

King’s Research Portal

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Yassipour Tehrani, S., & Lano, K. C. (2015). Temporal Logic Specification and Analysis for Model
Transformations. In Staf Workshop on Verification of Model Transformations, VOLT 2015 Verification Of ModeL
Transformation (VOLT 2015). http://volt2015.big.tuwien.ac.at/data/submissions/paper_1.pdf

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 28. Dec. 2024

https://kclpure.kcl.ac.uk/portal/en/publications/4dddaae8-248b-4467-89f7-93d17a6c1ebf
http://volt2015.big.tuwien.ac.at/data/submissions/paper_1.pdf

Temporal Logic Specification and Analysis for
Model Transformations

S. Yassipour-Tehrani1, K. Lano1

1Dept of Informatics, King’s College London, Strand, London, UK

Abstract. In this paper we outline an approach for using temporal
logic specifications and model-checking tools to express and verify model
transformation properties. Linear Temporal Logic (LTL) is used to ex-
press transformation semantics, and the SMV formalism is used to en-
code this semantics and to perform model checking.

1 Introduction

Model transformations may be defined in a large number of different languages
such as ATL [6], QVT-R [13], QVT-O, ETL [7], and UML-RSDS [9]. In [11, 10] we
have described work on the verification of transformations based on translations
from MT languages into a semantic representation or intermediate language,
and formal analysis upon this representation. This translation explicitly encodes
some aspects of the computational model of the MT languages (such as the two-
phase execution of ATL transformations), however fine-grain temporal orderings
(eg., that QVT-R relations quoted in the when clause of another relation should
execute prior to the quoting relation [13]) are only implicitly expressed.

Most declarative and hybrid transformation languages have a common exe-
cution semantics which consists of applying individual transformation rules to
specific source model elements. The order of rule applications may be only partly
constrained by the specification. This execution model fits well with the concepts
of linear time temporal logic, which defines properties over sequences of states
using the operators ⃝ (in the next state), ⋄ (in the current or some future state),
2 (in the current and all future states), � (strictly in the past). For example, to
express that some properties Inv are invariant throughout the transformation
execution, given a precondition Asm, we could write:

Asm ⇒ 2Inv

Thus LTL is an appropriate formalism to enhance the approach of [11] with
detailed computation semantics.

Temporal logic is also useful to define transformation requirements in a formal
but language-independent manner. This use of LTL accords with the KAOS
requirements engineering method [15]. In KAOS, system goals are formalised
according to the pattern of behaviour they require. Four generic goal patterns
are identified by KAOS:

1. Achieve: G ⇒ ⋄Q – Q holds in some future state.
2. Cease: G ⇒ ⋄¬ Q – There will be some point in the future where Q does

not hold
3. Maintain: G ⇒ 2Q – Q holds in all future states
4. Avoid: G ⇒ 2¬ Q – Q will never hold in the future.

Transformation postconditions Q are a special case of the Achieve pattern, where
Q remains true after it has been established: G ⇒ ⋄2Q . The Cease pattern
applies particularly for quality improvement requirements of refactoring trans-
formations: that at some stage in the transformation, an example of poor struc-
ture/low quality in the model will be eliminated. The Maintain pattern applies
for transformation invariants. The Avoid pattern applies for safety requirements,
where the transformation (eg., for a safety-critical control functionality) must
never enter some hazardous states [3, 4].

In Section 2 we identify how transformation semantics can be expressed in
LTL. In Section 3 we describe how this semantics can be represented in the
SMV/nuSMV formalism. In Section 4 we give a specific example of the approach
applied to the VOLT UML to RDB case study.

2 Transformation semantics and temporal logic

A model transformation τ is typically specified by a finite collection of transfor-
mation rules, r1, ..., rn which apply a source-target mapping or in-place source
model rewrite for source model elements which satisfy the enabling condition
en(ri) of the rule1. The application of a rule r to specific elements p is written
as r(p). Logically, r(p) can be interpreted as an LTL proposition that the ap-
plication occurs at the present time. For simplicity in this paper we will assume
there is only one parameter or ‘pivot element’ s : Si for each rule ri . An execu-
tion history of τ is then a sequence of rule applications, each of which can only
occur within its enabling condition (WithinEnabling):

2(∀ s : Si · ri(s) ⇒ en(ri(s)))

For separate-models transformations where enabled rules remain enabled until
they are applied, and are then disabled, there are the axioms:

2(∀ s : Si · en(r(s)) ⇒ ⋄r(s))

For some languages (such as QVT-R and ATL) there is a distinction between
top-level and subordinate rules: subordinate rules r can only occur if they are
invoked by another rule (InvokedRules):

2(r(s ′) ⇒
∨

i ∃ s : Si · ri(s))

1 The enabling condition may include both positive and negative application condi-
tions.

where the disjunction ranges over all other rules ri which directly invoke r , this
disjunction is false if there are no such rules, so that r cannot occur in such a
case. At each step only one top-level rule application can occur (RuleExclusion):

2(∀ s, s ′ : Si · ri(s) ∧ s ′ ̸= s ⇒ ¬ ri(s
′))

for each top-level ri , and 2(∀ s : Si · ri(s) ⇒ ¬ (∃ s ′ : Sj · rj (s ′))) for each
top-level rule rj , i ̸= j .

In QVT-R (separate-models mode) and ATL, a top relation cannot be re-
applied to the same model element (NoReapplication):

2(∀ s : Si · ri(s) ⇒ ⃝2¬ ri(s))

for all top-relations ri .
To express that one rule r ′ always has priority over another rule r , we can

write (Priority):

2(en(r ′(s)) ∧ en(r(s)) ⇒ ¬ r(s))

The following conditions may be checked in order to verify a transformation
or to identify errors in its specification:

– Any required invariant Inv is maintained throughout the transformation
execution: Asm ⇒ 2Inv

– Any required overall postcondition must eventually be true (and remain
true): Asm ⇒ ⋄2Post

– Non-triviality: that each top-level rule will eventually be applied: ⋄r(p)

Such properties can be checked for specific transformations using a LTL theorem
prover such as SPASS, or a model checker, such as SMV/nuSMV [12].

3 Encoding transformation semantics in SMV

We utilise the SMV/nuSMV language and model checker to analyse temporal
properties of transformations. We select SMV because it is an established for-
malism which supports LTL, and because there is already a mapping from UML
to SMV implemented in the UML-RSDS tools [9]. SMV models systems in mod-
ules, which may contain variables ranging over finite domains such as subranges
a..b of natural numbers and enumerated sets. The initial values of variables are
set by initialisation statements init(v) := e. A next(v) := e statement identi-
fies how the value of variable v changes in execution steps of the module. In the
UML to SMV encoding of [9], objects are modelled by integer object identities,
attributes and associations are represented as variables, and classes are repre-
sented by modules parameterised by the object identity values (so that separate
copies of the variables exist for each object of the class). A specific numeric upper
bound must be given for the number of possible objects of each class. Models
of arbitrary size can be represented by varying this bound. A transformation

is modelled by modelling transformation execution steps as module execution
steps: the application of a particular rule to particular pivot instance(s). The
temporal logic operators are denoted in SMV by G (for 2), F (for ⋄), X (for
⃝) and O (for �).

The structure of an SMV specification of a class diagram is as follows:

MODULE main

VAR

C : Controller;

MEntity1 : Entity(C,1);

.... other object instances

MODULE Controller

VAR

Entityid : 1..n;

event : { createEntity, killEntity, event1, ..., eventn };

MODULE Entity(C, id)

VAR

alive : boolean;

... attributes of Entity ...

DEFINE

TcreateEntity := C.event = createEntity & C.Entityid = id;

TkillEntity := C.event = killEntity & C.Entityid = id;

Tevent1 := C.event = event1 & C.Entityid = id & alive = TRUE;

... transitions for each event ...

ASSIGN

init(alive) := FALSE;

next(alive) :=

case

TcreateEntity : TRUE;

TkillEntity : FALSE;

TRUE : alive;

esac;

Each class Entity is represented in a separate module, and each instance is
listed as a module instance in the main module. System events are listed in the
Controller, and the effect of these events on specific objects are defined in the
module specific to the class of that object. The value of the Controller variable
event in each execution step identifies which event occurs, and the value of the
appropriate Eid variable indicates which object of class E the event occurs on.
Associations r : A → B of 1-multiplicity are represented as attributes

r : 0..bcard

where bcard is the maximum permitted number of objects of B . Events to set
and unset this role are included. 0 represents the null object (for 0..1-multiplicity
roles). For *-multiplicity unordered roles r : A → Set(B), an array representation
is used instead:

r : array 1..bcard of 0..1

with the presence/absence of a B element with identity value i being indicated
by r [i] = 1 or r [i] = 0. Operations to add and remove elements are provided. The
Controller Aid and Bid variables identify which links are being added/removed.

For separate-model (mapping) model transformations, this representation is
extended as follows:

– No killE or createE events for source model entities are included: the source
model is assumed to exist initially and its elements are read-only.

– Both source model and target model entity types are represented by SMV
modules. Source entity attributes are defined as frozen variables (they can-
not be changed after initialisation). The transformation steps are defined as
controller events, with the effect of these steps being defined in one or more
target entity modules. Target entity modules have the modules of the source
entities they depend upon as parameters.

In this encoding the axioms (RuleExclusion) and (InvokedRules) are true by
construction of the model, whilst (WithinEnabling) is a property which should
be assumed. (NoReapplication) is added as a logical assumption if the transfor-
mation satisfies this semantics.

4 Example specification and analysis

We consider the execution semantics and analysis of QVT-R, and specifically
analyse the case study transformation, from UML to relational databases, as
given in [13]:

transformation uml2rdb(uml1 : SimpleUML, rdb1 : SimpleRDMS) {

top relation Package2Schema

{ checkonly domain uml1 p : Package { name = pn }

enforce domain rdb1 s : Schema { name = pn }

}

top relation Class2Table

{ checkonly domain uml1 c : Class { namespace = p : Package {}, name = n };

enforce domain rdb1 t : Table { schema = s : Schema {}, name = n };

when { Package2Schema(p,s); }

where { Attribute2Column(c,t); }

}

relation Attribute2Column

{ checkonly domain uml1 c : Class { attribute =

a : Attribute { name = an, type = typ : Type { name = tn } } };

enforce domain rdb1 t : Table { column =

col : Column {name = an, coltype = tn} };

}

}

A computation step of a QVT-R transformation consists of the application
of a top relation to specific model elements matching its source domains. The
application of non-top relations invoked (in a where clause) directly or indirectly
from this top relation application are included in the computation step.

In contrast, a relation application in a when clause indicates that the ap-
plication must have occurred strictly prior to the current relation application:
indeed the previous application of the relation is part of the enabling condition
of the current relation (WhenCond):

en(Class2Table(c)) ⇒ �Package2Schema(c.namespace)

An individual application of Package2Schema must achieve its specific post-
condition (PostDef):

Package2Schema(p) ⇒
⃝∃ s : Schema · s.name = p.name

Likewise for Class2Table and Attribute2Column. A desirable invariant of the
transformation is that the only schemas which exist are those that correspond
to a package: ∀ s : Schema · ∃ p : Package · s.name = p.name. There are similar
properties for tables and columns.

Model-checking can identify errors in such specifications, using the LTL se-
mantics. For example, if the specifier had mistakenly written Attribute2Column
in the when clause of Class2Table, and Package2Schema in the where clause.
This would mean that Attribute2Column cannot occur (by axiom InvokedRules),
and consequently that Class2Table cannot occur (by WhenCond). This error
would be identified by the generation of a counter-example to the non-triviality
property (Section 2).

In QVT-R, priorities between rules are typically enforced using flag variables
and specific conditions depending upon these in when clauses. Model-checking
can verify if such a scheme correctly achieves the required priority ordering.

To map QVT-R to SMV, we first map QVT-R to UML-RSDS, using the
UML-RSDS tools [9], and then use the UML to SMV translator to define the
basic SMV structure for the transformation. If a transformation rule r iterates
over s : Si and has the UML-RSDS form

Ante ⇒ Tj→exists(t | TCond & P)

then the SMV module for Tj has a parameter of module type Si , and r is an
event of the Controller , and Si id is a Controller variable. An axiom asserts that
r(s) can only take place if Ante holds.

The Tj module has a transition defined as

Tr := C.event = r & C.Siid = id

identifying that the application of r takes place on the Si object with id equal
to the current Tj object. The updates to features f of t defined in TCond , P are

then specified by next(f) statements, using Tr as a condition, and next(alive) is
set to TRUE under condition Tr .

The restrictions of SMV/nuSMV imply that only attributes and expressions
of the following kinds can be represented in SMV:

– Booleans and boolean operations.
– Integers and operations on integers within a bounded range.
– Strings represented as elements of an enumerated type. String operations

cannot be represented.

Currently the details of transformation steps are manually encoded in SMV.
Part of the SMV specification for the example transformation, in a configu-

ration with one package and two classes, is:

MODULE main

VAR

C : Controller;

MPackage1 : Package(C,1);

MClass1 : Class(C,1);

MClass2 : Class(C,2);

MSchema1 : Schema(C,MPackage1,1);

MTable1 : Table(C,MClass1,1);

MTable2 : Table(C,MClass2,2);

MODULE Controller

VAR

Packageid : 1..1;

Classid : 1..2;

Schemaid : 1..1;

Tableid : 1..2;

event : { Package2Schema, Class2Table };

MODULE Package(C, id)

FROZENVAR

name : { string1, string2, string3 };

MODULE Schema(C, P, id)

VAR

alive : boolean;

name : { empty, string1, string2, string3 };

DEFINE

TPackage2Schema := C.event = Package2Schema & C.Packageid = id;

ASSIGN

init(alive) := FALSE;

next(alive) :=

case

TPackage2Schema : TRUE;

TRUE : alive;

esac;

init(name) := empty;

next(name) :=

case

TPackage2Schema : P.name;

TRUE : name;

esac;

This represents the effect of the Package2Schema(p) event, as the creation
of a Schema instance and the setting of its name. The axioms (PostDef) are
ensured by construction of this model, whilst the axioms (WhenCond) need
to be assumed as conditions. For this transformation these axioms would be
expressed as assumptions:

2(C .event = Class2Table ∧ C .Classid = c ⇒
�(C .event = Package2Schema ∧ C .Packageid = MClassc.namespace))

asserted for each integer c from 1 up to the number of Class instances in the
source model. (NoReapplication) is expressed by assumptions

2(C .event = Class2Table ∧ C .Classid = c ⇒
⃝2(C .event = Class2Table ⇒ C .Classid ̸= c))

for each class identity c, and similarly for the other top relations.
The effect of the where clause of Class2Table is expressed in the Column

module, as the (simultaneous) creation and update of columns for each attribute
linked to the transformed class. The invariant that each existing schema corre-
sponds to a package can be verified in nuSMV as:

LTLSPEC G(MSchema1.alive = TRUE -> MSchema1.name = MPackage1.name)

This could alternatively be expressed by an INVAR assertion.
The results of counter-example analysis are presented as sequences of states

which directly correspond to traces of the transformation execution. These can
be readily understood in terms of the original model and transformation rules,
or could be processed into a graphical form. An example counterexample trace
is:

-- specification G ((C.event = Class2Table & C.Classid = 1) ->

O(C.event = Package2Schema & C.Packageid = MClass1.namespace)) is false

-- as demonstrated by the following execution sequence

Trace Description: LTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

C.Classid = 1

C.event = Class2Table

C.Tableid = 1

MPackage1.name = string1

MClass1.name = string1

.... details omitted

MTable1.alive = FALSE

MTable1.name = empty

MSchema1.TPackage2Schema = FALSE

MTable1.TClass2Table = TRUE

MTable2.TClass2Table = FALSE

-> State: 1.2 <-

C.event = Package2Schema

MTable1.alive = TRUE

MTable1.name = string1

MSchema1.TPackage2Schema = TRUE

MTable1.TClass2Table = FALSE

...

Validated properties are reported as true, for example:

NuSMV > read_model -i volt.smv

NuSMV > go

-- specification G (MSchema1.alive = TRUE -> MSchema1.name = MPackage1.name) is true

NuSMV >

We tested the efficiency of the nuSMV analysis using source models of sizes
3 (1 package and 2 classes), 6 (1 package and 5 classes), 11 (1 package and
10 classes) and 21 (1 package and 20 classes), with the invariant property G

(MSchemai.alive = TRUE -> MSchemai.name = MPackagei.name) being checked
for all classes and packages i . Table 1 shows the results.

Source model size Formula size Time taken

3 2 conjuncts less than 1s
6 5 conjuncts 1s
11 10 conjuncts 5 minutes
21 20 conjuncts Out of memory

Table 1. Invariant verification times

5 Related work

Model checkers and satisfaction checkers such as Alloy and Z3 have been ap-
plied to identify counter-examples to required transformation outcomes [1, 8].
Some temporal logic analysis (in ASK-CTL) is supported by the translation from
QVT-R to coloured Petri Nets in [5]. A manual translation from graph transfor-
mations (in AGG) to the Bogor model checker is described in [2]. Model-checking
techniques for graph transformations are compared in [14]: a translation into
SPIN/Promela is compared with the GROOVE checker, which operates directly
upon graph transformations. The new contribution of this paper is to define a
general temporal logic semantics for MT languages, which can be specialised

to reflect the semantics of individual languages. The temporal logic semantics
enhances the existing translations from MT languages to T MM/UML-RSDS
by defining the permitted computation sequences of transformations. Analysis
in nuSMV provides an additional semantic analysis enabling proof and counter-
example detection for transformations. The nuSMV checker supports expression
of invariants, variants, time bounds between events and regular expression con-
straints on transformation execution histories via our encoding [12].

6 Conclusions

We have described an approach for the specification and analysis of model trans-
formations using linear temporal logic and the nuSMV model checker. This ap-
proach has been implemented by a translation from UML-RSDS to nuSMV.

References

1. K. Anastasakis, B. Bordbar, J. Kuster, Analysis of Model Transformations via
Alloy, Modevva 2007.

2. L. Baresi, V. Rafe, A. Rahmani, P. Spoletini, An efficient solution for model check-
ing graph transformation systems, ENTCS, May 2008.

3. B. Becker, D. Beyer, H. Giese, F. Klein, D. Schilling, Symbolic invariant verification
for systems with dynamic structural adaption, ICSE 2006, ACM Press.

4. B. Becker, L. Lambers, J. Dyck, S. Birth, H. Giese, Iterative development of
consistency-preserving rule-based refactorings, ICMT 2011, LNCS vol. 6707, 2011.

5. E. Guerra, J. de Lara, Colouring: execution, debug and analysis of QVT-Relations
transformations through coloured Petri Nets, SoSyM vol. 13, no. 4, Oct 2014.

6. Eclipsepedia, ATL User Guide, http://wiki.eclipse.org/ATL/ User Guide -
The ATL Language, 2014.

7. D. Kolovos, R. Paige, F. Polack, The Epsilon Transformation Language, in ICMT
2008, LNCS Vol. 5063, pp. 46–60, Springer-Verlag, 2008.

8. K. Lano, S. Kolahdouz-Rahimi, T. Clark, Comparing verification techniques for
model transformations, Modevva workshop, MODELS 2012.

9. K. Lano, The UML-RSDS Manual, www.dcs.kcl.ac.uk/staff/kcl/uml2web/umlrsds.pdf,
2014.

10. K. Lano, S. Kolahdouz-Rahimi, T. Clark, Language-independent Model Transfor-
mation Verification, VOLT 2014, York, July 2014.

11. K. Lano, S. Kolahdouz-Rahimi, T. Clark, A framework for model transformation
verification, BCS FACS journal, 2014.

12. NuSMV, http://nusmv.fbk.eu, 2015.
13. OMG, MOF 2.0 Query/View/Transformation Specification v1.1, 2011.
14. A. Rensink, A. Schmidt, D. Varro, Model checking graph transformations: A com-

parison of two approaches, ICGT 2004, LNCS 3256, pp. 226-241, 2004.
15. A. Tang, A rationale-based model for architecture design reasoning, Faculty of ICT,

Swinburne University of Technology, 2007.

