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In fact dietary ingestion of AA along with individual 
genetic susceptibility provides a scenario that plausibly 
can explain all the peculiarities of BEN such as geograph-
ical distribution and high risk of urothelial cancer. For the 
countries harbouring BEN implementing public health 
measures to avoid AA exposure is of the utmost impor-
tance because this seems to be the best way to eradicate 
this once mysterious disease to which the residents of 
BEN villages have been completely and utterly at mercy 
for so long.

Keywords Balkan endemic nephropathy · Disease 
aetiology · Upper urothelial cancer · Environmental 
and genetic factors · Aristolochic acid nephropathy · 
Aristolochic acid

Abbreviations
AA  Aristolochic acids
AAI  Aristolochic acid I
AAIa  Aristolochic acid Ia (8-hydroxyaristolochic 

acid I)
AAII  Aristolochic acid II
AAN  Aristolochic acid nephropathy
AhR  Aryl hydrocarbon receptor
ARE  Antioxidant response element
BEN  Balkan endemic nephropathy
CHN  Chinese herbs nephropathy
CKD  Chronic kidney disease
CYP  Cytochrome P450
dA-AAI  7-(Deoxyadenosin-N6-yl)aristolactam I
dA-AAII  7-(Deoxyadenosin-N6-yl)aristolactam II
dG-AAI  7-(Deoxyguanosin-N2-yl)aristolactam I
dG-AAII  7-(Deoxyguanosin-N2-yl)aristolactam II
dG-OTA  OTA-deoxyguanosine adduct
EFSA  European Food Safety Authority

Abstract Balkan endemic nephropathy (BEN) is a 
unique, chronic renal disease frequently associated with 
upper urothelial cancer (UUC). It only affects residents 
of specific farming villages located along tributaries of 
the Danube River in Bosnia-Herzegovina, Croatia, Mac-
edonia, Serbia, Bulgaria, and Romania where it is esti-
mated that ~100,000 individuals are at risk of BEN, while 
~25,000 have the disease. This review summarises current 
findings on the aetiology of BEN. Over the last 50 years, 
several hypotheses on the cause of BEN have been formu-
lated, including mycotoxins, heavy metals, viruses, and 
trace-element insufficiencies. However, recent molecu-
lar epidemiological studies provide a strong case that 
chronic dietary exposure to aristolochic acid (AA) a prin-
cipal component of Aristolochia clematitis which grows 
as a weed in the wheat fields of the endemic regions is 
the cause of BEN and associated UUC. One of the still 
enigmatic features of BEN that need to be resolved is why 
the prevalence of BEN is only 3–7 %. This suggests that 
individual genetic susceptibilities to AA exist in humans. 
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ESRD  End-stage renal disease
HRN  NADPH:cytochrome P450 reductase null
HSPG2  Heparan sulphate proteoglycan 2
HUFs  Hupki mouse embryo fibroblasts
IARC  International Agency for Research on Cancer
NAT  N,O-Acetyltransferase
NQO1  NAD(P)H:quinone oxidoreductase
OTA  Ochratoxin A
ROS  Reactive oxygen species
SULT  Sulfotransferase
UGT  UDP glucuronosyltransferase
UUC  Upper urothelial cancer
XRE  Xenobiotic response element

Introduction

Balkan endemic nephropathy (BEN) is a chronic tubu-
lointerstitial nephropathy characterised by an insidious 
onset and gradual progression to end-stage renal disease 
(ESRD) which was first described more than 60 years ago 

(Danilovic et al. 1957; Tanchev et al. 1956). The disease 
affects residents of rural farming villages located along 
the tributaries of the Danube River in Bosnia-Herzego-
vina, Croatia, Macedonia, Serbia, Bulgaria, and Romania 
(Fig. 1) (Grollman 2013; Pavlovic 2013; Pfohl-Leszkowicz 
2009; Radovanović 2002; Stefanovic 1983).

A characteristic feature of BEN is its close association 
with upper urothelial cancer (UUC) of the renal pelvis and 
ureter (Miletić-Medved et al. 2005; Radovanovic 2002; 
Stefanovic 1983; Stefanovic and Radovanovic 2008). 
These UUCs are mostly carcinomas (Toncheva et al. 
2014) and are the most common causes of death in BEN 
patients. BEN patients also have a higher risk of develop-
ing UUC after kidney transplantation (Basic-Jukic et al. 
2007). The difference in the prevalence of UUC between 
the general kidney transplant population (0.69 %) and the 
BEN population (43.7 %) is enormous, confirming the 
association of BEN with UUC. In BEN patients, bilateral 
nephroureterectomy before transplantation has been sug-
gested as a preventive measure (reviewed in Stefanovic 
et al. 2015).

Fig. 1  Distribution of BEN foci in Bosnia-Herzegovina, Croatia, Serbia, Bulgaria, and Romania (https://en.wikipedia.org/wiki/Danubian_
endemic_familial_nephropathy#/media/File:Balkan_endemic_nephropathy_map.svg)

https://en.wikipedia.org/wiki/Danubian_endemic_familial_nephropathy%23/media/File:Balkan_endemic_nephropathy_map.svg
https://en.wikipedia.org/wiki/Danubian_endemic_familial_nephropathy%23/media/File:Balkan_endemic_nephropathy_map.svg
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Epidemiology, pathology, clinical features 
and diagnosis of BEN

The most remarkable feature of BEN is its endemic 
nature and its familial but not inherited pattern of distri-
bution. Nevertheless, besides the endemic regions shown 
in Fig. 1, sporadic cases of BEN were also found in other 
regions (Stefanovic et al. 2009, 2015). BEN only affects 
the rural farming population, but has never been found 
among inhabitants of larger cities. The disease exhibits a 
focal occurrence within certain villages where remarkably 
affected villages are often in close proximity to unaffected 
villages (Bamias and Boletis 2008). Moreover, within the 
same village, affected and spared households often live in 
close proximity. In a single household, numerous members 
of one or several generations can be affected (Stefanovic 
et al. 2015); therefore, it has been postulated that only per-
sons “living under the same roof and eating the same food” 
are at risk (Bamias and Boletis, 2008). This peculiar geo-
graphic distribution has remained constant since the 1950s.

BEN has an onset of disease between 40 and 60 years 
of age and has a long latency period. Individuals of both 
genders are affected, with slight female predominance. 
The disease occurs in adults, but not in children (Grollman 
2013). BEN frequently results in terminal kidney failure, 
and it has been estimated that ~100,000 individuals are at 
risk, while ~25,000 have the disease (Pavlovic 2013).

The pathology of BEN has been reviewed in numerous 
reports (Bamias and Boletis 2008; Jankovic et al. 2009; 
Jelakovic et al. 2014; Pavlovic 2013; Schiller et al. 2008; 
Wernerson et al. 2014). The pathology of BEN shares 
similarities with tubulointerstitial renal diseases and is 
characterised by progressive kidney atrophy and sclerosis 
(Pavlovic 2013). Histologically, BEN is characterised by 
extensive hypocellular interstitial fibrosis associated with 
tubular atrophy. Glomerular and vascular lesions are asso-
ciated with periglomerular fibrosis, glomerular lesions, 
including ischaemic, microcystic, obsolescent glomeruli, 
occasional thrombotic microangiopathy-like lesions and 
focal segmental sclerosis-like lesions (Pavlovic 2013).

The clinical symptoms and markers of BEN are not 
specific and frequently remain unrecognised for several 
years (Radonić and Radosević 1992; Stefanovic et al. 
2009). After an initial asymptomatic stage, patients suffer 
from weakness and lassitude, mild lumbar pain, pallor of 
the skin and a copper-brownish discoloration of the palms 
and soles. At this phase of the disease, occurring usu-
ally at an older age (Cukuranovic et al. 2007; Djukanović 
et al. 2007), anaemia develops which is associated with 
a significant loss of renal function indicating the pres-
ence of chronic kidney disease (CKD). Intermittent pro-
teinuria indicating proximal tubular damage can be found 
early, whereas in the uraemic stage of BEN, it becomes 

permanent. Loss of urine concentration capacity precedes 
a decrease in the glomerular filtration rate (Alecković et al. 
2010; Arsenović et al. 2005; Dimitrov et al. 2006).

Kidney atrophy has been suggested as one of the criteria 
for the clinical diagnosis of BEN. However, investigations 
of kidney status have shown a variable decrease in kidney 
size with very small contracted kidneys in ESRD (Radonić 
and Radosević 1992). Unfortunately, there are no diagnos-
tic markers of BEN, which are characteristic for the dis-
ease. However, the set of epidemiological, clinical and bio-
chemical data along with the pattern of pathologic injury, in 
the absence of any other renal disease, is highly suggestive 
of BEN in affected countries. The diagnostic criteria for 
BEN were described for the first time more than 50 years 
ago and have been improved continuously since then. How-
ever, criteria differed in affected countries and a meeting 
was held in Zagreb, Croatia, in 2006 (Grollman and Jela-
kovic 2007) to establish more unified diagnostic criteria for 
BEN. Thereafter, an international panel of researchers has 
agreed on appropriate criteria for epidemiologic and clini-
cal studies on BEN (Stefanovic et al. 2007).

During the “International Workshop on the Diag-
nostic Criteria in BEN”, held in Brač, Croatia, in 2008, 
and at a meeting organised in 2012 in Skopje, Macedo-
nia, novel criteria were evaluated and used for prepara-
tion of up-dated recommendations (KDIGO 2013). The 
consensus was targeted to provide recommendations for 
the screening, diagnosis and therapy of patients suffer-
ing from BEN (Jelakovic et al. 2014). A recent study by 
Dika et al. (2014) evaluated the diagnostic significance 
of the variables previously proposed to unify the diag-
nostic criteria of BEN, but also included new criteria. 
In the study patient subgroups, no statistical differences 
in haemoglobin level, leucine aminopeptidase in urine 
and active urinary levels of transforming growth factor β 
were found in the BEN diseased group when compared 
to other subgroups. Kidney length and parenchyma thick-
ness, α1-microglobulinuria and kidney function assessed 
by the Modification of Diet in Renal Disease (MDRD) 
formula were the variables that differentiated the study 
subgroups of patients. Based on these results, the cut-off 
value of α1-microglobulin for screening was considered 
to be 23.5 mg/g creatinine and for making a diagnosis of 
BEN 31.5 mg/g creatinine. However, thus far no serum or 
urinary biomarkers have been shown to be really useful to 
clinically diagnose BEN.

Hypotheses of BEN aetiology

Soon after the first description of BEN, investigations on 
its cause were started. Probably no other human disease has 
produced so many hypotheses to resolve its aetiology.
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To date several hypotheses have been formulated that 
could be relevant to the aetiology of BEN. These hypotheses 
can be divided into two groups; the first group represents 
exogenous environmental factors and the second group 
includes confounding factors. It should be noted, however, 
that only one of the hypotheses, namely the chronic poison-
ing with aristolochic acid (AA), a toxin produced by plants 
of the genus Aristolochia, has provided convincing evidence 
to be the primary causative agent in BEN, and particular 
in the role of developing BEN-associated cancer. Indeed, 
environmental exposure to AA by BEN patients is now well 
documented (Anandagoda and Lord 2015; Arlt et al. 2002a, 
2007; Bamias and Boletis 2008; Bui-Klimke and Wu 2014; 
Grollman 2013; Grollman et al. 2007; Jelakovic et al. 2014; 
Pavlovic 2013; Schmeiser et al. 2012; Stefanovic et al. 
2015)]. Therefore, the review focuses on the role of AA in 
the aetiology of BEN and associated cancer.

Exogenous factors relevant for BEN aetiology

For the past decades a variety of environmental agents have 
been investigated (Arlt et al. 2002a, b, 2007; Bamias and 
Boletis 2008; Batuman 2006; Grollman 2013; Ivić 1969; 
Pfohl-Leszkowicz et al. 2002, 2007, 2009; Radovanovic 
2002; Stefanovic and Cosyns 2005; Stefanovic et al. 2015; 
Voice et al. 2006), and among them various heavy metals or 
metaloids, mycotoxins [in particular ochratoxin A (OTA)], 
organic chemicals from Pliocene lignite deposits located in 
endemic areas in the Balkans (hydrogeochemical factors) 
and the nephrotoxic and carcinogenic plant product AA.

Metals and metalloids

Concerning several metals or metalloids, it has been 
hypothesised that either their low or high concentrations 
can mediate the development of BEN. The hypothesis was 
based on the finding that some of them, such as silica, lead, 
uranium, copper, cobalt, zinc, manganese, arsenic, tita-
nium, barium, aluminium, chromium, strontium, cadmium, 
bismuth, molybdenum, nickel, tungsten, antimony, and tin 
can be present in water and soil in BEN areas (Bui-Klimke 
and Wu 2014). BEN has been suggested to be associated 
with high levels of these elements in water (Nichifor et al. 
1985) and tumour formation has been linked to exposure to 
silica and nickel (Markovic et al. 1976). In contrast, metal 
analysis in water and soil in BEN areas have found that 
measured concentrations all fell below the detection lim-
its of the analytical methods used (Pfohl-Leszkowicz et al. 
2002). Further, results found in a study by Karmaus et al. 
(2008) indicated that metals such as cadmium, lead, metal-
loids arsenic and selenium do not play a critical role in the 
aetiology of BEN.

The concentrations and the extent of selenium deficiency 
are well documented in rocks, soil, water, food stuffs, and 
serum samples collected from endemic and non-endemic 
regions of BEN in Serbia (Maksimovic 1991; Maksimovic 
et al. 1992; Maksimovic and Djujic 1997). However, there 
was inadequate evidence that selenium deficiency was a 
causative agent for BEN and UUC in endemic areas (Mak-
simovic 1991; Maksimovic et al. 1992; Maksimovic and 
Djujic 1997). Indeed, a later review by Batuman (2006) 
reported that selenium was uniformly distributed between 
endemic and non-endemic areas and was highly improb-
able to be a cause of BEN.

All these findings led to conclusion to rule out heavy 
metals and metalloids from the causes of BEN (Batuman 
2006).

Ochratoxin A

The ochratoxin A (OTA) hypothesis was based on the fact 
that residents in endemic regions are exposed to relatively 
high concentrations of OTA (Radić et al. 1997). It was 
one of the first well-elaborated hypotheses regarding the 
aetiology and pathogenesis of BEN, which was described 
in the 1970s (Krogh et al. 1977). Several studies carried 
out in various areas of the world including many coun-
tries in Europe have shown that the mycotoxin OTA is a 
natural contaminant of many plant products. OTA-mediated 
nephropathy is endemic, and outbreaks have been associ-
ated with weather conditions (Hald 1991). Nevertheless, 
similar high exposure to OTA occurs throughout the world 
in farming communities that are largely free of CKD and 
urothelial malignancy (De Broe 2012).

OTA is a potent nephrotoxin and renal carcinogen in 
rodents. Although this mycotoxin is considered to be 
a possibly carcinogenic to humans (Group 2B as clas-
sified by International Agency for Research on Cancer 
[IARC]), it has never been linked to any nephropathy in 
humans (Stefanovic et al. 2015). An endemic nephropa-
thy, which showed clinical and pathological similarities 
with BEN, was observed in Tunisia, where some regions 
are contaminated with OTA (Maaroufi et al. 1995). Nev-
ertheless, chronic nephrotoxicity clearly associated with 
dietary exposure to OTA has not been observed in humans 
(Godin et al. 1997). Furthermore, the mechanism of 
OTA-derived tumour formation is unknown, and conflict-
ing results regarding the potential of OTA to react with 
DNA to form covalent DNA adducts have been reported 
(Castegnaro et al. 2006; Mally and Dekant 2005, 2009; 
Manderville 2005; Mantle et al. 2010; Pfohl-Leszkowicz 
and Manderville 2012; Turesky 2005). Based on positive 
results detecting DNA adduct spots by the 32P-postlabel-
ling method, some investigators postulated that OTA forms 
covalent DNA adducts (Pfohl-Leszkowicz et al. 1991, 



Arch Toxicol 

1 3

1993), whereas several in vitro and in vivo studies using 
radiolabeled OTA consistently failed to detect radioactiv-
ity associated with DNA (Gautier et al. 2001; Gross-Stein-
meyer et al. 2002; Mally et al. 2004; Schlatter et al. 1996). 
These findings suggest that the adduct spots detected by 
32P-postlabelling may not contain OTA or parts of the OTA 
molecule. Taking into consideration all the available data, 
the European Food Safety Authority (EFSA) scientific 
panel on contaminants in the food chain concluded that 
there was no evidence for the existence of specific OTA-
DNA adducts and that the genotoxic effects of OTA were 
most likely attributable to oxidative stress (European Food 
Safety Authority 2006).

Whereas it is undoubtedly important to encourage pre-
vention of food contamination by OTA and other myco-
toxins, these observations suggest that OTA is not likely to 
be an aetiological factor involved in BEN and associated 
UUC. OTA poisoning can, however, influence the metabo-
lism of other carcinogens like AA in vivo (see Stiborová 
et al. 2015a).

Organic chemicals from Pliocene lignite deposits

The so-called lignite hypothesis was formulated by scien-
tists from the US Geological Survey in the 1990s (Feder 
et al. 1991; Orem et al. 1999). It is based on the geographi-
cal matching between the location of Pliocene lignite depos-
its in the Balkans and the location of endemic areas (Pav-
lovic 2013) and the assumption that toxic organic chemicals 
in lignite, or in weathered lignite, might be released by 
groundwater and hence contaminate drinking water wells. 
Although the concentrations of these organic compounds 
in well water are low, long exposure and/or accumulation in 
body tissues over time may result in adverse health effects, 
including symptoms of BEN (Bunnell et al. 2007; Pfohl-
Leszkowicz et al. 2002; Tatu et al. 1998).

Drinking water used in endemic regions was thought 
to contain polycyclic aromatic hydrocarbons (PAHs), aro-
matic amines, phenols, and phthalates from the low-rank 
coals. Indeed, the presence of some of these compounds 
in groundwater samples from endemic villages has been 
described (Feder et al. 1991; Maharaj et al. 2014). Two 
water samples from endemic areas and one from a non-
endemic area in Serbia showed high concentrations of 
naphthalene, fluorine, phenanthrene, and pyrene (Orem 
et al. 1999). Later it was shown that levels of aliphatic and 
aromatic compounds were higher in water samples in BEN 
areas than in those from non-endemic areas in Romania 
(Orem et al. 2002). Likewise, another study (Maharaj et al. 
2014) indicated that compounds, such as benzenes, phe-
nols, phthalates, polycyclic aromatic hydrocarbons, and/or 
lignin degradation compounds, occur in higher concentra-
tions in extracts of endemic area Pliocene lignite sample. 

In contrast, a study by Voice et al. (2006) found no detect-
able levels of any of the 16 priority pollutants designated 
by the US Environmental Protection Agency were found in 
water samples throughout the Balkans, and no difference 
in waterborne concentrations of these pollutants between 
BEN and non-endemic villages (Voice et al. 2006). These 
findings suggest that the Pliocene lignite hypothesis is lim-
ited to the spatial association originally proposed in BEN 
(Maharaj 2014). Therefore, exposures of individuals living 
in endemic areas to the compounds from the lignite depos-
its are not relevant for the aetiology of BEN.

Aristolochic acid

Over the last 10 years aristolochic acid (AA) has emerged 
as a causative factor of BEN, particularly the development 
of BEN-associated UCC. AA is the natural plant extract 
of both the Aristolochia and Asarum genera of the family 
Aristolochiaceae, in Europe especially Aristolochia clema-
titis (Heinrich et al. 2009). The extract consists of structur-
ally related nitrophenanthrene carboxylic acids with AAI 
and AAII being the major components (Fig. 2). The AA 
hypothesis was proposed by Kazantzis and Ivic already in 
1967 (Ivic 1969; Ivic and Lovriæ 1967; Kazantzis 1967) 
but was neglected for many decades.

It was proposed that contamination of the baking flour 
in endemic areas by seeds of the birthwort Aristolochia 
clematitis (Fig. 2) was the cause of BEN. The initial study 
of this theory was carried out by Ivic (1969). He found that 
these plants grew in local wheat fields as a weed and that 
its seeds comingled with wheat grain during the harvest-
ing process. He administered Aristolochia seeds to rabbits 
that developed renal damage and speculated that human 
exposure to the toxic component of the Aristolochia seeds 
could occur through ingestion of bread prepared with flour 
derived from contaminated grain. Rabbits that were fed 
flour containing Aristolochia clematitis seeds developed 
nephropathy, which on a histological level resembled find-
ings of BEN. Ivić even proved the carcinogenetic potential 
of the plant because rat used as experimental model devel-
oped sarcomas at the site of injection of aqueous extracts of 
Aristolochia clematitis (Ivic and Lovriæ 1967). Although 
these well-documented results provided evidence for the 
involvement of AA in BEN, Ivić’s observations were 
neglected for many decades till 1993.

In that year, Vanherweghem et al. (1993) described the 
occurence of a novel renal disease that developed in hun-
dreds of young Belgian women. The disease was initially 
described as Chinese herbs nephropathy (CHN), but later 
renamed aristolochic acid nephropathy (AAN) (Arlt et al. 
2004; Debelle et al. 2008). At a single medical clinic in 
Brussels, ESRD developed in these women after receiving 
slimming pills including Chinese herbs. Cosyns first called 
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attention to the unique renal histopathology of CHN exhib-
iting high similarity to BEN predominantly on morphologi-
cal and clinical grounds (Cosyns et al. 1994; Cosyns 2003). 
It was proven that the slimming pills in Belgium contained 
Chinese herbs which were contaminated with nephrotoxic 
AA. Its presence in the slimming pills was the result of an 
accidental substitution of the prescribed herb Stephania 
tetrandra by Aristolochia fangchi, a plant species of the 
Aristolochia genus known to contain AA. Subsequently, 
UCC developed in nearly 50 % of CHN patients suffer-
ing from ESRD (Cosyns et al. 1998, 1999; Nortier et al. 
2000), which again demonstrated high similarities of CHN 
with BEN. Importantly, specific AA-derived DNA adducts 

were found by the 32P-postlabelling method by Schmeiser 
and coworkers for the first time in renal and ureteric tis-
sue of CHN patients (Arlt et al. 2004; Bieler et al. 1997; 
Lord et al. 2001, 2004; Nortier et al. 2000; Schmeiser et al. 
1996) proving exposure to AA in these patients (Fig. 3). 
In 2004, one patient suffering from AAN showed a spe-
cific AAG to TAG transversion mutation (an A:T → T:A 
transversion) in codon 139 (Lys → Stop) of exon 5 in the 
tumour suppressor gene TP53 (Fig. 4a) (Lord et al. 2004). 
These A:T → T:A transversion mutations were also found 
in a group of CHN patients with urothelial malignancy, but 
also other types of mutations were identified (Aydin et al. 
2014). The apparent selectivity for mutations at adenine 

Fig. 2  Aristolochia clematitis 
(a) and the formula of the major 
components of the AA plant 
product, aristolochic acid I 
(AAI) and aristolochic acid II 
(AAII) (b)
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Fig. 3  Metabolic activation and DNA adduct formation of aris-
tolochic acid I (AAI) and II (AAII); 7-(deoxyadenosin-N6-yl)aristol-
actam I or II (dA-AAI or dA-AAII), 7-(deoxyguanosin-N2-yl)aristol-
actam I or II (dG-AAI or dG-AAII). Inserts Autoradiographic profiles 

of DNA adducts detected by 32P-postlabelling showing the analysis of 
renal tissue of an CHN/AAN patient in Belgium (Nortier et al. 2000) 
and a patient with end-stage renal disease (ESRD) and UCC living in 
an area endemic for BEN (Arlt et al. 2002b)
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residues in AA-induced urothelial tumours is consistent 
with the high prevalence of the 7-(deoxyadenosin-N6-yl)
aristolactam I (dA-AAI) adduct in the target tissue of CHN 
patients. This adduct also shows a long persistance in renal 
tissue of these CHN patients and is still detectable decades 
after AA exposure (Schmeiser et al. 2014). The mutated 
adenine in codon 139 of TP53 has the same neighbouring 
bases as in codon 61 (CAA) of the H-ras gene in experi-
mental rodent models (rats, mice), where also character-
istic A:T → T:A transversions have been found after AA 
treatment suggesting a sequence specific mechanism dur-
ing mutation induction (Schmeiser et al. 1990, 1991; Wang 
et al. 2011, 2012). Because the observed A:T → T:A trans-
versions in TP53 are consistent with the known mutagenic 
specificity of AA (Schmeiser et al. 1990, 1991; Broschard 
et al. 1994), it was proposed that AA-induced A:T → T:A 
transversion mutations in TP53 of urothelial tumours can 
be used as mechanistically relevant biomarkers of AA 

exposure in combination with specific AA-DNA adduct 
formation in urothelial tissue of these patients (Lord et al. 
2004; Arlt et al. 2007). Mutations at these sites have not 
previously been associated with UUC and, thus, appear 
to be uniquely associated with exposure to AA (Arlt et al. 
2007; Moriya et al. 2011; Olivier et al. 2012). These data 
indicated the molecular mechanism, whereby AA causes 
urothelial malignancy (Arlt et al. 2007; Gökmen et al. 
2013). 

These reports renewed scientific interest in the old 
hypothesis that AA is involved in the development of BEN. 
New investigations focused on the use of specific AA-DNA 
adducts as biomarkers of AA exposure using the ultra-sensi-
tive 32P-postlabelling method. Both major AA components, 
AAI and AAII, are enzymatically reduced to reactive cyclic 
acylnitrenium ions that bind to the exocyclic amino groups 
of dA and dG to form AA-derived DNA adducts, 7-(deoxy-
adenosin-N6-yl)aristolactam I or II (dA-AAI or dA-AAII) 
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Fig. 4  Mutation pattern in TP53 of UUC. Mutation data from 
human tumours were obtained from the IARC TP53 mutation data-
base (http://www.p53.iarc.fr; R18 version). a TP53 mutation pattern 
in AAN-associated urothelial cancer in the United Kingdom (n = 1) 
(Lord et al. 2004). b TP53 mutation pattern in BEN-associated 
urothelial cancer in Croatia, Bosnia, Serbia (n = 59) (Grollman et al. 
2007; Moriya et al. 2011). c TP53 mutation pattern in AAN-associ-
ated urothelial cancer in Taiwan (n = 113) (Chen et al. 2012). d TP53 

mutation pattern in urothelial cancer not associated with AA exposure 
(n = 1127). Organs included: kidney, bladder, renal pelvis, ureter and 
other urinary organs. Morphology inclusion criteria: carcinoma not 
otherwise specified, carcinoma in situ not otherwise specified, dyspla-
sia not otherwise specified, papillary carcinoma not otherwise speci-
fied, transitional cell carcinoma in situ, transitional carcinoma not 
otherwise specified and urothelial papilloma not otherwise specified

http://www.p53.iarc.fr
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and 7-(deoxyguanosin-N2-yl)aristolactam I or II (dG-AAI 
or dG-AAII) (Fig. 3) (Pfau et al. 1990a, b; Schmeiser et al. 
1996, 1997; Stiborová et al. 1994, 2008a, 2011).

As described above, dA-AAI is the most abundant 
and persistent DNA adduct found in CHN patients (Arlt 
et al. 2001, 2002a; Bieler et al. 1997; Nortier et al. 2000; 
Schmeiser et al. 1996, 2014) and are therefore ideal robust 
biomarkers of AA exposure in BEN patients. The first 
molecular clue that BEN patients are exposed to AA was 
provided by Arlt and coworkers (Arlt et al. 2002b). They 
found that dA-AAI adducts were present in kidney tissue 
of some patients suffering from UCC and living in endemic 
areas of BEN (Fig. 3). The presence of AA-DNA adducts 
in renal tissue was later confirmed in larger cohorts and 
patients with definite diagnosis of BEN from endemic 
regions in Croatia, Serbia, and Bosnia; no AA-DNA 
adducts were found in patients with other forms of chronic 
renal disease or patients with UCC living in nonendemic 
areas of Croatia and Serbia (Grollman et al. 2007; Jelako-
vic et al. 2012). Similarly, Schmeiser et al. (2012) detected 
AA-DNA adducts (i.e. dA-AAI) in renal tissue of patients 
who underwent nephroureterectomy for UUC and resided 
for 17 years or longer in BEN villages in Romania.

Besides demonstrating exposure of BEN patients to 
AA by the detection of specific AA-DNA adducts, other 
approaches used the detection of A:T → T:A mutations 
in UCC of BEN patients as mechanistic biomarker of 
AA effect (Grollman et al. 2007; Jelakovic et al. 2012; 
Schmeiser et al. 2012). A high prevalence of A:T → T:A 
transversions in TP53 was found in urothelial tumours of 
BEN patients originating from Croatia, Serbia, Bosnia, 
and Romania (Fig. 4b), a mutation type which is otherwise 
rare in urothelial tumours not associated with AA exposure 
(Fig. 4d). These findings provide a clear molecular link 
between AA exposure and the formation of BEN-associ-
ated UCC and also demonstrate that AA is the common 
aetiological agent for BEN and UCC across its numerous 
geographical foci.

Mutated adenines associated with A:T → T:A trans-
versions after AA exposure are almost exclusively located 
on the non-transcribed strand of DNA (Sidorenko et al. 
2012). Therefore, the authors postulated that this marked 
strand bias might be responsible for the selective low 
removal of dA-AAI adducts from the transcribed strand by 
transcription-coupled nucleotide excision repair (Moriya 
et al. 2011; Sidorenko et al. 2012). Resistance of dA-AAI 
adducts to global genomic repair reflects the inability 
of XPC-RAD23B to recognise and bind to these lesions 
in duplex DNA (Sidorenko et al. 2012). This failure of 
global genomic repair to excise AA-derived DNA adducts 
also may account for the persistence of these lesions in 
human tissues (Grollman 2013). Indeed this conclusion is 
in accordance with the detection of AA-DNA adducts (i.e. 

dA-AAI) in AAN patients even decades after exposure to 
AA (Schmeiser et al. 2014).

The slower progression towards ESRD and UUC devel-
opment in BEN patients compared to CHN/AAN in Bel-
gium is likely linked to lower doses of AA ingested by 
contaminated food produced in BEN villages as compared 
with the high dose of AA found in the herbal mixtures used 
by patients in the Belgian “slimming” clinic. The higher 
prevalence of women in the Belgian CHN/AAN cohort can 
be attributed to the fact that young women are more likely 
to attend such clinics (De Broe 2012).

All these studies provided crucial information on 
explaining the molecular mechanism of AAN/BEN-asso-
ciated carcinogenesis (reviewed in Arlt et al. 2002a, 2007; 
Stiborová et al. 2008a; Schmeiser et al. 2009; Gökmen 
et al. 2013). As a result, the National Toxicology Program 
(2009) lists AA as carcinogenic to humans. The report 
states that “sufficient” scientific evidence is available to 
conclude that exposure to AA causes urothelial cancer in 
humans through formation of DNA adducts (specifically, 
through binding of the reactive metabolite with adenine) 
and the resulting transversion mutations in oncogenes and 
the tumour suppressor gene TP53. Likewise, in 2012 AA 
was classified as carcinogenic to humans (Group 1) by the 
IARC acting by a genotoxic mechanism (IARC 2012).

Unique features of the TP53 mutation spectrum in AA-
induced UUC, including the predominance of A:T → T:A 
transversions, were also found in Taiwanese patients with 
UUC (Fig. 4c) (Chen et al. 2012b, 2016). This study con-
firmed the hypothesis that the mutational signature of AA 
in TP53 established in the context of UUC associated with 
BEN (Grollman et al. 2007; Moriya et al. 2011), is the same 
as that found in Taiwanese patients suffering from UUC 
(Chen et al. 2012b). Studies using human TP53 knock-in 
(Hupki) mouse embryo fibroblasts (HUFs) (Kucab et al. 
2010) to investigate mutations induced by AA in TP53 
experimentally not only showed that the HUF immortali-
sation assay captures the mutational signature of AA (i.e. 
mutation pattern) in TP53 but also shares so-called hotspot 
TP53 mutations (i.e. mutation spectrum) observed in BEN-
associated UCC (Feldmeyer et al. 2006; Liu et al. 2004; 
Nedelko et al. 2009; Olivier et al. 2012). More recently, 
characteristic A:T → T:A transversion mutations were 
also observed in loci of other genes by whole-genome and 
exome sequencing analysing AA-associated UUC (Hoang 
et al. 2013; Poon et al. 2013). Whole-genome and exome 
sequencing was also applied to cells immortalised in vitro 
after AA exposure, leading to similar results (Nik-Zainal 
et al. 2015; Olivier et al. 2014).

The most important clinical lessons that can be learned 
from BEN and CHN/AAN is that these diseases are pre-
ventable with simple measures. With improved regulation 
of herbal medicines and prevention of exposure to AA 
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this illness can be completely eradicated (Gökmen et al. 
2013). Although herbal remedies containing AA have been 
banned in many countries worldwide, the risk of AA expo-
sure due to botanicals remains high in many regions of the 
world (Gökmen et al. 2013). As a consequence AAN has 
become a global iatrogenic disease (Grollman 2013). From 
this point of view, an important advance in the ability to 
analyse AA-derived DNA adducts was recently achieved, 
because mass spectrometry has proved to be a highly sen-
sitive, specific and robust analytical method (Schmeiser 
et al. 2014; Yun et al. 2012, 2013, 2015) that could provide 
an alternative to the 32P-postlabelling method (Schmeiser 
et al. 2013), which has been commonly used over the last 
decades to detect and quantify AA-DNA adducts in human 
biomonitoring. Mass spectrometry has the advantage that it 
provides direct structural information of the DNA adduct. 
The applicability of this approach has been demonstrated 
recently by analysing renal tissue from Romanian cancer 
patients. Renal cell carcinoma has not been reported in 
AAN patients previously but the Romanian patients unex-
pectedly showed high frequencies of A:T → T:A transver-
sion mutations by whole-genome sequencing of the renal 
tumours, which is consistent with exposure to AA (Scelo 
et al. 2014). In a subsequent study using mass spectrom-
etry, dA-AAI adducts were detected in the Romanian cases 
unambiguously demonstrating exposure to AA in these 
patients (Turesky et al. 2016). As these patients do not 
cover the Romanian population of the BEN area (Scelo 
et al. 2014), the source of AA exposure remains unclear in 
this cohort. However, using AA-DNA adducts as biomarker 
of exposure and the unique mutational signature of AA as 
biomarker of effect clearly identified AA as a aetiologic 
agent of these cancers.

Confounding factors that may influence the 
development of BEN

Although exposure to AA is a causal factor for the devel-
opment of BEN, other questions still need to be answered. 
Why do only 5–10 % of the residents in an endemic area 
develop BEN (Bamias and Boletis 2008; Tatu et al. 1998)? 
The same phenomenon has been observed in the Belgian 
AAN cohort; only 10–20 % of patients in the slimming 
clinic in Brussels developed AAN (Debelle et al. 2008). In 
the case of BEN, this cannot be attributed easily to prefer-
ential exposure of such a small group of the population to 
AA, but it could result also from other factors. This could 
include several endogenous factors such as the effective-
ness of detoxification and/or bioactivation of AA, the 
expression levels of biotransformation enzymes involved 
in AA metabolism and their genetic and phenotypic poly-
morphisms, other genetic and/or epigenetic factors, and 

immunological changes. Indeed, although the theories on 
the aetiology of BEN mainly focused on environmental 
factors, recently particularly AA, confounding factors were 
also considered that may influence the molecular pathology 
of BEN.

Genetic and epigenetic factors of BEN 
development

The familial pattern of BEN suggests a multifactorial 
nature of the aetiology of this disease which potentially 
includes genetic predisposition of individuals suffering 
from BEN (Toncheva and Dimitrov 1996). Indeed, com-
bined effects of genetic and environmental factors might 
lead to the development of BEN, determining its clinical 
and epidemiological characteristics and disease progres-
sion. This hypothesis was investigated among various 
Bulgarian families, where family members suffered from 
BEN and included 4077 persons from 417 affected fami-
lies (Toncheva et al. 1998). The authors concluded that all 
patients with BEN belonged to families. Interestingly, even 
residents from non-endemic villages which were identified 
to be members of BEN families that had migrated from 
the places they were born (i.e. villages in BEN areas) were 
diagnosed to suffer from BEN. Moreover, in this study epi-
demiological characteristics of the BEN disease indicated 
the involvement of genetic disorders, in which the propor-
tion of the affected offspring was associated with the num-
ber of parents affected by BEN (Toncheva et al. 1998). 
Accordingly, the risk of developing BEN was much greater 
in first-degree relatives than second-degree relatives and 
was considerable weaker in distant relatives.

To resolve additional genetic factors that influence the 
development of BEN, cytogenetic investigations were car-
ried out. These studies aimed to investigate the impact of 
chromosomal abnormalities on the occurrence of BEN 
and the frequent association with cancer (Stefanovic 1998; 
Toncheva et al. 1988, 1991; Tsoneva et al. 1985). It was 
shown that in healthy relatives of BEN patients born in 
non-endemic areas a specific BEN-associated locus exists 
in 3q25 (Stefanovic 1998; Toncheva et al. 1988; Toncheva 
and Dimitrov 1996). Alterations in 3q25 could also dic-
tate genetic susceptibility for the development of BEN in 
relatives of patients having BEN (Toncheva and Dimitrov 
1996). Other studies have suggested genes located in chro-
mosome band 3q25–3q26 to be important for BEN; these 
genes encode for xenobiotic-metabolising enzymes, tumour 
suppressor proteins and proto-oncoproteins (Toncheva and 
Dimitrov 1996). Abnormality in 3q25 included the onco-
genes c-src (cytoplasmic tyrosine kinase, CSK, 1q36), raf-1 
(murine leukaemia viral oncogene homolog 1, RAF1, 3p25) 
and myb (V-myb myeloblastosis viral oncogene homolog, 
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MYB, 6q23) (Bamias and Boletis 2008; Toncheva et al. 
1991; Toncheva and Dimitrov 1996). More recently, next 
generation sequencing (i.e. exome sequencing) demon-
strated three mutant genes associated with the process 
of angiogenesis; CELA1 (the gene of chymotrypsin like 
elastase-1), HSPG2 (the gene of heparan sulphate pro-
teoglycan 2), and KCNK5 (the gene of potassium channel 
subfamily K member 5) (Toncheva et al. 2014). Therefore, 
the authors suggested that abnormal angiogenesis may be 
important in the molecular pathogenesis of BEN (Toncheva 
et al. 2014).

Epigenetic modifications may also influence the devel-
opment of BEN. In a case–control study differentially 
methylated regions were identified which showed hypo-
methylation of the promoters of genes HDAC11 (the gene 
of histone deacetylase 11), IL-17RA (the gene of 17 recep-
tor, alpha subunit), SECG61 (the gene of protein translo-
case complex, SecE/Sec61-gamma subunit) (Staneva et al. 
2013). This suggests that dysregulation of genes involved 
in immunological responses could be a mechanism in 
BEN pathogenesis. Other epigenetic alterations included 
increased acetylation of histone lysine residues (i.e. H3 and 
H4 histones) in isolated urothelial cells of BEN patients 
(Kocic et al. 2014).

Metabolism of aristolochic acid

Beside the route of uptake and dose of AA, metabolism 
dictates its biological effective concentration, thereby mod-
ulating disease development (i.e. BEN/AAN) and progres-
sion (i.e. urothelial malignancy). The metabolism of AA 
has been studied in several species including human.

AAI, the major component of the natural plant extract, is 
considered to be responsible for AA-mediated nephropathy. 
Although AAI might directly cause interstitial nephropa-
thy (Shibutani et al. 2007), enzymatic activation of AAI 
to intermediates capable of binding to DNA is a necessary 
reaction leading to AA-mediated malignant transforma-
tion (Arlt et al. 2007; Grollman et al. 2007; Stiborová et al. 
2008a, b, 2013b, 2014a, c). Both oxidative and reductive 
metabolites of AAI are formed in organisms after exposure 
to AAI and they are excreted in urine and faeces (reviewed 
in Arlt et al. 2002a; Stiborová et al. 2008a, b, 2013b). 
8-Hydroxyaristolochic acid I (aristolochic acid Ia, AAIa) is 
the product of oxidative demethylation of AAI and consid-
ered a detoxification metabolite (Fig. 5) (Chan et al. 2006; 
Shibutani et al. 2010). Aristolactams I and II are the pre-
dominant products of AA metabolism in humans (Fig. 5) 
(Chan et al. 2006; Krumbiegel et al. 1987). AAI is reduced 
to N-hydroxyaristolactam I which is either further reduced 
to aristolactam I or rearranged to 7-hydroxyaristolactam I 
(Fig. 5) (Chan et al. 2007).

Interestingly, another AAI metabolite, mainly found in 
experimental animals, is aristolactam Ia. Two pathways can 
lead to the formation of aristolactam Ia: (i) through dem-
ethylation of aristolactam I, or (ii) through O-demethyla-
tion of AAI to AAIa that is then reduced to aristolactam Ia 
(Fig. 5). These suggested pathways are based on the finding 
that aristolactam I is formed in vitro under anaerobic condi-
tions, while under aerobic conditions only AAIa is formed 
from AAI (Schmeiser et al. 1986). Hence, the in vivo 
oxygen concentration of tissues may influence the rela-
tive extent of nitroreduction and O-demethylation of AAI 
(Maier et al. 1987). A majority of AAI metabolites found in 
the urine and faeces in rodents are present as conjugates, as 
the O-glucuronide, the O-acetate and the O-sulphate esters 
of AAIa, and the N- and O-glucuronides of aristolactam Ia 
(with prevalence of the N-glucuronide) (Chan et al. 2006).

Initial reduction of AAI to N-hydroxyaristolactam I is 
the activation pathway responsible for the carcinogenic 
effect of AAI. Rearrangement of N-hydroxyaristolactam 
I to the corresponding 7-hydroxyaristolactam I or fur-
ther reduction to aristolactam I should be considered 
as detoxication pathway, because both metabolites are 
excreted (Chan et al. 2006, 2007). Indeed, this conclusion 
was confirmed in rats where treatment with aristolactam I 
resulted in 50-fold lower levels of AAI-DNA adducts (i.e. 
dA-AAI and dG-AAI) in renal tissue than after AAI treat-
ment (Dong et al. 2006). Aristolactam I has also be shown 
to be not toxic to mice (Sato et al. 2004). However, Li 
et al. (2010) have recently demonstrated that aristolactam 
I exhibits cytotoxicity in human proximal tubular epithelial 
HK-2 cells, causing S-phase arrest. No DNA adducts are 
generated from AAIa, 7-hydroxyaristolactam I, or aristol-
actam Ia in human and animal models, indicating that they 
are detoxification metabolites (reviewed in Stiborová et al. 
2013b). No significant histological changes were found in 
renal tissue of mice treated with AAIa, again confirming 
that AAIa is a detoxification metabolite of AAI (Shibutani 
et al. 2010).

It is noteworthy that detoxification of AAI to AAIa 
is decreased by OTA. Combined administration of OTA 
and AA to rats increased AA genotoxicity (i.e. AA-DNA 
adduct formation) (Stiborová et al. 2015a), suggesting that 
OTA might, to some extent, enhance AA-induced urothe-
lial malignancy in BEN. In contrast, heavy metals and 
phthalates, which are present at high concentrations in 
the drinking water of BEN Pliocene lignit areas (Maharaj 
et al. 2014), have no influence on AA metabolism (i.e. AAI 
detoxification) in vitro (Barta et al. 2015).

Enzymes involved in metabolism of aristolochic acid

As mentioned above, one of the common enigmatic fea-
tures of AAN and BEN is that only a few individuals 
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exposed to AA suffer from nephropathy and cancer. The 
underlying mechanism(s) for this phenomenon still needs 
to be understood (Tatu et al. 1998; Bamias and Boletis 
2008; Stiborová et al. 2013b). Besides differences in the 
accumulated dose of AA and the duration of AA intake 
(Nortier et al. 2000; Martinez et al. 2002), differences in 
the activities of enzymes catalysing the biotransforma-
tion of AA (detoxification and/or activation) could be the 
reason for an individual’s susceptibility (reviewed in Sti-
borová et al. 2008a, b, 2009, 2013b, 2014a, c). Many 
genes of enzymes metabolising AA are known to exist in 
variant forms or show polymorphisms resulting in different 
enzyme activities of the gene products. These genetic vari-
ations appear to be important determinants of cancer risk 
or other toxic effects of many xenobiotics (Stiborová et al. 
2008a, b, 2009). The combination of polymorphic enzymes 
along with environmental exposure to AA may result in an 
increased risk for the development of BEN/AAN (Atanas-
ova et al. 2005; Toncheva et al. 2004; Toncheva 2006; Chen 
et al. 2012a). Hence, research over the last two decades 
has aimed to identify the enzymes principally involved AA 

metabolism (reviewed in Stiborová et al. 2008a, b, 2009, 
2013b, 2014a, c, 2015b).

The metabolic activation of AAI to an electrophilic 
cyclic N-acylnitrenium ion forming AAI-derived DNA 
adducts found in urothelial tissues of AA-exposed patients 
is mainly catalysed by cytosolic NAD(P)H:quinone oxi-
doreductase (NQO1) (Stiborová et al. 2002a, 2003, 2011, 
2014a, c). The role of NQO1 in AAI nitroreduction was 
also proven in vivo using mouse and rat models (Chen et al. 
2011; Stiborová et al. 2014a). Studies investigating the 
participation of enzymatically-catalysed conjugation reac-
tions in AAI activation showed contrasting results. Using 
cytosolic fractions no participation of phase II conjuga-
tion enzymes in the bioactivation of AAI (i.e. AAI-DNA 
adduct formation) was found in cell-free systems in vitro 
(Martinek et al. 2011; Stiborová et al. 2011). These sys-
tems tested native enzymes present in human cytosols 
and human recombinant enzymes [i.e. sulfotransferases 
(SULT), mainly SULT1A enzymes, and N,O-acetyltrans-
ferases (NATs)]. These findings are consistent with another 
study where analysis using hepatic cytosols from several 

Fig. 5  Activation and detoxication pathways of AAI. dA-AAI 
7-(deoxyadenosin-N6-yl)aristolactam I, dG-AAI 7-(deoxyguanosin-
N2-yl)aristolactam I, CYP1A1/2 cytochrome P450 1A1 and 1A2, 

CYP2C cytochrome P450 2C, NQO1 NAD(P)H:quinone oxidoreduc-
tase, UGT UDP glucuronosyltransferase, SULT sulfotransferase
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human donors showed that only NQO1 activity correlated 
with higher AAI-DNA adduct formation in vitro (Stiborová 
et al. 2003). On the contrary, Meinl et al. (2006) reported 
that expression of human SULT1A1 in bacterial and mam-
malian cells (Bendadani et al. 2014) enhanced the muta-
genicity AA. Others showed that O-sulfonated and O-acet-
ylated N-hydroxyaristolactam I and II readily form DNA 
adducts in vitro and that binding of N-hydroxyaristolactam 
I and II to DNA was stimulated by mouse cytosol in the 
presence of 3′-phosphoadenosine-5′-phosphosulfate, the 
cofactor for SULT enzymes (Sidorenko et al. 2014). Fur-
thermore, human SULT1B1, SULT1A1, and SULT1A2 
were capable of stimulating DNA adduct formation by 
N-hydroxyaristolactam I and II (Sidorenko et al. 2014). 
Hashimoto et al. (2016) indicated that bioactivation of AAI 
and N-hydroxyaristolactam I is dependent on SULT1A1 in 
human kidney (HK-2) and skin fibroblast (GM00637) cell 
lines in vitro. In contrast, studies in transgenic mice carry-
ing the functional human SULT1A1–SULT1A2 gene clus-
ter and Sult1a1(‒/‒) mice showed that sulfo conjugation 
catalysed by human SULT1A1 and murine Sult1a1 does 
not play a role in the activation pathways of AAI and AAII 
in vivo (Arlt et al. 2016).

Human microsomal cytochrome P450 (CYP) enzymes 
are also capable of reducing AAI in vitro, with CYP1A2, 
and, to lesser extend, CYP1A1, being most efficient. 
Cytochrome P450 oxidoreductase (POR), another microso-
mal enzyme, plays only a minor role in AAI nitroreduction 
(Milichovský et al. 2016; Stiborová et al. 2001a, b, 2005a, 
b). Participation of these CYPs in the reductive activation 
of AAI was also demonstrated in rodents in vivo. Geneti-
cally modified mouse lines employed in these studies 
included hepatic reductase null (HRN) mice (Levová et al. 
2011), Cyp1a1(−/−), Cyp1a2(−/−) and Cyp1a1/1a2(−/−) 
mouse lines (Arlt et al. 2011a; Rosenquist et al. 2010). 
Using transgenic CYP1A-humanised mouse lines that car-
ried functional human CYP1A1 and CYP1A2 genes and that 
lacked the mouse orthologous genes confirmed the impor-
tance of human CYP1A1 and CYP1A2 in AAI bioactiva-
tion in vivo (Stiborová et al. 2012). Since in human liver 

CYP1A1 is expressed at relatively low levels (Drahushuk 
et al. 1998; Stiborová et al. 2002b), its contribution to 
AAI activation in human liver is much lower than that of 
CYP1A2.

It is important to note that CYPs of the 1A subfam-
ily play a dual role in AAI metabolism. They are also the 
major enzymes oxidising AAI to AAIa under aerobic (i.e. 
oxidative) conditions in vitro (Levová et al. 2011; Rosen-
quist et al. 2010; Sistkova et al. 2008; Stiborová et al. 
2011, 2012, 2015b). Other CYPs such as CYP2C (i.e. 
CYP2C8/9/19), CYP3A (i.e. CYP3A4/5), 2D6, 2E1 and 
1B1 also form AAIa, but efficiency is more than one order 
of magnitude lower compared to CYP1A enzymes (Levová 
et al. 2011; Stiborová et al. 2012, 2015b). Because the liver 
is the most important organ responsible for CYP-catalysed 
xenobiotic biotransformation, the efficiencies of CYPs 
to oxidise AAI (i.e. detoxify AAI to AAIa) in human and 
rodent livers was studied in detail (Levová et al. 2011; Sti-
borová et al. 2012, 2015b). Human CYP1A2 followed by 
CYP2C9, CYP3A4, and CYP1A1 were the major enzymes 
contributing to AAI oxidation in human liver, while 
CYP2C and 1A were most important in rat liver (Fig. 6). 
Human CYP2E1, 2C8, and 2C19 partially contributed to 
AAI oxidation (≥1 %), whereas contributions of human 
CYP1B1, CYP2B6, CYP2D6, and CYP3A5 to AAI oxi-
dation in human livers was negligible (Levová et al. 2011; 
Stiborová et al. 2012; 2015b).

The importance of mouse Cyp1a1/2 enzymes to catalyse 
the oxidative demethylation of AAI to AAIa was shown 
also in vivo, utilising the genetically modified mouse lines 
described above (Arlt et al. 2011a; Levová et al. 2011; 
Rosenquist et al. 2010; Xiao et al. 2008) and in mice where 
Cyp1a1/2 expression was enhanced by inducers (Xue et al. 
2008). These studies showed that these mouse Cyps oxidise 
AAI to AAIa and protect these animals from AAI-induced 
acute renal injury (Rosenquist et al. 2010; Xiao et al. 2008). 
When the animals are not able to detoxify AAI through 
demethylation to AAIa, higher concentrations of unme-
tabolised AAI are available for bioactivation to form AAI-
DNA adducts, or to cause renal injury. Indeed, high levels of 
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Fig. 6  Contributions of CYP enzymes to AAIa formation in human (a) and rat livers (b)
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AAI-DNA adducts were found in several organs of Cyp1a-
knockout mouse lines, predominantly in the kidney (Arlt 
et al. 2011a; Levová et al. 2011; Rosenquist et al. 2010). 
In addition, an increase in AAI-mediated nephrotoxicity in 
mice lacking Cyp1a was observed in these animals (Rosen-
quist et al. 2010). Further, induction of CYP1A1/2 in rats led 
to an increase in AAI detoxification to AAIa, thereby reduc-
ing the actual amount of AAI available for reductive activa-
tion (Dračínská et al. 2016). This subsequently resulted in 
lower AAI-DNA adduct levels in the rat in vivo demonstrat-
ing that of the two opposing CYP1A1/2-catalysed reactions 
(i.e. oxidation and reduction of AAI), CYP1A1/2-mediated 
oxidative detoxification of AAI prevails in AAI metabolism 
in vivo, thereby suppressing levels of AAI-DNA adducts 
(i.e. AAI genotoxicity) (Dračínská et al. 2016). Even more 
importantly oxidation of AAI to AAIa by human CYP1A1 
and 1A2 was also shown in vivo using CYP1A-humanised 
mouse lines (Stiborová et al. 2012).

The dual role of CYP1A1/2 in AAI metabolism can be 
explained by the fact that AAI can be a ligand substrate for 
human CYP1A1/2 enzymes at low oxygen concentrations, 
where AAI is reduced instead of being oxidised during the 
CYP-mediated reaction cycle (Jerabek et al. 2012; Mili-
chovský et al. 2016; Stiborová et al. 2013b). Under aero-
bic (i.e. oxidative) conditions AAI is a classical substrate of 
CYP1A1/2 where during this process one atom of molec-
ular oxygen is used to O-demethylate the methoxy group 
of AAI to generate AAIa (Stiborová et al. 2013b, 2015b). 
These experimental findings (Arlt et al. 2011a; Levová 
et al. 2011; Stiborová et al. 2005a, b, 2012, 2013b, 2015b) 
are supported by theoretical approaches (i.e. computational 
studies) (Jerabek et al. 2012; Milichovský et al. 2016; Sti-
borová et al. 2013b, 2014b, 2015b), indicating that, in addi-
tion to CYP1A1/2 expression levels, the in vivo oxygen 
concentration in tissues might affect the balance between 
AAI nitroreduction and demethylation, which in turn influ-
ences tissue-specific toxicity and carcinogenicity.

Can genetic or phenotypic polymorphisms of enzymes 
metabolising AA contribute to the development of AAN 
and BEN? Still more questions than answers

The levels and activities of xenobiotic-metabolising 
enzymes catalysing the activation and detoxification of AA 
(e.g. NQO1, CYP1A1/2, CYP2C9, CYP3A4/5) depend on 
several factors such as their basal expression, regulation, 
induction, and/or inhibition (Rendic and DiCarlo 1997) 
as well as their polymorphisms (Atanasova et al. 2005). 
Expression and activities of enzymes involved in AA 
metabolism can differ in individuals due to a number of 
factors. All of them are inducible enzymes and expression 
can be modulated by environmental chemicals, drugs, and 

several hormones (reviewed in Rendic and DiCarlo 1997; 
Ross 2004; Ross et al. 2000). It is also noteworthy that 
exposure to AA itself can induce some of these enzymes 
(e.g. NQO1 and CYP1A1/2) (Arlt et al. 2011a; Bárta et al. 
2014; Dračínská et al. 2016).

NQO1 expression is regulated by two distinct regula-
tory elements in the 5′-flanking region of the NQO1 gene, 
the antioxidant response element (ARE) and the xenobi-
otic response element (XRE), involving ligand-activated 
aryl hydrocarbon receptor (AhR) (Jaiswal 2000; Ross 
2004). ARE-mediated NQO1 gene expression is increased 
by a variety of antioxidants, tumour promoters, and reac-
tive oxygen species (ROS) (Li and Jaiswal 1994). ROS has 
been shown to be generated in several human cells in cul-
ture after AAI exposure (Yu et al. 2011; Zhu et al. 2012) 
suggesting that AAI-mediated ROS formation might be 
one mechanism by which AAI induces NQO1. However, 
this potential mechanism or other mechanisms that lead to 
NQO1 induction remain to be explored in future studies. 
It is noteworthy that the human XRE of NQO1 shares sig-
nificant homology with the XRE of human CYP1A (Nebert 
and Jones 1989; Nebert et al. 2000), another enzyme 
metabolising AA. NQO1 and CYP1A are induced by many 
AhR ligands such as polycyclic aromatic hydrocarbons and 
azo dyes (Ross 2004; Stiborová et al. 2013a, 2013b; Yu 
et al. 2011). Moreover, as mentioned above, AAI is capa-
ble of inducing NQO1 protein levels and enzyme activity 
in rodent models, thereby enhancing its own genotoxic-
ity (Arlt et al. 2011b; Dračínská et al. 2016; Levova et al. 
2012; Stiborová et al. 2001c, 2012, 2015a). Thus it can be 
anticipated that NQO1 expression is also induced in indi-
viduals exposed to AA.

Induction of CYP3A4/5 is regulated by the constitu-
tively activated receptor (CAR) and the pregnane X recep-
tor (PXR), drugs, environmental substances and gluco-
corticoids have been shown to induce CYP3A4/5 (Rendic 
and DiCarlo 1997). It has been proposed that enhanced 
expression of CYP3A5 caused by exposure to such induc-
ers may phenocopy the effects of the high expression allele 
CYP3A5*1 (Burk et al. 2004). However, the effect of AAI 
on CYP3A4/5 expression has not been investigated as yet.

Genetic polymorphisms in NQO1, CYP1A1/2, CYP2C9, 
and CYP3A4/5 may also impact on an individual’s suscep-
tibility to AA. The role of some genetic polymorphisms of 
biotransformation enzymes [NQO1, CYP1A1, CYP2D6, 
CYP3A4/5, NAT1/2, glutathione-S-transferase (GST) 
GSTT1, GSTM1, GSTP1 and GSTA1] has already been 
examined in BEN/AAN patients (Atanasova et al. 2005; 
Chen et al. 2012a; He et al. 2005; Reljic et al. 2014; Ste-
fanovic et al. 2006; Toncheva et al. 1998, 2004; Toncheva 
2006; Wang et al. 2009). Among the enzymes metabolis-
ing AAI, polymorphisms in the human NQO1 gene were 
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reported to be important in BEN patients (Toncheva et al. 
2004; Toncheva 2006). The genotype NQO1*2 (C609T) 
predisposed BEN patients to the development of UCC 
(Toncheva 2006). This finding appears to be opposite to 
what one might expect, given the importance of NQO1 
in AAI activation; however, diminished NQO1 metabo-
lism of AAI could lead to an enhanced body burden which 
might lead to an increased risk of tumourigenesis over time 
(Levova et al. 2012). Among a group of AAN patients, no 
significant associations between the polymorphisms of the 
NQO1 C609T gene and disease risk were observed (Chen 
et al. 2012a), suggesting that the NQO1 variants evaluated 
in their study do not play a decisive role in the development 
of AAN.

Higher risk for BEN was observed in individuals car-
rying the CYP3A5*1 allele G6989 (Atanasova et al. 2005; 
Toncheva 2006). The CYP3A5 enzyme, which is expressed 
also in human kidney (Rendic and DiCarlo 1997), has been 
shown to be capable of both activating (i.e. DNA adduct 
formation) (Levová et al. 2011) and detoxifing (i.e. for-
mation of AAIa) of AAI in vitro (Stiborová et al. 2012, 
2015b). However CYP3A5 is much less effective in these 
reactions than CYP1A. No relationships between CYP1A1 
polymorphisms and AAN have been found (Chen et al. 
2012a) and alterations in the CYP1A2 gene have not been 
investigated. Likewise, CYP3A4*1B and CYP2D6 geno-
types do not modify the risk of developing BEN (Atanas-
ova et al. 2005). To date phenotyping of CYP enzymes was 
studied only with debrisoquine as the marker substrate of 
CYP2D6 and showed that the distribution among patients 
with BEN/UUT was associated with a predominance of 
extensive debrisoquine hydroxylation and a lack of poor 
metabolisers (Nikolov et al. 1991). However, given the 
minor role of CYP2D6 in AA metabolism the interpretation 
of these findings need be taken with caution.

Among the polymorphisms of further biotransfomation 
enzymes tested previously, the distribution frequency of 
GSTT1 null genotype among AAN patients was signifi-
cantly higher than in controls and associated with a 1.7-
fold increased risk of developing AAN (Chen et al. 2012a). 
It has also been shown that the GSTM1 wild-type allele is 
associated with BEN; significantly lower prevalence of the 
GSTM1 deletion homozygotes among BEN patients sug-
gested that individuals bearing the GSTM1-null genotype 
were better protected (Andonova et al. 2004). However, to 
evaluate the biological significance of these findings, it is 
necessary to know whether the GST conjugation enzymes 
participate in the metabolism of AA. Recently, Reljic et al. 
(2014) also analysed the association between common 
GSTA1, GSTM1, GSTT1, and GSTP1 polymorphisms and 
susceptibility to BEN. They found that GSTA1 was signifi-
cantly associated with a higher risk of BEN. Interestingly, 

using in silico simulation the authors suggested that 
GSTA1-1 might be involved in catalysing the formation of 
glutathione conjugates of OTA metabolites (i.e. ochratoxin 
hydroquinone) (Reljic et al. 2014).

Conclusions and recommendations

The data summarised in this review emphasises that chronic 
intoxication with AA, a plant product of Aristolochia spe-
cies, is the main causal agent for the development of BEN 
and particularly BEN-associated UUC. This conclusion 
is based on its similarities to the pathology of AAN, the 
detection of specific AA-derived DNA adducts in renal tis-
sue of BEN patient and the dominance of the A:T → T:A 
transversion mutations in TP53 in BEN-associated UUC 
(mutational signature) which are otherwise rare in individu-
als with UCC not exposed to AA.

Nevertheless, there is still at least one enigmatic fea-
ture of BEN that need to be resolved. As not all indi-
viduals exposed to AA suffer from this disease, besides 
differences in the cumulated dose of AA and the dura-
tion of AA intake, differences in the activities of the 
enzymes catalysing the biotransformation of AA may pre-
dispose certain residents in BEN areas impacting on an 
individual’s susceptibility. However, the real impact of 
these enzymes on AA-induced nephropathy and UUC in 
humans still remains to be understood. Studies evaluating 
associations of genetic polymorphisms of the enzymes 
metabolising AA and the risk of developing AAN, BEN, 
and UUC have brought controversial results. Further, 
investigations focusing only on genetic polymorphisms 
without taking the expression levels of the enzymatically 
active proteins into account may offer only limited con-
clusions. We believe that the analyses of the expression 
levels of enzymes metabolising AA and their phenotyping 
in AAN and BEN patients will bring greater advances in 
determining their real contribution to the development of 
AA-induced nephropathies and cancer risk among these 
patients.

Because the distribution of Aristolochia species is 
worldwide and the use of medicinal herbal remedies con-
taining AA is still widespread, AA might be the cause of 
yet unrecognised nephropathies and UUC.
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