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A Distributed Algorithm for Robust Transmission in
Multicell Networks with Probabilistic Constraints

Xinruo Zhang and Mohammad Reza Nakhai
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E-mail: [xinruo.zhang,reza.nakhai]@kcl.ac.uk

Abstract—This paper studies a robust beamforming optimiza-
tion problem of minimizing total transmit power in a distributed
manner in the presence of imperfect channel state information
(CSI) in multicell interference networks. Due to the fact that
worst-case is a rare occurrence in practical network, this problem
is constrained to satisfying a set of signal-to-interference-plus-
noise-ratio (SINR) requirements at user terminals with certain
SINR outage probabilities. This problem is numerically in-
tractable due to the cross-link coupling effect among base stations
(BSs) operating under the same frequency bandwidth and the
robust constraints that involve instantaneous CSI uncertainties.
The intractable problem is first converted to a semidefinite
programming form with linear matrix inequality constraints
via Schur complement, S-procedure and semidefinite relaxation
technique, and then decomposed into a set of independent sub-
problems at individual BSs and solved via subgradient iterations
with a light inter-BS communication overhead. Simulation results
demonstrate the advantage of the proposed strategy in terms of
providing larger SINR operational range as compared with recent
proposed designs.

I. I NTRODUCTION

Intercell interference (ICI) has been considered as a funda-
mental limiting factor of the system performance for next gen-
eration wireless communication network. Recently, multicell
coordinated scheduling/ coordinated beamforming (CS/CB),
where base stations (BSs) only collaborate at beamforming
level for transmission strategies, has shown its promising
advantages in terms of ICI mitigation [1]. Although the CS/CB
significantly relaxes the backhaul link capacity via avoidance
of user terminals (UTs)’ data sharing, it still inflicts a con-
siderable signalling overhead due to its need to full channel
state information (CSI) and/or a strict CS to secure the quality
of service (QoS) for cell-edge UTs. Hence, distributed CS/CB
that shares only the key intercell coupling parameters among
BSs iteratively via inter-BS communications, has attracted
the attention of researchers [2], [4], so that the individual
BSs can optimize their transmission strategies independently
and globally. Assuming perfect CSI at transmitters, the au-
thors in [4] propose a decentralized iterative algorithm using
subgradient method for sum power minimization and max-
min signal-to-interference-plus-noise-ratio (SINR) design via
limited signaling among BSs in multicell networks. However,
the problem in [4] is solved in a multicast manner. On the
other hand, the acquired CSI at BSs in the multiuser network
is, nevertheless, limited by the channel uncertainties since they
may contaminate the CSI at BSs. Hence, the beamforming
designs based on the assumption of perfect CSI at BSs can no

longer guarantee the desired QoS requirements and may lead
to unexpected results to UTs for practical channels. In general,
the CSI uncertainties are modeled in two ways: deterministic
model that assumes CSI errors to be confined within an
uncertainty region [2], [8], [5], and stochastic model [10],
[13] that models CSI errors to be statistically unbounded with
some known distribution. Under the assumption of bounded
CSI perturbations, the authors in [8] propose a distributedal-
gorithm based on the principle of alternating direction method
of multipliers (ADMM) technique to minimize the weighted
sum power subject to worst-case QoS constraints at UTs
with limited backhaul information exchange between BSs.
Although the robust design on the basis of deterministic model
guarantees the worst-case robustness against CSI uncertainties,
it is conservative due to the fact that the worst-case is a rare
occurrence in practice and the realistic wireless network can
tolerate occasional QoS outages. [10] investigates a beam-
forming design to jointly coordinate the aggregated transmit
power and overall ICI with an outage probability threshold
being assigned to each SINR constraint. The design provides
robustness against the second order statistical CSI errorsand
the authors assume that the statistical average of total ICIcan
be accurately estimated by the UTs and then updated to the
local BS. The assumption of statistical channel is, neverthe-
less unrealistic in practice due to the time-varying natureof
wireless communications. Assuming instantaneous CSI errors
are Gaussian distributed and employing the Bernstein-type
inequality method, the authors in [13] introduce an outage-
based robust transmission design to minimize the total transmit
power subject to satisfying QoS constraints for UTs above
a certain outage probability threshold. This paper proposes
a novel probabilistic constrained robust transmission strategy
that minimizes overall transmit power while satisfying QoS
requirements at a set of outage levels for individual UTs in
a distributed manner in the presence of CSI uncertainties to
handle instantaneous CSI errors. The results reveal that the
proposed transmission strategy outperforms the designs in[8]
and [13] in terms of expending SINR operational range.

The rest of this paper is organized as follows. Section
II introduces the system model and problem formulation.
In Section III, the original problem is first reformulated as
a probabilistic constrained optimization problem and then
transformed into semidefinite programming (SDP) form with
linear matrix inequality (LMI) constraints. Then, the general
problem is decomposed and solved via projected subgradient



method, followed by the backhaul signaling overhead analysis.
Simulation results are analyzed in Section IV. Finally, Section
V concludes the paper.

Notations:w, w, W, respectively, present a scalarw, a vec-
tor w and a matrixW. The notations(.)H , tr(.), Pr(.), N(.),
CN(.), E(.) and[.]mn denote the complex conjugate transpose
operators, the trace operators, the probability operator,the
real and complex Gaussian random variables, the expecta-
tion value and themn-th element of a matrix, respectively.
W � 0 indicates thatW is a positive semidefinite matrix.
The notations vec(W) and diag(w) respectively, represent
the vector obtained by stacking the column vectors ofW

and the diagonal matrix with vectorw on its main diagonal.
The notationsRn×m, Cn×m andHn×m are used for the sets
of n-by-m dimensional real matrices, complex matrices and
complex Hermitian matrices, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a multicell downlink network with a coordinated
cluster ofN cells. Each cell consists of a BS equipped with
M antennas, transmitting toK active single-antenna UTs over
a shared frequency band. LetN = {1, · · · , N} and K =
{1, · · · ,K} denote, respectively, the set of indexes for the
BSs and the UTs. Let BSi, i ∈ N , represent the BS in the
i-th cell and UTik, k ∈ K, denote thek-th UT in thei-th cell.
Then, the signal received by UTik can be expressed as

zik = hHiikwiksik +
∑

n6=k,
n∈K

hHiikwinsin (1)

+
∑

j 6=i,
j∈N

∑

m∈K
hHjikwjmsjm + nik,

wheresik is the data symbol for UTik, wik ∈ C
M×1 denotes

the associated beamforming vector,nik ∼ CN(0, σ2
n) is the in-

dependently distributed zero-mean circularly symmetric com-
plex Gaussian (ZMCSCG) noise at UTik andhijk ∈ C

M×1

indicates the channel vector from BSi to UTjk. The instanta-
neous channel can be modelled ashijk = R

1/2
ijkhw, where the

entries ofhijk are correlated, the entries ofhw are independent
and identically distributed (i.i.d.) ZMCSCG random variables,
andRijk ∈ C

M×M is the channel covariance matrix of UTjk,
as seen by thei-th BS. Without loss of generality, it is assumed
that both the BSs and UTs have the prefect knowledge ofRijk,
whereas only partial information ofhw, i.e., ĥw, is known due
to minimum mean square error (MMSE) estimation. Let the
MMSE estimation error be denoted asew = hw − ĥw, then
the true channel vectorhijk can be modeled as

hijk = R
1/2
ijkhw = R

1/2
ijk (ĥw + ew)

= ĥijk + eijk ∀i, j, k, (2)

whereĥw, ew ∈ C
M×1 are uncorrelated and their entries are

i.i.d. ZMCSCG random variables, i.e.,[ĥw]t ∼ CN(0, 1) and
[ew]t ∼ CN(0, σ2

t ) [7]. ĥijk denotes the estimated channel

vector andeijk represents the corresponding CSI error vector.
AssumingE(|sik|2) = 1, the SINR at UTik is then given by

SINRik =
|hHiikwik|2

∑

n6=k,
n∈K

|hHiikwin|2 +
∑

j 6=i,
j∈N

∑

m∈K
|hHjikwjm|2 + σ2

n

. (3)

In order to optimize the overall transmit power while guaran-
teeing the QoS at the individual UTs in the presence of CSI
errors, the following robust transmission strategy is considered

min
wik,∀i,k

∑

i∈N

∑

k∈K
‖wik‖2

s.t. SINRik ≥ γik, ∀i, k,
(4)

whereγik is the requested target SINR by UTik.

III. O UTAGE BASED DISTRIBUTED OPTIMIZATION

In this section, we start by introducing slack variables
{pijk}i,j,k ∈ R to (4) to account for the coupling effects
among the multicells, as

min
wik,∀i,k

∑

i∈N

∑

k∈K
‖wik‖2 (5)

s.t.
|
(

ĥiik + eiik

)H

wik|2
∑

n6=k,
n∈K

|
(

ĥiik + eiik

)H

win|2 +
∑

l 6=i,
l∈N

plik + σ2
n

≥ γik, ∀i, k,
pijk ≥

∑

m∈K
|
(

ĥijk + eijk

)H

wim|2, ∀i, j 6= i, k,

wherepijk indicates the ICI from BSi to UTjk.

A. Chance-constrained Optimization of problem in (4)

In the sequel, the optimization problem in (5) is first
reformulated with chance-constrained settings, as

min
wik,∀i,k

∑

i∈N

∑

k∈K
‖wik‖2 (6)

s.t. Pr(
|
(

ĥiik + eiik

)H

wik|2
∑

n6=k,
n∈K

|
(

ĥiik + eiik

)H

win|2 +
∑

l 6=i,
l∈N

plik + σ2
n

≥ γik) ≥ 1− ρik, ∀i, k, (7)

Pr

(

∑

m∈K
|
(

ĥijk + eijk

)H

wim|2 ≤ pijk

)

≥ 1− ρik,

∀i, j 6= i, k, (8)

whereρik ∈ (0, 1) is the maximum SINR outage probability
and 1 − ρik indicates that the individual UTs is guaranteed
to achieve its target SINR with probability of1 − ρik at the
least. Let the rank-one positive semidefinite matrix be defined
asWik = wikw

H
ik, we can expand the set of constraints (7)

and (8), respectively, as

Pr
(

tr(−Bik∆iik) ≤ Θ+ tr(Bikeiike
H
iik)
)

≥ 1− ρik, (9)



Pr
(

tr(Qijk∆ijk) ≤ Υ− tr(Qijkeijke
H
ijk)
)

≥ 1− ρik, (10)

where














Bik = γ−1
ik Wik −

∑

n6=k,
n∈K

Win,

∆iik = ĥiike
H
iik + eiikĥ

H
iik,

Θ = tr(Bikĥiikĥ
H
iik)−

∑

l 6=i,
l∈N

plik − σ2
n,

(11)







Qijk =
∑

m∈K Wim,

∆ijk = ĥijke
H
ijk + eijkĥ

H
ijk,

Υ = pijk − tr(Qijkĥijkĥ
H
ijk).

(12)

In order to deal with the unknown terms that involveeiikeHiik
and eijke

H
ijk, we introduce slack variablesπ1, π2 ∈ R and

further assume that the summation of error variance of each
entry ofeijk lies within a hyper-spherical region with radius of
de, i.e., ‖eijk‖2 =

∑M
t=1 |[eijk]t|2 ≤ d2e. Due to the fact that

in practice, the entries ofeijk, ∀i, j, k are unbounded random
variables, the constraints‖eijk‖2 ≤ d2e naturally indicate that
the CSI errors lie within the hyper-spherical uncertainty region
with a certain probability. Therefore, the radius of uncertainty
region de should be carefully chosen in accordance with the
predefined outage probability, i.e.,de is a function of ρik.
Hence, the problem in (6) can be reformulated as

min
Wik�0,∀i,k

∑

i∈N

∑

k∈K
tr(Wik) (13)

s.t. Pr(tr(−Bik∆iik) ≤ Θ+ π1) ≥ 1− ρik,

Pr(tr(Qijk∆ijk) ≤ Υ+ π2) ≥ 1− ρik,

tr(Bikeiike
H
iik) ≥ π1, ∀i, k,

−tr(Qijkeijke
H
ijk) ≥ π2, ∀i, j 6= i, k,

‖eijk‖2 ≤ d2e(ρik), ∀i, j, k,
rank(Wik) = 1, ∀i, k.

The problem in (13) is numerically intractable since the inclu-
sion of estimation uncertainties in SINR constraints naturally
lead to an infinite number of convex sets. In the sequel,
following the similar principles as in [10], we first equivalently
convert the first two probabilistic constraints of the problems
in (13) into more convenient forms through the following
Lemma.

Lemma 1. Let ∆ ∈ C
M×M be a Hermitian random matrix

with each ZMCSCG element being characterized as [∆]cd ∼
CN(0, σ2

cd). Then, for any Hermitian matrix A, A ∈ C
M×M ,

tr(A∆) ∼ N(0, ‖D∆vec(A)‖2),
tr(A∆) = ‖D∆vec(A)‖U, U ∼ N(0, 1),

where D∆ = diag(vec(Σ∆
H)) and Σ∆ denotes a real-valued

M ×M matrix with each entry [Σ∆]cd = σcd.

Proof. See [10].

By applying Lemma 1 and the cumulative distribution
function (CDF) of a standard normal distribution, i.e.,φ(u) =
Pr(U ≤ u) = 1

2 [1 + erf( u√
2
)], where U ∼ N(0, 1), the

first and the second probabilistic constraints in problem (13),
respectively, can be expressed as follows

Pr(tr(−Bik∆iik) ≤ Θ+ π1) (14)

= Pr(‖D∆iik
vec(−Bik)‖U ≤ Θ+ π1)

= Pr

(

U ≤ Θ+ π1
‖D∆iik

vec(−Bik)‖

)

=
1

2
[1 + erf

(

Θ+ π1√
2‖D∆iik

vec(−Bik)‖

)

] ≥ 1− ρik,

Pr (tr(Qijk∆ijk) ≤ Υ+ π2) (15)

= Pr

(

U ≤ Υ+ π2
‖D∆ijk

vec(Qijk)‖

)

=
1

2
[1 + erf

(

Υ+ π2√
2‖D∆ijk

vec(Qijk)‖

)

] ≥ 1− ρik,

which are equivalent to the following expressions, respectively,
√
2erf−1(1− 2ρik)‖D∆iik

vec(−Bik)‖ ≤ Θ+ π1, (16)

√
2erf−1(1− 2ρik)‖D∆ijk

vec(Qijk)‖ ≤ Υ+ π2. (17)

Then we can transform the first two probabilistic constraints
in (13) into tractable forms using the following Lemma.

Lemma 2. The following second order cone constraint on x

‖Ax+ b‖ ≤ eTx+ d

is equivalent to the following LMI form [6]
[

(eTx+ d)I Ax+ b
(Ax+ b)T eTx+ d

]

� 0.

By applying Lemma 2 to (16) and (17), the first two
probabilistic constraints in (13) can be reformulated as LMI
forms, respectively, as

[

Θ+π1√
2erf−1(1−2ρik)

IM2 D∆iik
vec(−Bik)

vecH(−Bik)D∆iik

Θ+π1√
2erf−1(1−2ρik)

]

� 0,

(18)

[

Υ+π2√
2erf−1(1−2ρik)

IM2 D∆ijk
vec(Qijk)

vecH(Qijk)D∆ijk

Υ+π2√
2erf−1(1−2ρik)

]

� 0.

(19)

However, the problem in (13) is still numerically intractable as
terms that involveeiikeHiik andeijkeHijk is unknown to the BSs.
Thus, following the similar principles as in [8], we overcome
the problem of intractability via the following Lemma.

Lemma 3. (S-procedure [3]) The implication eHA1e +
2ℜ(bH1 e) + d1 ≤ 0 ⇒ eHA2e + 2ℜ(bH2 e) + d2 ≤ 0, where
Ai ∈ H

M×M , bi ∈ C
M , di ∈ R and e ∈ C

M×1, holds if and
only if there exists a µ ≥ 0 such that

[

A2 b2

bH2 d2

]

� µ

[

A1 b1

bH1 d1

]

.



To apply Lemma 3, we first expand the third, fourth and
fifth constraints in (13) in their equivalent quadratic forms of
eiik andeijk, respectively, as

{

eHiikIMeiik − d2e ≤ 0,
−eHiikBikeiik + π1 ≤ 0, ∀i, k, (20)

{

eHijkIMeijk − d2e ≤ 0,

eHijkQijkeijk + π2 ≤ 0, ∀i, j 6= i, k.
(21)

Then, we can rewrite the constraints (20) and (21) in terms of
LMI constraints as

[

Bik + µikIM 0
0 −π1 − µikd

2
e

]

� 0,

µik ≥ 0, ∀i, k,
[

−Qijk + µijkIM 0
0 −π2 − µijkd

2
e

]

� 0,

µijk ≥ 0, ∀i, j 6= i, k,

(22)

where the set of auxiliary parametersµik ≥ 0 andµijk ≥ 0
appear as a result of the application of Lemma 3. Finally,
combining (18), (19) with (22) and relaxing the set of non-
convex rank-one constraints via standard semidefinite relax-
ation (SDR) approach, the problem in (13) can be reformulated
as SDP form with LMI constraints, as

min
Wik�0,∀i,k

∑

i∈N

∑

k∈K
tr(Wik) (23)

s.t.

[

Θ+π1√
2erf−1(1−2ρik)

IM2 D∆iik
vec(−Bik)

vecH(−Bik)D∆iik

Θ+π1√
2erf−1(1−2ρik)

]

� 0,

[

Bik + µikIM 0
0 −π1 − µikd

2
e

]

� 0,

µik ≥ 0, ∀i, k,
[

Υ+π2√
2erf−1(1−2ρik)

IM2 D∆ijk
vec(Qijk)

vecH(Qijk)D∆ijk

Υ+π2√
2erf−1(1−2ρik)

]

� 0,

[

−Qijk + µijkIM 0
0 −π2 − µijkd

2
e

]

� 0,

µijk ≥ 0, ∀i, j 6= i, k,

The problem in (23) can now be optimally solved in a
centralized fashion. In case that the rank of optimal solutions
to (23) are greater than one, a similar randomization method
to [4] can be adopted to approximate the feasible rank-one
solution. In the next section, the problem in (23) will be
decomposed via primal decomposition [12].

B. Distributed Optimization of problem in (23)

Let the global intercell coupling variablesp ∈
R
N(N−1)K×1 be defined as

p =
[

p121, p122, ..., p12K , ..., pN11, ..., pNN−1K

]T

. (24)

Then we use direction vectordiik and dijk ∈
{0, 1}N(N−1)K×1 to extract

∑

l 6=i,
l∈N

plik and pijk from

p, respectively, as










∑

l 6=i,
l∈N

plik = dTiikp, ∀k,

pijk = dTijkp, ∀j 6= i, k.

(25)

Consequently, for any givenp, we can decompose the problem
in (23) intoN sub-problems at each BSi, as

min
Wik�0,∀k

fi(Wik,pi) ,
∑

k∈K
tr(Wik) (26)

s.t. Tik = T′
ik − (dTiikp)I(M2+1) � 0,

Eik =

[

Bik + µikIM 0
0 −π1 − µikd

2
e

]

� 0,

µik ≥ 0, ∀i, k,
Tijk = T′

ijk + (dTijkp)I(M2+1) � 0,

Eijk =

[

µijkIM −Qijk 0
0 −π2 − µijkd

2
e

]

� 0,

µijk ≥ 0, ∀i, j 6= i, k,

T′
ik =





tr(Bikĥiikĥ
H
iik)−σ2

n+π1√
2erf−1(1−2ρik)

IM2 D∆iik
vec(−Bik)

vecH(−Bik)D∆iik

tr(Bikĥiikĥ
H
iik)−σ2

n+π1√
2erf−1(1−2ρik)



 ,

T′
ijk =





−tr(Qijkĥijkĥ
H
ijk)+π2√

2erf−1(1−2ρik)
IM2 D∆ijk

vec(Qijk)

vecH(Qijk)D∆ijk

−tr(Qijkĥijkĥ
H
ijk)+π2√

2erf−1(1−2ρik)



 .

where pi ∈ R
NK×1,∀i, j 6= i is a real-valued vector

that contains only the local intercell coupling variables at
the i-th BS, i.e.,

∑

l 6=i,
l∈N

plik, ∀k and pijk, ∀j 6= i, k.

The function fi(Wik,pi) =
∑

k∈K tr(Wik) in (26) indi-
cates the dependence offi on pi. Since the optimal so-
lution w∗

ik is obtained as a function ofp, we introduce
an algorithm to iteratively coordinatesp and wik, ∀i, k,
at their globally optimal settings ofp∗ and w∗

ik, re-
spectively, to minimize the total power consumption in
the multicell network. Letλik, λijk ∈ H

(M2+1)×(M2+1),
αik, αijk ∈ H

(M+1)×(M+1) and βik, βijk ∈ R be de-
fined as the Lagrange multipliers, then we can express
the Lagrangian of thei-th subproblem in (26) asLi =
∑

k∈K
tr (Wik) −

∑

k∈K
tr (λikTik) −

∑

l 6=i,
l∈N

∑

k∈K
tr (λijkTijk) −

∑

k∈K
tr (αikEik) −

∑

l 6=i,
l∈N

∑

k∈K
tr (αijkEijk) − βikµik − βijkµijk.

Since the problem in (26) is convex, strong duality
holds [3] and the dual function is given byℓi(p) =

inf
Wik�0

Li = Ξ
(

{λ∗ik, α∗
ik, β

∗
ik}k ,

{

λ∗ijk, α
∗
ijk, β

∗
ijk

}

j 6=i,k

)

+






∑

k∈K
tr(λikI)d

T
iik −

∑

l 6=i,
l∈N

∑

k∈K
tr(λijkI)d

T
iik






p,



where Ξ

(

{λ∗ik, α∗
ik, β

∗
ik}k ,

{

λ∗ijk, α
∗
ijk, β

∗
ijk

}

j 6=i,k

)

=

inf
Wik�0

∑

k∈K
tr (Wik) −

∑

l 6=i,
l∈N

∑

k∈K
tr (αijkEijk) − βikµik −

βijkµijk −
∑

k∈K
tr
(

λikT
′
ik

)

−
∑

l 6=i,
l∈N

∑

k∈K
tr
(

λijkT
′
ijk

)

−

∑

k∈K
tr (αikEik) . Then we can write

f∗i (W
∗
ik,pi) = f∗i (pi) = ℓ∗i (p) = gip (27)

+Ξ
(

{λ∗ik, α∗
ik, β

∗
ik}k ,

{

λ∗ijk, α
∗
ijk, β

∗
ijk

}

j 6=i,k

)

,

where

gi =
∑

k∈K
tr(λ∗ikI)d

T
iik −

∑

j 6=i,
j∈N

∑

k∈K
tr(λ∗ijkI)d

T
ijk. (28)

It can be easily concluded from (27) that for any givenp̂,

ℓ∗i (p̂) ≥ ℓ∗i (p) + gi(p̂− p). (29)

Therefore,gi ∈ R
1×N(N−1)K is the subgradient vector of

ℓ∗i (p) and f∗i (pi) obtained for thei-th subproblem [12].
Following the similar steps of analysis as for thei-th sub-
problem in (26), one can easily calculate the global sub-
gradient

∑

i∈N
f∗i (pi), obtained for the general problem in

(23) at a givenp, as g =
∑

i∈N
∑

k∈K tr(λ∗ikI)d
T
iik −

∑

i∈N
∑

j 6=i,
j∈N

∑

k∈K tr(λ∗ijkI)d
T
ijk =

∑

i∈N
gi.Then, by sharing

the subgradient vectorgi with other BSs via inter-BS com-
munications, each BSi can compute the global subgradientg

locally and updates the global intercell coupling vectorp as

p[t+1] =

[

p[t] − αg[t]T

√
t
∥

∥g[t]
∥

∥

]+

, (30)

where [.]+ indicates the projection onto nonnegative orthant,
t represents the iteration index andα > 0 is the step size.
The steps of solving the problem in (4) are summarized in
Algorithm 1. Furthermore, the Algorithm 1 is guaranteed to
converge to the optimal solution of (4) provided a proper
selection of step sizeα and the iteration number can be limited
at the cost of sub-optimal solutions in order to reduce the
signalling overhead [12]. In each iteration of our proposed
strategy, the major information that thei-th BS needs to be
exchanged with the otherN−1 BSs is the subgradientgi that
containsNK non-zero real-valued entries, i.e., tr(λ∗ikI), ∀k
and tr(λ∗ijkI), ∀k, j 6= i. Thus, the total signaling overhead
among all the BSs in each iteration for Algorithm 1 is
O(N2K(N − 1)), which is same as ADMM approach in [8].

IV. SIMULATION RESULTS

In this paper, a 3-cell cellular network is considered, where
2 UTs are randomly scheduled in the vicinity of the bound-
aries in each cell. The distance between two neighboring
BSs is 500 m and each BS equips with 6 antennas. Sim-
ilar to [9], the (m,n)-th element ofRijk is modeled as

Algorithm 1 Distributed Algorithm for Solving (4) at indi-
vidual BSs

1: Initialize : iteration indext = 0, global intercell coupling
vectorp (0) ∈ R

KN(N−1)×1;
2: while the result of problem in (26) is not convergeddo
3: each BS locally solves its own sub-problem (26);
4: each BS calculates its local subgradientgi using (28);
5: each BS exchangesgi via inter-BS communications;
6: each BS locally calculates the global subgradient based

on the exchanged information, asg =
∑N
i=1 gi;

7: each BS update the global intercell coupling vectorp

according to (30);
8: increment the iteration numbert = t+ 1 in (30);
9: end while

10: if W∗
ik is rank-onethen

11: The optimalwik is the eigenvector ofW∗
ik;

12: else
13: Apply the standard Gaussian randomization method [4]

to approximate rank-onewik solutions;
14: end if

[Rijk]mn = ej
2πδ
λ

[(n−m)sinθijk]e−2[πδσ
λ

(n−m)cosθijk]
2

, m,n ∈
[1,M ], whereδ = λ/2 is the spacing between two adjacent
antenna elements,λ is the carrier wavelength,σ = 2◦ is angu-
lar offset standard deviation andθijk is the angle of departure
for UTjk with respect to the broadside of the antenna of BSi.
To account for the path loss, shadowing and fading, we scaled
the channel vector̂hijk and its corresponding estimation error

eijk by GaLijkσ2
F e

−0.5
(σsln10)2

100 , whereGa = 15 dBi is array
antenna gain,Lijk = 34.53 + 38 log10(ℓ) represents the path
loss model over a distance ofℓ m between BSi and UTjk, σ2

F

is the variance of the complex Gaussian fading coefficient and
σs = 10 dB is log-normal shadowing standard deviation. Equal
SINR targetsγik = γ and equal SINR outage probability
ρik = ρ are used for all UTs. Without loss of generality, it is
further assumed that each entry of estimation errorew has the
same varianceσ2

t = σ2, i.e., [ew]t ∼ CN(0, σ2). In the sequel,
we illustrate a connection between the radius of uncertainty
region de and the outage probabilityρ as follows. Since
eijk ∈ C

M×1 consists ofM ZMCSCG random variables,
which is equivalent to2M real normal random variables,
i.e., [eijk]t = ℜ{[eijk]t} + ℑ{[eijk]t}, whereℜ{[eijk]t} =
σt√
2
U, ℑ{[eijk]t} = σt√

2
U, U ∼ N(0, 1), then, we can write

‖eijk‖2 =

M
∑

t=1

|[eijk]t|2 =

M
∑

t=1

(ℜ([eijk]t)2 + ℑ([eijk]t)2)

=
2M
∑

t=1

σ2
t

2
U2 =

σ2

2

2M
∑

t=1

U2 ≤ d2e(ρ).

Then according to the definition of the CDF of chi-square
distribution [14], the CDF of Pr(

∑2M
t=1 U

2) ≤ 2d2e
σ2 can be ex-

pressed asψχ2
2M

(
2d2e
σ2 ) = 1−ρ, which indicates the probability

of 1 − ρ that a hyper-spherically bounded uncertainty region



holds for radiusde =

√

σ2ψ−1

χ2
2M

(1−ρ)
2 , whereψ−1

χ2
2M

(.) is the
inverse CDF of a standard chi-square distribution with2M
degrees of freedom. All of the system designs in this paper are
efficiently simulated and averaged via the existing solvers, e.g.,
CVX [11]. The results are presented in comparison with the
relevant literature, e.g., the worst-case robust design against
bounded error in [8], the chance-constrained robust design
against instantaneous CSI error in [13].
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Fig. 1: Comparison of total transmit power withρ = 0.3 for
the proposed strategy and a) chance-constrained design in [13],
b) ADMM approach in [8].

Fig. 1 presents the performance comparison of total transmit
power for the proposed strategy for instantaneous CSI error
variances ofρ = 0.3 against chance-constrained design in [13]
and ADMM approach in [8]. One can conclude from the figure
that the proposed strategy performs overwhelmingly better
than the designs in [8] and [13] in terms of expanding SINR

operational range for the observed error variance except for
the case ofσ2 = 0.01. This confirms the improved resilience
against instantaneous CSI uncertainties of the proposed strat-
egy. In the case ofσ2 = 0.01, the proposed strategy requires
less transmit power as compared with the conservative worst-
case design in [8] for low and medium SINR requirements
and closely follows the chance-constrained design in [13] up
to medium target SINR.

V. CONCLUSION

This paper proposes a probabilistic constrained robust beam-
forming for minimizing the overall transmit power in multicell
interference networks in the presence of imperfect CSI. The
problem is constrained to SINR requirements and provides
robustness against the instantaneous CSI uncertainties with
different SINR outage levels at individual UTs. We first
convert this numerically intractable problem to a SDP form
with LMI constraints via Schur complement, S-procedure and
SDR technique. Then the general problem is decomposed
into a set of parallel subproblems to be solved at individual
BSs via subgradient iterations with a light backhaul signaling
overhead. Our simulation results confirm the advantages of
the proposed strategy in terms of providing larger SINR
operational range as compared to recent introduced designs.
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