing the validity of a 

specific scaling law. It was shown that recasting the mathematical formulations of both frameworks in terms 

of area ratio σ and symmetry ratio γ (see Section 2.4) provides the same σ-γ relationship (Eq. 16) under the 

assumption of zero reflection coefficient for forward travelling waves. This is crucial for two main reasons. 

Firstly, it enables the study of these two aspects in an integrated manner allowing assessment of the 

implications of a specific scaling law with respect to the distribution of PWS and material properties across the 

vasculature and vice versa. Secondly, for each scaling law it provides – under the assumption of well-

matchedness – an analytical relationship (Eq. 16) solely dependent on the anatomical measurements without 

the need for measuring PWS or β∗, thus facilitating validation. Furthermore, the impact that varying Womersley 

number has on the reflection coefficient at bifurcations has been investigated for the first time in the coronary 

vessels, which showed that for smaller vessels a decrease in Womersley number causes an increase in area 

ratios necessary to maintain well-matchedness. Similar observations have been reported in the systemic 

arteries (3). 

For validation purposes, two main predictions can be deduced from the newly introduced theoretical 

framework and compared with the experimental measurements. Firstly, more symmetrical bifurcations 

(larger γ) have higher area ratios (larger σ), as visualized in Fig. 5a. Secondly, smaller vessels have higher area 

ratios for a given fixed symmetry ratio consistent with the expected reduction in Womersley number (see Fig. 

5c-d). Both predictions are confirmed by the high-resolution measurements (of around 80000 bifurcations 

with a 40-60µm minimum vessel diameter, see Fig. 9). 

Are the existing scaling laws valid? 

The analysis excluding the influence of pulsatility has called into question the validity of a single scaling law 

applied to the whole vessel network. When fitting the scaling coefficient τ, different values for different vessel 

sizes were obtained (see Fig. 8), suggesting that scaling relationship itself may depend on the vessel diameters. 

This dependence of the scaling law parameter τ on the diameter of the vessels has been experimentally 

investigated and reported in literature. Specifically, in VanBavel and Spaan (67), τ was found to be 2.82, 2.5 

and 2.35 for a mother diameter of < 40µm, 40µm − 200µm and > 200µm, respectively. Moreover, the decrease 

of τ for an increase in the vessel radius (moving from small to large vessel) has been confirmed by other studies 

(1, 67). These results compare well with our findings (Fig. 8). 
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On the other hand, the full analysis including pulsatility demonstrated the possibility that the HK law is 

compatible with the measurements when Rm > 0.1, if one takes into account the range of Womersley numbers 

found in vivo. This further implies well-matchedness throughout the network, according to our analysis. This 

is because the Womersley regime acknowledges the heterogeneous variation of physiological σ − γ 

relationships (Fig. 5) dependent on the local hemodynamic conditions, rather than demanding a single curve 

corresponding to non-oscillatory conditions. However, note that we have only examined the branching pattern 

aspect of the scaling law. Similar variability in the scaling relationships regarding other morphometric 

parameters (tissue volume-vascular volume relationship) have been recently examined in van Horssen et al. 

(20), and remains a task for future exploration. 

To summarise, even when pulsatility was taken into account, the HK law satisfactorily fitted the data and 

this implies well-matchedness for coronary bifurcations. However, it is important to underline that the 

conclusions drawn so far are valid down to a vessel scale of Rm ≈ 0.1 mm. In fact, as can be seen in Fig. 9, for 

smaller vessels (particularly the asymmetrical ones) the measurements do not fit the theoretical predictions. 

This may be due to the fact that the anatomical reconstruction at this scale is subject to greater error since the 

vessel dimension approaches the image resolution limit. However it is also likely that wave propagation, on 

which the newly developed theoretical framework is based, plays only a minor role at this scale. In fact, the 

vessel segments with Rm < 0.1 mm have an average length of approximately 14mm, and a PWS derived from 

our analysis of approximately 20 − 25 m/s (depending on the parametrization approach assumed). This 

implies that a wave would travel through a vessel in less than 1ms (not measurable by existing techniques and 

which would require a sampling frequency >1 KHz). In this regime, the previously proposed Windkessel 

approximation (i.e. infinite PWS) of the coronary vasculature may be more appropriate (30). 

Finally, it is important to recall once more that each proposed scaling law implies a specific branching 

pattern, that has never been evaluated in terms of its consequence to wave propagation. Specifically, once a 

certain scaling law is assumed, the consequent forward and backward reflection coefficients can be calculated 

at each bifurcation thus enabling the wave reflection pattern to be assessed. 

What does the current evidence show regarding coronary wave reflection properties? 

The validation of the newly introduced theoretical framework supports the hypothesis that the coronary 

bifurcations are well-matched for forward travelling waves, whereas the backward travelling waves are 

significantly damped, increasingly so at smaller scales (R<0.3mm). This conclusion can be derived firstly by 

the observation, in Fig. 9, that the anatomical measurements in vessels with Rm > 0.1mm agree with the 

theoretical predictions that have been obtained under the assumption of well-matchedness. Secondly, the 

reflection coefficient for forward travelling waves has been found to be Rf ≈ 0 for the analysed scales, regardless 

of the parametrization approach used (constant material properties, constant PWS or experimental formula), 

with no significant differences in terms of transmurality or perfused territories (see Fig. 10). 
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The well-matchedness for forward travelling waves subsequently implies ill-matchedness (strongly negative 

reflection coefficients Rd1,d2) for at least one of the backward travelling waves at the junction, especially for 

more asymmetrical bifurcations (Fig. 10). 

It is noteworthy that the distribution of the forward and backward reflection coefficients has been 

calculated using the linearized formula derived from Eq. 17, instead of Eq. 23, which takes into account 

pulsatility. This choice was motivated by the need to minimize the number of assumptions required for 

calculating the reflection coefficient at each bifurcation (see Section 2.7). In fact, Eq. 17 assumes a priori the 

distribution of PWS (or material properties β∗) across the vasculature. Using Eq. 23 would additionally require 

the assumption of Womersley number distribution across the network (or to derive it from previous 

publications (28)). The fact that different PWS distributions led to the identical outcome of well-matchedness 

for forward travelling waves strongly suggests that this is a salient feature of the coronary vasculature. 

Furthermore, this conclusion is in good agreement with Huo and Kassab (22) model of pulsatile blood flow in 

the entire coronary tree, in which it was observed that the damping of the pressure waveform is rather small 

for larger vessels and becomes more pronounced for vessels smaller than 100µm. However, neither the 

reflection coefficient distribution nor the PWS distribution across the vasculature have been reported, thus a 

direct comparison with our current results is not possible. 

How are these results relevant to clinical challenges? 

Waveforms in the coronary vessel have been studied for their clinical diagnostic potential (62,63). Many 

recent investigations have employed techniques such as wave intensity analysis (47), that permits specific 

features of the wave to be identified and ascribed to the spatio-temporal sequence of the coupled cardiac–

coronary cycle and their deviation from the norm under diseased conditions. In particular, the role of the 

backward expansion wave (BEW) has received attention due to its alteration in hypertrophic cardiomyopathy 

(8), aortic stenosis (7), heart failure (34) and prognosis following myocardial infarction (9) from which novel 

insights regarding the specific pathology have been derived. 

However, while the origin of the forward travelling waves is reliably ascribable to the ejection/suction of 

the LV, the mechanisms underlying the backward travelling waves are yet to be fully described thus limiting 

the conclusions derived by cWIA. Specifically, in the early clinical research studies, the origin of the backward 

travelling waves has been putatively ascribed at the microcirculatory level, following the relief of systolic 

myocardial compressions (7, 8, 17, 34, 55). However, there is no specific evidence quantifying at which depth 

of the network such relaxation is taking place to give rise to the detected waveforms – in other words, the 

location of the horizon of observable backward waves remains unidentified. 

A more recent study, investigating the variation of the cWIA profile during the Valsalva maneuver led to the 

conclusion that coronary wave energy is directly influenced by cardiac mechanical factors (maximal and 

minimal LV pressure rate) and poorly related to mean coronary flow (51), thus suggesting the 
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compression/decompression of the intramural vessel as the main mechanism driving the backward travelling 

waves. Our current estimates of the backward reflection coefficients (Fig. 10) not only support this finding 

(since waves generated at the microcirculatory level would hardly reach the inlet of the epicardial vessels due 

to the strongly negative reflection coefficients Rd1,d2) but additionally indicate that the observable wave horizon 

may be markedly proximal in the coronary network. For example, at Rd1 = −0.3, only 70% of the waves from the 

larger daughter vessel would be transmitted up to the parent at each junction. The smaller daughter would 

effectively contribute no detectable waves past one or two generations. 

These observations motivate a reexamination of the existing physiological and pathophysiological 

conclusions derived by applying cWIA. For instance, the lack of diastolic dominance of flow velocity in the right 

coronary artery compared to the left main stem, associated with a less prominent BEW, is more likely due to 

the smaller compressive force on the intramural vessels of the right ventricle than on the coronary 

microvasculature, as originally suggested (17). More importantly, the prognostic value of the BEW in 

predicting myocardial recovery post-infarction may derive from its direct relationship with the LV contractility 

more than its capability to assess the integrity of the microcirculation, post-MI (9). 

In summary, the backward travelling waves are thought to be generated by the combined effect of the 

myocardial compression/expansion of the intramural vessels along with the reduction of resistance in the 

myocardial microcirculation during diastole. However, our analysis indicates a diminished involvement of the 

microcirculatory scale and an expanded role of the intramural vessels, in producing the backward travelling 

waves detectable by a catheter positioned in the large epicardial vessels (LAD, LCx or RCA). Although 

speculative at this stage, these considerations may stimulate a possible shift in the current thinking regarding 

the physiological understanding of the BEW and the consequent therapeutic targets for intervention whether 

it be the vascular scale or the associated myocardial region, and should be investigated further. A similar 

revision has already taken place in the systemic pulse wave literature, in which it was assumed for a long time 

the major reflection site of aortic pulse was the iliac bifurcation. This was proven to be wrong in more recent 

studies when the catheter wire was advanced deeper revealing that the reflection timing did not vary, contrary 

to the conventional wisdom (6). Specifically, this study demonstrated that compounded reflections of waves in 

the systemic distal circulation may lead to wave trapping such that waves that originate in the distal sites may 

never arrive at proximal locations. Alternative investigations and debates involving wave trapping are still 

continuing at present. 

In addition, the well-matchedness of the coronary bifurcations in the large epicardial vessels is an 

important feature that must be taken into consideration when designing and implanting a stent or a coronary 

bypass graft (13). The diameter and the material properties should be carefully chosen to maintain the wave 

transmission properties, otherwise a significant rise in wave reflection at the top of the coronary vasculature 

may lead to increased shear stress burden and resistance to flow. 
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Relevance for one-dimensional modelling of coronary blood flow 

Though one-dimensional blood flow models have gained increasing importance in modelling applications 

due to their efficiency and the ability to accurately represent wave propagation phenomena (38, 66), the 

parametrization of the vascular network remains an unsolved challenge. Overcome by the difficulties of 

directly measuring the parameters, many studies adopt the strategy of manually tuning individual segments to 

achieve idealized wave behavior. Our proposed theory can be used to assess different approaches for assigning 

wall stiffness parameters to each segment of the network in simulation studies. 

For instance, in the low α regime, imposing a uniform PWS or material parameter β∗ implies τ = 2 and τ = 

2.5 respectively (3). Substituting these values in Eq. 16 provides the corresponding σ − γ curves. In qualitative 

terms this would result, for the uniform PWS case, in a constant value of the area ratio σ for all the possible 

symmetry ratio values, which is not supported by the experimental measurements. On the contrary, the 

uniform β∗ assumption would correctly predict increasing area ratios for higher symmetry ratios. 

Although introducing the pulsatility (Eq. 23) to this analysis bestows correct behavior to the uniform PWS 

scheme, the uniform β∗ assumption still leads to a superior fit to the experimental data. Despite these 

differences, all three approaches predict a similar PWS and β∗ distribution for vessels of radius larger than 

approximately 0.5mm. For vessels smaller than this scale, the experimental formula and the uniform β∗ 

hypothesis predict a strong increase in the PWS in contrast to the uniform PWS hypothesis which predicts a 

decrease in β∗ across the generations. 

What are the major sources of experimental error? 

Significant efforts have been made to ensure the reliability of the experimental procedure and vascular 

extraction pipeline. In our experiments, a strict protocol was followed to minimize the variability in the data 

acquisition, and repeatability was demonstrated by the consistent outcomes between the three porcine 

samples. However, it is possible that adenosine may have had a non-negligible systematic impact on the 

anatomical measurements. Adenosine, as a vasodilator, may cause a dose-dependent dilation in the coronary 

vessels beyond a physiological range, leading to a significant drop in resistance (11, 32, 33). Nevertheless, its 

effects are strongest in the small intramyocardial vessels (R< 50µm) (11), below the scale where wave 

propagation is likely to play a strong role as previously discussed. Most importantly, our analysis is based on 

the area and symmetry ratios, which depend on diameter measurements in close proximity (adjacent to each 

bifurcation). Thus, it is unlikely that adenosine would have caused a significant bias in our measurements. 

As described in van Horssen et al. (20), vascular reconstruction from cryomicrotome imaging is limited by 

the degree of penetration of the casting material and by the imaging resolution of the experimental setup. 

However, previous validation studies have shown that the casting material reliably penetrates vessels down to 

10µm, which is far below the resolution required for this study. 
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Limitations of the study 

In a previous investigation it was highlighted that even large changes in the scaling law parameter (τ) led 

to only a small impact on the cost function of the energy minimization (57). This curtailed the possibility of 

distinguishing between different scaling laws using experimental data. On the contrary, in our model changing 

τ within the range of interest (from 7
3
 to 3) caused, for a given symmetry ratio, a substantial variation in the 

theoretically predicted area ratio (see Fig. 5 and Fig. 9) thus avoiding the ambiguities of the previous analyses. 

The validity of applying the Womersley analysis in the coronary vasculature, on which this work is based, 

is a matter of possible controversy. In fact, it can be argued that the distance between subsequent bifurcations 

in the coronary vasculature is not sufficient to achieve the implied (Womersley) velocity profile. The question 

of the optimal theoretical approach to describe the velocity profile in the coronary flow is still under debate in 

the scientific community as remarked in van de Vosse and Stergiopulos (66), and is hampered by the 

complexity of measuring it in in vivo settings. Nevertheless, multiple three-dimensional in vitro and in silico 

studies in the literature illustrated the benefit of employing the idealized Womersley profile to better describe 

local hemodynamic conditions and wall shear stress distributions in the large epicardial vessels (18, 31). This 

was corroborated by our study which demonstrated a better agreement between the theoretical predictions 

and the experimental measurements (see Fig. 9) by adopting the Womersley analysis. 

The analysis in the present work was mainly based around diastolic conditions, consistent with the 

experimental set up from which the anatomical data were collected. The rationale is that for consideration of 

general structural design of a vascular network, the first order effects are to be found in the dominant operating 

condition i.e. diastole, during which around 80% of the arterial flow occurs. The same logic can be applied to 

variation of heart rate from resting norm (which may alter the pulsatility) and systolic-diastolic variations 

(resulting in anatomical changes as well as pressure difference, leading to altered pulse wave speed in 

segments). Nevertheless, it would be instructive as a future exploration, to examine how robust the current 

findings will remain when the cardiovascular system is subjected to varying loads. 

Finally, in our work the effects of vessel tapering and non-linearities on wave propagation have been 

ignored. It is known that non-linearity in the pressure-area relationship affects wave-propagation and that 

tapering in the geometrical or material properties generates wave reflections. However, our preliminary 

numerical simulations (not shown) in single tapering vessels in approximate dimensions of a large epicardial 

vessel demonstrated that tapering and non-linearities counterbalance each other and only marginally impact 

the forward and backward travelling wave magnitudes (< 5%). 

4.1. Conclusion 

A new theoretical framework which unifies the wave transmission theory with the scaling law formulation 

has been introduced and validated for the first time. Including pulsatility in the framework broadened the 

range of measured bifurcation anatomy that can be explained, compared to the existing models. 
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The validation demonstrated that the branching structure in the healthy coronary vasculature is well-

matched thus favoring forward wave propagation. This feature holds robustly in the proximal network in 

several species (porcine, canine and human), regardless of the various assumptions posed on the distribution 

of pulse wave speeds (equivalently, the wall stiffness) among the segments. This showed, conversely, that 

backward travelling waves are strongly damped when passing through a bifurcation thus indicating that the 

horizon of observable backward waves could be significantly more proximal than previously thought in the 

coronary vasculature. 

In addition, new data providing branching patterns across the coronary vasculature has been described in 

a high level of detail showing that smaller vessels have higher area ratios, higher symmetry ratios and a higher 

numbers of asymmetrical bifurcations than the large epicardial ones. However, no significant differences was 

observed in terms of transmurality or perfused territory (LAD, LCx or RCA). 

Appendix 

The functions 𝑀0
′  and 𝜖0 have been introduced by Womersley (70) to obtain a more compact expression of 

the velocity profile in pulsatile flow (44). More specifically, this involves the substitutions 

𝐽𝑜 (𝛼𝑦
3

2) = 𝑀0(𝑦)𝑒
𝑖𝜃0(𝑦)    (25) 

𝐽𝑜 (𝛼𝑖
3

2) = 𝑀0𝑒
𝑖𝜃0       (26) 

where M0 and θ0 are the amplitude and phase of the Bessel function 𝐽0 (𝛼𝑦𝑖
3
2).  𝑀0

′  and 𝜖0 are then defined as 

 𝑀0
′ = √1 + ℎ0

2 − 2ℎ0
2 cos𝛿0  (27) 

 𝜖0 = arctan (
ℎ0 sin𝛿0

1−ℎ0 cos𝛿0
)  (28) 

 ℎ0 = 
𝑀0(𝑦)

𝑀0
   𝛿0 = 𝜃0 − 𝜃0(𝑦) (29) 
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Figure Captions 

Figure 1: Three examples of bifurcations with the same area ratio σ but different symmetry ratios γ are displayed. 

 

Figure 2: The main steps constituting our vascular extraction software are visualized. 

 

Figure 3: The reconstructed ex-vivo porcine coronary vasculatures used for this study are visualized. The LAD, LCx, RCA and marginal 

artery subtrees are highlighted in brown, gold, silver and blue respectively. 

 

Figure 4: a) A long axis section of the porcine vasculature is visualized with the surrounding myocardial wall. b) A short axis slice of the 

vasculature is visualized with the ventricular mesh in light grey. The color spectrum represents the epi-endo mapping calculated using 

the method detailed in the text. 

 

Figure 5: (a) The σ-γ relationship for the two scaling laws considered is visualized. Murray’s law predicts higher area ratios for a given 

symmetry ratio than the HK law. (b) The reflection coefficients for backward travelling waves for both the larger and smaller daughter 

vessel are visualized. It is evident how asymmetrical bifurcations (γ < 0.5) strongly disadvantage backward wave propagation (highly 

negative reflection coefficient) in the smaller daughter vessel. (c-d) The shaded region shows the impact of varying Womersley number 

on the σ-γ relationship (Eq. 23) for both the HK law (c) and Murray’s law (d). α > 10 represents the case when the effect of pulsatility is  

disregarded (Eq. 16). For lower α the theory predicts that the well-matchedness hypothesis is fulfilled at higher area ratios for a given 

symmetry ratio. 

 

Figure 6: For each porcine vasculatures analysed the relationships between the mother diameter (dm) and the large (dd1) and small (dd2) 

daughter vessel diameter are visualized using a log-log scale in the first and second column respectively. The trend is in good agreement 

with the literature (65). The histograms of the area ratio σ and symmetry ratio γ are presented in the third and fourth column. The 

distribution is qualitatively consistent between vasculatures. 

 

Figure 7: The mean and standard error of the area ratio σ (a-d), symmetry ratio γ (b-e) and percentage of asymmetrical bifurcations (c-f) 

are visualized for each vessel cluster. The vasculature has been classified in terms of mother vessel radius, perfused territory or transmural 

location. It is clear that, as the vessel radius decreases all these three variables increase. Interestingly, no difference was found when 

comparing the same vessel size in different perfused territories or transmural locations. 

 

Figure 8: As the mother radius diameter decreases, the scaling law coefficient τ (see Eq. 2) increases. This estimation of τ acquired under 

the assumption of steady flow regime, implies that different scaling law coefficients may pertain to different vascular regions. 

Figure 9: The area ratio-symmetry ratio relationship for the Womersley number range typical of the coronary vasculature is visualized 

for the HK law (shaded grey) and Murray’s law (striped black) overlapped, for the different mother vessel radii (Rm) intervals considered. 

Firstly, the theoretical prediction of higher area ratios for higher symmetry ratios is confirmed by the measurements, up to a scale of Rm > 

0.1 where the data exhibit a plateau of σ ≈ 1.4. When the varying degree of pulsatility is taken into account, the HK law satisfactorily agree 

with the data for the large, medium and small vessel (a-c) range considered. Moreover, it predicts an increase in the σ − γ relationship due 

to a decreasing Womersley number, which is a consequence of decreasing vessel radius. The theoretical predictions for Murray’s law 

(striped black area) do not match the measurements for the large and medium scales. 

 

Figure 10: The wave reflection coefficient for the forward Rf and backward travelling waves Rd1,d2 were calculated for the uniform β∗ 

hypothesis clustering the vasculature in terms of mother vessel radius Rm (a-c) and Weibel generation number (d-f). Note that the Weibel 

generation number starts from 1 at the first bifurcation and increases by 1 at each consequent bifurcation. Similar results were obtained 

using the hypotheses of uniform PWS as well as the experimentally fitted formula (45). Note that in the rage of Rm > 0.1 the forward 

reflection coefficient is approximately zero and supports the well-matchedness hypothesis of the coronary bifurcations. Moreover, smaller 

vessels were found to exhibit less negative reflection coefficient in the smaller daughter vessel Rd2 at the expenses of the larger daughter 

for which Rd1 became more extreme. 

Figure 11: The extracted canine and human coronary vasculature are visualized. The LAD, LCx, and RCA perfused territory are highlighted 

in red, gold, and silver respectively. Note that the human vasculature is more tortuous than the porcine one. 

 


