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Abstract

Homozygosity has long been associated with rare, often devastating, Mendelian disorders1 and 

Darwin was one of the first to recognise that inbreeding reduces evolutionary fitness2. However, 

the effect of the more distant parental relatedness common in modern human populations is less 

well understood. Genomic data now allow us to investigate the effects of homozygosity on traits 

of public health importance by observing contiguous homozygous segments (runs of 

homozygosity, ROH), which are inferred to be homozygous along their complete length. Given 

the low levels of genome-wide homozygosity prevalent in most human populations, information is 

required on very large numbers of people to provide sufficient power3,4. Here we use ROH to 

study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts and find 

statistically significant associations between summed runs of homozygosity (SROH) and four 

complex traits: height, forced expiratory lung volume in 1 second (FEV1), general cognitive 

ability (g) and educational attainment (nominal p<1 × 10−300, 2.1 × 10−6, 2.5 × 10−10, 1.8 × 

10−10). In each case increased homozygosity was associated with decreased trait value, equivalent 

to the offspring of first cousins being 1.2 cm shorter and having 10 months less education. Similar 

effect sizes were found across four continental groups and populations with different degrees of 

genome-wide homozygosity, providing convincing evidence for the first time that homozygosity, 

rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in 

substantially smaller samples5,6, no evidence was seen of an influence of genome-wide 

homozygosity on blood pressure and low density lipoprotein (LDL) cholesterol, or ten other 

cardio-metabolic traits. Since directional dominance is predicted for traits under directional 

evolutionary selection7, this study provides evidence that increased stature and cognitive function 

have been positively selected in human evolution, whereas many important risk factors for late-

onset complex diseases may not have been.
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Inbreeding influences complex traits through increases in homozygosity and corresponding 

reductions in heterozygosity, most likely resulting from the action of deleterious (partially) 

recessive mutations8. For polygenic traits, a systematic association with genome-wide 

homozygosity is not expected when dominant alleles at some loci increase the trait value 

while others decrease it. Rather, dominance must be biased in one direction on average over 

all causal loci, for instance to decrease the trait. Such directional dominance is expected to 

arise in evolutionary fitness-related traits due to directional selection8. Studies of genome-

wide homozygosity thus have the potential to reveal the non-additive allelic architecture of a 

trait and its evolutionary history. Historically inbreeding has been measured using 

pedigrees9. However, such techniques cannot account for the stochastic nature of 

inheritance, nor are they practical for the capture of the distant parental relatedness present 

in most modern day populations. High density genome-wide single nucleotide 

polymorphism (SNP) array data can now be used to assess genome-wide homozygosity 

directly, using genomic runs of homozygosity (ROH). Such runs are inferred to be 

homozygous-by-descent and are common in human populations10-11. SROH is the sum of 

the length of these ROH, in megabases of DNA. FROH is the ratio of SROH to the total 

length of the genome. Like pedigree-based F (with which it is highly correlated3), FROH 

estimates the probability of being homozygous at any site in the genome. FROH has been 

shown to vary widely within and between populations12 and is a powerful method of 

detecting genome-wide homozygosity effects13.

We found marked differences by geography and demographic history in both the population 

mean SROH and the relationship between SROH and NROH (the numbers of separate runs 

of homozygosity). (Fig. 1). As observed previously3,12,14, isolated populations have a higher 

burden of ROH whereas African heritage populations have the least homozygosity.

We studied βFROH, defined as the effect of FROH on 16 complex traits of biomedical 

importance (Fig. 2). For height, FEV1 (forced expiratory volume in one second, a measure 

of lung function), educational attainment (EA) and g (a measure of general cognitive ability 

derived from scores on several diverse cognitive tests), we found the effect sizes were 

greater than two intra-sex standard deviations (SD), with p-values all less than 10−5. Thus 

the associations could not plausibly be explained by chance alone (Table 1; see Extended 

data Figs. 1-4 for Forest plots of individual traits; Supplementary Table 1 for SD). To ensure 

that the results were not driven by a few outliers, we repeated the analysis excluding 

extreme sub-cohort trait results. In all cases the effect sizes and their significance remained 

similar or increased (see Supplementary Table 2 for comparisons with and without outliers). 

After exclusion of outliers, these effect sizes translate into a reduction of 1.2 cm in height 

and 137 ml in FEV1 for the offspring of first cousins, and into a decrease of 0.3 SD in g and 

10 months less educational attainment.

We performed a number of analyses to exclude confounding. Whilst SROH is wholly a 

genetic effect, its inheritance is entirely non-additive. Therefore, unlike in genome-wide 

association, an association with population genetic structure or co-segregation of additive 

genome-wide polygenic effects and SROH (as opposed to SNPs in a GWAS) are not 

expected as a matter of course, except in the case of siblings. However, confounding could 

still theoretically arise as discussed below. We therefore assessed this by conducting 
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stratified and covariate analyses. We found effects of similar magnitude and in the same 

direction for all four traits across isolated and non-isolated European, Finnish, African, 

Hispanic, East Asian and South and Central Asian populations (Extended Data Fig. 5a, 

Supplementary Table 3). We further tested whether the effect sizes were similar when 

cohorts were split into more and less homozygous groups. The effect sizes were very similar 

even though the degree of homozygosity (and variation in homozygosity) varied 3-10-fold 

between the two strata (depending on which cohorts contributed to the trait; Extended Data 

Fig. 5b). This suggests a broadly linear relationship with SROH. In general confidence 

intervals overlap for stratified estimates, suggesting differences arose due to sampling 

variance. Larger confidence intervals for some estimates reflect the lower power of some 

strata, in turn reflecting the sample size and degree of homozygosity of those strata (e.g. the 

wider confidence intervals for estimates of Educational Attainment βFROH for Finnish and 

African strata). Finally, we fitted educational attainment as a proxy for potential 

confounding by socio-economic status; this covariate was available in sufficient (47) cohorts 

to maintain power. The estimated effect sizes for height, FEV1 and g all reduced (17%, 18% 

and 35%, Fig. Extended Data Fig. 5c), but this might have been expected given the known 

covariance between these three traits and EA, and the association we found between 

educational attainment and FROH. We found very small differences (3-11% reductions) in 

estimated βFROH (Extended Data Fig. 6, supplementary table 4), when comparing the fitting 

of polygenic mixed models as opposed to fixed-effect-only models, again suggesting that 

confounding (in this case due to polygenic effects due to recent common ancestry) was not 

substantially affecting the results.

Despite the observed 17-35% reductions in estimated effect sizes for FROH on height, FEV1 

and g, when fitting educational attainment as a covariate, the persistence of an effect 

suggests that most of the signals we observe are genetic. The consistency of effects with and 

without fitting relatedness and in particular in populations with very different degrees of 

homozygosity, all appear inconsistent with confounding due to environmental or additive 

genetic effects. As does the broad similarity in effect sizes across continents, although the 

relatively smaller numbers of cohorts of non-European descent meant we had limited power 

to detect inter-continental differences in effect sizes.

It is also interesting to consider the potential influence of assortative mating, which is 

commonly observed for human stature, cognition and education. The phenotypic extremes 

could be more genetically similar to each other and hence the offspring more homozygous, 

even if the highly polygenic trait architectures reduce this effect. However, at least in its 

simplest balanced form, the increase in genetic similarity would be equal at both ends of the 

phenotypic distribution, leading to no linear association between such genetic similarity and 

the trait; both tall and short people would be more homozygous. Furthermore, humans also 

mate assortatively on body mass index (BMI), for which we see no effect. A more complex 

possibility, a form of reverse-causality, could arise when subjects from one trait extreme 

(e.g. more educated people) are on average more geographically mobile, and thus have less 

homozygous offspring, with those offspring in turn inheriting the trait extreme concerned15. 

We do not think that this mechanism can account for our results, since it does not readily 

explain the constancy of our results under different models, especially the similarity in 
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βFROH for either more or less homozygous populations. Moreover, we observe similar 

effects in multiple single village cohorts, and the Amish and Hutterites, where there is no 

geographic structure and/or no sampling of immigrants, hence such confounding by 

differential migration cannot occur.

Our estimate for the effect of homozygosity in height is consistent with previous work: 

genomic4 and pedigree16 studies have shown genome-wide homozygosity effects on stature 

with similar effect sizes (0.01 increase in F decreases height by 0.037 SD16 versus 0.029 SD 

in the present study). We speculate that homozygosity is acting on a shared endophenotype 

of torso size which we detect in the height and FEV1 traits. The fact that the FEV1/FVC 

(forced vital capacity) ratio is not associated with ROH points to the effect being on lung/

chest size rather than airway calibre. The cognition effects cannot be wholly generated by 

height as an intermediate cause, given the greater proportion of variance explained for 

cognition, although we note that the correlation between height and cognition is 0.16 (SE 

0.01), and the genetic correlation (the correlation in additive genetic values) is 0.28 (SE 

0.09; ref 17). Height is the canonical human complex trait, highly heritable and polygenic, 

with 697 genome-wide significant variants in 423 loci explaining 20% of the heritability and 

all common variants predicted to explain 60% of the heritability18. Most of the genetic 

architecture appears to be additive in nature, however ROH analysis reveals a distinct 

directional dominance component.

Our genomic confirmation of directional dominance for g and discovery of genome-wide 

homozygosity effects on educational attainment in a wide range of human populations adds 

to our knowledge of the genetic underpinnings of cognitive differences, which are currently 

thought to be largely due to additive genetic effects19. Our findings go beyond earlier 

pedigree-based analyses of recent consanguinity to demonstrate that the observed effect of 

genome-wide homozygosity is not a result of confounding and influences demographically 

diverse populations across the globe. The estimated effect size is consistent with pedigree 

data (0.01 increase in F decreases g by 0.046 SD in our analysis and 0.029-0.048 SD in 

pedigree-based studies)20. It is germane to note that one extreme of cognitive function, early 

onset cognitive impairment, is strongly influenced by deleterious recessive loci21, so we can 

speculate that an accumulation of recessive variants of weaker effect may influence normal 

variation in cognitive function. Although increasing migration and panmixia have generated 

a secular trend in decreasing homozygosity22, the Flynn effect, wherein succeeding 

generations perform better on cognitive tests than their predecessors23, cannot be explained 

by our findings, because the intergenerational change in cognitive scores is much larger than 

the differences in homozygosity would predict. Likewise, the genome-wide homozygosity 

effect on height cannot explain a significant proportion of the observed inter-generational 

increases24.

Inbreeding depression, which arises from the effect of genome-wide homozygosity, is 

ubiquitous in plants and is seen for numerous fitness-related traits in animals25, but we 

observed no effect for the 12 other mainly cardio-metabolic traits in which variation is 

strongly age-related. This suggests that previous reports in ecological studies or 

substantively smaller studies using pedigrees or relatively small numbers of genetic markers 

may have been false positives5,6. The lack of directional dominance on these traits does not, 
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however, rule out a recessive component, as recessive variants acting in different directions 

will cancel out. Dominance variance is predicted to be greater for late-onset fitness traits26, 

so the lack of genome-wide homozygosity effects in the cardio-metabolic traits may be due 

to lack of directional dominance. ROH analyses within specific genomic regions are 

warranted to map recessive effects even when there is no genome-wide directional 

dominance. Such recessive effects have been observed for a subset of cardiovascular risk 

factors27 and expression traits28.

We have demonstrated the existence of directional dominance on four complex traits 

(stature, lung function, cognitive ability and educational attainment) whilst showing any 

effect on the other 12 health-related traits is at least almost an order of magnitude smaller or 

non-existent. This directional dominance implies that size and cognition (like schizophrenia 

protective alleles29) have been positively selected in human history – or at least that some 

variants increasing these traits contribute to fitness. However, the lack of any evidence for 

an association between many late onset cardiovascular disease risk factors and ROH is 

perhaps surprising and suggests testing directly for an association between ROH and disease 

outcome. The magnitude of genome-wide homozygosity effects is relatively small in all 

cases, thus Darwin’s supposition30 of “any evil [of inbreeding] being very small” is 

substantiated.

METHODS

Outline

Our aim was to look for an association between a genetic effect (SROH) and 16 complex 

traits. Our approach followed best practice genome-wide association meta-analysis 

(GWAMA) protocols, where applicable, except we had only one genetic effect to test.

Cohorts were invited to join based on known previous participation in GWAMA and 

willingness to participate. 159 sub-cohorts were created from 102 population-based or case-

control genetic studies, by separating different genotyping arrays, cases and controls or 

ethnic sub-groups to ensure each sub-cohort was homogeneous. Within each of the 159 sub-

cohorts we measured the association between SROH and trait using the following model. 

Where a sub-cohort had been ascertained on the basis of a disease status associated with a 

particular trait, that sub-cohort was excluded from the corresponding trait analysis.

Phenotype was regressed on genetic effect and known relevant covariates within each 

cohort, under the model specified in Equation 1. The estimated genetic effect of SROH was 

then meta-analysed using inverse variance meta-analysis.

Equation (1)

Where Y is the vector of trait values, μ the intercept, b1 the effect of SROH and b2-6 the 

effect of covariates. PC1 – PC3, the post quality control within-cohort principal components 

of the cohort’s relationship matrix and e the residual. Relationship matrices were determined 

genomically by each cohort using genome wide array data. In addition, any other cohort-

specific covariates known to be associated with the trait, including further principal 
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components, and any trait-specific covariates and stratifications, such as medication and 

smoking status, were fitted as specified below. SROH was the sum of ROH called, with a 

length of at least 1.5 Mb using PLINK31.

As is routine in GWAMA, for family-based studies only, we also fitted an additional term to 

account for additive genetic values and relatedness, using grammar+ type residuals and full 

hierarchical mixed modeling using GenABEL32 and hglm33, as specified in equation 2.

Equation (2)

Where a is the additive genetic value of each individual. Var(a) is assumed to be 

proportionate to the Genomic Relationship matrix (GRM) (a pedigree relationship matrix 

was used in the Framingham Heart Study) . Z is the identity matrix.

We then meta-analysed the regression coefficients (b1) of traits on SROH for the 159 

subcohorts.

Cohort Recruitment

Data from 102 independent genetic epidemiology studies of adults were included. All 

subjects gave written informed consent and studies were approved by the relevant research 

ethics committees. Homogeneous sub-cohorts were created for analysis on the basis of 

ethnicity, genotyping array or other factors. Where a cohort had multiple ethnicities, sub-

cohorts for each separate ethnicity were created and analysed separately. In all cases 

European-, African-, South or Central Asian-, East Asian- and Hispanic-heritage individuals 

were separated. In some cases sub-categories such as Ashkenazi Jews were also 

distinguished. Ethnic outliers were excluded, as were the second of any monozygotic twins 

and pregnant subjects. Continental ancestry of cohorts participating in each trait study is 

presented in Extended data Table 1. Cohort genotyping and summary information are shown 

in Supplementary Table 6, with age, sex, trait and homozygosity summary statistics given in 

Supplementary Tables 9,10,, and 11.For case-control and trait extreme studies, patients or 

extreme-only sub-cohorts were analysed separately to controls. Where case status was 

associated with the trait under analysis the sub-cohort was excluded from that study (see 

below).

Subjects within a sub-cohort were genotyped using the same SNP array, or where two very 

similar arrays were used (e.g. Illumina OmniExpress and IlluminaOmni1), the intersection 

of SNPs on both arrays – provided the intersection exceeded 250,000 SNPs. Where a study 

used two different genotyping arrays, separate subcohorts were created for each array, and 

analysis was done separately. Paediatric cohorts were not included.

Genotyping

All subjects were genotyped using high density genome-wide (>250,000 SNP) arrays, from 

Illumina, Affymetrix or Perlegen. Custom arrays were not included. Each study’s usual 

array-specific genotype quality control standards for genome-wide association were used 

and are shown in Supplementary Table 6. Only autosomal data were analysed.
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Phenotyping

We studied 16 quantitative traits which are widely available and represent different domains 

related to health, morbidity and mortality: height, body mass index (BMI), waist : hip ratio 

(WHR), diastolic and systolic blood pressure (DBP, SBP), fasting plasma glucose (FPG), 

fasting insulin (FI), Haemoglobin A1c (HbA1c), total-, HDL- and LDL-cholesterol, 

triglycerides, forced expiratory volume in 1 second (FEV1), ratio of FEV1 to forced vital 

capacity (FVC), general cognitive ability (g) and years of educational attainment (EA). 

Phenotypic QC was performed locally to assess the accuracy and distribution of phenotypes 

and covariates. Further covariates were included when the relevant GWAS consortium also 

included them. The trait categories were anthropometry, blood pressure, glycaemic traits, 

classical lipids, lung function, cognitive function and educational attainment, following 

models in the GIANT34, ICBP35, MAGIC36, CHARGE37, Spirometa38 and SSGAC39 

consortia. The model for FEV1 did not include height as a covariate. Effect sizes for FEV1 

therefore include size effects that also underpin height. Studies assembled files containing 

study traits and the following covariates: sex, age, first three principal components of 

ancestry, lipid-lowering medication, ever-smoker status, anti-hypertensive medication, 

diabetes status and year of birth (YOB). Educational attainment was defined in accordance 

with the ISCED 1997 classification (UNESCO), leading to seven categories of educational 

attainment that are internationally comparable39. LDL values estimated using Friedewald’s 

equation were accepted. Cohorts without fasting samples did not participate in the LDL-

cholesterol, triglycerides, fasting insulin or fasting plasma glucose analyses. Cohorts with 

semi-fasting samples fitted a categorical or quantitative fasting time variable as a covariate. 

Subjects with less than 4 hours fasting were not included.

Where subjects were ascertained, for example, on the basis of hypertension, that sub-cohort 

was excluded from analysis of traits associated with the disorder, for example blood 

pressure. The traits excluded from meta-analysis are as follows: ascertainment on type-2-

diabetes, thus fasting insulin, HbA1c, fasting plasma glucose excluded; ascertainment on 

hypertension, thus blood pressures excluded; ascertainment on venous thrombosis or 

coronary artery disease, thus blood lipids excluded; ascertainment on obesity or the 

metabolic syndrome, thus blood lipids, body mass index, waist-hip ratio, fasting insulin and 

fasting plasma glucose excluded.

Somewhat unusually for a large consortium meta-analysis, the majority of the analysis after 

initial genotype and phenotype QC was performed by a pipeline of standardised R and shell 

scripts, to ensure uniformity and reduce the risk of errors and ambiguities (available at 

https://www.wiki.ed.ac.uk/display/ROHgen/Analysis+Plan+production+release+3.0). The 

pipeline was used for all stages from this point onwards.

Calling Runs of Homozygosity

SNPs with more than 3% missingness across individuals or with a minor allele frequency 

less than 5% were removed. ROH were defined as runs of at least 50 consecutive 

homozygous SNPs spanning at least 1500 kb, with less than a 1000 kb gap between adjacent 

ROH and a density of SNP coverage within the ROH of no more than 50 kb/SNP, with one 

heterozygote and 5 no calls allowed per window, and were called using PLINK31, with the 
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following settings --homozyg-window-snp 50 --homozyg-snp 50 --homozyg-kb 1500 --

homozyg-gap 1000 --homozyg-density 50 --homozyg-window-missing 5 --homozyg-

window-het 1. The same criteria were used by McQuillan et al.3, except SNP density has 

been relaxed to avoid regions of sparser coverage (still including 50 SNPs) being missed. 

The sum of runs of homozygosity was then calculated (SROH) . F was calculated as SROH/

(3×109 ROH ) reflecting the length of the autosomal genome. Copy number variants (CNV) 

are known to influence cognition40; however, prior calling of CNV and ROH in one of our 

cohorts reduced the SROH by only 0.3%3, making it implausible that deletions called as 

ROH influence our findings.

ROH called from different genotyping arrays

We show that SROH called with these parameters is relatively insensitive to the density and 

type of array used (Extended data Fig. 7). We used 2.5 million SNPs available for 851 

HapMap and 1000 Genomes Project41 samples from multiple continents to investigate the 

effect of array when using our ROH-calling parameters in plink. The dataset included 

samples of African, European, admixed American, South and East Asian heritage. By 

subsampling SNPs from the 2.5 million we created array data for the commonly used 

Illumina CNV370 and OmniExpress beadchips and the Affymetrix6 array for each 

individual (see Supplementary Table 7 for details of the SNP numbers). The correlation in 

SROH using different arrays on the same individuals was 0.93-0.94 for all pairwise chip 

comparisons.

Trait association with SROH

The association between trait and SROH was calculated using a linear model in accordance 

with equation 1. Additional covariates were fitted for some analyses (shown below) or for 

some cohorts where analysts were aware of study specific effects (e.g. study centre). For 

BMI, WHR, FEV1, FEV1/FVC and g, trait residuals were calculated for the model 

excluding SROH, these residuals were then rank-normalised and the effect of SROH on 

these rank-normalised residuals estimated. Triglycerides and fasting insulin were natural log 

transformed. Additional covariates were as follows: age2 was included as a covariate for all 

traits apart from height and g. BMI was included as a covariate for WHR, SBP, DBP, FPG, 

FI and HbA1c. YOB was included as a covariate for educational attainment and ever-

smoking for FEV1 and FEV1/FVC. Where a subject was known to be taking lipid-lowering 

medication, total cholesterol was adjusted by dividing by 0.8. Similarly, where a subject was 

known to be taking anti-hypertensive medication, SBP and DBP measurements were 

increased by 15 and 10 mm Hg, respectively.

Where the cohort was known to have significant kinship, genetic relatedness was also fitted, 

using the mixed model, in accordance with equation 2. The polygenic model was fitted in 

GenABEL using the fixed covariates and the genomic relationship matrix32. GRAMMAR+ 

(GR+) (ref. 42) residuals were then fitted to SROH as well as the full mixed model being 

fitted simultaneously, using GenABEL’s hierarchical generalised linear model (HGLM) 

function33. Populations with kinship thus potentially had three estimates of βFROH: using 

fixed effects only, and using the mixed model approaches, (GR+ and HGLM) for SROH.
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To investigate potential confounding, where available, EA was added as an ordinal covariate 

and all models rerun, giving revised estimates of βFROH. This is potentially an over 

adjustment for g due to the phenotypic and genetic correlations with EA43. However it must 

be recognised that EA does not capture all potential environmental confounding.

Cohort phenotypic means and standard deviations were checked visually for inter-cohort 

consistency, with apparent outliers then being corrected (e.g. due to units or incorrectly 

specified missing values), explained (e.g. due to different population characteristics) or 

excluded. Individual sub-cohort trait means and standard deviations are tabulated in 

Supplementary Table 9 and age and gender information is in Supplementary Table 10.

Meta-analysis

Again as is routine in GWAMA, analysis was performed within homogeneous sub-

populations and only meta-analysis of the estimated (within population) effect sizes was 

used to combine results between populations, avoiding any confounding effects of inter-

population differences in trait or genetic effect distributions. Inverse-variance meta-analysis 

of all sub-cohorts’ effect estimates was performed using Rmeta, on a fixed effect basis 

(Supplementary Table 5 compares random effects meta-analysis). In the principal analyses, 

for cohorts with relatedness, HGLM estimates of βFROH were preferred, however where 

HGLM had failed to converge, results using GRAMMAR+ were included. These results 

were combined with those for unrelated cohorts on a fixed model only basis. Result outliers 

were defined as individual cohort by trait results, which failed the hypothesis, cohort 

(βFROH) = pre-QC meta-analysis (βFROH), with a t-test statistic >3. Analyses were 

performed with and without outliers for βFROH in phenotypic units and in intra-sex 

phenotypic standard deviations (Supplementary Table 8). The principal results we present 

are for FROH with outliers included for the hypothesis tests (which turns out to be more 

conservative), but with outliers excluded when estimating βFROH (ref. 44). Meta-analysis 

was performed using inverse variance meta-analysis in the R package Rmeta, with βFROH 

taken as a fixed effect and alternatively as a random effect. The principal results are on a 

fixed effects basis, with Supplementary Table 5 showing comparison with the random 

effects analysis.

Meta-analyses were rerun for various subsets, according to geographic and demographic 

features of the cohorts. Cohorts were divided into more homozygous and less homozygous 

strata with the boundary being set so each within-stratum meta-analysis had equal statistical 

power.
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Extended Data

Extended Data Figure 1. Forest plot for cognitive g
Individual sub-cohort estimates of effect size and the standard error are plotted. Sub-cohorts 

are ordered from top to bottom according to their weight in the meta-analysis, so larger or 

more homozygous cohorts appear towards the top. The scale of beta FROH is in intra-sex 

standard deviations. The meta-analytical estimate is displayed at the bottom. Sub-cohort 

names follow the conventions detailed in Supplementary Table 6 and the Supplementary 
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Table 11 legend. Sample sizes, effect sizes and P values for association are given in Table 1. 

This trait was rank transformed.

Extended Data Figure 2. Forest plot for educational attainment
Individual sub-cohort estimates of effect size and the standard error are plotted. Subcohorts 

are ordered from top to bottom according to their weight in the meta-analysis, so larger or 

more homozygous cohorts appear towards the top. The scale of beta FROH is in intra-sex 

standard deviations. The meta-analytical estimate is displayed at the bottom. Sub-cohort 
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names follow the conventions detailed in Supplementary Table 6 and the Supplementary 

Table 11 legend. Sample sizes, effect sizes and P values for association are given in Table 1.

Extended Data Figure 3. Forest plot for height
Individual sub-cohort estimates of effect size and the standard error are plotted. Subcohorts 

are ordered from top to bottom according to their weight in the meta-analysis, so larger or 

more homozygous cohorts appear towards the top. The scale of beta FROH is in intra-sex 

standard deviations. The meta-analytical estimate is displayed at the bottom. Sub-cohort 
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names follow the conventions detailed in Supplementary Table 6 and the Supplementary 

Table 11 legend. Sample sizes, effect sizes and P values for association are given in Table 1.

Extended Data Figure 4. Forest plot for forced expiratory lung volume in one second
Individual sub-cohort estimates of effect size and the standard error are plotted. Subcohorts 

are ordered from top to bottom according to their weight in the meta-analysis, so larger or 

more homozygous cohorts appear towards the top. The scale of beta FROH is in intra-sex 

standard deviations. The meta-analytical estimate is displayed at the bottom. Sub-cohort 
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names follow the conventions detailed in Supplementary Table 6 and the Supplementary 

Table 11 legend. Sample sizes, effect sizes and P values for association are given in Table 1. 

This trait was rank transformed.

Extended Data Figure 5. Signals of directional dominance are robust to stratification by 
geography or demographic history or inclusion of educational attainment as covariate
(a) Cohorts are divided by continental biogeographic ancestry (African (15 sub-cohorts), 

East Asian (5), South & Central Asian (10), Hispanic (3)), with Europeans being divided 

into Finns (13), other European isolates (self-declared, 23), and (non-isolated) Europeans 

(90). Meta-analysis was carried out for all subsets with 2000 or more samples available. 

Sample numbers are as follows: cognitive g, Eur isolate 6638, European 44,153; educational 

attainment, African 4811, Eur isolate 8032, European 55,549, Finland 9068; height, African 

21,500, E Asian 30,011, Eur isolate 23,116, European 228,813, Finland 30,427, Hispanic 

5469, SC Asian 13,523; FEV1, African 6604, Eur isolate 4837, European 49,223, Finland 

2340. βFROH is consistent across geography and in both isolates and more cosmopolitan 

populations. (b) Cohorts were divided into High and Low ROH strata of equal power and 

meta-analysis repeated – the effects are consistent across strata for all four traits. The mean 

SROH for the high and low strata are 13.4 and 4.3 Mb for cognitive g; 28.1 and 5.1 Mb for 
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education attained; 31.9 and 10.8 Mb for height; and 41.4 and 4.5 Mb for FEV1. (c) To 

assess the potential for socio-economic confounding, where available, educational 

attainment was included in the regression model (edu) and compared to a model without 

educational attainment (none) in the same subset of cohorts. The signals reduce slightly 

when the education covariate is included; the analysis is not possible for educational 

attainment as a trait. For cognitive g, numbers are 36847 and 36023 for edu and none; for 

height 131,614 and 120,945; and for FEV1, 15717 and 15425. The numbers differ because 

of missing individual educational data within cohorts. + indicates phenotype was rank 

transformed. FEV1, forced expiratory lung volume in one second; g is the general cognitive 

component (first unrotated principal component of test scores across diverse tests of 

cognition); SC Asian is South & Central Asian, E Asian is East Asian, trait units are intra-

sex standard deviations and the genomic measure is unpruned SROH.
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Extended Data Figure 6. Signals of directional dominance are robust to model choice
Meta-analytical estimates of effect size and standard errors are plotted for various models. 

Fixed indicates no mixed modelling was used, gr res indicates the GRAMMAR+ residuals 

were fitted and hglm indicates the full hierarchical generalised linear mixed model was used. 

+ indicates the phenotype was rank transformed; FEV1 is forced expiratory lung volume in 

one second; Cognitive g is the general cognitive factor. 15,355 subjects were used for 

cognitive g, 36,060 for educational attainment, 89,112 for height and 15,262 for FEV1.
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Extended Data Figure 7. Correlation in SROH for different genotyping arrays using HapMap 
populations
In panels (a) – (c), X and Y axes show SROH (sum of runs of homozygosity) from 0-30 Mb 

(30,000 kb). ill370: Illumina CNV370, aff6: Affymetrix6, illomni: Illumina OmniExpress. 

The graphs are shown for the specific plink call parameters used. (d) Sample numbers per 

continent are presented in a bar chart. AFR: African, AMR: Mixed American, ASN: East 

Asian, EUR: European, SAN: South Asian. Only samples with SROH below 30 Mb are 

plotted, to be conservative to the effect of outliers, which have very strongly correlated 
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estimates of SROH (r = 0.96-0.97 for comparisons including such very homozygous 

individuals). In these plots, the correlation between SROH called by the two arrays, r = 

0.93-0.94.

Extended data Table 1
Continental ancestry of cohorts participating in each 
trait study

The first number in each cell is the number of participants with that continental ancestry. 

The second number is the number of sub-cohorts. BP is blood pressure; FEV1 is forced 

expiratory lung volume in one second; FVC is forced vital lung capacity; FP is fasting 

plasma; HbA1c is haemoglobin A1c; HDL/LDL are High/low-density lipoprotein; g is the 

general cognitive factor (first unrotated principal component of test scores across diverse 

domains of cognition). S/C Asian is South & Central Asian.

African East Asian European Hispanic S/C Asian All

BMI 21689/15 29009/5 279400/117 7836/3 13464/10 351398/150

Cognitive g 1539/1 NA/NA 49559/22 - - 51098/23

Diastolic BP 17074/12 24200/5 204742/85 7284/3 12876/9 266176/114

Education Attained 4811/4 NA/NA 79576/42 - 338/1 84725/47

Fasting Insulin 6895/8 1603/1 72006/49 - 6303/5 86807/63

FEV1 6604/5 617/1 58089/27 825/1 - 66135/34

FEVl/FVC 6565/5 616/1 57888/27 822/1 - 65891/34

FP Glucose 8942/9 1615/1 122368/74 1938/1 6921/5 141784/90

HbAlc 6629/4 694/1 92732/31 4038/2 7509/4 111602/42

HDL Cholesterol 15099/13 10478/5 215621/92 4426/3 12508/9 258132/122

Height 20300/14 30011/5 281369/114 5469/2 13523/10 350672/145

LDL Cholesterol 13375/11 2503/2 172245/77 4340/3 11186/8 203649/101

Systolic BP 17023/12 24424/5 205253/85 7225/3 12859/9 266784/114

Total Cholesterol 15130/13 20187/5 209421/91 4491/3 11674/8 260903/120

Triglycerides 13886/12 2542/2 181526/84 2745/2 10688/7 211387/107

Waist-hip ratio 8182/7 2549/2 171753/73 1446/1 12598/9 196528/92

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Authors 

Peter K. Joshi#1, Tonu Esko#2,3,4,5, Hannele Mattsson6,7, Niina Eklund6, Ilaria 
Gandin8, Teresa Nutile9, Anne U. Jackson10, Claudia Schurmann11,12, Albert V. 
Smith13,14, Weihua Zhang15,16, Yukinori Okada17,18, Alena Stančáková19, Jessica 
D. Faul20, Wei Zhao21, Traci M. Bartz22, Maria Pina Concas23, Nora 
Franceschini24, Stefan Enroth25, Veronique Vitart26, Stella Trompet27, Xiuqing 
Guo28,29, Daniel I. Chasman30, Jeffery R. O’Connel31, Tanguy Corre32,33, Suraj S. 

Joshi et al. Page 18

Nature. Author manuscript; available in PMC 2016 January 23.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Nongmaithem34, Yuning Chen35, Massimo Mangino36,37, Daniela Ruggiero9, 
Michela Traglia38, Aliki-Eleni Farmaki39, Tim Kacprowski40, Andrew Bjonnes41, 
Ashley van der Spek42, Ying Wu43, Anil K. Giri44, Lisa R. Yanek45, Lihua Wang46, 
Edith Hofer47,48, Cornelius A. Rietveld49, Olga McLeod50, Marilyn C. Cornelis51,52, 
Cristian Pattaro53, Niek Verweij54, Clemens Baumbach55,56,57, Abdel Abdellaoui58, 
Helen R. Warren59,60, Dragana Vuckovic8, Hao Mei61, Claude Bouchard62, John 
R.B. Perry63, Stefania Cappellani64, Saira S. Mirza42, Miles C. Benton65, Ulrich 
Broeckel66, Sarah E. Medland67, Penelope A. Lind67, Giovanni Malerba68, 
Alexander Drong69, Loic Yengo70, Lawrence F. Bielak21, Degui Zhi71, Peter J. van 
der Most72, Daniel Shriner73, Reedik Mägi2, Gibran Hemani74, Tugce Karaderi69, 
Zhaoming Wang75,76, Tian Liu77,78, Ilja Demuth79,80, Jing Hua Zhao63, Weihua 
Meng81, Lazaros Lataniotis82, Sander W. van der Laan83, Jonathan P. Bradfield84, 
Andrew R. Wood85, Amelie Bonnefond70, Tarunveer S. Ahluwalia86,87,88, Leanne 
M. Hall89, Erika Salvi90, Seyhan Yazar91, Lisbeth Carstensen92, Hugoline G. de 
Haan93, Mark Abney94, Uzma Afzal15,16, Matthew A. Allison95, Najaf Amin42, 
Folkert W. Asselbergs96,97,98, Stephan J.L. Bakker99, R. Graham Barr100, 
Sebastian E. Baumeister101, Daniel J. Benjamin102,103, Sven Bergmann32,33, Eric 
Boerwinkle104, Erwin P. Bottinger11, Archie Campbell105, Aravinda Chakravarti106, 
Yingleong Chan3,4,5, Stephen J. Chanock75, Constance Chen107, Y.-D. Ida 
Chen28,29, Francis S. Collins108, John Connell109, Adolfo Correa61, L. Adrienne 
Cupples35,110, George Davey Smith74, Gail Davies111,112, Marcus Dörr113, Georg 
Ehret106,114, Stephen B. Ellis11, Bjarke Feenstra92, Mary F. Feitosa46, Ian Ford115, 
Caroline S. Fox110,116, Timothy M. Frayling85, Nele Friedrich117, Frank Geller92, 
Generation Scotland105, Irina Gillham-Nasenya36, Omri Gottesman11, Misa 
Graff118, Francine Grodstein52, Charles Gu119, Chris Haley26,120, Christopher J. 
Hammond36, Sarah E. Harris105,112, Tamara B. Harris121, Nicholas D. Hastie26, 
Nancy L. Heard-Costa110,122, Kauko Heikkilä123, Lynne J. Hocking124, Georg 
Homuth40, Jouke-Jan Hottenga58, Jinyan Huang125, Jennifer E. Huffman26, Pirro G. 
Hysi36, M. Arfan Ikram42,126, Erik Ingelsson69,127, Anni Joensuu6,7, Åsa 
Johansson25,128, Pekka Jousilahti129, J. Wouter Jukema130, Mika Kähönen131, 
Yoichiro Kamatani18, Stavroula Kanoni82, Shona M. Kerr26, Nazir M. Khan44, 
Philipp Koellinger49, Heikki A. Koistinen132,133,134, Manraj K. Kooner16, Michiaki 
Kubo135, Johanna Kuusisto136, Jari Lahti137,138, Lenore J. Launer121, Rodney A. 
Lea65, Benjamin Lehne15, Terho Lehtimäki139, David C.M. Liewald112, Lars Lind140, 
Marie Loh15, Marja-Liisa Lokki141, Stephanie J. London142, Stephanie J. Loomis143, 
Anu Loukola123, Yingchang Lu11,12, Thomas Lumley144, Annamari Lundqvist145, 
Satu Männistö129, Pedro Marques-Vidal146, Corrado Masciullo38, Angela 
Matchan147, Rasika A. Mathias45,148, Koichi Matsuda149, James B. Meigs150, 
Christa Meisinger56, Thomas Meitinger151,152, Cristina Menni36, Frank D. Mentch84, 
Evelin Mihailov2, Lili Milani2, May E. Montasser31, Grant W. Montgomery153, Alanna 
Morrison104, Richard H. Myers154, Rajiv Nadukuru11, Pau Navarro26, Mari Nelis2, 
Markku S. Nieminen155, Ilja M. Nolte72, George T. O’Connor110,156, Adesola 
Ogunniyi157, Sandosh Padmanabhan158, Walter R. Palmas100, James S. 
Pankow159, Inga Patarcic160, Francesca Pavani53, Patricia A. Peyser21, Kirsi 
Pietilainen7,133,161, Neil Poulter162, Inga Prokopenko163, Sarju Ralhan164, Paul 

Joshi et al. Page 19

Nature. Author manuscript; available in PMC 2016 January 23.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Redmond111, Stephen S. Rich165, Harri Rissanen145, Antonietta Robino64, Lynda 
M. Rose30, Richard Rose166, Cinzia Sala38, Babatunde Salako157, Veikko 
Salomaa129, Antti-Pekka Sarin6,7, Richa Saxena41, Helena Schmidt167, Laura J. 
Scott10, William R. Scott15,16, Bengt Sennblad50,168, Sudha Seshadri110,122, Peter 
Sever162, Smeeta Shrestha34, Blair H. Smith169, Jennifer A. Smith21, Nicole 
Soranzo147, Nona Sotoodehnia170, Lorraine Southam69,147, Alice V. Stanton171, 
Maria G. Stathopoulou172, Konstantin Strauch57,173, Rona J. Strawbridge50, 
Matthew J. Suderman74, Nikhil Tandon174, Sian-Tsun Tang175, Kent D. Taylor28,29, 
Bamidele O. Tayo176, Anna Maria Töglhofer167, Maciej Tomaszewski89,177, Natalia 
Tšernikova2,178, Jaakko Tuomilehto132,179,180, Andre G. Uitterlinden42,181, 
Dhananjay Vaidya45,182, Astrid van Hylckama Vlieg93, Jessica van Setten83, Tuula 
Vasankari183, Sailaja Vedantam3,4,5, Efthymia Vlachopoulou141, Diego Vozzi64, 
Eero Vuoksimaa123, Melanie Waldenberger55,56, Erin B. Ware21, William 
Wentworth-Shields94, John B. Whitfield184, Sarah Wild1, Gonneke Willemsen58, 
Chittaranjan S. Yajnik185, Jie Yao28, Gianluigi Zaza186, Xiaofeng Zhu187, The 
BioBank Japan Project18, Rany M. Salem3,4,5, Mads Melbye92,188, Hans 
Bisgaard86,87, Nilesh J. Samani89,177, Daniele Cusi90, David A. Mackey91, Richard 
S. Cooper176, Philippe Froguel70,163, Gerard Pasterkamp83, Struan F.A. 
Grant84,189, Hakon Hakonarson84,189, Luigi Ferrucci190, Robert A. Scott63, Andrew 
D. Morris191, Colin N.A. Palmer192, George Dedoussis39, Panos Deloukas82,193, 
Lars Bertram78,194, Ulman Lindenberger77, Sonja I. Berndt75, Cecilia M. 
Lindgren4,69, Nicholas J. Timpson74, Anke Tönjes195, Patricia B. Munroe59,60, 
Thorkild I.A. Sørensen88,196, Charles N. Rotimi73, Donna K. Arnett197, Albertine J. 
Oldehinkel198, Sharon L.R. Kardia21, Beverley Balkau199, Giovanni Gambaro200, 
Andrew P. Morris2,69,201, Johan G. Eriksson129,202,203,204,205, Margie J. Wright206, 
Nicholas G. Martin184, Steven C. Hunt207, John M. Starr112,208, Ian J. Deary111,112, 
Lyn R. Griffiths65, Henning Tiemeier42,209, Nicola Pirastu8,64, Jaakko 
Kaprio7,123,210, Nicholas J. Wareham63, Louis Pérusse211, James G. Wilson212, 
Giorgia Girotto8, Mark J. Caulfield59,60, Olli Raitakari213,214, Dorret I. Boomsma58, 
Christian Gieger55,56,57, Pim van der Harst54,97,215, Andrew A. Hicks53, Peter 
Kraft107, Juha Sinisalo155, Paul Knekt145, Magnus Johannesson216, Patrik K.E. 
Magnusson217, Anders Hamsten50, Reinhold Schmidt47, Ingrid B. Borecki218, Erkki 
Vartiainen129, Diane M. Becker45,219, Dwaipayan Bharadwaj44, Karen L. Mohlke43, 
Michael Boehnke10, Cornelia M. van Duijn42, Dharambir K. Sanghera220,221, 
Alexander Teumer101, Eleftheria Zeggini147, Andres Metspalu2,178, Paolo 
Gasparini64, Sheila Ulivi64, Carole Ober94, Daniela Toniolo38, Igor Rudan1, David J. 
Porteous105,112, Marina Ciullo9, Tim D. Spector36, Caroline Hayward26, Josée 
Dupuis35,110, Ruth J.F. Loos11,12,222, Alan F. Wright26, Giriraj R. Chandak34,223, 
Peter Vollenweider146, Alan Shuldiner31,224,225, Paul M. Ridker30, Jerome I. 
Rotter28,29, Naveed Sattar226, Ulf Gyllensten25, Kari E. North118,227, Mario 
Pirastu23, Bruce M. Psaty228,229, David R. Weir20, Markku Laakso136, Vilmundur 
Gudnason13,14, Atsushi Takahashi18, John C. Chambers15,16,230, Jaspal S. 
Kooner16,175,230, David P. Strachan231, Harry Campbell1, Joel N. Hirschhorn3,4,5, 
Markus Perola2,6, Ozren Polašek#1,160, and James F. Wilson#1,26 for ROHgen

Joshi et al. Page 20

Nature. Author manuscript; available in PMC 2016 January 23.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Affiliations
1Usher Institute for Population Health Sciences and Informatics, University of 
Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland 2Estonian Genome Center, 
University of Tartu, Riia 23b, 51010, Tartu, Estonia. 3Division of Endocrinology and 
Center for Basic and Translational Obesity Research, Boston Children’s Hospital, 
Cambridge, 02141, MA, USA 4Program in Medical and Population Genetics, Broad 
Institute, Cambridge Center 7, Cambridge, 02242, MA, USA 5Department of 
Genetics, Harvard Medical School, 25 Shattuck St, Boston, 02115, MA, USA 6Unit 
of Public Health Genomics, National Institute for Health and Welfare, P.O. Box 104, 
Helsinki, FI-00251, Finland 7Institute for Molecular Medicine Finland (FIMM), 
University of Helsinki, P.O. Box 20, Helsinki, FI-00014, Finland 8Department of 
Medical Sciences, University of Trieste, Strada di Fiume 447 - Osp. di Cattinara, 
Trieste, 34149, Italy 9Institute of Genetics and Biophysics “A. Buzzati-Traverso” 
CNR, via Pietro Castellino, 111, Naples, 80131, Italy 10Department of Biostatistics 
and Center for Statistical Genetics, University of Michigan, Ann Arbor, 48109, MI, 
USA 11The Charles Bronfman Institute for Personalized Medicine, Icahn School of 
Medicine at Mount Sinai, One Gustave L. Levy Place, New York, 10029, USA 12The 
Genetics of Obesity and Related Metabolic Traits Program, Icahn School of 
Medicine at Mount Sinai, One Gustave L. Levy Place, New York, 10029, USA 
13Icelandic Heart Association, Holtasmari 1, 201, Kopavogur, Iceland 14Faculty of 
Medicine, University of Iceland, Reykjavik, 101, Iceland 15Department of 
Epidemiology and Biostatistics, Imperial College London, Norfolk Place, London, 
W2 1PG, UK 16Department of Cardiology, Ealing Hospital NHS Trust, Uxbridge 
Road, Southall, Middlesex, UB1 3HW, UK 17Department of Human Genetics and 
Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical 
and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo, 113-8510, Japan 
18Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, 
1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan 
19Department of Medicine, University of Eastern Finland, 70210 Kuopio, Finland 
20Institute for Social Research, University of Michigan, 426 Thompson Street, 
48104, Ann Arbor, MI, USA 21Department of Epidemiology, University of Michigan, 
1415 Washington Heights, 48109, Ann Arbor, MI, USA 22Cardiovascular Health 
Research Unit, Departments of Biostatistics and Medicine, University of 
Washington, 1730 Minor Ave, Suite 1360, Seattle, 98101, WA, USA 23Institute of 
Population Genetics, National Research Council, Trav. La Crucca n. 3 – Reg. 
Baldinca, Sassari, 07100, Italy 24Epidemiology, University of North Carolina, 137 E. 
Franklin St., Suite 306, 27599-8050, Chapel Hill, USA 25Immunology, Genetics & 
Pathology, Uppsala University, Husargatan 3, Box 815, Uppsala, SE-751 08, 
Sweden 26MRC Human Genetics Unit, Institute of Genetics and Molecular 
Medicine, University of Edinburgh, Crewe Road, EH4 2XU, Edinburgh, UK 
27Department of Gerontology and Geriatrics, Leiden University Medical Center , PO 
Box 9600, Leiden, Netherlands 28Institute for Translational Genomics and 
Population Sciences , Los Angeles Biomedical Research Institute, 1124 W. Carson 
Street, Torrance, 90502, USA 29Department of Pediatrics, Harbor-UCLA Medical 

Joshi et al. Page 21

Nature. Author manuscript; available in PMC 2016 January 23.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Center, Torrance, 90502, USA 30Division of Preventive Medicine, Brigham and 
Women’s Hospital, 900 Commonwealth Avenue, East, Harvard Medical School, 
Boston, Boston, MA 02215, USA 31Division of Endocrinology, Diabetes, and 
Nutrition and Program for Personalised and Genomic Medicine, Department of 
Medicine, University of Maryland School of Medicine, 685 Baltimore St. MSTF, 
Baltimore, 21201, USA 32Department of Medical Genetics, University of Lausanne, 
Rue du Bugnon 27, Lausanne, 1005, Switzerland 33Swiss Institute of Bioinformatics, 
Quartier Sorge - batiment génopode, Lausanne, 1015, Switzerland 34Genomic 
Research on Complex Diseases (GRC) Group, CSIR-Centre for Cellular and 
Molecular Biology, Habshiguda, Uppal Road, Hyderabad, 500007, India 
35Department of Biostatistics, Boston University School of Public Health, 801 
Massachusetts Avenue, Boston, 02118, MA, USA 36Department of Twin Research 
& Genetic Epidemiology, King’s College London, South Wing, Block D, 3rd Floor, 
Westminster Bridge Road, London, SE1 7EH, UK 37NIHR Biomedical Research 
Centre , Guy’s and St. Thomas’ Foundation Trust, Westminster Bridge Road, 
London, SE1 7EH, UK 38Division of Genetics and Cell Biology, San Raffaele 
Scientific Institute, Via Olgettina 58, Milano, 20132, Italy 39Department of Nutrition 
and Dietetics, Harokopio University of Athens, 70, El. Venizelou Ave, Athens, 
17671, Greece 40Interfaculty Institute for Genetics and Functional Genomics, 
University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15A, Greifswald, 17475, 
Germany. 41Center for Human Genetic Research , 55 Fruit Street, Massachusetts 
General Hospital, 2114, USA 42Department of Epidemiology, Erasmus Medical 
Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands 43Department of 
Genetics, University of North Carolina, Chapel Hill, 27599, NC, USA 44Genomics 
and Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura 
Road, New Delhi, 110025, India 45The GeneSTAR Research Program, Division of 
General Internal Medicine, Department of Medicine, The Johns Hopkins University 
School of Medicine, Baltimore, 21287, Maryland, USA 46Department of Genetics, 
Washington University School of Medicine, 4444 Forest Park Boulevard, Saint 
Louis, 63108, MO, USA 47Department of Neurology, Clinical Division of 
Neurogeriatrics, Medical University Graz, Auenbruggerplatz 22, Graz, A-8036, 
Austria 48Institute for Medical Informatics, Statistics and Documentation, Medical 
University Graz, Auenbruggerplatz2, Graz, A-8036, Austria 49Erasmus School of 
Economics, Erasmus University Rotterdam, Burgemeester Oudlaan 50, Rotterdam, 
3000 DR, The Netherlands 50Atherosclerosis Research Unit, Department of 
Medicine Solna, Karolinska Institutet, CMM L8:03, Karolinska University Hospital, 
Solna, Stockholm, 171 76, Sweden 51Channing Division of Network Medicine, 
Brigham & Women’s Hospital, 181 Longwood, Boston, 02115, USA 52Nutrition, 
Harvard School of Public Health, 401 Park Drive, Boston, 02215, USA 53Center for 
Biomedicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy - 
Affiliated Institute of the University of Lübeck, Lübeck, Germany 54University of 
Groningen, University Medical Center Groningen, Department of Cardiology, 
Hanzeplein 1, Groningen, 9700RB, The Netherlands 55Research Unit of Molecular 
Epidemiology, Helmholtz Zentrum München, German Research Center for 

Joshi et al. Page 22

Nature. Author manuscript; available in PMC 2016 January 23.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Environmental Health, Ingolstädter Landstr. 1, Neuherberg, 85764, Germany 
56Institute of Epidemiology II, Helmholtz Zentrum München, German Research 
Center for Environmental Health, Ingolstädter Landstr. 1, Neuherberg, 85764, 
Germany 57Institute of Genetic Epidemiology, Helmholtz Zentrum München, 
German Research Center for Environmental Health, Ingolstädter Landstr. 1, 
Neuherberg, 85764, Germany 58Department of Biological Psychology, VU 
University Amsterdam, Van der Boechorststraat 1, 1081 BT, Amsterdam, 
Netherlands 59Clinical Pharmacology, William Harvey Research Institute, Barts and 
The London School of Medicine and Dentistry, Queen Mary University of London, 
Charterhouse Square, London, EC1M 6BQ, UK 60NIHR Barts Cardiovascular 
Biomedical Research Unit, Queen Mary University of London, Charterhouse 
Square, London, EC1M 6BQ, UK 61Department of Medicine, University of 
Mississippi Medical Center, 2500 N. State St., Jackson, 39216, MS, USA 
62Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, LA 
70808, USA 63MRC Epidemiology Unit, University of Cambridge School of Clinical 
Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK 64Institute for 
Maternal and Child Health - IRCCS “Burlo Garofolo”, via dell’Istria 65, Trieste, 
34137, Italy 65Institute of Health and Biomedical Innovation, Queensland University 
of Technology, 60 Musk Avenue, Kelvin Grove, GPO Box 2434, Brisbane Qld 4001, 
Brisbane, Australia 66Department of Pediatrics, Medical College of Wisconsin, 8701 
Watertown Plank Rd, Milwaukee, 53226, WI, USA 67Quantitative Genetics, QIMR 
Berghofer Medical Research Institute, 300 Herston Rd, Herston, Brisbane, 4006, 
Australia 68Dipartimento di Scienze della Vita e della Riproduzione, University of 
Verona, Strada Le Grazie 15, Verona, 37134, Italy 69Wellcome Trust Centre for 
Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK 
70CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Lille 2 
University, 1 Rue du Professeur Calmette, 59000, Lille, France 71Department of 
Biostatistics, University of Alabama at Birmingham, 1665 University Blvd, 
Birmingham, 35294, AL, USA 72Department of Epidemiology, University of 
Groningen, University Medical Center Groningen, Groningen, P.O. box 30.001, 
9700 RB, Groningen, The Netherlands 73Center for Research on Genomics and 
Global Health, National Human Genome Research Institute, Building 12A/Room 
4047, 12 South Dr., Bethesda, 20892, Maryland, USA 74MRC Integrative 
Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol, 
BS8 2BN, UK 75Division of Cancer Epidemiology and Genetics, National Cancer 
Institute, National Institutes of Health, 9609 Medical Center Drive, Rockville, 20850, 
MD, USA 76Cancer Genomics Research Laboratory, National Cancer Institute, 
SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, 
Frederick,MD, USA 77Center for Lifespan Psychology, Max Planck Institute for 
Human Development, Lentzeallee 94, Berlin, 14195, Germany 78Vertebrate 
Genomics, Max Planck Institute for Molecular Genetics, Ihnestr. 72, Berlin, 14195, 
Germany 79Charité Research Group on Geriatrics, Charité – Universitätsmedizin 
Berlin, Reinickendorferstr. 61, 13347, Berlin, Germany 80Institute of Medical and 
Human Genetics, Charité – Universitätsmedizin Berlin, Augustenburger Platz 1, 

Joshi et al. Page 23

Nature. Author manuscript; available in PMC 2016 January 23.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Berlin, 13353, Germany 81Division of Population Health Sciences, Medical 
Research Institute, University of Dundee, Ninewells hospital and School of 
Medicine, Dundee, DD2 4BF, Scotland. 82William Harvey Research Institute, Barts 
and The London School of Medicine and Dentistry, Queen Mary University of 
London, Charterhouse Square, London, EC1M 6BQ, UK 83Experimental Cardiology, 
Division Heart and Lungs, University Medical Center Utrecht, Heidelberglaan 100, 
Utrecht, 3584 CX, The Netherlands 84Center for Applied Genomics, Children’s 
Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA 19104, 
USA 85Genetics of Complex Traits, University of Exeter Medical School, University 
of Exeter, Royal Devon and Exeter Hospital, Barrack Road, Exeter, EX2 5DW, UK 
86Copenhagen Prospective Studies on Asthma in Childhood, Faculty of Health and 
Medical Sciences, University of Copenhagen, Copenhagen, Denmark 87The Danish 
Pediatric Asthma Center, Gentofte Hospital, The Capital Region, Copenhagen, 
Denmark 88Novo Nordisk Centre for Basic Metabolic Research, Section of 
Metabolic Genetics, Faculty of Health and Medical Sciences, University of 
Copenhagen, Universitetsparken 1, Copenhagen, 2100, Denmark 89Department of 
Cardiovascular Sciences, University of Leicester, BHF Cardiovascular Research 
Centre, Glenfield Hospital, Groby Road, Leicester, LE3 9QP, UK 90Department of 
Health Sciences, University of Milan, via A. di Rudinì 8, 20142 Milan, Italy. 91Centre 
for Ophthalmology and Visual Science, University of Western Australia, Lions Eye 
Institute, 2 Verdun St, Perth, 6009, Australia 92Department of Epidemiology 
Research, Statens Serum Institut, Artillerivej 5, Copenhagen, 2300, Denmark 
93Clinical Epidemiology, Leiden University Medical Center, PO Box 9600, Leiden, 
2300RC, The Netherlands 94Department of Human Genetics, University of Chicago, 
920 E. 58th Street, Chicago, IL, USA 95Department of Family and Preventive 
Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, 92093, 
USA 96Department of Cardiology, Division Heart and Lungs, University Medical 
Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands 97Durrer 
Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, 
Catharijnesingel 52, Utrecht, 3501 DG, The Netherlands 98Institute of 
Cardiovascular Science, faculty of Population Health Sciences, University College 
London, Gower Street, London, WC1E 6BT, UK 99University of Groningen, 
University Medical Center Groningen, Department of Internal Medicine, Hanzeplein 
1, Groningen, 9700RB, The Netherlands 100Department of Medicine, Columbia 
University, 622 W. 168th Street, New York, 10032, NY, USA 101Institute for 
Community Medicine, University Medicine Greifswald, W.-Rathenau-Str. 48, 
Greifswald, 17475, Germany 102Department of Economics, Cornell University, 480 
Uris Hall, Ithaca, NY, 14853, USA 103Department of Economics and Center for 
Economic and Social Research, University of Southern California, 314C Dauterive 
Hall, 635 Downey Way, Los Angeles, CA, 90089, USA 104Human Genetics Center, 
School of Public Health, University of Texas Health Science Center at Houston, 
1200 Pressler St., Suite 453E, Houston, Texas, 77030, USA 105Centre for Genomic 
and Experimental Medicine, University of Edinburgh, Western General Hospital, 
Edinburgh, EH4 2XU, UK 106McKusick-Nathans Institute of Genetic Medicine, Johns 

Joshi et al. Page 24

Nature. Author manuscript; available in PMC 2016 January 23.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Hopkins University School of Medicine, Baltimore, 21205, MD, USA 107Program in 
Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, 
665 Huntington Ave, Boston, 02115, USA 108Genome Technology Branch, National 
Human Genome Research Institute, NIH, Bethesda, 20892, MD, USA 109College of 
Medicine, Dentistry and Nursing, Ninewells Hospital and Medical School, College 
Office, Level 10, Dundee, DD1 9SY, UK 110National Heart, Lung, and Blood 
Institute’s Framingham Heart Study, 73 Mt. Wayte Ave, Framingham, 01702, MA, 
USA 111Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 
9JZ, UK 112Centre for Cognitive Ageing and Cognitive Epidemiology, University of 
Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK 113Department of Internal 
Medicine B, University Medicine Greifswald, Ferdinand-Sauerbruch-Str. NK, 
Greifswald, 17475, Germany 114Cardiology, Geneva University Hospitals, Rue 
Gabrielle-Perret-Gentil, 4, Genève 14, 1211, Switzerland 115Robertson Centre, 
University of Glasgow, Boyd Orr Building, Glasgow, G12 8QQ, Scotland. 116Division 
of Endocrinology, Brigham and Women’s Hospital and Harvard Medical School , 75 
Francis St, Boston, 02115, MA, USA 117Institute of Clinical Chemistry and 
Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Str. 
NK, 17475, Greifswald, Germany. 118Epidemiology, University of North Carolina, 
137 E Franklin St., Suite 306, USA 119Division of Biostatistics, Washington 
University, 660 S Euclid, St Louis, 63110, MO, USA 120Roslin Institute, University of 
Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland 121National Institutes on 
Aging, National Institutes of Health, Bethesda, MD, USA 122Department of 
Neurology, Boston University School of Medicine, 72 E Concord St, Boston, 02118, 
MA, USA 123Department of Public Health, University of Helsinki, Hjelt Institute, 
P.O.Box 41, Mannerheimintie 172, Helsinki, FI-00014, Finland 124Musculoskeletal 
Research Programme, Division of Applied Medicine, University of Aberdeen, 
Foresterhill, Aberdeen, AB25 2ZD, UK 125State Key Laboratory of Medical 
Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated with 
Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 
200025 China 126Department of Radiology, Erasmus Medical Center, PO Box 2040, 
Rotterdam, 3000 CA, The Netherlands 127Department of Medical Sciences, 
Molecular Epidemiology and Science for Life Laboratory, Uppsala University, 
Uppsala, Sweden 128Uppsala Clinical Research Center, Uppsala University, 
Uppsala, SE-75237, Sweden. 129Department of Chronic Disease Prevention, 
National Institute for Health and Welfare, P.O. Box 30, Helsinki, FI-00271, Finland 
130Department of Cardiology C5-P , Leiden University Medical Center, PO Box 
9600, Leiden, Netherlands 131Department of Clinical Physiology, University of 
Tampere and Tampere University Hospital, P.O. Box 2000, Tampere, 33521, 
Finland 132Diabetes Prevention Unit, National Institute for Health and Welfare, P.O. 
Box 30, FI-00271 Helsinki, Finland 133Department of Medicine, Division of 
Endocrinology, Helsinki University Central Hospital, P.O.Box 340, Haartmaninkatu 
4, Helsinki, FI-00029, Finland 134Minerva Foundation Institute for Medical Research, 
Biomedicum 2U, Tukholmankatu 8, Helsinki, FI-00290, Finland 135Laboratory for 
Genotyping Development RCfIMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 

Joshi et al. Page 25

Nature. Author manuscript; available in PMC 2016 January 23.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Kanagawa, 230-0045, Japan 136Department of Medicine, University of Eastern 
Finland and Kuopio University Hospital, Kuopio, 70210, Finland 137Institute of 
Behavioural Sciences, University of Helsinki, P.O. Box 9, FI-00014 University of 
Helsinki, Helsinki, Finland 138Folkhälsan Reasearch Centre, PB 63, Helsinki, 
FI-00014 University of Helsinki, Finland 139Department of Clinical Chemistry, Fimlab 
Laboratories and School of Medicine University of Tampere, Tampere, 33520, 
Finland 140Department of Medical Sciences, University Hospital, Uppsala, 75185, 
Sweden. 141Transplantation laboratory, Haartman Institute, University of Helsinki, 
P.O. Box 21, Helsinki, FI-00014, Finland 142National Institute of Environmental 
Health Sciences, National Institutes of Health, Department of Health and Human 
Services, RTP, NC, USA 143Ophthalmology, Massachusetts Eye and Ear, 243 
Charles St, Boston, 02114, USA 144Department of Statistics, University of Auckland, 
303.325 Science Centre, Private Bag 92019, Auckland, 1142, New Zealand 
145Department of Health, Functional Capacity and Welfare, National Institute for 
Health and Welfare, P.O. Box 30, Helsinki, FI-00271, Finland 146Department of 
Internal Medicine, University Hospital, Route du Bugnon 44, Lausanne, 1011, 
Switzerland 147Human Genetics, Wellcome Trust Sanger Institute, Hinxton, 
Cambridge, CB10 1HH, UK 148Division of Allergy and Clinical Immunology, 
Department of Medicine, The Johns Hopkins University School of Medicine, 
Baltimore, Maryland, 21224, USA 149Laboratory of Molecular Medicine, Human 
Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 
Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan 150Division of General Internal 
Medicine, Massachusetts General Hospital , 50 Staniford St, Boston, 02114, MA, 
USA 151Institute of Human Genetics, Helmholtz Zentrum München, German 
Research Center for Environmental Health, Ingolstädter Landstr. 1, Neuherberg, 
85764 Germany 152Institute of Human Genetics, Klinikum rechts der Isar, 
Technische Universität München, Ismaninger Str. 22, München, 81675, Germany 
153Molecular Epidemiology, QIMR Berghofer Medical Research Institute, 300 
Herston Rd, Herston, Brisbane, 4006, Australia 154Genome Science Institute, 
Boston University School of Medicine, 72 East Concord Street, E-304, Boston, 
2118, MA, USA 155HUCH Heart and Lung center, Helsinki University Central 
Hospital, P.O. Box 340, Helsinki, FI-00029, Finland 156Pulmonary Center and 
Department of Medicine, Boston University School of Medicine, 72 E Concord St, 
Boston, 02118, MA, USA 157Department of Medicine, University of Ibadan, Ibadan, 
Nigeria 158ICAMS, University of Glasgow, 126 University Way, Glasgow, G12 8TA, 
UK 159Division of Epidemiology and Community Health , University of Minnesota , 
1300 S 2nd Street, Minneapolis, 55454, USA 160Centre for Global Health and 
Department of Public Health, School of Medicine, University of Split, Soltanska 2, 
21000 Split, Croatia 161Obesity Research Unit, Research Programs Unit, Diabetes 
and Obesity, University of Helsinki, P.O.Box 63, Haartmaninkatu 8, FI-00014, 
Helsinki, Finland 162International Centre for Circulatory Health, Imperial College 
London, London, W2 1LA, UK 163Department of Genomics of Common Disease, 
School of Public Health, Imperial College London, London, SW7 2AZ, UK 
164Department of Cardiology and Cardio thoracic Surgery Hero DMC Heart Institute, 

Joshi et al. Page 26

Nature. Author manuscript; available in PMC 2016 January 23.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Civil Lines, 141001, Ludhiana, India 165Department Public Health Sciences, 
University of Virginia School of Medicine, 3232 West Complex, Charlottesville, 
22908, USA 166Department of Psychological & Brain Sciences, Indiana University 
Bloomington, 1101 E. 10th St., Bloomington, IN 47405, USA 167Institute of 
Molecular Biology and Biochemistry, Medical University Graz, Harrachgasse 21, 
Graz, A-8010, Austria 168Science for Life Laboratory, Karolinska Institutet, 
Stockholm, Sweden. 169University of Dundee, Kirsty Semple Way, Dundee, DD2 
4DB, UK 170Cardiovascular Health Research Unit, Division of Cardiology, University 
of Washington, 1730 Minor Ave, Suite 1360, Seattle, 98101, WA, USA 171Molecular 
and Cellular Therapeutics, Royal College of Surgeons in Ireland, St. Stephen’s 
Green, Dublin 2, Ireland 172UMR INSERM U1122; IGE-PCV “Interactions Gène-
Environnement en Physiopathologie Cardio-Vasculaire”, INSERM, University of 
Lorraine, 30 Rue Lionnois, Nancy, 54000, France 173Institute of Medical Informatics, 
Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians-
Universität, Munich, Germany. 174Department of Endocrinology, All India Institute of 
Medical Sciences, Ansari Nagar East, New Delhi, 110029, India 175National Heart 
and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, 
UK 176Department of Public Health Sciences, Stritch School of Medicine, Loyola 
University Chicago, Maywood, USA 177NIHR Leicester Cardiovascular Biomedical 
Research Unit, University of Leicester, Glenfield Hospital, Groby Road, Leicester, 
LE3 9QP, UK 178Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 
Tartu, 51010 Estonia 179Centre for Vascular Prevention, Danube-University Krems, 
3500 Krems, Austria 180Diabetes Research Group, King Abdulaziz University, 
21589 Jeddah, Saudi Arabia 181Department of Internal Medicine, Erasmus Medical 
Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands 182Department of 
Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, 
Maryland, 21205, USA 183Finnish Lung Health Association, Sibeliuksenkatu 11 A 1, 
Helsinki, FI-00250, Finland. 184Genetic Epidemiology, QIMR Berghofer Medical 
Research Institute, 300 Herston Rd, Herston, Brisbane, 4006, Australia 185Diabetes 
Unit, KEM Hospital and Research Centre, Rasta Peth, Pune, 411011, India. 
186Renal Unit, Department of Medicine, Piazzale A. Stefani 1, Verona, 37124, Italy. 
187Department of Epidemiology and Biostatistics, Case Western Reserve University, 
Cleveland, USA 188Department of Medicine, Stanford University, 300 Pasteur Drive, 
Stanford, 94305, CA, USA 189Department of Pediatrics, Perelman School of 
Medicine, The University of Pennsylvania, 3615 Civic Center Boulevard, 
Philadelphia, PA 19104, USA 190Translational Gerontology Branch, National 
institute on Aging, Baltimore, 21225, Maryland, USA 191Jacqui Wood Cancer 
Centre, Medical Research Insitute, University of Dundee, Ninewells hospital and 
School of Medicine, Dundee, DD1 9SY, Scotland. 192Centre for Pharmacogenetics 
and Pharmacogenomics, Medical Research Institute, University of Dundee, 
Ninewells hospital and School of Medicine, Dundee, DD1 9SY, Scotland 193Princess 
Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders 
(PACER-HD), King Abdulaziz University, Jeddah, 21589, Saudi Arabia. 194Faculty 
of Medicine, Imperial College London, Charing Cross Campus - St Dunstan’s Road, 

Joshi et al. Page 27

Nature. Author manuscript; available in PMC 2016 January 23.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



London, W6 8RP, UK 195Department of Medicine, University of Leipzig, Leipzig, 
Germany. 196Institute of Preventive Medicine, Bispebjerg and Frederiksberg 
Hospital , The Capital Region, Copenhagen, 2000, Denmark 197Department of 
Epidemiology, University of Alabama at Birmingham, 1665 University Blvd, 
Birmingham, 35294, AL, USA 198Department of Psychiatry, University Medical 
Center Groningen, University of Groningen, P.O. box 30.001, Groningen, 9700 RB, 
The Netherlands 199Epidemiology of diabetes, obesity and chronic kidney disease 
over the lifecourse, Inserm, CESP Center for Research in Epidemiology and 
Population Health U1018, 16 Avenue Paul Vaillant Couturier, Villejuif, 94807, 
France 200Dipartimento di Scienze Mediche, Catholic University of the Sacred 
Heart, Via G. Moscati 31/34, Roma, 00168, Italy 201Department of Biostatistics, 
University of Liverpool, Duncan Building, Daulby Stree, Liverpool, L69 3GA, UK 
202Department of General Practice and Primary Health Care, University of Helsinki, 
P.O. Box 20, University of Helsinki, Helsinki, FI-00014, Finland 203Vasa Central 
Hospital, Sandviksgatan 2-4, Vasa, 65130, Finland 204Folkhälsan Reasearch 
Centre, PB 63, University of Helsinki, Helsinki, FI-00014, Finland 205Unit of General 
Practice, Helsinki University Central Hospital, Haartmaninkatu 4, Helsinki, FI-00290, 
Finland 206Neuro-Imaging Genetics, QIMR Berghofer Medical Research Institute, 
300 Herston Rd, Herston, Brisbane, 4006 Australia 207Cardiovascular Genetics 
Division, University of Utah, 420 Chipeta Way, Room 1160, Salt Lake City, 84117, 
Utah, USA 208Alzheimer Scotland Research Centre, University of Edinburgh, 7 
George Square, Edinburgh, EH8 9JZ, UK 209Department of Psychiatry, Erasmus 
Medical Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands 210National 
Institute for Health and Welfare (THL), P.O.Box 30, Mannerheimintie 166, Helsinki, 
FI-00271, Finland 211Department of kinesiology, Laval University, 2300 rue de la 
Terrasse, Quebec, G1V 0A6, Canada 212Department of Physiology and Biophysics, 
University of Mississippi Medical Center, 2500 N. State St., Jackson, 39216, MS, 
USA 213Department of Clinical Physiology and Nuclear Medicine, University of 
Turku and Turku University Hospital, Turku, 20521, Finland 214Research Center of 
Applied and Preventive Cardiovascular medicine, University of Turku, Turku, 20521, 
Finland 215University of Groningen, University Medical Center Groningen, 
Department of Genetics, Hanzeplein 1, Groningen, 9700RB, The Netherlands 
216Department of Economics, Stockholm School of Economics, Box 6501, 
Stockholm, SE-113 83, Sweden 217Department of Medical Epidemiology and 
Biostatistics, Karolinska Institutet, Box 281, Stockholm, SE-171 77, Sweden 
218Department of Genetics and Biostatistics, Washington University School of 
Medicine, 4444 Forest Park Boulevard, Saint Louis, 63108, MO, USA 
219Department of Health Policy and Management, Johns Hopkins Bloomberg 
School of Public Health, Baltimore, 21205, Maryland, USA 220Department of 
Pediatrics, University of Oklahoma Health Sciences Center, 940 Stanton Young 
Boulevard, Oklahoma City, 73104, OK , USA 221Department of Pharmaceutical 
Sciences , University of Oklahoma Health Sceienecs Center, Oklahoma City , 
73104, USA 222The Mindich Child Health and Development Institute, Icahn School 
of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, 10029, USA 

Joshi et al. Page 28

Nature. Author manuscript; available in PMC 2016 January 23.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



223Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome, Singapore, 
138672, Singapore 224Program for Personalised and Genomic Medicine, 
Department of Medicine, University of Maryland School of Medicine, 685 Baltimore 
St. MSTF, Baltimore, 21201, USA 225Geriatric Research and Education Clinical 
Center, Veterans Administration Medical Center, 685 W Baltimore MSTF, Baltimore, 
21201, USA 226BHF centre, University of Glasgow, 126 University Avenue, 
Glasgow, G12 8TA, Scotland 227Carolina Center for Genome Sciences, University 
of North Carolina at Chapel Hill, 137 E. Franklin St., Suite 306, Chapel Hill, USA 
228Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology 
and Health Services, University of Washington, 1730 Minor Ave, Suite 1360, 
Seattle, 98101, WA, USA 229Group Health Research Institute, Group Health 
Cooperative, 1730 Minor Ave, Suite 1360, Seattle, 98101, WA, USA 230Imperial 
College Healthcare NHS Trust, Imperial College London, Praed Street, London, W2 
1NY, UK 231Population Health Research Institute, St George’s, University of 
London, Cranmer Terrace, London, SW17 0RE, UK.

Acknowledgements

We thank the participants in all ROHgen studies; cohort-specific acknowledgements are detailed in Supplementary 
Table 6. This work was funded by a UK Medical Research Council (MRC) PhD studentship to PKJ, and JFW and 
OP acknowledge support from the MRC Human Genetics Unit “QTL in Health and Disease” programme. We thank 
W.G. Hill for discussions and comments on the manuscript and K. Lindsay for administrative assistance.

Author contributions

CHal, PN, MMe, HB, NJS, DC, DAM, RSC, PF, GP, SFG, HH, LF, RAS, ADM, CNP, 

GDe, PD, LB, UL, SIB, CML, NJT, ATon, PBM, TIS, CNR, DKA, AJO, SLK, BB, GGa, 

APM, JGE, MJW, NGM, SCH, JMS, IJD, LRG, HT, NPi, JKa, NJW, LP, JGW, GGi, MJC, 

OR, DDB, CGi, Pv, AAH, PKr, JS, PKn, MJ, PKM, AH, RSc, IBB, EVa, DMB, DB, KLM, 

MB, CMvD, DKS, ATe, EZ, AMe, PG, SU, CO, DT, GDS, IR, DJP, MC, TDS, CHay, JD, 

RJL, AFW, GRC, PV, ASh, PMR, JIR, NS, UG, KEN, MP, BMP, DRW, MLa, VG, ATa, 

JCC, JSK, DPS, HC, JNH, MP, OP, JFW designed individual studies. TN, JDF, SE, VV, 

STr, DIC, SSN, MMa, DR, AF, LRY, EH, CBo, JRP, SC, UB, GM, TLi, ID, JZ, JPB, ES, 

SY, MAA, SJB, GRB, EPB, ACa, YChan, SJC, YDIC, FSC, JC, ACo, LCu, GDa, MD, 

SBE, BF, MFF, IF, CSF, TMF, NFri, FGe, IGi, OG, FGr, CGu, CJH, SEH, NDH, NLH, 

KH, LJH, GHo, PGH, EI, ÅJ, PJ, JJ, MKa, SK, SMK, NMK, HKK, MKu, JKu, JL, RAL, 

TLe, DCL, LLi, MLL, ALo, TLu, ALu, SM, KM, JBM, CMei, TM, CMen, FDM, LM, 

GWM, RHM, RN, MN, MSN, GTO, AO, SP, WRP, JSP, IPa, KP, NPo, SRa, PR, SSR, HR, 

AR, LMR, RR, BSa, RMS, VS, ASa, LJS, SSe, PS, BHS, NSor, ASttn, MGS, KS, NTa, 

KDT, BOT, ATog, MTo, JT, AGU, AvHV, TV, SV, EVl, EVu, MW, JBW, SW, GW, CSY, 

GZ, XZ, MMe, HB, NJS, DC, DAM, RSC, GP, SFG, HH, LF, RAS, GDe, PD, LB, UL, 

SIB, GDS, NJT, ATon, PBM, TIS, CNR, DKA, AJO, SLK, BB, MKK, GGa, JGE, MJW, 

NGM, SCH, JMS, IJD, LRG, JKa, NJW, LP, JGW, GGi, MJC, OR, DDB, CGi, Pv, AAH, 

PKr, JS, PKn, MJ, PKM, AH, RSc, IBB, EVa, DMB, DB, KLM, MB, CMvD, DKS, EZ, 

AMe, PG, CO, DT, DJP, MC, TDS, CHay, RJL, AFW, GRC, PV, ASh, PMR, JIR, NS, UG, 

MP, BMP, DRW, MLa, JCC, JSK, DPS, JNH, MP, OP, JFW collected the data. STr, DIC, 

Joshi et al. Page 29

Nature. Author manuscript; available in PMC 2016 January 23.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



MCC, CBo, UB, ID, MA, FWA, SJB, DJB, EB, EPB, ACc, SJC, JC, IF, TMF, CGu, CJH, 

TBH, NDH, MI, EI, JJ, PKo, MKu, LJL, RAL, LLi, RAM, KM, JBM, GWM, RHM, PAP, 

KP, SSR, RR, HS, PS, BHS, NSor, NSot, DVa, JBW, CSY, MMe, NJS, DC, DAM, RSC, 

PF, GP, SFG, HH, LF, GDe, PD, LB, UL, SIB, CML, ATon, PBM, CNR, DKA, AJO, SLK, 

BB, GGa, APM, MJW, NGM, SCH, JMS, IJD, LRG, JKa, NJW, LP, MJC, DDB, Pv, PKr, 

MJ, PKM, AH, RSc, IBB, DMB, DB, KLM, MB, CMvD, DKS, EZ, AMe, PG, SU, CO, IR, 

DJP, MC, TDS, CHay, AFW, GRC, PV, ASh, PMR, JIR, NS, UG, KEN, BMP, DRW, MLa, 

VG, DPS, HC, OP, JFW contributed to funding. PKJ, TE, HMa, NE, IGa, TN, AUJ, CSc, 

AVS, WZhan, YO, AStc, JDF, WZhao, TMB, MMC, NFra, SE, VV, STr, XG, DIC, JRO, 

TC, SSN, YChen, MMa, DR, MTa, AF, TKac, ABj, AvS, YW, AKG, LRY, LW, EH, CAR, 

OM, MCC, CP, NV, CBa, AAA, HRW, DVu, HMe, JRP, SSMi, MCB, SSMe, PAL, GM, 

AD, LY, LFB, DZ, PJv, DS, RM, GHe, TKar, ZW, TLi, ID, JZ, WM, LLa, SWvL, JPB, 

ARW, ABo, TSA, LMH, ES, SY, IMM, LCa, HGdH, MA, UA, NA, FWA, SEB, SB, ACa, 

YChan, CC, GDa, GE, BF, MFF, FGe, MG, SEH, JJH, JH, JEH, PGH, AJ, YK, SK, RAL, 

BL, MLo, SJLoo, YL, PM, AMa, CMen, FDM, EM, MEM, AMo, AO, IPa, FP, IPr, LMR, 

BSa, RMS, RSa, HS, WRS, CSa, CMa, BSe, SSh, SJLon, JAS, LS, RJS, MJS, STa, BOT, 

ATog, MTo, NTs, JvS, SV, DVo, EBW, WW, JY, GZ, NJS, RAS, ADM, CNP, SIB, NJT, 

APM, SCH, HT, NPi, LP, Pv, PKr, RSc, IBB, ATe, CO, MC, JD, JIR, NS, KEN, ATa, JCC, 

JSK, DPS analysed the data. PKJ, TE, HMa, NE, IGa, TN, AUJ, CSc, AVS, MCB, DPS 

performed beta-testing of scripts. PKJ and TE performed meta-analysis. PKJ, TE, OP and 

JFW wrote the manuscript. All authors approved the final manuscript.

References

1. Garrod A. The incidence of alkaptonuria: a study of chemical individuality. Lancet. 1902; 11:1616–
1620.

2. Darwin, C. The Variation of Animals and Plants Under Domestication. Appleton: 1868. 

3. McQuillan R, et al. Runs of Homozygosity in European Populations. Am. J. Hum. Genet. 2008; 
83:359–372. [PubMed: 18760389] 

4. McQuillan R, et al. Evidence of Inbreeding Depression on Human Height. PLoS Genet. 2012; 
8:e1002655. [PubMed: 22829771] 

5. Rudan I, et al. Inbreeding and the Genetic Complexity of Human Hypertension. Genetics. 2003; 
163:1011–1021. [PubMed: 12663539] 

6. Campbell H, et al. Effects of genome-wide heterozygosity on a range of biomedically relevant 
human quantitative traits. Hum. Mol. Genet. 2007; 16:233–241. [PubMed: 17220173] 

7. Charlesworth D, Willis JH. The genetics of inbreeding depression. Nature Rev. Genetics. 2009; 
10:783–796. [PubMed: 19834483] 

8. Wright, S. Evolution and the Genetics of Populations, Vol. 3: Experimental Results and 
Evolutionary Deductions. University of Chicago Press; 1977. 

9. Wright S. Coefficients of inbreeding and relationships. Am. Nat. 1922; 56:330–339.

10. Broman KW, Weber JL. Long Homozygous Chromosomal Segments in Reference Families from 
the Centre d’Étude du Polymorphisme Humain. Am. J. Hum. Genet. 1999; 65:1493–1500. 
[PubMed: 10577902] 

11. Gibson J, Morton NE, Collins A. Extended tracts of homozygosity in outbred human populations. 
Hum. Mol. Genet. 2006; 15:789–795. [PubMed: 16436455] 

12. Kirin M, McQuillan R, Franklin CS, Campbell H, McKeigue PM, Wilson JF. Genomic Runs of 
Homozygosity Record Population History and Consanguinity. PLoS ONE. 2010; 5:e13996. 
[PubMed: 21085596] 

Joshi et al. Page 30

Nature. Author manuscript; available in PMC 2016 January 23.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



13. Keller MC, Visscher PM, Goddard ME. Quantification of Inbreeding Due to Distant Ancestors and 
Its Detection Using Dense Single Nucleotide Polymorphism Data. Genetics. 2011; 189:237–249. 
[PubMed: 21705750] 

14. Pemberton TJ, Rosenberg NA. Population-genetic influences on genomic estimates of the 
inbreeding coefficient: a global perspective. Hum Hered. 2014; 77:37–48. [PubMed: 25060268] 

15. Abdellaoui A, et al. Educational Attainment Influences Levels of Homozygosity through Migration 
and Assortative Mating. PLoS ONE. 2015; 10:e0118935. [PubMed: 25734509] 

16. Neel JV, Schull WJ, Yamamoto M, Uchida S, Yanase T, Fujiki N. The effects of parental 
consanguinity and inbreeding in Hirado, Japan. II. Physical development, tapping rate, blood 
pressure, intelligence quotient, and school performance. Am. J. Hum. Genet. 1970; 22:263–83. 
[PubMed: 5444999] 

17. Marioni RE, et al. Common genetic variants explain the majority of the correlation between height 
and intelligence: the generation Scotland study. Behav. Genet. 2014; 44:91–96. [PubMed: 
24554214] 

18. Wood AR, et al. Defining the role of common variation in the genomic and biological architecture 
of adult human height. Nature Genet. 2014; 46:1173–86. [PubMed: 25282103] 

19. Deary IJ, et al. Genetic contributions to stability and change in intelligence from childhood to old 
age. Nature. 2012; 482:212–215. [PubMed: 22258510] 

20. Morton NE. Effect of inbreeding on IQ and mental retardation. Proc. Natl. Acad. Sci. USA. 1978; 
75:3906–3908. [PubMed: 279005] 

21. Najmabadi H, et al. Deep sequencing reveals 50 novel genes for recessive cognitive disorders. 
Nature. 2011; 478:57–63. [PubMed: 21937992] 

22. Nalls MA, et al. Measures of Autozygosity in Decline: Globalization, Urbanization, and Its 
Implications for Medical Genetics. PLoS Genet. 2009; 5:e1000415. [PubMed: 19282984] 

23. Flynn JR. Massive IQ gains in 14 nations: what IQ tests really measure. Psychol. Bull. 1987; 
101:171–191.

24. Galton, F. Natural inheritance. MacMillan; London: 1889. 

25. Hoffman JI, et al. High-throughput sequencing reveals inbreeding depression in a natural 
population. Proc. Natl. Acad. Sci. USA. 2014; 111:3775–3780. [PubMed: 24586051] 

26. Wright A, Charlesworth B, Rudan I, Carothers A, Campbell H. A polygenic basis for late-onset 
disease. Trends Genet. 2003; 19:97–106. [PubMed: 12547519] 

27. Weiss, L.A, Pan, L.; Abney, M.; Ober, C. The sex-specific genetic architecture of quantitative 
traits in humans. Nature Genet. 2006; 38:218–222. [PubMed: 16429159] 

28. Powell JE, et al. Congruence of Additive and Non-Additive Effects on Gene Expression Estimated 
from Pedigree and SNP Data. PLoS Genet. 2014; 9:e1003502. [PubMed: 23696747] 

29. Keller MC, et al. Runs of Homozygosity Implicate Autozygosity as a Schizophrenia Risk Factor. 
PLoS Genet. 2012; 8:e1002656. [PubMed: 22511889] 

30. Darwin, C. The Effects of Crossing and Self Fertilization in the Vegetable Kingdom. John Murray; 
1876. 

31. Purcell S. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage 
Analyses. Am. J. Hum. Genet. 2007; 81:559–575. [PubMed: 17701901] 

32. Aulchenko YS, Ripke S, Isaacs A, van Duijn CM. GenABEL: an R library for genome-wide 
association analysis. Bioinformatics. 2007; 23:1294–1296. [PubMed: 17384015] 

33. Ronnegard L, Shen X, Alam M. hglm: A Package for Fitting Hierarchical Generalized Linear 
Models. The R Journal. 2010; 2:20–28.

34. Lango Allen H, et al. Hundreds of variants clustered in genomic loci and biological pathways 
affect human height. Nature. 2010; 467:832–838. [PubMed: 20881960] 

35. Ehret GB, et al. Genetic variants in novel pathways influence blood pressure and cardiovascular 
disease risk. Nature. 2011; 478:103–109. [PubMed: 21909115] 

36. Scott RA, et al. Large-scale association analyses identify new loci influencing glycemic traits and 
provide insight into the underlying biological pathways. Nature Genetics. 2012; 44:991–1005. 
[PubMed: 22885924] 

Joshi et al. Page 31

Nature. Author manuscript; available in PMC 2016 January 23.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



37. Willer CJ, et al. Discovery and refinement of loci associated with lipid levels. Nature Genetics. 
2013; 45:1274–1283. [PubMed: 24097068] 

38. Soler Artigas M, et al. Genome-wide association and large-scale follow up identifies 16 new loci 
influencing lung function. Nature Genetics. 2011; 43:1082–1090. [PubMed: 21946350] 

39. Rietveld CA, et al. GWAS of 126,559 individuals identified genetic variants associated with 
educational attainment. Science. 2013; 340:1467–1471. [PubMed: 23722424] 

40. Stefansson H, et al. CNVs conferring risk of autism or schizophrenia affect cognition in controls. 
Nature. 2014; 505:361–366. [PubMed: 24352232] 

41. 1000 Genomes Project. An integrated map of genetic variation from 1,092 human genomes. 
Nature. 2012; 491:56–65. [PubMed: 23128226] 

42. Aulchenko YS, de Koning DJ, Haley C. Genomewide rapid association using mixed model and 
regression: a fast and simple method for genome-wide pedigree-based quantitative trait loci 
association analysis. Genetics. 2007; 177:577–85. [PubMed: 17660554] 

43. Marioni RE, et al. Molecular genetic contributions to socioeconomic status and intelligence. 
Intelligence. 2014; 44:26–32. [PubMed: 24944428] 

44. Hedges, LV.; Olkin, I. Statistical Methods for Meta-Analysis. Academic Press; New York: 1985. 

Joshi et al. Page 32

Nature. Author manuscript; available in PMC 2016 January 23.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 1. Runs of Homozygosity by Cohort
The sum of runs of homozygosity (SROH) and the number of runs of homozygosity 

(NROH) are shown by sub-cohort. . Populations differ by an order of magnitude in their 

mean burden of ROH. There are clear differences by continent and population type both in 

the mean SROH, and the relationship between SROH and NROH.. SC.Asian is South & 

Central Asian, E.Asian is East Asian, Eur.Isolate is European isolates. The ten most 

homozygous cohorts are labelled: AMISH are the Old Order Amish from Lancaster County, 

Pennsylvania; HUTT, S-Leut Hutterites from South Dakota; NSPHS, North Swedish 

Population Health Study, 06 and 09 suffixes are different sampling years from different 
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counties in Northern Sweden; OGP, Ogliastra Genetic Park, Sardinia, Italy; Talana is a 

particular village in the region; FVG, Friuli-Venezia-Giulia Genetic Park, Italy, omni and 

370 suffices refer to subsets genotyped with the Illumina OmniX and 370CNV arrays; 

HELIC, Hellenic Isolates, Greece, from Pomak villages in Thrace, and CLHNS, Cebu 

Longitudinal Health and Nutrition Study in the Philippines.
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Figure 2. Effects of genome-wide homozygosity, βFROH, on 16 traits
Four phenotypes show a significant effect of burden of ROH: height (145 sub-cohorts), 

FEV1 (34), educational attainment (47) and general cognitive ability, g (23). HDL and total 

cholesterol are not significantly different from zero after correcting for 16 tests and no effect 

is observed for the other traits. To account for the different numbers of males and females in 

cohorts and marked effect of sex on some traits, trait units are intra-sex standard deviations. 

βFROH is the estimated effect of FROH on the trait, where FROH is the ratio of the SROH to 

the total length of the genome. 95% confidence intervals (CIs) are also plotted. + indicates 
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phenotype was rank transformed, * indicates phenotype was log transformed. BMI, body 

mass index; BP, blood pressure; FP fasting plasma; HbA1c, haemoglobin A1c (glycated 

haemoglobin); FEV1, forced expiratory volume in one second; FVC, forced vital capacity; 

HDL, high density lipoprotein; LDL, low density lipoprotein.
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Table 1
Effects of genome-wide burden of runs of homozygosity on four traits

P-association is P value for association, P-heterogeneity is P value for heterogeneity in a meta-analysis 

between trait and unpruned FROH, βFROH-SD is the effect size estimate of FROH expressed in units of intra-sex 

phenotypic standard deviations and SE is the standard error. βFROH-units is the effect size estimate for FROH = 

1 expressed in the measurement units and SE the standard error. The P values for those traits showing 

evidence for association are calculated including 5 outlying cohort-specific effect size estimates (an outlier 

was defined as T-test statistic over 3 for the null hypothesis that the cohort effect size estimate equals the 

meta-analysis effect size estimate), which is conservative as the majority of these are in the opposite direction. 

Beta estimates however exclude these outliers, for which there is evidence of discrepancy, and should thus be 

more accurate. + indicates phenotype was rank transformed; FEV1 is forced expiratory lung volume in one 

second; g is the general cognitive factor (first unrotated principal component of test scores across diverse 

domains of cognition).

Phenotype Outliers Height FEV1+ Educational Attainment Cognitive g+

Subjects 354,224 64,446 84,725 53,300

P-association Included <1 × 10−300 2.1 × 10−6 1.8 × 10−10 2.5 × 10−10

P-heterogeneity Included 0.014 0.10 1.2 × 10−5 0.071

βFROH-SD Excluded −2.91 −3.48 −4.69 −4.64

SE βFROH-SD Excluded 0.21 0.73 0.58 0.73

βFROH-units Excluded −0.188 −2.2 −12.9 −4.64

SE βFROH-units Excluded 0.014 0.46 1.83 0.73

Units m litres years SD

First cousin offspring effect Excluded −1.2 −137 −9.7 −0.29

Units cm ml months SD
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