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Stereoscopic Nanoscale-Precision Growth of Free-

Standing Silver Nanorods by Electron Beam 

Irradiation  

Ali Mansourian, Seyed Amir Paknejad, Anatoly V. Zayats, Samjid H. Mannan* 

Department of Physics, King’s College London, Strand, London WC2R 2LS, UK. 

ABSTRACT: Nanoscale manipulation of atoms is desirable in modern technologies. Atoms in a 

material are typically manipulated by mechanical contact or thermal and electric effects. The 

electron beam of a scanning electron microscope is usually used for two-dimensional patterning 

of a substrate with nanoscale precision. Here we report stereoscopic growth of nanoparticles and 

nanorods on silver surfaces with nanometric precision under exposure to the electron beam with 

precise control over their position, size, and orientation. Nanorod length (50−1000 nm) and 

diameter (30−100 nm) can be independently controlled by adjusting the electron beam 

characteristics of a scanning electron microscope. Silver nanorods with diameters as small as 30 

nm with location accuracy limited only by the resolution of the scanning electron microscope 

have been fabricated with repeatable orientation and size. Cascaded nanorod structures can be 

grown directly on other nanorods. The results open up a number of exciting possibilities for 

three-dimensional, nanoscale-controlled direct fabrication of nanoparticles and nanowires by an 

electron beam in situ using conventional SEM facilities. 
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Introduction 

Controllable fabrication of nanostructures is a cornerstone of modern nanoelectronic, 

optoelectronic and nanophotonic technologies. Both top-down, as well as, bottom-up approaches 

for the fabrication of nanostructured devices, have been developed.1 Electron Beam Lithography 

(EBL)2 and Focused-Ion-Beam (FIB) milling3 are two sophisticated fabrication techniques that 

require specialized equipment and are still primarily limited to two-dimensional objects while 

full control over three-dimensional positioning and orientation of individual nanostructures on 

planar and, especially, curved surfaces is still in its infancy. 

 Here we demonstrate a stereoscopic growth of Ag nanorods on a surface of Ag 

nanorods, resulting in a 3D nanostructure, in vacuum conditions with dimensions, orientation 

and position controlled by the electron beam parameters of a scanning electron microscope 

(SEM). We present results of nanorod on nanorod formation with precise control over diameter 

(30—70 nm) and length (50—1000 nm) achieved by adjusting the exposure time and nanorod 

positioning better than 5 nm limited by the electron-beam spot-size. Previous studies reported 

that silver ions migrate in silver containing materials under influence of electron beam 

irradiation.4-11 We have confirmed that the conventional SEM imaging mode (scanning mode) 

results in randomly located growth of nodules and wires, we showed that continuous exposure to 

the electron beam in EDX mode results in formation of high-aspect ratio nanorods with 

controlled dimensions and orientations at the chosen location. Nanoscale manipulation of atoms 

is desirable for many modern technologies and the results open up a number of exciting 

possibilities for nanoscale controlled in situ fabrication of nanoparticles and nanowires. 
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 Previous attempts has successfully demonstrated grows of nanowires at random locations 

within the area irradiated by electron beams.5-7, 9, 10, 12, 13 Mesoporous zeolites  show high 

sensitivity to electron beam irradiation under high vacuum and the formation of silver nanorods 

with high aspect ratios of up to 3000 have been reported in studies on silver containing zeolites,6, 

7, 10, 14 while copper containing materials can also form high aspect ratio nanorods.13 In addition 

to solid phase transitions, the effect has also been reported in the liquid phase, using 

Transmission Electron Microscopy (TEM), Scanning Transmission Electron Microscopy 

(STEM) and Scanning Electron Microscopy (SEM) techniques.8, 15-17 For example, silver nano-

crystals have been grown from dilute solutions of silver nitrate by STEM irradiation.18 Fine 

experimental control over the initiation and the growth process is required for practical 

applications of the technique for fabrication of designer nanostructures for nano-electronic and 

nanophotonic applications.  

  We have demonstrated electron-beam assisted growth of stereoscopic structures with 

control over nanorod diameter, length and orientation and nanoscale precision in their position 

on the example of a nanorod-on-nanopillar geometry using as “a substrate” prefabricated silver 

nanopillars with typical dimensions of 100-250 nm diameter and 1-4 µm length. Hereafter, we 

refer to structures formed by electron beam as nanorods and the prefabricated base as 

nanopillars. The nanopillars were formed via electromigration in a thin strip of porous silver. 

Initially, the porous silver was created by sintering a paste (NanoTach® X Silver paste from 

NBE Tech) containing silver nanoparticles with an average diameter of 30 nm at 300 °C in air. 

After sintering, nanorods were formed in the silver stripe by connecting the ends of the stripe to a 

voltage source (outputting ~7 mV across the stripe) to generate a current density of 2.4×108 A/m2 



 4 

for a time period of 240 hours. The electromigration process leads to substrate nanopillars 

forming all over the surface of the silver stripe as described in detail elsewhere.19 

Methods 
 

 The electron beam irradiation experiments were carried out with two different field 

emission guns (FEGs) in a Hitachi S4000 SEM (FEG-1) and FEI Quanta SEM (FEG-2), both 

equipped with energy dispersive X-ray (EDX) analysis instruments. FEG-1 was used in the spot 

mode (EDX regime) to generate nanorods at specific sites and provides an electron beam 

diameter of 30 nm, accelerating voltage 25 kV, spot diameter 14 nm, beam drift of 5 nm/s, and 

surface exposure times 10-100 s. The EDX spot mode, concentrating the beam on a point on the 

surface of a substrate nanopillar was found to result in the formation of individual nanorods at 

the targeted point of the surface. FEG-2 provides an electron beam diameter of 50 nm, 

accelerating voltage 25 kV, and spot diameter 20 nm and was used in the scanning mode, with 

beam drift of 10 nm/s, and surface exposure times of 30-70 s. The normal SEM scanning mode 

shows that after 2 minutes uninterrupted electron beam scanning, nanoparticles were generated at 

random locations, covering approximately 5% of the nanopillars. All samples were connected to 

the SEM stage but the charging was still observed across the sample and in the targeted 

nanopillar samples in high magnification SEM images. Charging of samples provides a drift 

velocity of 10 nm/s with FEG-2 and 5 nm/s with FEG-1, which results in the directional 

formation of nanorods along the drift direction. By changing the orientation of the surface, it is 

possible to change the direction of drift and, thus, the direction of nanorod formation.  

 The electron beam of the field-emission gun (FEG-1) was positioned sequentially at 

multiple points on the Ag surface with a resolution of approximately 5 nm, provided by the 
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SEM. One can initially observe the formation of the nanoparticles at the position of the electron 

beam (25 kV for 70 s) which, with the increase of the exposure time, develop into distinct 

nanorods with increasing aspect ratio. The experiments show that the nanorod diameter can be 

increased by rescanning the base of an existing nanorod. Since the generated nanorods follow the 

electron beam drift, the length of nanorods can simply be controlled by changing the exposure 

time.   
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Results 

 

Figure 1. Nanorod growth with precise control over base location, growth direction and size. (a) 

SEM image of the nanopillar (280 nm diameter and 3.4 μm length) used as a substrate for 

electron-beam induced growth. Positions of the electron beam and its drift direction are shown 
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for 4 initial experiments. (b) SEM images of the resulting nanorods and nodules. Positions 3 and 

4 of the beam for growing additional nanorods are also shown. (c) SEM image of nanorods after 

the previous growth cycles. Position 5 of the beam shown for growing an additional nanorod at a 

distance of 10 nm parallel to nanorod 4. (d) SEM image of the resulting nanorod and the location 

and displacement of a further beam spot. (e) SEM image of resulting 31 nm diameter nanorod on 

nanorod structure and location for further nanorod growth. (f) SEM image of the final structure. 

The growth is performed with the FEG-1 electron beam parameters. 

Fig. 1a-f shows the electron-beam spot location and the displacement vector for a number 

of growth cycles resulting in the formation of nanorods leading to the controllable stereoscopic 

decoration of the supporting nanopillar. The solid arrows indicate exact displacement vectors 

calculated from images taken before and after the electron beam irradiation, with the base of the 

arrow representing the initial location of the e-beam spot. In all cases, except the irradiation 

event labelled “2”, the exposure time was 70 s but for “2” the time was halved (35 s). The drift 

direction was altered (Fig. 1a) by changing the orientation of the sample (leaving the tilt 

unchanged), while the drift velocity was kept at 5 nm/s. Fig. 1b shows the location of two more 

beam spots and drift directions. The event labelled “3” resulted in a doubling of the thickness of 

the nanorod grown during the exposure “3” while the event labelled “4” resulted in a new 

nanorod (Fig. 1c). A further irradiation event labelled “5” results in a new nanorod parallel to the 

neighbouring nanorod and with the same length at a separation distance of 10 nm (Fig. 1d). The 

lengths of the nanorods are the same at 340 ±5 nm. The images in Figs. 1(c) and (d) confirm that 

at 5 nm/s beam speed, the nanorod growth direction and length can be controlled by the drift 

during irradiation. Fig. 1d demonstrates that nanorods can be generated parallel to each other 

with high precision (position control better than 5 nm). They can be grown either parallel to each 
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other on the substrate (Fig. 1b and c) or indeed on the tips of existing nanorods (Fig. 1d-f). The 

34 nm diameter and 375 nm long nanorod in Fig. 1e formed in similar fashion and again 376 nm 

long nanorod formed on the previously formed nanorods in Fig. 1f. The formed nanorods in Fig. 

1e and f consists of both 70 and 32 nm diameter segments, controlled by single and double 

exposures.   

 

Table 1. Length and diameter of different nanorod formed via Electron Beam Irradiation (EBI) 

in Figure 1a-f.   

Nanorod in 
Figure 1a-f 

Arrow 
Number 1 
(Fig. 1a,b) 

Arrow 
Number 3 
(Fig. 1b,c) 

Arrow 
Number 4 
(Fig. 1b,c) 

Arrow 
Number 5 
(Fig. 1c,d) 

Arrow 
Number 6 
(Fig. 1d,e) 

Arrow 
Number 7 
(Fig. 1e,f) 

Length  (nm) 379 375 372 378 375 376 
Diameter (nm) 37 70 34 55 34 32 

 

 

Table 1 lists the nanorods in Fig. 1 and their lengths and widths. While the length of 

nanorods are controlled by the exposure time, the width exhibits more variability in that while 

the majority of the widths are 35±5 nm except nanorod 3 which had a double exposure, we see 

that nanorod 5 has an anomalously large width of 55 nm possibly caused by close proximity to 

nanorod 4.  

 



 9 

di 

Figure 2. EDX spectra and composition of (a) nanopillar (b) electron-beam-grown nanorod after 

70 s EDX irradiation of nanopillar.  

 The SEM images from nanopillars at high magnification (80000X, Fig. 1c-f) seem to 

indicate that the nanopillar is covered with a thin 20 nm shell. The core/shell appearance of 

nanopillars and nanorods at high magnification could indicate the presence of an oxide layer or 

carbon contamination.  The results for energy dispersed X-ray (EDX) spectra are shown in 

Fig.2a and b for a particular nanopillar and nanorod but the results are generally true for all 

nanopillars and nanorods that have been observed. Fig. 2a shows that the nanopillar composition 

is silver (77.8%), carbon (14.6%) and oxygen (7.6%), while the composition of the generated 

nanorod (Fig. 2b) is Ag (97%) and carbon (3%). The presence of both carbon and a thin oxide 

layer are normal on silver surfaces but there is also a possibility that the halo effect is caused by 

SEM optics at high magnification which is known to result in differing contrast and blurring at 

the edges of 1D and 2D structures.  
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Figure 3. (a) Comparison of the growth rate between nanorods and nodules formed using EDX 

and SEM respectively; (b) details of nanorod size measurement for growth rate curve; (c) 

nodules for size measurement for growth rate curve. (d) SEM image with arrow showing EDX 

spot location before irradiation on a single nanorod (e) SEM image after EDX spot irradiation 

showing growth of single 110 nm nodule. 

 

  Fig. 3a shows that the growth rate as a function of exposure time for nanorods (Fig. 3b) 

and nodules (Fig. 3c) is higher in spot mode (FEG-1) compared to scanning mode (FEG-2) as 

expected given the different effective exposure times of the surface to the electron beam. In 

scanning mode (FEG-2, 25 kV accelerating voltage, Fig. 3c), with the electron beam constantly 

scanning the surface, low aspect ratio particles are formed after irradiation for 120 s. The size of 

the nodules approximately doubles from 80 nm to 170 nm, when the electron beam exposure 

time was doubled from 60 to 120 s.  For FEG-2 in EDX spot mode, the drift velocity was double 

that of the FEG-1 mode and equal to 10 nm/s, resulting in formation of 100 nm nanoparticles at 

(FEG-2) (FEG-2) 
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the spot location (Fig. 3d and e). The Energy Dispersive X-ray (EDX) analysis of the 

nanoparticles shows the same composition as the nanorods with 97% Ag and 3% carbon. For 

both FEG-1 and FEG-2 spot-mode experiments the monotonic drift was caused by sample 

charging. It is proposed that in future, elimination of this constant drift, and creation of a 

dynamically controlled drift be implemented by using motorized sample stage controls. In the 

current implementation the drift speed and direction were both constant. The drift at 5 nm/s 

resulted in growth of high aspect ratio nanorods while the drift at 10 nm/s resulted in growth of 

nodules. This suggests that the ion drift speed responsible for growth lies between these two 

values. 

Discussion 
 

To the best of our knowledge and as also stated in other studies,4-6 there is no general and 

comprehensive model explaining the growth mechanism of whiskers and nanostructures due to 

electron beam irradiation.5 In general, the electron beam used in scanning electron microscopy 

can cause a temporary or permanent change in the surface or bulk structure of a specimen, 

arising from elastic and inelastic electron scattering and related heating, electrostatic charging, 

ionization damage (radiolysis), displacement damage, and sputtering.  Studies which explicitly 

result in growth of silver nanostructures under irradiation include.4-11, 14   Of these, ref.5 appears to 

be the most relevant as the mechanisms proposed; i) migration of silver ions from a silver 

nanowire substrate in the presence of an electric field, ii) the presence of an oxide layer (in that 

publication TiO2, in the present work, silver oxide), and iii) stresses caused by thermal gradients 

caused by electron beam heating are present also in the current work. In general terms, initial 

heating of the substrate during the interaction with the beam, provides energy for atomic 
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migration.5, 6 This can be also coupled to softening of the internal material structure under the 

electron irradiation. Charging of the silver under the irradiation simultaneously results in 

attraction of silver ions to the regions exposed to the electron beam. Additional driving forces are 

also present due to temperature gradients over the silver surface, which, combined with the 

electric fields,6, 16 continuously drive ions towards the region exposed to the electron beam as it 

drifts. Longer exposure to the electron beam tends to result in longer, curved whiskers5-7 as 

opposed to the straight nanorods observed with short exposures. 

Conclusions 
 

 In summary, electron-beam irradiation has been used to fabricate stereoscopic nanorods 

on curved surfaces over existing nanoscale structures. Both high control over nanorod 

dimensions and high placement accuracy have been demonstrated. The conventional SEM 

imaging mode results in growth of nodules, while continuous exposure to higher energy electron 

beams, typical of EDX mode results in formation of high aspect ratio nanorods. The nanorod 

growth rate and direction can be controlled by movement of the electron beam spot over the 

surface of the substrate at low drift velocities (5 nm/s), caused by charging and could in future be 

reproduced by manipulation of the SEM stage. The location of the growing nanorods can be 

controlled by the position of the electron beam spot and can be used to induce growth of 

nanorods on selected pre-existing nanorods. The method opens up a number of exciting 

possibilities involving controlled, direct fabrication and manipulation of nanowires in an electron 

beam using normal SEM facilities. Examples could be the creation of closely spaced parallel 

structures as has been demonstrated or fabrication of complex three-dimensional plasmonic 

structures and their networks for applications in sensing, surface enhanced Raman scattering and 
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photo-chemistry applications. Given the sequential nature of fabrication the first applications 

would necessarily be small scale lab based applications to produce bespoke 3-d structures made 

of linear segments branching off at desired angles. Further applications are expected to follow 

once the properties and unique benefits of these structures are explored. 
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