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Automated Stereo Retrieval of Smoke Plume
Injection Heights and Retrieval of Smoke Plume

Masks From AATSR and Their Assessment
With CALIPSO and MISR

Daniel Fisher, Jan-Peter Muller, and Vladimir N. Yershov

Abstract— The longevity and dispersion of smoke and asso-
ciated chemical constituents released from wildfire events are
dependent on several factors, crucially including the height at
which the smoke is injected into the atmosphere. The aim here
is to provide improved emission data for the initialization of
chemical transport models in order to better predict aerosol and
trace gas dispersion following injection into the free atmosphere.
A new stereo-matching algorithm, named M6, which can effec-
tively resolve smoke plume injection heights (SPIH), is presented
here. M6 is extensively validated against two alternative space-
borne earth observation SPIH data sources and demonstrates
good agreement. Further, due to the spectral and dual-view
configuration of the Advanced Along-Track Scanning Radiometer
imaging system, it is possible to automatically differentiate
smoke from other atmospheric features effectively—a feat, which
currently no other algorithm can achieve. Additionally, as the M6
algorithm shares a heritage with the other M-series matchers, it is
here compared against one of its predecessors, M4, which, for the
determination of SPIH, M6 is shown to substantially outperform.

Index Terms— Advanced Along-Track Scanning Radiometer
(AATSR), injection height, smoke plume, stereo.

I. INTRODUCTION

B IOMASS burning events in boreal forests generate signif-
icant amounts of important greenhouse gases, including

CO2, CO, and NOx [1], [2]. Further, burning events may
potentially convert these ecosystems from carbon sinks to net
sources, in turn contributing to global warming [3]. Through
the process of convection induced by heat and moisture
released during fire events, vegetation fires can launch their
emissions vertically. The vertical extent of the emissions is
dependent upon the energy released by the fire, the moisture
content of the fire stock, and the ambient meteorological
conditions [4]. For the majority of observed fires, in a case
study of fire events in North America, emissions appear to be
trapped in the atmospheric boundary layer leading to localized
deposition [2]. However, in sufficiently large fire events with
large energy outputs or under strongly convective atmospheric
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conditions, the emissions can be injected into the free tro-
posphere [2]. Under these conditions, the atmospheric lifetime
of most trace gases and aerosols is substantially enhanced and
their effects last longer thus affecting much larger areas [5].
In some cases, the smoke particles can persist in the free
troposphere for several days to weeks and so contribute to the
dispersal of greenhouse gases and other pollutants thousands
of kilometers away from their sources [5].

To quantify the impacts of fire emissions on air quality and
climate, chemical transport models (CTMs) are employed [6].
In order to generate effective predictions and better under-
standing, these CTMs must be initialized with reliable esti-
mates of the vertical extent of the emissions, and also validated
against plume dispersion measurements over time. Due to the
lack of available in situ or satellite data, particularly at higher
latitudes than visible to geostationary satellites, often rather
arbitrary assumptions are used for initialization, such as fixed
vertical injection levels [3]. This simplification is likely to
lead to a reduction in the accuracy of the emission distrib-
ution outputs from such models. To improve CTM prediction
accuracy, precise measurements of smoke plume injection
heights (SPIH), which can be assumed as a proxy for all
constituent emissions for fire events, were made for the Euro-
pean Space Agency (ESA) ALANIS Smoke Plumes (EASP)
(http://www.alanis-smokeplumes.info) project. The EASP
project aims to use this newly developed SPIH data source
to potentially improve current large-scale dispersion forecasts
of emissions from the Eurasian boreal forest ecosystem (latitu-
dinal range 46°–78°, longitudinal range 0°–174°) from August
2008 to August 2011.

As the study region is vast, the use of earth observing (EO)
satellite data is necessitated to provide suitable coverage.
However, there are few suitable techniques for determining
SPIH using EO. The Cloud-Aerosol Lidar with Orthogonal
Polarization (CALIOP) [7] carried onboard the joint National
Aeronautics and Space Adminsitration and Centre Nationale
d’Etudes Spatiales (NASA-CNES) satellite demonstrates
one method; however, while the heights retrieved are
very accurate, its spatial sampling is very limited (100-m
footprints every 333-m along-track and around 500-km across-
track) due to the lidar technology employed. A far more
comprehensive coverage of SPIH is achieved in the Multiangle
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Imaging SpectroRadiometer (MISR) Smoke Plumes project
(http://misr.jpl.nasa.gov/getData/accessData/MisrMinxPlumes/)
using the MISR [8] instrument, carried onboard the NASA
Terra satellite, where the principles of stereo photogrammetry
are applied. The method, developed at the Jet Propulsion
Laboratory, the results of which are described in [2], relies
on manual digitization of active smoke plume masks (SPM)
and is therefore limited to those areas, which were studied to
date. Here, we apply an automated stereo photogrammetric
method to another stereo capable instrument, the advanced
along-track scanning radiometer (AATSR).

AATSR [9], launched in 2002 onboard the ESA Envisat
satellite, provides an excellent tool for the determination of
SPIH. The instrument viewing geometry provides imagery at
both nadir and in the forward direction (at 55° zenith angle),
allowing for effective stereo reconstruction. Given AATSR,
with a nominal nadir pixel resolution of 1 km, a swath of
512 km, and at least four orbits crossing the study region
per day, a reasonable spatial sampling is achieved. Capable
of imaging in stereo in seven channels, covering both the
visible/near infrared, shortwave infrared and thermal (0.55,
0.65, 0.87, 1.6, 3.7, 11, and 12 μm), complete automation
of the SPM process is possible.

A smoke plume “tuned” stereo-matching algorithm, referred
to here as M6 due to a shared heritage with the other
M-series matchers [10], [11], is developed for the EASP
project. M6 utilizes novel normalization and matching tech-
niques that perform effective SPIH determination in the study
region and generate improved results, in terms of coverage and
accuracy, when compared to a previous state-of-the art stereo-
matching algorithm applied to AATSR data, e.g., M4 [11].

The next section describes the overall processing chain and
output products developed for the EASP project. In Section III,
a detailed algorithmic description of M6 is given, followed in
Section IV by a description of the SPM method. Section V
outlines the validation approach used for analyzing the SPIH
outputs of M6, the results of which are given in Section VI.
These results are discussed in Section VII and conclusions are
drawn in Section VIII.

II. AATSR PROCESSING CHAIN

A JAVA processing chain based upon the BEAM
visualization toolkit (http://www.brockmann-consult.de/cms/
web/beam/) is developed for the generation of the AATSR
SPIH dataset for the EASP study region. The process-
ing chain generates pixel-level precision SPIHs and, using
AATSRs multispectral imaging capabilities, SPMs. The SPIHs
are generated using the M6 matcher and the Mannstein camera
model [11], [12]. The SPMs are then derived from the M6
output, the spectral variations between the input channels and
a local digital elevation model (DEM) taken from the USGS
GMTED2010 30 arc-seconds dataset [13]. The key stages of
the entire processing chain can be summarized as follows.

1) Ingest Envisat AATSR N1 product and select the four
relevant spectral channels (0.55 μm Forward and Nadir,
0.87 μm Nadir, 1.6 μm Nadir and 11 μm Nadir)
as well as the relevant geo-referencing information,

camera model, DEM, and co-registration correction
coefficients [14].

2) Using the 11 μm channel generate a cloud mask using
a thermal threshold. Dilate the cloud mask by one pixel,
to ensure removal of cloud pixels at cloud edges, and
apply to 0.55 μm channel prior to stereo processing.

3) Apply M6 to the cloud masked 0.55 μm channel views
to produce a digital disparity model. Correct the dispari-
ties using the co-registration correction coefficients [14].

4) Use the Mannstein camera model to space intersect
projected rays from the two views to find the point of
closest perpendicular distance (minimum skewness) and
provide elevation values above the reference ellipsoid
for the disparity values to create a digital disparity and
elevation model (DDEM).

5) Generate the SPM using the DDEM and a height thresh-
old above a DEM to exclude any misclassifications.
Apply the derived mask to the DDEM to generate the
masked SPIH product.

6) The resultant masked SPIH product is written out in
geoTIFF format using the geo-referencing information
and then converted into NetCDFv4 (CF). In addition to
the SPIH layer, the following additional layers are incor-
porated into the product: moderate resolution imaging
spectroradiometer (MODIS) fire radiative energy of the
nearest overpass; a false color composite browse product
of the forward 0.55, 1.6, and 11 μm channels; and a red-
cyan stereo anaglyph of the 0.55 μm (green) channel.

The total processing time to produce a geo-referenced
SPIH output for a 512 × 512 pixel image subset is approx-
imately 2 min on a single core of an Intel Core i5-
processor running at 2.66 GHz. This processing chain is
applied to the AATSR imagery for the defined study region
and epoch, providing a new SPIH dataset for exploitation
by the scientific community (accessible by application at
http://www.alanis-smokeplumes.info).

III. M6 STEREO MATCHER

Although M6 holds a shared heritage with the other
M-series matchers [10], [11] in that it uses area-based
techniques to solve the stereo reconstruction problem, it
approaches the reconstruction with significant modifications,
especially in the normalization procedure and the matching
cost computation.

A. Normalization

Accounting for photometric variability (due for example
to differences in aerosol scattering or aerosol or surface bi-
directional reflectance) between stereo image pairs prior to
disparity estimation is a standard pre-processing step for
most area-based stereo-matching algorithms. M4 [11], for
example, employs normalized cross correlation (NCC) where
each image is modified so that it has local statistics comprised
of a zero mean and a standard deviation equal to one. This
increases robustness to changes in gain, bias, and local vari-
ability due to nonlambertian effects, between the stereo image
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(a) (b) (c)

Fig. 1. Modified normalization outputs. (a) Subset of the 0.55 μm channel from AATSR orbit 43986. the lighter features are smoke plumes and clouds,
while the darker features are the land surface. (b) M6 normalization of the subset in (a). Note the presence of texture in all regions of the image. (c) Result
of the M4 normalization applied to the subset. Note the loss of image detail around plume edges as well as the loss of any retrievals around the image edge.

pair, which is vital for effective stereo matching of scenes in
uncontrolled (i.e., natural) environments.

Normalization typically employs a band pass filter to sup-
press noise while preserving texture. In the case of NCC,
this is achieved first through smoothing of the image with
a Gaussian filter to provide the low-pass filtering and then
subtracting this smoothed image from the original to provide
a high-pass filtered residual. Normalization is then achieved
through division by a local standard deviation within a small
window. Due to the smoothing effect of the low-pass filter
used in this method, blurring across discontinuities (changes
in disparity) occurs during this normalization process. This
blurring leads to a number of undesirable effects during
the stereo matching of the image pair, including smoothed
disparity fields and erroneous disparity estimation [15]. M6
aims to improve performance at discontinuities through an
alternative normalization process.

Surrounding each pixel x in the reference image R, we
define a neighborhood Nx. For each Nx, we find the subset
of pixels ρ that are most similar to x , giving a reduced
neighborhood Nρx . This is achieved through

Nρx = |x − Nx| < s (1)

where S is a threshold. We then use Nρx to normalize x in place
of Nx. In this paper, N is of size 21 × 21 pixels, chosen to
provide a large enough sample of pixels, while not increasing
computation time significantly, and S is set to retain those
pixels ρ whose absolute differences from x are within the
25% percentile.

If we let ξ define the pixels which comprise Nρx , i.e., ξ ∈ Nρx ,
and we assume that these pixels are in the order sorted by
value such that ξ0 ≤ ξ1 ≤ · · · ≤ ξn−1, where n is the total
number of pixels in Nρx , then we can calculate the median of
the subset

x̃ =
{
ξk , if n = 2k − 1
(ξk + ξk+1)

0.5 , if n = 2k

}
. (2)

We can then compute the standard deviation of the subset Nρx
relative to its median x̃

σ
ρ
x =

√√√√∑n−1
i=0 (ξ i − x̃)2

n
−

(∑n−1
i=0 (ξ i − x̃)

n

)2

. (3)

After using (2) and (3) to obtain the median and standard
deviation for every pixel x in R, giving the medians of
the reference image, Rx̃, and the standard deviations of the
reference image, Rσ , we can perform the normalization

Rnorm = R − Rx̃

Rσ + ε
. (4)

The small positive number ε is set here to avoid zero divisions
and to limit the amplification of image noise. Its default size
is set equal to 10−3. The same methods are also applied to
normalize the comparison image

Cnorm = C − Cx̃

Cσ + ε
. (5)

This modified normalization algorithm leads to a significant
reduction in smoothing at image discontinuities, allowing
more reliable matching to be achieved in these challenging
areas. The improved detail retention of M6 can be seen in
comparison to the NCC normalization used in M4 shown in
Fig. 1.

B. Matching

Let i and j define, respectively, the line and sample coor-
dinates for all pixels x in the normalized reference and
comparison images, Rnorm and Cnorm. We can then calculate
the sum of absolute differences (SAD) for r different across
track displacements ur as follows:

SAD(ur ) =
p∑

m=0

q∑
n=0

∣∣Rnorm(im, jn)− Cnorm(im − ur, jn)
∣∣ (6)

where p is the number of samples and q is the number of
lines in the images. From (6), we find the displacement ur ,
which minimizes the SAD over the entire image and use this to
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displace the comparison image in the cross track direction such
that Cnorm = Cnorm(i−ur , j). Once the images were aligned in
the across track direction, we compute along track disparities,
which give the height information. Given a suitably high across
track wind speed (> 8 ms−1), the across track disparities may
not be consistent across the scene. Therefore, in the presence
of high across track winds, we may not be locating the best
matching pair of pixels between the images. We evaluated the
matching outputs employing the above method and a pixel-
by-pixel method against the validation datasets presented in
Section V. Little difference between the outputs was noted, yet
a significant boost in computer processing time was achieved
by employing an entire scene shift, due to the need to evaluate
each along track disparity only once, rather than vr times,
where vr is the number of along track disparities.

The along track disparities are computed on a pixel-by-
pixel basis rather than for the entire image as done in the
cross track disparity estimation. M6 employs a modified SAD
metric for its matching cost in this instance. The modification
being that the sum is computed over a subset of pixels from
the cost aggregation window, similar to variable window size
algorithms [16]. To compute the subset of pixels over which to
aggregate the costs, we apply (1) to each pixel in Rnorm. Here,
however, the indices of the pixels ξ of set Nρx are used to define
the size N neighborhood Kx over which the cost aggregation
is performed, i.e., Kx(ξ) = 1, and all indices, which are not
of the set Nρx , are set to 0, i.e., ψ /∈ Nρx , Kx(ψ) = 0.

Once the pattern kernel is derived for x , the matching metric
is evaluated as in

SAD(x, vr ) =

p∑
k=0

q∑
l=0

∣∣∣Rnorm(im+k−p/2, jn+l − q/2)−
Cnorm(im + k − p/2, jn − vr + l − q/2)

∣∣∣×Kx(k, l)

∑
k=0

p
q∑

l=0

Kx(k, l)

(7)

where p is the number of samples and q is the number of
lines in N . While working through the list of along track
displacement vectors vr , the value of the metric and the
associated displacement are stored for x . Then, to determine
the final disparity, a spline interpolation routine is applied to
the set of costs to find the subpixel disparity. The quoted
accuracy of the algorithm is pixel level due to the pixel level
accuracy of the co-registration correction coefficients [14]. The
resultant final disparity map is then smoothed using a median
filter. The algorithm output is shown in Fig. 2.

IV. SMOKE PLUME MASKING

SPMs are required for the accurate delineation of smoke
from other features such as clouds and the land surface,
assuming that smoke when mixed sufficiently with cloud
droplets will be difficult, if not impossible, to differentiate.
Previous attempts at SPM generation have tended to focus
upon radiometric threshold techniques. The thresholds are
typically derived from statistical- or machine-learning meth-
ods [18], [19]. While oftentimes effective, these SPMs are
often susceptible to misclassification due to the lack of a

stable reflectance curve for smoke, with large overlaps existing
between the spectral profile of smoke and non-smoke fea-
tures [19]. Through a combination of stereo-derived heights,
and visible channels and thermal channels, AATSR is capable
of effectively classifying smoke and hence, automated smoke
detection is achievable.

The SPM is generated in a number of steps as follows. First,
a cloud mask is generated from the 11 μm channels using a
radiometric or a statistically derived threshold

Mc (x) =
{

0, if (F11(x) < F̄ + Fσ ) or (F11(x) < 280 K)
1, otherwise

(8)
where Mc is the cloud mask, F is the forward scene for
the subscripted channel, F̄ is the image mean, and Fσ is
the image standard deviation. This thresholding method only
works effectively in the ALANIS study region during the
fire season (April through September), as it relies upon the
land surface being warmer than any detected cloud feature.
Any snow-covered ground would also be flagged as cloud
using this method. The second step is to buffer the cloud
mask. This buffering is required to try to remove as many
cloudy pixels as possible from the SPM. As stereo results
can vary between channels, there is not always a direct cloud
correspondence, so buffering removes the errors associated
with this. The buffering is achieved through application of
a boxcar averaging filter to the cloud mask. This effectively
dilates the cloud mask leading to the required buffering effect.
Once derived, the cloud mask is applied to the forward and
nadir scenes prior to stereo matching to eliminate those pixels
from the pattern matching. This is required as area-based
methods, even with the modifications applied here, have a
tendency to smooth features. Due to these smoothing effects,
a posteriori application of the cloud mask rarely removes all
cloud features.

The final SPM, Msp is generated by removing land fea-
tures by comparing the cloud masked 0.55 μm stereo-derived
altitude result, SPIH, to a DEM. Any pixel whose elevation
is in proximity to the DEM to within the algorithms’ height
precision (≈1 km for AATSR), a, is flagged as land, and set
to zero

Msp(x) =
{

1 , if SPIH(x)− DEM(x) > a
0 , otherwise.

(9)

The effectiveness of the SPIH mask can be seen in Fig. 3,
note that no clouds contaminate the mask at all. This method
does lead to occasional false-positives being detected, particu-
larly over polluted populated areas such as the Benelux region.
However, due to the unlikelihood of fires of sufficient energy
to have SPIH of >1 km, it is easy to detect and screen these
false-positives manually.

V. VALIDATION DATASETS AND METHODS APPLIED

A. CALIOP Validation Methodology

The CALIOP instrument is a two wavelength polarization
sensitive lidar carried aboard the CALIPSO satellite in the
NASA A-Train constellation. The CALIOP instrument, which
is making measurements of clouds and aerosols since June
13, 2006, receives backscattered radiation in three channels,
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Fig. 2. (a) AATSR 0.55 μm forward reflectance for a large number of smoke plumes from the northwest of Kamchatka, AATSR orbit 43986 and (b) result
of the SPIH and SPM algorithms (see Section IV for a description of the SPM algorithm) applied to the left image.

two at 532 nm with sensitivity to the backscattered intensity
at orthogonal polarizations and one at 1064 nm. The lidar
has a ground footprint on the ellipsoid of 100 m and pulses
every 333 m along track. The vertical resolution is between
30 and 60 m depending on the altitude of the backscattering
surface, with 30 m resolution achievable in the troposphere.
The received level one (L1) data is processed into a number
of level two (L2) products with numerous useful charac-
teristics for intercomparison with stereo-derived SPIHs from
AATSR.

Intercomparisons are performed using the 1-km cloud prod-
uct (CAL_LID_L2_01kmCLay-ValStage1-V3-01), chosen for
its similar resolution to the AATSR instrument, while still sen-
sitive enough to detect smoke plume features. The lower limit
for cloud detection at all horizontal scales is a backscattered
signal of greater than 1 × 10−3 km−1sr−1 (equivalent to an
optical depth of 0.01 for cirrus clouds), which is also suitable
for the detection of smoke plumes.

Due to the different orbital paths and equatorial over-
pass times (10:00 A.M. Envisat versus 13:30 CALIPSO),
temporally collocated measurements between AATSR and
CALIOP only occur with regularity at polar latitudes; as scene
acquisitions descend toward the equator, the likelihood of
finding collocated measurements decreases. Furthermore, the
time difference between any possible collocations increases.
The ALANIS study region enables the location of coincident
orbital paths; however, the measurements are separated by
approximately 2 h at the latitudes where most smoke plumes
are present. Further the validation, of course, requires that
smoke plumes are seen by both instruments; as the CALIOP
instruments only samples 100 m footprints every 333 m, it
still may not provide spatially coincident measurements of
smoke plumes.

For 2008, all AATSR orbits in the study region were
assessed visually for smoke plumes using the National Earth
Observation Data Centre (NEODC) AATSR browse data
set. For any scene, which was found to contain smoke,
a second search was undertaken using the COVE tool
(http://www.ceos-cove.org) to check for any co-incidences
between the AATSR orbits and CALIPSO. Through this
checking process, a total of three suitable scenes (29/7/10,
1/8/10, 2/8/10) where AATSR and CALIOP observed the same
smoke plume were found from hundreds of individual orbits.
The scenes are masked using the masking method outlined
in Section IV prior to evaluation, to ensure that only M6s
performance on smoke plumes is being assessed.

Due to the ∼2-h time delay between the instrument over-
passes, a correction for wind-induced shift in the location
of measured AATSR SPIH pixels was tested to determine
whether it might lead to more accurate results. The method
involved finding the geographically closest AATSR pixel for
each CALIOP measurement, using this pixel as an a priori
location, and then back projecting to a position consistent
with the CALIOP overpass using ECMWF meridional and
zonal surface wind profiles. After preliminary evaluation, the
wind correction led to a degradation of the intercomparison
and therefore was not subsequently applied. The reasons for
this are assumed to be due to the incompatibility between
the coarse resolution of the 2.5° ECMWF wind grids and
the mesoscale resolution of the AATSR observations to be
corrected.

The geo-location accuracy of the AATSR instrument is
not documented in the literature. However, ATSR-2, AATSRs
predecessor, is documented to be good to ±2 km geo-location
accuracy [20], so the assumption made here is that AATSR
shares a similar accuracy level. Therefore, one cannot be
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Fig. 3. SPM boundary of the SPIH output for a scene from AATSR (orbit:
43986) is shown here. The masked regions are defined as those within the
yellow contours. The red dots are fires detected by the MODIS FIRMS
algorithm [17].

confident that the collocated measurements are actually mea-
suring the same point on the earth’s surface. To account for
this, a ±2 pixel bounding-box is used. During the inter-
comparison of a collocated measurement, the AATSR pixel
within the bounding-box that returns the minimum difference
from the CALIOP layer retrieved SPIH is retained as the
collocated measurement, with the supposition that it is the
most likely to be the pixel collocated with CALIOP. The
effects of choosing the minimum SPIH difference from the
bounding-box are further assessed in Section VII and are
shown not to significantly influence the outcome of the results.
Another caveat of AATSRs geo-location accuracy is that we

TABLE I

BOUNDING-BOX ASSESSMENT

Statistic Minimum Mean Median

N 22885 22815 22804
RMSE 0.66 0.64 0.65
Bias 0.29 −0.03 −0.02
R**2 0.36 0.31 0.31

N is the number of points assessed, RMSE is the root mean square error, and
R2 is the coefficient of determination.

cannot be certain that we are using the correct DEM height to
correct elevation of the derived SPIH; in regions of rapidly
varying terrain (> 250 m elevation change per 1 km), the
accuracy of the retrieved SPIH will be reduced.

CALIOP is able to retrieve multiple layers of cloud and
aerosols and is sensitive to very low aerosol optical depths
equivalent (� 0.01). From this analysis, it is found that the
top layer detected by CALIOP does not always correspond
to the uppermost smoke layer observed by AATSR. This is
due to the greater sensitivity of the lidar instrument compared
to a passive imaging system. To account for this, all layers
detected by CALIOP are compared with the SPIH pixels
within the AATSR-bounding-box to ensure that the correct
match-up layer is retrieved.

B. MISR Validation Methodology

The MISR instrument carried onboard the NASA Terra
satellite, launched in December 1999, is a nine-camera
(arranged between ±70°) radiometer with four spectral chan-
nels (0.45, 0.56, 0.67, and 0.87 μm) located in the visible
and near-infrared bands. The instrument operates in two
modes, local mode, and the general operational method, global
mode. The global mode allows imaging at 275 m across all
channels in the nadir camera but only in the red channel
across all other imaging angles. All other channels image at
1100 m resolution, significantly reducing the data volume. The
multiple camera arrangement allows for stereo cloud, smoke,
and land height measurements to be made [10] achieving an
accuracy of ∼500 m [21]. The Terra satellite has an equatorial
overpass time of 10:30 A.M., hence being much closer in
time to Envisat (10:00 A.M.). This allows for a more direct
intercomparison when orbital swath coincidences occur and
therefore potentially improved validation results.

Data from the MISR instrument has been used to gener-
ate SPIH datasets for a number of regions globally under
the MISR Plume Height Project [2], [22]. The MISR SPIH
from the MISR plume height project are manually digitized
using the MISR INteractive eXplorer (MINX) tool, an IDL-
based visualization and digitizing toolkit for making stereo
measurements of clouds, smoke/volcanic plumes, dust clouds,
and so forth, from MISR imagery. There are a number of
algorithms within MINX; however, of most importance here
to validation is the camera image-matching algorithm. The
MINX stereo-matching algorithm uses Pearson’s correlation
coefficient to match an image patch extracted from the nadir
camera to five other views (CF, BF, AF, AA, BA, and CA) at
275-m resolution [2], [22]. Once the patch has been matched
in all six views, a minimum curvature surface is fitted to the
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correlation matrix, and is used to interpolate the disparity
to a subpixel location. Following matching, a wind speed
correction algorithm is applied [2], [22] leading to a final
height accuracy of approximately ±200 m.

The MISR plume height project includes a dataset for
Siberia for the 2008 fire season (with plumes digitized in
all orbits from March through until August 2008), which is
coincident with the ESAP study region. The smoke plumes
in the MISR SPIH dataset are collocated with AATSR orbits
using the COVE tool, giving a total of nine orbits containing
collocated smoke plumes, comprising thousands of individual
measurements with overpass times differing by ∼30 min. The
collocations are evaluated using the same methods, where
applicable, as applied to the CALIOP analysis.

VI. RESULTS

A. CALIOP Intercomparison Results

After finding the three orbital match-ups, all pixels which
were intersected by the CALIOP footprints in the AATSR
SPIH were extracted and compared. Outliers are defined as
those pixels where the SPIH difference is greater than two
standard deviations from the mean and removed from further
analysis. See Fig. 4.

B. MISR M6 Intercomparison Results

A similar procedure for matching up pixels from the SPIHs
from MISR with those from AATSR was applied, however,
using a different criteria to eliminate outliers (discussed in
Section VII). Further, as there are several MISR SPIH pixels
for each AATSR pixel, the MISR data is resampled to a
resolution of 1100 m, so that it is more similar to that of
AATSR prior to statistical analysis. See Fig. 5.

C. MISR M4 Intercomparison Results

The methods are the same as those in Section V-B. See
Fig. 6.

VII. DISCUSSION

To ensure confidence in the results obtained in the intercom-
parison, the implications of using a ±2 pixel bounding-box to
account for the poor geo-referencing of the AATSR instrument
must be understood. In the analysis, the minimum difference
between each independent SPIH measurement and the AATSR
SPIH measurements from within the bounding-box is used as
the collocated difference result. Using the minimum gives the
optimum outcome; however, this result may be misleading due
to noise effects typical in stereo-matching algorithms [23]. To
assess whether the results are misleading, additional statistical
measures (the median and mean differences) between the
independent SPIH measurement and the SPIH measurements
contained within the AATSR-bounding-box are generated and
presented in Table I.

The results presented in Table I demonstrate that the median
and mean show very similar statistical characteristics to the
minimum. This indicates that the majority of the height dif-
ferences within the bounding boxes are similar to the minimum

difference height, giving confidence in using the minimum as
the quality measure. This additional statistical analysis shows
that the implications of using the minimum SPIH difference
from the bounding-box are limited, and confidence in the
analysis is justified.

The CALIOP intercomparison comprises a relatively small
number of data points. This is due to the limited number
of co-located measurements found, as would be expected at
the study region latitudes and given the instrument charac-
teristics. Following outlier removal, where an outlier is here
defined as being ≥ 2 standard deviations from the mean,
the intercompared points show mostly good agreement overall
with an R2 value of 0.5, which was found to be statistically
significant to the 0.05 level using a two-tailed Student’s
t test. A slight high bias for CALIOP is evident, and is
probably due to increased lidar sensitivity to aerosol particles,
causing CALIOP to retrieve heights nearer to the top of the
plume. Whereas, AATSR measures the height where the plume
reaches a suitably high optical thickness to be detected in the
passive sensor array.

The MISR analysis against M6 presented in Section VI-B
provides a far more comprehensive intercomparison of SPIH,
with the number of individual pixels intercompared numbering
in the tens of thousands. Focusing solely on the results gener-
ated using the minimum difference shown in Fig. 4, it is found
that the initial correlation statistics computed for all points
show a rather poor R2 score ∼0.3 following outlier removal,
with anything ≥ 2 standard deviations from the mean classed
as an outlier. Looking at the minimum plot in Fig. 5, this
appears to be due to MISR detecting a large number of points
as smoke plumes which AATSR detects as the land surface,
i.e., < 1 km. The reason for this is that MISR detects more
smoke than AATSR, due to its higher resolution, higher quan-
tization 14-b cf. 10-b for AATSR, and an increased number of
observations of any plume feature (7 MISR camera angles are
employed in MINX compared with 2 for AATSR); therefore
it can resolve the smoke plumes, which AATSR cannot.

Those points that AATSR detects as the land surface,
when excluded from the analysis as outliers, provide a better
assessment of the quality of the M6 measurements. Here, we
assume that any AATSR SPIH measurement, which is < 1 km
above the DEM is potentially the land surface and is therefore
excluded from the statistical assessment. With this threshold
applied, the statistics are greatly improved with an R2 score
of ∼0.69, at the 0.05 level using a two-tailed Student’s t test.

In order to appreciate the improvement in efficacy and
accuracy gained through application of M6, the M4 matcher
output is also compared against the MISR data set and the
results contrasted. M4, originally developed for cloud top
height retrieval from ATSR2, performs poorly in comparison
to M6 for smoke features. The coefficient of determination
score, even with outlier removal, where similarly to the M6
analysis, outlier are classes anything ≥ 2 standard deviations
from the mean, is not as good, at 0.28.

The poor results are due to a number of reasons: M4
is designed specifically to retrieve cloud top height and is
effective at resolving larger image features, such as extensive
unbroken cloud decks. The M4 algorithm applies Gaussian
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CALIOP vs AATSR SPIH Scatter Plot
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Fig. 4. Results for the intercomparison between AATSR and CALIOP using
the methods described in Section V-A. Inset within the plot are two sets of
statistics, one containing outliers and one where the outliers were removed,
where an outlier is any result outside two standard deviations from the mean.
Outliers are represented in the plot as triangles.

MISR vs AATSR M6 SPIH Scatter Plot (MIN)
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Fig. 5. intercomparison of MISR-AATSR for the M6 matcher. Multiple
statistical measures are used in the evaluation; the reasoning for this is given
in Section VII. Again outliers are classified as those points which are outside
±2 standard deviations from the mean, denoted in the scatter plot as crosses.

smoothing kernels of a large radius (10 pixels) during its
normalization phase and Gaussian aggregation kernels during
its matching phase (5 pixels). These kernels, while well suited
to the extraction of extensive image features, such as clouds
decks, suffer from poor performance in the presence of small
image features and also at the boundaries or edges between
distinct image features, which typically contain discontinuities,
or a change in disparity. In the normalization phase, small
image features can either be “washed out” from the image
due to the averaging applied, or a halo effect can occur,
where a region without texture is formed around the image
feature [such effects can be seen in Fig. 1(c)]. The halo effect
not only affects small image features, but also occurs at any
boundary of two distinct intensity (pixel value) populations

Fig. 6. Analysis of the MISR-AATSR intercomparison for the M4 matcher.
The same outlier removal process as applied to M6 is used to ensure fair
comparison between M6 and M4. The outliers are outside the axes limits and
are not displayed. Note that the plot axes are different to those employed in
Fig. 5 to better illustrate the SPIH determination problems associated with the
M4 matcher, but the color applied is the same; everything in red is greater
than 3 km in height difference.

(i.e., moving from a smoke plume feature to a water cloud
feature). The halo effect is caused by the inability of the NCC
algorithm applied in M4 to effectively normalize bimodal dis-
tributions. NCC is reliant upon the intensity distribution from
the normalization window being Gaussian; when two distinct
intensity populations exist, as is common when moving from
a feature at one disparity to another, the Gaussian requirement
is not fulfilled and the mean and standard deviation used
in the normalization process do not effectively describe the
data within the normalization window. This leads to a loss of
texture at discontinuities and the aforementioned halo effect
at feature edges.

For smoke plumes, extent is dependent on the magnitude of
the fire and the local meteorological conditions. For example,
looking at the plumes in Figs. 1–3, we can see that some
plumes have combined to form an extensive plume cloud,
while a number of other plumes are smaller and distinct in
nature. M4 is able to effectively capture the larger plume
features, as they are similar to extensive cloud decks in form;
however, due to the aforementioned reasoning, the smaller
plume features are lost and poor performance is shown at inter-
faces between smoke plumes and water clouds, the impacts of
which are evident in Fig. 6. In Fig. 6, there are a large number
of erroneous height estimations where the AATSR M4 SPIH
outputs are more than 4 km above the MISR outputs. These
erroneous height estimations are caused by the halo regions
present at discontinuities in the M4 normalization, as within
the halo there is limited texture for the matching algorithm to
evaluate, therefore the matching is ambiguous and consensus
as to which is the optimum match cannot be reached, leading
to invalid height estimations being returned. This significantly
reduces the quality of the M4 output, and dominates in the
presence of smaller features, as is often the case for smoke
plumes, which are frequently observed to be saturated by
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edges and therefore discontinuities and intensity changes. The
M6 normalization does not employ the smoothing strategies
applied in M4, but rather separates the intensity populations so
that only pixels from a similar intensity distribution are used
in the normalization process. Therefore, it is able to perform
more effectively at discontinuities, enabling detection of more
of the smaller smoke plumes in a more robust way than M4,
as is evident in the analysis in Fig. 5.

VIII. CONCLUSION

A JAVA-based processing chain for the automated deriva-
tion of SPIH and SPMs from AATSR was described. The
processing chain was implemented at Mullard Space Science
Laboratory on a multithreaded Linux cluster with the output
products being delivered to our partners on the ESA-Noveltis
smoke plumes project (http://www.noveltis.fr/alanis/) in order
to determine their potential in improving the predictive effi-
cacy of CTMs. The final product comprised a masked SPIH
NetCDF derived from the 0.55 μm AATSR channel, as well as
other useful ancillary data, on a daily timescale for the EASP
study area for yearly epochs of April through September for
four years (2008–2011).

The outputs from the processing chain were evaluated
against SPIH measurements from the independent instruments,
MISR and CALIOP for the whole of the fire season in 2008.
The outputs of the validation showed excellent agreement
between the AATSR results and the two alternative measure-
ment datasets. Further, M6 was shown to significantly outper-
form M4, a stereo-matching algorithm designed to retrieve
cloud top height, further demonstrating M6’s effectiveness
in the determination of SPIH compared to more traditional
stereo-matching algorithms. Given boundary layer heights, it is
possible to employ the SPIHs with SPMs applied to determine
how much material is injected into the free troposphere. The
SPIHs/SPMs could then be used to assess the impact of these
new datasets on CTMs. However, this is not the subject of this
paper.
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