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METHOD Open Access

CHiCAGO: robust detection of DNA looping
interactions in Capture Hi-C data
Jonathan Cairns1†, Paula Freire-Pritchett1†, Steven W. Wingett1,2, Csilla Várnai1, Andrew Dimond1, Vincent Plagnol3,
Daniel Zerbino4, Stefan Schoenfelder1, Biola-Maria Javierre1, Cameron Osborne5, Peter Fraser1

and Mikhail Spivakov1*

Abstract

Capture Hi-C (CHi-C) is a method for profiling chromosomal interactions involving targeted regions of interest, such
as gene promoters, globally and at high resolution. Signal detection in CHi-C data involves a number of statistical
challenges that are not observed when using other Hi-C-like techniques. We present a background model and
algorithms for normalisation and multiple testing that are specifically adapted to CHi-C experiments. We implement
these procedures in CHiCAGO (http://regulatorygenomicsgroup.org/chicago), an open-source package for robust
interaction detection in CHi-C. We validate CHiCAGO by showing that promoter-interacting regions detected with
this method are enriched for regulatory features and disease-associated SNPs.

Keywords: Gene regulation, Nuclear organisation, Promoter-enhancer interactions, Capture Hi-C, Convolution
background model, P value weighting

Background
Chromosome conformation capture (3C) technology has
revolutionised the analysis of nuclear organisation, lead-
ing to important insights into gene regulation [1]. While
the original 3C protocol tested interactions between a
single pair of candidate regions (“one vs one”), subse-
quent efforts focused on increasing the throughput of
this technology (4C, “one vs all”; 5C, “many vs many”),
culminating in the development of Hi-C, a method that
interrogated the whole nuclear interactome (“all vs all”)
[1, 2]. The extremely large number of possible pairwise
interactions in Hi-C samples, however, imposes limita-
tions on the realistically achievable sequencing depth at
individual interactions, leading to reduced sensitivity.
The recently developed Capture Hi-C (CHi-C) technol-
ogy uses sequence capture to enrich Hi-C material for
multiple genomic regions of interest (hereafter referred
to as “baits”), making it possible to profile the global
interaction profiles of many thousands of regions globally
(“many vs all”) and at a high resolution (Fig. 1) [3–7].

CHi-C data possess statistical properties that set them
apart from other 3C/4C/Hi-C-like methods. First, in
contrast to traditional Hi-C or 5C, baits in CHi-C com-
prise a subset of restriction fragments, while any frag-
ment in the genome can be detected on the “other end”
of an interaction. This asymmetry of CHi-C interaction
matrices is not accounted for by the normalisation pro-
cedures developed for traditional Hi-C and 5C [8–10].
Secondly, CHi-C baits, but not other ends, have a further
source of bias associated with uneven capture efficiency.
In addition, the need for detecting interactions globally
and at a single-fragment resolution creates specific mul-
tiple testing challenges that are less pronounced with
binned Hi-C data or the more focused 4C and 5C assays,
which involve fewer interaction tests. Finally, CHi-C
designs such as Promoter CHi-C and HiCap [3–5, 11]
involve large numbers (many thousands) of spatially
dispersed baits. This presents the opportunity to in-
crease the robustness of signal detection by sharing
information across baits. Such sharing is impossible
in the analysis of 4C data that focuses on only a sin-
gle bait and is of limited use in 4C-seq containing a
small number of baits [12–14].
These distinct features of CHi-C data have prompted

us to develop a bespoke statistical model and a
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background correction procedure for detecting signifi-
cant interactions in CHi-C data at a single restriction
fragment resolution. The algorithm, termed CHiCAGO
(“Capture Hi-C Analysis of Genomic Organisation”),
is presented here and implemented as an open-source
R package. CHiCAGO features a novel background
correction procedure and a two-component convolu-
tion background model accounting for both real, but
expected, interactions as well as assay and sequencing
artefacts. In addition, CHiCAGO implements a weighted
false discovery control procedure that builds on the
theoretical foundations of Genovese et al. [15]. This
procedure specifically accommodates the fact that
increasingly larger numbers of tests are performed at
regions where progressively smaller numbers of interac-
tions are expected.
We demonstrate the efficacy of CHiCAGO on two

datasets: one from the human lymphoblastoid cell line
GM12878 [3] (see Fig. 2 for examples) and another from
mouse embryonic stem cells (mESCs) [4]. We further
show that CHiCAGO-detected interactions are enriched
for regulatory regions and relevant disease-associated
single-nucleotide polymorphisms (SNPs).

Results
Methodological foundations of CHiCAGO
A convolution background model for Hi-C data
The background levels in CHi-C decrease as the genomic
distance between the bait and other end increases (Fig. 3),
as in other 3C/Hi-C-like methods [6–10, 12, 13, 16, 17]. It
is generally accepted that this effect reflects the reduction
in the frequency of random collisions between genomic
fragments owing to constrained Brownian motion of chro-
matin, in a manner consistent with molecular dynamics
simulations [18]. We model the read counts arising from
these “Brownian collisions” as a negative binomial random
variable whose expected levels are a function of genomic
distance, with further adjustment for bias resulting from
the properties of individual fragments.
In addition to Brownian collisions, background in

CHi-C is generated by assay artefacts, such as sequen-
cing errors. We model this “technical noise” component
as a Poisson random variable whose mean depends on
the properties of interacting fragments but is independent
of genomic distance between them.
We further assume that these two sources of back-

ground counts are independent. Therefore, the combined
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background distribution can be obtained as a convolution
of negative binomial (Brownian collisions) and Poisson
(technical noise) distributions that is known as the
Delaporte distribution.
We first construct this null distribution from the data

in a robust way, based on all possible fragment pairs (in-
cluding those that have zero observed read counts). We
then find the pairs with counts that greatly exceed the
expected background level (Fig. 2; as described in the
next section). The full mathematical specification of the
algorithm is given in Additional file 1.

Background estimation in asymmetrical interaction matrices
A practical advantage of the two-component background
model is that the Brownian and technical normalisation
factors can be estimated on separate subsets of data,
each of which predominantly represents only one back-
ground component.
The dependence of background levels on the distance

between fragments is particularly apparent at relatively
short genomic distances (up to ~1–2 Mb), where the
read counts considerably exceed those observed at longer
ranges and for trans-chromosomal interactions. Thus,

A

B

Fig. 2 Examples of interactions called by CHiCAGO. Top panels: plots showing the read counts from bait-other end pairs within 500 kb (upstream
and downstream) of two baits, containing the promoters of a VEZF1 and b RGS22 in GM12878 cells. Significant interactions detected by CHiCAGO
(score ≥5) are shown in red, and sub-threshold interactions (3≤ score < 5) are shown in blue. Triangles indicate bait-to-bait interactions. Grey lines
show expected counts and dashed lines the upper bound of the 95 % confidence intervals. (Note that bait-to-bait interactions have higher
expected read counts than bait-to-non-bait interactions spanning the same distance.) Bottom panels: the genomic maps of the corresponding regions,
with coloured bars showing “chromatin colours” obtained from performing chromatin segmentation with chromHMM [60]: red, active promoter; pink,
poised/repressed promoter; orange, strong enhancer; yellow, weak enhancer; blue, insulator
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within this range, counts arising from Brownian collisions
largely dominate over technical noise and, hence, the
Brownian component can be estimated while ignoring the
technical noise. By borrowing information across all inter-
actions in this distance range, we can infer Brownian com-
ponent parameters precisely (Fig. 4; Additional file 2:
Figure S1). We follow Imakaev et al. [8] in assuming that
fragment-level biases have a multiplicative effect on the
expected read counts for each fragment pair. However, we
estimate “bait-specific” and “other end-specific” bias
factors differently, accounting for the asymmetry of
CHi-C interaction matrices.
The bait-specific factors reflect the technical biases of

both Hi-C and sequence capture, as well as local effects
such as chromatin accessibility. We estimate these factors
in a way that is robust to the presence of a small fraction
of interactions in the data. Figure 4a provides examples of
three baits with very diverse bias factors, illustrating that
local read enrichment correlates with the bias factor.
Estimating other end-specific bias factors poses a chal-

lenge, as the majority of interactions are removed at the
capture stage that enriches for only a small subset of inter-
actions with baits. We assume that the overall fragment-
level read count corresponding to trans-chromosomal
pairs primarily reflects the general “noisiness” of a frag-
ment (a similar approach has been taken independently in
Dryden et al. [6]). While we do not preclude the presence
of individual trans-chromosomal interaction signals, our
reasoning that the overall per-fragment levels of trans-
chromosomal pairs are dominated by noise is supported
by evidence from Hi-C and random ligation control data

(Additional file 2: Figure S2). We therefore pool fragments
according to this property and estimate bias factors
for each pool. As expected, bias factors are higher for
fragments associated with higher numbers of trans-
chromosomal read pairs (Fig. 4c). Similarly, baits de-
tected at the “other ends” of bait-to-bait pairs had
higher background levels than non-baits, as expected
given the preferential recovery of “double-baited” ligation
products at the capture stage.
In parallel, we compute the dependence between the

Brownian background component and linear chromo-
somal distance (plotted in Fig. 4b for GM12878 CHi-C
data). It can be seen that this dependence approximately
follows a piecewise power law, consistent with previous
studies on the subject, both theoretical and experimental
[18, 19]. We further show by cross-validation that the
estimate of this dependence is stable (Additional file 2:
Figure S3) and, therefore, unlikely to be influenced by
bait-specific or interaction-specific signals.
To estimate the magnitude of technical noise, we again

use the per-fragment total trans-chromosomal read pairs
(see “Methods”). In doing so, we assume that the contri-
bution of true signals from specific trans-chromosomal
looping interactions, as well as from Brownian collisions
between chromosomes to the total trans-chromosomal
counts, is negligible for the reasons outlined above
(Additional file 2: Figure S2). Indeed, as we see in Fig. 4d,
the expected level of technical noise is typically a small
fraction of a count.
The estimated parameters of both background compo-

nents are then combined into the Delaporte distribution.
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In Additional file 2: Figure S4 we show evidence that
CHiCAGO’s parameter estimation procedures are robust
in the presence of undersampling; the implications of
undersampling in CHi-C data are further examined in
the “Discussion”. After appropriate normalisation and
bias correction, we detect fragment pairs showing read
coverage higher than expected under the Delaporte
assumptions with a one-tailed hypothesis test.

Weighted multiple testing correction for Capture Hi-C
For a typical mammalian genome, we test billions of
hypotheses—one for each possible bait-other end pair.
As a result, the p values must be corrected to account
for multiple testing. Standard multiple testing proce-
dures assume that interactions are equally likely at all
distances. In CHi-C data, however, we perform far more
tests to verify the significance of interactions at large
distances, where we would expect considerably fewer
true interaction events. Consistent with this, the use
of a single p value threshold leads to results that

consist mostly of erroneous distal and trans-chromosomal
counts (Fig. 5b, c).
To address this issue, the long-range and trans-

chromosomal interaction tests need to be more stringent
than the short-range ones. We achieve this with an ap-
proach based on p value weighting [15, 20]. This proced-
ure permits a smooth change of behaviour with distance,
thereby bypassing the need to choose a hard distance
threshold. Briefly, we assign each fragment pair a weight,
estimating how probable it is that the fragments interact.
The weights are then used to adjust the p values (see
Additional file 1 for full specification). P value weighting
can be seen as a simplified version of the empirical Bayesian
treatment, with weights related to prior probabilities. One
practical advantage of this method for our framework is
that it avoids the need to make specific assumptions about
the read count distribution of true interactions, which
would be required for computing Bayes factors.
The optimal choice of weights depends on the relative

abundance of true positives at each bait–other end
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distance. We estimate this abundance by assessing repro-
ducibility across samples and fitting a bounded logistic
curve to the observed reproducibility levels at different dis-
tances. Generally similar weight profiles were obtained in
GM12878 cells and mESCs, and swapping them between
these two datasets yielded highly correlated score profiles
(Fig. 5a; Additional file 2: Figure S5). This is consistent with
our expectation that weights are largely independent of

specific cell type and organism given comparable genome
sizes, as they predominantly reflect the overall distance dis-
tribution of true interactions. Emerging multi-replicate
CHi-C datasets will further refine our weight estimates and
enable a more comprehensive assessment of their depend-
ence on the particulars of the model system.
We illustrate the impact of the weighting procedure

on GM12878 and mESC CHi-C data by comparing the

A

B

D

C

Fig. 5 CHiCAGO multiple testing approach schematic. a Empirical probability of reproducible interaction (used to generate weight profiles) as a
function of interaction distance, generated on two replicates of GM12878 cells, assessed for the 100,000 top-scoring interactions. b–d The effects
of applying p value weighting to the GM12878 data. The arrow on the x-axis indicates the number of significant interactions called in the
weighted data. Upon applying weighting, we see a decrease in the interaction distance amongst cis-interactions (b). P value weighting increases
the mean read count of called interactions (c) and decreases the prevalence of trans-chromosomal interactions (d)
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properties of the 100,000 top-scoring interactions, called
either with or without weighting. The reproducibility of
interaction calls decreases with bait–other end distance
(Fig. 5a; Additional file 2: Figure S5a). As a result, the
“weighted” significant interactions generally span a much
shorter range than the unweighted ones (Fig. 5b; Additional
file 2: Figure S5b). This is consistent with the biological
expectation that promoter-interacting regions, such as en-
hancers, are enriched in the relative vicinity of their targets.
Another consequence of the weighting procedure is that
the average read count is much higher in the weighted calls
(Fig. 5c; Additional file 2: Figure S5c). Strikingly, many of
the unweighted calls are based on only one read pair per
interaction. As the vast majority of fragment pairs attract
no reads at all, low p values for single read-pair interactions
are expected. However, due to the very large number of
possible fragment pairs (approximately 18.5 billion in
both the GM12878 and the mESC data), we still expect
thousands of single read-count calls to be generated by
technical noise. These spurious calls, the majority of
which correspond to trans-chromosomal pairs (Fig. 5d;
Additional file 2: Figure S5d), are generally non-
reproducible and are therefore excluded by the weighting
procedure.
In conclusion, the p value weighting procedure imple-

mented in CHiCAGO provides a multiple testing treat-
ment that accounts for the differences in true positive
rates at different bait–other end distances, thus improving
the reproducibility of interaction calls.

Promoter interactions detected by CHiCAGO: validation
and key properties
We validated CHiCAGO by assessing the functional
properties of significant interactions detected with it in
human GM12878 cells [3] and mESCs [4] under default
settings and a score threshold of 5. Table 1 displays sum-
mary statistics for each sample, showing the generally
similar numbers of detected significant interactions,
both overall and per bait, despite the differences in the
organism and cell type between them.

Enrichment for regulatory features
We first assessed the enrichment of promoter-
interacting fragments for histone marks associated with
active (H3K4me1, H3K4me3, H3K27ac) and repressed
(H3K27me3, H3K9me3) chromatin, as well as for the
binding sites of CTCF, a protein with a well-established
role in shaping nuclear architecture [21]. To this end,
we compared the observed and expected numbers of
promoter-interacting fragments overlapping with these
features. To estimate the expected degree of overlap, we
drew multiple permutations of the promoter–other end
pairs not detected as interacting, such that the overall dis-
tribution of their spanned distances matched the distribu-
tion for the true interactions.
Figure 6 shows the observed and expected numbers of

CHiCAGO other ends (yellow and blue bars, respect-
ively) that overlap with the regulatory features in
GM12878 and mESCs (panels a and b, respectively).
Consistent enrichments over expected values were found
for active histone marks (H3K4me1, H3K4me3, H3K27ac)
in both cell types, in line with the expectation that looping
interactions preferentially link promoters and remote
regulatory regions such as enhancers. We also found that
promoter-interacting fragments were strongly enriched
for CTCF binding sites, as previously reported [9, 21].
Interestingly, promoter-interacting fragments were also
enriched for repressed chromatin marks, in particular for
H3K27me3 in mESCs, supporting the role of Polycomb in
shaping nuclear architecture in this cell type [5].
Assessing the enrichment of promoter-interacting

fragments for known regulatory features can serve as a
useful quality control for CHi-C samples. To this end,
CHiCAGO automatically generates enrichment bar plots
similar to Fig. 6 for each sample, integrating interaction
calls with user-specified genomic annotations, such as
ChIP-seq peaks.

Enrichment for genome-wide association study SNPs
The majority of disease-associated SNPs identified in
genome-wide association studies (GWAS) localise to
non-coding regulatory regions, away from annotated

Table 1 The properties of CHiCAGO-detected interactions in human lymphoblastoid cell line GM12878 and mESCs

GM12878 mESC

Number of captured baits 22,076 22,459

Total number of unique captured read pairs Rep 1: 46,542,745 Rep 1: 59,963,697

Rep 2: 118,813,226 Rep 2: 82,026,534

Rep 3: 73,881,698

Number of significant interactions 88,667 94,148

Mean number of significant interactions per bait 4.02 4.19

Median distance of cis-chromosomal interactions 173,365 bp 138,077 bp

Input read pairs are given per biological replicate (Rep). Default settings and a score threshold of 5 were used in interaction calling, performed jointly on
all replicates
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promoters, posing a significant challenge in identifying
their putative target genes [22]. We asked whether
promoter-interacting regions detected by CHiCAGO in
human cells are enriched for GWAS SNPs, which would
potentially reflect their presence in long-range regulatory
sequences and thus suggest a putative functional role in
disease.
We assessed the enrichment of promoter-interacting

regions in GM12878 cells for sets of GWAS catalogue
SNPs from Maurano et al. [22]. These sets reflect the
grouping of GWAS traits into broader categories, such
as autoimmune disease (AI), neurological/behavioural
traits (NB) and kidney/liver/lung disorders (KLL). We
used the software package GoShifter (Genomic Annota-
tion Shifter) [23], which infers the significance of overlap
by locally shifting genomic annotations (in our case, the
“other ends” of CHiCAGO-detected promoter interac-
tions), thus reducing the effect of genomic biases and link-
age disequilibrium structure. We observed a significant
enrichment of CHiCAGO “other ends” for SNPs associ-
ated with autoimmune diseases (GOShifter p = 0.001) but
not with kidney/liver/lung disorders (p = 0.876) or neuro-
logical/behavioural traits (p = 0.742). This selective enrich-
ment for autoimmune SNPs is consistent with GM12878
being a lymphocyte-derived cell line and replicates the
original findings of Mifsud et al. [3].
We further confirmed that the enrichment for AI dis-

ease-associated SNPs was specific to promoter-interacting
fragments. We used the same approach as in the previous
section to generate 100 random samples of distance-
matched “negative” (non-significant) interactions and

tested the other ends of these interactions for SNP
enrichment. The enrichment for AI-associated SNPs
was selectively observed in the “true” set but not in
the “negative” set and neither set was enriched for
the NB- and KLL-associated SNPs (Fig. 7).
Taken together, these results demonstrate the power of

using CHi-C data to link GWAS SNPs with their putative
target genes in a cell type-specific and high-throughput
manner. We expect this to be one of the key applications
of CHi-C in future clinical studies.

Capability to drive transgene expression in vivo
TRIP (Thousands of Reporters Integrated in Parallel) is
a novel experimental technique to assess the influence
of local chromatin context on gene expression. In TRIP
analysis, a barcoded transgene reporter is randomly inte-
grated into thousands of genomic locations in parallel
and the transcriptional activity at each location is then
monitored. Here we integrated the published TRIP
analysis dataset in mESCs [24] with the CHiCAGO
mESC calls [4], comparing the transcriptional activity
at promoter-interacting regions with the activity elsewhere,
over a range of genomic distances.
Consistent with the observation from the original

TRIP study, we found that the distance from the nearest
promoter was a strong determinant of transgene expres-
sion levels (Fig. 8). However, transgenes mapping to
promoter-interacting fragments consistently showed
higher expression levels across the whole range of gen-
omic distances, as confirmed by linear regression (effect
size = 0.825; Wald test p < 0.001). This result provides
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functional evidence that CHiCAGO-detected promoter-
interacting fragments preferentially possess transcrip-
tional regulatory activity.

Promoter–promoter networks
Interactions where both fragment ends are baited (referred
to as “bait-to-bait interactions”) represent contacts between
gene promoters. These interactions are of special interest
because they may help to identify sets of co-regulated genes
recruited to either shared transcription factories [25] or re-
pression networks such as those mediated by Polycomb
proteins [5].
As an illustration of CHiCAGO’s potential in identi-

fying sets of co-regulated genes, we show CHiCAGO-
detected bait-to-bait interactions involving histone
promoters present on chromosome 6 in GM12878
cells (Fig. 9). We see that histone promoters fre-
quently interact with other histone promoters, more
so than with promoters of other genes in the same
genomic region, consistent with previous observations
[4, 26, 27].

Extremely long-range promoter interactions map within
broader Hi-C contact regions
We took advantage of the pre-capture Hi-C dataset in
mESCs [4] to compare CHiCAGO-detected interactions
in Promoter CHi-C with the broader-scale interaction
signals detectable in Hi-C. The Promoter CHi-C dataset
has over tenfold higher coverage at promoters compared
with the respective Hi-C sample [4] and thus we would
expect a corresponding increase in the sensitivity of
detecting promoter-containing interactions. Consistent
with this, while some stronger interactions in the short
range (<1 Mb) could be visually distinguished on Hi-C
interaction matrices (Fig. 10a), more than 80 % of CHi-C
interactions in this range localised away from Hi-C
interacting regions detected with HOMER [28] at a 25-
kb resolution (Fig. 10b). In contrast, we found that more
than 80 % extremely long-range (>10 Mb) cis-chromo-
somal interactions and 45 % trans-chromosomal interac-
tions mapped within the broader (1 Mb-wide) Hi-C
contact areas (Fig. 10c). However, only a small minority of
these megabase-scale contact areas contained CHi-C in-
teractions (~3 % of >10 Mb cis-chromosomal and ~0.5 %
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trans-chromosomal, as illustrated in Fig. 10d and
Additional file 2: Figure S6). Taken together, these
results are consistent with a high specificity and
resolution of CHiCAGO long-range interaction calling. At
the same time, they warrant a further examination of the
relationship between specific looping interactions and
higher-order chromosomal contacts.

Discussion
In this paper, we present the CHiCAGO algorithm for
Capture Hi-C analysis and demonstrate its efficacy in
detecting interactions enriched for regulatory chromatin
features and relevant GWAS SNPs.
Our approach is based on the assumption that “signifi-

cant” interactions emerge as outliers on a distance-
dependent local background profile. This assumption is
shared by most other tools for interaction detection in
3C-like data and seems reasonable for the purposes of
identifying regulatory interactions. Indeed, it can be ex-
pected that regulatory events such as transcription factor
binding will stabilise the chromatin loop, leading to
interaction frequencies or retention times beyond those

generated by random collisions due to Brownian motion.
This expectation is supported by the observation that
CHiCAGO-detected interactions are selectively enriched
for regulatory chromatin features, even when located in
regions with high background interaction levels.
While the conceptual interpretation of “significant” in-

teractions is shared between CHiCAGO and algorithms
developed for other types of 4C and Hi-C data, there are
key differences in terms of the underlying background
model, the normalisation strategy and the multiple test-
ing procedure.
Existing tools model Hi-C background with a broad

range of distributions, both discrete (binomial [16, 29],
negative binomial [6]) and continuous (Weibull [7, 9],
normal [13]). In CHiCAGO, we instead opted for a two-
component convolution model that incorporates two
count distributions: a negative binomial and a Poisson.
In doing so, we were motivated by the fact that distance-
dependent Brownian collisions and technical variability
are two distinct background count-generating processes
whose properties are best learned separately on different
subsets of data. Indeed, signals from Brownian collisions
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ostensibly dominate the background at short distances,
to the extent that technical variability is barely detect-
able. In contrast, at large linear distances between frag-
ments, Brownian collisions are too weak for their count
distribution to be estimated directly. Thus, we infer this
distribution by extrapolation.
Borrowing information across baits to learn the back-

ground model, as CHiCAGO does, requires careful nor-
malisation across interactions. While Hi-C background
depends on a number of known parameters, such as
fragment length and GC content [10], we, along with
others [7, 8, 30], have opted to avoid any specific as-
sumptions about noise structure, particularly given the
increased complexity and asymmetric nature of capture
Hi-C noise compared with conventional Hi-C. Assuming
that interactions are subject to multiplicative bait- and
other-end-specific bias, as we did in learning the Brownian
background component, parallels the assumptions of the
Hi-C iterative correction approach by Imakaev et al. [8]
and is generally consistent with data from molecular dy-
namics simulations of chromatin fibres [18]. In modelling
technical noise, we assumed it to be reflected in the
numbers of trans-chromosomal interactions involving
the same fragment. A similar strategy has been applied

independently in a recently published Capture Hi-C
study [6]; the same authors also proposed an iterative
correction algorithm for Capture Hi-C data [7] (software
not publicly released) that may complement the approaches
taken here.
Multiple testing issues are important in genomic ana-

lyses and, in attempting to address these issues, a num-
ber of bespoke approaches have been developed [20, 31].
The specific challenge of multiple testing in Hi-C data is
that we expect the fractions of true positives to vary de-
pending on the genomic distance between the fragments;
in fact, the majority of tests are performed with interac-
tions spanning large distances or spanning different
chromosomes, where true positive signals are least ex-
pected. CHiCAGO’s multiple testing procedure is based
on the p value weighting approach by Genovese et al.
[15], which is a generalisation of a segment-wise weight-
ing procedure by Sun et al. [32]. These approaches have
been used successfully to incorporate prior knowledge in
GWAS [33–35] and are emerging in functional genom-
ics analyses [36, 37]. In using the reproducibility of sig-
nificant calls across replicates as an estimate of the
relative true positive rate, we have taken inspiration from
the irreproducible discovery rate (IDR) approach [38]
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used to determine peak signal thresholds in other types
of genomics data, such as ChIP-seq.
Note that, in this setting, IDR cannot be used verbatim

for choosing signal thresholds, as the relationship be-
tween Capture Hi-C signal and reproducibility does not
satisfy IDR assumptions, likely because of undersampling
issues (not shown). Importantly, conventional false dis-
covery rate (FDR)-based approaches for multiple testing
correction [39] are also unsuitable for these data. Indeed,
CHi-C observations (read-pair counts) are discrete and
many of them are equal to either zero or one. This leads
to a highly non-uniform distribution of p values under
the null, violating the basic assumption of conventional
FDR approaches. The “soft-thresholding” approach used
in CHiCAGO shifts the −log-weighted p values such that
non-zero scores correspond to observations, where the
evidence for an interaction exceeds that for a pair of
near-adjacent fragments with no reads. More robust
thresholds can then be chosen based on custom criteria,
such as maximising enrichment of promoter-interacting
fragments for chromatin features (Fig. 6; a user-friendly
function for this analysis is provided as part of the
Chicago R package—see the package vignette provided
as Additional file 3). Based on this approach, we
chose a signal threshold of 5 for our own analyses.
The undersampled nature of CHi-C data (particularly

at longer distance ranges), although robustly handled by
CHiCAGO, may lead to significant sensitivity issues
when using thresholded interaction calls in comparative
analyses. We therefore suggest performing comparisons
based on the continuous score range. Potentially, differ-
ential analysis algorithms for sequencing data (such as
DESeq2 [40]) may also be used to formally compare the
enrichment at CHiCAGO-detected interactions between
conditions at the count level, although power will gener-
ally be a limiting factor. As undersampling drives down
the observed overlap of interactions called on different
samples (Additional file 2: Figure S4c), methods such as
[41, 42] may be considered for formally ascertaining the

consistency between datasets. Additional filtering based
on the mean number of reads per detected interaction
(e.g., removing calls whose mean N is below 10 reads)
will also reduce the impact of undersampling on the ob-
served overlap, but at the cost of decreasing the power
to detect longer-range interactions.
The p value weighting approach used here is similar in

spirit to an empirical Bayesian treatment, with the p
value weights related, but not identical, to prior prob-
abilities. Bayesian approaches are widely used (including,
recently, for signal detection in conventional Hi-C [43])
and the Bayes factors and posterior probabilities they
generate are potentially more intuitive than weighted p
values. However, the p value weighting approach used
here has the advantage of not making any specific assump-
tions about the read distributions of “true interactions”, be-
yond their having a larger mean. Both approaches open the
opportunity of incorporating prior knowledge, beyond the
dependence of reproducibility on distance—for example,
taking into account the boundaries of topologically associ-
ated domains (TADs) [44], higher-order contact domains
and chromosomal territories. We choose not to do this
currently because the exact relationship between these
genomic properties and looping interactions still requires
further investigation, and incorporating these relationships
a priori prevents their investigation in post hoc analyses.
Active research in this area makes it likely that much more
will be known about the determinants of loop formation in
the near future, enabling a more extensive use of prior
knowledge in interaction detection, potentially with a
formal Bayesian treatment.
The downstream analyses of CHiCAGO results

provided in this paper confirm the enrichment of
promoter-interacting regions for regulatory features
and disease-associated variants. These results demonstrate
the enormous potential of CHi-C for both functional gen-
omics and population genetics, and this assay will likely be
applied in multitudes of other cell types in the near future.
Therefore, user-friendly, open-source software for robust

(See figure on previous page.)
Fig. 10 Comparison of interactions detected in CHi-C and Hi-C data. a Top panels: plots showing the read counts from bait–other end pairs within
750 kb (upstream and downstream) of three baits, containing the Pax6, Foxo4 and Tbx5 promoters (from left to right). Significant interactions detected
by CHiCAGO (score ≥5) are shown in red, and sub-threshold interactions (3≤ score < 5) are shown in blue. Bottom panels: raw Hi-C matrices at 25-kb
bin resolution within the corresponding 1.5-Mb regions. The bottom corners of the red lines indicate example bin pairs, within which significant
interactions were detected in the CHi-C data. b Mapping of short-range (<1 Mb) CHi-C interactions within 25-kb interacting bins detected in
the Hi-C data. Filled circles show the observed fraction of CHi-C interactions mapping within the Hi-C interacting bins; open circles show the
expected fraction estimated by a permutation strategy accounting for genomic structure (see “Methods” for details). The standard deviations
across 100 permutations are not shown as they are smaller than point size. c Mapping of long-range (>1 Mb) CHi-C interactions within 1-Mb
interacting bins detected in the Hi-C data. Filled circles show the observed fraction of long-range cis- and trans-chromosomal interactions detected in
the CHi-C data that map within the Hi-C interacting bins. Open circles show the expected fraction estimated by a permutation strategy accounting for
genomic structure (see “Methods” for details). Error bars show standard deviation across 100 permutations. d The overlap of long-range
(>5 Mb) interacting fragment pairs detected in CHi-C data (blue circles) and interacting 1-Mb bin pairs detected in the Hi-C data (black
squares) on chromosomes 6 (left) and 11 (centre) and for trans-interactions between these chromosomes (right). All panels present pre-capture mESC
Hi-C data from [4]
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signal detection in these challenging data will be a wel-
come addition to the toolkits of many bioinformaticians
and experimentalists alike. We have developed CHiCAGO
with the view of addressing this need. Furthermore, we ex-
pect the statistical foundations of CHiCAGO, particularly
the convolution background model and the multiple test-
ing procedure, to be potentially useful in a broader range
of Hi-C-related assays.

Conclusions
The publicly available, open-source CHiCAGO pipeline
presented here [45] produces robust and interpretable
interaction calls in CHi-C data. Promoter-interacting
fragments identified using this algorithm are enriched
for active chromatin features, GWAS SNPs and regions
capable of driving transgene expression, indicative of
regulatory looping interactions. While developed specif-
ically for CHi-C, the statistical principles of CHiCAGO
are potentially applicable to other Hi-C-based methods.

Methods
Sample pre-processing
The publicly available HiCUP pipeline [46, 47] was
employed to process the raw sequencing reads. This
pipeline was used to map the read pairs against the
mouse (mm9) and human (hg19) genomes, to filter ex-
perimental artefacts (such as circularized reads and re-
ligations) and to remove duplicate reads. For the CHi-C
data, the resulting BAM files were processed into CHi-
CAGO input files, retaining only those read pairs that
mapped, at least on one end, to a captured bait. The
script bam2chicago.sh, used for this purpose, is available
as part of the chicagoTools suite [45].

The CHiCAGO algorithm
A full description of the algorithm is given in Additional
file 1. A tutorial on using the CHiCAGO package (the
“vignette”) is provided in Additional file 3.
Briefly, to combine replicates, a “reference” replicate is

created by taking the geometric mean of each fragment
pair’s count across samples. Sample size factors are cal-
culated by taking the mean ratio to the “reference” repli-
cate, in a manner similar to the sample normalisation
strategy implemented in DESeq [48]. Final counts are
derived as the rounded weighted sum of counts across
replicates, where the weights are the sample size factors.
Background from Brownian collisions is assumed to

have negative binomial distribution, with mean sisjf(dij)
and dispersion r, where i indexes over other ends and j
indexes over baits.
Estimation of si, sj, f(d) and r is performed in “proximal

bins”—by default, 20-kb bins that span the first 1.5 Mb
around each bait.
The distance function f(d) is estimated as follows:

� For each bait, take all of the other ends in a distance
bin to get a mean count for that bin.

� f(d) is estimated in a distance bin by taking the
geometric mean of the bin counts at that distance,
across all baits.

� To interpolate f(d) from these point estimates, we
use a maximum likelihood cubic fit on a log–log
scale.

� Outside of this distance range, we extrapolate
linearly, assuming continuity of f and its first
derivative.

The bait-specific scaling factors, sj, are estimated by
considering each mean bin count divided by f(d), then
taking the median of this ratio, across all bins associated
with a bait. The other end-specific scaling factors, si, are
estimated similarly but with the other ends pooled to-
gether (the pools are chosen such that their content
ends have similar numbers of trans-chromo-
somal counts) so that there is enough information for a
precise estimate. The dispersion, r, is estimated using
standard maximum likelihood methods.
The technical noise is assumed to have Poisson distribu-

tion, with mean λij. λij is estimated from trans-chromo-
somal counts—again, first pooling fragments by the number
of trans-chromosomal counts they exhibit. Specifically, to
estimate the technical noise level for a putative interaction
between a bait in pool A and an other end in pool B, we
count the number of interactions that span between
pools A and B and divide this by |A||B|, the total
number of bait–other end fragment pairs from those
pools.
P values are called with a Delaporte model, represent-

ing the sum of two variables: a negative binomial vari-
able with mean sisjf(dij) and dispersion r, and a Poisson
variable with mean λij. A four-parameter bounded logis-
tic regression model is assumed for p value weighting
(see the next section and Additional file 1 for more
information).
The final CHiCAGO score is obtained from soft-

thresholding the −log(weighted p value). Specifically, the
score is max(−log(p) + log(w) − log(wmax), 0), where wmax

is the maximum attainable weight, corresponding to
zero distance. For the downstream analyses in this paper,
interactions with CHiCAGO scores ≥5 were considered
as “significant interactions”.

P value weighting parameter estimation
The p value weighting function has four parameters: α,
β, γ and δ (full details are given in Additional file 1). We
can estimate these parameters from a candidate data set
provided that it has multiple biological replicates, as
follows. We split the data into subsets that contain
approximately equal numbers of baits (by default, five

Cairns et al. Genome Biology  (2016) 17:127 Page 14 of 17



subsets are used.) The reproducible interactions are
defined as those where the stringent threshold of
log(p) < −10 is passed in all biological replicates. Now,
for each subset, we take a series of genomic distance
bins (with the default breaks occurring at 0, 31.25 kb,
62.5 kb, 125 kb, 250 kb, 500 kb, 1 Mb, 2 Mb, 3 Mb,
4 Mb, …, 16 Mb), and we calculate the proportion of
reproducible interactions out of the total number of
possible interactions. The maximum likelihood esti-
mates are calculated for each model parameter using
standard optimization methods [49]. Final parameter
estimates are obtained by taking the median across
the estimates from each subset. The two replicates of
mESC data [4] were used for estimating weights. For
GM12878 [3], the first replicate was not used for
weight estimation as it led to unstable estimation.
This was likely due to the poorer quality of this replicate
compared with the other two, consistent with its higher
cis/trans-chromosomal count ratios (data not shown).
Recommendations on diagnosing unstable estimates are
provided in the R package vignette (Additional file 3).

The Chicago R package
CHiCAGO was implemented as a package for the statis-
tical environment R [50] taking advantage of the data.table
objects [51] to optimise for both speed and memory. The
fully documented R package “Chicago” and the tutorial
data package “PCHiCdata” are publicly available [45]
under Artistic Licence 2.0 and are part of Bioconductor
release 3.3+ [52, 53]. A documented set of supplementary
scripts (chicagoTools) for data pre- and post-processing
and running Chicago in batch mode is also publicly avail-
able [45]. Chicago v1.0.1 was used in this paper.
A typical Chicago job for two biological replicates of

CHi-C data takes 2–3 h wall-clock time (including sam-
ple pre-processing from bam files using chicagoTools)
and uses 50 GB RAM. An example workflow in the form
of an R package vignette is provided as Additional file 3.
The description of free parameters and rationale for
their settings is given in Additional file 2: Table S1.

Assessment of feature enrichment
Enrichment for chromatin features at CHi-C interacting
regions was assessed with respect to random HindIII
fragments drawn in such a way as to match the distribu-
tion of the observed interaction distances. A 95 % confi-
dence interval for the expected overlap was obtained
from 100 random draws. SNP enrichment at promoter
interacting fragments was assessed using GoShifter [23].

Hi-C analyses
HOMER [28] was used to compute binned coverage-
and distance-related background in the Hi-C data and
call significantly interacting bin pairs. Short-range cis-

chromosomal interactions (<1 Mb) were detected in 25-kb
bins; long-range cis-chromosomal (>1 Mb) and trans-
chromosomal interactions were detected in 1-Mb bins. Bin
pairs with FDR-adjusted p < 0.05 were considered signifi-
cant. The significance of overlap between CHi-C promoter-
interacting regions identified by CHiCAGO and the
HOMER-detected interacting bin pairs in the Hi-C data
was ascertained by permutation, while preserving the struc-
tural features of the data, as follows. Cis-chromosomal in-
teractions were permuted across the baits while preserving
the interaction distances. Trans-chromosomal interactions
were permuted across chromosomes while preserving the
relative chromosomal position of the interacting fragments.

Data access
Raw CHi-C, Hi-C and random ligation control data used
in this study are available in ArrayExpress [54, 55] under
accession numbers E-MTAB-2323 (GM12878) and E-
MTAB-2414 (mESC), respectively. CHiCAGO experiment
design files and output files produced with default package
settings for GM12878 and mESCs are available through
the Open Science Framework [56]. The interaction calls
and raw reads for both cell types (score ≥5) have also been
submitted to the NCBI Gene Expression Omnibus under
accession number GSE81503 [57].

Additional files

Additional file 1: The mathematical specification of the CHiCAGO
algorithm. (PDF 304 kb)

Additional file 2: Figures S1 to S6 and Table S1. (PDF 803 kb)

Additional file 3: The CHiCAGO R package tutorial. (PDF 946 kb)

Acknowledgements
The authors would like to thank Simon Andrews, Chris Wallace, Oliver Burren
and all members of the Spivakov, Fraser and Babraham Bioinformatics groups
for helpful discussions. We are grateful to all our “wet-lab” collaborators (in
particular, Mayra Furlan-Magaril, Mattia Frontini, Peter Rugg-Gunn and Willem
Ouwehand) for using and testing CHiCAGO. This work has been funded by the
Biotechnology and Biological Sciences Research Council and the Medical
Research Council of the UK; DZ is funded by the European Molecular
Biology Laboratory. Finally, we thank Laura Biggins for disambiguating
the last two letters of CHiCAGO.

Authors’ contributions
JC, PFP and MS designed the CHiCAGO algorithm; VP and DZ contributed
statistical advice; JC, PFP, SWW and MS implemented the algorithm. SS, CO,
BMJ and PF generated Capture Hi-C data and advised on their biological
properties. PFP, CV, AD, JC and MS performed downstream validation analyses.
JC, PFP and MS wrote the paper with critical input from all authors. MS
supervised the work. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Ethics approval and consent to participate
Ethics approval was not required for this study.

Author details
1Nuclear Dynamics Programme, Babraham Institute, Cambridge, UK.
2Bioinformatics Group, Babraham Institute, Cambridge, UK. 3UCL Genetics

Cairns et al. Genome Biology  (2016) 17:127 Page 15 of 17

dx.doi.org/10.1186/s13059-016-0992-2
dx.doi.org/10.1186/s13059-016-0992-2
dx.doi.org/10.1186/s13059-016-0992-2


Institute, London, UK. 4European Molecular Biology Laboratory, European
Bioinformatics Institute, Cambridge, UK. 5Department of Medical and
Molecular Genetics, King’s College, London, UK.

Received: 1 April 2016 Accepted: 25 May 2016

References
1. Dekker J, Marti-Renom MA, Mirny LA. Exploring the three-dimensional

organization of genomes: interpreting chromatin interaction data. Nat Rev
Genet. 2013;14:390–403.

2. van Steensel B, Dekker J. Genomics tools for unraveling chromosome
architecture. Nat Biotechnol. 2010;28:1089–95.

3. Mifsud B, Tavares-Cadete F, Young AN, Sugar R, Schoenfelder S, Ferreira L, et al.
Mapping long-range promoter contacts in human cells with high-resolution
capture Hi-C. Nat Genet. 2015;47:598–606.

4. Schoenfelder S, Furlan-Magaril M, Mifsud B, Tavares-Cadete F, Sugar R,
Javierre BM, et al. The pluripotent regulatory circuitry connecting
promoters to their long-range interacting elements. Genome Res. 2015;
25:582–97.

5. Schoenfelder S, Sugar R, Dimond A, Javierre BM, Armstrong H, Mifsud B,
et al. Polycomb repressive complex PRC1 spatially constrains the mouse
embryonic stem cell genome. Nat Genet. 2015;47:1179–86.

6. Dryden NH, Broome LR, Dudbridge F, Johnson N, Orr N, Schoenfelder S,
et al. Unbiased analysis of potential targets of breast cancer susceptibility
loci by Capture Hi-C. Genome Res. 2014;24:1854–68.

7. Jager R, Migliorini G, Henrion M, Kandaswamy R, Speedy HE, Heindl A, et al.
Capture Hi-C identifies the chromatin interactome of colorectal cancer risk
loci. Nat Commun. 2015;6:6178.

8. Imakaev M, Fudenberg G, McCord RP, Naumova N, Goloborodko A, Lajoie
BR, et al. Iterative correction of Hi-C data reveals hallmarks of chromosome
organization. Nat Methods. 2012;9:999–1003.

9. Sanyal A, Lajoie BR, Jain G, Dekker J. The long-range interaction landscape
of gene promoters. Nature. 2012;489:109–13.

10. Yaffe E, Tanay A. Probabilistic modeling of Hi-C contact maps eliminates
systematic biases to characterize global chromosomal architecture. Nat
Genet. 2011;43:1059–65.

11. Sahlen P, Abdullayev I, Ramskold D, Matskova L, Rilakovic N, Lotstedt B,
et al. Genome-wide mapping of promoter-anchored interactions with close
to single-enhancer resolution. Genome Biol. 2015;16:156.

12. van de Werken HJ, Landan G, Holwerda SJ, Hoichman M, Klous P, Chachik R,
et al. Robust 4C-seq data analysis to screen for regulatory DNA interactions.
Nat Methods. 2012;9:969–72.

13. Klein FA, Pakozdi T, Anders S, Ghavi-Helm Y, Furlong EE, Huber W.
FourCSeq: analysis of 4C sequencing data. Bioinformatics. 2015;31:3085–91.

14. Raviram R, Rocha PP, Müller CL, Miraldi ER, Badri S, Fu Y, et al. 4C-ker: a
method to reproducibly identify genome-wide interactions captured by
4C-Seq experiments. PLoS Comput Biol. 2016;12:e1004780.

15. Genovese CR, Roeder K, Wasserman L. False discovery control with p-value
weighting. Biometrika. 2006;93:509–24.

16. Ay F, Bailey TL, Noble WS. Statistical confidence estimation for Hi-C data
reveals regulatory chromatin contacts. Genome Res. 2014;24:999–1011.

17. Thongjuea S, Stadhouders R, Grosveld FG, Soler E, Lenhard B. r3Cseq: an R/
Bioconductor package for the discovery of long-range genomic interactions
from chromosome conformation capture and next-generation sequencing
data. Nucleic Acids Res. 2013;41:e132.

18. Rosa A, Becker NB, Everaers R. Looping probabilities in model interphase
chromosomes. Biophys J. 2010;98:2410–9.

19. Bohn M, Heermann DW. Diffusion-driven looping provides a consistent
framework for chromatin organization. PLoS One. 2010;5:e12218.

20. Gui J, Tosteson T, Borsuk M. Weighted multiple testing procedures for
genomic studies. BioData Mining. 2012;5:4.

21. Ong C-T, Corces VG. CTCF: an architectural protein bridging genome
topology and function. Nat Rev Genet. 2014;15:234–46.

22. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al.
Systematic localization of common disease-associated variation in
regulatory DNA. Science. 2012;337:1190–5.

23. Trynka G, Westra H-J, Slowikowski K, Hu X, Xu H, Stranger Barbara E, et al.
Disentangling the effects of colocalizing genomic annotations to
functionally prioritize non-coding variants within complex-trait loci. Am J
Hum Genet. 2015;97:139–52.

24. Akhtar W, de Jong J, Pindyurin AV, Pagie L, Meuleman W, de Ridder J, et al.
Chromatin position effects assayed by thousands of reporters integrated in
parallel. Cell. 2013;154:914–27.

25. Sexton T, Umlauf D, Kurukuti S, Fraser P. The role of transcription factories in
large-scale structure and dynamics of interphase chromatin. Semin Cell Dev
Biol. 2007;18:691–7.

26. Ma T, Van Tine BA, Wei Y, Garrett MD, Nelson D, Adams PD, et al. Cell cycle-
regulated phosphorylation of p220(NPAT) by cyclin E/Cdk2 in Cajal bodies
promotes histone gene transcription. Genes Dev. 2000;14:2298–313.

27. Wang Q, Sawyer IA, Sung M-H, Sturgill D, Shevtsov SP, Pegoraro G, et al.
Cajal bodies are linked to genome conformation. Nat Commun. 2016;7:10966.

28. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple
combinations of lineage-determining transcription factors prime cis-regulatory
elements required for macrophage and B cell identities. Mol. Cell. 38:576–89.

29. Mifsud B, Martincorena I, Darbo E, Sugar R, Schoenfelder S, Fraser P, Luscombe
N. GOTHiC, a simple probabilistic model to resolve complex biases and to
identify real interactions in Hi-C data. biorXiv preprint. 2015;10.1101/023317.

30. Hu M, Deng K, Selvaraj S, Qin Z, Ren B, Liu JS. HiCNorm: removing biases in
Hi-C data via Poisson regression. Bioinformatics. 2012;28:3131–3.

31. Dudoit S, van der Laan MJ. Multiple testing procedures with applications to
genomics. New York: Springer; 2008.

32. Sun L, Craiu RV, Paterson AD, Bull SB. Stratified false discovery control for
large-scale hypothesis testing with application to genome-wide association
studies. Genet Epidemiol. 2006;30:519–30.

33. Lin WY, Lee WC. Improving power of genome-wide association studies with
weighted false discovery rate control and prioritized subset analysis. PLoS
One. 2012;7:e33716.

34. Roeder K, Wasserman L. Genome-wide significance levels and weighted
hypothesis testing. Stat Sci. 2009;24:398–413.

35. Li L, Kabesch M, Bouzigon E, Demenais F, Farrall M, Moffatt MF, et al. Using
eQTL weights to improve power for genome-wide association studies: a
genetic study of childhood asthma. Front Genet. 2013;4:103.

36. Ignatiadis N, Klaus B, Zaugg JB, Huber W. Data-driven hypothesis weighting
increases detection power in genome-scale multiple testing. Nat. Methods.
2016; doi:10.1038/nmeth.3885.

37. Zhao H, Fung WK. A powerful FDR control procedure for multiple
hypotheses. Comput Stat Data Anal. 2016;98:60–70.

38. Li Q, Brown JB, Huang H, Bickel PJ. Measuring reproducibility of high-throughput.
Ann Appl Stat. 2011;5:1752–79.

39. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical
and powerful approach to multiple testing. J R Stat Soc Ser B Methodol.
1995;57:289–300.

40. Love MI, Huber W, Anders S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1–21.

41. Jeffries CD, Ward WO, Perkins DO, Wright FA. Discovering collectively
informative descriptors from high-throughput experiments. BMC
Bioinformatics. 2009;10:431.

42. Blangiardo M, Cassese A, Richardson S. sdef: an R package to synthesize
lists of significant features in related experiments. BMC Bioinformatics.
2010;11:1–10.

43. Xu Z, Zhang G, Jin F, Chen M, Furey TS, Sullivan PF, et al. A hidden Markov
random field-based Bayesian method for the detection of long-range
chromosomal interactions in Hi-C data. Bioinformatics. 2016;32:650–6.

44. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, et al. Topological domains in
mammalian genomes identified by analysis of chromatin interactions.
Nature. 2012;485:376–80.

45. The CHiCAGO home page. http://www.regulatorygenomicsgroup.org/
chicago.Accessed 25 May 2016.

46. HiCUP. http://www.bioinformatics.babraham.ac.uk/projects/hicup/
overview/. Accessed 25 May 2016.

47. Wingett S, Ewels P, Furlan-Magaril M, Nagano T, Schoenfelder S, Fraser P,
et al. HiCUP: pipeline for mapping and processing Hi-C data. F1000Res.
2015;4:1310.

48. Anders S, Huber W. Differential expression analysis for sequence count data.
Genome Biol. 2010;11:R106.

49. Nelder JA, Mead R. A simplex method for function minimization. Comput J.
1965;7:308–13.

50. R Development Core Team. R: a language and environment for statistical
computing. Vienna, Austria: R Foundation for Statistical Computing; 2015.

51. data.table: Extension of data.frame. http://CRAN.R-project.org/package=data.
table. Accessed 25 May 2016.

Cairns et al. Genome Biology  (2016) 17:127 Page 16 of 17

http://dx.doi.org/10.1101/023317
http://dx.doi.org/10.1038/nmeth.3885
http://www.regulatorygenomicsgroup.org/chicago
http://www.regulatorygenomicsgroup.org/chicago
http://www.bioinformatics.babraham.ac.uk/projects/hicup/overview/
http://www.bioinformatics.babraham.ac.uk/projects/hicup/overview/
http://cran.r-project.org/package=data.table
http://cran.r-project.org/package=data.table


52. Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, et al.
Orchestrating high-throughput genomic analysis with Bioconductor. Nat
Methods. 2015;12:115–21.

53. The Chicago R package on Bioconductor. http://bioconductor.org/
packages/release/bioc/html/Chicago.html. Accesseed 25 May 2016.

54. ArrayExpress—functional genomics data. https://www.ebi.ac.uk/
arrayexpress/. Accessed 25 May 2016.

55. Kolesnikov N, Hastings E, Keays M, Melnichuk O, Tang YA, Williams E, et al.
ArrayExpress update—simplifying data submissions. Nucleic Acids Res. 2015;
43:D1113–6.

56. Analysis of Promoter Capture Hi-C data for GM12878 and mouse ES cells
using the CHiCAGO pipeline. http://osf.io/nemc6. Accessed 18 May 2016.

57. NCBI Gene Expression Omnibus. http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE81503. Accessed 25 May 2016.

58. WashU Epigenome Browser. http://epigenomegateway.wustl.edu. Accessed
25 May 2016.

59. Zhou X, Lowdon RF, Li D, Lawson HA, Madden PA, Costello JF, et al.
Exploring long-range genome interactions using the WashU Epigenome
Browser. Nat Methods. 2013;10:375–6.

60. Ernst J, Kellis M. ChromHMM: automating chromatin-state discovery and
characterization. Nat Methods. 2012;9:215–6.

61. ENCODE Consortium. An integrated encyclopedia of DNA elements in the
human genome. Nature. 2012;489:57–74.

62. Yue F, Cheng Y, Breschi A, Vierstra J, Wu W, Ryba T, et al. A comparative
encyclopedia of DNA elements in the mouse genome. Nature. 2014;515:
355–64.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Cairns et al. Genome Biology  (2016) 17:127 Page 17 of 17

http://bioconductor.org/packages/release/bioc/html/Chicago.html
http://bioconductor.org/packages/release/bioc/html/Chicago.html
https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/arrayexpress/
http://osf.io/nemc6
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81503
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81503
http://epigenomegateway.wustl.edu/

	Abstract
	Background
	Results
	Methodological foundations of CHiCAGO
	A convolution background model for Hi-C data
	Background estimation in asymmetrical interaction matrices
	Weighted multiple testing correction for Capture Hi-C

	Promoter interactions detected by CHiCAGO: validation and key properties
	Enrichment for regulatory features
	Enrichment for genome-wide association study SNPs
	Capability to drive transgene expression in vivo
	Promoter–promoter networks
	Extremely long-range promoter interactions map within broader Hi-C contact regions


	Discussion
	Conclusions
	Methods
	Sample pre-processing
	The CHiCAGO algorithm
	P value weighting parameter estimation
	The Chicago R package
	Assessment of feature enrichment
	Hi-C analyses
	Data access

	Additional files
	Acknowledgements
	Authors’ contributions
	Competing interests
	Ethics approval and consent to participate
	Author details
	References

