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Abstract 

While the current epigenetic-drug development is still largely restricted to target DNA 

methylome, emerging evidence indicates that histone methylome is indeed another 

major epigenetic determinant for gene expression and frequently deregulated in acute 

myeloid leukaemia (AML). The recent advances in dissecting the molecular 

regulation and targeting histone methylome in AML together with the success in 

developing lead compounds specific to key histone methylation modifying enzymes 

have revealed new opportunities for effective leukaemia treatment. In this article, we 

will review the emerging functions of histone methyltransferases (HMTs) and histone 

demethylases (HDMs) in AML, especially MLL rearranged leukaemia. We will also 

examine recent pre-clinical and clinical studies that show significant promises of 

targeting these histone methylation modifying enzymes for AML treatment. 

Introduction 

Although intensive chemotherapy combined with transplantation of haematopoietic 

stem cells have considerably improved the outcomes in certain subgroups of younger 

leukaemia patients, acute myeloid leukaemia (AML) as the most common type of 

acute leukaemia in adults remains highly fatal and around 80% of patients aged over 

60 succumb to the disease or the highly toxic treatment regimens 1, 2. AML is a 

heterogeneous group of diseases that can be further classified into different subgroups 

according to their distinctive genetic mutations with variable prognostic significances. 

In spite of the large arrays of mutations reported in AML, most of them specifically 

affect transcription factors or key components of epigenetic machinery. Importantly, 

chimeric fusions that are believed to be the initiating events in translocation 

leukaemia almost always involve transcription/epigenetic factors 3. Among them is 

the Mixed Lineage Leukaemia Gene (MLL) that associates with a very poor prognosis 

and treatment resistant 4. Similar mutational profiles affecting transcriptional and 

epigenetic machinery have also been reported in normal karyotype AML (NK-AML), 

where DNMT3A and NPM are found to be the early events and persist during 

relapses 5-7, consistently indicating the importance of transcriptional deregulation in 

AML pathogenesis. In spite of our advance in understanding the genetics of AML, 

very little has been translated into the clinics and we are still using the same highly 

toxic and rather ineffective chemotherapies developed over a half-century ago. 

Therefore, there is an urgent need to identify novel venues for more potent and 

effective drug development to tackle this formidable disease. While development of 

small molecule inhibitors to transcription factors remains technically challenging, the 

recent discoveries of critical function of epigenetic modifying enzymes with 

structurally rigid motifs and/or catalytic domains in AML pathogenesis have fuelled 

the enthusiasm to target these intractable oncogenic events. In this review, we will 

focus on some of the latest pre-clinical and clinical development of epigenetic therapy 

in AML in particular those involve MLL gene rearrangements. 

Epigenetic therapies targeting DNA methylation and histone acetylation in AML 



The term epigenetics refers to alternations of gene expression that are 

inheritable after cell division without any changes in DNA sequence 8. In addition to 

DNA methylation, an increasing number of epigenetic modifications on histones 

including acetylation, methylation and ubiquitination have been identified and are 

frequently deregulated in AML 9, 10, resulting in repression of tumour suppressor 

genes (TSGs) and/or activation of oncogenic pathways 11. Aberrant DNA methylation 

and histone acetylation are two most ancient and better-characterized epigenetic 

changes. DNA methylation, leading to gene silencing, is prevalent in cancers 

including leukaemia, and has been the target for cancer therapy since the FDA 

approval of DNA methyltransferase (DNMT) inhibitors (DNMTi), azacytidine and 

decitabine for the treatment of myelodysplastic syndrome (MDS) and certain AML 12. 

Although AML patients aged over 65 years who treated with DNMTi did not show 

significantly longer overall survival (OS) as compared with conventional care 

regimen, azacytidine and decitabine displayed safety and better clinical efficacy in 

patients with unfavourable cytogenetics or myelodysplasia-related changes, indicating 

that they may be preferable therapies for these “difficult-to-treat” AML population 13, 

14. In addition to DNMTi, a number of pan histone deacetylase (HDAC) inhibitors 

(HDACi) inducing chromatin remodelling and re-expression of TSGs, are also 

designed and utilized in AML treatment 15. While single-agent therapy was reported 

only having modest clinical activity, combination of HDACi with DNMTi (decitabine, 

complete remission (CR): 31%) or with Ara-c (cytarabine, CR: 78%, OS: 82 weeks) 

in clinical trials appeared to be synergistic and profoundly improved responses 16, 17. 

While these early endeavours on heterogeneous myeloid malignancies have 

demonstrated the safety and potential therapeutic values of targeting epigenetic 

machinery in clinical settings, it also urges the need of better understanding of the 

epigenetic regulation and exploring novel critical targets for effective AML treatment. 

To overcome the problems associated with genetic heterogeneity that may in part 

account for the poor efficacy of DNMTi or HDACi in the clinics, recent studies 

focusing on systematic analyses of leukaemia carrying chimeric transcription factors 

or specific mutations affecting histone methylation modifying enzymes provide 

important insights and novel tractable targets for epigenetic therapies in AML. 

The role of histone methyltransferases (HMTs) in AML 

Depending on the position and nature of the methylated residues, histone 

methylation can have positive as well as negative impacts on gene expression 18. 

Histone methylation features epigenetic modification in which lysine and arginine 

residues can be mono-(me1), di-(me2) or even tri-(me3) methylated (for lysine only). 

In general, methylation of histone 3 lysine 4 (H3K4), lysine 36 (H3K36), lysine 79 

(H3K79) as well as asymmetric dimethylation of histone 4 arginine 3 (H4R3) 

activates gene expression; whereas methylation on other sites like histone 3 lysine 9 

(H3K9), lysine 27 (H3K27), histone 4 lysine 20 (H4K20) and symmetric 

dimethylation of H4R3 associate with transcription repression 18, 19. H3K4me3 and 

H3K27me3 that define bivalent marks are predominately mediated by two master 



epigenetic regulators, Trithorax group (TrxG) proteins with HRX/MLL as the 

founding member and Polycomb group (PcG) proteins with EZH1/2 as the catalytic 

subunits of polycomb repressor complex 2 (PRC2) in mammalian cells 20.  Intriguing, 

the key components of both TrxG and PcG complexes are frequently mutated in AML.   

Investigating the association of chromosome 7q abnormalities in myeloid 

malignancy has revealed an important role of EZH2 in leukaemogenesis. EZH2 

regulates expression of numerous genes critical for stem cell renewal by mediating a 

H3K27 methylation 21.  EZH2 mutations were found in 9 of 12 patients with 

chromosome 7q acquired uniparental disomy, and the majority of EZH2 mutations 

resulted in loss of its H3K27 methyltransferae activity 22, which is in contrast with its 

gain of function mutation in B-cell lymphoma 23. Deletion of EZH2 was able to 

induce a MDS-like disease in a mouse model, suggesting the tumour suppressor 

function of EZH2 in certain myeloid malignancies 24-26. On the other hand, loss-of-

function mutations of ASXL1, another PcG protein, are usually associated with 

unfavourable OS and poor CR rate in AML 27. While its molecular function in 

leukemic transformation is still unclear, depletion of ASXL1 showed loss of PRC2 

mediated H3K27 trimethylation and led to upregulation of HOXA genes including 

HOXA5 and HOXA9. On the contrary, overexpression of ASXL1 resulted in a global 

increase of H3K27 me2/3 and suppression of HOXA genes and cell growth. ASXL1 

can interact with EZH2 in human leukemic cells, and loss of ASXL1 resulted in 

displacement of PRC2 from HOXA loci 28. ASXL1 may also collaborate with BAP1, 

loss of which led to a MDS-like syndrome in a mouse model, to deubiquitinate 

H2AK119 at PcG targets 29, 30. Haematopoietic-specific knockout of ASXL1 

profoundly impaired cell differentiation and induced myeloid dysplasia and erythroid 

dysplasia in knockout mice. Furthermore, transplantation of ASXL1-null LSK cells or 

bone marrow (BM) cells into recipient mice strikingly caused lethal myelodysplastic 

disorder 31. In addition to ASXL1, JARID2 has also been identified as an essential 

cofactor in promoting PRC2 recruitment to downstream targets. An acquisition of 

JARID2 mutation showed a positive correlation with disease progress from MDS to 

AML 32. Together, these studies reveal the critical role of EZH2 and PRC2 in 

malignant haematopoiesis. 

MLL as a master transcriptional and epigenetic regulator containing a number 

of functional domains including AT hook and CXXC motifs at the N-terminal and the 

C-terminal SET domain, which mediates specific H3K4 methylation, is predisposed 

to abnormal gene rearrangements resulting in a highly aggressive form of leukaemia 
33. As a result of chromosomal translocations, chimeric MLL-fusions resulting from 

replacement of C-terminal region of MLL including the SET domain by various 

fusion partners such as AF4/6/9/10, ELL and ENL can form macromolecular 

complexes through recruitment of a cohort of cofactors including super elongation 

complex (SEC) (e.g., positive transcription elongation factor b (p-TEFb), MLL fusion 

partners such as AF4 family and AF9/ENL family), polymerase associated factor 

complex (PAFc), BRD3/4, MENIN and key histone methyltransferases (HMTs) (e.g., 



DOT1L, PRMT1) to activate gene expression programmes crucial for the 

transformation 18 (Fig.1A). Identification of key aberrantly recruited HMTs by MLL-

fusions provide the first hint of their involvement in human cancer 34.  

DOTlL is the only lysine methyltransferase (KMT) known to be responsible 

for H3K79 methylation in human. Aberrant recruitment of DOT1L specifically 

associates with an abnormally high level of H3K79me2 on promoters and gene bodies 

of MLL targets in MLL rearranged leukaemia. The remarkable correlation of 

H3K79me2 and MLL targets has been referred to as a special epigenetic lesion in 

MLL leukaemia, implying the essentiality of H3K79 methylation for MLL-driven 

transcription 35. Inactivation of DOT1L profoundly suppressed expression of MLL 

translocation-associated genes (e.g., HOXAs and MEIS1) and leukaemia development 
36-40 (Fig. 1A). Direct fusion of DOT1L to MLL was sufficient to activate 

transcription of HOXAs 39. Loss of DOT1L resulted in reduction of cell growth, 

increased differentiation and apoptosis of MLL-AF9 leukaemic cells, indicating its 

potential as a target for AML therapy 38. On the other hand, PRMT1 is the founding 

member of protein arginine methyltransferases (PRMTs) that mediates arginine 

methylation on both histone (H4R3me2a) and non-histone substrates (e.g., 

transcription factors and splicing factors). Identification of its essential function in 

MLL leukaemia had also provided the first evidence of PRMT involvement in human 

cancer 41. PRMT1 recruitment is required for a subset of MLL (MLL-EEN and MLL-

GAS7) and non-MLL (MOZ-TIF2 and AML1-ETO) leukaemia 41-43. Its inhibition 

resulted in specific transcriptional and leukaemic suppression in MLL-rearranged and 

MOZ-TIF2 leukaemia 42. Silence of PRMT1with an shRNA approach attenuated the 

level of H4R3me2a and gene expression of HOXA9 and MEIS1, thus leading 

suppression of leukaemogenesis of MOZ-TIF2 and MLL-GAS7. More recently, a 

functional link between PRC2 and MLL leukaemia had also been proposed.  EZH2 

and EED, two core components of PRC2, had been shown to be required for MLL 

leukaemia, although the underlying mechanisms remain largely unknown 44, 45.  While 

these studies highlight the importance of HMTs in MLL leukaemia, emerging 

evidence also reveals an equally important role of histone demethylases (HDMs) that 

counteract the functions of HTMs in modulating the epigenetic regulation of gene 

expression in both normal and cancer settings.   

The role of histone demethylases (HDMs) in AML 

 Protein methyltransferases (including KMTs and PRMTs indicated in the 

previous section) mediate methylation on specific amino acid residues, which can 

however be erased by HDMs mostly lysine demethylases (KDMs). Based on their 

catalytic mechanisms, KDMs can be divided into two major subgroups. The first 

family including KDM1A and KDM1B is also known as lysine specific demethylase 

(LSD), consisting of FAD-dependent amine oxidase, which can only remove mono- 

and di-methyl marks 46. On the contrary, the second KDM family contains JmjC 

domain (JMJD), which relies on α-ketoglutarate, Fe(II)  and oxygen as cofactors to 

mediate demethylation of mono-, di- and even tri-methyl-lysine residues 47. JMJD 



demethylases consist of more diverse family members and can be further divided into 

7 subfamilies from KDM2 to KDM8 according to their other structurally conserved 

domains, like PHD and Tudor domains, which may also bear crucial functions in 

recognizing/reading the histone marks 19.   

 KDMs can be found differentially expressed in various cancers including 

leukaemia, and cooperate with transcription factors to activate or repress gene 

expression. LSD1 is over-expressed in MLL leukaemia and seems to play a crucial 

role in sustaining the oncogenic transcriptional programmes mediated by MLL-

fusions via an unknown mechanism (Fig. 1B). LSD1 suppression by an shRNA 

approach led to a reduction of mouse MLL leukaemic stem cells (LSCs) 48. While this 

study suggests a requirement of H3K4 demethylase for MLL leukaemia, a recent 

report revealed an opposite role of H3K4 demethylase KDM5B that negatively 

regulated MLL LSC (Fig. 1C) 49. In this study, H3K4me2/3 but not H3K79me2 were 

critical for MLL LSC, and H3K4 methylation levels reduced during differentiation.  

Suppression of KDM5B significantly promoted disease progression, whereas its 

overexpression inhibited MLL leukaemia. While the reasons underlying the different 

results need further investigations, LSD1 on the other hand underpins retinoic acid 

receptor (RARa)-driven repression of myeloid differentiation associated genes in 

AML through decreasing the level of H3K4me2 50.  These results may suggest a more 

generic role of H3K4 methylation in AML pathogenesis, which may not be specific to 

MLL leukaemia. Other members of KDMs including KDM2B and JMJD1C also 

implicate in AML pathogenesis. H3K36me2 demethylase KDM2B that silences 

p15 expression was sufficient to transform haematopoietic progenitors in vitro, and its 

depletion significantly impaired HOXA9/MEIS1 driven leukaemogenesis and self-

renewal of leukaemic stem cells 51. H3K9 demethylase JMJD1C was identified as a 

crucial factor for the maintenance of AML expressing MLL-AF9 in an shRNA 

functional screen (Fig.1B). Depletion of JMJD1C inhibited cell growth and 

leukaemogenesis of MLL-AF9 cells by triggering apoptosis 52. JMJD1C had also been 

recently implicated in AML1-ETO 53 and HOXA9-mediated leukaemias 54. JMJD1C 

was identified as a coactivator in AETFC, a complex formed by AML1-ETO, where 

JMJD1C maintained low level of H3K9me2, hence enhancing gene expression of 

AML1-ETO targets. Knockdown of JMJD1C compromised the ability of AML1-ETO 

to inhibit cell differentiation and impaired colony formation 53. JMJD1C also 

interacted with HOXA9 to modulate the downstream genes critical for self-renewal of 

leukaemic stem cells. Loss of JMJD1C profoundly affected leukaemic transformation 

driven by HOXA9, indicating yet another KDM family member with a more generic 

function in AML pathogenesis 54. 

Crosstalk between HMTs and HDMs in AML 

Although the above reports have directly implicated individual HMT and 

HDM in AML pathogenesis, their mode of actions and underlying mechanisms 

remain largely unknown. Recent studies exploring the functional crosstalk between 

HMTs and HDMs have shed lights into the intricate molecular regulation of aberrant 



histone methylome in AML. It has been demonstrated that the chromatin localization 

of SIRT1, a H3K9 deacetylase, and SUV39H1, a H3K9 methyltransferase, may be 

disrupted by DOT1L (Fig. 2A). After inhibition of DOT1L, SIRT1 and SUV39H1 

bound to MLL targets such as HOXA7 and MEIS1 and exerted their function to 

establish a heterochromatin-like state, in which the level of H3K9me2 but not 

H3K79me2 was kept considerably high. Deletion of SIRT1 or SUV39H1 significantly 

desensitised MLL-AF9 leukaemic cells to DOT1L inhibition, whereas 

pharmacological activation of SIRT1 by SRT1720 strikingly improved the in vivo 

efficacy of EPZ4777, a DOT1L inhibitor, demonstrating a critical function of this 

crosstalk in regulating DOT1L inhibitor sensitivity 55. To search for novel epigenetic 

regulators that cooperate with PRMT1 in AML pathogenesis, KDM4C was identified 

to specifically interact with MLL-fusions and MOZ-TIF2 to remove H3K9me3 

repressive mark 42. Together with PRMT1, KDM4C co-regulated the epigenetic 

programmes for transcriptional deregulation and cellular transformation by increasing 

the H4R3me2a active mark but attenuating H3K9me3 repressive mark on MLL 

downstream targets such as HOXA9 (Fig. 2B). Similar to PRMT1, shRNA-mediated 

suppression of KDM4C resulted in repression of MLL downstream gene expression 

programmes, attenuation of leukaemogenesis and a significant improvement of OS in 

mouse and humanized models, revealing the requirement of the presence of both 

epigenetic modifying enzymes for the oncogenic functions of MLL-fusions. Since 

KDM4C binds to MLL N-terminus region, KDM4C is also required for leukaemia 

induced by other MLL-fusions independent on PRMT1, suggesting a much broader 

function of KDM4C in maintaining aberrant epigenetic networks in MLL leukaemia. 

Interestingly, a recent study suggested a potential redundant function among KDM4 

family members in AML using a tamoxifen inducible knockout approach 56.  

Although characterization of the actual genotype on Kdm4c knockout leukaemic cells 

was not performed, genetic escape from in vivo deletion of Kdm4 family seems to be 

a common theme in all the resultant leukaemia with genotyping results, which was in 

line with the requirement of an unusually high dose of tamoxifen to achieve even in 

vitro deletion.  Nevertheless, these studies consistently indicate critical functions of 

KDM4 family in acute leukaemogenesis. 

The role of KDM in treatment response 

In addition to disease progression, KDM has also been implicated in 

governing treatment response in acute promyelocytic leukaemia (APL) driven by 

RARa-fusions. APL is the only AML subgroup with a well-established target therapy 

where All Trans Retinoic Acid (ATRA) can induce transcriptional de-repression and 

leukaemic differentiation.  In spite of success in identifying repressor complexes 

associated with RARa-fusions, the identity of the activator being recruited by the 

fusions upon ATRA treatment had remained elusive. To search for such a regulator, 

PHF8 (KDM7B), a H3K9 demethylase, was found to specifically interact with RARa-

fusion proteins to remove H3K9me2 repressive mark upon ATRA treatment 57 (Fig. 

3). ATRA treatment results in a conformation change of RARa-fusions, leading to 



dissociation of corepressors such as HDAC and PRC2. PHF8 acts as a critical sensor 

for ATRA treatment response, which is dependent on both the enzymatic activity and 

the phosphorylation status of two critical serine residues of PHF8 that partly 

determine its chromatin localization. Genetic or pharmacological activation of PHF8 

sensitized ATRA-refractory cells to the treatment whereas its suppression conferred 

resistance to APL cells. These findings for the first time directly implicate the activity 

of KDM in governing AML treatment responses, and reveal a novel therapeutic venue 

to overcome treatment resistant 58. In addition to PHF8, LSD1 is also involved in the 

repressive machinery of RAR-fusions (Fig. 3). Inhibition of LSD1 could increase the 

level of H3K4me2 on the promoters of myeloid-differentiation associated genes and 

triggered ATRA-therapeutic response in non-APL AML. While ATRA exhibited little 

effects in non-APL AML, combination of ATRA and the LSD1 inhibitor TCP 

remarkably initiated cell differentiation of non-APL AML and reduced colony 

formation and engraftment of AML 50. 

Histone methylome as an emerging therapeutic target 

Given the critical functions of histone methylome in AML, the first HMT 

inhibitor targeting DOT1L, EPZ4777 59 and its second-generation derivative, 

EPZ5676 60 have been developed and tested for suppressing MLL leukaemia. Both 

compounds showed selective inhibitory effects on H3K79 methylation and cells 

bearing MLL-fusions (Table1). Continuous infusion of DOT1L inhibitors 

significantly prolonged the OS in murine models with MLL leukaemia 59, 60, leading 

to the first clinical trial of HMT inhibitors in AML. However, the poor 

pharmacokinetic characteristics of the DOT1L inhibitors may limit their clinical 

development 60, and can be partly responsible for the rather modest clinical responses 

in their early trial results. On the other hand, a PRMT1 inhibitor, AMI-408 could also 

significantly extend disease latency and OS in mouse models carrying MLL-GAS7 

fusion or MOZ-TIF2 42. Similarly to DOT1L inhibitors, the efficacy of PRMT1 

inhibitors in leukaemia suppression was far inferior to those by genetic or shRNA 

approaches, indicating the need to improve the pharmacokinetics of these early phase 

inhibitors. Studies also reported prolonged OS and reduced tumour burden in MLL-

AF9 leukaemia model by targeting of a H3K27 methyltransferase EZH2. The EZH2 

inhibitor DZNep triggered apoptosis of AML cells through reactivating TXNIP, 

leading accumulation of reactive oxygen species (ROS) 61. Depletion of EZH2 or 

pharmacological inhibition of EZH1/2 by a small molecule UNC1999 up-regulated 

PRC2 target genes such as p16 and p19 in MLL leukaemic cells 62, 63. There are also 

highly effective EZH2 inhibitors such as GSK126 and EPZ5687 for diffuse large B-

cell lymphoma 64, 65.  GSK126 and stapled hydrocarbon peptide targeting EZH/EED 

interaction have been tested in parallel and shown strong suppression of in vitro MLL 

leukaemia cell growth, although their in vivo efficacy has yet to be demonstrated 66.  

Similarly, while very limited in vivo data has been shown, a monoamine 

oxidase (MOA) inhibitor, tranylcypromine (TCP) alone or in combination with 

ATRA has been used to suppress LSD1 activity in MLL 48 or non-MLL leukaemia in 



vitro 50 (Table1), respectively. A TCP derivative, GSK2879552 has entered phase I 

clinical trials for the treatment of relapsed AML (ClinicalTrials.gov identifier: 

NCT02177812), however TCP exhibited severe toxicity at efficacious doses in 

preclinical models, so it is possible that the TCP may result in broad toxicity, 

especially in central nervous system 67. Recently, a non-MOA inhibitor SP2509 with 

similar efficacy but lower general toxicity as compared with TCP was developed 

(Table1). SP2509 blocked the interaction between LSD1 and the co-repressor 

CoREST, thus leading to a permissive increase in H3K4me3 on target genes such as 

p21, p27 and CCAAT/enhancer binding protein. SP2509 was able to effectively 

suppress colony formation, induced cell differentiation and triggered apoptosis of 

AML cells with mutant NPM1 but not MLL-fusions 68. However, while inhibition of 

LSD1 showed a significant efficacy in a mouse xenograft model, it could only 

consistently translate into extended OS when it was a combination with PS, a pan-

HDAC inhibitor 68. It is noted that all the above epigenetic targets in particular 

DOT1L and LSD1 are absolutely essential for normal development and 

haematopoietic stem cells, which will likely limit the application of effective dose in 

patients and therefore a combination approach with lower dose may be beneficial. In 

contrast, KDM4C is largely dispensable for normal development and its complete 

deletion does not lead to any significant phenotypes in the mouse model. Consistently, 

an early phase KDM4C inhibitor, SD70 displayed an excellent therapeutic effect on 

AML expressing MOZ-TIF2 and MLL-fusions 42 (Table 1). Pharmacological 

inhibition of KDM4 effectively attenuated leukaemogenesis in vivo and extended OS 

in both mouse and humanized models with primary human MLL leukaemia. 

Remarkably, SD70 is quite well tolerated and has limited toxicity in these preclinical 

models, highlighting its therapeutic potentials for AML treatment.  

Prospective 

Transcriptional deregulation plays the key role in acute leukaemogenesis and 

probably treatment responses. The emerging functions of various epigenetic 

modifying enzymes of histone methylome in AML pathogenesis have provided 

unique opportunities to target this group of dismal disease, in which its treatment 

regime has not really changed for decades. In addition to the histone mark writers and 

erasers, it is also possible to target readers that are essential to recognize these specific 

histone marks for aberrant gene expression and transformation.  It has been proposed 

that WDR5, one of main components of MLL complexes essential for MLL histone 

methyltransferase activity, recognises H3K4me and presents the K4 side chain for 

further methylation by MLL 49, 69, 70. Blocking MLL1-WDR5 interaction by a small 

molecule inhibitor MM-401 specifically reduced levels of H3K4me at HOXA loci, 

induced myeloid differentiation and triggered apoptosis of mouse MLL-AF9 

leukaemic cells 71. In addition to WRD5 family, significant progress has been made to 

target bromodomain that recognizes acetyl-lysine marks. One of the best examples is 

the potential targeting of BRD family in MLL leukaemia. Genetic or pharmacological 

inhibition of BRD3/4 by I-BET151 (GSK1210151A) or JQ1 led to suppression of 



BCL-2, Myc and CDK6 in leukaemic cells, and displayed outstanding efficacy 

against mouse and human leukaemia cells driven by MLL-fusions in vitro and in vivo 

(Table1) 72, 73. Although rapid development of drug resistant in pre-clinical models in 

part due to activation of canonical Wnt/b-catenin signalling may pose a threat for 

effective treatments by BRD inhibitors 74, 75, these studies provide an important proof-

of-principle data showing the feasibility of targeting protein-protein interaction 

involved in epigenetic regulation for leukaemia treatment. Similar principles will 

likely be applicable to other readers involved in histone methylome such as 

chromodomain and PHD domain. Future studies in dissecting the molecular 

regulation of critical histone methylome writers, readers and erasers will open up a 

promising venue for development of next generation effective AML treatments. 

Acknowledgements 

The authors would like to thank Drs. Bernd Zeisig and Ngai Cheung in the lab for 

their useful inputs.  This work is supported by Bloodwise and Cancer Research UK. 

 

References 

1 Burnett A, Wetzler M, Lowenberg B. Therapeutic advances in acute myeloid 
leukemia. Journal of clinical oncology : official journal of the American Society of 
Clinical Oncology 2011; 29: 487-494. 

 
2 Ferrara F, Schiffer CA. Acute myeloid leukaemia in adults. Lancet 2013; 381: 484-495. 

 
3 Zeisig BB, Kulasekararaj AG, Mufti GJ, So CW. SnapShot: Acute myeloid leukemia. 

Cancer Cell 2012; 22: 698-698 e691. 

 
4 Zeisig BB, So CW. Cellular and Molecular Basis of KMT2A/MLL Leukaemias: From 

Transformation Mechanisms to Novel Therapeutic Strategies  In: Rowley JD, Le Beau 
MM, Rabbitts TH (eds). Chromosomal Translocations and Genome Rearrangements 
in Cancer. Springer: USA, 2016, pp 223-250. 

 
5 Shlush LI, Zandi S, Mitchell A, Chen WC, Brandwein JM, Gupta V et al. Identification 

of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 2014; 506: 
328-333. 

 
6 Kronke J, Bullinger L, Teleanu V, Tschurtz F, Gaidzik VI, Kuhn MW et al. Clonal 

evolution in relapsed NPM1-mutated acute myeloid leukemia. Blood 2013; 122: 100-
108. 

 



7 Hou HA, Kuo YY, Liu CY, Chou WC, Lee MC, Chen CY et al. DNMT3A mutations in 
acute myeloid leukemia: stability during disease evolution and clinical implications. 
Blood 2012; 119: 559-568. 

 
8 Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects 

for epigenetic therapy. Nature 2004; 429: 457-463. 

 
9 Greenblatt SM, Nimer SD. Chromatin modifiers and the promise of epigenetic 

therapy in acute leukemia. Leukemia 2014; 28: 1396-1406. 

 
10 Wouters BJ, Delwel R. Epigenetics and approaches to targeted epigenetic therapy in 

acute myeloid leukemia. Blood 2016; 127: 42-52. 

 
11 Baylin SB, Jones PA. A decade of exploring the cancer epigenome - biological and 

translational implications. Nature reviews Cancer 2011; 11: 726-734. 

 
12 Navada SC, Steinmann J, Lubbert M, Silverman LR. Clinical development of 

demethylating agents in hematology. The Journal of clinical investigation 2014; 124: 
40-46. 

 
13 Dombret H, Seymour JF, Butrym A, Wierzbowska A, Selleslag D, Jang JH et al. 

International phase 3 study of azacitidine vs conventional care regimens in older 
patients with newly diagnosed AML with >30% blasts. Blood 2015; 126: 291-299. 

 
14 Huls G. Azacitidine in AML: a treatment option? Blood 2015; 126: 283-284. 

 
15 Quintas-Cardama A, Santos FP, Garcia-Manero G. Histone deacetylase inhibitors for 

the treatment of myelodysplastic syndrome and acute myeloid leukemia. Leukemia 
2011; 25: 226-235. 

 
16 Kirschbaum M, Gojo I, Goldberg SL, Bredeson C, Kujawski LA, Yang A et al. A phase 1 

clinical trial of vorinostat in combination with decitabine in patients with acute 
myeloid leukaemia or myelodysplastic syndrome. British journal of haematology 
2014; 167: 185-193. 

 
17 Garcia-Manero G, Tambaro FP, Bekele NB, Yang H, Ravandi F, Jabbour E et al. Phase 

II trial of vorinostat with idarubicin and cytarabine for patients with newly diagnosed 
acute myelogenous leukemia or myelodysplastic syndrome. Journal of clinical 
oncology : official journal of the American Society of Clinical Oncology 2012; 30: 
2204-2210. 

 
18 Cheung N, So CW. Transcriptional and epigenetic networks in haematological 

malignancy. FEBS letters 2011; 585: 2100-2111. 



 
19 Labbe RM, Holowatyj A, Yang ZQ. Histone lysine demethylase (KDM) subfamily 4: 

structures, functions and therapeutic potential. American journal of translational 
research 2013; 6: 1-15. 

 
20 Lau PNL, So CW. Polycomb and Trithorax factors in transcriptional and epigenetic 

regulation. . In: Huang S, Litt MD, C.A. B (eds). Epigenetic gene expression and 
regulation. Elsevier: U.S.A, 2015, pp 63-69. 

 
21 Bracken AP, Helin K. Polycomb group proteins: navigators of lineage pathways led 

astray in cancer. Nature reviews Cancer 2009; 9: 773-784. 

 
22 Ernst T, Chase AJ, Score J, Hidalgo-Curtis CE, Bryant C, Jones AV et al. Inactivating 

mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nature 
genetics 2010; 42: 722-726. 

 
23 Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R et al. Somatic 

mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of 
germinal-center origin. Nat Genet 2010; 42: 181-185. 

 
24 Muto T, Sashida G, Oshima M, Wendt GR, Mochizuki-Kashio M, Nagata Y et al. 

Concurrent loss of Ezh2 and Tet2 cooperates in the pathogenesis of myelodysplastic 
disorders. The Journal of experimental medicine 2013; 210: 2627-2639. 

 
25 Sashida G, Harada H, Matsui H, Oshima M, Yui M, Harada Y et al. Ezh2 loss promotes 

development of myelodysplastic syndrome but attenuates its predisposition to 
leukaemic transformation. Nature communications 2014; 5: 4177. 

 
26 Mochizuki-Kashio M, Aoyama K, Sashida G, Oshima M, Tomioka T, Muto T et al. Ezh2 

loss in hematopoietic stem cells predisposes mice to develop heterogeneous 
malignancies in an Ezh1-dependent manner. Blood 2015; 126: 1172-1183. 

 
27 Pratcorona M, Abbas S, Sanders MA, Koenders JE, Kavelaars FG, Erpelinck-

Verschueren CA et al. Acquired mutations in ASXL1 in acute myeloid leukemia: 
prevalence and prognostic value. Haematologica 2012; 97: 388-392. 

 
28 Abdel-Wahab O, Adli M, LaFave LM, Gao J, Hricik T, Shih AH et al. ASXL1 mutations 

promote myeloid transformation through loss of PRC2-mediated gene repression. 
Cancer cell 2012; 22: 180-193. 

 
29 Dey A, Seshasayee D, Noubade R, French DM, Liu J, Chaurushiya MS et al. Loss of the 

tumor suppressor BAP1 causes myeloid transformation. Science 2012; 337: 1541-
1546. 



 
30 Sahtoe DD, van Dijk WJ, Ekkebus R, Ovaa H, Sixma TK. BAP1/ASXL1 recruitment and 

activation for H2A deubiquitination. Nature communications 2016; 7: 10292. 

 
31 Abdel-Wahab O, Gao J, Adli M, Dey A, Trimarchi T, Chung YR et al. Deletion of Asxl1 

results in myelodysplasia and severe developmental defects in vivo. The Journal of 
experimental medicine 2013; 210: 2641-2659. 

 
32 Puda A, Milosevic JD, Berg T, Klampfl T, Harutyunyan AS, Gisslinger B et al. Frequent 

deletions of JARID2 in leukemic transformation of chronic myeloid malignancies. 
American journal of hematology 2012; 87: 245-250. 

 
33 Meyer C, Hofmann J, Burmeister T, Groger D, Park TS, Emerenciano M et al. The MLL 

recombinome of acute leukemias in 2013. Leukemia 2013; 27: 2165-2176. 

 
34 Zeisig BB, Cheung N, Yeung J, So CW. Reconstructing the disease model and 

epigenetic networks for MLL-AF4 leukemia. Cancer cell 2008; 14: 345-347. 

 
35 Guenther MG, Lawton LN, Rozovskaia T, Frampton GM, Levine SS, Volkert TL et al. 

Aberrant chromatin at genes encoding stem cell regulators in human mixed-lineage 
leukemia. Genes & development 2008; 22: 3403-3408. 

 
36 Nguyen AT, Taranova O, He J, Zhang Y. DOT1L, the H3K79 methyltransferase, is 

required for MLL-AF9-mediated leukemogenesis. Blood 2011; 117: 6912-6922. 

 
37 Chang MJ, Wu H, Achille NJ, Reisenauer MR, Chou CW, Zeleznik-Le NJ et al. Histone 

H3 lysine 79 methyltransferase Dot1 is required for immortalization by MLL 
oncogenes. Cancer research 2010; 70: 10234-10242. 

 
38 Bernt KM, Zhu N, Sinha AU, Vempati S, Faber J, Krivtsov AV et al. MLL-rearranged 

leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer cell 2011; 
20: 66-78. 

 
39 Okada Y, Feng Q, Lin Y, Jiang Q, Li Y, Coffield VM et al. hDOT1L Links Histone 

Methylation to Leukemogenesis. Cell 2005; 121: 167-178. 

 
40 Deshpande AJ, Chen L, Fazio M, Sinha AU, Bernt KM, Banka D et al. Leukemic 

transformation by the MLL-AF6 fusion oncogene requires the H3K79 
methyltransferase Dot1l. Blood 2013; 121: 2533-2541. 

 
41 Cheung N, Chan LC, Thompson A, Cleary ML, So CW. Protein arginine-

methyltransferase-dependent oncogenesis. Nature cell biology 2007; 9: 1208-1215. 

 



42 Cheung N, Fung TK, Zeisig BB, K. H, Rane JK, Mowen KA et al. Targeting Aberrant 
Epigenetic Networks Mediated by PRMT1 and KDM4C in Acute Myeloid Leukemia. 
Cancer Cell 2016; 29: 32-48. 

 
43 Shia WJ, Okumura AJ, Yan M, Sarkeshik A, Lo MC, Matsuura S et al. PRMT1 interacts 

with AML1-ETO to promote its transcriptional activation and progenitor cell 
proliferative potential. Blood 2012; 119: 4953-4962. 

 
44 Neff T, Sinha AU, Kluk MJ, Zhu N, Khattab MH, Stein L et al. Polycomb repressive 

complex 2 is required for MLL-AF9 leukemia. Proc Natl Acad Sci U S A 2012. 

 
45 Danis E, Yamauchi T, Echanique K, Haladyna J, Kalkur R, Riedel S et al. Inactivation of 

Eed impedes MLL-AF9-mediated leukemogenesis through Cdkn2a-dependent and 
Cdkn2a-independent mechanisms in a murine model. Exp Hematol 2015; 43: 930-
935 e936. 

 
46 Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA et al. Histone 

demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 2004; 119: 
941-953. 

 
47 Klose RJ, Kallin EM, Zhang Y. JmjC-domain-containing proteins and histone 

demethylation. Nat Rev Genet 2006; 7: 715-727. 

 
48 Harris WJ, Huang X, Lynch JT, Spencer GJ, Hitchin JR, Li Y et al. The histone 

demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem 
cells. Cancer cell 2012; 21: 473-487. 

 
49 Wong SH, Goode DL, Iwasaki M, Wei MC, Kuo HP, Zhu L et al. The H3K4-Methyl 

Epigenome Regulates Leukemia Stem Cell Oncogenic Potential. Cancer cell 2015; 28: 
198-209. 

 
50 Schenk T, Chen WC, Gollner S, Howell L, Jin L, Hebestreit K et al. Inhibition of the 

LSD1 (KDM1A) demethylase reactivates the all-trans-retinoic acid differentiation 
pathway in acute myeloid leukemia. Nat Med 2012; 18: 605-611. 

 
51 He J, Nguyen AT, Zhang Y. KDM2b/JHDM1b, an H3K36me2-specific demethylase, is 

required for initiation and maintenance of acute myeloid leukemia. Blood 2011; 117: 
3869-3880. 

 
52 Sroczynska P, Cruickshank VA, Bukowski JP, Miyagi S, Bagger FO, Walfridsson J et al. 

shRNA screening identifies JMJD1C as being required for leukemia maintenance. 
Blood 2014; 123: 1870-1882. 

 



53 Chen M, Zhu N, Liu X, Laurent B, Tang Z, Eng R et al. JMJD1C is required for the 
survival of acute myeloid leukemia by functioning as a coactivator for key 
transcription factors. Genes & development 2015; 29: 2123-2139. 

 
54 Zhu N, Chen M, Eng R, DeJong J, Sinha AU, Rahnamay NF et al. MLL-AF9- and HOXA9-

mediated acute myeloid leukemia stem cell self-renewal requires JMJD1C. The 
Journal of clinical investigation 2016; 126: 997-1011. 

 
55 Chen CW, Koche RP, Sinha AU, Deshpande AJ, Zhu N, Eng R et al. DOT1L inhibits 

SIRT1-mediated epigenetic silencing to maintain leukemic gene expression in MLL-
rearranged leukemia. Nature medicine 2015; 21: 335-343. 

 
56 Agger K, Miyagi S, Pedersen MT, Kooistra SM, Johansen JV, Helin K. Jmjd2/Kdm4 

demethylases are required for expression of Il3ra and survival of acute myeloid 
leukemia cells. Genes Dev 2016; 30: 1278-1288. 

 
57 Arteaga MF, Mikesch JH, Qiu J, Christensen J, Helin K, Kogan SC et al. The histone 

demethylase PHF8 governs retinoic acid response in acute promyelocytic leukemia. 
Cancer Cell 2013; 23: 376-389. 

 
58 Fung TK, So CW. Overcoming treatment resistance in acute promyelocytic leukemia 

and beyond. Oncotarget 2013; 4: 1128-1129. 

 
59 Daigle SR, Olhava EJ, Therkelsen CA, Majer CR, Sneeringer CJ, Song J et al. Selective 

killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. 
Cancer cell 2011; 20: 53-65. 

 
60 Daigle SR, Olhava EJ, Therkelsen CA, Basavapathruni A, Jin L, Boriack-Sjodin PA et al. 

Potent inhibition of DOT1L as treatment of MLL-fusion leukemia. Blood 2013; 122: 
1017-1025. 

 
61 Zhou J, Bi C, Cheong LL, Mahara S, Liu SC, Tay KG et al. The histone 

methyltransferase inhibitor, DZNep, up-regulates TXNIP, increases ROS production, 
and targets leukemia cells in AML. Blood 2011; 118: 2830-2839. 

 
62 Neff T, Sinha AU, Kluk MJ, Zhu N, Khattab MH, Stein L et al. Polycomb repressive 

complex 2 is required for MLL-AF9 leukemia. Proceedings of the National Academy 
of Sciences of the United States of America 2012; 109: 5028-5033. 

 
63 Xu B, On DM, Ma A, Parton T, Konze KD, Pattenden SG et al. Selective inhibition of 

EZH2 and EZH1 enzymatic activity by a small molecule suppresses MLL-rearranged 
leukemia. Blood 2015; 125: 346-357. 

 



64 Knutson SK, Wigle TJ, Warholic NM, Sneeringer CJ, Allain CJ, Klaus CR et al. A 
selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma 
cells. Nature chemical biology 2012; 8: 890-896. 

 
65 McCabe MT, Ott HM, Ganji G, Korenchuk S, Thompson C, Van Aller GS et al. EZH2 

inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. 
Nature 2012; 492: 108-112. 

 
66 Kim W, Bird GH, Neff T, Guo G, Kerenyi MA, Walensky LD et al. Targeted disruption 

of the EZH2-EED complex inhibits EZH2-dependent cancer. Nature chemical biology 
2013; 9: 643-650. 

 
67 Gahr M, Schonfeldt-Lecuona C, Kolle MA, Freudenmann RW. Intoxications with the 

monoamine oxidase inhibitor tranylcypromine: an analysis of fatal and non-fatal 
events. European neuropsychopharmacology : the journal of the European College 
of Neuropsychopharmacology 2013; 23: 1364-1372. 

 
68 Fiskus W, Sharma S, Shah B, Portier BP, Devaraj SG, Liu K et al. Highly effective 

combination of LSD1 (KDM1A) antagonist and pan-histone deacetylase inhibitor 
against human AML cells. Leukemia 2014; 28: 2155-2164. 

 
69 Wysocka J, Swigut T, Milne TA, Dou Y, Zhang X, Burlingame AL et al. WDR5 

associates with histone H3 methylated at K4 and is essential for H3 K4 methylation 
and vertebrate development. Cell 2005; 121: 859-872. 

 
70 Ruthenburg AJ, Wang W, Graybosch DM, Li H, Allis CD, Patel DJ et al. Histone H3 

recognition and presentation by the WDR5 module of the MLL1 complex. Nature 
structural & molecular biology 2006; 13: 704-712. 

 
71 Cao F, Townsend EC, Karatas H, Xu J, Li L, Lee S et al. Targeting MLL1 H3K4 

methyltransferase activity in mixed-lineage leukemia. Molecular cell 2014; 53: 247-
261. 

 
72 Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G, Bantscheff M, Chan WI et al. 

Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion 
leukaemia. Nature 2011; 478: 529-533. 

 
73 Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA et al. RNAi screen 

identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 2011; 478: 
524-528. 

 
74 Fong CY, Gilan O, Lam EY, Rubin AF, Ftouni S, Tyler D et al. BET inhibitor resistance 

emerges from leukaemia stem cells. Nature 2015; 525: 538-542. 



 
75 Rathert P, Roth M, Neumann T, Muerdter F, Roe JS, Muhar M et al. Transcriptional 

plasticity promotes primary and acquired resistance to BET inhibition. Nature 2015; 
525: 543-547. 

 

 

Figure 1. Roles of HDMs and KDMs in MLL-driven transcription 

(A) MLL-fusion complexes are assembled ) by recruiting a body of important 

components (SEC, PAFc, MENIN and LEDGF ) to target and facilitate expression of 

crucial leukaemogenic genes, such as HOXs, MEIS and MEF2C, where HMTs 

(DOT1L, PRMT1 and MLL) are involved to add active methyl marks (H3K79me2/3, 

H4R3me2a, H3K4me3), respectively. BRD4, a histone mark reader,  is essential for 

the recruitment of MLL-fusions. (B) In addition to enrichment of active marks, KDMs 

(e.g., KDM4C, JMJD1C) on the other hand remove repressive marks (H3K9me3) to 

underpin the active status.  Although LSD1 has been suggested to remove 

H3K4me1/2 marks in MLL leukaemia, its relevance to leukaemia suppression is still 

largely unknown.  (C) KDM5B negatively regulates MLL target genes through 

demethylation of H3K4me3 active mark. Black arrows indicate methylation, whereas 

bent red arrows represent demethylation.  

Figure 2. Crosstalk between HMTs and HDMs in MLL-driven transcription 

(A) When DOT1L is recruited by MLL fusions, it confers H3K79me2 active mark, 

which may further expel SUV39H1 and SIRT1, hence leading to a reduction in 

H3K9me2 repressive mark but an increase in H3K9ac activation mark. (B) After 

binding to MLL fusions and MOZ-TIF2, PRMT1 and KDM4C cooperate to maintain 

the activation of MLL-driven transcription by conferring a high level of H4R3me2a 

high but a low level of H3K9me3 repressive mark. 

Figure 3. Roles of KDMs in ATRA therapeutic response 

PML-RARa forms a repressor complex with RXRa, HDACs and PRCs to inhibit 

expression of myeloid differentiation associated genes. In non-APL, LSD1 is also 

recruited to further remove H3K4me2/1, contributing to a more stable repressive 

status (not shown in figure). ATRA treatment results in a conformational change of 

PML-RARa, leading to dissociation of HDACs and PRCs, and recruitment of 

phosphorylated PHF8 to confer transcriptional activation. Activation of PHF8 by 

okadaic acid (OKA) may sensitise refractory APL cells to ATRA treatment. 

 


