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Personalized Models of Human Atrial
Electrophysiology Derived From Endocardial

Electrograms
C. Corrado∗, J. Whitaker, H. Chubb, S. Williams, M. Wright, J. Gill, M. O’Neill and S.A. Niederer

Abstract—Objective: Computational models represent a novel
framework for understanding the mechanisms behind atrial
fibrillation (AF) and offer a pathway for personalizing and
optimizing treatment. The characterization of local electrophysi-
ological properties across the atria during procedures remains
a challenge. The aim of this work is to characterize the re-
gional properties of the human atrium from multi-electrode
catheter measurements. Methods: We propose a novel method
that characterizes regional electrophysiology properties by fitting
parameters of an ionic model to conduction velocity and effective
refractory period restitution curves obtained by a s1 s2 pacing
protocol applied through a multi-electrode catheter. Using an
in-silico data set we demonstrate that the fitting method can
constrain parameters with a mean error of 21.9 ± 16.1% and
can replicate conduction velocity and effective refractory curves
not used in the original fitting with a relative error of 4.4±6.9%.
Results: We demonstrate this parameter estimation approach
on 5 clinical data sets recorded from AF patients. Recordings
and parametrization took approx 5 and 6 minutes, respectively.
Models fitted restitution curves with an error of ∼ 5% and
identify a unique parameter set. Tissue properties were predicted
using a 2D atrial tissue sheet model. Spiral wave stability in each
case was predicted using tissue simulations, identifying distinct
stable (2/5), meandering and breaking up (2/5) and unstable
self terminating (1/5) spiral tip patterns for different cases.
Conclusion and significance: We have developed and demon-
strated a robust and rapid approach for personalizing local ionic
models from a clinically tractable protocol to characterize cellular
properties and predict tissue electrophysiological function.

Index Terms—Electrograms, atrial fibrillation, catheter mea-
surements, computational models, model personalization, resti-
tution curves, conduction velocity, effective refractory period

I. INTRODUCTION

Atrial fibrillation (AF) is a supra-ventricular tachyarrhyth-
mia characterized by uncoordinated atrial activation with con-
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sequent deterioration of mechanical function. AF is the most
common arrhythmia, affecting almost 2.5 million people in
the US, [1] and is associated with an increased incidence of
cardiovascular disease, stroke and premature death.

AF is commonly treated by radio frequency catheter abla-
tion in drug refractory patients, [2], [3], [4]. However, many
patients require multiple procedures to achieve sinus rhythm
[5]. No consensus regarding the mechanisms that sustain
fibrillation in the atrium has been reached; however local tissue
properties, identified by complex fractionated electrograms [6]
and focal impulse and rotor activation patterns [7], [8], and a
heterogeneous atrial substrate [9] have been proposed to play
a role in the induction and maintenance of AF.

Biophysical modeling provides a formal framework that
combines our understanding of atrial physiology, physical
constraints and patient measurements to make quantitative
predictions of patient response to treatment. The models char-
acterize the local cellular ionic properties, conductivity and
propagation of electrical activation across myocardial tissue.
These models have provided insights into the fundamental
mechanisms responsible for arrhythmias in the ventricles and
atria, [10], and have the capacity to optimize treatment plans
for an individual patient’s pathology. However, current models
have failed to capture individual variation in electrophysiolog-
ical properties across the atria that are potentially crucial to
representing the individual’s pathology.

Characterizing the parameters of cellular ionic model across
patient’s atria is crucial for simulating the effects of tissue
heterogeneity on AF. In this study we develop a clinically
tractable protocol to quantify local tissue properties and
encode them within a model of cellular electrophysiology.
The study is separated into three sections. Firstly, we have
quantified the accuracy of the model fitting protocol using
in-silico data sets. Secondly, the fitting approach is applied
to clinical measurements recorded from five cases. Finally,
the potential clinical utility of this approach is demonstrated
by using the fitted models to predict if characterized tissue
regions can sustain a re-entrant spiral activation patterns and
are potential ablation targets.

II. METHODS

A. Computational model

In this section we introduce the computational model
adopted for simulating the propagation of the electrical stimu-
lus across the atrial tissue. This model aims to numerically
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Figure 1. Decapolar catheter configuration and dimensions. Dimensions are
expressed in mm Bipolar electrodes are determined by pairs (e1,e2),(e3,e4),
(e5,e6), (e7,e8) and (e9,e10). The pacing stimulus is applied to the central
poles, (e5,e6), highlighted by the gray ellipse

simulate catheter recordings to reproduce clinical electro-
grams.

Atrial tissue electrophysiology was modeled by the mono-
domain simplification, [11], of the bi-domain electrophysiol-
ogy model, [12], when intra- and extra- cellular conductivities
are considered proportional up to a constant λ. To simulate
recordings from a decapolar catheter a model of a 1D strip
of atrial tissue was created. The decapolar catheter electrodes
were placed along the tissue strip as shown in Fig. 1. The
model was stimulated from electrodes (e5,e6) and bipolar
recordings were calculated from the difference in extracellu-
lar potentials at electrode pairs (e1,e2), (e3,e4), (e7,e8) and
(e9,e10). The distance (∆x) between pairs of electrodes for
calculating conduction velocity corresponds to the distance
between the baricentres of electrode pairs. Dimensions of the
decapolar catheter are reported in Fig. 1.

The monodomain equations were discretized in space with
a first order Finite Element Method (FEM) on a domain
of length L = 20 cm and with a discretization step of
dx = 200µm. Time discretization of the partial differential
equations were performed with the semi-implicit backward
Euler method presented in [13], with a fixed time step of
dt = 0.1 ms. No mass lumping was applied. Electrograms
were sampled at a rate of 5 kHz. Simulations were performed
on the UK national super computing facility ARCHER.

B. Choice of the ionic model

The ionic model was chosen to have the smallest number of
parameters while capturing the measured CV and ERP restitu-
tion properties. Model complexity was selected to reflect the
available clinical data. Physiological mechanisms, including
cardiac memory and intracellular calcium handling were not
recorded and so were not included in the model.

As clinical data were recorded using conventional catheters,
only local activation time measurements are available; repolar-
isation times can not be reliably recorded from conventional
catheters on human atria. Thus, an s1 s2 protocol, as described
in section II-C, will not provide a dynamic restitution curve
for each s1, but it provides only an estimate of the steady state
ERP for the s1 values evaluated. To estimate a dynamic ERP
restitution curve would require the addition of a third stimulus
that would need to be decremented, to estimate the ERP
of each s2 pacing interval. This would drastically increase
the duration of the protocol reducing our ability to use this
approach to map multiple sites in the clinical setting. We thus
adopt an ionic model that can be characterized by the available
clinical measurements.

Two of the simplest models of cardiac physiology, that
have a sharp upstroke, are the Aliev Panfilov (AP), [14] and
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Figure 2. Example of trans-membrane potential ( ) and bipolar electrode
output ( ). Trans-membrane potential was evaluated as the mean of the
trans-membrane potentials of the two poles constituting the electrode

Mitchell Schaeffer (MS), [15]. Each model has four ionic
parameters and one diffusion coefficient parameter. The MS
model was chosen as it is formulated in terms of depolarizing
and repolarizing currents; however, the method developed here
could equally be applied to the AP model. A complete descrip-
tion of the MS model and 1D fiber model are provided in the
supplement. Fig. 2 shows a schematic of the simulated trans-
membrane potential and the corresponding electrode signal. In
the same Figure the parameter affecting each specific phase
of the action potential (AP) is also shown.

C. Pacing protocol and activation measurements

In clinical cases the atria were paced from the central
poles (e5,e6) of the decapolar catheter placed on the roof of
the left atrium (LA). Activation was measured from distal,
(e1,e2), (e9,e10), and proximal, (e3,e4), (e7,e8), poles in a bi-
polar configuration, with sampling frequency of 1 kHz (data
set 1) and 4 kHz (data sets 2,3,4,5). A Biotronik UHS 300
device stimulator was used. A s1 s2 protocol was applied with
s1 = 300, 500 and 600 ms, (data set 1-4) and s1 = 300,
500 and 700 ms (data set 5) and s2 values starting at 280,
400 and 500 ms, respectively. For each s1 pacing rate, s2 was
decremented by 20ms, down to the first s2 that did not capture,
identifying the ERP.

Before each premature s2 stimulus was applied, the tissue
was pre-paced with 8 stimuli with a temporal interval of
s1 to confirm reliable capture and achieve a steady state of
activity. The chosen pacing protocol required < 5 min for its
application.

For each bi-polar electrogram lead and for each inter-pacing
interval the non-linear energy operator (NLEO), [16], was
evaluated and filtered by a zero-phase window-based finite
impulse response digital filter, [17] to eliminate oscillations.
The time the electrical stimulus is applied and the stimulus
duration are defined as tstim and ∆tstim, respectively. The
activation time is defined as the time corresponding to the
peak of the NLEO operator inside the time window [(tstim +
∆tstim), (tstim + ∆tstim + ∆tact)]; peaks occurring outside
the time window are considered anomaly and discarded. The
choice of the interval ∆tact was based on manual calibration
to minimize identification of early or delayed artifacts as the
activation time, this yielded a minimum admissible CV of
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14 cm/s. In this work ∆tstim = 0.6 ms, while ∆tact = 50 ms.
A manual user check and validation on the activations was
performed case by case.

By stimulating from the central poles of the decapolar
catheter it is possible to record two sets of activation times
at the same distance from the stimulus application site. This
would provide two parameter sets at each catheter location.
However, due to the curvature of the atria it is not possible to
guarantee good contact between all electrodes and the atrial
wall at each location. In none of the cases recorded here did
we collect complete proximal and distal data sets. For this
reason only one model is fitted to each catheter location.

D. Restitutions evaluation

In contrast to ventricular electrograms, [18], atria electro-
grams only display depolarization and do not show repolariza-
tion. Thus, from atrial electrograms it is possible to determine
the activation time (depolarization) only. From activation times
two restitution curves are directly available:
• The CV restitution. For two adjacent electrode pairs,

CV is evaluated as the ratio between the inter-electrode
distance, (∆x) and the time elapsed between the acti-
vation wave, generated by the premature pacing (s2),
propagating between the electrodes.

• The ERP restitution. For each s1 inter-pacing interval,
ERP represents the smallest s2 premature inter-pacing
stimulus where no CV is produced.

ERP accuracy depends on the decrement step adopted for s2

(20 ms in this work); this accuracy allows us to constrain the
model parameters while still ensuring a clinically compatible
protocol duration.

E. Parameter fitting

Model parameters were determined by comparing the clini-
cally recorded or simulated CV and ERP restitution data with
a data base of pre-computed numerical simulations to identify
the best fitting parameter set. A data base of candidate simu-
lation results for 99840 combinations of the model parameters
summarized in Table I was created for the described pacing
protocol.

Clinical data used in this article always displayed 1 : 1
capture and had an ERP ≥ 200 ms. The MS model has
been reported to exhibit pacemaker behavior [19] where at
the cellular scale, the MS model can spontaneously depolarize
in the absence of a stimulus current, for some combinations
of parameters. In the case of a tissue model, this appears
as a focal activation, where a region of tissue spontaneously
activates in the absence of a stimulus current or activation
from a neighbouring cell. No evidence of this was found in
the clinical data.

As a consequence, parameter sets with ERP < 200 ms,
that failed to yield 1 : 1 capture were excluded from the data
set. To remove all parameter sets that exhibited pacemaker
behavior we applied three tests to each candidate parameter
set. First the model was rapidly paced (3.33 Hz pacing) in a
0D model. Second, the parameter fitting pacing protocol was

diffusion coefficient
(
cm2/s

)
τin (ms) τout (ms) τopen (ms) τclose (ms)

min 0.25 0.05 0.5 65 65
max 4.0 0.4 9.5 215 185
step 0.75 0.05 1 10 10

Table I
PARAMETER VALUES USED FOR BUILDING THE DATA SET. A SET OF

PARAMETER VALUES RANGING FROM THE MINIMUM TO THE MAXIMUM
VALUE IN INCREMENTS OF THE STEP VALUE IS CREATED. THE DATA SET
OF CANDIDATE SOLUTIONS WAS GENERATED BY MODELS WITH EACH OF

THE PERMUTATIONS OF THE CARTESIAN PRODUCTS OF ALL OF THE
PARAMETER VALUE SETS.

applied in a 1D model. Thirdly, a spiral wave was initiated in
a 2D simulation (criterion for pacemaker activity are described
in supplementary material). Tests one and two were evaluated
on all candidate parameters, giving a final data set of 51306
parameters sets. The third test is only performed on the fitted
parameter sets to maintain computational tractability.

The parameter set that best fits clinical or simulated mea-
surements is determined by the following two step algorithm:
• The candidate ERP restitution curve and maximum CV

value are compared against the corresponding curves for
all the 51306 candidate parameter sets. A sub set of
candidate parameter sets (I1) is identified that matches
the measured ERP restitution curve and have a maximum
CV within 20% of the recorded value.

• The L2 norms of the difference between the measured
CV restitution curves and the CV restitution curves for
all candidate parameter sets in set I1 are calculated and
used to rank all candidate parameter sets.

Parameter sets that yield pacemaker behavior in 2D sim-
ulations were identified and excluded as a final check in the
parameter fitting algorithm, described above, to maintain com-
putational tractability. This approach provided a robust and
rapid fitting method taking approximately 6 minutes to find
the optimal parameter set and ensure no pacemaker activity.
The collective fitting performed here yields well constrained
predictions, [20], [21], [22], even when individual parameters
are poorly constrained.

III. RESULTS

A. Validation with synthetic data

Error properties and robustness of our approach are eval-
uated by first generating a set of 247 models by randomly
choosing parameter values within the [min,max] intervals
reported in Table I. The test parameter set was created by
generating a set of 1000 random parameter sets and then
considering only combinations that provide a 1 : 1 capturing,
an ERP ≥ 200 ms, at least one non zero CV value for
s1 = 300 and s2 = 280, and did not exhibit pacemaker
behavior in 0,1 or 2D simulations. The pacing protocol was
then applied with s1 = 300, 500 and 600 ms and bipolar
electrograms were numerically computed. A white noise with
an intensity equal to 10% of the maximum absolute value
of the electrode output was added to each electrode output;
restitutions were then evaluated by applying the procedure
described in section II-D.
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Figure 3. Left: L2 error distribution (bars) and cumulative distribution (thick
line) evaluated for 247 set of randomly chosen parameters. Right: L∞ error
distribution (bars) and cumulative distribution (thick line) evaluated for 247
set of randomly chosen parameters.

For each of the 247 models, the parameter set determined
from the fitting process was compared with the known true
solution. All errors presented here are relative, reported as the
percentage change between the known and the fitted value.
The L2 is the mean squared relative error on the 5 fitted
parameters and furnishes a collective error estimate, where the
contribution of each of the 5 parameters is taken into account.
The L∞ is the maximum relative error across the 5 fitted
parameters and furnishes an error estimate based on the the
parameter affected by the maximum error only.

Fig. 3 shows the L2 and L∞ error distributions and the
corresponding cumulative distribution function (CDF). For the
L2 error, a mean error of 21.9% was found with a standard
deviation of 16.1%. As depicted by the CDF, 95% of the
estimated parameters analyzed here have a L2 error not greater
than 40%. For the L∞ error, a mean error of 48.1% was found
and a standard deviation of 43.8%.

In Fig. 4 the signed relative error distribution is shown for
each parameter, together with the relative difference between
the selected parameter set and the optimal possible parameter
set based on the nearest data base parameter set to the correct
values. In the same Figure (bottom, right), the number of
occurrences each parameter defines the L∞ error is also
reported. The best performances are obtained in estimating the
diffusion coefficient (2.5 ± 30.6%), τin (3.6 ± 25.2%), τclose

(1.9 ± 26.4%) and τopen (2.2 ± 22.1%) parameters. The pa-
rameter τout (13.4±56.9%) is characterized by repolarization
(Fig. 2) and is not well constrained by activation data.

To test the impact of poorly constrained parameters on
simulation results we compared the predicted CV and ERP
restitution curves from the estimated parameter sets and the
corresponding curves from the known parameter sets with an
s1 pacing value of 400 and 700 ms that were not used in
the original parameter fitting data. The L2 relative errors with
respect to ERP and CV restitution are evaluated for each of
the 247 fitted parameter sets. Fig. 5 shows the distribution of
error together with the CDF. The L2 relative error was char-
acterized by a mean value of 4.4% and a standard deviation
of 6.9%. This confirms that, even though some parameters are
not tightly constrained, the fitted parameter set gives a model
that functionally represents the simulations generated with the
known model parameters and is compatible with predicting
functional tissue properties not used in the original fitting.
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Figure 5. Error distribution and CDF for the L2 error evaluated a posteriori
on ERP and CV restitutions for s1 = [700, 400]ms

B. Application to clinical data

The model personalization protocol was then applied to 5
data sets recorded from patients suffering paroxysmal AF. All
measurements used to constrain these models are provided in
the supplementary material. ERP restitution (Fig. 6, panel 4)
together with the maximum CV values were used to reduce the
number of candidate parameter sets; CV restitutions (Fig. 6,
panels 1-3) were then fitted to 30 measurements with different
s1 s2 combinations the 3 curves generated for each s1 pacing
rate. A unique parameter set was identified for each patient in
1 minute. Testing for 2D pacemaker behavior took a further
5 minutes. Estimated model parameters for each data set are
summarized in Table II. Fitted ERP and CV restitution curves
are shown in Fig. 6.

To assess whether the accuracy of the parameter fitting
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would allow one to assess the regional differences in the
electrophysiological properties of the atria, we compared the
differences in the parameters fitted to clinical data within the
context of the error estimated from the in silico study. The
95% confidence interval for the error of the fitted diffusion
coefficient, τin, τout, τopen and τclose from the in silico data is
40, 45, 100, 45 and 50%, respectively. In contrast, differences
in parameter values in the clinical cases are up to 40, 50, 67,
116 and 35% for diffusion coefficient, τin, τout, τopen and
τclose, respectively.

For the majority of parameters, the uncertainty in their
estimated value is equal to or larger than the differences
observed between clinical cases, reflecting the challenges
in fitting parameters to sparse and noisy clinical data. The
variation in the fitted τopen values between clinical cases was
larger than the uncertainty and could potentially be used to
differentiate between tissue types.

C. Application Example: Tissue characterization

Focal impulse and rotor mapping has recently been pro-
posed as a novel ablation strategy [23], however this ap-
proach requires an expensive and large catheter and remains
controversial. Encoding local tissue CV and ERP restitution
properties within biophysical models provides a novel frame-
work for predicting if local tissue properties are capable of
supporting rotor or spiral activation patterns and may be useful
in guiding ablation therapy. To predict if these tissue properties
are compatible with supporting a re-entrant spiral activation
pattern a spiral wave was initiated in a 2D simulation using a
cross field stimulation pacing protocol with parameters from
each of the 5 clinical cases. The original tissue properties were
characterized by a point stimulus s1 s2 pacing protocol. While
the model parameters were screened to remove pacemaker
activity, where a small region of tissue spontaneously self acti-
vates, the models can support re-entrant spiral wave activation
patterns where a wave of activation forms a self sustaining
reentrant circuit around the tissue (see movie 2). Models were
simulated on 480 processors for 5000 ms taking 42 minutes
of wall time. We observe three distinct spiral wave re-entrant
activation patterns, as shown in Fig. 7: stable, meandering and
breaking up. The only case to demonstrate spiral wave break
up was Case 5, which had the largest discrepancy between
modeled and measured CV restitution, particularly at high
pacing frequencies (Fig. 6). The activation wave had a slower
measured than modeled CV, which potentially allows a stable
wave to exist in this tissue. Further cases would be required
to confirm that we can reliably identify tissue that yields a
predicted spiral wave break up. Rotor tip paths are shown for
all cases in the supplement.

IV. DISCUSSION AND PERSPECTIVES

In this work we present a robust and clinically feasible
protocol and fitting algorithm for characterizing local atria
tissue electrophysiology properties using a MS ionic model.

Previous studies have aimed to fit MS parameters in the
ventricles to patient data [18], [24]. Relan et al. [18], used

Parameter case 1 case 2 case 3 case 4 case 5

diffusion coefficient
(
cm2/s

)
1.0 1.0 1.0 1.4 1.4

τin (ms) 0.1 0.1 0.15 0.15 0.1
τout (ms) 2.5 1.5 2.5 2.5 2.5
τopen (ms) 165 135 205 115 95
τclose (ms) 115 155 115 145 115

Table II
ESTIMATED PARAMETERS FOR PATIENTS DATA SETS

analytic derivations of action potential duration (APD) resti-
tution curves and CV measurement to fit 3 of the 5 MS
model parameters. Corrado et al. [24], estimated τin and τout

using a Kalman filter algorithm constrained by 12-lead ECG
measurements. For parameters that were not fitted to patient
data both studies used the default MS parameters, which were
not derived from human data. In contrast, in this study all MS
kinetic parameters were fitted to patient data. No error estimate
was presented in these earlier studies so we cannot compare
the relative accuracy of the different fitting approaches.

For the fitting method presented here, error quantification
using synthetic data found that and that the available measure-
ments still resulted in fitting errors of 13.4± 56.9% for τout,
which is the least constrained parameter, while for τclose and
τopen error were (1.9±26.4%) and (2.2±22.1%) respectively.
All three of these parameters are constrained by repolarization,
which was measured with a coarse resolution in order to
minimize the time taken to make recordings. Decreasing the
s2 step size or the use of monophasic action potential catheters
(MAP) [25], which provides a better measure of repolarization,
may reduce the error in these parameters. However, reducing
s2 limits the clinical feasibility of the described protocol, while
MAP catheters will not give CV measurements unless com-
bined with a multi-electrode catheter,which poses an increase
in procedural complexity.

Despite the uncertainty in some of the parameters, we were
able to demonstrate that the fitted parameters captured the
functionality of the desired parameter set (see Fig. 5). This
allows us to use this parameter personalization approach to
generate local ionic models for patient specific simulations of
atrial function.

The uncertainty in fitted model parameters limits the ability
to use the proposed approach to differentiate between tissue
types. The data-base fitting protocol was designed to be
efficient and robust for clinical applications. Increasing the
resolution of the database, holding uncertain parameters fixed
or using the data base fit as an initialization for a nonlinear
optimization algorithm, such as Levenberg Marquardt, may
improve the ability to differentiate between regional tissue
types. However, the primary limitation is the weak sensitivity
of the repolarization model parameters to the available clinical
data. This is seen in Fig. 5, where the functionality is still
captured, even in the presence of parameter uncertainties.

The measured maximum CV ranged between 60 and 100
cm\s (Fig. 6 ); these values are consistent with the values
reported from clinical measurements [26]. Similarly, CV and
ERP measurements are comparable with simulated restitutions
generated from the more complex Courtermanche model [27].
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Figure 7. Path of the first filament for case 2,4 and 5. For cases 4 and 5 filaments are plotted until break-up occurred. Case 4 rotor breaks up after t ' 3910ms
respectively. Case 5 shows an unstable spiral wave that breaks up rapidly into multiple wavelets before terminating at t ' 1200ms. Color represents the time
and is expressed in ms.

The variation in CV measured at different atrial locations [26],
highlights the importance of personalized atrial models that
reflect the heterogeneity in electrophysiological behavior seen
throughout the atria.

The τin, τout and diffusion coefficient values were the most
consistent across cases. Notably τin and τout were lower in all
cases than in the original ventricular MS model (τin = 0.3,
τout = 6.0), where as the remaining fitted parameters spanned
the original parameter values.

V. LIMITATIONS

Clinical measurements are inherently noisy. By stimulating
from the middle of the decapolar catheter we were able
to record two potential data sets at each catheter location.
However, due to noise and poor contact only the distal or
proximal data sets were complete for any one location. The
use of PentaRay catheters which provide five splines and
20 electrodes would result in higher density recordings and
may improve the ability to characterize local electrophysiology
properties.

Our model did not account for atrial curvature or wavefront
curvature, both of which are likely to affect wave propagation.
In the supplement we estimated the absence of wave curvature
introduces an error of 6− 10% on CV calculation. To incor-
porate these factors into a model would require two, or even
three, dimensional models or bespoke models for each case,
which would require a new database of model simulations for
each measurement. This would significantly increase the com-
putational burden of our approach. We could refine the data
set discretization to reduce the error of the parameter fitting.
However, given the accuracy of the measurements available the
current data base discretization provides a reasonable balance
between accuracy and over fitting and allows us to formally
state the accuracy of the model parameter predictions.

Due to the limited number of patient cases it is not possible
to conclude that the distinct tissue types identified in this

study are relevant to the general AF population. Further studies
involving larger numbers of cases would be required to confirm
this result.

The model does not provide a complete description of
known atrial myocyte physiology and does not account for
cardiac memory, [28], calcium dynamics [29] or the effects
of the parasympathetic nervous system [30]. The modeling
philosophy adopted here is to choose the simplest model with
the smallest number of parameters that can fit the available
data. The MS model was able to replicate all of the clinical
data collected providing no motivation to use a more complex
and less well constrained model.

The MS model exhibits pacemaker behavior in 0,1 and
2D simulations that was not present in any of the clinical
data sets recorded. The presence of pacemaker behavior in
the data base required the removal of a number of parameter
sets. The stability of parameter sets was dependent on the
dimensionality of the problem with some sets being stable in
0D and 1D simulations but unstable in 2D. This property
has been reported previously [19] and is not unique to the
MS model. Parameter sweeps of mouse, [31] and rabbit [32]
biophysical ionic models also identify unviable parameter sets
that fail to repolarize or that show a pacemaker behavior.
The introduction of a stability test addresses this issue. Pre
calculating all 2D simulations is possible but comes at a high
computational and data storage cost, so was not considered
for this project but would reduce the parameter fitting process
down to 1 minute.

VI. FUTURE WORK

The proposed framework provides a pacing protocol and
a method for rapidly and robustly creating models of local
atrial tissue electrophysiology from clinical measurements.
This approach has three potential clinical applications. Firstly,
mapping the capacity of local tissue to support spiral waves
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using a readily available decapolar catheter may offer a novel
alternative to identifying spiral waves. Secondly, combining
our approach with measures of atria tissue fibrosis [33], wall
thickness [34] or epicardial fat [35] may allow non-invasive
indicators of pathological tissue types to be identified. Finally,
developing maps of cellular properties across the atria allows
for the creation of personalized models that capture both the
patient atria anatomy but also an individual’s heterogeneous
tissue properties for guiding diagnosis, optimizing therapies
and predicting outcomes.

The aim of this study is to develop, characterize and demon-
strate a novel protocol for creating electrophysiological model
of local tissue properties. The application of this technique to
a selected cohort of patients will enable us to draw general
physiological conclusions on atria electrophysiology.

VII. CONCLUSION

In this work we presented a robust and clinically tractable
protocol and fitting algorithm for characterizing local atrial
electro-physiology properties by biophysical ionic cell models.
We validated the novel method by means of synthetic data and
demonstrated its clinical potential by applying it to 5 data sets
recorded from paroxysmal AF patients undergoing pulmonary
vein isolation.
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