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Abstract 

Background: The unilaterally-lesioned 6-hydroxydopamine (6-OHDA) rat is one of the most 

commonly used experimental models of Parkinson’s disease (PD). Here we investigated 

whether magnetic resonance imaging (MRI) that is widely used in human PD research, has 

the potential to non-invasively detect macroscopic structural brain changes in the 6-OHDA 

rat in ways translatable to humans. 

Methods: We measured the grey matter composition in the unilateral 6-OHDA rat in 

comparison to sham animals using whole-brain voxel-based morphometry (VBM) - an 

unbiased MR image analysis technique. The number of nigral dopamine neurons and the 

density of their cortical projections were examined post-mortem using 

immunohistochemistry.  

Results: VBM revealed widespread bilateral changes in grey matter volume on a topographic 

scale in the brains of 6-OHDA rats, compared to sham-operated rats. The greatest changes 

were in the lesioned hemisphere, which displayed reductions of grey matter volume in 

motor, cingulate and somatosensory cortex. Histopathological results revealed dopaminergic 

cell loss in the substantia nigra and a denervation in the striatum, as well as in the frontal, 

somatosensory and cingulate cortices. 

Conclusion: Unilateral nigrostriatal 6-OHDA lesioning leads to widespread grey matter volume 

changes, which extend beyond the nigrostriatal system and resemble advanced 

Parkinsonism. This study highlights the potential of structural MRI, and VBM in particular, for 

the system-level phenotyping of rodent models of Parkinsonism and provides a 

methodological framework for future studies in novel rodent models as they become 

available to the research community. 
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Abbreviations 

6-OHDA, 6-hydroxydopamine; ANOVA, analysis of variance; CSF, cerebrospinal fluid; DA, 

dopamine; DAB, diaminobenzidine; DARTEL, diffeomorphic anatomical registration using 

exponentiated lie algebra; FWER, family-wise error rate; GM, grey matter; GMV, grey matter 

volume; MFB, medial forebrain bundle; MRI, magnetic resonance imaging; PD, Parkinson's 

disease; PST, population-specific template; ROI, region(s) of interest; SEM, standard error of 

the mean; T2W, T2-weighted; TBS, Tris-buffered saline; TH, tyrosine hydroxylase; TH+, 

tyrosine hydroxylase positive; VBM, voxel-based morphometry; WM, white matter; WMV, 

white matter volume 
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Introduction 

Parkinson’s disease (PD) is a multi-system, progressive neurodegenerative movement 

disorder (Lees et al., 2009). Pathological hallmarks of the disease include degeneration of 

dopamine (DA) neurons in the substantia nigra (SN) pars compacta and the presence of 

alpha-synuclein immunopositive Lewy bodies in the surviving DA neurons (Spillantini et al., 

1997, Lees et al., 2009). Currently there are no treatments that can slow, halt or reverse the 

progressive neurodegeneration that occurs in PD (Stocchi and Olanow, 2013). Addressing this 

unmet medical need requires the generation of animal models that show improved 

construct, face and predictive validity to the human disorder (see (Duty and Jenner, 2011) for 

review)). The development of reliable and validated cross-species biomarkers for the non-

invasive detection and longitudinal monitoring of neuropathological changes in rodent 

models, in a clinically comparable manner, would facilitate this process. For example, such 

markers would have the potential to be proxy measures of the efficacy of novel therapeutic 

interventions, particularly those with disease modifying potential. Magnetic resonance 

imaging (MRI) is well suited to this task. It is widely available, relatively inexpensive and 

mostly non-invasive, with excellent soft-tissue contrast and spatial resolution, permitting the 

detailed macro- and microscopic measurements of dynamic structural and functional 

parameters in both human and animal subjects (Finlay et al., 2014). In this context, there is 

an extensive literature on the use of structural MRI and computational image processing 

methods, particularly voxel-based morphometry (VBM) (Burton et al., 2004, Nagano-Saito et 

al., 2005, Summerfield et al., 2005, Song et al., 2011, Weintraub et al., 2011, Hattori et al., 

2012, Menke et al., 2013) to map the spatiotemporal sequence of topographical brain 

changes in Parkinsonism and related disorders. Overall, these data show that cortical atrophy 

in prefrontal, temporal, occipital and parietal cortices can be generally observed even in early 

stage PD, but is more pronounced in advanced PD, specifically in the temporal brain areas in 

PD patients with dementia.  

Despite this, MRI-based measures are yet to be adopted as primary outcomes in clinical trials 

in the assessment of novel therapeutics and the utility of structural MRI as a true biomarker 

for PD remains somewhat unclear. One obstacle is the inconsistency between structural 

imaging studies, which is likely caused by multiple factors such as differences in the number 

of subjects, duration of the disease, the heterogeneity of Parkinsonism and the use of 

different image analysis methods in different centres. In addition, human MRI studies cannot 
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(to date) identify the cellular mechanisms that drive structural brain changes (particularly 

grey matter volume (GMV) and white matter volume changes) including whether these are 

specific to defined populations of vulnerable neurons – in this case, the A9 DA neurons in the 

SN. Together, these represent a significant barrier to the use of routine anatomical MRI to 

track disease progression and neuroprotective efficacy of novel (or repurposed) drugs in PD 

patients. 

To address these issues, one fruitful approach may be to phenotype rodent models of 

Parkinsonism, in which genetic and environmental variables may be precisely controlled, with 

structural MRI (clinically-comparable technology) and computational image analysis tools 

relevant to human MR imaging to permit parallel processing. The unique advantage of this 

approach is that the spatiotemporal sequence of brain volume changes may be identified and 

then linked to post-mortem changes at the cellular and molecular level to identify potential 

underlying mechanisms that explain the same MR measurements in humans (Finlay et al., 

2014). Proof-of-concept for this approach is provided by prior studies in which longitudinal 

MRI was utilised to identify patterns of brain atrophy in rodents rendered hemi-parkinsonian 

following micro-injection of the proteasome inhibitor lactacystin into the nigrostriatal system 

(Vernon et al., 2010, Vernon et al., 2011, Harrison et al., 2015). Using deformation based 

morphometry these data replicated patterns of grey matter (GM) atrophy apparent in end-

stage PD patients with co-morbid dementia, including decreased volume of the putamen and 

widespread cortical regions, which did not appear to be driven by neuronal loss (Vernon et 

al., 2011). Interestingly, deformation based morphometry data also suggested GM atrophy of 

the ventral midbrain and thalamus, both of which were related to neuronal loss. Crucially 

however, whilst dopaminergic neurons may be preferentially sensitive to proteasome 

inhibition (McNaught et al., 2002) there is also evidence to suggest that synthetic 

proteasome inhibitors induce dose-dependent dopaminergic neuronal degeneration and are 

associated with a significant risk of non-specific neuronal and/or glial cell toxicity at higher 

doses (Vernon et al., 2010, Xie et al., 2010). Thus, whilst the MRI changes observed in these 

prior studies are clearly linked to DA depletion, the possibility that these may also reflect 

additional loss of other vulnerable neuronal or glial cell populations cannot be entirely 

excluded. Although this is not necessarily a limitation, since PD is clearly a multi-system 

disorder, it raises the question as to what the pattern of atrophy would be following specific 

and selective lesions of nigral dopaminergic neurons. Specifically, if brain structural changes 
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in such a model would be similar or different to both those found in the lactacystin rat and 

importantly, in clinical patients.  

We therefore sought to address this issue by providing a methodological framework for 

developing structural MRI biomarkers following a selective lesion of catecholaminergic 

neurons. Specifically, we collected structural MRI data from rodents lesioned with the 

catecholamine-neuron selective neurotoxin 6-hydroxydopamine (6-OHDA), the prototypical 

rat PD model (Ungerstedt, 1968). We analysed the MRI data using a recently-developed VBM 

procedure in rats that uses clinically relevant algorithms for the translational validation of 

pathoanatomical changes observed in humans (Suzuki et al., 2013). We also tested the 

hypothesis that the loss of DA neuron fibres may be a more prominent driver of extra-nigral 

atrophy in the cortex and striatum, since prior work in the lactacystin model found no change 

in neuronal number in these regions (Vernon et al., 2011). We therefore examined the 

pattern of tyrosine hydroxylase positive (TH+) fibre denervation post-mortem in the cortex of 

6-OHDA lesioned rats and sham controls. We hypothesised that the MRI phenotype of the 

classic 6-OHDA model resembles those seen in lactacystin-lesioned rats and in advanced 

clinical idiopathic Parkinson’s disease.  
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Experimental procedures 

 

Animals 

Adult male Sprague-Dawley rats (N=28; 260 ± 25g, Harlan, UK) were group-housed at 21±1°C 

in a 12 hour light:dark cycle and with ad libitum access to standard rat chow and drinking 

water. All experiments were conducted in accordance with the Home Office Animals 

(Scientific procedures) Act, UK, 1986 and were approved by the King’s College London ethical 

review committee.  

 

Unilateral 6-OHDA lesioning procedure 

Rats were divided into a sham-operated (N=12) or 6-OHDA lesioned group (N=16). Animals 

were anesthetized (isoflurane 2.5% in oxygen/air 1:4, 1 l/min, Baxter International Inc., 

Deerfield, IL, USA) and placed in a stereotaxic frame (Kopf Instruments, Tujunga, CA, USA). 

Stereotaxic intracerebral injections of 6-OHDA, or saline (control) were performed using a 

Hamilton syringe (Hamilton, Reno, NV, USA) and motorized syringe pump (Harvard 

Apparatus, Holliston, MA, USA). A severe lesion of the nigrostriatal pathway was obtained by 

injecting 12 μg 6-OHDA (Sigma-Aldrich, St. Louis, MO, USA) dissolved in 4 μl sterile saline 

(Sigma-Aldrich) containing 0.02% (w/v) ascorbic acid (Sigma-Aldrich) into the left medial 

forebrain bundle (MFB) at coordinates (mm) AP -4.4, ML 1 and -7.8 from dura, according to 

the rat stereotaxic atlas (Paxinos and Watson, 1997). Sham-operated animals underwent the 

same procedure but received 4 μl sterile saline only.  

 

Behavioural testing: Apomorphine-induced rotation test 

Two weeks post-surgery, the extent of the 6-OHDA lesioning was confirmed by the 

apomorphine-induced rotational test (Ungerstedt and Arbuthnott, 1970) as described 

previously (Vernon et al., 2011). Briefly, rats were placed in an automated rotameter and 

baseline activity recorded for 10 minutes. Rats then received a subcutaneous injection of 

apomorphine (0.1 mg/kg in 0.9% saline, E-Biomed GmbH, Heidelberg, Germany) and the 

number of ipsiversive and contraversive full body turns were recorded automatically over a 

period of 60 minutes. A cut-off of >100 net contraversive turns following apomorphine 
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challenge was utilised to confirm a significant lesion of nigral dopamine neurons (Papa et al., 

1994, Marin et al., 2007, Jang et al., 2012). Three 6-OHDA rats did not meet this rotation 

criteria following apomorphine challenge and were excluded from further analysis. Thus, 

N=13 6-OHDA-lesioned rats underwent MR imaging.  

 

Magnetic resonance imaging – Preparation and acquisition 

Structural MRI was performed three weeks (±2 days) post-surgery using a 7T MRI scanner 

(Agilent Technologies, Santa Clara, CA, USA) employing a custom-made birdcage quadrature 

radiofrequency head coil (72 mm diameter; Rapid Biomedical GmbH, Rimpar, Germany). This 

time point was chosen to avoid the well-described hyperintense areas on T2-weighted (T2W) 

images observed in 6-OHDA rats close to the injection site which persist until 14 days post-

lesioning (Dhawan et al., 1998, Kondoh et al., 2005). Animals were placed in the centre of the 

scanner, secured in a head frame and anaesthetized with isoflurane (~2% in 70/30 medical 

oxygen/air mixture delivered at 1 l/min) throughout the imaging procedure. Respiration, 

pulse and blood oxygenation were continuously monitored for the duration of the scan (SA 

instruments, Stony Brook, NY, USA). Body temperature was maintained at 37±1°C using a 

rectal probe and a thermostat-controlled air heating unit (SA instruments). Anatomical 

images were acquired using a 2D fast spin echo T2W pulse sequence with following 

parameters: 40 x 0.5 mm coronal slices, TEeff 60 ms, TR 4000 ms, flip angle 90°, averages 8, 

field of view 32 x 32 mm, matrix 128 x 256, giving an in-plane resolution of 0.25x0.125 mm, 

with a total acquisition time of 17 min. In the 6-OHDA group, three rats died after the image 

acquisition leaving N=13 6-OHDA rats for image analysis, and N=10 for histology. One sham 

rat was excluded from image analysis due to image artifacts leaving N=11 sham rats for 

image analysis, and N=12 for histology. 

 

Voxel-based morphometry  

To detect and analyse structural brain changes we applied VBM, an automated whole brain 

morphometry technique that allows automated evaluation of the grey matter composition of 

6-OHDA rats in comparison to shams. The VBM method described here follows the 

procedure described by Ashburner and Friston (Ashburner and Friston, 2000) with 

modifications for rat MRI datasets as reported previously (Suzuki et al., 2013). The T2W 
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images were processed and analysed using statistical parametric mapping software (SPM8, 

http://www.fil.ion.ucl.ac.uk/spm/, Wellcome Department of Cognitive Neurology, London, 

UK) and FMRIB Software Library (FSL v5.0; http://www.fmrib.ox.ac.uk, Analysis Group, 

FMRIB, Oxford, UK) and custom-written scripts in MATLAB (MathWorks Inc., Natick, MA, 

USA). Statistical parameter maps were visualized using MRIcroGL (v1.0; (Rorden and Brett, 

2000)). 

T2W anatomical images from each rat were first subjected to unified segmentation tool in 

SPM8 (Ashburner and Friston, 2005), which enables tissue classification, bias correction, 

segmentation and image registration into a reference stereotaxic space defined by a set of 

tissue probability templates (Figure 1) (Valdes-Hernandez et al., 2011). Following 

segmentation, the tissue class images of GM, white matter (WM) and cerebrospinal fluid 

(CSF) for each rat were used to create a population-specific template (PST) by running the 

diffeomorphic anatomical registration using exponentiated lie algebra (DARTEL) template-

creation tool in SPM8 (Ashburner, 2007). The segmented grey and white matter tissue class 

images were then spatially and nonlinearly normalized (warped) using the outputs from the 

previous DARTEL step and modulated by the Jacobian determinant at each voxel to obtain 

grey and white matter volume maps. The resulting grey and white matter volume maps were 

then spatially smoothed by convolving them with an isotropic Gaussian kernel of 0.1875 mm 

full-width at half maximum. This small smoothing kernel has been previously shown to be 

most effective for the subsequent non-parametric permutation tests (Smith and Nichols, 

2009).  

Finally, we selected the 30 brain regions with most significant changes by performing a region 

of interest (ROI)-based extraction of q-values on the resulting SPM map. The extraction was 

done using the MarsBaR toolbox (Brett et al., 2002) and 154 (77 in each hemisphere) 

digitized cortical and subcortical structures spanning most of the brain. Within each ROI the 

most significant voxel was determined and the 30 brain regions with the most significant 

voxels were reported. The ROIs were derived from the Gaser rat brain atlas (Gaser et al., 

2012), which is located in the space of the Paxinos atlas (Paxinos and Watson, 1997). To 

transfer the ROIs to our study rat brain template (Valdes-Hernandez et al., 2011), the Gaser 

rat brain atlas was nonlinearly normalized to it using SPM8’s normalization tool. Figure 2 

shows the rat brain parcellation scheme chosen for the ROI-based q-value extraction. After 

completion of the VBM analysis, the obtained SPM threshold maps (in the PST space) 
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containing significant voxels of GMV and white matter volume (WMV) changes were 

nonlinearly normalized to the rat brain template using nearest neighbour interpolation. This 

way, the threshold maps and the ROIs were located in the same spatial space.  

Note, the terms GM, WM and CSF refer to tissue classifications in the MR images. In 

particular, some subcortical parts of the brain including the thalamus, which are not strictly 

WM are classified as such due to their appearance in the MR images, an issue that has 

previously been raised for the priors used in this study (Valdes-Hernandez et al., 2011, Suzuki 

et al., 2013, Otte et al., 2015). Therefore, in this study, WM should be understood as tissues 

with MR contrast similar to WM such as white matter fibres or subcortical brain areas like the 

thalamus. The smoothed GM and WM compartments were added to constitute the final 

volume map for the statistical analysis. 

 

Figure 1 

Figure 2 
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Histological analysis 

 

Tissue collection 

Animals were sacrificed by transcardial perfusion using heparinised saline followed by 4% 

paraformaldehyde (Hitobiotec Corp, Kingsport, TN, USA) immediately after the completion of 

the MRI. Animals were decapitated and their brains quickly removed and immersed in 4% 

paraformaldehyde for two days, followed by cryoprotection in 30% sucrose (Sigma-Aldrich) 

for two days at 4C°. Brains were then sectioned at 30 μm on a freezing microtome (Leica, 

Wetzlar, Germany) at -20C°. Serial coronal sections were subsequently placed in 12-well 

plates (Thermo Fisher Scientific, Waltham, MA, USA) in 12 series and stored at -20°C until 

processed for immunohistochemistry.  

 

Immunohistochemistry 

Immunohistochemistry was conducted in ten 6-OHDA rats and 12 sham operated rats. 

Sections were stained with anti-tyrosine hydroxylase (TH) antibody to mark catecholamine 

neuron cell bodies and their axons. Free-floating sections were pre-treated for 15 min with 

1% H2O2 (Sigma-Aldrich), washed three times with Tris-buffered saline (TBS; Sigma-Aldrich), 

blocked with normal goat serum (1:10; Vector Laboratories, Burlingame, CA) and 0.1% Triton-

X 100 (Sigma-Aldrich) for 40 min, and then incubated overnight at 4°C with primary antibody 

(rabbit anti-TH, 1:3000, monoclonal; Chemicon, Temecula, CA, USA). The sections were then 

washed three times with TBS and incubated with biotinylated goat anti-rabbit (1:1000; 

Vector Laboratories) secondary antibody for 120 min at room temperature. After three rinses 

in TBS, the sections were incubated for one hour at room temperature with peroxidase-

conjugated avidin–biotin complex kit (Vector Laboratories), washed three times with TBS, 

and then incubated with 0.02% diaminobenzidine (DAB; Vector Laboratories) until staining 

was visible. The mounted sections were dehydrated using 100% methylated spirit (Thermo 

Fisher Scientific) and embedded in DePeX mounting medium (Serva, Heidelberg, Germany). 
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2.6.3 TH+ fibre density measurements  

Due to problems with brain sectioning, one further 6-OHDA rat was excluded from TH+ fibre 

density measurements (no cortex) leaving nine 6-OHDA rats and twelve sham rats. Analysis of 

DA denervation in cortical regions (somatosensory cortex, motor cortex, cingulate cortex) 

was conducted on the TH stained sections. 60 digital images (ten contralateral, ten ipsilateral 

per section; three consecutive sections) of each rat for each of the three aforementioned 

brain regions were captured at 40x magnification using a computerized image analysis set-up 

(Zeiss Axioscope, Carl Zeiss, Gottingen, Germany). Individual fibres in each micrograph were 

automatically detected using the threshold option triangle in ImageJ (v1.50b; 

http://imagej.nih.gov/ij/, U.S. National Institutes of Health, Bethesda, Maryland, USA). Briefly, 

RGB micrographs were converted to BW 8-bit images, and then subjected to background 

subtraction for bias correction. Then, bias corrected images were thresholded to only 

highlight the TH+ fibres and the area fraction was determined. The area fraction is the 

percentage of pixels in the image that have been highlighted after applying ImageJ’s triangle 

threshold. The TH+ fibre density is therefore expressed as this area fraction. 

 

2.6.4 Optical fractionator cell counts of TH-positive neurons in the SN 

To examine the total number of TH-positive (TH+) neurons in the SN, stereological 

quantification was performed using the optical fractionator probe in Stereo investigator 

software (v7.0, MBF Bioscience, Chicago, IL, USA) running on a computerized image analysis 

set-up (Carl Zeiss). This procedure was conducted in ten 6-OHDA and twelve sham rats. TH+ 

cell counts in the SN were determined in both groups for each hemisphere separately. Every 

12th 30 μm section encompassing the full rostrocaudal extent of the SN was systematically 

sampled using an unbiased counting frame. This resulted in an average of 3-5 sections being 

selected for the SN. The SN was manually outlined at ×2.5 magnification and counting frames 

were systematically distributed with known x and y steps throughout the region from a 

random starting point. Cross sectional area of the counting frame was set to 150x150 μm2 

and superimposed on the field of view by the software. This frame area generated on 

average 4-6 discrete counts per frame. The sampling grid area was estimated individually for 

each animal in such a way that it comprises of approximately 15-20 counting frames per 

section. A guard zone of 0.5 μm thickness was used at the top and bottom of each section 
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with an optical dissector height of 14 μm. All cell counts were performed under ×40 

magnification. The estimates of the total number of TH+ cells in the SN were calculated 

according to the optical fractionator equation (West, 1999). The coefficients of error were 

calculated according to Gundersen and colleagues with values <0.10 accepted (Gundersen 

and Jensen, 1987).  

 

Statistical analysis 

All data are expressed as mean ± standard error of the mean (SEM) unless stated otherwise. 

MRI based voxel-wise image analysis was performed using MATLAB, SPM and FSL. Voxel-wise 

non-parametric permutation (N=5000 permutations) inference employing FSL tool 

Randomise and the threshold-free cluster enhancement method as described elsewhere 

(Smith and Nichols, 2009, Winkler et al., 2014) were used to compare the composite volume 

maps (GMV and WMV) group differences in 6-OHDA and sham rats. Generally, a non-

parametric approach is recommended for studies with a low degree of freedom (~20) 

(Nichols and Holmes, 2002). For an unpaired two-sample t-test the following formula applies 

to calculate the degree of freedom in our experiment:  

𝑛1 + 𝑛2 − 2 = 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚 

where n1 is the number of subjects in group one and n2 is the number of subjects in group 

two. In this chapter, the group pairing resulted in 22 degrees of freedom. Voxels with a 

probability value below 0.2 in the corresponding priors were excluded to include only voxels 

with sufficient grey or white matter proportion (May et al., 2007). This diminishes possible 

edge effects between grey matter, white matter or CSF. A voxel was considered significant 

only if it exceeded the statistical threshold (q<0.05), whereby correction for multiple 

comparison was done by using the family-wise error rate (FWER). Statistical analysis of the 

differences in TH+ cells and fibres were conducted using Graphpad Prism (v5.00; GraphPad 

Software, La Jolla, CA, USA, www.graphpad.com). A two-way ANOVA with Bonferroni post 

hoc analysis was conducted on the absolute number of TH+ nigral neurons with group as 

between-subjects factor and hemisphere as within-subjects factor. The TH+ fibre density in 

cortical parts of the brain was compared using two-way ANOVA (Bonferroni post hoc) with 

group and hemisphere as main factors. TH+ fibre density were shown as percent of the pixel 

area fraction and expressed as mean ± SEM. Correlations between the mean grey matter 

http://www.graphpad.com/
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probability values inside the S1, M1, C1 and SN ROI, and histology or behaviour (6-OHDA 

group only), respectively, were evaluated using a paired Pearson’s correlation. Statistical 

significance in this chapter was assumed at p<0.05, unless stated otherwise.   
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Results 

Behavioural testing: Apomorphine-induced rotations 

Following apomorphine challenge, sham rats (N=12) showed a negligible amount of net 

contralateral turns, whereas 6-OHDA rats (N=13) displayed on average 215.8 ± 42.4 

(mean±SD) contralateral turns. Three 6-OHDA-lesioned rats did not reach the cut-off of at 

least 100 net contraversive rotations and were thus excluded from further experiments.  

 

Voxel-based morphometry reveals grey matter volume decreases in cortical and subcortical 

brain regions in 6-OHDA-lesioned rat 

We next sought to determine whether unilateral lesioning of the MFB leads to MRI 

detectable grey and white matter volume (GMV and WMV, respectively) changes. Figure 3 

shows coronal brain slices of the population specific template (PST) highlighting voxels where 

GMV differed significantly (q=0.05; FWER-corrected) in 6-OHDA rats compared to shams. The 

principle findings are that large clusters of significant GMV decrease were found bilaterally in 

amygdala, cingulate cortex, motor cortex and somatosensory cortex. Additionally, significant 

voxels of GMV decrease were found in the entorhinal cortex, temporal cortex, dorsal 

striatum, hippocampus, SN and thalamus of the ipsilateral (lesioned) hemisphere. To 

precisely localize these GMV changes an atlas-based approach was employed. See Table 1 for 

a summary of the30 ROIs containing the most significant voxels. The main finding was that 

brain regions containing the most significant voxels of reduced GMV (q<0.05, FWER 

corrected) were primarily located in the ipsilateral hemisphere of the 6-OHDA lesioned 

animals, notably in the cortex. There were no significant clusters of increased GMV in 6-

OHDA-lesioned animals compared to sham controls. 

Significant clusters of WMV loss were also present in the ipsilateral thalamus, a structure that 

is primarily composed of grey matter but classified as WMV for the purpose of VBM analysis. 

No other changes in the WMV maps were observed.  

 

Figure 3 

Table 1 
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Post-mortem examination confirms cortical dopaminergic denervation  

Qualitative inspection of the immunohistological profile of TH in 6-OHDA rats revealed an 

almost complete loss of TH+ neurons in the SN (Figure 4A), which is associated with a marked 

striatal dopaminergic denervation (Figure 4B). To quantitatively determine the extent of the 

nigral degeneration, we counted the number of TH+ neurons in the SN in both groups. Table 

2 shows the neuronal counts in sham and 6-OHDA rats. Two-way ANOVA of TH+ cell counts 

revealed a main effect of group: F(1,40)=10.52, p=0.0024; hemisphere: F(1,40)=38.95, 

p<0.0001 and group x hemisphere interaction: F(1,40)=18.21, p=0.0001). Post hoc Bonferroni 

analysis confirmed a significant (p<0.0001) reduction in TH+ cells in the ipsilateral substantia 

nigra of 6-OHDA rats (615.30±114.91) compared to sham operated rats. 

 

Figure 4 

Table 2 

 

Further qualitative examination of the 6-OHDA lesioned rat brains revealed markedly 

reduced dopaminergic innervation in cortical brain areas ipsilateral to the lesion, notably in 

the motor, cingulate and somatosensory cortices (Figure 5). We therefore next sought to 

determine the density of TH+ fibres in the cortex. Density values (expressed as % area 

fraction) of TH+ fibres were significantly different between sham and 6-OHDA animals in the 

ipsilateral (but not contralateral) cingulate, motor and somatosensory cortices, according to 

two-way ANOVA (with the main effect of group: cingulate cortex, F(1,38)=16.23, p=0.0003; 

motor cortex, F(1,38)=15.85, p=0.0003 and somatosensory cortex, F(1,38)=66.77, p<0.0001). 

Bonferroni post hoc analyses showed that cortical TH+ fibre density in 6-OHDA rats was 

significantly (p<0.0001) reduced in the cingulate, motor and somatosensory cortices (Table 

3). 

 

Figure 5 

Table 3 
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To investigate the relationship between grey matter volume changes and TH+ 

immunoreactivity in these cortical regions, mean grey matter probability values inside the S1, 

M1 and C1 ROI were correlated with the density of TH+ fibres in 6-OHDA and sham-operated 

rats (Table 4). There were no significant correlations between the density of TH+ fibres and 

the mean grey matter probability inside the S1, M1 and C1, or between the TH+ neurons and 

the mean grey matter probability values in the lesioned SN (Table 4). We also examined and 

did not detect any significant correlations between the rotational behaviour after 

apomorphine injection and the mean grey matter probability values inside the S1, M1, C1 

and S2 in 6-OHDA rats (Table 5). 

 

Table 4 

Table 5 
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Discussion 

The principle findings of this study are that VBM analysis detected specific patterns of 

significant GMV decreases in several subcortical regions of the ipsilateral (lesioned) 

hemisphere, including the site of the primary lesion following 6-OHDA lesioning. This pattern 

of GMV decreases extended to several cortical areas of the cortex, bilaterally in both 

hemispheres. No significant GMV increases were noted. Focusing on the cortex, we observed 

that the sites of GMV decrease also showed a marked denervation of the dopaminergic (TH 

positive) fibres, but these did not correlate with the observed volume changes in these 

regions.  

 

Structural alterations in the 6-OHDA rat are both similar and distinct to other neurotoxin 

models of Parkinsonism 

Several prior structural MRI have been conducted on 6-OHDA lesioned rats (Van Camp et al., 

2009, Van Camp et al., 2010, Soria et al., 2011, Florio et al., 2013), although none tested for 

the presence of widespread structural changes utilising a whole brain morphometry method. 

Indeed, prior structural MRI studies in this model have focused on identifying changes in MRI 

parameters (volume, diffusion or relaxation time) within a priori selected ROIs such as the 

substantia nigra or the striatum. Using this approach, Florio et al. (2013) reported shrinkage 

of the ipsilateral hemisphere in 6-OHDA rats, which is in agreement with our observation of 

GMV decrease in several brain regions within the ipsilateral hemisphere. In addition, bilateral 

trend-level changes in diffusion weighted imaging data are reported in the cortex of 6-OHDA 

lesioned rats (Soria et al., 2011) echoing the bilateral GMV changes in the motor and 

cingulate cortices observed in our study.  

Prior studies have utilised a similar, but subtly different automated morphometry method 

(deformation-based morphometry) for whole brain MR image analysis in a proteasome 

inhibitor (lactacystin) lesioned rat model of PD (Vernon et al., 2010, Vernon et al., 2011). 

Here, the lactacystin is infused into the left-MFB, leading to widespread brain pathology. 

Despite some important differences between the neurotoxic mechanisms in the two models, 

there is a striking overlap in the MR imaging findings. In particular, lactacystin rats show 

cortical, striatal and thalamic GMV atrophy in the lesioned hemisphere (Vernon et al., 2011, 

Harrison et al., 2015), all of which were also detected in the 6-OHDA rats. Of note is that the 
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clusters of cortical changes were also extending into the contralateral (non-lesioned) 

hemisphere. In contrast, prior studies in the lactacystin-lesioned rat did not find significant 

volume changes in the hippocampus, perhaps due to the small sample size compared to the 

current study (Vernon et al., 2010, Vernon et al., 2011). Furthermore, by three weeks post-

lesion lactacystin also induced visible deformation of the ventral midbrain, extending beyond 

the substantia nigra, which worsened with increasing time post-lesion and was due to 

extensive neuronal loss (Vernon et al., 2011, Harrison et al., 2015, Pienaar et al., 2015). In the 

current study, 6-OHDA lesioned rats did display significant GMV atrophy in the hippocampus 

and did not show extensive GMV atrophy in the midbrain, but rather, restricted nigral 

atrophy. It should also be noted that we were not able to also confirm ventricular 

enlargement in the 6-OHDA rat, which could be explained by the limitation of VBM which 

only uses grey and white matter segments for the analysis. Since only a single-time point was 

examined in the current study, we cannot exclude the possibility that such changes would 

emerge in the 6-OHDA model at longer time-points post-lesion. Nevertheless, these data 

suggest some important commonalities but also differences in the two model systems, which 

may be expected given the potential for non-selective toxicity with lactasystin lesions, 

particularly at higher doses (Vernon et al., 2011, Mackey et al., 2013). Importantly, features 

such as midbrain atrophy are more characteristic clinically of atypical Parkinsonism such as 

progressive supranuclear palsy and multiple system atrophy (Paviour et al., 2006). It may 

therefore be suggested that high-dose lactacystin lesion models have greater face validity to 

atypical forms of Parkinsonism. Further longitudinal studies directly comparing the two 

models using lower doses of lactacystin that induce more selective lesions may however be 

informative in this respect (Mackey et al., 2013).  

 

Comparison to clinical findings 

Interestingly, many of the brain regions we found to have decreased GMV in the 6-OHDA rats 

correspond to the analogous brain regions affected by PD in humans, according to a recent 

voxelwise meta-analysis of clinical VBM studies (Shao et al., 2015). In particular, atrophy of 

the prefrontal, temporal, occipital and parietal cortices can be generally observed even in 

early stage PD (Borghammer et al., 2010, Lyoo et al., 2010, Tessa et al., 2014), but is more 

pronounced in advanced PD, specifically in the temporal brain areas of PD patients with 
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dementia (Burton et al., 2004, Song et al., 2011, Weintraub et al., 2011, Hattori et al., 2012, 

Melzer et al., 2012). As can be appreciated from these studies, cortical atrophy has become a 

defining feature of both idiopathic PD and PD with dementia, and here we supply evidence of 

the similar MRI phenotype in the 6-OHDA rat model.  

 

Structure-function relationships 

Our preclinical data confirm the clinical findings and earlier pre-clinical data from other 

models (e.g. (Vernon et al., 2011)), which suggest that cortical GMV decrease is a prominent 

consequence of the nigrostriatal degeneration. This notion is strengthened by the evidence 

of cortical functional changes following 6-OHDA lesioning. Specifically, using positron 

emission tomography imaging (Casteels et al., 2008) and 2-deoxy-D-glucose autoradiography 

(Carlson et al., 1999) researchers have revealed a decreased glucose metabolism in the 

sensorimotor cortex, and by electroencephalography Sharott and colleagues have observed 

reduced neural firing also in the sensorimotor cortex (Sharott et al., 2005). It is however not 

clear whether the decreased metabolism and neural firing are causes or consequences of the 

reduced volume of cortical grey matter. 

Of interest is a previous study that demonstrated a positive correlation between diminished 

cerebral blood volume response to a nociceptive stimulus and dopaminergic denervation in 

the striatum in 6-OHDA rats (Chen et al., 2013). Although speculative, it is conceivable that 

cortical dopaminergic denervation may affect cerebral blood volume response in the cortex 

in a similar fashion, which may be further followed-up using resting-state functional MRI to 

establish a structure-function relationship. 

It was beyond the scope of this project to perform extensive behavioural measurements 

which have already been well characterised by others (Schwarting and Huston, 1996, 

Deumens et al., 2002). Thus, we were not able to directly explore the association between 

MRI-derived structural changes and parkinsonian behavioural deficits. Historically, 6-OHDA 

lesion was deemed to be restricted to the nigrostriatal system and therefore the most 

frequently conducted behavioural tests are for motor activity and coordination, which have 

indeed shown a good correlation between the nigrostriatal degeneration and motor defects 

in tasks such as accelerating rotarod (Monville et al., 2006, Carvalho et al., 2013) and 

adjusting stepping test (Olsson et al., 1995, Decressac et al., 2012). 
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In light of our cortical atrophy findings, however, it would be of future interest to determine 

the relative contribution of the cortical vs. subcortical structural changes to the different 

aspects of motor and cognitive behavioural deficits in this model. It may be hypothesised that 

cortical damage additionally contributes to both motor as well as sensory deficits in the 6-

OHDA rat. It has been shown, for example, by Montoya and colleagues that a unilateral lesion 

of the rat sensorimotor cortex leads to a clear motor impairment (Montoya et al., 1991) 

underscoring the contribution of the cortex to movement. Moreover, another study showed 

specific memory and learning deficits in 6-OHDA rats (Dolatshahi et al., 2015), which are in 

line with the widespread GMV loss we observed in the prefrontal cortex, a region important 

for cognitive function that is also known to be affected in human PD patients. Additionally, 

the aforementioned lactacystin rat study found that the thinning of the motor cortex, rather 

than nigrostriatal changes, best predicted the degree of motor deficits (Vernon et al., 2011). 

The degree to which cortical changes influence cognitive (dys)function in 6-OHDA rat remains 

to be confirmed given that several other studies did not find any evidence of reduced 

cognitive abilities in this model (Mura and Feldon, 2003, Carvalho et al., 2013). 

 

The neurobiological correlate of grey matter changes is diverse 

The interpretation of the VBM results as tissue volume changes are based on significant 

differences in MRI contrast, which can also be governed by the changes in tissue properties. 

For example, a recent VBM study in rodents reported a significant correlation of VBM signal 

with changes in spine density (Keifer et al., 2015), and another VBM study in a rat model of 

multiple sclerosis found evidence for changes in dendrite morphology in the sensorimotor 

cortex alongside GM atrophy (Tambalo et al., 2015). Similarly, in a rat model of 

schizophrenia, MRI-derived GM atrophy was suggested to be associated with gross neuronal 

loss and dendrite plasticity (Wu et al., 2016) highlighting the effect of microscale changes on 

macroscopic morphology. 

We speculate that both gross neuronal loss in the substantia nigra and the ensuing 

dopaminergic denervation contributed to MRI-derived GM atrophy in 6-OHDA rats. In 

particular, we showed a remarkable overlap of GMV loss in cingulate, motor and 

somatosensory cortex on the lesioned side with a significant TH+ fibre denervation in the 

same areas in 6-OHDA rats. TH is a marker of catecholamine neurons, which include DA and 
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noradrenergic neurons. Two previous 6-OHDA studies, in which noradrenergic neurons were 

protected by desipramine prior to the lesioning surgery showed a similar cortical denervation 

of TH+ fibres (Debeir et al., 2005, Ueno et al., 2014) suggesting that the loss of TH+ fibres in 

the cortex is DA-specific.  

Furthermore, as expected after 6-OHDA MFB lesioning, we found a significantly reduced 

number of dopaminergic neurons in the lesioned SN and the marked DA denervation of the 

striatum. Notably, both grey matter loss in the SN and the striatum were successfully 

detected using VBM analysis, too. Our histopathological examinations of the cortex are 

supported by, and extend previous reports of DA fibre loss in the ipsi-lesional cingulate and 

motor cortices in the 6-OHDA rats (Debeir et al., 2005, Castillo-Gomez et al., 2008, Hou et al., 

2010, Ueno et al., 2014).  

We speculate that the loss of DA fibres in the cortex and elsewhere indirectly underlies 

changes observed by MRI. MRI measurements are particularly sensitive to changes in water 

proton properties, which can be driven by diverse cellular and extracellular processes 

(Zatorre et al., 2012, Sumiyoshi et al., 2014) such as neurogenesis, synaptogenesis, changes 

in neuronal and glial morphology as well as extracellular space and inflammation (Eriksson et 

al., 2009, Lerch et al., 2011, Finlay et al., 2014). With respect to this, DA denervation in the 

cortex and striatum has been shown to lead to a structural remodelling of the surrounding 

tissue such as altered wiring of intrinsic inhibitory GABA-ergic circuits (Solis et al., 2007, 

Castillo-Gomez et al., 2008), reduced synaptic density (Castillo-Gomez et al., 2008, Hou et al., 

2010), spine enlargement (Ueno et al., 2014) and loss of glutamatergic input from the 

prefrontal cortex to the medium spiny neurons of the striatum (Day et al., 2006, Solis et al., 

2007), all of which are likely to contribute to changes in the water proton properties 

ultimately modulating MRI signal. Given the lack of correlation between MRI and histological 

measures, it is likely that the dopaminergic denervation triggers a cascade of events that 

eventually lead to microscale tissue reorganization, which then ultimately underlie the 

observed MRI signal changes. 

Bilateral brain changes are a distinctive feature of the unilateral 6-OHDA rat model 

It is of note that we found widespread changes in both sides of the brain in this unilaterally 

lesioned rat model. This supports previous findings reporting bilateral structural, 

physiological and functional changes in the 6-OHDA rat brain (Morgan and Huston, 1990, 
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Pelled et al., 2002, Breit et al., 2008, Pierucci et al., 2009, Van Camp et al., 2010, Soria et al., 

2011, Viaro et al., 2011). For example, Pelled and colleagues described a bilateral 

overactivation of the somatosensory cortex after a unilateral electrical forepaw stimulation 

(Pelled et al., 2002). Another study reported bilateral changes in water diffusion properties as 

measured by diffusion-weighted imaging in the SN and the cortex (Soria et al., 2011). Using 

intracortical microstimulation, Viaro et al. reported bilaterally reduced M1 excitability (Viaro 

et al., 2011). Together with our findings, these results suggest that the mutual influence of 

both hemispheres in the pathophysiology of the unilateral 6-OHDA rat is an important and 

defining feature of this model. 

 

Utility of VBM in 6-OHDA rats 

The rationale for using VBM in this study was to define an MRI phenotype based on a 

technique that is now widely used in clinical research. Given the paucity of analogous studies 

in 6-OHDA rats, our present work establishes the first MRI phenotype based on VBM image 

analysis and therefore helps to bridge the gap between clinical and preclinical studies. 

Although further work is required to elucidate the mechanisms that underlie the cortical grey 

matter loss in this rat model, the MFB 6-OHDA rat model might be useful for studying the 

controversial effect of DA replacement therapies in humans (Finlay et al., 2014). Indeed, 

previous reports have found evidence of modulating effects of levodopa therapy on both the 

cortical MRI signal in healthy subjects (Salgado-Pineda et al., 2006) and in dyskinetic PD 

patients (Cerasa et al., 2013) and the 6-OHDA rats model may be a suitable model to 

investigate the relationship between cortical brain changes and levodopa treatment.  
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Conclusion 

We have shown that VBM can be readily applied to rats for morphometric assessment of 6-

OHDA lesion induced changes. We found VBM particularly useful to localize the large clusters 

of grey matter loss in the cortex, which matched the areas of DA fibre loss. This shows the 

potential of automated image analysis to advance the current preclinical MRI research by 

revealing new and unexpected sites of neurodegeneration beyond the primary lesioned 

pathway. Additionally, the changes were similar to those described in other rat models and in 

the human advanced PD, reinforcing not only the value of the MFB 6-OHDA rat model as a 

model of late-stage PD, but also opening up avenues toward utilising GMV in animals as 

proxy marker of (neuro)degeneration in humans. These data thus reinforce the power and 

utility of combining MRI and clinically relevant imaging analysis tools for the evaluation of 

rodent models of Parkinsonism. We therefore propose that this established framework 

should be applied as standard to emerging PD rat models that show slower and progressive 

neurodegeneration such as the recombinant adeno-associated viral vector overexpressing 

alpha-synuclein rat (Decressac et al., 2012, Van der Perren et al., 2014) and transgenic mouse 

models (Janezic et al., 2013), which ultimately have greater construct and face validity. For 

example, this would facilitate the correlation of morphological phenotypes with the onset of 

behavioural deficits in a longitudinal fashion, which may ultimately increase the chance of 

identifying predictive biomarkers for early-onset PD, response to therapy and disease 

progression and establish at the cellular level the mechanisms which drive MRI signal changes 

in PD patients. 
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Figures and Tables Legend 

 

FIG1 

Tissue probability maps for (A) grey matter, (C) white matter and (D) CSF in the living rat 

brain. 

 

FIG2 

Rat brain parcellation scheme. Rat brain was segmented into 154 ROIs (77 on each 

hemisphere). Each bilateral ROI is labelled differently and overlaid onto coronal slices of the 

rat brain template. 

 

FIG3 

Voxel-wise differences in local grey matter between the 6-OHDA and sham group three 

weeks post-lesioning. Absolute regional grey and white matter volume maps were computed 

and non-parametric permutation two-sample t-test was applied at every voxel to identify 

significant grey and white matter volume changes. Statistical parameter maps were overlaid 

on the population-specific template as anatomical reference. The colour calibration bar 

represents the q-values with a threshold level of q<0.05 (FWER corrected). Increased regional 

volume in 6-OHDA rats compared to shams was not observed, decreased regional volume is 

displayed in blue. Note, no true white matter changes were observed. L, lesioned side; R, 

unlesioned side. 6-OHDA rats N=13; sham rats N=11. 

 

FIG4 

Pattern of TH immunoreactivity in a representative 6-OHDA rat. DAB immunolabelling 

showing the location of TH+ neurons in the contralateral SN (A) and fibres in the contralateral 

striatum (B) but not ipsilateral, as indicated by the asterisks. L, ipsilateral, lesioned side; R, 

contralateral, unlesioned side. 
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FIG5 

Tyrosine hydroxylase immunoreactivity in sections through prefrontal and frontal cortex from 

a representative 6-OHDA rat. (A) Primary motor cortex and the magnified areas in the (D) 

contralateral and (E) ipsilateral hemisphere. (B) Cingulate cortex and the magnified areas in 

the (F) contralateral and (G) ipsilateral hemisphere. (C) Somatosensory cortex and the 

magnified areas in the (H) contralateral and (I) ipsilateral hemisphere. Overall, the ipsilateral 

cortex was found to have a profound loss of TH+ fibres, which was associated with 

dopaminergic striatal denervation as evidenced by the absence of TH+ immunoreactivity in 

the ipsilateral striatum. White frames indicate the areas with higher magnification (x40). 

Scale bar = 100 μm in I (applies to D-I). L, ipsilateral, lesioned side; R, contralateral, 

unlesioned side. 

 

TAB1 

Results of the ROI-based localization analysis of the 30 ROIs containing the most significant 

voxels of regional grey matter volume decrease three weeks after 6-OHDA lesioning. 

Arranged in descending order from lowest to highest q-value found in each brain region. 

Voxels thresholded at q<0.05, FWER corrected. L, ipsilateral 6-OHDA lesioned hemisphere; R, 

contralateral unlesioned hemisphere. H, hemisphere; T, total number of voxels within the 

brain region; S, total number of significant voxels within each brain region; S/T, percentage of 

voxels that are significant within the brain region; Q, smallest q-value of a voxel found inside 

a ROI. 

 

TAB2 

Stereological estimates of nigral TH+ neuronal numbers in sham and 6-OHDA rats. Neuronal 

counts of TH+ cells were significantly different between sham and 6-OHDA animals as two-

way ANOVA revealed with main effect of group: F(1,40)=10.52, p=0.0024; main effect of 

hemisphere: F(1,40)=38.95, p<0.0001 and group/hemisphere interaction: F(1,40)=18.21, 

p=0.0001 (Bonferroni post hoc test 6-OHDA ipsilateral vs. sham ipsilateral ****p<0.0001). 

Data are expressed as mean cell count ± SEM. 6-OHDA rats N=10; sham rats N=12.  
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TAB3 

Comparison of TH immunoreactivity of cortical dopaminergic fibres in 6-OHDA and sham rats. 

TH+ fibre density was significantly different between sham and 6-OHDA animals in the 

ipsilateral but not contralateral hemisphere as two-way ANOVA revealed with main effect of 

group: cingulate cortex, F(1,38)=16.23, p=0.0003; motor cortex, F(1,38)=15.85, p=0.0003; 

somatosensory cortex, F(1,38)=66.77, p<0.0001. (Bonferroni post hoc test revealed 

significantly reduced TH+ fibre density in ipsilateral cingulate, motor and somatosensory 

cortices in 6-OHDA rats compared to shams, ****p<0.0001). Data are shown as percent of 

the area fraction of TH+ fibre pixels and expressed as mean ± SEM. 6-OHDA rats N=9; sham 

rats N=12. CC, cingulate cortex; MC, motor cortex; SC, somatosensory cortex. 

 

TAB4 

Correlation of the immunohistological profile of TH and grey matter volume changes in four 

regions of interest. Correlation analyses were done using the Pearson’s correlation 

coefficient. No significant correlation was found. Numbers in brackets indicate the 

correlation coefficient for sham rats. TH, tyrosine hydroxylase; GMV, grey matter volume; C1, 

primary cingulate cortex; M1, primary motor cortex; S1, primary somatosensory cortex; SN, 

substantia nigra. 6-OHDA rats N=9, sham rats N=11. 

 

TAB5 

Correlation of apomorphine-induced rotations the immunohistological profile of TH and grey 

matter volume changes in four regions of interest. Correlation analyses were done using the 

Pearson’s correlation coefficient. No significant correlation was found. GMV, grey matter 

volume; C1, primary cingulate cortex; M1, primary motor cortex; S1, primary somatosensory 

cortex; SN, substantia nigra. 6-OHDA rats N=9. 

  



29 
 

References 

Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38:95-
113. 

Ashburner J, Friston KJ (2000) Voxel-based morphometry--the methods. Neuroimage 11:805-
821. 

Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26:839-851. 
Borghammer P, Ostergaard K, Cumming P, Gjedde A, Rodell A, Hall N, Chakravarty MM (2010) 

A deformation-based morphometry study of patients with early-stage Parkinson's 
disease. Eur J Neurol 17:314-320. 

Breit S, Martin A, Lessmann L, Cerkez D, Gasser T, Schulz JB (2008) Bilateral changes in 
neuronal activity of the basal ganglia in the unilateral 6-hydroxydopamine rat model. J 
Neurosci Res 86:1388-1396. 

Brett M, Anton JL, Valabregue R, Poline JB (2002) Region of interest analysis using an SPM 
toolbox [abstract] Presented at the 8th International Conference on Functional 
Mapping of the Human Brain, Sendai, Japan  

Burton EJ, McKeith IG, Burn DJ, Williams ED, O'Brien JT (2004) Cerebral atrophy in Parkinson's 
disease with and without dementia: a comparison with Alzheimer's disease, dementia 
with Lewy bodies and controls. Brain 127:791-800. 

Carlson JD, Pearlstein RD, Buchholz J, Iacono RP, Maeda G (1999) Regional metabolic changes 
in the pedunculopontine nucleus of unilateral 6-hydroxydopamine Parkinson's model 
rats. Brain Res 828:12-19. 

Carvalho MM, Campos FL, Coimbra B, Pego JM, Rodrigues C, Lima R, Rodrigues AJ, Sousa N, 
Salgado AJ (2013) Behavioral characterization of the 6-hydroxidopamine model of 
Parkinson's disease and pharmacological rescuing of non-motor deficits. Mol 
Neurodegener 8:14. 

Casteels C, Lauwers E, Bormans G, Baekelandt V, Van Laere K (2008) Metabolic-dopaminergic 
mapping of the 6-hydroxydopamine rat model for Parkinson's disease. Eur J Nucl Med 
Mol Imaging 35:124-134. 

Castillo-Gomez E, Gomez-Climent MA, Varea E, Guirado R, Blasco-Ibanez JM, Crespo C, 
Martinez-Guijarro FJ, Nacher J (2008) Dopamine acting through D2 receptors 
modulates the expression of PSA-NCAM, a molecule related to neuronal structural 
plasticity, in the medial prefrontal cortex of adult rats. Experimental neurology 
214:97-111. 

Cerasa A, Morelli M, Augimeri A, Salsone M, Novellino F, Gioia MC, Arabia G, Quattrone A 
(2013) Prefrontal thickening in PD with levodopa-induced dyskinesias: new evidence 
from cortical thickness measurement. Parkinsonism Relat Disord 19:123-125. 

Chen CC, Shih YY, Chang C (2013) Dopaminergic imaging of nonmotor manifestations in a rat 
model of Parkinson's disease by fMRI. Neurobiol Dis 49:99-106. 

Day M, Wang Z, Ding J, An X, Ingham CA, Shering AF, Wokosin D, Ilijic E, Sun Z, Sampson AR, 
Mugnaini E, Deutch AY, Sesack SR, Arbuthnott GW, Surmeier DJ (2006) Selective 
elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease 
models. Nat Neurosci 9:251-259. 

Debeir T, Ginestet L, Francois C, Laurens S, Martel JC, Chopin P, Marien M, Colpaert F, 
Raisman-Vozari R (2005) Effect of intrastriatal 6-OHDA lesion on dopaminergic 
innervation of the rat cortex and globus pallidus. Exp Neurol 193:444-454. 



30 
 

Decressac M, Mattsson B, Bjorklund A (2012) Comparison of the behavioural and histological 
characteristics of the 6-OHDA and alpha-synuclein rat models of Parkinson's disease. 
Exp Neurol 235:306-315. 

Deumens R, Blokland A, Prickaerts J (2002) Modeling Parkinson's disease in rats: an 
evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp Neurol 175:303-317. 

Dhawan JK, Kumar VM, Govindaraju V, Raghunathan P (1998) Changes in magnetic resonance 
imaging and sex behavior after 6-OHDA injection in the medial preoptic area. Brain 
Res Bull 45:333-339. 

Dolatshahi M, Farbood Y, Sarkaki A, Mansouri SM, Khodadadi A (2015) Ellagic acid improves 
hyperalgesia and cognitive deficiency in 6-hydroxidopamine induced rat model of 
Parkinson's disease. Iran J Basic Med Sci 18:38-46. 

Duty S, Jenner P (2011) Animal models of Parkinson's disease: a source of novel treatments 
and clues to the cause of the disease. Br J Pharmacol 164:1357-1391. 

Eriksson SH, Free SL, Thom M, Symms MR, Martinian L, Duncan JS, Sisodiya SM (2009) 
Quantitative grey matter histological measures do not correlate with grey matter 
probability values from in vivo MRI in the temporal lobe. J Neurosci Methods 181:111-
118. 

Finlay CJ, Duty S, Vernon AC (2014) Brain morphometry and the neurobiology of levodopa-
induced dyskinesias: current knowledge and future potential for translational pre-
clinical neuroimaging studies. Frontiers in neurology 5:95. 

Florio TM, Confalone G, Sciarra A, Sotgiu A, Alecci M (2013) Switching ability of over trained 
movements in a Parkinson's disease rat model. Behav Brain Res 250:326-333. 

Gaser C, Schmidt S, Metzler M, Herrmann KH, Krumbein I, Reichenbach JR, Witte OW (2012) 
Deformation-based brain morphometry in rats. Neuroimage 63:47-53. 

Gundersen HJ, Jensen EB (1987) The efficiency of systematic sampling in stereology and its 
prediction. J Microsc 147:229-263. 

Harrison IF, Crum WR, Vernon AC, Dexter DT (2015) Neurorestoration induced by the HDAC 
inhibitor sodium valproate in the lactacystin model of Parkinson's is associated with 
histone acetylation and up-regulation of neurotrophic factors. British Journal of 
Pharmacology 172:4200-4215. 

Hattori T, Orimo S, Aoki S, Ito K, Abe O, Amano A, Sato R, Sakai K, Mizusawa H (2012) 
Cognitive status correlates with white matter alteration in Parkinson's disease. Hum 
Brain Mapp 33:727-739. 

Hou ZY, Lei H, Hong SH, Sun B, Fang K, Lin XT, Liu ML, Yew DTW, Liu SW (2010) Functional 
changes in the frontal cortex in Parkinson's disease using a rat model. Journal of 
Clinical Neuroscience 17:628-633. 

Janezic S, Threlfell S, Dodson PD, Dowie MJ, Taylor TN, Potgieter D, Parkkinen L, Senior SL, 
Anwar S, Ryan B, Deltheil T, Kosillo P, Cioroch M, Wagner K, Ansorge O, Bannerman 
DM, Bolam JP, Magill PJ, Cragg SJ, Wade-Martins R (2013) Deficits in dopaminergic 
transmission precede neuron loss and dysfunction in a new Parkinson model. Proc 
Natl Acad Sci U S A 110:E4016-4025. 

Jang DP, Min HK, Lee SY, Kim IY, Park HW, Im YH, Lee S, Sim J, Kim YB, Paek SH, Cho ZH (2012) 
Functional neuroimaging of the 6-OHDA lesion rat model of Parkinson's disease. 
Neurosci Lett 513:187-192. 

Keifer OP, Jr., Hurt RC, Gutman DA, Keilholz SD, Gourley SL, Ressler KJ (2015) Voxel-based 
morphometry predicts shifts in dendritic spine density and morphology with auditory 
fear conditioning. Nat Commun 6:7582. 



31 
 

Kondoh T, Bannai M, Nishino H, Torii K (2005) 6-Hydroxydopamine-induced lesions in a rat 
model of hemi-Parkinson's disease monitored by magnetic resonance imaging. Exp 
Neurol 192:194-202. 

Lees AJ, Hardy J, Revesz T (2009) Parkinson's disease. Lancet 373:2055-2066. 
Lerch JP, Yiu AP, Martinez-Canabal A, Pekar T, Bohbot VD, Frankland PW, Henkelman RM, 

Josselyn SA, Sled JG (2011) Maze training in mice induces MRI-detectable brain shape 
changes specific to the type of learning. Neuroimage 54:2086-2095. 

Lyoo CH, Ryu YH, Lee MS (2010) Topographical Distribution of Cerebral Cortical Thinning in 
Patients with Mild Parkinson's Disease Without Dementia. Movement Disord 25:496-
499. 

Mackey S, Jing Y, Flores J, Dinelle K, Doudet DJ (2013) Direct intranigral administration of an 
ubiquitin proteasome system inhibitor in rat: behavior, positron emission 
tomography, immunohistochemistry. Exp Neurol 247:19-24. 

Marin C, Aguilar E, Mengod G, Cortes R, Obeso JA (2007) Concomitant short- and long-
duration response to levodopa in the 6-OHDA-lesioned rat: a behavioural and 
molecular study. Eur J Neurosci 25:259-269. 

May A, Hajak G, Ganssbauer S, Steffens T, Langguth B, Kleinjung T, Eichhammer P (2007) 
Structural brain alterations following 5 days of intervention: dynamic aspects of 
neuroplasticity. Cereb Cortex 17:205-210. 

McNaught KS, Bjorklund LM, Belizaire R, Isacson O, Jenner P, Olanow CW (2002) Proteasome 
inhibition causes nigral degeneration with inclusion bodies in rats. Neuroreport 
13:1437-1441. 

Melzer TR, Watts R, MacAskill MR, Pitcher TL, Livingston L, Keenan RJ, Dalrymple-Alford JC, 
Anderson TJ (2012) Grey matter atrophy in cognitively impaired Parkinson's disease. J 
Neurol Neurosurg Psychiatry 83:188-194. 

Menke RA, Szewczyk-Krolikowski K, Jbabdi S, Jenkinson M, Talbot K, Mackay CE, Hu M (2013) 
Comprehensive morphometry of subcortical grey matter structures in early-stage 
Parkinson's disease. Hum Brain Mapp. 

Montoya CP, Campbell-Hope LJ, Pemberton KD, Dunnett SB (1991) The "staircase test": a 
measure of independent forelimb reaching and grasping abilities in rats. J Neurosci 
Methods 36:219-228. 

Monville C, Torres EM, Dunnett SB (2006) Comparison of incremental and accelerating 
protocols of the rotarod test for the assessment of motor deficits in the 6-OHDA 
model. J Neurosci Methods 158:219-223. 

Morgan S, Huston JP (1990) The Interhemispheric Projection from the Substantia-Nigra to the 
Caudate-Putamen as Depicted by the Anterograde Transport of [H-3] Leucine. 
Behavioural Brain Research 38:155-162. 

Mura A, Feldon J (2003) Spatial learning in rats is impaired after degeneration of the 
nigrostriatal dopaminergic system. Mov Disord 18:860-871. 

Nagano-Saito A, Washimi Y, Arahata Y, Kachi T, Lerch JP, Evans AC, Dagher A, Ito K (2005) 
Cerebral atrophy and its relation to cognitive impairment in Parkinson disease. 
Neurology 64:224-229. 

Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: 
a primer with examples. Hum Brain Mapp 15:1-25. 

Olsson M, Nikkhah G, Bentlage C, Bjorklund A (1995) Forelimb akinesia in the rat Parkinson 
model: differential effects of dopamine agonists and nigral transplants as assessed by 
a new stepping test. J Neurosci 15:3863-3875. 



32 
 

Otte WM, van Meer MP, van der Marel K, Zwartbol R, Viergever MA, Braun KP, Dijkhuizen RM 
(2015) Experimental focal neocortical epilepsy is associated with reduced white 
matter volume growth: results from multiparametric MRI analysis. Brain structure & 
function 220:27-36. 

Papa SM, Engber TM, Kask AM, Chase TN (1994) Motor fluctuations in levodopa treated 
parkinsonian rats: relation to lesion extent and treatment duration. Brain Res 662:69-
74. 

Paviour DC, Price SL, Jahanshahi M, Lees AJ, Fox NC (2006) Longitudinal MRI in progressive 
supranuclear palsy and multiple system atrophy: rates and regions of atrophy. Brain 
129:1040-1049. 

Paxinos G, Watson C (1997) The Rat Brain in Stereotaxic Coordinates. 3nd Edn Academic 
Press. 

Pelled G, Bergman H, Goelman G (2002) Bilateral overactivation of the sensorimotor cortex in 
the unilateral rodent model of Parkinson's disease - a functional magnetic resonance 
imaging study. Eur J Neurosci 15:389-394. 

Pienaar IS, Harrison IF, Elson JL, Bury A, Woll P, Simon AK, Dexter DT (2015) An animal model 
mimicking pedunculopontine nucleus cholinergic degeneration in Parkinson's disease. 
Brain structure & function 220:479-500. 

Pierucci M, Di Matteo V, Benigno A, Crescimanno G, Esposito E, Di Giovanni G (2009) The 
unilateral nigral lesion induces dramatic bilateral modification on rat brain 
monoamine neurochemistry. Ann N Y Acad Sci 1155:316-323. 

Rorden C, Brett M (2000) Stereotaxic display of brain lesions. Behavioural neurology 12:191-
200. 

Salgado-Pineda P, Delaveau P, Falcon C, Blin O (2006) Brain T1 intensity changes after 
levodopa administration in healthy subjects: a voxel-based morphometry study. Br J 
Clin Pharmacol 62:546-551. 

Schwarting RKW, Huston JP (1996) Unilateral 6-hydroxydopamine lesions of meso-striatal 
dopamine neurons and their physiological sequelae. Progress in Neurobiology 49:215-
266. 

Shao N, Yang J, Shang H (2015) Voxelwise meta-analysis of gray matter anomalies in 
Parkinson variant of multiple system atrophy and Parkinson’s disease using anatomic 
likelihood estimation. Neuroscience Letters 587:79-86. 

Sharott A, Magill PJ, Harnack D, Kupsch A, Meissner W, Brown P (2005) Dopamine depletion 
increases the power and coherence of beta-oscillations in the cerebral cortex and 
subthalamic nucleus of the awake rat. European Journal of Neuroscience 21:1413-
1422. 

Smith SM, Nichols TE (2009) Threshold-free cluster enhancement: addressing problems of 
smoothing, threshold dependence and localisation in cluster inference. Neuroimage 
44:83-98. 

Solis O, Limon DI, Flores-Hernandez J, Flores G (2007) Alterations in dendritic morphology of 
the prefrontal cortical and striatum neurons in the unilateral 6-OHDA-rat model of 
Parkinson's disease. Synapse 61:450-458. 

Song SK, Lee JE, Park HJ, Sohn YH, Lee JD, Lee PH (2011) The pattern of cortical atrophy in 
patients with Parkinson's disease according to cognitive status. Mov Disord 26:289-
296. 

Soria G, Aguilar E, Tudela R, Mullol J, Planas AM, Marin C (2011) In vivo magnetic resonance 
imaging characterization of bilateral structural changes in experimental Parkinson's 



33 
 

disease: a T2 relaxometry study combined with longitudinal diffusion tensor imaging 
and manganese-enhanced magnetic resonance imaging in the 6-hydroxydopamine rat 
model. Eur J Neurosci 33:1551-1560. 

Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-
synuclein in Lewy bodies. Nature 388:839-840. 

Stocchi F, Olanow CW (2013) Obstacles to the development of a neuroprotective therapy for 
Parkinson's disease. Mov Disord 28:3-7. 

Sumiyoshi A, Taki Y, Nonaka H, Takeuchi H, Kawashima R (2014) Regional gray matter volume 
increases following 7days of voluntary wheel running exercise: A longitudinal VBM 
study in rats. Neuroimage. 

Summerfield C, Junque C, Tolosa E, Salgado-Pineda P, Gomez-Anson B, Marti MJ, Pastor P, 
Ramirez-Ruiz B, Mercader J (2005) Structural brain changes in Parkinson disease with 
dementia: a voxel-based morphometry study. Arch Neurol 62:281-285. 

Suzuki H, Sumiyoshi A, Taki Y, Matsumoto Y, Fukumoto Y, Kawashima R, Shimokawa H (2013) 
Voxel-based morphometry and histological analysis for evaluating hippocampal 
damage in a rat model of cardiopulmonary resuscitation. Neuroimage 77:215-221. 

Tambalo S, Peruzzotti-Jametti L, Rigolio R, Fiorini S, Bontempi P, Mallucci G, Balzarotti B, 
Marmiroli P, Sbarbati A, Cavaletti G, Pluchino S, Marzola P (2015) Functional Magnetic 
Resonance Imaging of Rats with Experimental Autoimmune Encephalomyelitis Reveals 
Brain Cortex Remodeling. J Neurosci 35:10088-10100. 

Tessa C, Lucetti C, Giannelli M, Diciotti S, Poletti M, Danti S, Baldacci F, Vignali C, Bonuccelli U, 
Mascalchi M, Toschi N (2014) Progression of brain atrophy in the early stages of 
Parkinson's disease: A longitudinal tensor-based morphometry study in de novo 
patients without cognitive impairment. Hum Brain Mapp. 

Ueno T, Yamada J, Nishijima H, Arai A, Migita K, Baba M, Ueno S, Tomiyama M (2014) 
Morphological and electrophysiological changes in intratelencephalic-type pyramidal 
neurons in the motor cortex of a rat model of levodopa-induced dyskinesia. Neurobiol 
Dis. 

Ungerstedt U (1968) 6-Hydroxy-dopamine induced degeneration of central monoamine 
neurons. Eur J Pharmacol 5:107-110. 

Ungerstedt U, Arbuthnott GW (1970) Quantitative recording of rotational behavior in rats 
after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system. Brain Res 
24:485-493. 

Valdes-Hernandez PA, Sumiyoshi A, Nonaka H, Haga R, Aubert-Vasquez E, Ogawa T, Iturria-
Medina Y, Riera JJ, Kawashima R (2011) An in vivo MRI Template Set for 
Morphometry, Tissue Segmentation, and fMRI Localization in Rats. Front Neuroinform 
5:26. 

Van Camp N, Blockx I, Verhoye M, Casteels C, Coun F, Leemans A, Sijbers J, Baekelandt V, Van 
Laere K, Van der Linden A (2009) Diffusion tensor imaging in a rat model of 
Parkinson's disease after lesioning of the nigrostriatal tract. NMR Biomed 22:697-706. 

Van Camp N, Vreys R, Van Laere K, Lauwers E, Beque D, Verhoye M, Casteels C, Verbruggen 
A, Debyser Z, Mortelmans L, Sijbers J, Nuyts J, Baekelandt V, Van der Linden A (2010) 
Morphologic and functional changes in the unilateral 6-hydroxydopamine lesion rat 
model for Parkinson's disease discerned with microSPECT and quantitative MRI. 
MAGMA 23:65-75. 

Van der Perren A, Toelen J, Casteels C, Macchi F, Van Rompuy A-S, Sarre S, Casadei N, Nuber 
S, Himmelreich U, Osorio Garcia MI, Michotte Y, D'Hooge R, Bormans G, Van Laere K, 



34 
 

Gijsbers R, Van den Haute C, Debyser Z, Baekelandt V (2014) Longitudinal follow-up 
and characterization of a robust rat model for Parkinson's disease based on 
overexpression of alpha-synuclein with adeno-associated viral vectors. Neurobiology 
of Aging. 

Vernon AC, Crum WR, Johansson SM, Modo M (2011) Evolution of extra-nigral damage 
predicts behavioural deficits in a rat proteasome inhibitor model of Parkinson's 
disease. PLoS One 6:e17269. 

Vernon AC, Johansson SM, Modo MM (2010) Non-invasive evaluation of nigrostriatal 
neuropathology in a proteasome inhibitor rodent model of Parkinson's disease. BMC 
Neurosci 11:1. 

Viaro R, Morari M, Franchi G (2011) Progressive motor cortex functional reorganization 
following 6-hydroxydopamine lesioning in rats. J Neurosci 31:4544-4554. 

Weintraub D, Doshi J, Koka D, Davatzikos C, Siderowf AD, Duda JE, Wolk DA, Moberg PJ, Xie 
SX, Clark CM (2011) Neurodegeneration across stages of cognitive decline in 
Parkinson disease. Arch Neurol 68:1562-1568. 

West MJ (1999) Stereological methods for estimating the total number of neurons and 
synapses: issues of precision and bias. Trends Neurosci 22:51-61. 

Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE (2014) Permutation inference 
for the general linear model. Neuroimage 92:381-397. 

Wu H, Wang X, Gao Y, Lin F, Song T, Zou Y, Xu L, Lei H (2016) NMDA receptor antagonism by 
repetitive MK801 administration induces schizophrenia-like structural changes in the 
rat brain as revealed by voxel-based morphometry and diffusion tensor imaging. 
Neuroscience. 

Xie W, Li X, Li C, Zhu W, Jankovic J, Le W (2010) Proteasome inhibition modeling nigral neuron 
degeneration in Parkinson's disease. J Neurochem 115:188-199. 

Zatorre RJ, Fields RD, Johansen-Berg H (2012) Plasticity in gray and white: neuroimaging 
changes in brain structure during learning. Nat Neurosci 15:528-536. 

 


