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Abstract—This paper motivates the use of Qualitative Prob-
abilistic Networks (QPNs) in conjunction with or in lieu of
Bayesian Networks (BNs) for reconstructing gene regulatory
networks from microarray expression data. QPNs are qualitative
abstractions of Bayesian Networks that replace the conditional
probability tables associated with BNs by qualitative influences,
which use signs to encode how the values of variables change.
We demonstrate that the qualitative influences defined by QPNs
exhibit a natural mapping to naturally-occurring patterns of con-
nections, termed network motifs, embedded in Gene Regulatory
Networks and present a model that maps QPN constructs to such
motifs.

The contribution of this paper is that of discovering motifs
by mapping their time-series experimental data to QPN influ-
ences and using the discovered motifs to aid the process of
reconstructing the corresponding gene regulatory network via
Dynamic Bayesian Networks (DBNs). The general aim is to
compile a model that uses qualitative equivalents of Dynamic
Bayesian Networks to explore gene expression networks and
their regulatory mechanisms. Although this aim remains under
development, the results we have obtained shows success for the
discovery of regulatory motifs in Saccharomyces Cerevisiae and
their effectiveness in improving the results obtained in terms of
reconstruction using DBNs.

I. INTRODUCTION

Networks modeling the dynamics of the interactions of
genetic information in the cell have become increasingly
better studied in recent years. Complex networks modeling
the behavior of genetic components and end-products (e.g.
genes, DNA, RNA and proteins) serve as graphical models
to better study the dynamics of the internal state of the cell.
There exist many types of such networks, each differing by the
macromolecular components modeled (e.g. DNA, protein) and
the type of interactions captured. As a result, these networks
have been broadly termed biological regulatory networks [16].
Identifying and understanding these regulatory mechanisms
appear nowadays as one of the key challenges in systems
biology with potential applications in therapeutical targeting,
drug design, diagnosis and disease management [1], [12], [20].

A gene expression network is one type of biological
networks in which every node represents a genetic component
or end-product and every edge represents a regulation relation-
ship. It is a directed graph that models how genes influence
(through activation or inhibition) other genes in a complex web
of interactions during the gene expression process. Uncovering
the topology of the network from microarray expression data is

currently one of the focuses of systems biology. It is mainly a
reverse-engineering task to identify the true regulatory system
from the observed gene expression profiles [23]. The complex-
ity of the task stems from the fact that not only the kind of
data available is of high dimensionality and suffers from great
noise [8], but also because the data provides the expression
levels of a large number of genes (usually tens of thousands)
at different but relatively few (usually a few dozens) temporal
intervals or conditions. Hence, it is usually sparse, which
makes uncovering causal relations more difficult.

There currently exist Bayesian approaches for learning the
structure of genetic networks [14], [8], [25], [24]. They have
been successfully used to learn large scale networks but
remain far from being efficient, specially given the data’s
large size [4]. This relative success of Bayesian approaches
motivates this work. On one hand, (Dynamic) Bayesian
Networks have been successfully used to detect the condi-
tional (in)dependence and time-delay relations governing the
structure of gene expression networks [10], [14]. On the other
hand, it is the qualitative nature of the information extracted
from the data that brought about the benefits of the model
[8]. Hence, formulating a model that is specifically tailored
to represent this information (in addition to other qualitative
information Bayesian approaches may not be able to capture),
then efficient ways to obtain insight regarding the functional
interactions governing the data maybe uncovered.

For this, we set out to investigate the various ways in
which qualitative abstractions of Bayesian Networks [19] can
be useful with respect to the problem at hand. We present
a model termed Dynamic Qualitative Probabilistic Networks
(DQPNs), which extends the existing qualitative probabilistic
networks to deal with temporal data. DQPNs are presented as
an alternative to Dynamic Bayesian Networks that 1) focuses
on the qualitative relations the time-series data presents for the
discovery of the interactions in the regulatory networks 2) is
more efficient than Dynamic Bayesian networks.

In this paper, we formally presented DQPNs and sketch the
bases for using it for the reconstruction of gene regulatory
networks. Experimentally, we use the model to explicitly
define regulatory relations and discover patterns commonly
occurring in regulatory networks, termed regulatory network
motifs. We successively use the patterns defined, in conjunc-
tion with DBNS, to reconstruct gene regulatory networks. The



qualitative relations discovered show improved accuracy of
DBNSs via experiments conducted on the time series data of
Saccharomyces Cerevisiae.

After an introduction to Qualitative Probabilistic Networks
in section II, we present the formal model used in defining
DQPNs, the temporal equivalents of QPNs in section III and
construct dynamic framework that can capture gene regulatory
motifs and model them accordingly. The experiments of
section V verify the mapping from DQPN constructs to
network motifs and establish the usefulness of such mapping
by showing that DBNs used to reconstruct gene regulatory
networks can have an increased accuracy if making use of the
aid of the qualitative motifs we defined. Some conclusions and
future directions are presented in section VL.

II. QUALITATIVE PROBABILISTIC NETWORKS

Qualitative Probabilistic Networks (QPNs) are directed
acyclic graphs that represent a qualitative abstraction of
Bayesian Networks [19], [22] . Formally, a QPN is given by
a pair G = (V(G),0(G)), where V(G) is the set of nodes
capturing the variables of the domain being represented and
Q(G) is the set of arcs capturing the conditional dependence
among the variables as in Bayesian Networks. Instead of a
known conditional probability distribution however, the arcs
of a QPN capture qualitative relations among the variables
by finding monotonic characteristics in the conditional prob-
ability distribution based on the idea of first-order stochastic
dominance. The resulting relations are used to establish prop-
erties over the probabilities of events, and are of two types,
qualitative influences and synergies [22].

Influences describe how the change of the value for one
variable affects that of another and are of four types, positive,
negative, constant and unknown.

A positive influence exists between two variable X and Y
(X is said to positively influence Y, written as I (X,Y))
if observing higher values for X makes higher values of Y
more probable, regardless of the value of any other variable
which may directly influence Y (denoted by W) as given in
Definition 1 below. The inequality assumes that the variables
X and Y are binary and places a partial order on their values
such that for a variable X with two values x and —x, = >
—z. Negative, constant and unknown influences are defined
analogously.

Definition 1: Positive Influence:

IJF(X’Y) if f Pr(y|x, W) 2 Pr(y|—|m, W)
An example of a QPN is given in Figure 1. In the figure, V (G)
={A,B,C.D.E} and Q(G) = {(B,C),(A,D),(C,D),(D,E),(B,E)}.
The only information encoded in the arcs are the signs of the
influences from one node to another. For instance, the figure
shows that node A positively influences node D, while it has
a negative influence on B.

Observed evidence is propagated through the network via
qualitative operators that combine influences and produces
their net effect. There are two such operators serving different
topologies of arcs. When evaluating the net effect of influences
in a chain, the sign multiplication operator given in the left

Fig. 1. An Example QPN

TABLE I
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portion of Table I, is used. For example, in order to obtain the
effect of A on E via the path A-B-E, we have two examine a
chain of two influences, that of A on B and of B on E. On the
other hand, parallel connections are evaluated using the sign
addition operator given in the right portion of the table. For
example, two influences in parallel are required to establish
the net effect of nodes A and C on node D, that of A on D
and of C on D. The signs propagate through the network until
the net effect of the evidence is observed on the required node
or all the nodes are known to have been visited twice by the
polynomial-time sign-propagation algorithm [6].

It is worth noting that the original representation of QPNs
[22] suffers from coarseness that has been dealt with in later
work [19]. The resulting ambiguity is resolved by refining the
model by incorporating more detail in the representation.

As can be seen in Table I, the coarseness of the repre-
sentation results in many ambiguous signs. This has been
dealt with in [19] by refining the model to incorporate more
details, and subsequently reducing the chance of obtaining
an ambiguous sign. For this [19] distinguish between strong
and weak influences (where a strong positive influence of X
on Y, termed I+ (X,Y), carries more weight than a weak
one, termed /7 (X,Y) (with the same nomenclature used for
negative, zero and unknown influences). [19] also provide a
method for comparing indirect qualitative influences along
different paths with respect to their strengths for trade-off
resolution by retaining the length of the paths over which
influences have been multiplied. For this, every influence’s
sign is augmented by a superscript, called the signs multi-
plication index, and is used as an indicator of its strength.
Higher values of multiplication indices indicate a longer path
and as a result, a weaker influence. This enables generalizing
the sign-propagation algorithm of [6] by adapting the €5 and
) operators to the different types of influences as given in
Tables II and III.



TABLE II
ENHANCED SIGN MULTIPLICATION ()) OPERATOR [19]
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TABLE III
ENHANCED SIGN ADDITION (GB) OPERATOR [19]
® | ++ 4 0 -7 == 7
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a) ++i7.—3:’ if i <j; ?, otherwise
b) 4+, if §<4; 7, otherwise
o —=bd, if i <7 ?, otherwise
c) —=b7Iif j<4; 7, otherwise

III. TOWARDS QUALITATIVE REGULATION OF GENETIC
NETWORKS: DYNAMIC QPNS

In this section, we present Dynamic QPNs (DQPNs) as a
temporal extension of QPNs to qualitatively model a genetic
network and show how it is used to model the commonly
occurring motifs of gene expression networks.

A. Terminology

Let U be a set of n variables drawn from Pr, an unknown
probability distribution on U and let T' be a totally ordered
set of m temporal slices such that 77...7,, € T. We denote
the set of variables in each temporal slice by U? (1 <t < m)
and the set of n variables in U' by Al (1 <i < n).

Definition 2: Temporal Snapshot:

Let G = (V(G), A(G)) be a directed acyclic graph (DAG)
such that G is an I-map for Pr, the joint probability distribu-
tion defined on U'. An instance G, of G represents a temporal
snapshot of G in time slice 7} such that G; retains the DAG
structure of G.

Example 1: Consider Figure 2 representing a fictitious
graph G capturing the I-map for Pr, the joint probability
distribution on U = {A;, Az, A3, A4}. Each instance Gy of
G (1 <t < 3 in the figure) represents a snapshot of G,
where the variables in each temporal slice are given by U, =
{AL, A, AL, AL},

Definition 3: Dynamic Instance:

Let G; be as given in definition 2. G; defines a dynamic
instance of the QPN whose structure is defined by G and is
given by Gy = (V(Gy), {A(Gy) U T(Gy)}) 2, where V(Gy)
and A(G,) are instants of V(G) and A(G) respectively at

IG is the qualitative probabilistic network representing U
2For readability purposes, we will refer to {A(G:) U T(G4)} as Q(Gy)
in this work.

Fig. 2.  An Example of G

time slot ¢, and T'(G;) describes the inter-slot conditional
dependence between variables in V(G;) and its immediate
neighbor V(Gi41).

Example 2: In the graph given in Figure
2, for each G V(G:) = Ui, A(Gy) =
{(Af, AY), (A5, AY), (A5, AY), (A5, AL} and T(Gy) =
{(A%, AT}

Both of A(G) and T'(G) encode a set of hyperarcs for G to
capture a set of qualitative relations representing how variables
influence each other. For this, we re-define the concept of a
qualitative influence to capture not only within-slot relations,
but also inter-slot ones. Before doing so however, we first
present the definition of a Dynamic Qualitative Probabilistic
Network (DQPN) below.

Definition 4: Dynamic QPN:

Let (Gl = (V<G1)>Q(G1)),>Gm = (V(Gm)aQ(Gm)))
be a total ordering of the m instances of G such that T'(G4)
# ¢V 1 <t < m—1. Then the compound graph of G4, ..., G,,
defines a Dynamic Qualitative Probabilistic Network over G

and is given by
m m

G = (J V(G [ JQGy)

1 t=1 t=1

s

t
B. Qualitative Influences in a DQPN

Definition 5: Positive DQPN Influence:

Let G; and Gy be two adjacent subgraphs of the DQPN
defined over GG. Further, let B and C be such that B,C €
V(G). A direct positive influence is exerted by node B over
node C, written as S (B, C) iff for all values ¢ of C' and
by, by of B with b} > b}, and for all integer values = and y
such that 1 < z,y <m and x —y € {0,1} we have:

Pr(C > cf|bf,w) > Pr(C > cf|by, w)

Where w represents any combination of values for the
set of nodes W which represent all other direct influences
on C other than B. The superscripts « and y denote the
temporal slot to which the instances c;,b; and by belong.
The definition necessitates that variables can only directly
influence other variables that belong to the same temporal
slot (x = y) or those that belong to the next immediate
slot (x — y = 1). Negative, zero and unknown influences are
analogously defined.

In order to resolve the likely-to-occur ambiguities, we
mimic the mechanisms given in [19] and define indirect
influences that are augmented with two levels of strength and
a multiplication index as given in Definition 6.

Definition 6: Strongly Positive DQPN Influence:



Let B and C be two nodes in the DQPN defined over G.
Furthermore, let ¢r be a trail from B to C. Let W be all the
other nodes that can influence C' and that do not belong to the
trail from B to C. Then the qualitative influence from node B
to node C' along trail ¢r is strongly positive with multiplication
index p, p € IN, written as ST+" (B, C, tr) iff for all values
¢ of C' and bY,b} of B with b/ > b}

Pr(C > cf|bf,w) — Pr(C > cf[by,w) > o

Moreover, the qualitative influence of B on C along trail ¢r
is weakly positive with multiplicative index pu, p € IN, written
as St (B, C,tr) iff

0 < Pr(C > cf|bf, w) — Pr(C > ¢f b}, w) < ot

Where w represents any combination of values from the set
W and  —y € {0,1}. The value p is given by the length
of the trail ¢ and o = [0 — 1] is the cut-off value used for
distinguishing between strong and weak influences and which
can be chosen by an expert . In addition to the cut-off value
« which distinguish strong from weak influences, influences
of the same strength can be compared using their p value,
where higher values indicate a longer trail ¢r, and as a result,
a weaker influence [19].

As the influences defined for DQPNs preserve the under-
lying principles of those defined for QPNs, they respect the
combinatorial properties defined in tables II and III and can
therefore be propagated according to their rules as in QPNs.

IV. DEFINING GENETIC NETWORK MOTIFS USING
DQPNs

Gene expression networks tend to be very complex with
a large number of nodes and arcs connecting them. This
has motivated studies that define simple patterns of inter-
connections between small groups of nodes. These patterns
appear at high frequencies in naturally-occurring networks
(including biological networks) and tend to increase in number
monotonically as the size of the network increases. This is in
contrast to synthetic, randomly-generated networks in which
such patterns tend to sharply decrease in number as the size of
the network grows [21]. Hence, these patterns define subgraphs
that occurs at high frequencies in the network and which can
serve as building blocks of the network. Such patterns have
been termed regulatory network motifs [21] [13] and have been
shown to carry significant information about the network’s
overall organization and functionality [11]. The motifs present
a way of uncovering the structural design principles of gene
expression networks is by breaking down their complex wiring
into basic components.

[21] identifies three motifs that occur frequently in gene
expression networks that have been shown to appear at fre-
quencies greater 10 standard deviations greater than their mean
number of appearances in randomized networks [21]. These
motifs are the feed-forward in which a node X regulates
another node Y such that they both regulate a third node Z,
bi-fan motifs in which two nodes concurrently regulate two
other nodes, and single-input module motifs which defines a

3The choice of « is part of our current experimental work.

N

Fig. 3. (a) The Feed-forward loop motifs (b) The Bi-fan motif (c) The
Single-input Module Motif.

set of nodes under the control of the same type of regulation
(positive or negative) of one node, and are shown in figure 3.

If one to represent the gene-to-gene interactions in an ex-
pression experiment using a DQPN, where each subgraph G,
1 <t < m represents a snapshot of the genetic interactions
of the cell during time slot 73 modeled by a QPN, then
At .. Al € U represents the expression levels of all the
genes involved at slot 7;. In this context, a qualitative influence
naturally corresponds to a regulatory relation between two
nodes (genes). As a result, defining the motifs given in figure
3 is directly obtained from the construct of the DQPN as given
in definitions 7 - 9 below.

Definition 7: Feed-forward loops

A feed-forward loop exists in a genetic network modeled by
a DPQN defined over G iff for two subgraphs G and Gy 1*:

SOL(AL AT )N S%2 (AL AT try), where try # tro

Where 41,02 € {++,——,+,—, 7,0}. The above definition
states that a feed-forward loop exists on a variable (gene) A; if
it influences its own expression through two different trails (by
stimulating different genes that will subsequently stimulate its
expression). Bi-fans are similarly defined below.

Definition 8: Bi-fans

A bi-fan among four genes A%, AL Attland Al exists in
a genetic network modeled by a DPQN defined over G iff for
two subgraphs G; and G4

SOL(AL AL 1) A SO (A, ALFL A
S8 (AL, ALY 1) A SO (AL, AL ).

Where 01, d2,03 and 04 € {++,——, 4+, —,7,0}.

Definition 9: Single Input Module (SIM)

A SIM motif of a gene X; on n other genes A‘+! ... At+!
exists in a genetic network modeled by a DPQN defined over
G iff for two subgraphs G; and G141

SOXy, ATTL 1) AL A SO(X, ALFL T

Where 6 € {++,——,+,—,7,0}.

V. EXPERIMENTAL RESULTS
A. Uncovering the Network Motifs Using QPNs
We conducted a set of experiments to verify the mapping

between qualitative influences and the motifs formalized in

“Note that only two time slots are sufficient for the definition of the loop
as DQPNs naturally preserve the Markov property.



TABLE IV
NODES = NUMBER OF NODES (GENES) IN THE RUN, EDGEgvg =
AVERAGE NUMBER OF EDGES FOR 10 RUNS OF NETWORKS OF SIZE N
FEED-FORWARD = AVERAGE NUMBER OF FEED-FORWARD MOTIFS FOR
THE 10 RUNS, BI-FAN = AVERAGE NUMBER OF BI-FAN MOTIFS FOR THE

10 RUNS
[ Nodes | Edgeqvg | Feed-forward | Bi-fan |
85 154 16 209
185 372 18 430
285 518 21 825
385 698 29 1092
485 912 46 1437
585 997 52 1745

definitions 7, 8 and 9. The data set used for the purpose
is based on the YPD (Yeast protein database) (S2) and was
obtained from the data set used in [13] and contains 1079 in-
teractions of 688 genes describing the regulation relationships
of the transcriptional regulatory network of Saccharomyces
Cerevisiae. The data comprises of three columns representing
regulating genes, regulated genes and the mode of regulation.
Not only that the number of motifs detected by our influences
matches those of [13], but also upon retesting the hypothesis
with differently-sized subsets of the data set, the number of
motifs discovered by our influences was found to monoton-
ically increase with the size of the data (as expected in real
biological networks) as table IV shows.

The latter finding was achieved by constructing six addi-
tional experiments each testing the hypothesis for a subset
of the full data set having a specific size. Each experiment
consisted of 10 runs, all of the same size (number of nodes)
but differ in connectivity (number of arcs). The algorithm
describing the mapping of section III-B was tested on each
of the 60 resulting runs and used to output the number of
feed-forward loops and bi-fan motifs in each run. The results
given in table IV visibly show the monotonic increase of the
number of motifs with the number of nodes in the interaction
data set.

B. The Second Experiment

The second set of experiments were conducted to build
qualitative influences between genes by examining their ex-
pression levels, map the relevant influences to network motifs
and use them to guide the construction of a DBN. The aim
of the experiment is to assess the accuracy of the approach in
recovering the structure of the DBN from the expression data
with the aid of the discovered motifs by comparing it to the
unguided DBN approach of [25].

For this experiment, we used the Saccharomyces Cerevisiae
time series data from Choo et al [3], which contains data for
ten time points. The first step was to examine the microarray
data to investigate the strength of the various regulatory
interactions by assigning each pair of genes a correlation
coefficient v capturing the degree to which two genes are
co-expressed. We used cut-off values of vy > 1.2 for a
positive regulation and y_ < 0.7 for a negative regulation to
separate possible direct regulation from spurious interactions

TABLE V
THE RESULT OF COMPARING THE ANALYSIS PROVIDED BY DBN 7z~ WITH
THE SAME METHOD GUIDED WITH OUR QUALITATIVE NETWORK MOTIFS
FOR THE YEAST TRANSCRIPTION DATASET COMPRISING OF 2875 GENES.
THE ONLY PRIOR KNOWLEDGE INCLUDED IS THE KNOWLEDGE OF OUR
QUALITATIVE MOTIFS AND NOTHING ABOUT THE YEAST CELL CYCLE IS
GIVEN TO TEST THE HYPOTHESIS OF AN IMPROVED DETECTION OF
REGULATOR-TARGET RELATIONS AND A BETTER CONSTRUCTION OF THE
TARGET NETWORK. I = IDENTIFIED RELATIONSHIPS, M = MISIDENTIFIED
RELATIONSHIP, S = SPECIFICITY

[ Method [T IM] S |
DBN ¢ 17 | 3 9.8%
DBNzc + Qualitative Motifs | 26 | 2 10.7%

and used an approach similar to that of [25] to identify
potential regulators and regulees. The cut-off values were
chosen to match those of [25] for a controlled experiment.

We then designed an algorithm that reads through the
collected pairs and their normalized expression levels and
builds a database of qualitative influences that are detected by
examining the genes pair-wise. We constructed an M x M
matrix of influences exhibited among the genes. Each cell
in the matrix is given a sign of either +,—,0,7. In our
experiment, an unknown or a zero sign given in cell m[i][j]
designates a no correlation between the respective genes (at
locations ¢ and j ). The mapping presented in section III-B
is used to construct the set of feed-forward loop motifs
discovered in the data.

The set of motifs constructed is then used as prior knowl-
edge to guide the construction of the yeast gene regulatory
network using [25]’s method, referred to in this work as
DBNzc. We evaluated the method in terms of accuracy of
the reconstructed network. More specifically, the guidance
provided by the motifs discovered increased the specificity °
as table V shows.

VI. CONCLUSIONS, CURRENT AND FUTURE WORK

This paper introduced, DQPNs, a formal model for cap-
turing qualitative causal knowledge in time-series data. The
model serves as a qualitative equivalent of Dynamic Bayesian
Networks which uses signs to capture the direction of change
of probabilities corresponding to the conditional probabilities
of the original DBNs. The model makes use of the arc-
based relations to introduce an efficient equivalent of DBN
which captures the conditional independence relations the
same way. We used the qualitative relations, namely influences,
of DQPNs to model commonly-occurring motifs of gene
regulatory network and showed a natural mapping between
such motifs and DQPN influences. We evaluated the mapping
via experiments which show that the regulatory networks
motifs identified using the mapping we defined are equivalent
to those identified in [13] for the same data set and that
the motifs discovered via our formalism exhibit the expected
property of increasing in number as the size of the regulatory
network increases.

SSpecificity is the percentage of correctly predicted known gene relation-
ships out of the total number of predicted gene relationships.



Also, as an initial step to using DQPNs to recover the
structure of gene regulatory networks, we adopted motifs
captured from expression data to serve as representatives of the
conditional independence relations in DBN graphs and used
them to direct the reconstruction process of gene regulatory
networks using DBNs. The result is an increased specificity
and a decrease in the number of misidentified regulations.

We are currently working on the realization of a model
for completely reconstructing gene regulatory networks using
DQNs. We are at the stage of of incorporating time lags into
the model and testing the hypothesis of ‘the full specification
of conditional probabilities is not necessary to reconstruct the
regulatory relations in a gene regulatory network and only a
subset of the quantitative data available is required. Because
DQPNs deploy arc-based reasoning, they are expected to be
much more efficient than their quantitative equivalents.
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