

King’s Research Portal

DOI:
10.3233/978-1-61499-672-9-1185
10.3233/978-1-61499-672-9-1185

Document Version
Publisher's PDF, also known as Version of record

Link to publication record in King's Research Portal

Citation for published version (APA):
Savaş, E., Fox, M., Long, D., & Magazzeni, D. (2016). Planning using actions with control parameters. In
Frontiers in Artificial Intelligence and Applications (Vol. 285, pp. 1185-1193). (Frontiers in Artificial Intelligence
and Applications; Vol. 285). IOS Press. https://doi.org/10.3233/978-1-61499-672-9-1185,
https://doi.org/10.3233/978-1-61499-672-9-1185

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 07. Jan. 2025

https://doi.org/10.3233/978-1-61499-672-9-1185
https://doi.org/10.3233/978-1-61499-672-9-1185
https://kclpure.kcl.ac.uk/portal/en/publications/6ed7cfca-3f8d-4d8e-ac76-2e3d7af0b78c
https://doi.org/10.3233/978-1-61499-672-9-1185
https://doi.org/10.3233/978-1-61499-672-9-1185

Planning Using Actions with Control Parameters
Emre Savaş and Maria Fox and Derek Long and Daniele Magazzeni1

Abstract. Although PDDL is an expressive modelling language, a
significant limitation is imposed on the structure of actions: the pa-
rameters of actions are restricted to values from finite (in fact, explic-
itly enumerated) domains. There is one exception to this, introduced
in PDDL2.1, which is that durative actions may have durations that
are chosen (possibly subject to explicit constraints in the action mod-
els) by the planner. A motivation for this limitation is that it ensures
that the set of grounded actions is finite and, ignoring duration, the
branching factor of action choices at a state is therefore finite. Al-
though the duration parameter can make this choice infinite, very few
planners support this possibility, but restrict themselves to durative
actions with fixed durations. In this paper we motivate a proposed
extension to PDDL to allow actions with infinite domain parameters,
which we call control parameters. We illustrate reasons for using
this modelling feature and then describe a planning approach that
can handle domains that exploit it, implemented in a new planner,
POPCORN (Partial-Order Planning with Constrained Real Numer-
ics). We show that this approach scales to solve interesting problems.

1 INTRODUCTION

PDDL is a powerful modelling language, but one limitation of the
models it supports is that action parameters are only allowed to be
drawn from finite domains. These domains are enumerated in the
problem descriptions and are typically relatively small (a few tens
of objects would already be unusual). A consequence of this con-
straint is that action schemas can be grounded, by substitution of
parameters with values in all possible ways, to yield a finite set of
actions for each problem instance. There is one parameter that is
an exception to this: the duration of a durative action may be left
flexible, so that the planner can choose its value (possibly subject to
constraints). In fact, this is a far-reaching choice, since in combina-
tion with duration-dependent effects, it can make it possible to model
domains in which there is an infinite branching choice of actions ap-
plicable in a state. Although the addition of numeric state variables
to the classical propositional language allows construction of an in-
finite state space, without the flexible duration parameter, the state
space is always locally finite, which is to say that only finitely many
states are reachable from a given initial state, using plans bounded
by a given finite length. The introduction of the flexible duration pa-
rameter changes this, so that infinitely many states may be reachable
by plans even bounded to length one. This observation makes clear
that the introduction of a flexible duration parameter fundamentally
changes the possible structure of state spaces.

In this paper, we consider a generalisation of the duration param-
eter, allowing actions to take multiple parameters from infinite do-
mains. We call these parameters control parameters, since they often

1 Department of Informatics, King’s College London, UK, WC2R 2LS,
email: {okkes.savas, firstname.lastname}@kcl.ac.uk

represent physical control parameters that a planner might select in
order to make an action have a desired effect (or intensity of effect).
Examples include volume settings, velocities, power use, volumes or
sizes. As a concrete example, illustrating that duration is not always
an appropriate surrogate for control parameters, consider the action
of withdrawing cash from an ATM (or cashpoint). Execution of this
action involves choosing the value of the withdrawal. Although there
is probably some small element of the duration of a withdrawal that
is affected by the amount withdrawn, the transaction is, for all practi-
cal purposes, best modelled as a constant duration action that has an
effect on cash in pocket determined by the selected value of the con-
trol parameter: the size of the withdrawal. Current standard PDDL
dialects require that either the action be modelled artificially, us-
ing duration to substitute for the control, or else that the choice of
withdrawal amounts be restricted to some fixed and finite menu of
choices.

A slightly more complex example, generalising an example drawn
from related work on Kongming [13], is a navigation action for an
autonomous underwater vehicle (AUV), equipped with independent
motors to drive horizontal movement (the x-direction) and verti-
cal movement (the y-direction). In choosing a single leg of move-
ment, the action requires selection of an x-velocity, a y-velocity and
a duration. It is clearly not possible to represent choices in this 3-
dimensional choice space using a duration alone.

In this paper, we explore the cashpoint example in more detail to
illustrate the problems introduced by the use of control parameters.
We then propose a way in which planning can be performed in do-
mains containing actions with these parameters, implemented as our
planner, POPCORN (Partial-Order Planning with Continuous Real
Numerics), based on the POPF planner [4], extending and expanding
the mechanisms in that planner to support control parameters beyond
duration. In doing so, we retain the ability in POPF to use temporal
actions, including with flexible durations and duration-dependent ef-
fects. We demonstrate that our approach scales to tackle interesting
problems, considering several domains with various characteristics.
Our implementation works with linear constraints, relying on an LP
support in similar style to POPF, but we observe that our strategy can
be generalised to different constraints, indicating how this could be
achieved.

The paper is structured as follows. We survey the related work in
the next section. Section 2 gives a more detailed description of the
cash point motivating example. In Section 4 we provide technical
background on the state representation in POPF, and in Section 5 we
describe how we extend it to implement our approach for planning
with control parameters in POPCORN. In Section 6 we show how
POPCORN scales to solve interesting problems. Section 7 concludes
the paper.

ECAI 2016
G.A. Kaminka et al. (Eds.)
© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-1185

1185

2 A MOTIVATING EXAMPLE

We now develop the simple cashpoint example to illustrate some as-
pects of the use of control parameters. Suppose that we are planning
to go to a pub. Initially, we are at home and have only £2 in our
pocket. We aim to be at the pub with £20 in our pocket and to have
already bought snacks on the way to the pub. The plan for this prob-
lem is quite simple: we must go to the cashpoint and collect cash, go
to the shop to buy snacks and go to the pub. However, the action to
withdraw cash should allow us (as planner) to decide how much to
withdraw.

We propose to extend PDDL2.1 [10] so that actions may include
an additional field: control parameters. These parameters are typed.
We currently assume that they are numeric parameters, although our
syntax supports other types. The description of the cash withdrawal
action is shown in Figure 1. We list all control parameters except
?duration in a new field, :control. Our language has the ex-
pressive power to state the numeric types of the control parameters.
A control parameter can defined as an integer, number, or as a
boolean. In the example, the ?cash control parameter is defined
as a number in the WithdrawCash action. Each instantiation of the
action has its own instance of this parameter and each can be given a
value independently of the others. The parameter is tied into the state
through action preconditions: in this case, the parameter is restricted
to lie between a minimum withdrawal and the limit of the machine.
It also appears in the effects, increasing what is in the pocket and
decreasing what is left in the machine.

(:durative-action WithdrawCash
:parameters (?p - person ?a - location

?m - machine)
:control (?cash - number)
:duration (= ?duration 2)
:condition (and (at start (at ?p ?a))
(over all (at ?p ?a)) (at start (located ?m ?a))
(at start (>= ?cash 5))
(at start (<= ?cash (balance ?m)))
(at start (canWithdraw ?p ?m)))

:effect (and
(at start (decrease (balance ?m) ?cash))
(at end (increase (inpocket ?p) ?cash))))

(:durative-action BuySnacks
:parameters (?p - person ?a - location)
:duration (= ?duration 1)
:condition (and (at start (at ?p ?a))
(over all (at ?p ?a)) (at start (snacksAt ?a))
(at start (>= (inPocket ?p) 3)))

:effect (and (at end (decrease (inPocket ?p) 3))
(at end (gotSnacks ?p))))

Figure 1. Main actions of the cash point domain.

An example problem for this domain is shown in Figure 2. In this
example there are two ATMs, each with a limited balance, and one
shop at which we can buy snacks. In addition, Figure 2 shows the
(optional) metric objective of the problem that can play an important
role in the valuation of the control parameter ?cash. The domain
also includes a move action to allow movement between locations.
Intuitively, to optimise the plan metric, we should withdraw sufficient
cash to buy snacks and to have £20 at the pub. We would not want to
withdraw more or less cash than required when at the cash point.

This problem could be modelled without control parameters, by
discretising the amount that can be withdrawn into a finite set of

(:init (at Joe home) (snacksAt store)
(= (inPocket Joe) 2)
(canWithdraw Joe atm1) (canWithdraw Joe atm2)
(located atm1 bank) (located atm2 bank)
(= (balance atm1) 50) (= (balance atm2) 100))
(:goal (and (>= (inPocket Joe) 20)
(gotSnacks Joe) (at Joe pub)))
(:metric minimize (inPocket Joe))

Figure 2. The initial state of the cash point problem.

possible values (say £5, £10, £20, £50). If we consider a forward
searching planner, relying on a standard relaxation-based heuristic,
the planner will choose a withdrawal action to meet the demands of
the largest goal (the £20 goal), but the relaxation will ignore the effect
of the future snacks purchase. This means, the planner will not see
that it actually needs to withdraw £25, and it is quite likely that the
final plan will involve returning to the cash point to make a second
withdrawal (the precise behaviour will depend on the search strategy,
but this is what happens in POPF, for example). In the discretised
model, the optimal plan (according to the metric) is to withdraw £25
using two withdrawals before moving away, while the shortest plan
withdraws £50. When using the control parameter model, the planner
can decide to withdraw exactly £23 in a single action, yielding both
the shortest and optimal plan.

The particular challenge we consider in this paper, is how the value
of the control parameter can be chosen by the planner, in particular
when performing a forward state space search. In this example, the
amount of cash we want to withdraw depends on which actions we
apply after visiting the cash point. Early assignment of the value of a
control parameter may lead to generation of poor plans. For instance,
assigning a value to ?cash before buying snacks would result in vis-
iting the cash point twice. Therefore, the determination of the amount
to withdraw should be made at a later stage in the plan construction
(possibly after the entire action sequence has been constructed).

Our planner, POPCORN, builds up all the linear constraints acting
on the control parameter ?cash and (checking numeric consistency
of every state visited using the linear program) until the goal state is
reached. Then, the planner calls the final linear program to optimise
all variables, i.e. ?cash, subject to the metric objective of the prob-
lem. Since the metric objective is to minimise the inpocket state
variable in this example, the planner chooses the minimum bound
of this variable as its value. We describe this process in detail in the
remainder of the paper.

3 RELATED WORK

Work exploring the use of control parameters in domain indepen-
dent planning is limited. The duration parameter was introduced in
PDDL2.1 [10], but very few planners can plan with actions that
have both flexible durations and duration-dependent effects, such as
POPF [4] and its close cousins, COLIN [3] and OPTIC [1]. One
way to understand the behaviour of these planners with respect to
the choice of durations will be presented below, since it is relevant to
the treatment of control parameters in POPCORN.

Williams and co-authors have explored the management of control
parameters in several different ways. For example, the Kongming
planner [13] uses an extended PDDL representation, also adding a
new field to actions in order to capture the control parameters. It cap-
tures the interaction of the dynamic continuous variables with flow

E. SavaSavaş et al. / Planning Using Actions with Control Parameters1186

tubes produced at each action layer. The planner is based on a Graph-
plan [2] core and the flow tubes contain control trajectories of the
variables as the graph expands over time. The graph is translated to
a mixed integer program and solved using CPLEX, rather than by
Graphplan search, allowing the planner to handle problems with lin-
ear effects. The use of the Graphplan core restricts the representation
of time, which is discretised, while the rates of change of process
effects are taken as control variables. This approach contrasts with
COLIN [3] and POPF planners, where the duration is taken as a vari-
able, while rates of change remain constant. Both approaches use lin-
ear programming to solve the numeric constraints and this means that
it is not possible to allow both variable durations and variable rates
of change, since this would lead to quadratic constraints. Kongming
suffers from severe limitation of the number of happenings in the
plan, due to the cost of iterated deepening search in the Graphplan-
CPLEX solution strategy.

Fernández-González, Karpas and Williams have recently studied
planning with continuous control parameters [8]. Their work has
considered the main stages in the development of the Scotty plan-
ner. It combines the flow tube representation of Kongming with the
forward-chaining search and the linear programming used in the
COLIN planner. The flow tubes are used to capture continuous ef-
fects with control parameters. It uses forward search to overcome
the limitation on numbers of happenings in Kongming. The purpose
of control parameters in this work (and, to an extent in Kongming,
and earlier work using flow tubes [12]) is to convey flexibility of
choice to the executive [7]. Therefore, Scotty finds a flexible plan,
in which it leaves the decision of the values of control parameters
to an executive during plan execution in order not to invalidate the
plan (whereas it finds the timestamps of actions that can also invali-
date the plan). In addition, Scotty does not support actions perform-
ing discrete numeric change [9]. Also, it is not possible to define
duration-independent control parameters: the control parameters all
represent rates of change, so they all combine with the duration to
determine the final effects of actions.

Pantke, Edelkamp and Herzog have recently presented a PDDL-
based multi-agent planning system that reasons about the control
parameters in production planning and control [14, 15]. They pro-
pose a similar extension to PDDL language, in which the control
parameters are listed in the :parameters field. They adapt two-
stage planning strategy in their work. First, the planner finds partially
grounded total-order plans with lifted control parameters. Then, the
planner find the fully grounded plans by determining the bounds of
the variables of the first n partially grounded plans (using a mathe-
matical optimisation tool) based on their potential quality. The opti-
misation tool is not used to check the consistency of a state. Instead,
they use the interval arithmetic relaxation, which gives the possible
values (not the optimal values) at a state. Additionally, the planning
horizon is fixed and they do not use any relaxation heuristic during
search.

Our motivation in introducing control parameters is slightly dif-
ferent to that of Williams et al. and Fernández-González et al.: we
are interested in the planner choosing values to construct a specific
plan and to make choices that lead to efficient plans, rather than in
conveying flexibility for execution to the executive. Our control pa-
rameters do not necessarily represent rates of change (such as the
cash withdrawal), and effects of actions can be independent of dura-
tion, or not. The work of Pantke et al. focusses only on the produc-
tion control domain application, whereas we consider the domain-
independent planning applications in forwards search framework us-
ing relaxation-based heuristics.

4 TECHNICAL BACKGROUND

As we have noted, duration can be seen as a special control parame-
ter. POPF and its variants handle this parameter, so it forms a natural
starting point from which to generalise to manage other control pa-
rameters. We therefore briefly review how the management of dura-
tion is achieved in POPF and COLIN.

A central innovation in POPF is the extended representation of a
state. In classical forward search planners, the states are valuations
over the state variables (which may be boolean values in a proposi-
tional planner and boolean or numeric in a metric planner). PDDL2.1
planners must extend this representation to include record of which
durative actions are executing and when they started: we call this a
temporal state. POPF further extends this representation, so that it
searches in a space in which its states (P -states) represent sets of
temporal states.

Definition 1 A P -state, S, is a tuple 〈F, V,B,Q, P,C, T 〉, where:

F is a partial valuation over boolean state variables.
V is a partial valuation over numeric state variables.
B maps the numeric state variables to upper and lower bounds

(which might be infinite). Variables with a value defined in V have
upper and lower bounds equal to this value.

Q is a set of actions which are started but not yet finished.
P is the collection of steps added to the plan to reach state S.
C is a collection of temporal and metric constraints accumulated

over the steps in P .
T is the upper and lower bound on the time at which this state must

end.

POPF only imposes a partial ordering on the actions in its plan
(through temporal constraints included in C). POPF postpones com-
mitment to ordering of actions when all orderings consistent with C
are executable. This means that state variables whose values are not
required to satisfy specific precondition constraints might be unde-
termined, subject to the resolution of the partial ordering of actions
that affect them, which is why F and V are partial valuations. Where
a continuous or duration-dependent effect is active in a P -state, the
constraints in C tie together the bounds on the time in the current
state (T) with the bounds on the value of the affected variable (B).

A P -state represents a set of temporal states because there can be
many feasible solutions to C. The constraints in C can be purely tem-
poral constraints (managed as a simple temporal network) if there are
no continuous or duration-dependent effects in the plan, or a linear
program if time and numeric state variables interact [5]. From C, val-
ues of B and T are found by solving C for upper and lower bounds
on each variable.

POPF manages search through P -states by implementing both
an appropriate P -state progression algorithm and also a variant of
the relaxed plan heuristic, based on the Temporal Relaxed Planning
Graph [6, 5]. The search choices faced by POPF are whether to add a
new action start to extend a P -state, or else to complete an executing
action (whose end is in Q). In both cases, constraints can be added
to C to ensure preconditions are satisfied. In this way, POPF avoids
branching on the infinite choice of values of duration, but manages
constraints that restrict the possible values of durations, ensuring fea-
sibility of the constraints at each P -state progression.

In order to implement temporal-numeric planning with control pa-
rameters POPCORN is built on the POPF planner. The partial-order
mechanism in POPF minimises the addition of ordering constraints
to avoid early commitment during forward search, in order to achieve

E. SavaSavaş et al. / Planning Using Actions with Control Parameters 1187

An action with a control parameter A finite set of
i.e: WithdrawCash action action choices

inpocket += ?cash

Leave the choice to the
 constraint space

Initial
state

.

.

Goal state

Figure 3. Schematic representation of the search space where there is a
control parameter effect. The nodes represent the state reached, and the
edges represent the action applied to reach the next state. The graphs in
black boxes represent the LP constraint space, which is used to avoid

complex branching choice.

flexible plans. The temporal constraints are added as they are needed
to meet the preconditions of actions in a possible plan. The existing
partial-order mechanism of POPF helps POPCORN to avoid early-
commitment in assigning values to the control parameters. As dis-
cussed in Section 2, the early commitment in the valuation may lead
to poor plans. The constraints implied by the pre- and post-conditions
of actions added to the plan govern the possible values of control pa-
rameters, as illustrated in Figure 3. The details of this process are
described in the rest of this paper.

4.1 LP temporal and numeric scheduling

The POPF planner inherits the use of linear programming from the
COLIN planner. It uses the LP to check the temporal and the numeric
consistency of a P -state. The P -state variables that capture evolution
of the numeric state variables along the trajectory of a plan are de-
fined as follows:
A sequence of pairs of vectors of variables, Vi and V ′

i , is constructed,
one for each step i in the plan. Each vi ∈ Vi records the value of the
state variable v just before the step i. Similarly, each v′i ∈ V ′

i records
the value of a state variable v immediately after the step i. For in-
stance, a state variable v can have a discrete instantaneous numeric
change at a step i. In this case, the constraint v′i = vi + c constraint,
where vi is increased by the numeric value of c at the step i, is added
to the LP to record this change. Table 1 shows the constraints and
variables created to record numeric changes that are connected to
the ?cash control parameter. bali and inpi represents the (balance
?m) and (inPocket ?p) state variables at step i, respectively.

5 PLANNING WITH CONTROL PARAMETERS

The difference between the POPF and POPCORN planners is that
POPCORN can reason with control parameters in addition to dura-
tion. Control parameters are, as with duration, variables that appear
only as part of the structure of an action in the plan, not as part of
the state. This means that variables can be added to the constraint
collection in a P -state as new actions are applied, to represent not

Table 1. Variables and constraints acting upon ?cash parameter, that are
collected from the initial state to reach the goal state. [lb, ub] represents the

upper and lower bound limits of the variables at a state.
Plan Action LP Variable [lb, ub] Constraints
Withdraw cash [5, ∞] cash ≥ 5

(start) [0,50] cash ≤ bal0
bal0 [50,50] bal0
bal′0 [0,45] = bal0 − cash

Withdraw cash [5,50] cash
(end) inp1 [2,2] inp1

inp′1 [7,52] inp1 + cash
BuySnacks inp2 = inp′1

(start) inp′2 [7,52] ≥ 5
BuySnacks inp3 [7,52] = inp′2

(end) inp′3 [2,47] = inp3 − 5

only the values of the state variables, but also newly introduced con-
trol parameters. This is achieved by extending the existing machinery
in POPF. We consider the details of each component in their related
subsections. We extend the existing problem definition to capture the
control parameters defined in actions. We define the additional con-
straints and variables added to the LP based on the numeric precon-
ditions and effects of actions added during state progression. We pro-
vide details of the modifications made to the existing heuristic state
evaluation of POPF and analyse the effects of the control parame-
ters on the search space. We use the cash point example to illustrate
elements discussed in the related subsections.

5.1 State definition

The P -state representation used in POPF is further extended for
temporal-numeric planning with control parameters. We call this ex-
tended representation a C-state (Control state).

Definition 2 C-state, S, is a tuple 〈F, V,B,Q, P,C, T,D〉, where:
F , V , B, Q, P and T are as defined in a P -state. D maps all control
parameters associated with actions in P to pairs recording the upper
and lower bounds on their values in S.

When a new action, A, is started, the state progression for POP-
CORN adds to D newly created variables corresponding to the con-
trol parameters in A, with upper and lower bounds derived from the
preconditions of A (or +infinity or -infinity where no bounds appear
in A). Constraints are added to C that represent the pre- and post-
condition requirements on these control parameters.

The ordering of the duration and control fields in action descrip-
tions is carefully chosen to allow control parameters to appear in
duration constraints. This makes it possible to tie together these pa-
rameters in constraints. For example, we can capture a more general
version of the Kongming AUV descend action, shown in Figure 4,
allowing a variable duration descent that is also able to descend at
different gradients by separately selecting the x- and y-velocities.
The assumption modelled in the action is that the execution of this
action involves moving at a constant velocity along a straight vec-
tor with the chosen x- and y- displacements. To avoid the non-linear
interaction between rates and durations, we model this by choosing
the distances travelled in the x- and y-directions, subject to the con-
straints that these distances must not imply violation of the velocity
limits (see Figure 5). We can also combine multiple control param-
eters in a single constraint, as illustrated in the descend action in
Figure 5, where the combined power consumption of the motors can-
not exceed the available power output. This makes the control space
for this problem multi-dimensional.

E. SavaSavaş et al. / Planning Using Actions with Control Parameters1188

Scotty [8] offers a syntax for representing control parameters that
is very similar to our own. In Scotty, control parameters are intended
to represent the margins of control of processes during execution, so
these parameters are always intended to be interpreted as rates, as can
be seen in their use in the continuous effects in Figure 6. However,
this model combines duration and control parameters in a quadratic
expression. Scotty overcomes this difficulty by focussing on upper
and lower bounds defining the range of possible values for the control
parameters. This use of control parameters cannot be exploited in
problems such as the cashpoint domain, where the parameter is not a
rate.

(:action descend
:duration (d)
:precondition (and (y <= 200))
:effect ()
:dynamics (4 <= vx <= 8, 3 <= vy <= 6))

Figure 4. The Kongming action model for AUV descent. Note that this is
not PDDL, but a variant in which a new :duration field is added to

classical actions to associate a fixed duration to the action, and :dynamics
which defines the control parameters and their bounds.

(:durative-action descend
:parameters (?a - auv)
:control (?dx ?dy - number)
:duration (and
(<= ?duration (/ ?dx (minVx ?a)))
(<= ?duration (/ ?dy (minVy ?a)))
(>= ?duration (/ ?dx (maxVx ?a)))
(>= ?duration (/ ?dy (maxVy ?a))))

:condition (and
(over all (<= (+ (* (powerX ?a) ?dx)
(* (powerY ?a) ?dy))(* ?duration (power ?a)))))
:effect (and (at end (increase (posX ?a) ?dx))
(at end (increase (posY ?a) ?dy))))

Figure 5. Descend action with control parameters. This model is in
PDDL2.1 extended with our proposed syntax for control parameters. Note
that the linear power constraint restricts the total power use across the two

motors according to the consumption rates of the motors.

(:durative-action navigate
:control-variables ((velX) (velY))
:duration (and (<= ?duration 5000))
:condition (and
(over all (>= (velX) -4))(over all (<= (velX) 4))
(over all (>= (velY) -4))(over all (<= (velY) 4))
(over all (<= (x) 700))(over all (>= (x) 0))
(over all (<= (y) 700))(over all (>= (y) 0))

:effect (and
(increase (x) (* 1.0 (velX) #t))
(increase (y) (* 1.0 (velY) #t))))

Figure 6. The navigate action for Scotty [8]. The syntax is very similar
to our proposal, but control parameters are always rates of change.

State progression of C-states is similar to P -state progression:
new actions can be started, or current actions can be completed. In
both cases, the appropriate constraints are added to C, introducing

control parameters where necessary and new state variables, and new
bound are then computed for B, T and D.

5.2 Checking C-state consistency

It is worth emphasising the main characteristic of control parameters
within an action instance: each control parameter is a local variable,
whose scope is limited to the action within which it is defined. They
are carried out through the plan with the help of global variables (e.g.
(inPocket ?p) in the cashpoint domain). Each control parameter is
introduced in constraints only at the point when an action is applied.
Subsequent constraints can impact on the values of control values by
constraining variables that also appear in constraints with the control
parameters.

In addition to the existing temporal and numeric constraints added
to the LP in POPF, our approach inserts the following constraints to
the LP during C-state progression:
• Any numeric precondition that is given in the form:

〈v, {≤, <,≥, >}, w·v+f(di,0, ..., di,m−1) + c〉
〈f(di,0, ..., di,m−1), {≤, <,≥, >}, v〉
〈f(di,0, ..., di,m−1), {≤, <,≥, >}, c〉

• Any numeric effect that is in the form:
〈v, {+=,-=,=}, w·v+f(di,0, ..., di,m−1) + c〉

where c is a constant (appearing in the domain model), v is the
vector of metric fluents in the problem, w is a vector of con-
stants (the coefficients of state variables in the domain model) and
f(di,0, ..., di,m−1) is a linear function applied to a set of m control
parameters {di,0, di,1..., di,m−1} appearing in action i.

Following extension of C as part of C-state progression, C is
tested for feasibility. If it is infeasible, then the C-state corresponds
to an empty set of temporal states, so it is pruned and search reverts
to an earlier C-state. In POPCORN, C is solved for minimum and
maximum bounds T , B and D. However, an alternative possibility
is to tighten bounds selectively. Furthermore, a solution to C can act
as a witness that can be carried forward in the C-state, rather like a
watched literal in modern SAT-solvers, checking it against new con-
straints as they are added and only resolving C when the current
witness fails.

The requirement for state checking is that it is possible to check
C for feasibility: this does not necessarily require C to be a linear
program. In principle, we can use mixed collections of constraints,
possibly separating C into disconnected sets of constrained variables,
using constraint solvers appropriate to each set of constraints accord-
ing to type. As a simple example, we experiment with integer control
variables, making C a mixed integer program (MIP). We envisage
the possibility to extend this idea to different types, using specialised
constraint solvers to handle them.

5.3 Temporal and numeric state-space search

The duration of an action might not be fixed. It might be determined
by either the values of metric fluents, such as (<= ?duration
(v ?p)), or constrained within a range of values [3], for ex-
ample, (and (>= ?duration 10) (< ?duration 50)).
Likewise, the value of a control parameter defined in an action is
usually not fixed, but is constrained within an interval and, possi-
bly, constrained by multiple constraints. The values of state variables
subject to continuous or duration dependent effects are similarly con-
strained within ranges, [vmin, vmax]. The planner is free to choose
the value of a variable within its bounds. The choices might not be

E. SavaSavaş et al. / Planning Using Actions with Control Parameters 1189

independent, so each choice must be propagated through C to deter-
mine how bounds of other variables are affected.

The existence of control parameters generates a complex branch-
ing choice in the search space, just as is the case for variable dura-
tions, but possibly multi-dimensional. Figure 3 illustrates this effect
for our cash point example. When the planner branches over this set
of infinitely many states, it avoids exploring each state by leaving the
choice to the LP constraint space.

5.4 Modifications to the temporal RPG heuristic

The Metric Relaxed Planning Graph (RPG) [11] heuristic has been
widely used in numeric planning over the last decade. POPF planner
uses an extended variant, based on a Temporal RPG (TRPG), to guide
the planner in the search space towards the goal. The difference be-
tween the two heuristics is that the TRPG associates timestamps with
each action and fact layer, using rules on relaxed temporal progres-
sion to increase the time as the reachability analysis is developed [3].

Table 2. An LP relaxation over a control parameter that does not have a
constant upper bound value.
Maximise: ?cash
Subject to:
bal0 = 50
?cash ≥ 3
?cash− bal0 ≥ −inf
?cash− bal0 ≤ 0
?cash+ bal′0 − bal0 = 0
inp0 = 2
inp′0 − inp0−?cash = 0

Our modification to the TRPG heuristic of POPF is to make an
optimistic assumption: if an action a has a control parameter effect
on a variable v, then the control parameter is relaxed to whichever
bound in D for the corresponding control variable gives the largest
effect (increasing the upper bound or decreasing the lower bound on
the reachable values for v). In case the bounds on the control variable
depend on a the value of state variables (for example, (<= ?cash
(balance ?m))), then the heuristic constructs an LP, using only
the time-independent numeric constraints of the action, to precom-
pute the bounds for the heuristic before extracting a relaxed plan.

Table 2 shows the LP constructed to optimistically approximate
the upper bound of the ?cash variable.

6 EVALUATION

The cashpoint domain demonstrates that there are examples of ac-
tions in which it is natural to model an action with an infinite domain
parameter, other than duration. Furthermore, the descend action
shown in Figure 5 illustrates that there are also natural reasons to
transcend the use of a single control parameter, making it impossible
to express such models by some compilation of control parameters
into flexible durations. This demonstrates that the extended expres-
sive power of the control parameters we propose offers a way to cap-
ture important and intuitively significant behaviours that cannot be
modelled in existing PDDL formulations.

Although it is clear that the extended expressive power of control
parameters has a valuable role to play in modelling realistic domains,
there remains the question of whether it is possible to plan with this
extended expressiveness. In this section, we consider several differ-
ent domains in order to explore the scalability of the performance of

POPF when confronting a variety of challenges in the use of control
parameters.

Our planner, POPCORN, is a temporal planner that handles
discrete numeric change in state variables that is controlled with
continuous-valued variables selected by the planner. There are no
other PDDL2.1 planners available with similar expressive power to
compare on problems using control parameters, including Scotty.
Scotty supports control parameters for setting rates of change for
continuous change, but not control parameters used for discrete
change, as in the cashpoint example. Therefore, we compare the per-
formance of POPCORN with POPF (the code base on which POP-
CORN is built). This comparison is carried out by discretising the
control parameter choices available to POPF. The purpose of the
comparison is to explore the scaling behaviour of POPCORN, since
POPF is solving a related and similar problem to the control param-
eters choice problem, but the discretisation imposes both additional
constraints (the possible values of the control parameters are limited)
and a simplification (the branching factor is made finite). A compar-
ison with UPMurphi [16] (or the most recent version, DiNo [17]) is
also possible, using discretised control parameters (which could be
managed automatically in UPMurphi within its existing machinery).
However, its performance does not scale well in domains with long
combinatorial chains, such as the Procurement and Terraria domains.

In addition to these experiments, we make an approximate per-
formance comparison between POPCORN and Scotty on continu-
ous control parameter change problems (using problems from [8]).
Since POPCORN does not aim to handle continuous control param-
eter change, the duration of actions in these problems are fixed2.

6.1 The cash point domain

This domain is based on the motivating example presented in Sec-
tion 2. The cashpoint domain has a relatively flat search space, with
short plans.

The purpose of using this domain is to confirm that POPCORN
effectively generates plans with control parameters. As the amount
of cash required in the goal is increased relative to cash point lim-
its, the plan has to extend to include additional withdrawal actions.
It is important the planner realises that the plan cannot achieve the
goals with a single withdrawal (or, more generally, insufficient with-
drawals) early enough to avoid wasted search effort.

We extend the basic actions of the original domain to include mul-
tiple currencies, allowing new currencies to be obtained using an ex-
change bureau. This complicates problems by constructing chains of
constraints connecting the values of control parameters across multi-
ple actions.

In order to make a comparison with POPF, we add a set of
WithdrawCash actions with fixed withdrawal values, namely
?cash ∈ {1, 5, 10, 20}. This assumption allows us to make a fair
comparison in these domains with POPF, which does not aim to
handle control parameters. Regardless of the values we fix for the
withdrawal values, the POPF will usually generate longer plans. The
POPCORN does not require any fixed value, so it is able to solve
the problem for any value of (inpocket ?p) within the bounds
defined.

In all domains (including this one), we use a set of 12 problem
instances. The required goal amounts and the types of currencies are
increased, and in some problem instances, the planner is forced to ex-

2 All domain and problem files used for our experiments can be found here:
https://github.com/Emresav/ECAI16Domains

E. SavaSavaş et al. / Planning Using Actions with Control Parameters1190

0.1

1

10

100

1000

10000

0.1 1 10 100 1000 10000

PO
PF

 S
ol

ut
io

n
Ti

m
e

(s
)

POPCORN Solution Time (s)

Cashpoint

Procurement

2D-AUV-Power

Terraria-capacity
10

100

1000

10000

100000

10 100 1000 10000 100000

PO
PF

 N
um

be
r o

f S
ta

te
s E

va
lu

at
ed

POPCORN Number of States Evaluated

Cashpoint

Procurement

2D-AUV-Power

Terraria-capacity

Figure 7. Comparison of time taken by POPF and POPCORN to solve each problem instance, and the numbers of states evaluated, in four domains. The
crossed points indicate that only one of the planners found a solution.

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12

M
ST

/S
ta

te
 (m

s)

Problem Number

Procurement

POPCORN POPF

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 3 4 5 6 7 8 9 10 11 12

M
ST

/S
ta

te
 (m

s)

Problem Number

Cashpoint

POPCORN POPF

Figure 8. Mean Scheduling Time (MST) per state in procurement and cashpoint instances

change currencies at the exchange bureau. In addition, several items
are added that need to be obtained to reach the goal.

6.2 The procurement and terraria domains

The procurement domain is about finding a plan to manufacture final
products, which require different amount and types of raw materials
to be procured from a store and intermediate products to be produced
at a workshop. The purpose in defining this domain is to explore the
effects of scaling numbers of control parameters in individual ac-
tions. Materials can be purchased in a single action, selecting the
numbers of each of the materials available at the supplier to be in-
cluded in the single purchase. This problem also contains a deeper
search space, producing longer plans, allowing us to explore the cost
of solving increasing numbers of more complex constraint sets.

The complexity of each instance is increased by extending the
depth of the bill of materials tree. Figure 9 shows the most challeng-
ing problem instance in which two of product A, a product B, and a
product L are to be delivered to customers Customer1, Customer2,
and Customer3, respectively. The leaf nodes represent raw materials,
which can be obtained from the store. The other nodes represent the
intermediate and final products. To produce a product A, we need to
have already sub-assembled two product B and a product C. These
intermediate products require products I, J, K, D, and E. In this do-
main, the batch sizes of items procured and produced are taken as
control parameters, whereas these parameters are discretised with the
values of 1, 5, 10, 20 for the test runs in POPF.

The Terraria domain is similar to the procurement domain, but it
additionally includes a capacity constraint that limits the total amount
of raw material procured. As an extension of the procurement prob-
lem set, the complexity of each Terraria problem instance is extended
by decreasing the capacity limit of raw materials. The purpose of this
test is to introduce a constraint that links multiple control parameters
within a single action.

6.3 The 2D-AUV-power domain

This domain is based on the Kongming AUV domain presented in
Section 5. The purpose in introducing this domain is to show that du-
ration and other control parameters in an action can be successfully
constrained within a single constraint.

In this domain, the AUV travels between different waypoints to
collect samples in a two dimensional underwater environment (depth
and horizontal distance). Figure 5 shows the descend action with
our proposed syntax for control parameters. In this experiment, we
reinterpret this action as a single glide and allow the velocity range
to include positive and negative changes in the y-direction (depth),
so that the action can be used to ascend or descend. The duration of
glide is constrained by the maximum and minimum displacement
rates of the vehicle in x- and y-directions. The linear power constraint
of (<= (+ (*?dx 3) (*?dy 4)) 90) limits the total power
use of the vehicle across the two motors in gliding. The complexity of
this experiment increases by increasing the sample destinations and
decreasing the power capacity (per glide action) of the vehicle. The

E. SavaSavaş et al. / Planning Using Actions with Control Parameters 1191

Figure 9. Bill of material tree of product A in procurement domain model.
Coloured nodes indicate that those items are already used in the tree

displacement rate of the glide action is fixed with 1, 5, and 10 units
(?dx, ?dy ∈ {1, 5, 10, 20}). The AUV can take sample whenever
the x and y positions are in the range the sample destination.

6.4 Experimental results

Figure 7 shows the time taken to solve each problem instance, and
the number of states evaluated in the domain models.

As discussed in Section 5.3, the LP avoids early commitment to
values of control parameters, but maintains the constraint space in
which they must lie. However, a deeper search space might lead to
an excessive use of the LP during planning. As mentioned earlier in
this section, the procurement domain model creates a deeper search
space than the cashpoint domain. We observe that POPCORN takes
longer than POPF to generate plans in almost all of the procurement
problem instances. The reason behind this behaviour is that POPF
realises the use of its Simple Temporal Network (STN) is sufficient
in most of the steps. Coles et al. show that using the STN in tem-
poral domains is significantly faster than using the LP [5]. Figure 8
shows the mean time spent solving the LP at each state. These figures
indicate that the constraint-solving time per state explored by POP-
CORN gradually increases, because larger-sized linear programs are
generated as the problem complexity increases.

Despite the LP costs it is worth noting that POPF generates poor
plans. Repetition of the same action is observed in plans generated
by POPF. Even though multiple choices of the same discrete actions
are defined, POPF usually chooses the ones with the most minimum
increase or decrease effects, which leads it to generate poor plans;
POPCORN generates better plans where repetition of the same action
is not usually observed. Figure 10 compares the solution quality for
each problem instance solved by POPCORN and POPF.

Scotty planner introduces various domains with continuous con-
trol parameter effects. Table 3 compares the performance of POP-
CORN and Scotty in these problem instances. We avoid non-linear
interaction between control parameters by modelling the problems in
the same fashion discussed in Section 5. 2D- and 3D-AUV domains
are based on an underwater sampling mission scenario. In 2D-AUV
domain, the vehicle collects sampling data in at the same depth, while
the vehicle collects data in different depths in the 3D-AUV domain.

10

100

1000

10000

10 100 1000 10000

PO
PF

 S
ol

ut
io

n
Q

ua
lit

y
(M

ak
es

pa
n)

POPCORN Solution Quality (Makespan)

Cashpoint
Procurement
2D-AUV-Power
Terraria-capacity

Figure 10. Comparison of plan quality (measured in this case as plan
makespan) in four temporal numeric domains. POPCORN is compared with

POPF on each problem instance.

In this experiment, we slightly modified these domains to challenge
the performances of both planners. Seven and fourteen sampling des-
tinations are defined in 2D AUV1 and in 2D AUV2 domains. We ob-
served that Scotty generates longer plans in 2D AUV domains than
POPCORN due to taking longer paths in both problems.

Table 3. Comparison between POPCORN and Scotty in the 5 problems in
Firefighting (FF), 2D and 3D AUV navigation [8]. The numbers in the

brackets are the makespan, while the numbers outside the brackets are the
execution times.

Domains: 2D AUV1 2D AUV2 3D AUV FF1 FF2
Scotty 2.6(139) 8.4(260) 0.8(12) 1.2(20) 2.5(14)
Popcorn 0.9(116) 8.8(153) 0.5(12) 0.1(20) 0.7(15)

7 CONCLUSIONS

Physical and logical properties of real-world examples require mul-
tiple numeric variables to create realistic planning models. We have
shown examples of problems, in which it is most natural to model
a choice of numeric parameter values to control the behaviour of
actions, in a similar way, but in addition to, the duration of flexible-
duration actions. Furthermore, the opportunity to combine multiple
control parameters in a single action, so that the control space is
multi-dimensional, is motivated by specific examples.

We have presented a planning approach capable of solving prob-
lems in domains with control parameters and we have demonstrated
that it is capable of solving interesting problems with a range of
characteristics, performing scalably and producing efficient plans.We
compare performance with two alternatives: POPF using discretised
control parameters and Scotty, which offers a different role for con-
trol parameters that does not include examples such as the cashpoint,
procurement or Terraria domains.

The approach we have proposed, in which constraints governing
control parameters are accumulated into a constraint program that is
checked for feasibility as states are progressed, generalises to other
types and to non-linear constraints, subject to the capabilities of the
solver for the constraint program. We intended to explore this in fu-
ture work.

E. SavaSavaş et al. / Planning Using Actions with Control Parameters1192

ACKNOWLEDGEMENTS

This work is funded by European Commision Seventh Framework
Programme for Research and Technological Development (FP7) as a
part of SQUIRREL project under grant agreement No 610532.

REFERENCES

[1] J. Benton, Amanda Coles, and Andrew Coles, ‘Temporal Planning
with Preferences and Time-Dependent Continuous Costs’, in Proceed-
ings of The 21st International Conference on Automated Planning and
Scheduling, ICAPS, (2012).

[2] Avrim Blum and Merrick L. Furst, ‘Fast Planning Through Planning
Graph Analysis’, in Proceedings of The 14th International Joint Con-
ference on Artificial Intelligence, IJCAI, pp. 1636–1642, (1995).

[3] Amanda Coles, Andrew Coles, Maria Fox, and Derek Long, ‘Temporal
Planning in Domains with Linear Processes’, in Twenty-First Interna-
tional Joint Conference on Artificial Intelligence (IJCAI). AAAI Press,
(July 2009).

[4] Amanda Coles, Andrew Coles, Maria Fox, and Derek Long, ‘Forward-
Chaining Partial-Order Planning’, in Proceedings of International Con-
ference on Automated Planning and Scheduling (ICAPS), pp. 42–49,
(2010).

[5] Amanda Coles, Andrew Coles, Maria Fox, and Derek Long, ‘COLIN:
Planning with Continuous Linear Numeric Change’, Journal of Artifi-
cial Intelligence Research (JAIR), 1–96, (2012).

[6] Andrew Coles, Maria Fox, Derek Long, and Amanda Smith, ‘Planning
with Problems Requiring Temporal Coordination’, in Proceedings of
the Twenty-Third AAAI Conference on Artificial Intelligence (AAAI),
(July 2008).

[7] Robert T. Effinger, Brian C. Williams, Gerard Kelly, and Michael
Sheehy, ‘Dynamic Controllability of Temporally-flexible Reactive Pro-
grams’, in Proceedings of The 19th International Conference on Auto-
mated Planning and Scheduling, ICAPS, (2009).

[8] Enrique Fernández-González, Erez Karpas, and Brian C. Williams,
‘Mixed Discrete-Continuous Heuristic Generative Planning Based on
Flow Tubes’, in Twenty-Fourth International Joint Conference on Arti-
ficial Intelligence, (2015).

[9] Enrique Fernández-González, Erez Karpas, and Brian C. Williams,
‘Mixed Discrete-Continuous Heuristic Generative Planning Based on
Flow Tubes’, in Proceedings of the 3rd Workshop on Planning and
Robotics (PlanRob), pp. 106–115, (2015).

[10] Maria Fox and Derek Long, ‘PDDL2.1: An Extension to PDDL for Ex-
pressing Temporal Planning Domains’, Journal of AI Research (JAIR),
20, 61–124, (2003).

[11] Jörg Hoffmann, ‘The Metric-FF Planning System: Translating ‘Ignor-
ing Delete Lists’ to Numeric State Variables’, Journal of Artificial In-
telligence Research, 291–341, (2003).

[12] Andreas G. Hofmann and Brian C. Williams, ‘Exploiting Spatial and
Temporal Flexibility for Plan Execution for Hybrid, Under-actuated
Robots’, in Proceedings of The 21st National Conference on Artificial
Intelligence (AAAI), pp. 948–955, (2006).

[13] Hui X. Li and Brian C. Williams, ‘Generative Planning for Hybrid Sys-
tems Based on Flow Tubes’, in International Conference on Automated
Planning and Scheduling (ICAPS), pp. 206–213, (2008).

[14] Florian Pantke, Stefan Edelkamp, and Otthein Herzog, ‘Planning with
Numeric Key Performance Indicators over Dynamic Organizations of
Intelligent Agents’, in German Conference on Multi Agent System Tech-
nologies, pp. 138–155. Springer, (2014).

[15] Florian Pantke, Stefan Edelkamp, and Otthein Herzog, ‘Symbolic
Discrete-Time Planning with Continuous Numeric Action Parameters
for Agent-controlled Processes’, Mechatronics, 34, 38–62, (2016).

[16] Giuseppe Della Penna, Daniele Magazzeni, Fabio Mercorio, and
Benedetto Intrigila, ‘UPMurphi: A Tool for Universal Planning on
PDDL+ Problems’, in Nineteenth International Conference on Auto-
mated Planning and Scheduling (ICAPS), (2009).

[17] Wiktor Piotrowski, Maria Fox, Derek Long, Daniele Magazzeni, and
Fabio Mercorio, ‘Heuristic Planning for PDDL+ Domains’, in Proceed-
ings of The Twenty-Sixth International Joint Conference on Artificial
Intelligence (IJCAI). AAAI Press, (July 2016).

E. SavaSavaş et al. / Planning Using Actions with Control Parameters 1193

