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Abstract
The advanced properties of mesoporous silica have been demonstrated in applications which include
chemical sensing, filtration, catalysis, drug-delivery and selective biomolecular uptake. These
properties depend on the architectural, physical and chemical properties of the material, which in
turn are determined by the processing parameters in evaporation-induced self-assembly. In this study,
we introduce a combinatorial approach for the removal of the high molecular weight proteins and
for the specific isolation and enrichment of low molecular weight species. This approach is based on
Mesoporous Silica Chips able to fractionate, selectively harvest and protect from enzymatic
degradation, peptides and proteins present in complex human biological fluids. We present the
characterization of the harvesting properties of a wide range of mesoporous chips using a library of
peptides and proteins standard and their selectivity on the recovery of serum peptidome. Using
matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, we established the
correlation between the harvesting specificity and the physico-chemical properties of mesoporous
silica surfaces. The introduction of this mesoporous material with fine controlled properties will
provide a powerful platform for proteomics application offering a rapid and efficient methodology
for low molecular weight biomarker discovery.
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1 Introduction
The introduction of proteomic tools, especially development in mass spectrometry (MS)[1,2],
has allowed the investigation of complex proteomes and the identification of proteins in cells,
tissues and body fluids, increasing the interest of proteomic biomarker research[3,4]. Many
studies suggest that the circulating peptidome is correlated to the pathological status of the
patient [4-6]. A critical aspect of the development of MS based proteo- and peptido-mics is the
broad assortment of molecular species in blood, with concentrations ranging over more than
10 orders of magnitude [7]. This wide dynamic range limits the detection of disease-related
peptides present in trace amounts within a large background of abundant and non-relevant
proteins. Despite the advances in protein analysis [8,9], the detection of low abundant markers
and Low Molecular Weight (LMW) species remains a critical challenge [10-12]. Current
strategies to resolve complex proteomes require sample fractionation and depletion prior to
MS analysis, limiting throughput and introducing other concerns for experimental variability,
reproducibility, sample handling procedures and protein stability during sample processing
[13-16]. Innovative technologies addressing these issues are mandatory for biomarkers
discovery. The development of nanomaterials, with controllable features offering
advantageous new physico-chemical properties, has widely improved the use of
nanotechnology in biomedical applications. The discovery of mesostructured materials in
1990s [17,18] boosted a great deal of research on the preparation [19-23], characterization
[24] and morphological control [25,26] of surfactant-templated mesoporous materials. In
previous work, we demonstrated the proof-of principle of LMW molecular uptake in
mesoporous particles [27] and surfaces [28,29]. With tunable pore dimension, pore texture,
and surface properties, the mesoporous films are the perfect tools for proteomics applications.
In this study, we engineered Mesoporous Silica Chips (MSC) with organized pore structures
and a wide range of pore sizes and showed the correlation between the surface properties at
the nanoscale and the selectivity in the recovery of proteins and peptides. We further
demonstrated the conservation and the long-term stability of proteins and peptides in the porous
matrix of the MSC and evaluated the efficiency and reproducibility of this technology for the
investigation of complex biological samples.

2 Materials and methods
2.1 Fabrication of mesoporous proteomic chips

The coating solution was prepared by starting with the hydrolyzed silicate precursor solution.
Firstly, we added 14 ml of tetraethylorthosilicate (TEOS) into the mixture of 17 ml of ethanol,
6.5 ml of deionized water and 2 ml of 2M HCl under strong stirring. The silica sol-gels were
ready for use after being heated at 75°C for 2 hours. The polymer template solutions were
prepared by the addition of tri-block copolymer (BASF: L31, L35, L64, L121, P123, F38, F88,
F108, F127) in 10 ml of ethanol at room temperature. For the preparation of mesoporous silica
films with large pore size, a swelling agent, Polypropyleneglycol (PPG) or 1, 3, 5-Trimethyl
benzene (TMB) was added in the ethanol solution of polymer before mixing with silicate. The
film was obtained by spin-coating the solution on a silicon wafer: 1.5 ml of coating solution
was dispensed on a 4″ silicon wafer, and spun at 600rpm for 5 s followed by 3000rpm for 30
s. The coated film was aged in an oven at 80°C for 15 h. The oven temperature was raised to
425°C at a rate of 5°C /min. The wafer was kept at 425°C for 4 h, and slowly cooled to room
temperature. Oxygen plasma treatment was performed in a Plasma Asher (March Plasma
System). Coating of Hexamethyldisilazane (HMDS) was performed in a HMDS vapor prime
oven (YES) at 150°C for 5 min.
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2.2 Characterization
The thickness and porosity of the obtained films were measured with a variable angle
spectroscopic ellipsometer (J. A. Woollam Co. M-2000DI). Ellipsometric values, Δ and ψ were
measured in the 300-1000nm range at three incidence angles, 55°, 60°, 65°, respectively, and
fitted using the Effective Medium Approximation (EMA) model with WVASE32 software.
The surface area and pore size of the mesoporous films were measured using N2 adsorption-
desorption isotherms on a Quantachrome Autosorb-3B Surface Analyzer. Nanopore size
distributions were calculated from the adsorption branch of the isotherms using Barrett-Joiner-
Halenda (BJH) model. Contact angles of film surface were measured by a goniometer with
captive bubble contact angle measurement.

2.3 Fractionation Procedure
We have selected twenty-six peptides and proteins with broad range of molecular weight
(900-66,500 Da), isoelectric point (pI 4.0-10.2), and structure. Identity and purity of each
peptide and protein was verified by MS and combined, dried by vacuum centrifugation, and
stored at −20°C. The molecular weight standards solution was prepared in 135 μL of sterile,
deionized water (the final concentration of each standard is presented in the Supporting
Information Table 1). 10 μl of samples (standards solution or human serum) was spotted onto
the mesoporous surface of the MSC. The samples were incubated for 30 minutes in a wet
chamber (100% humidity) to prevent sample evaporation. MSC surface was washed 5 times
with 15μL of sterile, deionized water. Proteins were eluted from the pores by using 10μl of a
1:1 mixture of acetonitrile and 0.1 % trifluoroacetic acid (TFA) (v/v).

2.4 Mass spectrometry
A matrix solution of 5 mg/ml α-cyano-4-hydroxycinnamic acid (αCHCA, Sigma) in a 1:1
mixture of acetonitrile and 0.1% TFA(v/v) and a saturated matrix solution of trans-3,5-
dimethoxy-4-hydroxycinnamic acid (SA, Sigma) in 2:1 mixture of acetonitrile and 0.1 % TFA
was used for LMW and HMW peptides and proteins respectively. Each sample was mixed
with the appropriate matrix in a 1:3 ratio, and spotted in duplicate onto the MALDI plate. Mass
spectra were acquired on a Voyager-DE™-STR MALDI-TOF (Applied Biosystems,
Framingham, MA) mass spectrometer in liner positive-ion mode, using a 337nm nitrogen laser.
Samples were evaluated at two m/z ranges. For the m/z range of 800-10,000 Da, setting were
optimized at acceleration voltage 20 KV, grid voltage 19KV,guide wire voltage 1KV, delay
time 180 ns, and low-mass gate 800. For the m/z range of 3,000-100,000 Da the instrument
was optimized at acceleration voltage 25 KV, grid voltage of 23.25 KV, guide wire voltage
6.25KV, delay time of 500 ns and low mass gate 3,000. Each spectrum was the average of 300
laser shots. The spectra were calibrated externally using the ProteoMass standards of peptides
and proteins (Sigma) in each mass range.

2.5 Data processing and statistics
The raw spectra were processed with the Voyager Data Explorer software version 4.0 (Applied
Biosystems) and the data were exported to SpecAlign [30,31] software for pretreatment. All
spectra were aligned using the PAFFT correlation method and intensity was normalized to total
ion current (TIC). The baseline was corrected and the negative values were removed prior to
analysis. Hierarchical clustering was performed using Cluster software and visualized with
Treeview software. The MALDI Data (M/z peak intensities) were log-transformed, normalized
and median centered. Pearson correlation was used to calculate the distance between the
samples, and complete linkage clustering was performed [32]. For supervised hierarchical
clustering, an independent Student t-test was used for comparison between groups (n = 2
groups) for each detected MS peak. A P value of 0.02 or lower was considered significant to
select differentially harvested peptides and proteins among the different mesoporous proteomic
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chips (Large pores vs. Small pores, Hydrophobic vs. Hydrophilic, the swelling agents TMB
vs. PPG).

3 Results and discussion
3.1 Fabrication and characterization of mesoporous proteomic chips

The MSC were produced by the evaporation induced self-assembly (EISA) procedure under
acidic conditions using Pluronic triblock copolymers as structural templates [33,34]. The pH
of precursor solutions was controlled at 1.5 to prevent the precipitation of mesoporous silicate
and balance the procedure between the silicate hydrolysis and condensation of hydrolyzed
silicate to polymer micelle. In Fig. 1 are illustrated the schematics of the chemical composition
of the coating solution during the production of the mesoporous silica films and the assembly
of the final chips (Fig. 1a-d). Manufacturing protocols were optimized to obtain smooth, crack-
free surfaces across 4″ silicon wafers as verified by SEM and TEM imaging of the chip’s cross
sections (Fig. 1e-f). Porosity was related to the ratio between copolymer and TEOS, while the
thickness was determined by many factors, including the concentration of surfactant, the spin-
coating speed, and the aging time of the coating solution. The pore alignment was induced by
strain during the spin-coating process [35]. The N2 adsorption-desorption isotherms of six
selected MSC are shown in Fig. 2a. The isotherms can be classified as Type-IV curve with H2
hysteresis loops, according to the standard of the International Union of Pure and Applied
Chemistry [36]. This type of hysteresis indicated ink-bottle shaped pores, and non-ordered
worm-like pore arrangement. For this type of isotherm, adsorption branch of the isotherm can
be used to calculate the pore size distribution. The pore size distribution curves (values ranging
from 2.7 nm to 9 nm) were derived from adsorption isotherms using Barrett-Joyner-Halenda
(BJH) method (Fig. 2a right panel).

The reflection Small Angle X-ray Scattering (SAXS) curves of the films are shown in Fig. 2b.
The curves were recorded 2cm off the center of the 4″ wafer, with the beam incidence along
the direction of radius. The SAXS curve showed a peak around 0.5°-0.7° (corresponding to d-
space around 13-17 nm) suggesting a periodic order in the spatial variation of the electron
density in the film, and some degree of alignment of the pores. This was further confirmed by
AFM measurement of the film surface (Fig. 2c). The image showed different dimensions of
the features along and perpendicular to the radius.

Different chemical modifications were also studied. Oxygen plasma treatment was applied to
ensure the hydrophilicity, while HMDS coating was applied to make the surface hydrophobic.
The hydrophilicity of the films was evaluated through contact angle measurement. The O2
plasma treated films showed <15° contact angle, while the HMDS coated film showed >65°
contact angle (see Supporting Information Table 2 and Fig 1 for detailed properties of the
different mesoporous surfaces and TEM images).

3.2 Enrichment of the LMW proteome
High-throughput mass spectrometry is a gold standard for protein expression profiling and for
disease-related biomarker discovery [1]. However, the current MS technologies are not able
to profile the entire proteome and particularly the LMW species because of the interfering
signals generated by the highly abundant, High Molecular Weight (HMW) proteins [9]. To
address this limitation, we developed a fractionation method using the MSC to efficiently and
specifically enrich the LMW proteome from complex biological samples. The principle of this
fast on-chip fractionation strategy is shown in Fig. 3a: 1- The sample is spotted on the chip
surface and LMW molecules are trapped into the pores during the incubation step; 2- The larger
protein species remain outside the pores and are removed during the washing steps; 3- The
enriched small molecules are then eluted from the pores and further analyzed by MS. In order
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to evaluate the fractionation and enrichment efficacy of this on-chip strategy, and to
characterize how the physico-chemical properties of the chips correlate with their harvesting
properties, we have selected 26 standard peptides and proteins with a broad range of molecular
weights (900-66,500 Da) and isoelectric points (pI 4.0-10.2), and we have combined them to
represent the diversity and complexity of biological samples (See Supporting information Fig.
2 and Table 1). Fig. 3b and 3c show the high detection signals of the standards when separated
into two different solutions for the peptide range (16 markers from 900 to 8500 Da) and the
protein range (16 markers from 3400 to 66500 Da). When combined in a unique solution, the
detection signal in the peptide range dramatically decreased while the larger proteins remained
well detected (Figure 3d and 3e). The MS detection signal suppression in the LMW observed
with the combined solution of molecular markers mimics the results obtained with MS analysis
of complex body fluids such as serum and plasma. The presence of higher amount of HMW
molecules such as Albumin and other large proteins impede the detection of the LMW species.
The results presented in Figures 3f and 3g demonstrate the ability to eliminate the big proteins
and to increase significantly the detection of the LMW peptides and proteins.

The capacity of mass spectrometry approaches to investigate low abundant proteins in
biological samples composed of highly complex proteomes such as serum body fluids is a
major issue for the detection of potential biomarkers [2,3,10]. To assess the limit of detection
of our technology, human serum sample was spiked with a known peptide (Neurotensin, 1673
Da) at different concentration levels before MSC fractionation and MALDI analysis. The
results presented in Fig. 4 demonstrated the ability of the method to identify the spiked
neurotensin in a concentration as low as 2ng/mL.

3.3 Pore size selectivity of the LMW enrichment
In order to assess the size-dependant depletion of HMW proteins, we have developed 6
proteomic chips with pore sizes ranged from 2.0 nm to 11.7 nm. A variety of pore sizes was
first obtained by using different polymer templates with different volume ratio of hydrophilic/
hydrophobic composition. Because of its highest hydrophobic/hydrophilic ratio among
pluronic surfactants, L121 is capable of forming the mesoporous silica with the largest porosity
(~55%) and pore size (5.2 nm). In addition, by applying a different ratio of swelling agent such
as Poly Propylene Glycol (PPG) to the L121 pluronic surfactant, the pore size has been further
enlarged to obtain MSC with 7.4 nm, 9.0 nm and 11.7 nm. To evaluate the molecular cut-off
and the enrichment properties of the different pore sizes, we fractionated the solution of peptide
and protein standards on the set of MSC ranging from 2.0 to 11.7 nm. The removal of the large
proteins is size dependant as illustrated by the gradual decrease of the molecular cut-off
observed for the different chips (Fig. 5a). The silica surface with 9.0 nm pores did not
completely exlude albumin, accordingly to its three-dimensional structure which exhibits an
average size of 8 by 3 nm[37]. This analysis demonstrates the size exclusion principle of the
mesoporous chip fractionation, and reveals the limit of this depletion approach observed with
the 11.7 nm pores which provides a similar MS pattern to the non-fractionated sample (Fig.
5b). In addition to the size-dependant depletion of HMW proteins, the on-chip fractionation of
the standards solution displays a differential and selective enrichment of LMW species
associated with the pore sizes. The two-way hierarchical clustering presented in Fig. 5c shows
the LMW standards enrichment pattern obtained with the different MSC. Even if all the
peptides are below the molecular cut-off of the chips, there is a positive correlation between
the pore sizes and the molecular weight of the trapped species. The MSC with large pores, up
to 9 nm, preferentially harvest bigger peptides, while smaller peptides are recovered more
efficiently by the chips with smaller pores. The chips with 11.7 nm pores present no significant
improvement in the LMW region detection (Fig. 5d). This result indicates the size limit of the
MSC for an efficient enrichment strategy.
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3.4 Identification of the selective fractionation patterns due to MSC’s nanofeatures
In the analysis of the fractionation and enrichment of LMW species from human serum, we
subdivided the chips in 3 categories according to: 1) pore size; 2) wettability; 3) pore geometry
and surface morphology. We performed unsupervised two-way hierarchical clustering (two-
dimensional complete linkage) to analyze the overall MALDI profiles of the different MSC.
(Fig. 6a). Depending on their harvesting characteristics, selective nanopore size and specific
recovery patterns, each of the MSC consistently identified unique proteomic signatures, as
shown in the supervised hierarchical clustering (Fig. 6b-d). Using a multi-chip strategy and
combining the MS profiles obtained from five different MSC we obtained a three fold increase
in the number of detected peptides and proteins in the LMW range with respect to plain
unprocessed serum (Fig. 6e-f and Supporting Information Fig. 5). These results showed that
the different nanofeatures (structure, size and chemistry of the pores) on the MSC conveyed
different functionalities and served as analytical “first order processors” of this technology.
According to this strategy, a multitude of chips can be used simultaneously to increase the
amount of information recovered from the serum.

3.5 Sample stability and reproducibility of the harvesting procedure
Reproducibility and reliability are crucial factors for any assay to be used in the clinical setting.
Several publications reported that pre-analytical sample management might lead to significant
alterations of the proteomic profiles and the generation of artifacts [13,16]. We assessed the
consistency of our on-chip fractionation assay reproducing the same experiment in 6 replicates.
After fractionation, the spectra of the replicates showed highly reproducible MS signals
(Supporting information Fig. 6). To evaluate protein stability, the MSC were incubated with
human serum, dried after washing, and stored for 3 weeks at room temperature. The protein/
peptide patterns obtained were comparable with those of freshly fractionated serum (Fig. 7a),
as confirmed by the results of the statistical analysis showed in Fig. 7c. The variability of the
peak signals measured by the average Coefficient of Variation (CV) was estimated at 12.7 %
for crude serum and at 14.2% for the fractionated samples. The marginal variations could be
due to the internal variability of the MALDI instrument and suggested that the on-chip
pretreatment and storage did not induce any significant alteration of the MS protein profiles.
The same experiment has been performed on non porous silicon. The dried serum recovered
after storage on silicon surface was fractionated on the MSC before MALDI analysis. The poor
MS profile obtained demonstrated the stabilization advantage of the mesoporous surface. In
analogy with previously postulated mechanisms, we hypothesize that the LMW species trapped
inside the nanopores were preserved from degradation through the size exclusion of proteases,
or by steric inhibition of their proteolytic activity in the confined space of the nanopores [38,
39].

The establishment of a simple sample acquisition and storage protocol, and the ability to impede
further degradation of the proteins and peptides once they are captured, are essential for
translation into the laboratory clinical practice [40,41]. With prior methodologies, deceptive
results confounded the analysis and rendered meaningless the use of the profiles to derive any
significant diagnostic or clinical information [10,11,41]. On the contrary, after processing on
the MSC, the resulting protein patterns were reproducible and consistent even after long term
on-chip storage at room temperature.

4 Concluding remarks
Using surfactant-templated mesoporous silica thin films, we have developed a size-exclusion
method for a rapid and specific isolation and analysis of LMW peptides from complex
biological samples. In combination with mass spectrometry profiling, we have demonstrated
significant improvement and optimization of the specific harvesting efficacy of the MSC.
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Besides the HMW proteins depletion, we established the correlation between the harvesting
capacity and the physico-chemical properties of mesoporous silica surfaces. The structural
design and the chemical functionalization of the porous silica surface further increase the
specificity of peptides enrichment. The wealth of finely tunable and controlled properties on
mesoporous silica surfaces could be used for MS-based peptide and protein profiling of
complex biological fluids providing a powerful tool in the selective separation and
concentration of the low molecular weight proteome.

The MSC are inexpensive to manufacture, and allow for scaled up production to attain the
simultaneous processing of a large number of samples, providing advantageous features for
exploratory screening and biomarker discovery. They may further be used to store, protect and
stabilize biological fluids, enabling the simplified and cost-effective collection and
transportation of clinical samples.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Production and assembly of MSC for proteomic applications
a-d, Schematic evolution of the chemical composition of the coating solution during the
production of a mesoporous silica film. a, Fresh coating solution; b, Formation of micelles; c,
Evaporation induced self assembly during spin-coating process; d, Zoomed in view of a pore
after aging at elevated temperature. e, Bulk silicon wafer surface; f, Mesoporous silica film on
a bulk silicon wafer.
e-f, Cross-section of GX6 chip by SEM and TEM imaging respectively (scale bar is 500nm).
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Figure 2. Physical characterization of the MSC
a, Left panel: N2 adsorption-desorption isotherms, Right panel: pore size distribution curve.
b, Reflection SAXS patterns for 8 selected MSC.
c, AFM image of the X11 chip.
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Figure 3. Principle of MSC fractionation and LMW enrichment
a, After sample spotting on the surface, LMW proteins and peptides are trapped into the pores
while the larger species remained outside the pores and are removed during the washing steps.
The enriched fractions are then eluted and analyzed by MALDI.
b-c, Detection of the molecular weight standards by MALDI-TOF in the peptide range (800
to 10000 Da) and in the protein range (3000 to 100000 Da). For the separated mixes of peptides
(16 markers from 900 to 8500 Da) and proteins (16 markers from 3400 to 66500 Da), the
profiles present a high level of detection for each species.
d-e, In the combined mix, the signal suppression of LMW standards is due to the high
concentration of HMW proteins.
f-g, In the MALDI profiles of the combined standard mix after fractionation on the MSC, the
detection of LMW markers is significantly increased compared to the unprocessed sample.

Bouamrani et al. Page 12

Proteomics. Author manuscript; available in PMC 2011 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4. Sensitivity of the MSC enrichment
Mass spectra of spiked human serum sample with decreasing concentrations of neurotensin
peptide (1673.96 Da): 100 ng/mL, 10 ng/mL and 2 ng/mL (from top to bottom).
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Figure 5. Molecular cut-off and size-dependent enrichment of the MSC
a, Magnified view of the MALDI spectra demonstrating the characteristic molecular cut-off
of each MSC correlating to the pore size.
b, MALDI profiles of the HMW region for the standards solution before (Std) and after
fractionation on 11.7 and 9.0 nm pores MSC.
c, Two-way hierarchical clustering of the peptide mix features among the different chips. The
intensity of the red or yellow color indicates the relative peptide concentration. Larger pores
enhanced the harvesting of bigger peptides (from 3600 to 8500 Da), while the small peptides
(from 900 to 3500 Da) were preferentially recovered from the chips with smaller pores.
d, MALDI profiles of the LMW region for the standards solution before (Std) and after
fractionation on 11.7 and 9.0 nm pores MSC.
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Figure 6. Effect of pore sizes and chemical properties on serum peptide harvesting
a, Dendogram of the unsupervised two-way hierarchical clustering. Each set of MSC is
uniquely identified. The dark and light blue rectangles represent large and small pores,
respectively. The green and red rectangles represent the hydrophobic-and TMB generated-
MSC, respectively.
b-d, Supervised hierarchical clustering and specific recovery pattern for each set of MSC as
indicated in the figure. The relative intensity is gradually indicated with red squares (high
intensity), black squares (median) and green squares (low intensity or absence of a peak). The
entire hierarchical clusters are presented in Supporting Information Fig. 3 and 4.
e-f, The MS profiles obtained from crude serum (e) or from purified peptides and proteins
using the multi-chip strategy (f). The multi-chip profile was obtained by combining the
spectrum from each MSC purified fraction.
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Figure 7. On-chip stabilization of fractionated serum
a, Representative MALDI profiles of LMW peptides and proteins eluted immediately after
serum fractionation or after 3 weeks of on-chip storage at room temperature.
b, MS spectrum of LMW fraction of serum sample dried and stored on nonporous silicon
surface.
c, From top to bottom: Linear regression analysis of average intensities of detected MS peaks
in each replicate compared to replicate 1 for crude serum, freshly fractionated serum and
fractionated serum after 3 weeks MSC storage at room temperature. Equation, coefficient of
variation (CV) and coefficient of determination (R2) are indicated.
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