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Background: Conflicting data exist on the impact of dietary and circulating levels of branched chain amino acids
(BCAA) on cardiometabolic health and it is unclear to what extent these relations are mediated by genetics.
Methods: In a cross-sectional study of 1997 female twins we examined associations between BCAA intake,
measured using food frequency-questionnaires, and a range of markers of cardiometabolic health, including
DXA-measured body fat, blood pressure, HOMA-IR, high-sensitivity C-reactive protein (hs-CRP) and lipids. We
also measured plasma concentrations of BCAA and known metabolites of amino acid metabolism using
untargetedmass spectrometry. Using a within-twin design, multivariable analyseswere used to compare the as-
sociations between BCAA intake and endpoints of cardiometabolic health, independently of genetic confounding.
Results: Higher BCAA intake was significantly associated with lower HOMA-IR (−0.1, P-trend 0.02), insulin
(−0.5 μU/mL, P-trend 0.03), hs-CRP −0.3 mg/L, P-trend 0.01), systolic blood pressure (−2.3 mmHg, P-trend
0.01) andwaist-to-height ratio (−0.01, P-trend 0.04), comparing extreme quintiles of intake. These associations
persisted inwithin-pair analysis formonozygotic twins for insulin resistance (P b 0.01), inflammation (P=0.03),
and blood pressure (P = 0.04) suggesting independence from genetic confounding. There was no association
between BCAA intake and plasma concentrations, although two metabolites previously associated with obesity
were inversely associated with BCAA intake (alpha-hydroxyisovalerate and trans-4-hydroxyproline).
Conclusions: Higher intakes of BCAA were associated, independently of genetics, with lower insulin resistance,
inflammation, blood pressure and adiposity-related metabolites. The BCAA intake associated with our findings
is easily achievable in the habitual diet.

© 2016 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Conflicting results have been reported on the relationship between
branched chain amino acids (BCAA), which includes the essential
amino acids leucine, isoleucine and valine, and cardiometabolic health.
Higher fasting plasma concentrations of BCAA have been associated
with an increased risk of developing type 2 diabetes and insulin
resistance in both rodent models and humans [1] with several longitu-
dinal studies observing that higher circulating levels of BCAA are associ-
ated with a threefold higher risk of type 2 diabetes and 1.3-fold higher
risk of metabolic syndrome [2,3]. Together these data have led to the
suggestion that increased blood levels are predictive of future insulin
resistance or type 2 diabetes.

In sharp contrast, BCAA supplementation and diets rich in BCAA in-
take have been shown to be beneficial for metabolic health (regulation
of body weight and glucose homeostasis), especially in rodent models.
Specifically, increasing leucine intake inmice fed a high-fat diet resulted
in a 32% reduction in weight gain, a 25% decrease in adiposity and a 53%
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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decrease in LDL-cholesterol concentrations independent of adiposity
[4]. Improved body weight, glucose tolerance and insulin sensitivity
were also observed in mice fed a BCCA-rich protein source (whey pro-
tein isolate) [5]. A previous small-scale study in 296 males reported
higher BCAA intake (0.03 g/kg body weight) was associated with re-
duced weight (13.8 kg), total body fat (4.5%), insulin concentrations
(2.1 μU/mL), diastolic blood pressure (3.4 mmHg) and a 47% lower
prevalence of metabolic syndrome [6].

One proposed explanation for these conflictingfindings is that circu-
lating BCAA are a biomarker of impaired insulin action, rather than a
causative factor of insulin resistance, via activation ofmammalian target
of rapamycin complex 1 signalling or accumulation of mitotoxic metab-
olites that subsequently causemitochondrial dysfunction and apoptosis
associated with type 2 diabetes [1]. Direct and indirect mechanisms for
the positive effects of BCAA intake have been suggested including direct
effects on hypothalamus derived processes associated with satiety and
body weight and enhanced insulin-stimulated AKT phosphorylation
and glucose uptake related to improved insulin sensitivity and glucose
metabolism [7,8].

To our knowledge there are no comprehensive population based
studies examining the associations between BCAA intake and parame-
ters of adiposity and cardiometabolic health and no studies utilizing a
twin model to explore the relative contributions of diet and genetics
and reduce confounding. We firstly examined the associations between
intake and circulating levels of BCAA and then investigated the relation-
ship between intakes and a range of parameters of metabolic health, in-
cluding overweight, insulin resistance, inflammation and blood pressure,
using this unique approach. On the basis of previous research,we expect-
ed that participantswith higher BCAA intakewould have lower adiposity
and healthier parameters of cardiometabolic health; additionally we
hypothesized that the associations would remain significant within
monozygotic (MZ) and dizygotic (DZ) twin-pairs, suggesting a lack of
genetic confounding.

2. Methods

2.1. Study population

Participants included in these analyses were twins enrolled in the TwinUK cohort [9].
Theparticipantswere not selected for particular diseases or traits andwere unaware of the
specific hypotheses being tested. The cohort has previously shown to be representative of
the general UKpopulation in terms of disease- and lifestyle-related characteristics, includ-
ing diet [10,11]. In this studywe included female twins, aged 18–76 y,who had completed
a food frequency questionnaire (FFQ) and attended a clinical assessment for cardiometa-
bolic risk factors between 1996 and 2000. In total, 4181 unique participants completed a
FFQ, of which 22% (n = 919) were either incomplete (N10 food items were left blank)
or participants reported implausible energy intake (defined as the ratio of energy intake
to estimated basal metabolic rate falling ≥2SD from the population mean). Of the 3262
participants who completed a valid FFQ, 61% (n = 1997) attended for a relevant clinical
assessment. Although 3299 participants had metabolomics data, clinical data were un-
available for 2360 of these participants, leaving us with 28% (n = 939) to include in the
current analyses. Although the sample size was fixed before the start of the study a formal
power calculation revealed that a moderate association with blood pressure of 2 mmHg
(α = 0.05, 95% power) would require 913 participants in these multivariate analyses.
The study was approved by the St. Thomas' Hospital Research Ethics committee and all
subjects provided informed written consent.

2.2. Assessment of cardiometabolic biomarkers

Anthropometric measurements were made in light clothing, height was measured
using a wall-mounted stadiometer to the nearest 0.5 cm, weight (light clothing only)
was measured with digital scales to the nearest 0.1 kg and waist circumference (cm)
was measured at the level midway between the lower rib margin and the iliac crest.
These data were used to derive BMI (kg/m2) and waist to height ratio (WHtR). Body
fat was measured by dual-energy X-ray absorptiometry using standard protocols (QDR-
2000 W, Hologic, Massachusetts, USA) and percentage body fat was calculated as (body
fat (kg)/total body mass (kg)) × 100. Overweight was defined if BMI was N25 kg/m2

and abdominal obesity if WHtR ratio was N0.5. Data on WHtR and body fat was available
for 1828 (92%) and 1792 (90%) of the study population, respectively.

Serum samples obtained from venous blood samples were collected between 8 and
10 amafter an overnight fast. Insulinwasmeasured by immunoassay (Abbott Laboratories
Ltd., Maidenhead, UK), and glucose using an enzymatic colorimetric assay (Ektachem 700
multichannel analyzer, Johnson and Johnson Clinical Diagnostic Systems, Amersham, UK).
HOMA-IR was calculated according to the formula: fasting insulin × fasting glucose / 22.5.
Insulin resistance was defined if HOMA-IR was ≥2.5 arbitrary units. We excluded partici-
pants with insulin values above clinically realistic values (400 pmol/L) or with
hyperglycaemia or potential type 2 diabetes (defined as glucose values above 7 mmol/L).
High sensitivity C-reactive protein (hs-CRP)wasmeasured by a highly sensitive automated
micro particle capture enzyme immunoassay (Abbott Laboratories). Inter- and intra-assay
CVwere b10% throughout the range for all biomarkers. Systemic inflammationwas defined
as anhs-CRP value ≥3mg/L. Data onhs-CRPwere available for 1432 of the 1997participants
who were assessed for insulin resistance.

Peripheral systolic (SBP) and diastolic (DBP) blood pressure were measured by a
trained nurse or research assistant using an automated cuff sphygmomanometer
(OMRON HEM713C, Tokyo, Japan) with the participant in the seated position for at least
three minutes prior to taking three measurements. Hypertension was defined as a SBP
above 140 mmHg and/or diastolic blood pressure above 90 mmHg and/or use of anti-
hypertensive drugs. Blood pressure data was available for 1952 (98%) of the participants
included in these analyses.

Levels of all lipidsweremeasured by using a Cobas Faramachine (RocheDiagnostics).
High density lipoprotein cholesterol (HDL-C) and triglycerides (TG)were determined by a
colorimetric enzymatic method. HDL-C was determined after precipitation of larger
particles (chylomicron,VLDL, and LDL) by magnesium and dextran sulfate. Lipid levels
were expressed as logTG/HDL-C as this measure has shown to be strongly correlated
with cardiometabolic risk [12]. Dyslipidemia was defined as HDL-C ≤ 1.3 mmol/L and
TG ≥ 1.7 mmol/L or use of cholesterol lowering drugs. Data were available for 1845
(92%) of these participants.

According to the NCEP ATP III criteria, metabolic syndrome was defined in the
presence of three or more of the following: glucose ≥6.1 mmol/L, TG ≥1.7 mmol/L,
HDL-C ≤ 1.3 mmol/L, waist circumference ≥ 88 cm or elevated blood pressure (SBP ≥130
and/or DBP ≥85 and/or antihypertensive drug treatment) [13]. Complete data onmetabolic
syndrome was available for 1663 (83%) participants.

2.3. Metabolomic analyses

In a sample of 3299 participants, non-targeted metabolite detection and quantifica-
tion were conducted (Metabolon, Inc., Durham, NC) on fasting plasma samples using
ultra-high performance liquid chromatography and gas chromatography mass spectrom-
etry platforms, as described previously [14]. Of the metabolites identified, 75 were
determined to be representative of amino acid metabolism (listed in Supplemental
Table 1) and were included in these analyses [15].

2.4. Assessment of dietary intakes

Participants completed a 131-item validated FFQ [16,17]. Nutrient values were
assigned to each item in the FFQ or for mixed dishes a value for each ingredient, using
data fromUK food composition tables [18]. Amino acid contentwas derived predominant-
ly using UK food composition data with additional data from the US Department of
Agriculture if UK data was not available [19,20]. If the sum of the individual amino acids
and the values for protein from the latest UK food composition tables differed for a
specific food item the amino acid values were rescaled to match the most recent protein
data [19]. Nutrient intakes were calculated as the frequency of each food multiplied by
the nutrient content of the food for the appropriate portion size [21]. We set quantitative
limits based on confidence intervals to define dietary under-reporters using values of re-
ported energy intake and total predicted energy expenditure [22]. These calculations
accounted for the within-subject variation inherent in the methods used to assess energy
intake and expenditure [23]. It has been shown that excluding potential under-reporters
can introduce considerable bias into a sample and therefore we considered the ratio of
energy intake to estimated energy expenditure as a covariate in all multivariable
models [24].

2.5. Assessment of covariates

Information on smoking, medication use and menopausal status was obtained by
standardized nurse-administered questionnaire. Physical activity was classified as inac-
tive, moderate, and active during work, home and leisure time using a questionnaire
strongly correlated with a more in-depth assessment of activity levels in this cohort
[25]. The estimated active time per week for these physical activity levels is: inactive
16 min; light activity 36 min; moderate activity 102 min; and heavy activity 199 min
[25]. Zygositywas ascertained by questionnaire and confirmed via subsequent genotyping
as part of genome-wide association studies (PE Applied Biosystems, Foster City,
California).

2.6. Statistical analysis

Firstly, we used all the participants, treating twins as individuals (individual level
analysis) while accounting for twin-pair clustering. Data were available for 1997 (61%)
of the 3262 participants who completed a valid FFQ (960 twin pairs and 77 individuals).
Participants were ranked into quintiles of BCAA intake expressed as a percentage of total
protein and associations with cardiometabolic parameters were determined using
ANCOVA. Prevalence ratios for insulin resistance, metabolic syndrome, inflammation
and overweight were estimated by quintile of BCAA intake using Poisson regression.



Table 1
Characteristics of females aged 18–76 ya.

Value

Characteristics
Age (y) 41.7 ± 12.1 (39, 56)
Zygosity (n % monozygotic) 23.2 (464)
BMI (kg/m)2 25.2 ± 4.5 (22.1, 27.3)
Current smoker (yes; n %) 17.5 (350)
Physically active (yes; n %) 26.7 (533)
Hormone replacement therapy use (yes; n %) 17.5 (349)
Post-menopausal (yes; n %) 44.7 (893)
Diabetes or cholesterol lowering drug use (yes; n %) 1.7 (34)
Vitamin supplement use (yes; n %) 53.3 (1064)

Adiposity and cardiometabolic markers
Body fat (% total body mass) 35.0 ± 7.5 (29.8, 40.2)
Weight (kg) 66.5 ± 12.1 (57.9, 72.5)
Overweight (BMI ≥25) 12.8 (255)
Waist to height ratio 0.5 ± 0.1 (0.4, 0.5)
Abdominal obesity (waist to height ratio ≥ 0.5) 39.1 (715)
HOMA-IR 1.6 ± 1.6 (0.8, 1.7)
Fasting insulin (μU/mL) 7.8 ± 6.8 (4.2, 8.6)
Fasting glucose (mmol/L) 4.5 ± 0.5 (4.2, 4.8)
Insulin resistance (HOMA-IR ≥2.5) 11.9 (238)
hs-CRPb (mg/L) 2.5 ± 2.4 (0.7, 3.6)
Systemic inflammation (hs-CRP ≥3) 31.4 (450)
Lipids (logTG:HDL-C) 0.07 ± 0.34 (−0.16, 0.25)
Dyslipidemia (HDL-C ≤ 1.3 and TG ≥1.7 or statin use) 7.9 (145)
Systolic blood pressure (mm Hg) 121 ± 16.6 (109, 131)
Diastolic blood pressure (mm Hg) 76.8 ± 11.3 (69, 84)
Hypertension (systolic ≥140 or diastolic ≥90 or
medicated)

19.7 (379)

Metabolic syndromec 9.1 (152)

Dietary intake
BCAA, % protein/d 18.1 ± 0.4 (17.9, 18.4)
Protein, g/d 81.8 ± 22.0 (66.9, 95.6)
Energy, kcal/d 1991 ± 534 (1611, 2339)
Carbohydrate, g/d 256 ± 76.2 (202, 304)
Saturated fat, g/d 26.4 ± 10.5 (18.8, 33.0)
Wholegrains, g/d 89.2 ± 78.3 (31.6, 129)
Alcohol, g/d 10.1 ± 13.9 (1.2, 13.5)
Energy intake: EER 86.4 ± 24.7 (68.7, 102)

a Values aremean± SD (IQR) or percentages (frequencies), n=1997. BCAA=branched
chain amino acids; EER = estimated energy requirements; HDL-C = high density li-
poprotein cholesterol; HOMA-IR = homeostasis model assessment of insulin resistance;
hs-CRP = high-sensitivity C-reactive protein; TG = triglycerides.

b Subset analysis: hs-CRP = 1432; lipids = 1845; body fat = 1792; waist to height
ratio = 1828; blood pressure = 1952.

c Metabolic syndromewas defined as the presence of three of the following risk factors,
glucose ≥ 6.1mmol/L, TG ≥ 1.7 mmol/L, HDL-C ≤ 1.3 mmol/L, waist circumference ≥ 88 cm
or elevated blood pressure (systolic ≥ 130 and/or diastolic ≥ 85 and/or antihypertensive
drug treatment), n = 1663.
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In further analyses we excluded singletons from the analyses (n=77) and examined
associations between BCAA intake, in quintiles, and cardiometabolic variables in models
that included the twin-pair mean for BCAA intake as follows:

E Yij
� � ¼ β0 þ βiXij þ βtXi

where Yij and Xij represent the cardiometabolic (Υ) and BCAA intake variable (X) of
twin j from family i and X is the twin-pair mean [26]. βt can be interpreted as the
result of a 1-quintile increase in the pair-average of BCAA intake on cardiometabolic
health with the individual intake held fixed (between-pair association). βi is the
result of a one-quintile increase in the individuals BCAA intake on cardiometabolic
parameters with the pair average held fixed (within-pair association). Within-pair
associations are inherently controlled for shared environmental factors and, in MZ
pairs, genetic confounding.

All models were adjusted for age (years), current smoking (yes or no), physical
activity (inactive, moderately active, active), BMI (kg/m2), use of hormone replacement
therapy (yes or no), use of diabetes or cholesterol lowering drugs (yes or no), use of vita-
min supplements (yes or no), menopausal status (pre- or post-menopausal), under-
reporting (yes or no) and intakes of energy (kcal), carbohydrate (g), saturated fat (g),
wholegrains (g), alcohol (g), and protein (g). Natural-log-transformed values were used
as the distribution of cardiometabolic outcome measures were skewed, with the excep-
tion of lipid levels expressed as logTG/HDL-C. Values in the text are means or geometric
means (95%CI) except for values from within-pair analyses which are the geometric
means expressed as a percentage of the non-transformed values, calculated as:

ð expβ
h �

−1� � 100

Linear regression was used in multivariable analyses to determine associations be-
tween BCAA intake and the 75 metabolites associated with amino acid metabolism [15].
A separate random intercept model was performed for each metabolite with age, BMI,
batch effects, family relatedness, smoking status and energy intake included as covariates:

Υi ¼ β0 þ βiΧij þ γiageij þ δiBMIij þ ζ j þ εij

where Yi is the metabolite and Xij is the BCAA intake of twin j from pair i, and ζj is the
family-specific error component that captures the unobserved heterogeneity or family
characteristics.

P-values b0.05 were considered statistically significant for all analyses except for the
metabolomic models where we accounted for multiple testing using Bonferroni correc-
tion, giving a significance threshold of 6.67 × 10−4. Statistical analyses were performed
with Stata statistical software version 11 (StataCorp, Texas, USA).

3. Results

The characteristics, cardiometabolic risk factors and dietary intakes
of the study participants are shown in Table 1. BCAAs contributed to
18.1% (SD 0.4 range 16.5 to 20.3) of protein intake with leucine (43.7%
SD 0.4 range 41.7 to 46.3) contributing more than isoleucine (25.9%
SD 0.4 range 24.2 to 27.0) and valine (30.4% SD 0.4 range 29.3 to 32.7)
to total BCAA intake (data not shown). Compared to the participants in-
cluded in the hs-CRP analyses (n = 1432) those excluded for having
missing data (n = 565) were significantly younger (45.2 y vs. 47.9 y,
t = −4.49 P b 0.01) and therefore less likely to be post-menopausal
(χ2 = 18.2 P b 0.01) or to take HRT (χ2 = 8.1 P b 0.01). These partici-
pants also had higher saturated fat intakes (27.5 g vs. 26.0 g, t = 2.9
P b 0.01), were more likely to smoke (χ2 = 5.5 P=0.02) and less likely
to take vitamin supplements (χ2 = 6.7 P=0.01). There were no signif-
icant differences between those participants included (n = 1972) or
excluded (n = 205) from the body fat analyses (data not shown).

There was a difference in BCAA intake between extreme quintiles
of 1.3 g or 1.2% of protein (Table 2). In multivariable analyses a higher
BCAA intake was associated with a lower WHtR (Q5-Q1 = −0.01, P-
trend 0.04) and there was a trend towards a lower body weight
although this finding did not reach levels of statistical significance
(Q5-Q1=0.7 kg, P-trend 0.05). Higher BCAA intakewas also associated
with significantly lower insulin resistance as indicated by lower HOMA-
IR (Q5-Q1 = −0.1, P-trend 0.02) and insulin concentrations (Q5-
Q1 = −0.5 μU/mL, P-trend 0.03) in addition to lower hs-CRP levels
(Q5-Q1 = −0.3 mg/L, P-trend 0.01) and lower SBP (Q5-Q1 =
−2.3 mmHg, P-trend 0.01) comparing those in the highest and lowest
quintiles of intake.
In our cardiometabolic risk factor analyses participants with higher
BCAA intake had a lower prevalence of overweight, insulin resistance,
systemic inflammation, and hypertension (Fig. 1 and Supplemental
Table 2). Therewas no association between BCAA intake and prevalence
of metabolic syndrome, dyslipidemia or abdominal obesity.

In analyses controlling for genetic and shared environmental con-
founders in twin-pairs, significant within-pair associations between
BCAA intake and markers of insulin resistance, inflammation and
blood pressure were observed (Table 3). Specifically, a one-quintile
higher intake of BCAA was associated with lower HOMA-IR (2.1% 95%
CI −3.9, −0.2 P = 0.03), insulin (2.0%, 95% CI −3.8, −0.2 P = 0.03)
and hs-CRP (7.1% 95% CI−11.7,−2.3 P b 0.01). After stratifying by zy-
gosity we observed a greater magnitude of association for MZ than DZ
twins, suggesting that the associationswere free of genetic confounding
(HOMA-IR −5.0% 95% CI −8.1, −1.9 P b 0.01; insulin −4.8% 95% CI
−7.7, −1.8 P b 0.01; hs-CRP −9.7% 95% CI −17.7, −1.0 P = 0.03;
diastolic blood pressure − 1.2% 95% CI −2.3, −0.1, P = 0.04). No
within-pair associations were observed for weight status variables or
cholesterol levels. We observed no significant associations in our



Table 2
Adiposity and cardiometabolic markers by quintile of BCAA intake in females aged 18–76 ya.

n= Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5 P-trend

BCAA intake (% protein) 1997 17.6 (0.2) 17.9 (0.1) 18.1 (0.1) 18.3 (0.1) 18.7 (0.2) –
Weight (kg) 1997 65.5 (65.0, 66.1) 65.7 (65.2, 66.3) 65.9 (65.3, 66.4) 65.2 (64.7, 65.8) 64.8 (64.2, 65.5) 0.05
Body fat (% total body mass) 1792 33.8 (33.2, 34.4) 34.1 (33.6, 34.7) 34.5 (34.0, 35.1) 33.6 (33.1, 34.2) 34.6 (34.0, 35.2) 0.28
Waist to height ratio 1828 0.49 (0.48, 0.50) 0.49 (0.48, 0.49) 0.49 (0.48, 0.49) 0.48 (0.48, 0.49) 0.48 (0.48, 0.49) 0.04
HOMA-IR 1997 1.3 (1.2, 1.4) 1.3 (1.2, 1.4) 1.2 (1.2, 1.3) 1.2 (1.1, 1.3) 1.2 (1.2, 1.3) 0.02
Insulin (μU/mL) 1997 6.6 (6.2, 7.0) 6.5 (6.1, 6.9) 6.2 (5.8, 6.5) 6.1 (5.8, 6.5) 6.1 (5.8, 6.5) 0.03
Glucose (mmol/L) 1997 4.5 (4.4, 4.6) 4.5 (4.5, 4.6) 4.5 (4.4, 4.5) 4.5 (4.4, 4.5) 4.5 (4.4, 4.5) 0.13
hs-CRP (mg/L) 1432 1.7 (1.5, 1.9) 1.7 (1.5, 1.9) 1.7 (1.5, 1.9) 1.5 (1.4, 1.7) 1.4 (1.3, 1.6) 0.01
Lipids (logTG:HDL-C) 1845 0.08 (0.04, 0.11) 0.06 (0.02, 0.09) 0.07 (0.04, 0.11) 0.05 (0.02, 0.09) 0.06 (0.03, 0.10) 0.61
Systolic blood pressure (mm Hg) 1952 121 (120, 123) 121 (119, 122) 120 (118, 121) 119 (118, 121) 119 (117, 120) 0.01
Diastolic blood pressure (mm Hg) 1952 76.1 (75.0, 77.3) 76.7 (75.7, 77.8) 75.8 (74.7, 77.0) 75.7 (74.7, 76.7) 75.4 (74.3, 76.4) 0.16

a Values are adjusted geometric means (95% CI) except for intake values which are unadjusted means (SD) and lipid values which are adjusted means (95% CI), n = 1997. Means are
adjusted for age, smoking, physical activity, BMI, HRT, menopausal status, use of diabetes or cholesterol lowering drugs, vitamin supplements, under-reporting, and intakes of energy,
carbohydrate, saturated fat, wholegrains, alcohol and protein. Weight and waist to height ratio are not adjusted for BMI and blood pressure was additionally adjusted for use of
anti-hypertensive medication. BCAA = branched chain amino acids; HDL-C = high density lipoprotein cholesterol; HOMA-IR = homeostasis model assessment of insulin
resistance; hs-CRP = high-sensitivity C-reactive protein; TG = triglycerides.
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between-twin analyses when all twins were considered together or
when stratified by zygosity (data not shown).

BCAA intake was unrelated to circulating levels in the 3299 partici-
pants for whom data were available (leucine β = 0.005 95% CI −0.07,
0.05 P = 0.91, valine β = −0.01 95% CI −0.06, 0.09 P = 0.76 and iso-
leucine β = −0.04 95% CI −0.11, 0.04 P = 0.35, Supplemental
Table 1). After Bonferroni correction, two of the 75 metabolites identi-
fied to be representative of amino acid metabolism were significantly
inversely associated with BCAA intake, alpha-hydroxyisovalerate
(β = −0.15 95% CI −0.23, −0.07 P = 2.99 × 10−4) and trans-4-
hydroxyproline (β = −0.20 95% CI−0.28, −0.12 P = 1.48 × 10−6).

4. Discussion

In the current study, using a co-twin design, significant inverse
associations were observed in female twins between dietary intakes of
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abdominal obesity are not adjusted for BMI. Insulin resistance = HOMA-IR ≥ 2.5; systemic infl
or use of cholesterol lowering drugs; overweight = BMI ≥ 25 kg/m2; abdominal obesity =
diastolic blood pressure ≥ 90 mmHg and/or anti-hypertensive drug treatment; me
TG ≥1.7 mmol/L, HDL-C ≤ 1.3 mmol/L, waist circumference ≥ 88 cm or elevated blood pre
data is presented in Supplemental Table 1. Subset analysis: inflammation=1432; dyslipidemia
BCAA andmeasures of insulin resistance, inflammation and blood pres-
sure, associations that were independent of a wide range of known car-
diometabolic risk factors including smoking, physical activity, BMI and
medication use. To our knowledge, this was the first study to examine
these associations within a twin population which provided us with a
unique opportunity to control for genetic confounding. With stronger
findings observed in MZ compared to DZ twins, these results suggest
that shared environmental and genetic factors do not confound the re-
ported associations. Additionally, in metabolomic analyses, we identi-
fied two metabolites that were inversely associated with BCAA intake;
alpha-hydroxyisovalerate and trans-4-hydroxyproline. Interestingly
higher circulating levels of alpha-hydroxyisovalerate have previously
been associated with greater adiposity and blood pressure and circulat-
ing levels of trans-4-hydroxyproline have shown to be elevated in
patients with dietary-induced non-alcoholic fatty liver disease, a
cardio-metabolic risk factor for the development of diabetes [27–29].
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ssure (systolic ≥ 130 and/or diastolic ≥85 and/or antihypertensive drug treatment). Full
= 1845; abdominal obesity= 1828; hypertension=1952;metabolic syndrome=1663.



Table 3
Within-pair associations between BCAA intake, adiposity and cardiometabolic markers in female twin pairs aged 18–76 y, stratified by zygositya.

All twins Monozygotic twins Dizygotic twins

n= βi % (95%CI) P= n= βi % (95%CI) P= n= βi % (95%CI) P=

Body fat (% total body mass) 857 −0.2 (−0.6, 0.1) 0.54 185 −0.5 (−1.1, 0.8) 0.38 672 −0.2 (−0.6, 0.3) 0.71
Weight (kg) 960 −0.2 (−0.8, 0.4) 0.21 222 −0.4 (−1.3, 0.5) 0.09 738 −0.1 (−0.9, 0.6) 0.41
Waist to height ratio 879 −0.2 (−0.6, 0.1) 0.21 189 −0.1 (−0.8, 0.6) 0.76 690 −0.3 (−0.8, 0.2) 0.22
HOMA-IR 960 −2.1 (−3.9, −0.2) 0.03 222 −5.0 (−8.1, −1.9) b0.01 738 −0.9 (−3.1, 1.4) 0.45
Insulin (μU/mL) 960 −2.0 (−3.8, −0.2) 0.03 222 −4.8 (−7.7, −1.8) b0.01 738 −0.9 (−3.0, 1.2) 0.40
Glucose (mmol/L) 960 0.0 (−0.4, 0.3) 0.78 222 −0.2 (−0.9, 0.5) 0.58 738 0.0 (−0.4, 0.4) 0.89
hs-CRP (mg/L) 626 −7.1 (−11.7, −2.3) b0.01 181 −9.7 (−17.7, −1) 0.03 445 −6.6 (−12.1, −0.7) 0.03
Lipids (logTG:HDL-C) 870 −0.8 (−2.2, 0.6) 0.34 184 −0.9 (−3.1, 1.3) 0.42 686 −0.9 (−2.5, 0.8) 0.32
Systolic blood pressure (mm Hg) 930 −0.3 (−0.8, 0.2) 0.19 207 −0.9 (−1.9, 0.1) 0.08 723 −0.2 (−0.7, 0.3) 0.48
Diastolic blood pressure (mm Hg) 930 −0.1 (−0.7, 0.4) 0.67 207 −1.2 (−2.3, −0.1) 0.04 723 0.1 (−0.6, 0.7) 0.83

a Values are the geometricmeans (95% CI)with the exception of lipids valueswhich aremeans (95% CI), expressed as a percentage calculated from theβ-coefficient given a one-quintile
increase in BCAA intakewith the twin-pair average heldfixed, n=1920. Values are adjusted for age, smoking, physical activity, BMI, HRT,menopausal status, use of diabetes or cholesterol
lowering drugs, vitamin supplements, under-reporting, and intakes of energy, carbohydrate, saturated fat, wholegrains, alcohol and protein. Weight and waist to height ratio are not ad-
justed for BMI and blood pressure was additionally adjusted for use of anti-hypertensive medication. HDL-C= high density lipoprotein cholesterol; HOMA-IR = homeostasis model as-
sessment of insulin resistance; hs-CRP = high-sensitivity C-reactive protein; TG = triglycerides.
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We found no association between BCAA intake and circulating levels
confirming previous findings in children and adding evidence to sup-
port the theory that plasma BCAA levels are not a direct reflection of
diet-derived intakes [30].

Genetic factors are strong determinants of dietary habits and cardio-
metabolic health, with estimates of heritability reported between 43
and 57% [11,31]. Our within-twin analysis confirmed our individual-
level findings for insulin resistance and inflammation but not those for
measures of weight status whichmay indicate that previously reported
associations between BCAA intake and weight status are influenced by
genetics or other lifestyle factors not considered [6,32]. We found no
associations between BCAA intake and lipid levels or prevalence of met-
abolic syndrome in our individual- or twin-level analyses. It is notewor-
thy that the prevalence of clinical dyslipidemia andmetabolic syndrome
were very low in this apparently healthy cohort (9%).

Our results are consistent with a short-term (2month) intervention
trial which observed improvements in insulin resistance and β-cell
function in men with chronic liver disease but no significant effect on
body composition following supplementation with 3.2 g of BCAA
(0.8 g valine, 1.6 g leucine and 0.8 g isoleucine) [33]. Our findings how-
ever, only partly support those of a longer-term supplementation trial
(7.1 g leucine for 6 months) in which both glycemic control and body
composition were not changed in diabetic males [34]. Our novel data
also provide mechanistic support for the reported association between
higher BCAA intake (0.9% of protein) and a 43% decreased risk of diabe-
tes in Japanese women [35]. Furthermore, our findings are plausible
given the findings frommechanistic studies; Macotela et al. recently re-
ported, using rodent models, that doubling dietary leucine for eight
weeks reversed many of the metabolic abnormalities associated with
high fat diet-induced obesity, improving glucose tolerance, insulin sig-
naling and inflammation in the adipose tissue. Interestingly, they
found that serum cholesterol levels were not changed by leucine
administration [36]. Our associations between BCAA intake and cardio-
metabolic healthwere independent of total protein intake and it is note-
worthy that there were no associations between total protein intake
and any of the cardiometabolic factors examined in these analysis
(data not shown). This suggests an independent effect of BCAA rather
than BCAA acting as a marker of total protein intake.

Our study results have potential clinical significance. Previous stud-
ies have shown that reduced insulin resistance and inflammation are as-
sociated with lower rates of obesity, type 2 diabetes and cardiovascular
disease [37]. In our study, the highest quintile of BCAA intake compared
with the lowest quintile was associated with 19–37% lower insulin
resistance, inflammation, overweight and hypertension. The presence
of insulin resistance (HOMA-IR N2) was previously related to an in-
creased odds ratio of 1.54 (95% CI 0.91–2.62) for coronary artery disease
and elevated CRP (hs-CRP N 3 mg/L) was associated with odds ratios of
1.46 (95% CI 1.05–2.04) for cardiovascular disease and 3.12 (95% CI
1.77–5.48) for type 2 diabetes [38–40]. Although the associations we
observed in absolute termsmay be consideredmodest it has previously
been shown that small changes in risk factors such as cholesterol, blood
pressure and obesity are associated with potentially clinically relevant
changes to cardiovascular risk [41].

To place our findings into context we examined the standardized
beta coefficients for the HOMA-IR model which allowed us to compare
the magnitude of associations for the various predictors within
our model. The size of the standardized coefficient for BCAA intake
(−0.05 95% CI −0.09, −0.01) was more than half that of smoking, a
major risk factors for poor cardiometabolic status, and 1.6 and 7 times
greater than alcohol intake and age, respectively. The major dietary
sources of BCAA in this cohort were milk (16.3% of intake), red meat
(11.1% of intake), poultry (8.8% of intake) and high fat dairy products
(5.8% of intake). The difference in intakes of BCAA between extreme
quintiles of intake in the current study was 1.3 g/day, to incorporate
these levels of BCAA into the diet people would need to consume either
a glass of milk (185 g), one small piece of cheddar cheese (20 g), one
small portion of cashew nuts (35 g), or approximately one quarter of a
beef or salmon steak (28 g). Although this establishes that the relation-
shipswe have reported are related to dietary achievable intakes of BCAA
further research is required before recommendations on BCAA intakes
in relation to metabolic health can be made.

Strengths of the current study include the large sample of well
characterised participants and the use of the co-twin model which
allowed us to examine these associations independently of genetic
confounding. It was notable that we excluded participants with high
glucose levels (N7 mmol/L) and there were low proportion of partici-
pants with metabolic syndrome and dyslipidemia (b10%), as it is plau-
sible that we would have observed greater associations if participants
with impaired metabolic function were included. A further strength
was the range of robust measures of cardiometabolic status, which in-
cluded dual-energy X-ray absorptiometry measured body composition
and HOMA-IR which is a reliable measure of in vivo insulin resistance
and correlates well with scores obtained from the hyperinsulinemic-
euglycemic clamp technique [42]. There were also limitations. There is
a lack of evidence to show the FFQ used in the current study is able to
accurately quantify BCAA intake although it has the ability to reflect
habitual dietary intake and rank participants according to amino acid
and protein intake [11,43,44]. We cannot infer causality from this
cross-sectional study and therefore intervention studies are needed.
Furthermore, although we adjusted for a range of confounders
(such as age, smoking, physical activity, BMI,medication use, and intake
of other nutrients associated with cardiometabolic health), there
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was still the possibility of residual or unmeasured confounding from
additional unmeasured factors. Although we made a number of
hypothesis-driven comparisons in this study we believe they were
justified given the novel and exploratory nature of the analyses.

In conclusion, these novel data suggest that habitual intake of BCAA
was inversely associated with parameters of insulin resistance, inflam-
mation and blood pressure independent of shared genetic and common
environmental factors. In addition, from our metabolomic dataset we
identified two biomarkers of BCAA intake that have previously been as-
sociatedwith adiposity, although these findings need to be replicated in
other data sets. Our results have clinical and public health relevance as
our findings were related to dietary achievable intakes. These findings
support thehypothesis that BCAAhave cardio protective effects through
improvements in insulin resistance, inflammation and blood pressure
and highlight the need for more intervention trials examining dietary
attainable levels of BCAA and metabolic health.
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