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Preterm birth is a leading cause of cognitive impairment in
childhood and is associated with cerebral gray and white matter
abnormalities. Using multimodal image analysis, we tested the
hypothesis that altered thalamic development is an important
component of preterm brain injury and is associated with other
macro- and microstructural alterations. T1- and T2-weighted
magnetic resonance images and 15-direction diffusion tensor
images were acquired from 71 preterm infants at term-equivalent
age. Deformation-based morphometry, Tract-Based Spatial Statis-
tics, and tissue segmentation were combined for a nonsubjective
whole-brain survey of the effect of prematurity on regional tissue
volume and microstructure. Increasing prematurity was related to
volume reduction in the thalamus, hippocampus, orbitofrontal lobe,
posterior cingulate cortex, and centrum semiovale. After controlling
for prematurity, reduced thalamic volume predicted: lower cortical
volume; decreased volume in frontal and temporal lobes, including
hippocampus, and to a lesser extent, parietal and occipital lobes;
and reduced fractional anisotropy in the corticospinal tracts and
corpus callosum. In the thalamus, reduced volume was associated
with increased diffusivity. This demonstrates a significant effect of
prematurity on thalamic development that is related to abnormal-
ities in allied brain structures. This suggests that preterm delivery
disrupts specific aspects of cerebral development, such as the
thalamocortical system.

Keywords: brain development, deformation-based morphometry, DTI,
cortex, TBSS, thalamus

Introduction

Preterm birth is rapidly emerging as a leading cause of neu-

rodevelopmental impairment in childhood. With advances in

neonatal intensive care, mortality has decreased considerably

but there is a high prevalence of cognitive and behavioral

deficits in up to 50% of surviving preterm infants in childhood

(Marlow et al. 2005; Delobel-Ayoub et al. 2009). Understanding

the neural substrates for impairment in this population is

essential for designing mechanistic and therapeutic studies and

may provide further insight into the development of systems

that underlie human cognition.

Evidence from in vivo magnetic resonance imaging (MRI)

studies has identified a number of cerebral abnormalities in

preterm populations thought to reflect disturbances of key

developmental processes during the neonatal period. The

incidence of severe pathology such as periventricular leuko-

malacia (PVL) has declined (Horbar et al. 2002; Wilson-Costello

et al. 2007); however, diffuse white matter changes in the

absence of more obvious focal lesions are now the most

common abnormality detected by conventional MR imaging.

Diffusion tensor imaging (DTI) has revealed diffuse micro-

structural disturbances in the developing white matter that are

dependent on the degree of prematurity at birth and correlated

to short-term measures of neurodevelopmental outcome

(Huppi et al. 1998; Counsell et al. 2006; Anjari et al. 2007;

Krishnan et al. 2007; Ball et al. 2010). In addition, early systemic

illness, in the form of chronic lung disease (CLD), has been

shown to further exacerbate these alterations and impact

negatively on outcome (Short et al. 2003; Anjari et al. 2007; Ball

et al. 2010).

Morphometric MR studies have identified cortical disturban-

ces developing before term-equivalent age (Ajayi-Obe et al.

2000; Inder et al. 2005; Kapellou et al. 2006), and widespread

cerebral tissue loss is common in the presence of PVL and

characterized pathologically by neuronal loss and gliosis (Inder

et al. 2005; Pierson et al. 2007; Thompson et al. 2007; Ligam

et al. 2009). These observations support the concept of an

‘‘encephalopathy of prematurity,’’ a complex of white and

gray matter abnormalities that includes disruptions to the

thalamocortical system with linked disturbances in the de-

velopment and function of thalamic nuclei, topographically

related cortical regions and connecting white matter tracts

(Volpe 2009).

Indeed, even in the absence of severe focal white matter

pathology, the subcortical gray matter and, in particular, the

thalamus appears specifically vulnerable following preterm

birth (Boardman et al. 2006; Srinivasan et al. 2007). Volumetric

deficits in the thalamus also appear to be dependent on

prematurity at birth and associated with poor functional

outcome (Inder et al. 2005; Boardman et al. 2010). Transient

developmental processes that underlie thalamocortical con-

nectivity occur during a critical window for vulnerability

following preterm birth and disruption of these processes may

result in complex cerebral abnormalities (Allendoerfer and

Shatz 1994; Volpe 2009; Kostovic and Judas 2010). Here, we

examine the thalamocortical system of preterm infants at

term-equivalent age, testing the hypothesis that tissue loss

in the thalamus is associated with changes in the associated

cortical gray matter and macro- and microstructural alter-

ations in the cerebral white matter containing thalamocort-

ical tracts.

Materials and Methods

Ethical permission for this study was granted by the Hammersmith and

Queen Charlotte’s and Chelsea Hospital (QCCH) Research Ethics

Committee. Written parental consent was obtained for each infant.
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Subjects
Infants were recruited from the Neonatal Intensive Care Unit at QCCH.

All infants born at less than 36 weeks gestational age (as defined by the

last menstrual period) between March 2005 and October 2008 who

successfully underwent T1- and T2-weighted MRI and 15-direction DTI

acquisition at term-equivalent age were eligible for inclusion. Infants

were excluded if cystic PVL or haemorrhagic parenchymal infarction

was apparent on the term-equivalent MRI. Forty-eight infants (67.6%)

had evidence of diffuse and excessive high signal intensity (DEHSI) on

T2-weighted scans; 8 infants (11.3%) had evidence of punctuate white

matter lesions.

Seventy-four preterm infants (42 male) underwent successful

imaging; 3 infants were removed prior to statistical analysis due to

unsatisfactory alignment to the reference template. The final cohort of

71 did not differ from the original cohort in gestational age, age at scan,

birth weight, or gender. The final cohort (41 male) had a median

gestational age of 28 + 5 (range: 23 + 4 to 35 + 2) weeks, a median

postmenstrual age at scan of 41 + 5 (38 + 1 to 44 + 4) weeks and median

birth weight of 1.11 (0.63--2.87) kg. No infants received postnatal

steroids. Across the whole cohort, the median (range) time spent

receiving any form of respiratory support was 17 (0--116) days. Fifteen

infants had CLD, defined by the need for respiratory support at 36

weeks postmenstrual age. All infants were included in a previously

reported study optimizing Tract-Based Spatial Statistics (TBSS) for

neonates and examining the effects of prematurity and CLD (Ball et al.

2010).

Imaging
MRI was performed on a Philips 3 T system (Philips Medical Systems,

Netherlands) using an 8-channel phased array head coil. T1-weighted

MRI was acquired using: repetition time (TR): 17 ms; echo time (TE):

4.6 ms; flip angle 13�; slice thickness: 1.6 mm; field of view: 210 mm;

matrix: 256 3 256 (voxel size: 0.82 3 0.82 3 0.8 mm). T2-weighted fast-

spin echo MRI was acquired using: TR: 8670 ms; TE: 160 ms; flip angle

90�; slice thickness 2 mm; field of view: 220 mm; matrix: 256 3 256

(voxel size: 0.86 3 0.86 3 1 mm). Single-shot echo planar DTI was

acquired in 15 noncollinear directions (TR: 8000 ms; TE: 49 ms; slice

thickness: 2 mm; field of view: 224 mm; matrix: 128 3 128 (voxel size:

1.75 3 1.75 3 2 mm); b value: 750 s/mm2; SENSE factor of 2). All

examinations were supervised by a pediatrician experienced in MRI

procedures. Infants were sedated with oral chloral hydrate (25--50 mg/

kg) prior to scanning and pulse oximetry, temperature and electrocar-

diography data were monitored throughout. Ear protection was used

for each infant, comprising earplugs molded from a silicone-based putty

(President Putty, ColteneWhaledent, Mahwah, NJ) placed in the external

ear and neonatal earmuffs (MiniMuffs, Natus Medical Inc., San Carlos, CA).

Data Analysis

Thalamic Segmentation

The manual placement of regions of interest (ROI) on individual MR

images can be subjective and manually intensive and does not easily

allow for comparisons across large groups. To avoid this, a single

bilateral thalamic mask was manually drawn on the final reference

template according to anatomical borders previously described

(Srinivasan et al. 2007) (Fig. 1B; for details of template construction,

see Deformation-Based Morphometry). The high spatial cor-

respondence between each T1 image and the reference template

following nonlinear registration precluded the need to manually place

thalamic masks on individual T1 images. Individual thalamic volume

could be estimated by scaling the reference mask volume by the mean

Jacobian determinant (a voxelwise measure of volume change between

each image and the template, described below) calculated within

the mask. To validate, manual thalamic segmentation was performed on

T1 images from 10 randomly selected infants, thalamic volumes

measured manually and volumes estimated from the mean Jacobian

were consistent (mean difference and limits of agreement = 0.29 ± 1.43;

intraclass coefficient = 0.89, P < 0.001).

Cortical Segmentation

Cortical segmentation was performed on individual T2 images using

methods specifically optimized for neonatal tissue segmentation (for an

example segmentation, see Fig. 1C). Images were initially segmented

using an expectation--maximization segmentation method driven by

age-specific coregistered tissue probability priors obtained from a 4D

probabilistic neonatal atlas (Kuklisova-Murgasova et al. 2011). In addition,

an automatic 3-step segmentation algorithm was used to remove

mislabeled partial volume voxels at the interface of the gray matter and

cerebrospinal fluid (Xue et al. 2007).

Deformation-Based Morphometry

Deformation based morphometry (DBM) does not require tissue

segmentation or classification and can be used to localize regional

variations in tissue volume. The key step is to achieve precise spatial

correspondence between each subject’s image and a reference

template through image registration. The output of each registration

is a 3D deformation field representing transformations between each

image and the final template. Voxelwise volume change induced by the

transformation between each image and the template can be

characterized by the determinant of the Jacobian operator applied to

the transformation at any given point in the template space, referred to

here as the Jacobian. Statistical groupwise analysis of the Jacobian

reveals structural volume relative to the group template in an objective

voxelwise manner (Ashburner et al. 1998; Rueckert et al. 2003).

After bias correction (FMRIB’s Automated Segmentation Tool; FAST

v4.1), each MR image was aligned to a chosen target image (gestational

age = 28 + 5 weeks; postmenstrual age at scan = 42 + 0 weeks) using

linear registration. A reference template was created by taking an

intensity average of the aligned images. Each MR image was then

aligned to the reference template using a high dimensional registration

algorithm based on cubic B-splines (Rueckert et al. 1999, 2003) and

averaged to form a second reference template. The nonlinear

registration was carried out with successive control point spacing of

20, 10, 5, and 2.5 mm using normalised mutual information information

as the similarity metric and the bending energy of the deformation as

the smoothness penalty (Gousias et al. 2010). A final set of registrations

were performed with the second reference template as the target (Fig.

2). A qualitative evaluation of the alignment accuracy of the trans-

formed images with the template was made before individual de-

formation fields were used to calculate volume changes. The average

intensity template generated from the final set of registrations is shown

in Figure 1A.

Voxelwise cross-subject statistical analysis of volume relative to the

template, represented by the Jacobian, was performed with Randomise

(v2.5) as implemented in FMRIB’s Software Library (Smith et al. 2004)

(FSL v4.1; www.fmrib.ox.ac.uk/fsl). All statistical images were subject to

false discovery rate (FDR) correction for multiple comparisons.

Tract-Based Spatial Statistics

DTI analysis was performed using FMRIB’s Diffusion Toolbox (FDT

v2.0) and Tract-Based Spatial Statistics (Smith et al. 2006) (TBSS v1.2).

From each data set, the tensor eigenvalues, k1, k2, and k3, describing the
diffusion strength in the primary, secondary, and tertiary diffusion

directions, and fractional anisotropy maps were calculated. Individual

fractional anisotropy (FA) maps were aligned into a common reference

space and a mean FA skeleton, representing the center of all white

matter tracts common to the group, was generated using a method

optimized for neonatal DTI analysis (Ball et al. 2010). The calculated

values of FA, axial diffusivity—the magnitude of k1-and radial

diffusivity—the mean magnitude of k2 and k3 were then projected

onto this skeleton. Nonparametric permutation-based statistical analy-

sis was performed with Randomise; all diffusion statistics were subject

to familywise error (FWE) correction for multiple comparisons

following threshold-free cluster enhancement (Smith and Nichols

2009) and are shown at P < 0.05.

Statistical Analysis

Further statistical analysis with multiple linear regression was

performed with SPSS 17.0 (SPSS Inc., Chicago, IL). In addition to

explanatory variables of interest, gestational age at birth, postmenstrual
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age at scan, CLD status, and total brain volume were entered into the

regression models where stated, partial r values are reported.

Results

Regional Brain Volume and Prematurity at Birth

Mean total cortical gray matter volume was 158 (± 26.6) ml.

Both cortical gray matter volume and mean thalamic Jacobian

(representing thalamic volume) were significantly associated

with gestational age at birth, entered into the regression model

with the age of each infant at scan (cortical volume: partial r =
0.37, P = 0.002; thalamic: partial r = 0.40, P = 0.001; Fig. 3).

DBM was used to locate other brain regions where tissue

volume was associated with degree of prematurity at birth.

Linear regression revealed significant localized associations

between tissue volume (represented voxelwise by the Jaco-

bian) and gestational age at birth (Fig. 4; FDR-corrected for

multiple comparisons at P < 0.01; minimum t-statistic = 2.98).

Increasing prematurity was associated with a bilateral pattern

of reduced volume present at term-equivalent age and en-

compassing the anterior temporal lobes, including the hippo-

campus, the orbitofrontal lobe, and posterior cingulate cortex

and extending into the centrum semiovale. Within the deep

gray matter, the relationship was most prominent in the

thalamus. In addition, discrete clusters were observed in the

midbrain and cerebellum. DBM also revealed that increasing

prematurity was associated with increasing extra-cerebral CSF,

but this did not pass correction for multiple comparisons.

Thalamocortical Development after Preterm Birth

Cortical volume was significantly associated with mean

thalamic Jacobian, entered into the regression model with

total brain tissue volume (partial r = 0.32, P = 0.007; Fig. 3C).

This association remained significant when also including

gestational age at birth (partial r = 0.31, P = 0.009).

After correcting for the effects of prematurity and removing

volume change due to individual differences in global brain

scaling, DBM revealed significant volumetric covariance be-

tween the thalamus and subcortical cerebral tissue (Fig. 5; FDR-

corrected P < 0.001, minimum t-statistic = 3.25). A bilateral

pattern was observed comprising white and gray matter

proximal to the thalamus and extending into the frontal and

temporal lobes, including the hippocampus, through the

centrum semiovale into the parietal lobe and, to a lesser

Figure 2. DBM processing pipeline. After preprocessing, T1 images are affinely
aligned to an arbitrarily chosen target MR image and averaged to produce a reference
template. Two subsequent iterations of nonlinear registration and template
construction produce the final transformations used for analysis.

Figure 1. Final reference template and thalamic and cortical segmentations. The final average intensity template is shown in (A), the clarity of the subcortical structures and
cortical differentiation indicates the accurate alignment of individual images. The mean Jacobian determinant within the mask shown in (B) represents the relative volume change
between the template and each image and was used to represent thalamic volume across the cohort. A representative example of cortical gray matter segmentation is shown in (C).
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extent, into periventricular white matter in the occipital lobes.

This pattern remained highly significant when also covarying

for total cortical volume (Supplementary Fig. 1).

In addition to the observed structural associations, TBSS was

used to identify where white matter microstructure was

associated with thalamic and cortical volume. Increasing

thalamic volume at term-equivalent age was significantly

associated with FA in the posterior limb of the internal capsule

and corpus callosum (including the splenium) after correction

for degree of prematurity at birth and the age of each infant

when scanned (FWE-corrected for multiple comparison, P <

0.05; Fig. 6). Within these regions, linear regression showed

that decreasing thalamic volume was independently associated

with increasing radial diffusivity (partial r = –0.34, P = 0.004)

but not with axial diffusivity (partial r = 0.008) when entered

into a model with gestational age at birth and age at scan.

Cortical volume was significantly associated with FA in the

posterior corpus callosum after correction for degree of

prematurity at birth and age at scan (P < 0.05, Fig. 7). In these

regions, only radial diffusivity was significantly associated with

cortical volume (partial r = –0.29, P = 0.014; axial diffusivity:

partial r = 0.15, P = 0.21) independent of gestational age and age

at scan. Both thalamic and cortical associations remained

significant when also correcting for CLD status (Supplementary

Fig. 2; CLD defined as requiring respiratory support at 36 weeks

postmenstrual age). To investigate the interaction of thalamic

and cortical associations with white matter microstructure,

a secondary ROI analysis was performed. FA values were

extracted from masks in the posterior limb of the internal

capsule and posterior corpus callosum (Supplementary Fig. 3).

In the internal capsule, FA was significantly associated with

thalamic (partial r = 0.35, P = 0.003) but not cortical volume

(partial r = –0.13, P = 0.29) when both metrics were entered

into linear regression alongside gestational age and age at scan

(Supplementary Fig. 3A). Conversely, FA in the posterior corpus

callosum was significantly associated with cortical volume

(partial r = 0.26, P = 0.034) but not with thalamic volume

(partial r = 0.07, P = 0.36; Supplementary Fig. 3B).

Finally, to determine how reduced thalamic volume is

reflected by the underlying tissue microstructure, mean

diffusivity (mean magnitude of k1, k2, and k3) was extracted

from each infant’s DTI using a thalamic mask transformed onto

the DTI reference template. Linear regression revealed that

smaller thalamic volume was associated with increased mean

thalamic diffusivity when entered into a model with gestational

age at birth, total brain volume, and cortical volume (Fig. 8;

partial r = –0.395, P = 0.001). TBSS analysis revealed that

thalamic diffusivity was significantly associated with FA in the

internal capsule, after correction for degree of prematurity, age

at scan, cortical volume, and CLD status (Fig. 8B; FWE-

corrected P < 0.05).

Discussion

These data showed a significant effect of prematurity on

thalamic volume related to specific abnormalities in allied brain

structures. The effects of prematurity were far-reaching, with

reductions in the volume of thalamus, hippocampus, orbito-

frontal lobe, posterior cingulate cortex, and centrum semiovale

that suggest preterm delivery disrupts specific aspects of

cerebral development. However, after this general effect was

accounted for, a pattern of structural covariance was observed

between the thalamus and particular brain structures, notably

in frontotemporal regions, cingulate gyrus, and hippocampus.

The observed relation between reduced thalamic and total

Figure 3. Cortical gray matter volume is correlated with prematurity at birth and
thalamic volume at term-equivalent age. Partial regression plots show significant
associations between cortical gray matter volume and gestational age at birth (A) and
mean thalamic Jacobian (representing thalamic volume) and gestational age (B), after
correction of each measure for the postmenstrual age at scan (PMA) of each infant.
Shown in (C) is the significant association between cortical volume and thalamic
Jacobian, after correction of each for total cerebral tissue volume.
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Figure 4. Regional associations between brain tissue volume and prematurity at birth. Regions where tissue volume is significantly associated with gestational age at birth after
correcting for the age of each infant at scan are shown in (A). Statistical images are corrected for multiple comparisons at P\ 0.01 FDR-corrected (color bar indicates t-statistic).
To illustrate this relationship, the Jacobian determinant, representing volume change relative to the reference template, at the site of the maximum t-statistic (red crosshairs; t5
6.04), was entered into a multiple linear regression with gestational age at birth and age at scan. The partial regression plot (B) shows the relationship between Jacobian and
gestational age at birth.

Figure 5. Regional associations between brain tissue volume and thalamic volume at term-equivalent age. Regions where cerebral tissue volume significantly covaried with
mean thalamic Jacobian (calculated within the region circled in red). Arrows indicate the hippocampi, statistical images are corrected for multiple comparisons at P\ 0.001 FDR-
corrected (color bar indicates t-statistic).
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cerebral cortical volume together with abnormal thalamic and

white matter microstructure suggests the hypothesis that these

observations result at least in part from disrupted development

of the thalamocortical system.

Previously, altered brain development at term-equivalent age

has been detected in preterm infants (Volpe 2009). Studies

using tissue segmentation reported that reduced cortical and

deep gray matter volumes correlated to neurodevelopmental

Figure 6. Thalamic volume is associated with white matter microstructure. Regions where fractional anisotropy is significantly associated with thalamic volume, beyond any common
association with prematurity at birth and age at imaging, are shown in (A). These regions include the posterior limb of the internal capsule (arrows) and the corpus callosum (arrowheads).
Images are FWE-corrected at P\0.05 (color bar indicates P value), themean FA skeleton is shown in dark green. Partial regression plots of the relationship between thalamic volume andmean
FA, axial diffusivity (AD), and radial diffusivity (RD) extracted from each significant voxel identified in (A) and entered into linear regression with gestational age and age at scan are shown in (B).

Figure 7. Cortical volume is associated with white matter microstructure. Fractional anisotropy in the posterior corpus callosum (A; arrow, bottom row) including the splenium
(A; arrow, top row) is significantly associated with cortical volume, after correction for prematurity at birth and age at imaging. Images are shown as in Figure 6. Cortical volume
and mean FA, AD, and RD extracted from each significant voxel identified in (A) were entered into linear regression with gestational age at birth (GA) and age at scan (PMA).
Partial regression plots of the relationship between cortical volume and FA, AD and RD, after correction for gestational age and age at scan are shown in (B).
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disability at 1 year (Inder et al. 2005) and that reduced cortical

surface area predicts neurocognitive abilities at 2 and 6 years

(Kapellou et al. 2006; Rathbone et al. 2011). Effects on specific

brain structures have been reported, including reduced volume

of the hippocampi, although it was not clear if this predicted

neurological function independently of white matter pathology

(Thompson et al. 2008). Thalamic atrophy and microstructural

change have been seen in association with white matter

damage (Pierson et al. 2007; Nagasunder et al. 2011), and

studies using DBM have shown that the thalamus is specifically

vulnerable after preterm birth, particularly in association with

white matter pathology (Boardman et al. 2006). Furthermore,

a pattern of injury that includes thalamic volume loss and

microstructural change in white matter is associated with

neurodevelopmental outcome in early childhood (Boardman

et al. 2010).

The more detailed pattern of structural covariation reported

here shows similarity to the neuroanatomical changes seen in

ex-preterm adolescents (Nosarti et al. 2002, 2008; Gimenez

et al. 2004; Gimenez, Junque, Narberhaus, et al. 2006; Gimenez,

Junque, Vendrell, et al. 2006; Martinussen et al. 2009; Nagy et al.

2009) and is consistent with the development of functional

connectivity observed by resting state functional MRI (fMRI)

during this period (Fransson et al. 2007; Doria et al. 2010;

Smyser et al. 2010). This pattern is also compatible with

histological evidence from a primate model of preterm birth

and neonatal intensive care that found: decreased white matter

volume in the temporal, frontal, and parietal lobes with relative

sparing of the occipital lobe and tissue loss in the cortex, deep

gray matter, and hippocampi (Dieni et al. 2004; Loeliger et al.

2006, 2009). These results support data suggesting that the

neuroanatomical basis for the later sequelae of prematurity

develop before the time of normal birth (Rathbone et al. 2011)

during the period when the thalamocortical system is forming

and essential for normal development (Kostovic and Judas

2010).

The hypothesis that disruption of thalamocortical develop-

ment underlies the observed changes would suggest an intimate

relationship between gray matter structures and connective

white matter tracts. We observed that thalamic volume was

significantly associated with FA in the internal capsule and the

corpus callosum, but subsequent ROI analysis showed that this

association only persisted in the internal capsule when cortical

volume was also considered. Conversely, cortical volume was

only significantly associated with FA in the corpus callosum.

Thalamic volume is therefore related to both the microstruc-

ture of the thalamic radiations, carrying projection fibers to the

cortex, and the volume of the cortex itself. In turn, cortical

volume is associated with the microstructure of interhemi-

spheric corticocortical fibers. It is possible that tissue volume

in the thalamus and cortex thus reflects thalamocortical

connectivity and is dependent on the growth and integrity of

connecting white matter tracts.

Reduced thalamocortical volume might also reflect reduced

cell and axon numbers in component structures. The number

of neurons in topographically connected thalamic and cortical

regions is closely related (Stevens 2001) and a large body of

histological evidence has determined that both thalamocortical

and callosal corticocortical connections are established by

term-equivalent age in humans and other primates (Kostovic

and Rakic 1984; LaMantia and Rakic 1990; Kostovic and

Jovanov-Milosevic 2006). This process can be interrupted by

adverse events: cerebral irradiation in mid-to-late pregnancy

leads to parallel neuronal loss in the thalamus and cerebral

cortex and volume reduction in the subcortical white matter

indicating the presence of shared developmental trajectories

(Schindler et al. 2002; Selemon et al. 2005, 2009). We found

reduced thalamic volume in association with increased mean

thalamic diffusivity suggestive of larger extracellular space and

compatible with reduced cell density (Beaulieu 2002) and

reduced white matter anisotropy with increased radial diffu-

sivity compatible with reduced axon density in associated

white matter tracts. Decreased thalamic volume, increased

thalamic diffusivity, and increased white matter radial diffusiv-

ity are together compatible with decreased cell numbers in the

thalamocortical system.

Volpe (2009) argues that brain development in preterm

infants is ultimately dependent on a combination of destructive

and impaired maturational mechanisms. Here, by removing

infants with severe focal lesions such as PVL, we have limited

the potential impact of acquired destructive brain lesions on

our observations; however, 67% of the cohort had some

evidence of DEHSI, thought to reflect diffuse white matter

injury possible due to ischemic or hypoxic pathways (Counsell

et al. 2003, 2006). Defining normal white matter in the preterm

population with conventional MRI is a subjective process;

however, by using diffusion metrics such as FA and radial

diffusivity (RD), we are able to perform an objective analysis of

white matter integrity to capture more fully the spectrum of

white matter abnormality present in this population. Addition-

ally, converging evidence suggests that systemic illness in the

neonatal period increases the risk of injury and adverse

neurodevelopmental outcome (Miller and Ferriero 2009) and

we have previously shown in this cohort that CLD is associated

with decreased FA and increased RD in the cerebral white

matter (Anjari et al. 2009; Ball et al. 2010). Factoring in the

presence of CLD status, the pattern of microstructural co-

variance between the thalamus and the internal capsule and

the cortex and corpus callosum remained, although the extent

of the associations was reduced. This indicates that numerous

injurious processes associated with preterm birth and systemic

illness and mediated through inflammatory or excitotoxic

Figure 8. Thalamic diffusivity is associated with thalamic volume and FA in the
internal capsule. Thalamic volume (estimated from the mean Jacobian) and mean
thalamic diffusivity (estimated from a thalamic mask placed in the DTI reference
space) were entered into a multiple linear regression model with gestational age at
birth (GA), cortical volume, and total brain volume. The partial regression plot in (A)
shows the significant association between thalamic volume and thalamic diffusivity.
In (B), regions where FA was significantly associated with thalamic diffusivity are
shown (FWE-corrected at P\ 0.05), beyond any associations with GA, PMA, cortical
volume, and CLD status.
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pathways (Arai et al. 1995; Back et al. 2005; Bell et al. 2005;

Robinson et al. 2006; Ligam et al. 2009) may potentiate the

observed structural and microstructural covariations, possibly

with subsequent downstream effects on thalamic volume and

development of the overlying cortex (Volpe 2009), resulting in

the gestation-dependent pattern of brain development de-

scribed here. Further investigation during the early neonatal

period and longitudinal follow-up of this cohort may help

elucidate the nature and evolution of maldevelopment in white

matter, deep gray matter, and cerebrum as a whole in this

population.

It should be noted that the DBM analyses did not reveal

significant associations in the cortex. This was not unexpected:

DBM is highly sensitive to local volume change that is spatially

consistent across the whole group and thus relies on precise

spatial correspondence without reliance on tissue classification

and spatial smoothing, however due to the rapid increases in

cortical complexity during the neonatal period (Kapellou et al.

2006) and limitations in current image registration techniques

for neonates, achieving precise correspondence in cortical

regions remains difficult. By combining DBM with cortical

segmentations in native image space, we were still able to

capture information from the whole brain in this cohort.

In summary, we have shown that at term-equivalent age and

in the absence of severe white matter injury, preterm infants

show a detailed pattern of altered brain structure and micro-

structure that mirror changes seen in adolescent ex-preterm

infants and are compatible with disruption of thalamocortical

development.

Supplementary Material

Supplementary material can be found at: http://www.cercor.

oxfordjournals.org/
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