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Abstract

Systemic risk analysis reveals the interdependencies of risk factors espe-

cially in tail event situations. In applications the focus of interest is on captur-

ing joint tail behavior rather than a variation around the mean. Quantile and

expectile regression are used here as tools of data analysis. When it comes

to characterizing tail event curves one faces a dimensionality problem, which

is important for CoVaR (Conditional Value at Risk) determination. A pro-

jection based single index model specification may come to the rescue but for

ultra high dimensional regressors one faces yet another dimensionality prob-

lem and needs to balance precision vs. dimension. Such a balance is achieved

by combining semi parametric ideas with variable selection techniques. In

particular, we propose a projection based single index model specification for

very high dimensional regressors. This model is used for practical CoVaR es-

timates with a systemically chosen indicator. In simulations we demonstrate

the practical side of the semiparametric CoVaR method. The application to

the US financial sector shows good backtesting results and indicate market

coagulation before the crisis period.

Keyword:

Quantile Single-index Regression, Minimum Average Contrast Estimation, CoVaR,

Composite Quasi-Maximum Likelihood Estimation, Lasso, Model Selection
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1 Introduction

It is known to be a challenging task to manage financial risk due to joint extreme

events, reflecting the fact that in times of crisis losses tend to spread across a port-

folio. The key interest is to understand and forecast the risk exposure of e.g. a

financial institution in the market for firm leaders or to identify and select sys-

temic risk relevant factors for government regulators. There is a large amount of

literature on measuring systemic risk. We focus on the line of research adopting

quantile methods to quantify the tail dependence among financial institutions. In

particular, Adrian and Brunnermeier (2011) propose a systemic risk measure, called

CoVaR, with balance sheet characteristics driven individual risk exposure. Further-

more, Hautsch et al. (2014) introduce an applicable measure of a firm’s systemic

relevance, explicitly accounting for the company’s interconnectedness within the

financial sector.

The underlying statistical setting involved is a two-stage linear quantile regres-

sion. Several elements of the existing CoVaR methodology are, however, based

on questionable assumptions: First, a significant degree of nonlinearity occurs when

modeling conditional tail curves. Second, the number of potential risk factors is large

in comparison with the amount of available observations. Third, the selected factors

are difficult to be interpreted, and need to be summarized to an index. Therefore,

one calls for a data driven technique that combines dimension reduction, variable

selection and generalized tail events e.g. expectiles. In this paper we address these

points and provide a practical CoVaR estimate together with a systemically chosen

indicator. The systemic indicator is chosen by the single index approach, which has
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a unique feature: the index that yields interpretability and low dimension simul-

taneously. However, in the case of ultra high dimensional regressors X the single

index approach suffers from singularity problems. Efficient variable selection is the

strategy to employ here. Specifically we consider composite regression with general

weighted loss and possible ultra high dimensional covariates. Our setup is general,

and includes quantile, expectile (and therefore mean as a special case) regression.

We offer theoretical properties and demonstrate our method with applications to

firm risk analysis in a CoVaR estimation context.

The basic element of our CoVaR estimation is quantile regression(QR). In many

fields of applications such as quantitative finance, econometrics, marketing and also

medical and biological sciences, QR is a fundamental element for data analysis, mod-

eling and inference. An application in finance is the analysis of time varying Value-

at-Risk (VaR) using the Conditional Autoregressive Value at Risk (CaViaR) model,

see Engle and Manganelli (2004). The QR estimation may be seen as an estima-

tion problem by assuming an asymmetric ALD (asymmetric Laplace distribution)

pseudo likelihood, which not necessarily return an efficient estimator. Therefore,

different flexible loss functions are considered in the literature to improve the es-

timation efficiency, such as, composite quantile regression, Zou et al. (2008), Kai

et al. (2010) and Kai et al. (2011). Moreover, Bradic et al. (2011) propose a general

loss function framework for linear models, with a weighted sum of different kinds

of loss functions, and the weights are selected to be data driven. Another type of

loss considered is in Newey and Powell (1987) corresponding to expectile regression

(ER). This is similar in spirit to QR but contains mean regression as a special case.

Nonparametric expectile smoothing work with applications to demography can be
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found in Schnabel and Eilers (2009). The ER curves are alternatives to the QR

curves and give us an alternative regression picture.

The difficulty of characterizing an entire distribution partly arises from the high

dimensionality of covariates. This asks to strike a balance between model flexibility

and statistical precision. To crack this tough nut, dimension reduction techniques

of semiparametric type, such as the single index model, came into the focus of

statistical modeling. Wu et al. (2010) and Kong and Xia (2012) consider quantile

regression via a single index model. However, to our knowledge there is no further

literature on generalized QR for the single-index model.

In addition to the dimension reduction, there is also the problem (incurred in our

CoVaR estimation procedure) of choosing the right variables for projection. This

motivates our second goal of this research: variable selection. Kong and Xia (2007),

Wang and Yin (2008) and Zeng et al. (2012) focus on variable selection in mean

regression for the single index model. The set of ideas presented there, however,

have never been applied to a quantile, composite quantile framework or to a even

more general (composite) quasi-likelihood framework. The semiparametric single

index approach that we consider herein will be a good tool for practitioners, as it

combines flexibility in modeling with applicability for even very high dimensional

data.

This article is organized as follows: In Section 2, we introduce the basic setup

and the estimation algorithm. In Section 3, we build up asymptotic theorems for

our model. In Section 4, simulations are carried out. In Section 5, we illustrate our

methodology by estimating CoVaR. All the technical details can be found in the
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appendix.

2 MACE for Single Index Model

Let X and Y be p dimensional, continuous random variables respectively, (p can be

very large, namely of the rate exp(nδ), where (δ is a constant whose range will be

defined in Condition 4 in Section 3. The single index model (SIM) is defined to be:

Y = g(X>β∗) + ε, (2.1)

where g(·) : R1 7−→ R1 is an unknown smooth link function, β∗ is the vector of

index parameters, ε is a continuous variable with mean zero. The interest here is

to simultaneously estimate β∗ and g(·). The assumptions on error structure can be

seen in Condition 3.

2.1 Quasi-Likelihood for the Single Index Model

Several estimation techniques exist for (2.1), among which the average derivative

estimator (ADE) method is one of the oldest ones, see Härdle and Stoker (1989). The

semiparametric SIM (2.1) also permits a one-step projection pursuit interpretation,

therefore estimation tools from this stream of literature might also be employed, see

Huber (1985). The minimum average variance estimation (MAVE) technique aimed

at simultaneous estimation of (β∗, g(·)) was proposed by Xia et al. (2002). Here

we will apply a Minimum Average Contrast Estimation Approach, called MACE.
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Similar to MAVE, the MACE technique uses double integration but allow more

general loss functions. Our estimation framework is new in three aspects. First, we

consider a general class of contrast functions that allow us to identify and estimate

conditional quantiles, expectiles and other tail specific objects. Second, we consider

the situation where p might be very large and we add penalty terms that lead to

an automatic model selection framework of e.g. the least absolute shrinkage and

selection operator (Lasso) or Smoothly Clipped Absolute Deviation (SCAD) type.

Third, we implement a composite estimation technique for efficiency improvement.

In our theoretical setup, we identify the parameter via a minimum contrast with

ρw as the contrast function. It corresponds, as mentioned above, to a quasi maximum

likelihood framework: the direction β∗ (for known g(·)) is the solution of

min
β

E ρw{Y − g(X>β)}, (2.2)

with the general quasi-likelihood loss function ρw(·) =
K∑
k=1

wkρk(·), where ρ1(·) , . . . ,

ρK(·) are convex loss functions and w1, ...,wK are positive weights.

Equivalently, β is the solution to

E(ψw{Y − g(X>β)}|X) = 0 a.s.

(where ψw(·) is the derivative (a subgradient) of ρw(·) ). This weighted loss function

includes many situations such as ordinary least square, quantile regression(QR),

expectile regression(ER), composite quantile regression(CQR) and so on. For model

identification, we assume that the L2-norm of β∗, ‖β∗‖2 = 1 and the first component
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of β∗ is positive.

The standard situation of QR is with K = 1 and the conditional quantile function

F−1ε|X(τ) = 0. This means to take the loss function as:

ρw(u) = τu1(u ≥ 0)− (1− τ)u1(u < 0), (2.3)

where 1(A) is equal to 1 if A is true and 0 otherwise. Moreover, for ER with K = 1,

we have:

ρw(u) = τu21(u ≥ 0) + (1− τ)u21(u < 0). (2.4)

The general form of ρw(·) boils downs to CQR when one employs K different quan-

tiles τ1, τ2, . . . , τK , with wk = 1/K, k = 1, . . . , K and

ρk(u) = τ(u− bk)1(u− bk ≥ 0) + (1− τ)(u− bk)1(u− bk < 0), (2.5)

where bk is the τk quantile of the error distribution, see Bradic et al. (2011).

Let us now launch the MACE. First, we approximate g(X>i β) for x>β near X>i β:

g(X>i β) ≈ g(x>β) + g′(x>β)(Xi − x)>β. (2.6)

In the context of local linear smoothing, a first order proxy of β (given x) can

therefore be constructed by minimizing:

Lx(β, g(·)) def
= E ρw{Y − g(x>β)− g′(x>β)(Xi − x)>β}. (2.7)

The empirical version of (2.7) requires minimizing, with respect to β and function
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g(·):

Ln,x(β, g(·)) def
= n−1

n∑
i=1

ρw{Yi − g(x>β)− g′(x>β)(Xi − x)>β}Kh{(Xi − x)>β},(2.8)

where Kh(·) is a kernel function with Kh(u) = h−1K(u/h) and h is a bandwidth

parameter. We adopt now the double integration idea of MAVE, i.e. we integrate

with respect to the empirical distribution function of the covariates leading to the

following loss function:

Ln(β, g(·)) def
= n−2

n∑
j=1

n∑
i=1

ρw
{
Yi − g(X>j β)− g′(X>j β)(Xi −Xj)

>β
}

Kh{(Xi −Xj)
>β}. (2.9)

Minimizing (2.9) with respect to β and g(·) is the basic idea.

For simplicity, from now on we write g(X>j β) and g′(X>j β) as a(Xj) and b(Xj)

or aj and bj respectively. The calculation of the above minimization problem can

be decomposed into two subproblems, motivated by e.g. Leng et al. (2008),

a) Given β, the estimation of a(·) and b(·) are obtained through local linear

minimization.

b) Given a(·) and b(·), the minimization with respect to β is carried out by the

interior point method.
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2.2 Variable Selection for Single Index Model

The dimension of covariates (p) is large, even one can allow p = O{exp(nδ)}, so

selecting important covariates is a necessary step. Without loss of generality assume

that the first q components of β∗ minimizing (2.2) are non-zero. To point this out

write β∗ = (β∗>(1) , β
∗>
(0))
> with β∗(1)

def
= (β1, . . . , βq)

> 6= 0 and β∗(0)
def
= (βq+1, . . . , βp)

> = 0

element-wise. Accordingly we denote X(1) and X(0) as the first q and the last p− q

column of design matrix X, corresponding to β∗>(1) and β∗>(0) respectively.

Suppose {(Xi, Yi)}ni=1 are n independent and identically distributed (i.i.d.) copies

of (X, Y ). Consider first estimating the SIM coefficient β∗ by solving the optimiza-

tion problem

min
(aj ,bj)′s,β

n−1
n∑
j=1

n∑
i=1

ρw
(
Yi − aj − bjX>ijβ

)
ωij(β) +

p∑
l=1

γλ(|β̂(0)
l |)|βl|, (2.10)

where Xij
def
= Xi − Xj, ωij(β)

def
= Kh(X

>
ijβ)/

n∑
i=1

Kh(X
>
ijβ). Here γλ(t) is some non-

negative function, and β̂(0) is an initial estimator of β∗ (eg. linear QR with variable

selection). The penalty term in (2.10) is quite general and it covers the most popular

variable selection criteria as special cases: the Lasso Tibshirani (1996) with γλ(x) =

λ , the SCAD Fan and Li (2001) with

γλ(x) = λ{1(|x| ≤ λ)−(|x|2 − 2c1λ|x|+ λ2)+
|x|(c1 − 1)2λ

1(λ < |x| ≤ c1λ)+
(c1 + 1)λ

2|x|
1(|x| > c1λ)},

with (c1 > 2) and γλ(x) = λ|x|−c2 for some c2 > 0 corresponding to the adaptive

Lasso, Zou (2006).
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We propose to estimate β∗ in (2.10) with the MACE iterative procedure described

below. Denote β̂w the final estimate of β∗. Specifically, for t = 1, 2, · · · , iterate the

following two steps. Denote β̂(t) as the estimate at step t.

a) Given β̂(t), standardize β̂(t) so that β̂(t) has length one and positive first com-

ponent. Then compute

(â
(t)
j , b̂

(t)
j )

def
= arg min

(aj ,bj)′s

n∑
i=1

ρw
(
Yi − aj − bjX>ij β̂(t)

)
ωij(β̂

(t)). (2.11)

b) Given (â
(t)
j , b̂

(t)
j ), solve

β̂(t+1) = arg min
β

n∑
j=1

n∑
i=1

ρw
(
Yi − â(t)j − b̂

(t)
j X

>
ijβ
)
ωij(β̂

(t)) + n

p∑
l=1

d̂
(t)
l |βl|,(2.12)

where d̂
(t)
l

def
= γλ(|β̂(t)

l |). Please note here that the kernel weights ωij(·) use the

β̂(t) from the step before.

When choosing the penalty parameter λ, we adopt a Cp-type criterion as in Yuan

and Lin (2006) instead of the computationally involved cross validation method.

We choose the optimal weights of the convex loss functions ρw by minimizing the

asymptotic variance of the resulting estimator of β∗, and the bandwidth h by criteria

proposed in Yu and Jones (1998) for g(·).
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3 Main Theorems

Define β̂w
def
= (β̂>w(1), β̂

>
w(2))

> as the estimator for β∗
def
= (β∗>(1) , β

∗>
(2))
> attained by the

procedure in (2.11) and (2.12). Let β̂w(1) and β̂w(2) be the first q components and the

remaining p−q components of β̂w respectively. If in the iterations, we have the initial

estimator β̂
(0)
(1) as a

√
n/q consistent one for β∗(1) (2.12), we will obtain with a very

high probability, an oracle estimator of the following type, say β̂w = (β̂>w(1),0
>)>,

since the oracle knows the true active setM∗
def
= {l : β∗l 6= 0}. The following theorem

shows that the penalized estimator enjoys the oracle property. Define β̂0 (note that

it is different from the initial estimator β̂
(0)
(1)) as the minimizer with the same loss in

(2.10) but within subspace {β ∈ Rp : βMc
∗ = 0}.

We make the following assumptions for the proofs of the theorems in this paper.

Let Zi
def
= X>i β

∗ and Zij
def
= Zi − Zj.

Condition 1. The kernel K(·) is a continuous symmetric function. The link

function g(·) ∈ C2, where C2 is the function space consisting of functions with

second order continuous derivatives.

Condition 2. Assume that for all k = 1, · · · , K, ρk(x) is convex and not contin-

uous on finite number of points. Suppose ψk(x), the derivative (or a subgradient

of ) of ρk(x), satisfies E{ψk(ε)|Zi} would only be a function related to k such that

E{ψw(ε)|Zi} = 0, a.s., E{ψ2
k(ε)|Zi} < ∞. Let Hi(c)

def
= inf |v|≤c ∂ Eψw(εi − v) = C1,

where ∂ Eψk(ε − v) is the partial derivative with respect to v, and c and C1 are

positive constants.

Condition 3. {(Xi, Yi)}ni=1 be n i.i.d. copies of (X, Y ). The density of β∗>X is
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bounded with bounded absolute continuous first-order derivatives on its support.

Let Xi(1) denote the sub-vector of Xi consisting of its first q elements.

Define

C1(1)
def
= E

[
E εi|Zi

ψ2
w(εi){[g′(Zi)]2(E(Xi(1))−Xi(1))(E(Xi(1))−Xi(1))

>}
]
(3.1)

C0(1)
def
= E

[
∂ E εi|Zi

ψw(εi){[g′(Zi)]2(E(Xi(1)|Zi)−Xi(1))(E(Xi(1)|Zi)−Xi(1))
>}
]
(3.2)

and the matrix C0(1) satisfies 0 < L1 ≤ λmin(C0(1)) ≤ λmax(C0(1)) ≤ L2 < ∞

for positive constants L1 and L2. There exists a constant C3 such that for all

β ∈ {‖β − β∗‖ ≤ C3},

‖E
[
∂ E ε|Zi

{ψw(ε)}g′(Zi){(X(0)|Zi)−Xi(0)}{(X(1)|Zi)−Xi(1)}>
]
‖2,∞ = O(1),

where for a matrix B, ‖B‖2,∞ = max‖u‖=1 ‖Bu‖∞.

Condition 4. Let dl
def
= γλ(|β∗l |) with the penalty parameter lim infn→∞ λ ≥

n−1/2+α2/2 and Dn
def
= max{dl : l ∈ M∗} = O(nα1−α2/2λ) where M∗ = {l : β∗l 6= 0}

be the true model. Assume that lim infn→∞minj{dj/λ : j ∈Mc
∗} > 0. Furthermore

assume qh → 0 and h−1
√
q/n = O(1) as n goes to infinity, q = O(nα2), p =

O{exp(nδ)}, nh3 →∞ and h→ 0. Also, 0 < δ < α < α2/2 < 1/2, α2/2 < α1 < 1.

Condition 5. The error term εi satisfies Var(εi) <∞. Assume that for any integer

m ≥ 1

E
∣∣ψmw (εi)/m!

∣∣ ≤ s0M
m (3.3)

where s0 and M are constants, and ψw(·) is the derivative (a subgradient) of ρw(·).
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Condition 6. The conditional density function f(ε|Zi = u) is bounded and abso-

lutely continuous differentiable.

Condition 1 is commonly-used and the standard normal probability density func-

tion is a kernel satisfying this condition. Condition 2 is made on the weighted loss

function so that it admits a quadratic approximation. Condition 2 assumes the

dependence structure between errors and the covariates. For the CQR estimation

in case of K > 1, it means that F−1Y |X(τk) = g(β∗>X) + c(τk) for all τ1 ≤ τk ≤ τK ,

where c(τk) is only a constant depending on τk, this is a similar condition as Wang

et al. (2012). For K = 1 the assumption E{ψw(ε)|X} = 0 a.s. to F−1ε|X(τ) = 0. Un-

der Condition 3, the matrix in the quadratic approximation is non-singular, so that

the resulting estimate of β has a non-degenerate limiting distribution. Condition

4 guarantees that the proposed variable selection and estimation procedure for β

is model-consistent. Condition 5 implies a common tail behavior that we employ.

Condition 6 is essential for the uniform Bahadur representation which we adopt in

the proof.

Theorem 1. Under Conditions 1-6, the estimators β̂0 and β̂w exist and coincide on

a set with probability tending to 1. Moreover,

P(β̂0 = β̂w) ≥ 1− (p− q) exp(−C ′nα) (3.4)

for a positive constant C ′.

It is worth noting that the above results imply the usual sign consistency, see e.g.

Fan and Lv (2010). In addition, the theorem requires a relationship between the
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order of p, q, and the parameter α, see Condition 4.

Theorem 2. Under Conditions 1-6, we have

‖β̂w(1) − β∗(1)‖ = Op{(Dn + n−1/2)
√
q} (3.5)

For any unit vector b in Rq, we have

b>C
1/2
0(1)C

−1/2
1(1) C

1/2
0(1)

√
n(β̂w(1) − β∗(1))

L−→ N(0, 1) (3.6)

where racall that C1(1)
def
= E{E{ψ2

w(εi)|Zi}[g′(Zi)]2[E(Xi(1)|Zi) − Xi(1)][E(Xi(1)|Zi) −

Xi(1)]
>}, and C0(1)

def
= E{∂ Eψw(εi)|Zi}{[g′(Zi)]2(E(Xi(1)|Zi) − Xi(1))(E(Xi(1)|Zi) −

Xi(1))}>. Note that E(Xi(1)|Zi) denotes a q × 1 dimension vector, and Zi
def
= X>i β

∗,

ψw(ε) is a choice of the subgradient of ρw(ε) and

σ2
w

def
= E{[ψw(εi)]

2}/[∂ Eψw(εi)]
2, where

∂ E{ψw(·)|Zi} =
∂ E{ψw(εi − v)2|Zi}

∂v

∣∣∣
v=0

. (3.7)

It is worth noting that in the case of quantile regression, σ2
w = τ(1− τ)/fε|Z(0)2.

Let us now look at the distribution of the estimated link function ĝ(x>β̂w) with

the consistent estimate for β∗ and the estimate ĝ′(x>β̂w) with the consistent estimate

of β∗ plugged in.

Theorem 3. Under conditions 1-6, let µj
def
=
∫
ujK(u)du and νj

def
=
∫
ujK2(u)du,

j = 0, 1, 2. For any interior point z = x>β∗, fZ(z) is the density of Zi, i = 1, . . . , n,
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if nh3 →∞ and h→ 0, we have

√
nh
√
fZ(z)/(ν0σ2

w)

{
ĝ(x>β̂w)− g(x>β∗)− 1

2
h2g′′(x>β∗)µ2∂ Eψw

(
ε
)} L−→ N (0, 1) ,

Also, we have

√
nh3
√
{fZ(z)µ2

2}/(ν2σ2
w)
{
ĝ′(x>β̂w)− g′(x>β∗)

}
L−→ N (0, 1) ,

not that
√
fZ(z)/(ν0σ2

w) and
√
fZ(z)µ2

2/(ν2σ
2
w) are the scaling according to the stan-

dard deviations of the estimates, and recall σ2
w

def
= E{[ψw(εi)]

2}/[∂ Eψw(εi)]
2.

All the proofs of the theorems can be found in Appendix (supplementary mate-

rials).

4 Simulation

In this section, we evaluate our technique in several settings, involving different com-

binations of link functions g(·), distributions of ε, and different choices of (n, p, q, τ)s,

where n is the sample size, p is the dimension of the true parameter β∗, q is the

number of non-zero components in β∗, and τ represents the quantile level. The eval-

uation is first done with a simple quantile loss function, and then with the composite

L1−L2 and the composite quantile cases. The weights w1, · · · ,wK are preestimated

by minimizing the object
∑K

l

∑K
k wlwk

∑n
i=1 ψl(ε̂

(0)
i )ψk(ε̂

(0)
i ), where ε̂

(0)
i s are resid-

uals for the initial estimator.
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4.1 Link functions

Consider the following nonlinear link functions g(·)s. Model 1:

Yi = 5 cos(D1 · Zi) + exp(−D1 · Z2
i ) + εi, (4.1)

where Zi = X>i β
∗, D1 = 0.01 is a scaling constant and εi is an error term. Model 2:

Yi = 10 sin{π(A · Zi −B)}+ εi, (4.2)

with the parameters A = 0.3, B = 3. Finally Model 3 is with D2 = 0.1:

Yi = 10 sin(D2 · Zi) +
√
| sin(0.5 · Zi) + εi|. (4.3)

4.2 Criteria

For estimation accuracy for β and g(·), we use the following five criteria to measure:

1) Standardized L2 norm:

Dev
def
=
‖β∗ − β̂‖
‖β∗‖

,

2) Sign consistency:

Acc
def
=

p∑
l=1

|1{β∗l 6= 0} − 1{β̂l 6= 0}|,

3) Least angle:

Angle
def
=

β∗>β̂

‖β∗‖ · ‖β̂‖
,

4) Average squared error:

17



ASE
def
=

1

n

n∑
i=1

{
g(Zi)− ĝ(Ẑi)

}2
.

4.3 L1-norm quantile regression

We adopt the algorithm for the L1-norm quantile regression developed by Li and

Zhu (2008). The initial estimate of β∗ can be calculated by the L1-norm quantile

regression, and then we perform the two-step iterations mentioned in Section 2.

Recall that X is a p × n matrix, and q is the number of non-zero components in

β∗. The jth column of X is an i.i.d. sample from N(j/2, 1). Two error distributions

are considered: εi ∼ N(0, 0.1) and t(5). Note that β∗(1) is the vector of the non-zero

components in β∗. In the simulation, we consider different β∗(1): β
∗>
(1) = (5, 5, 5, 5, 5),

β∗>(1) = (5, 4, 3, 2, 1) and β∗>(1) = (5, 2, 1, 0.8, 0.2). Here the indices Zis are re-scaled to

[0, 1] for nonparametric estimation. The bandwidth is selected as in Yu and Jones

(1998):

hτ = hmean
[
τ(1− τ)ϕ{Φ−1(τ)}−2

]0.2
.

where hmean can be calculated by using the direct plug-in methodology of a local

linear regression described by Ruppert et al. (1995). To see the performance of

the bandwidth selection, we compare the estimated link functions with different

bandwidths. Figure 1 is an example showing the true link function (grey) and the

estimated link function (black). The left plot in Figure 1 is with the bandwidth

(h = 0.68) selected by applying the aforementioned bandwidth selection. We can

see that the estimated link function curve is relatively smooth. The middle plot

shows the estimated link function with a smaller bandwidth (h = 0.068). It can

be seen that the estimated curve is wiggly shape. The right plot shows that the
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estimated link function with a larger bandwidth (h = 0.8), the deviation between

the estimated link function curve and the true curve is very large.

Figure 1: The true link functions (grey) and the estimated link functions (black) in
model 2 with β∗>(1) = (5, 5, 5, 5, 5), and ε ∼ N(0, 0.1), n = 100, p = 10, q = 5, τ = 0.05,

where h = 0.68 (left), h = 0.068 (middle) and h = 0.8 (right).
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Table 1 shows the criteria evaluated with different models and quantile levels.

Here β∗>(1) = (5, 5, 5, 5, 5), the error ε follows a N (0, 0.1) distribution or follows a

t(5) distribution. In 10000 simulations we set p = 10, q = 5. Standard deviations

are given in brackets. We find that for quantile levels 0.95 and 0.05 the errors are

usually slightly larger than the median. Although the estimations for model 2 are

not as good as for model 1 and model 3, the errors are still moderate. Figures 2 and

Figure 3 present the plots of the true link functions against the estimated ones for

different quantile levels.

Table 2 reports on the criteria evaluated under different β∗(1) cases. In this table

two different β∗(1) are considered: (a) β∗>(1) = (5, 4, 3, 2, 1), (b) β∗>(1) = (5, 2, 1, 0.8, 0.2),

the error ε follows a N (0, 0.1) distribution. In 10000 simulations we set p = 10, q =

5, τ = 0.95. Standard deviations are given in brackets. We notice that for the case

(b), the estimation results are not better than (a) since the smaller values of β∗(1)

in case (b) would be estimated as zeros, and the estimation of the link function
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Table 1: Criteria evaluated with different models and quantiles. β∗>(1) = (5, 5, 5, 5, 5),

N means the error ε follows a N (0, 0.1) distribution, t means the error ε follows a
t(5) distribution. In 10000 simulations we set n = 100, p = 10, q = 5. Standard devi-
ations are given in brackets. Dev, Acc, Angle, Error and their standard deviations
are reported in 10−1. ASE and its standard deviations are reported in 10−2.

g(·) ε τ Dev Acc Angle ASE

Model 1

N

0.95 1.213(0.332) 0.949(0.327) 9.656(0.086) 0.357(0.085)
0.50 1.132(0.137) 0.993(0.244) 9.736(0.022) 0.247(0.044)
0.05 1.346(0.532) 1.335(0.443) 9.626(0.116) 0.260(0.076)

t

0.95 1.736(0.744) 0.926(0.478) 9.548(0.135) 0.809(0.097)
0.50 1.236(0.246) 1.157(0.357) 9.667(0.040) 0.448(0.093)
0.05 1.536(0.737) 2.447(0.446) 9.570(0.126) 0.923(0.097)

Model 2

N

0.95 4.679(0.854) 6.579(0.643) 9.581(0.658) 1.768(0.247)
0.50 1.489(0.458) 5.015(0.436) 9.455(0.274) 1.156(0.464)
0.05 1.501(0.825) 6.858(0.747) 9.388(0.658) 2.015(0.274)

t

0.95 5.325(0.960) 9.226(0.758) 9.360(0.567) 2.467(0.351)
0.50 1.689(0.557) 7.004(0.879) 9.409(0.379) 1.279(0.473)
0.05 2.065(0.847) 8.546(0.951) 9.475(0.531) 2.639(0.368)

Model 3

N

0.95 0.757(0.269) 1.702(0.248) 9.966(0.013) 0.569(0.162)
0.50 0.618(0.175) 1.434(0.186) 9.867(0.021) 0.695(0.104)
0.05 0.558(0.315) 1.845(0.173) 9.979(0.024) 0.758(0.173)

t

0.95 0.625(0.287) 1.849(0.284) 9.836(0.038) 0.736(0.174)
0.50 0.647(0.135) 1.655(0.303) 9.758(0.029) 0.789(0.115)
0.05 0.918(0.260) 1.879(0.334) 9.879(0.036) 0.847(0.283)

Figure 2: The true link functions (grey) and the estimated link functions (black)
with β∗>(1) = (5, 5, 5, 5, 5), and ε ∼ N(0, 0.1), n = 100, p = 10, q = 5, τ = 0.95, model

1 (left) with h = 1.02, model 2 (middle) with h = 0.15 and model 3 (right) with
h = 0.76.
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would be affected as well. Figure 5 and Figure 6 are the plots of the estimated link

functions in these two cases.

20



Figure 3: The true link functions (grey) and the estimated link functions (black)
with β∗>(1) = (5, 5, 5, 5, 5), and ε ∼ N(0, 0.1), n = 100, p = 10, q = 5, τ = 0.05, model

1 (left) with h = 0.78, model 2 (middle) with h = 0.12 and model 3 (right) with
h = 0.78.
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Figure 4: The true link functions (grey) and the estimated link functions (black)
with β∗>(1) = (5, 5, 5, 5, 5), and ε ∼ N(0, 0.1), n = 100, p = 10, q = 5, τ = 0.5, model

1 (left) with h = 0.55, model 2 (middle) with h = 0.13 and model 3 (right) with
h = 0.65.
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Figure 5: The true link functions (grey) and the estimated link functions (black)
with β∗>(1) = (5, 4, 3, 2, 1), and ε ∼ N(0, 0.1), n = 100, p = 10, q = 5, τ = 0.95, model

1 (left) with h = 0.31, model 2 (middle) with h = 0.09 and model 3 (right) with
h = 0.8.
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Figure 6: The true link functions (grey) and the estimated link functions (black)
with β∗>(1) = (5, 2, 1, 0.8, 0.2), and ε ∼ N(0, 0.1), n = 100, p = 10, q = 5, τ = 0.95,

model 1 (left) with h = 0.21, model 2 (middle) with h = 0.18 and model 3 (right)
with h = 0.25.

0.0 0.2 0.4 0.6 0.8 1.0

5.
85

5.
95

0.0 0.2 0.4 0.6 0.8 1.0−1
.0

−0
.6

−0
.2

0.
2

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

Table 3 shows the criteria evaluated under the p > n case. Here β∗>(1) = (5, 5, 5, 5, 5),

the error ε follows a N (0, 0.1) distribution. In 10000 simulations we set p = 200, q =

5, τ = 0.05. Standard deviations are given in brackets. We find that the errors are

still moderate in the p > n situation compared with Table 1. Figure 7 shows the

graphs in this case.
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Table 3: Criteria evaluated with different models p ≥ n case. β∗>(1) = (5, 5, 5, 5, 5),

the error ε follows a N (0, 0.1) distribution. In 10000 simulations we set p = 200, q =
5, τ = 0.05. Standard deviations are given in brackets. Dev, Acc, Angle and their
standard deviations are reported in 10−1, ASE and its standard deviations are
reported in 10−2.

n g(·) Dev Acc Angle ASE

100
Model 1 1.880(0.753) 2.535(0.847) 9.303(0.157) 1.812(0.239)
Model 2 2.859(0.954) 9.613(1.411) 9.035(0.835) 3.465(0.936)
Model 3 1.554(0.635) 3.143(0.866) 9.265(0.095) 3.354(0.297)

200
Model 1 1.865(0.744) 1.818(0.724) 9.331(0.125) 1.103(0.233)
Model 2 2.433(0.822) 8.499(1.222) 9.112(0.709) 2.224(0.931)
Model 3 1.415(0.602) 2.001(0.713) 9.303(0.079) 2.915(0.203)

Figure 7: The true link functions (grey) and the estimated link functions (black)
with β∗>(1) = (5, 5, 5, 5, 5), and ε ∼ N(0, 0.1), n = 100, p = 200, q = 5, τ = 0.05, model

1 (left) with h = 0.81, model 2 (middle) with h = 0.22 and model 3 (right) with
h = 0.57.
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4.4 Composite L1-L2 Regression

In this subsection, a combined L1 and L2 loss is considered and thus, the corre-

sponding optimization is formed as:

arg min
β,g(·)

[ n∑
i=1

w1|Yi−g(X>i β)|+w2

n∑
i=1

{Yi−g(X>i β)}2ωi(β)+n

p∑
l=1

γλ(|βl|)|βl|
]
. (4.4)
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It can be further formulated as

arg min
β,g(·)

[ n∑
i=1

{w1|Yi−g(X>i β)|−1+w2}|Yi−g(X>i β)|2ωi(β)+n

p∑
l=1

γλ(|βl|)|βl|
]
. (4.5)

Let Resti
def
= Yi − ĝt(X>i β̂t) be the residual at t-th step, and the final estimate can

be acquired by the iteration between g(·) and β until convergence:

arg min
β,g(·)

[ n∑
i=1

{w1|Resti|−1 + w2}|Yi − g(X>i β)|2ωi(β̂(t)) + n

p∑
l=1

γλ(|βl|)|βl|
]
. (4.6)

Three different settings are conducted. The results are reported in Table 4.

Figure 8 (the upper panel) shows the difference between the estimated and true g(·)

functions. The level of estimation error is roughly the same as the previous level.

Also the results would not change too much with respect to the error distributions

and the increasing dimension of p, since only the dimension of q matters.

4.5 Composite L1 Quantile Regression

We use Majorize-Minimization (MM) algorithm for a large scale regression problem.

Table 5 shows the estimation quality. Compared with the results in Table 1, the

estimation efficiency is improved, even in the case of p > n. Figure 8 presents the

plots of the estimated link functions for different models using both the composite

L1 regression and the L1-L2 regression.
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Table 4: Simulation results under sparsity, non-sparsity and large p cases. N means
errors follow i.i.d. N(0, 0.1), t means t distribution with degree of 5. Dev, Acc,
Angle and their standard deviations are reported in 10−1, ASE and its standard
deviations are reported in 10−2.

n model settings ε Dev Acc Angle ASE

100

Model 1

p = 10, q = 2
N 1.033(0.141) 1.037(0.231) 9.888(0.016) 0.223(0.031)
t 1.223(0.230) 1.132(1.237) 9.860(0.021) 0.281(0.047)

p = 10, q = 7
N 1.163(0.201) 1.219(0.211) 9.833(0.023) 0.290(0.049)
t 1.444(0.232) 1.298(0.277) 9.805(0.050) 0.318(0.079)

p = 100, q = 5
N 1.484(0.303) 1.624(1.426) 9.344(0.091) 0.473(0.216)
t 1.576(0.365) 1.845(0.445) 9.311(0.106) 0.534(0.223)

Model 2

p = 10, q = 2
N 1.134(0.277) 6.392(0.381) 9.399(0.125) 1.146(0.216)
t 1.235(0.295) 6.442(0.412) 9.391(0.136) 1.241(0.227)

p = 10, q = 7
N 1.323(0.346) 7.723(0.682) 9.281(0.287) 1.401(0.321)
t 1.706(0.368) 7.953(0.704) 9.259(0.314) 1.577(0.361)

p = 100, q = 5
N 1.207(0.483) 8.387(0.891) 9.230(0.359) 1.728(0.673)
t 1.994(0.494) 8.543(0.903) 9.142(0.416) 1.751(0.701)

Model 3

p = 10, q = 2
N 0.880(0.153) 1.254(0.143) 9.968(0.018) 0.550(0.091)
t 1.077(0.175) 1.366(0.145) 9.951(0.023) 0.740(0.102)

p = 10, q = 7
N 1.285(0.183) 1.553(0.197) 9.950(0.036) 0.838(0.127)
t 1.334(0.195) 1.680(0.257) 9.947(0.048) 0.843(0.139)

p = 100, q = 5
N 1.369(0.235) 2.023(0.636) 9.377(0.054) 1.304(0.182)
t 1.494(0.383) 2.293(0.652) 9.344(0.063) 1.880(0.197)

500

Model 1

p = 10, q = 2
N 1.203(0.132) 0.999(0.193) 9.898(0.010) 0.214(0.031)
t 1.338(0.147) 1.019(0.201) 9.835(0.009) 0.237(0.035)

p = 10, q = 7
N 1.208(0.166) 1.118(0.218) 9.882(0.012) 0.309(0.046)
t 1.457(0.178) 1.236(0.242) 9.802(0.018) 0.306(0.072)

p = 100, q = 5
N 1.434(0.183) 1.478(0.396) 9.323(0.063) 0.332(0.152)
t 1.482(0.217) 1.646(0.401) 9.315(0.088) 0.491(0.179)

Model 2

p = 10, q = 2
N 1.036(0.222) 6.021(0.311) 9.598(0.133) 1.026(0.211)
t 1.133(0.290) 6.129(0.411) 9.435(0.169) 1.198(0.231)

p = 10, q = 7
N 1.152(0.229) 7.069(0.518) 9.402(0.212) 1.364(0.288)
t 1.468(0.289) 7.188(0.625) 9.382(0.268) 1.473(0.306)

p = 100, q = 5
N 1.773(0.461) 8.327(0.794) 9.207(0.281) 1.691(0.652)
t 1.872(0.489) 8.376(0.864) 9.141(0.299) 1.706(0.691)

Model 3

p = 10, q = 2
N 0.746(0.102) 1.023(0.103) 9.590(0.013) 0.498(0.081)
t 0.865(0.169) 1.215(0.128) 9.481(0.020) 0.502(0.099)

p = 10, q = 7
N 0.992(0.187) 1.436(0.137) 9.487(0.029) 0.578(0.112)
t 1.003(0.193) 1.478(0.186) 9.459(0.032) 0.624(0.131)

p = 100, q = 5
N 1.209(0.203) 1.646(0.468) 9.381(0.041) 0.847(0.165)
t 1.402(0.353) 2.219(0.579) 9.343(0.053) 0.781(0.194)

26



Figure 8: Plot of the true function g(·) (grey) and the estimation (black) with
n = 100, p = 10, q = 5 and ε ∼ N(0, 0.1) in different g(·) functions. L1-L2 regression,
h = 0.6, 0.3, 0.4 (upper pannel), composite quantile h = 0.5, 0.2, 0.5 (lower panel)

0.0 0.2 0.4 0.6 0.8 1.0

5.
70

5.
80

5.
90

0.0 0.2 0.4 0.6 0.8 1.0−1
.0

−0
.5

0.
0

0.
5

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

2
3

4
5

6

0.0 0.2 0.4 0.6 0.8 1.05.
75

5.
85

5.
95

0.0 0.2 0.4 0.6 0.8 1.0−1
.0

−0
.5

0.
0

0.
5

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

1
2

3
4

5
6

5 Application

In this section, we apply the proposed methodology to analyze risk for a specific firm

conditioning on macro and other firm variables. More specifically, for small financial

firms, we aim to detect the contagion effects and the potential risk contributions from

larger firms and other market variables. As a result one identifies a risk index, which

is expressed as a linear combination, composed of selected large firm returns and

market prudential variables.
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Table 5: Simulation results for Composite L1 Quantile Regression. N means errors
follow i.i.d. N(0, 0.1), t means t distribution with degree of 5. Dev, Acc, Angle,
Error and their standard deviations are reported in 10−1, ASE and its standard
deviations are reported in 10−2.

n model settings ε Dev Acc Angle ASE

100

Model 1

p = 10, q = 2
N 2.638(0.053) 0.774(0.149) 9.993(0.013) 0.142(0.022)
t 1.038(0.125) 0.899(0.156) 9.991(0.014) 0.145(0.031)

p = 30, q = 3
N 1.148(0.141) 1.072(0.175) 9.828(0.011) 0.169(0.043)
t 1.166(0.106) 1.197(0.193) 9.576(0.012) 0.257(0.063)

p = 120, q = 5
N 1.183(0.186) 1.207(0.191) 9.421(0.040) 0.332(0.114)
t 1.336(0.215) 1.219(0.201) 9.403(0.063) 0.367(0.119)

Model 2

p = 10, q = 2
N 1.119(0.213) 4.001(0.282) 9.592(0.101) 1.112(0.212)
t 1.215(0.241) 4.086(0.323) 9.499(0.117) 1.244(0.218)

p = 30, q = 3
N 1.335(0.252) 5.154(0.393) 9.595(0.132) 1.304(0.311)
t 1.359(0.282) 5.538(0.462) 9.583(0.168) 1.383(0.381)

p = 120, q = 5
N 1.742(0.289) 6.703(0.504) 9.382(0.202) 1.453(0.412)
t 1.946(0.320) 7.335(0.611) 9.363(0.310) 1.626(0.503)

Model 3

p = 10, q = 2
N 0.415(0.086) 1.007(0.100) 9.974(0.011) 0.426(0.041)
t 0.512(0.093) 1.032(0.113) 9.968(0.013) 0.493(0.059)

p = 30, q = 3
N 0.841(0.143) 1.167(0.139) 9.965(0.013) 0.528(0.060)
t 0.953(0.153) 1.235(0.155) 9.962(0.022) 0.560(0.069)

p = 120, q = 5
N 0.883(0.161) 1.357(0.168) 9.575(0.034) 0.892(0.104)
t 0.903(0.233) 1.946(0.273) 9.553(0.044) 0.949(0.113)

500

Model 1

p = 10, q = 2
N 0.935(0.102) 0.609(0.102) 9.998(0.003) 0.114(0.018)
t 1.026(0.134) 0.774(0.124) 9.992(0.005) 0.125(0.029)

p = 30, q = 3
N 1.132(0.142) 0.852(0.138) 9.993(0.005) 0.133(0.033)
t 1.148(0.116) 0.945(0.165) 9.991(0.006) 0.174(0.049)

p = 120, q = 5
N 1.157(0.125) 1.144(0.185) 9.543(0.030) 0.247(0.110)
t 1.275(0.166) 1.232(0.196) 9.572(0.046) 0.303(0.115)

Model 2

p = 10, q = 2
N 1.104(0.206) 3.908(0.260) 9.691(0.053) 1.009(0.116)
t 1.185(0.214) 4.105(0.273) 9.685(0.055) 1.216(0.151)

p = 30, q = 3
N 1.286(0.219) 4.239(0.294) 9.552(0.050) 1.309(0.216)
t 1.294(0.278) 5.046(0.347) 9.504(0.127) 1.316(0.231)

p = 120, q = 5
N 1.727(0.246) 5.675(0.405) 9.459(0.134) 1.448(0.317)
t 1.824(0.289) 5.856(0.581) 9.443(0.168) 1.497(0.413)

Model 3

p = 10, q = 2
N 0.380(0.076) 0.996(0.087) 9.993(0.010) 0.391(0.040)
t 0.508(0.087) 1.022(0.116) 9.990(0.016) 0.446(0.048)

p = 30, q = 3
N 0.763(0.092) 1.154(0.125) 9.982(0.016) 0.514(0.051)
t 0.846(0.104) 1.265(0.142) 9.971(0.020) 0.546(0.064)

p = 120, q = 5
N 0.966(0.113) 1.843(0.193) 9.833(0.022) 0.768(0.087)
t 1.124(0.235) 1.898(0.237) 9.742(0.031) 0.830(0.104)

5.1 Data and Risk Calibration

The firm data are selected according to the ranking of NASDAQ. We take as an

example, city national corp. (CYN) as our dependent variable. The remaining 199

financial institutions together with 7 lagged macro variables are chosen as covariates.

The list of these firms comes from the website: http://www.nasdaq.com/screening
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/companies-by-industry.aspx?industry=Finance. The daily stock prices of these 200

firms are from Yahoo Finance for the period from January 5, 2006 to October 30,

2015. The descriptive statistics of the company, the description of the macro vari-

ables and the list of the firms (Table 8 to Table 10) can be found in the Appendices.

To evaluate the risk exposure of the firm CYN, we adopt a modified two-step quan-

tile regression procedure which involves our quantile single index model in the second

step. The first one is a quantile regression to calculate the VaR of all the covariates

respectively. For this propose, one performs QR of log returns of each covariate on

all the lagged macro variables:

Xi,t = αi + γ>i Mt−1 + εi,t, (5.1)

where Xi,t represents the asset return of financial institution i at time t. Then the

VaR of each firm with F−1εi,t
(τ |Mt−1) = 0 is obtained by:

V̂ aR
τ

i,t = α̂i + γ̂>i Mt−1, (5.2)

Now the second regression is performed using the proposed MACE method. The

response variable is log returns of CYN, and the explanatory variables are potential

risk factors which includes the log returns of those covariates and the lagged macro

variables:

Xj,t = g(S>βj|S) + εj,t, (5.3)

where S
def
= [Mt−1, R], R is a vector of log returns for different firms. βj|S is a

p × 1 vector. A detailed list of factors can be found in Table 8 to Table 10 in the
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Appendix.

With F−1εj,t
(τ |S) = 0 the CoVaR for firm j is estimated as:

ĈoV aR
τ

j|Ŝ = ĝ(Ŝ>β̂j|S), (5.4)

where Ŝ
def
= [Mt−1, V̂ ], with V̂ as the estimated VaR in (5.2).

To evaluate the preciseness of the proposed CoVaR risk measure, we launch a

back-testing procedure. First, one calculates the violations over time, which is

defined as the days on which the log returns are lower than the estimated VaR

or CoVaR:

Îi,t =


1, Xi,t < V̂ aR

τ

i,t;

0, otherwise,

where theoretically Ii,t − τ should be a martingale difference sequence. Then we

apply one version of the CaViaR test, see Berkowitz et al. (2011), which adopts a

logit model:

Ii,t = α + β1Ii,t−1 + β2V aRi,t + ui,t,

where ui,t has a logistic distribution. The Wald test is then applied with null hy-

pothesis: β̂1 = β̂2 = 0, see Franke et al. (2004) for more details.

5.2 Results

We use a moving window size of n = 126 (corresponding approximately to half a

year of trading days) to calculate VaR of the log returns for the 199 firms, macro
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variables, and CYN. Figure 9 and Figure 10 show one illustration of the estimated

VaR of JPM (one covariate in the second step) and CYN respectively. It can be

seen that the estimated VaR traces the low values of returns closely, and becomes

more volatile when the volatility of the returns is large.

Figure 9: Log returns of JPM (grey) and VaR of log returns of JPM (black), τ =
0.05, T = 2335, window size n = 126, refer to (5.2).
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Figure 10: Log returns of CYN (grey) and VaR of log returns of CYN (black),
τ = 0.05, T = 2335, window size n = 126, refer to (5.2).
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With the VaR estimation in previous step, we show further the estimation of the

CoVaR for CYN. The estimation is conducted in a moving window of size 126. Our

technique is applied with τ = 0.05. We use p = 206 covariates, and the CoVaR for

CYN is estimated with different variables selected in each window. Figure 11 shows

the estimation results. We further summarize the selected variables in different

windows.

Figure 12 summarizes the selection frequency of the firms and macro variables

for all the windows. The variable 187, ”Radian Group Inc. (RDN)” is the most

frequently selected variable with frequency 752, which indicates the most relevant

risk driver for CYN.

To compare the performance of our proposed measure with existing measures,

we further apply CaViaR test for backtesting. Figure 13 shows the Îi,t sequence of
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Figure 11: Log returns of CYN (grey) and the estimated CoVaR (black), τ = 0.05,
T = 2335, window size n = 126, refer to (5.4).
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Figure 12: The frequency of the firms and macro variables. The X-axis: 1 − 206
variables, and the Y-axis: the frequency of the variables selected in the moving
window estimation. The variable 187, i.e. ”Radian Group Inc. (RDN)” is the most
frequently selected variable with frequency 752.
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V̂ aR (estimated value at risk measure) of CYN, there are a total of 23 violations.

With T = 2335, the violation proportion is then τ̂ = 0.009.
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Table 6: The p-values for CaViaR test for V̂ aR, ĈoV aRL and ĈoV aRSIM for CYN,
T = 2335 in overall period (20060710 − 20151030) and crisis period (20080915 −
20100208) .

p-value Overall Crisis

V̂ aR 1.2× 10−6 0.99

ĈoV aRL 0.01 3.2× 10−5

ĈoV aRSIM 0.46 0.93

From Figure 14 we get the Îi,t sequence of ĈoV aR of CYN, there are 28 violations

out of T = 2335, which means τ̂ = 0.012.

The p-values of the CaViaR tests are then shown in Table 6, in which we com-

pare our measure ĈoV aRSIM (CoVaR estimated from single index model) with the

measure attained solely by doing linear quantile variable selection, i.e. ĈoV aRL,

see, for example, Belloni et al. (2011). For the overall period, only for ĈoV aRSIM ,

the null hypothesis can not be rejected. Therefore, V̂ aR and ĈoV aRL algorithms

do not perform so well in an overall period. During crisis times, the null hypothesis

of V̂ aR and ĈoV aRSIM can not be rejected, therefore both V̂ aR and ĈoV aRSIM

algorithms perform well during the crisis periods, but ĈoV aRL’s performance is not

favorable.

6 Appendices

6.1 Proof

Please find in the supplementary materials.
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Figure 13: The violations (i.e. {t : Îi,t = 1}) of V̂ aR for CYN(the dots above), in
total 23 violations, T = 2335, τ̂ = 0.009.

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

2008 2010 2012 2014 2016

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 14: The violations (i.e. {t : Îi,t = 1}) of ĈoV aRsim of CYN(the dots above),
in total 28 violations, T = 2335, τ̂ = 0.012.
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6.2 Application

The macro variables are the same as suggested by Adrian and Brunnermeier (2011)

and Chao et al. (2012). The macro variables and the corresponding source are listed

as follows:

1. VIX, which measures the implied volatility in the market.

2. The short term liquidity spread, which is calculated by the difference between

the 3-month Treasury repo rate and 3-month Treasury constant maturities.

3. The daily change in the 3-month Treasury constant maturities, which can be

defined as the difference between the current day and the previous day of

3-month Treasury constant maturities.

4. The change in the slope of the yield curve, which is defined by the difference

between the 10 year Treasury constant maturities and the 3-month Treasury

constant maturities.

5. The change in the credit spread between 10 years BAA corporate bonds and

the 10 years Treasury constant maturities.

6. The daily S&P500 index returns.

7. The daily Dow Jones U.S. Real Estate index returns.

The repo data can be obtained from the Datastream database, and the 10 year

Treasury constant maturities and BAA corporate bonds data can be found in the

website of the Federal Reserve Board H.15:
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http://www.federalreserve.gov/releases/h15/data.htm. Other data are available in

Yahoo Finance. The macro variables’ data are available from January 4, 2006 to

October 29, 2015 with a daily frequency.

Table 7: Descriptive statistics of CYN

Mean SD Skewness Kurtosis
Overall period −0.0001 0.0237 0.2821 14.0036
In crisis −9.247× 10−5 0.0312 0.1326 8.9544

Table 7 shows the descriptive statistics of this series. The mean of CYN in the

the overall period (i.e. January 06, 2006 to October 30, 2015) is −0.000118, which

higher than it (−0.000092) in the crisis period (i.e. from September 15, 2008 to

February 8, 2010). The volatility in the crisis period is higher than it in the overall

period. The p values of the Jarque Bera test indicates that log returns of CYN are

not normally distributed. We also perform a unit root test which suggests that the

log returns of CYN are stationary. The mentioned two test results for the other

firms show that all these series are not normally distributed, but are likely to be

stationary.
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Table 8: The financial firms

The financial frims
1. Wells Fargo & Co (WFC) 15. Franklin Resources Inc. (BEN)
2. JP Morgan Chase & Co (JPM) 16. The Travelers Companies, Inc. (TRV)
3. Bank of America Corp (BAC) 17. AFLAC Inc. (AFL)
4. Citigroup Inc (C) 18. Prudential Financial, Inc. (PRU)
5. American Express Company (AXP) 19. State Street Corporation (STT)
6. U.S. Bancorp (USB) 20. The Chubb Corporation (CB)
7. The Goldman Sachs Group, Inc. (GS) 21. BB&T Corporation (BBT)
8. American International Group, Inc. (AIG) 22. Marsh & McLennan Companies, Inc. (MMC)
9. MetLife, Inc. (MET) 23. The Allstate Corporation (ALL)

10. Capital One Financial Corp. (COF) 24. Aon plc (AON)
11. BlackRock, Inc. (BLK) 25. CME Group Inc. (CME)
12. Morgan Stanley (MS) 26. The Charles Schwab Corporation (SCHW)
13. PNC Financial Services Group Inc. (PNC) 27. T. Rowe Price Group, Inc. (TROW)
14. The Bank of New York Mellon Corporation (BK) 28. Loews Corporation (L)
29. SunTrust Banks, Inc. (STI) 44. Lincoln National Corporation (LNC)
30. Fifth Third Bancorp (FITB) 45. Affiliated Managers Group Inc. (AMG)
31. Progressive Corp. (PGR) 46. Cincinnati Financial Corp. (CINF)
32. M&T Bank Corporation (MTB) 47. Equifax Inc. (EFX)
33. Ameriprise Financial Inc. (AMP) 48. Alleghany Corp. (Y)
34. Northern Trust Corporation (NTRS) 49. Unum Group (UNM)
35. Invesco Ltd. (IVZ) 50. Comerica Incorporated (CMA)
36. Moody’s Corp. (MCO) 51. W.R. Berkley Corporation (WRB)
37. Regions Financial Corp. (RF) 52. Fidelity National Financial, Inc. (FNF)
38. The Hartford Financial Services Group, Inc. (HIG) 53. Huntington Bancshares Incorporated (HBAN)
39. TD Ameritrade Holding Corporation (AMTD) 54. Raymond James Financial Inc. (RJF)
40. Principal Financial Group Inc. (PFG) 55. Torchmark Corp. (TMK)
41. SLM Corporation (SLM) 56. Markel Corp. (MKL)
42. KeyCorp (KEY) 57. Ocwen Financial Corp. (OCN)
43. CNA Financial Corporation (CNA) 58. Arthur J Gallagher & Co. (AJG)
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Table 9: The financial firms

The financial firms
59. Hudson City Bancorp, Inc. (HCBK) 74. Commerce Bancshares, Inc. (CBSH)
60. People’s United Financial Inc. (PBCT) 75. Signature Bank (SBNY)
61. SEI Investments Co. (SEIC) 76. Jefferies Group, Inc. (JEF)
62. Nasdaq OMX Group Inc. (NDAQ) 77. Rollins Inc. (ROL)
63. Brown & Brown Inc. (BRO) 78. Morningstar Inc. (MORN)
64. BOK Financial Corporation (BOKF) 79. East West Bancorp, Inc. (EWBC)
65. Zions Bancorp. (ZION) 80. Waddell & Reed Financial Inc. (WDR)
66. HCC Insurance Holdings Inc. (HCC) 81. Old Republic International Corporation (ORI)
67. Eaton Vance Corp. (EV) 82. ProAssurance Corporation (PRA)
68. Erie Indemnity Company (ERIE) 83. Assurant Inc. (AIZ)
69. American Financial Group Inc. (AFG) 84. Hancock Holding Company (HBHC)
70. Dun & Bradstreet Corp. (DNB) 85. First Niagara Financial Group Inc. (FNFG)
71. White Mountains Insurance Group, Ltd. (WTM) 86. SVB Financial Group (SIVB)
72. Cullen-Frost Bankers, Inc. (CFR) 87. First Horizon National Corporation (FHN)
73. Legg Mason Inc. (LM) 88. E-TRADE Financial Corporation (ETFC)
89. SunTrust Banks, Inc. (STI) 104. Valley National Bancorp (VLY)
90. Mercury General Corporation (MCY) 105. KKR Financial Holdings LLC (KFN)
91. Associated Banc-Corp (ASBC) 106. Synovus Financial Corporation (SNV)
92. Credit Acceptance Corp. (CACC) 107. Texas Capital BancShares Inc. (TCBI)
93. Protective Life Corporation (PL) 108. American National Insurance Co. (ANAT)
94. Federated Investors, Inc. (FII) 109. Washington Federal Inc. (WAFD)
95. CNO Financial Group, Inc. (CNO) 110. First Citizens Bancshares Inc. (FCNCA)
96. Popular, Inc. (BPOP) 111. Kemper Corporation (KMPR)
97. Bank of Hawaii Corporation (BOH) 112. UMB Financial Corporation (UMBF)
98. Fulton Financial Corporation (FULT) 113. Stifel Financial Corp. (SF)
99. AllianceBernstein Holding L.P. (AB) 114. CapitalSource Inc. (CSE)
100. TCF Financial Corporation (TCB) 115. Portfolio Recovery Associates Inc. (PRAA)
101. Susquehanna Bancshares, Inc. (SUSQ) 116. Janus Capital Group, Inc. (JNS)
102. Capitol Federal Financial, Inc. (CFFN) 117. MBIA Inc. (MBI)
103. Webster Financial Corp. (WBS) 118. Healthcare Services Group Inc. (HCSG)
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Table 10: The financial firms

The financial firms
119. The Hanover Insurance Group Inc. (THG) 134. BancorpSouth, Inc. (BXS)
120. F.N.B. Corporation (FNB) 135. Privatebancorp Inc. (PVTB)
121. FirstMerit Corporation (FMER) 136. United Bankshares Inc. (UBSI)
122. FirstMerit Corporation (FMER) 137. Old National Bancorp. (ONB)
123. RLI Corp. (RLI) 138. International Bancshares Corporation (IBOC)
124. StanCorp Financial Group Inc. (SFG) 139. First Financial Bankshares Inc. (FFIN)
125. Trustmark Corporation (TRMK) 140. Westamerica Bancorp. (WABC)
126. IberiaBank Corp. (IBKC) 141. Northwest Bancshares, Inc. (NWBI)
127. Cathay General Bancorp (CATY) 142. Bank of the Ozarks, Inc. (OZRK)
128. National Penn Bancshares Inc. (NPBC) 143. Huntington Bancshares Incorporated (HBAN)
129. Nelnet, Inc. (NNI) 144. Euronet Worldwide Inc. (EEFT)
130. Wintrust Financial Corporation (WTFC) 145. Community Bank System Inc. (CBU)
131. Umpqua Holdings Corporation (UMPQ) 146. CVB Financial Corp. (CVBF)
132. GAMCO Investors, Inc. (GBL) 147. MB Financial Inc. (MBFI)
133. Sterling Financial Corp. (STSA) 148. ABM Industries Incorporated (ABM)
149. Glacier Bancorp Inc. (GBCI) 164. Citizens Republic Bancorp, Inc (CRBC)
150. Selective Insurance Group Inc. (SIGI) 165. Horace Mann Educators Corp. (HMN)
151. Park National Corp. (PRK) 166. DFC Global Corp. (DLLR)
152. Flagstar Bancorp Inc. (FBC) 167. Navigators Group Inc. (NAVG)
153. FBL Financial Group Inc. (FFG) 168. Boston Private Financial Holdings, Inc. (BPFH)
154. Astoria Financial Corporation (AF) 169. American Equity Investment Life Holding Co. (AEL)
155. World Acceptance Corp. (WRLD) 170. BlackRock Limited Duration Income Trust (BLW)
156. First Midwest Bancorp Inc. (FMBI) 171. Columbia Banking System Inc. (COLB)
157. PacWest Bancorp (PACW)) 172. Safety Insurance Group Inc. (SAFT)
158. First Financial Bancorp. (FFBC) 173. National Financial Partners Corp. (NFP)
159. BBCN Bancorp, Inc. (BBCN) 174. NBT Bancorp, Inc. (NBTB)
160. Provident Financial Services, Inc. (PFS) 175. Tower Group Inc. (TWGP)
161. FBL Financial Group Inc. (FFG) 176. Encore Capital Group, Inc. (ECPG)
162. WisdomTree Investments, Inc. (WETF) 177. Pinnacle Financial Partners Inc. (PNFP)
163. Hilltop Holdings Inc. (HTH) 178. First Commonwealth Financial Corp. (FCF)
179. BancFirst Corporation (BANF) 190. Berkshire Hills Bancorp Inc. (BHLB)
180. Independent Bank Corp. (INDB) 191. Brookline Bancorp, Inc. (BRKL)
181. Infinity Property and Casualty Corp. (IPCC) 192. National Western Life Insurance Company (NWLI)
182. Central Pacific Financial Corp. (CPF) 193. Tompkins Financial Corporation (TMP)
183. Kearny Financial Corp. (KRNY) 194. BGC Partners, Inc. (BGCP)
184. Chemical Financial Corporation (CHFC) 195. Epoch Investment Partners, Inc. (EPHC)
185. Banner Corporation (BANR) 196. United Fire Group, Inc (UFCS)
186. State Auto Financial Corp. (STFC) 197. 1st Source Corporation (SRCE)
187. Radian Group Inc. (RDN) 198. Citizens Inc. (CIA)
188. SCBT Financial Corporation (SCBT) 199. S&T Bancorp Inc. (STBA)
189. WesBanco Inc. (WSBC)

40



References

Adrian, T. and Brunnermeier, M. K. (2011). CoVaR. Technical report, National

Bureau of Economic Research.

Belloni, A., Chernozhukov, V., et al. (2011). L1-penalized quantile regression in

high-dimensional sparse models. The Annals of Statistics, 39(1):82–130.

Berkowitz, J., Christoffersen, P., and Pelletier, D. (2011). Evaluating value-at-risk

models with desk-level data. Management Science, 57(12):2213–2227.

Bradic, J., Fan, J., and Wang, W. (2011). Penalized composite quasi-likelihood for

ultrahigh dimensional variable selection. Journal of the Royal Statistical Society:

Series B (Statistical Methodology), 73(3):325–349.

Chao, S.-K., Härdle, W. K., and Wang, W. (2012). Quantile regression in risk

calibration. Technical report, SFB 649 discussion paper.

Engle, R. F. and Manganelli, S. (2004). CAViaR: Conditional autoregressive value at

risk by regression quantiles. Journal of Business & Economic Statistics, 22(4):367–

381.

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likeli-

hood and its oracle properties. Journal of the American Statistical Association,

96(456):1348–1360.

Fan, J. and Lv, J. (2010). A selective overview of variable selection in high dimen-

sional feature space. Statistica Sinica, 20(1):101.
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