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Abstract

Wired or wireless, connectivity has been a vital commodity of life and more so

recently in the realm of information age. Those who have access to faster, more

reliable and more ubiquitous connectivity—put simply, those who are “better

connected”—will have significant advantages in commerce, research and a host

of other arenas. In regards to wireless communications, due to the explosion

in demand for higher capacity networks, availability of free spectrum resources

have become increasingly scarce. The UHF spectrum band in particular, due

to its excellent electromagnetic properties, has been reported as ine�ciently

used and congested by many spectrum regulators of the world. This spectrum

resource scarcity issue combined with the ongoing research and development

for more intelligent, autonomous and self-aware radio communication led to a

vast amount of research on the concept of Cognitive Radio.

This thesis researches the learning unit of cognitive radios. The learning unit

is responsible for processing information and autonomous decision making. In

particular, the research is focused on the extraction and usage of contextual

information from the radio environment (e.g. Radio Access Technology type,

channel access pattern learning/recognition) and how such information could

be exploited to improve the performance of the cognitive radio. The key met-

rics discussed will be based on information extraction under noise, channel

blocking and interference reduction to primary users.
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We present a set of novel works involving Machine Learning, which is a branch

of Artificial Intelligence. New implementation and use cases of state-of-the-art

machine learning algorithms are presented that learn from real-life data. In a

testbed setup we program software defined radios to recognize di�erent Radio

Access Technologies and their channel access patterns. The main technique

used in the majority of the thesis is Artificial Neural Networks, concretely:

Multi-Layer Perceptron Neural Nets, Self-Organizing Neural Nets, and Deep

Auto-Encoders. In some of the works these neural network architectures have

been combined in a novel way with Support Vector Machines, and Reinforce-

ment Learning algorithms for channel classification and access.

In this thesis we show that it is possible to achieve 95% correct classification

at -25 dB among three di�erent radio access technologies, namely, DVB-T,

WCDMA and IEEE 802.11a, where, consequently, we can reason over the

outcome of this classification to di�erentiate between primary and secondary

transmissions. We also show that, through the use of the proposed auto-

encoder approximate Q-learning technique, such context-aware cognitive radio

can achieve better key performance metrics in dynamic spectrum access as

compared to previously researched Q-learning algorithms.
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Chapter 1

Introduction

1.1 Introduction

For the past decades wireless mobile communications has taken up a funda-

mental role in bringing humanity together. The advent of telecommunication

services have induced a boost to our daily life activities. Nonetheless, when

the usage of such technologies rises to facilitate lives of masses of people, the

resources upon which they rely on ought to scale accordingly. One of the fun-

damental resources that wireless communications needs to manage e�ciently

is the radio spectrum. The radio spectrum is a part of the electromagnetic

spectrum ranging from 3 kHz to 300 GHz, portions of which are allocated by

spectrum regulators around the world for various uses, such as mobile broad-

band, television, satellite, radar and so on.

Recently, however, various national and international spectrum regulators have

reported [3–5] that the sweet spot of the radio spectrum—or in other words, the

UHF band that is situated between 300 and 3000 MHz—could not accommo-

date further capacity, since most of this spectrum has been already allocated,
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and thus experiencing what was dubbed as the spectrum crunch. Indeed, just

like any natural resource the radio spectrum is also limited if interference pro-

tection ratios between communication devices are to be considered.

There are several factors that underpin the spectrum crunch, some of which

are:

• Increase of demand for ubiquitous access to information: it is predicted

that connected devices’ tra�c growth will be 11-times in 2013–2018 [6]

and monthly global mobile data tra�c will surpass 24.3 exabytes by

2019 [1].

• Demand for higher connection speeds: in 2019 average mobile network

connection speeds will be more than two-folds reaching 4Mbps from

1.7Mbps in 2014 [1].

• Connecting the last billion people to the Internet is a more challenging

task than what we have achieved. Most of the connected areas are urban

and suburban areas, however, the rest come from rural regions. Due

to the nature of this challenge, farther traveling signals are preferred to

be used in such areas of sparse population. Again, for this purpose, the

sub-gigahertz band contains the most desirable frequencies. Yet, because

of the mentioned desirable features of the sub-gigahertz spectrum, this

band is already congested by various public and private communications

systems.

Conventionally, radio spectrum licensing has been managed in a command-

and-control manner, as shown in the left side of Figure 1.1. In this regard,

owners of a specific chunk of spectrum have total usage rights in specific parts

of a country according to the license; others are not allowed to transmit in the

license holders’ allocated spectrum and region of the country where the license
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Fig. 1.1 The Past and the Future - Dynamic Spectrum Access – directly reproduced
from [6]

is dictated to. According to an FCC Spectrum Policy Task Force Report

published in 2002 [3], this static allocation of portions of spectrum was found

to result in a very-low spectrum utilization level. For instance, the report

indicates that there are di�erent temporal and spatial variations of the utilized

spectrum, ranging from 15% to 85% [7].

Therefore, more e�cient utilization of such scarce resources becomes a funda-

mental issue as we further advance and rely more on wireless communication

to deliver our messages.

1.1.1 What is Cognitive Radio?

Joseph Mitolla III in 1999 proposed the Cognitive Radio (CR) concept [8–10]

as an emerging wireless networking technology, describing it as:

“The point in which wireless personal digital assistants (PDAs)

and the related networks are su�ciently computationally intelligent
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about radio resources and related computer-to-computer commu-

nications to detect user communications needs as a function of use

context, and to provide radio resources and wireless services most

appropriate to those needs.”

Essentially, the vision of Cognitive Radios was to be implemented as a Soft-

ware Defined Radio (SDR) [11]. Empowered by the flexibility of SDRs, that

enable CRs to be (re)configured in software, and ever increasing demand in

wireless communications, CR became one of the key topics of research in the

first decade of the new millennium. One of the prominent applications of

the CR concept is Dynamic Spectrum Access (DSA) [12]. DSA has been

researched vigorously in the past decade as well principally because of the

spectrum crunch as discussed above. There are di�erent ways to dynamically

access spectrum. However, in general, it is a technique which incorporates

getting knowledge about the available spectrum, e.g. scanning the radio en-

vironment for transmission opportunities, deciding which channel to access in

case there where more than one empty channel, then dynamically switching

its communication seamlessly to the new channel. A diagram of the Cognition

Cycle, which is originally taken from agent modeling in computer science, is

shown in Figure 1.2.

In this context, sensing is a key enabler to the cognitive radios’ functioning. As

the first unit in the cognitive radio’s cognition cycle, it executes the function of

signal detection. However, the premise with CR is that, knowing the channel

fluctuations—be it in terms of predicting the channel or having a separate

apparatus to sense the channel—is not enough information for the CR to

behave according to the regulations dictated by international regulators such

as the FCC [3, 13] or OFCOM [4, 5]. What is common and prominent among

rules set out by most regulatory bodies is that transmissions of secondary users
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Fig. 1.2 Cognition Cycle [8]

who do not own the unrestricted right of spectrum usage in a particular band,

must not interfere with the communication of the incumbent or in other words

primary users.

In this thesis we will be considering scenarios where cognitive radios are allowed

to access primary bands whenever they are vacated, on the condition of not

causing perceivable interference. In this context, it is very important for any

secondary cognitive user to be able to recognize the type of the ongoing radio

communication, be it primary or secondary, in a particular band of interest,

and infer the priority of usage of that band accordingly.
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1.2 What are the research challenges?

The main problem this thesis is attempting to solve at large is capacity im-

provement of wireless communication networks. However, as discussed in Sec-

tion 1.1.1, this could be done indirectly through more spectrum-e�cient tech-

niques such as DSA.

The challenges that we are facing here, due to operation as a CR, are various:

• DSA: Considering the DSA technique, it is not enough to detect a band

and label it as occupied or not occupied, since, in the case of band

occupancy by a secondary user, other secondary users should not lose

their chance to contend. Assuming that certain Radio Access Technology

(RAT) types identify whether a user is a primary or a secondary user

(e.g. if detected Wi-Fi then Secondary, otherwise if UMTS (Universal

Mobile Telecommunications System) was detected then primary), we can

therefore conclude that, the type of the RAT occupying a spectrum band

is essential for others to know whether they are allowed to access a band

or not when they are found to be unoccupied.

• Collaboration to Cooperate: Considering the scarce spectrum again,

these secondary networks may want to collaborate to cooperate and share

the spectrum band that was found to be unoccupied at an instant. How-

ever, if these secondary networks use di�erent RATs, it would be di�cult

to collaborate, which is simply because they would not be able to under-

stand each other’s protocols, unless they communicated using the same

RAT.

• Cognitive Vertical Handover: The proliferation of di�erent types of RATs

that has given rise to the concept of Heterogeneous Networks or HetNets,

consequently lead to the requirement of seamless handover of communica-
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tion sessions between RATs. This type of handover is termed as Vertical

or Inter-RAT Handover. In a DSA enabled CR HetNet scenario, a CR

may need to be able to classify di�erent RATs, so that it can infer the

handover procedures, and reconfigure its RAT to that of the network

that it intends to handover to.

• Radio Environmental Map (REM): A REM is a database that contains

knowledge about the radio environment. The goal of such a knowledge-

base is to aid cognitive (or even non-cognitive) radios to optimize their

operation through additional information analyses at a REM database

such as: geolocation, available services and networks, regulatory policies,

information regarding nearby radios, and so on. In the same sense, the

type of the access technology used by neighboring radios has an impor-

tant role, such as in facilitating secondary-secondary spectrum sharing,

where SUs identifying each other’s RATs results in re-configuring their

RATs so that they understand each other.

All of the above bullet points call for the necessity of a technique for CRs to be

able to recognize di�erent types of current RATs, and learn to identify future

RATs automatically.

Furthermore, a technique as such opens doors to many other questions, some

of which are listed below. Assuming that we are able to di�erentiate between

PUs and SUs transmissions through this research,

• How do SUs using di�erent RATs collaborate with each other? How fast

can they converge to an optimum solution?

• How to share a temporary or spatial white space between SUs optimally?

• How can learned knowledge be transferred from one CR to another?
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• How do CR interact with spectrum regulators? in other words, can reg-

ulators be assured that their regulations will be respected by secondary

users?

The above and many more questions that we stumble upon in the forthcoming

chapters, will guide the research herein.

1.2.1 Significance of the Problem

A large-scale pilot study on TV white-space spectrum availability in the UK

under the supervision of OFCOM and other academic and industrial members

ended in 2015 [4]. On the basis of this consultation, it was finally decided

“to allow a new wireless technology access to the unused parts of the radio

spectrum in the 470 to 790 MHz frequency band” [4]. In this sense, we can

envision that in the near future, two or more secondary networks trying to co-

exist in the sub-GHz band with primary users will be a very probable scenario.

Therefore, we can safely predict a surge of new secondary networks, consisting

of secondary users trying to access the new spectrum band under the rules of

White Space Databases, regulated by OFCOM.

Another way to achieve capacity enhancement in wireless networks is to deploy

smaller cells [14–16]. Naturally, since Local Area Network (LAN) Small Cells

could be using di�erent RATs, with their introduction the frequency of these

inter-RAT or vertical handovers is likely to increase. Hence, it is imperative

to come up with a solution that would identify di�erent RATs available today,

as well as new RATs that may be designed in the future.

All the above aside, there are no common frameworks for a Cognitive Radio’s

Learning Unit today that one can rely on, although many novel ideas have been

proposed in literature in the past decade [17–20]. It is thus essential to come up
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with a design for a Learning Unit that is able to integrate numerous di�erent

machine learning techniques studied by various researchers. These learning

methods are usually diverse and are mainly used to optimize the operation of

a specific unit of the cognitive radio cycle. The knowledge learned by these

units is mostly used to improve the utility of these units separately. Through

this research we attempt to fuse knowledge learned from di�erent units of the

cognitive cycle and infer more information from them in order to enhance the

performance of a Cognitive Radio alone or a network of Cognitive Radios in

totality.

1.3 An outline of the sections of the thesis

We start in Chapter 2 by conducting a literature review of CR and Machine

Learning techniques used in previous research works. Later in the Chapter we

also allude to future research challenges in our perspective for next generation

communication systems. At the end of Chapter 2 we give a description of the

research methodology and testbed setup used in the rest of the chapters.

The research done in this thesis can be generally divided into three di�erent

themes. In the first section of the this thesis, each chapter studies a di�erent

type of radio signal classification tested on various levels of artificially added

noise. As the research develops, through making use of di�erent machine learn-

ing techniques, each chapter attempts to better the classification performance

at the cost of training more sophisticated learning algorithms. In this part

of the thesis we are essentially researching mechanisms that make Cognitive

Radios more context-aware. Context-awareness is, however, a broad subject.

Therefore, in this thesis, we focus our e�orts on Radio Access Technology

recognition that would the priority context in channel access scheme. The
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chapters that fall into this part are: Chapter 3, Chapter 4, and the first part

of Chapter 5.

The second and main section or theme of the thesis discusses the role of

RAT classification techniques in enabling more intelligent reduced primary-

secondary collisions. Herein, a type of deep neural network called Stacked-Auto

Encoders, along with a set of model-free and o�-policy reinforcement learning

algorithms are researched to provide an enhanced cognitive channel sensing

and access scheme. Chapter 5 is responsible for this section and starts with

the deep learning feature extraction in the beginning, followed by a detailed

analysis of di�erent Q–Learning algorithms.

Finally, in the future works section, some of our ongoing research in Big Data

applications has been put forward. This section examines the parallels between

Big Data problems and emerging CR and wireless applications, appropriate Big

Data tools for RF domain problems, new RF-domain applications that could

be enabled by Big Data, and other developments needed to enable CRs to

maximize the capabilities o�ered by Big Data.

1.3.1 Summary of Chapters

Below is an abstract and summary of contributions of all forthcoming chapters:

Chapter 2: Background and Overview

We start in chapter 2 by reviewing the most prominent literature on cognitive

radios, citing key articles and reports that laid the foundation of this line of

research. Consequently, we also provide a technical background introduction

to Matched Filtering which is the baseline technique used for comparison pur-
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poses, and Neural Networks which forms the building blocks of most of the

machine learning based classifiers proposed in this thesis. Toward the end of

the chapter we emphasize on the data generation and collection process where

a testbed layout is put forward.

Chapter 3: Radio Access Technology Classification for Cognitive

Radio Networks using Multi-Layer Perceptron Neural Networks [21–

23]

In spectrum bands where spectrum sharing is allowed by national regulators,

radio access technology recognition is an important technique for reducing

interference and facilitating cooperation among cognitive radios. Unlicensed

users (secondaries) need to be able to di�erentiate between transmissions of li-

censed users (primaries) and other unlicensed users. Furthermore, secondaries

should only free a band when the licensed primary user starts to transmit. In

this regard, secondary users’ transmission technology classification will have a

vital role for coexistence/cooperation purposes in such shared spectrum bands.

For the purpose of this work, a practical testbed made up of software defined

radio transceivers and a set of computing units was put together. A clas-

sification multi-layer perceptron neural network was trained in a supervised

learning method on a dataset of various radio access transmissions such as

DVB-T, WCDMA and IEEE 802.11a WiFi. Testbed results demonstrate the

e�ciency of the classification, where The multi-layer perceptron architecture

achieves 99% correct classification at SNR=-10 dB and 97% at SNR=-15 dB,

while the baseline matched filter method only achieves 55% at SNR=-10 dB

and 33% at SNR=-15 dB.



1.3 An outline of the sections of the thesis 35

Chapter 4: Radio Environment Feature Extraction and Classifica-

tion using Self-Organizing Feature Maps and Support Vector Ma-

chines [21, 24]

Radio access technology recognition can be an important technique to facilitate

spectrum sharing, interference avoidance, and cooperation among cognitive ra-

dios. As one example among its very many possible uses and benefits, RAT

recognition might allow secondary users to di�erentiate between the transmis-

sions of primary users and other SUs, such that SUs might contend for a spec-

trum band fairly, only not transmitting when they detect the PUs as having

started to transmit in the same band. In this work, a practical testbed made

up of software defined radio transceivers and computing units has been assem-

bled, and used to transmit and receive samples of representative RATs as was

mentioned in Chapter 2. A Self-Organizing Feature Map with Support Vector

Machine clustering and classification technique has been developed in a semi-

supervised learning manner, to operate on these received samples. Finally,

performance metrics have been presented showing 99% correct classification

performance at -20 dB SNR and around 96% at -25 dB SNR, which demon-

strates the e�ciency of this technique over matched filter baseline methods

which achieves only 33% at the above mentioned SNR levels.

Chapter 5: Radio Access Technology-Aware Cognitive Radio Spec-

trum Access: Using Deep Neural Nets and Reinforcement Learning

[25]

With the advent of Deep Learning architectures, recently there has been a

revolution in machine learning research in general. Powered by Graphical

Processing Units (GPUs) and distributed computing, as well as novel train-
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ing algorithms, deep neural network architectures have achieved significant

increase in performance in both supervised and unsupervised training ap-

proaches. Side-by-side, there has also been improvements to Reinforcement

Learning paradigm. In this chapter we combine a type of semi-supervised deep

learning method, namely, Sparse Auto-Encoders, with modified version of Q-

Learning, which is also a type of reinforcement learning. The goal of this work

is to minimize collisions between primary and secondary users, where they

are assumed to coexist in the sub-GHz spectrum band as discussed above.

Through the use of extensive simulations we show that our combined auto-

encoder approximated Q-learning approach has better feature extraction and

channel access performance as compared to other Q-learning algorithms such

as greedy, e-greedy and functional Q-learning. Results have been presented

on various key performance indicators including, scalability, agility, mobility,

convergence, diversity, complexity and learnability.

An overall conclusion of the research findings and subtleties are presented in

Chapter 6 alongside a discussion on the research directions therein.

1.4 Contributions to Literature

The contributions by the author to the research community can be summarized

as follows:

Conference Papers

1. Shaswar Baban, Daniel Denkoviski, Oliver Holland, Liljana Gavrilovska,

Hamid Aghvami, “Radio Access Technology Classification for Overlay

and Underlay Cognitive Radio Networks”, 2nd Annual Acropolis Work-
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shop, SDR WInnComm’12 (2012). [23]

2. Shaswar Baban, Daniel Denkovski, Oliver D Holland, Liljana Gavrilovska,

and Hamid Aghvami. “Radio Access Technology Classification for Cogni-

tive Radio Networks” PIMRC’13 – Mobile and Wireless Networks (2013).

[21]

3. Dagres, Ioannis, Andreas Polydoros, Daniel Denkovski, Valentin Rakovic,

Vladimir Atanasovski, Liljana Gavrilovska, Krzysztof Cichon, Adrian

Kliks, Shaswar Baban, and Oliver Holland. “An Integrated Platform

for Source Detection, Identification and Localization with Applications

to Cognitive-Radio.” European Wireless 2013 (2013). [22]

4. Shaswar Baban, Oliver Holland, and Hamid Aghvami. “Wireless Stan-

dard classification in Cognitive Radio Networks using Self-Organizing

Maps.” ISWCS’13 CRAFT Workshop (2013). [24]

5. James Neel, Peter G. Cook, Ihsan Akbar, Neal Mellen, Shaswar Baban,

Charles Sheehe, Bob Schutz, Daniel Devasirvatham, “IPA Volume 3:

Cognitive Radio Context, WISDM, and Big RF”, SDR-WInnComm –

Technical Track: Top 10 Most Wanted Wireless Innovations, (2014). [26]

6. J. Neel, Shaswar Baban, P. Cook, N. Mellen, I. Akbar, D. Devasir-

vatham, C. Sheehe, B. Schutz, “Context-Aware Cognitive Radio for Au-

tomated Wireless System Management,” SDR-WInnComm 14, March

11-13 (2014). [27]

7. J. Neel, Shaswar Baban, N. Mellen, I. Akbar, C. Sheehe, B. Schutz, P.

Cook, “Big RF for Homeland Security Applications”, IEEE HST Sym-

posium, 2015. [28]

8. J. Neel, Shaswar Baban, P. Cook, I. Akbar, N. Mellen, C. Sheehe,
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for Next Generation Wireless Networks: Big RF”, Technical Report. [to

be submitted in 2016]
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lision Rate”, Technical Report. [to be submitted in 2016]

Green/Discussion Papers
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Contribution to EU ICT ACROPOLIS Project
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tocols and Evaluation. (2014)



39

Chapter 2

Background and Overview

2.1 Introduction

In the previous chapter we introduced the concept of Cognitive Radios and

pointed out the main reasons that gave rise to the significant amount of re-

search on this topic. In this chapter, we present an overview of the prominent

works related to the use of machine learning techniques used in cognitive radio

paradigm in general, and radio access technology identification and dynamic

spectrum access in more detail.

The rest of this chapter is organized as follows. In Section 2.2, we review

the literature to include background information and previous research on

Cognitive Radio in general, and dynamic spectrum classification and access in

specific. Under each section we give a basic description of the AI methods and

learning models used in this thesis. Finally, in Section 2.3, a description of the

testbed is given along with the data collection process.
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2.2 Machine Learning in Cognitive Radios

2.2.1 A General Review

The huge demand to access information seamlessly and ubiquitously in the

past decade in conjunction with the scarcity of radio resources [3] has re-

sulted in intensive research towards the concept of Cognitive Radio Networks

(CRNs) [10]. Nonetheless, only a small subset of published works have found

their way into implementation and standardization. This is due to many fac-

tors; among them are the ambiguity of the cognitive radio concept for which

many definitions exist, nonetheless a complete solution that fulfills the premise

is yet to be materialized.

One of the fundamental enablers in CRN is the ability to sense the radio

environment. Typically, a CR is meant to be able to sense its surrounding

radio environment and learn from its past experience [9]. Supported by such

awareness, a CR can bring its core functions, such as DSA, to fruition, and

consequently provide a reliable and e�cient utilization of the spectrum [12].

Such intelligent devices may wish to cooperate with other compatible devices,

one objective being to find opportunities in underutilized spectrum bands and

communicate using those opportunities. Cognitive Radios need to observe

channel occupancy of a spectrum band of interest in order to perform channel

selection. These intelligent radios may also want to find coexistence opportu-

nities with other compatible devices, screen di�erent frequency bands for white

spaces, and detect occupied bands by users of a higher priority class and thus

try to avoid them.

In this thesis we consider scenarios where there could be concurrent trans-

missions from Primary Users (PUs) owning the right of operation in a radio
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spectrum band and Secondary Users (SUs) who operate on a license-exempt

basis. In this regard, when a cognitive radio performs spectrum sensing it

is crucial to correctly classify the priority of the transmission being sensed,

i.e. whether the received signal belongs to a primary or a secondary user. If

the signal is identified as a primary user’s signal then transmission in that

channel should be avoided. However, if the sensed signal was identified to be

from a secondary transmitter then a CR should be able to contend for chan-

nel access, e.g. as in WiFi contention-based channel access using Carrier Sense

Multiple Access (CSMA) method. In the absence of such a classification mech-

anism, mere energy-detector [31] based channel sensing may miss contention

opportunities. Therefore, RAT classification should be regarded as an essential

requirement in cognitive radio networking.

One way to classify radio transmissions according to their license priority is

to identify their Radio Access Technology (RAT) type. Di�erent types of

technologies are acquainted with di�erent licensing priorities. For instance,

the UMTS, Groupe Spécial Mobile (GSM) and Digital Video Broadcasting–

Terrestrial (DVB–T) are all radio technologies that require full control of their

operating spectrum and therefore are classified as license–based primary RATs.

Others, that are able to operate in the industrial, scientific and medical (ISM)

radio bands such as WiFi and Bluetooth are license-exempt, where they can

operate in contention-mode and tolerate interference, and therefore can resem-

ble secondary users. Herein, we assume we can infer the priority class of the

user by reasoning over the type of RAT of the sensed channel.

Various tutorials and surveys can be found in the literature on CR in general [7,

32–34], and in more detail on the use of Machine Learning [35, 36] and AI [37]

techniques, accessing TVWS bands [38–40], spectrum sensing [41–43], Medium

Access Control (MAC) protocols [44] and strategies [45, 46], and on security
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threats [47–50].

In specific to RAT-based classification, the authors in [51] have devised an au-

tomatic RAT classifiers for the identification of WiFi and Bluetooth transmis-

sions. Two main features were used in the classification: the maximum packet

duration and the period of the silent gaps between packets. The classification

performance achieves 100% correct classification when one RAT type is consid-

ered at a time. However, the study does not indicate the Signal-to-Noise Ratio

of the captured packets. Moreover, the above mentioned radio communication

protocols use inherently di�erent multiplexing techniques, namely, Direct Se-

quence Spread Spectrum (DSSS) and Frequency Hopping Spread Spectrum

(FHSS); where the former is using a fixed and wider channel bandwidth than

the latter, and the latter is using pseudo-randomly hopping transmissions of

very short duration, i.e. 625 µsec.

Various works have implemented classifiers that discriminate between di�er-

ent modulation schemes [52–54] using di�erent machine learning algorithms.

Likewise, in [55–57] the main author have put forward several deep learning ar-

chitectures to classify modulation schemes consisting of BPSK, QPSK, 8PSK,

16QAM, 64QAM, BFSK, CPFSK and PAM4 for digital modulations, and WB-

FM, AM-SSB, and AM-DSB for analog modulations. The reason that these

works might find it hard to be part of a real-life scenario is that primary users

are not restricted to the use of a specific type of modulation. In fact a primary

user can jump from one modulation scheme to another in the matter of mil-

liseconds depending on its channel state. Therefore, in our research we have

opted at designing classifiers that would consider high-level RAT features, such

as the spectrum mask and time-domain packet frames rather than carrier-level

features such as the used modulation scheme.

Cyclostationary signal detection and classification [58] is another widely method
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in the literature, where there have been various works [59–61] on the usage of

this technique in general, and others [62–68] applying this method to the con-

cept of CR. A random process is said to be wide-sense cyclostationary if its

mean and autocorrelation function are periodic with some period T [69]. In

this regard, since noise is rarely cyclostationary, one can detect the presence of

signals at particular frequencies even if the signal power is very weak. There-

fore when operating in a low SNR regime, classifiers can be designed by making

use of the cyclostationary features. Moreover, since di�erent wireless commu-

nication standards employ di�erent specs, such as the periodicity of channel

estimation and synchronization subcarriers, a number of cyclostationary fea-

tures can be chosen to classify di�erent RATs [62].

Internationally, agenda item 1.19 of World Radio-communication Conference

(WRC) 2012 [70–72] has considered the development of SDR and CR. Con-

cerning the implementation of CRNs, further work has led to Resolution 58

of the International Telecommunication Union Radio-communication sector

(ITU-R), committing to continue the study of CRS. Thus, it is expected that

there will be follow up work by the ITU-R on CR in the near future. This

is despite globally many telecommunication bodies being anxious about the

detection of the low-power transmissions of some PUs in the context of DSA,

where SUs may cause harmful interference to the incumbent or licensed com-

munication systems.

A multitude of European projects have also been funded to tackle the research

challenges of cognitive radio within the EU Seventh Framework Program FP7-

ICT [73]. Some of these projects are: E3 (End-to-End E�ciency – www.ict-

e3.eu), CROWN (Cognitive Radio Oriented Wireless Networks – www.fp7-

crown.eu), ACROPOLIS (Advanced Coexistence technologies for Radio OPti-

misation in LIcensed and unlicensed Spectrum – www.ict-acropolis.eu), QUASAR
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(Quantitative Assessment of Secondary Spectrum Access – www.quasarspectrum.eu),

SENDORA (SEnsor Network for Dynamic and Opportunistic Radio Acess –

www.sendora.eu), PHYDYAS (Physical layer for dynamic spectrum access and

cognitive radio – www.ict-phydyas.org), ARAGORN (Adaptive Reconfigurable

Access and Generic interfaces for Optimisation in Radio Networks – www.ict-

aragorn.eu), COGEU (COgnitive radio systems for e�cient sharing of TV

white spaces in EUropean context – www.ict-cogeu.eu), CREW (Cognitive

Radio Experimentation World – www.crew-project.eu), QoSMOS (Quality of

Service and MObility driven cognitive radio Systems – www.ict-qosmos.eu),

FARAMIR (Flexible and spectrum-Aware Radio Access through Measure-

ments and modelling In cognitive Radio systems – www.ict-faramir.eu), CRS-i

(Cognitive Radio Standardization-initiative—From FP7 research to global stan-

dards), OneFIT (Opportunistic Networks and Cognitive Management Systems

for E�cient Application Provision in the Future Internet – www.ict-onefit.eu),

and so on. Recently, however, within the EU HORIZON 2020 [74] only

one project mentions cognitive radio in its description, and that is project

SCREEN (Space Cognitive Radio for Electromagnetic Environment maNage-

ment – screen.tekever.com). Rather furthering the research on cognitive radios,

SCREEN attempts to focus its e�orts on the “implementation and testing” of

cognitive radios.

The increasingly more complex future communication networks design have

also led to the advent other innovative paradigms such as Self-Organizing

Networks (SONs) [75] and Docitive Networks [76]. As the communication

engineering community cries out for more autonomous and intelligent opera-

tion these new communication paradigms have recently received a significant

amount of attention. Traditionally, the techniques used to materialize these

needs have been manually engineered to serve a particular purpose. Although,
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in general most of these techniques involve ingenious ideas such as Game The-

ory and sophisticated digital signal processing, it was hard to achieve the level

of autonomy and cognitive required. For instance, the research community had

a lot of hope for the 4G Long Term Evolution (LTE) cellular mobile system,

yet it did not deliver the 4G promise as established by ITU-R’s IMT-Advanced

requirements. This thesis, however, is chiefly inspired by the machine learning

literature where concepts such as autonomy and cognition have been researched

in agents and multi-agent systems.

In the following subsections below we review some of the key machine learning

literature in relation to their application in cognitive communication.

2.2.2 Neural Networks

Neural nets have been used in various applications and industries in the past.

In communication systems as well, and specifically as part of Cognitive Ra-

dio technology where cognition is an essential characteristic of such systems,

hard-wired algorithms have limited learning capabilities. Therefore, adaptivity

becomes a crucial functionality. An intelligent system must be able to with-

stand the dynamics of networking and gain knowledge by extracting important

features from the radio environment, necessary for a better communication

performance.

In this subsection, we will first start by giving a short introduction to neural

networks history, review its main applications in CR, and then give a descrip-

tion of the analytical framework of Multi-layer Perceptron architecture.

A brief history of Neural Networks Neural Networks were first researched

in 1943 by McCulloch and Pitts [77] in order to emulate the functionality of a
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human brain made up of a network of artificial neurons. Hebb, in 1949, pro-

posed the idea of reinforcing a neuron’s weight based on repeated activation

of its synapses [78]. In the 1950s, as computers emerged, neural networks re-

search was pushed further forward. Rosenblatt, in 1958, laid the foundation of

Perceptrons [79]. However, in 1969, Minsky and Papert showed the limitations

of neural networks in their book called “Perceptrons” [80]. This pessimistic

result eventually became widely generalized, which consequently hindered the

research in neural networks for almost a decade. The resurgence of neural nets

happened in 1986, when Rumelhart, Hinton and McClelland [81] devised the

Backpropagation Algorithm for training multilayer feed-forward neural net-

works1.

Use of Neural Nets in the Context of Cognitive Radio Networking

Due to its versatility MLP neural nets have been also borrowed for the research

in CR. It has been used for various purposes, such as spectrum sensing [53, 54,

85, 86], spectrum behavior learning [87], dynamic spectrum access [88], and so

on.

Perhaps one of the earliest works considering the use of neural nets to classify

di�erent wireless standards is Palicot et al. in [89]. This paper presents a

Self-Adaptive Universal Receiver (SAUR), where the authors have studied the

classification of many RATs e.g. GSM, UMTS, Digital Enhanced Cordless

Telecommunications (DECT), Digital Audio Broadcasting (DAB), etc. The

signal recognition was based on the a priori knowledge of these RATs’ channel

bandwidths. This approach would achieve a low classification performance

since most of the recent RATs use scalable channel bandwidths, e.g. Scalable-
1The invention of Backpropagation algorithm reportedly [82] goes way back, where Lin-

nainma et al. in 1970 [83] proposed it outside the neural network context, and Werbos et

al. used it for neural nets in [84] in 1982.
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OFDMA, and thus one RAT could be mistakenly classified for another if their

bandwidth sizes matched.

Popoola et al. in [53] proposed automatic modulation classification in the con-

text of dynamic spectrum access to detect the presence/absence of primary

users. A multi-layer feed-forward neural network has been fed with manually

extracted features such as normalized maximum spectral magnitude squared,

standard deviation (of the absolute value) of the non-linear component of the

instantaneous phase and amplitude. The study shows results of a set of very

good modulation classification performances of above 99.65% when tested on

signals of SNRs ranging between -5 and 20 dB. However, stress tests in extreme

noisy environments where not conducted to show the limitations of this ap-

proach. In another paper [54], the same authors propose an extended version

of their previous work in terms of modulation classes and manually engineered

features. Although the works suggests good classification performances can be

achieved, however, again, results of very low SNRs below -5 dB classification

performance has not been presented.

Some of the main works of this thesis are based on the concept of neural

networks from Machine Learning literature. Therefore, below we give a basic

overview of Multi-layered neural nets and how they are trained to classify

signals in general.

Neural Network Architecture and Training

The data for training is a set of points (vectors) x
i

along with their categories

t
i

. For some dimension d, the x
i

œ Rd and t
i

= [+1, ≠1]. A mathematical

model for the output, y, of an artificial neuron is given by Equation 2.1 and a

diagram of this model is shown in Figure 2.1
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Fig. 2.1 A Neuron with Sigmoid Activation Function

y = g (Èw, xÍ + b) , (2.1)

Where w œ Rd is a weight vector, Èw, xÍ is the inner (dot) product of the

vectors w and x, b is the “bias” value of the neuron which also corresponds to

w
0

, and the Activation Function g (·) is a Tanh-Sigmoid function [90] in this

case. Equation 2.1 could also be represented as

z
j

= g (a
j

) , for x
0

= 1, (2.2)

where j is the index of the hidden neurons, such that j = 1, ..., J , where J is

total number of hidden neurons, in the 2-layer perceptron neural network, and

a
j

=
ÿ

i

w
ij

x
i

(2.3)

where i is the index of the input nodes.

The Tanh-Sigmoid function, g(x), is expressed as

g (x) = 2
1 + e≠2x

≠ 1. (2.4)
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Fig. 2.2 A Multi-layer Neural Network with Sigmoid Activation Function

The Tanh-Sigmoid function is similar to tanh(x), but it di�ers in that it runs

faster than tanh(x) as implemented in MATLAB [91, 92]. Connecting the input

vector, x, to more than one neuron and then putting through the output of

these neurons into yet another layer of neurons will create Multi-Layer Neuron

model as shown in Figure 2.2. The final output of the multi-layered neural net,

shown in Figure 2.2, can be analytically expressed as in Equation 2.5, where

n is the index of the training example.

y
k,n

= g

Q

a
ÿ

j

w
jk

g

A
ÿ

i

w
ij

x
i,n

BR

b , for x
0,n

= 1 (2.5)

Training Neural Nets

In order to use neural networks to classify di�erent types of inputs, we first

need to train such a neural network. Consequently, in order to train a neural
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network one needs a cost function, or in other words, a function that will

calculate the amount of error after each classification attempt. One of the

most widely used cost functions is the Mean Squared Error (MSE),

MSE = 1
2N

Nÿ

n=1

(t
n

≠ y
n

)2 , (2.6)

where t
n

is the correct label value and y
n

is the predicted value. Putting

Equations 2.4 and 2.5 into 2.6, we will get the MSE error expression,

MSE = 1
2N

Nÿ

n=1

Q

ccat
n

≠ 1

1 + exp
3

≠ q
j

w
jk

1

1+exp(≠
q

i

w

ij

x

i,n

)

4

R

ddb

2

. (2.7)

Simply put, a 2-layer Neural Network Training is the process of minimizing

the error function shown in Equation 2.7 with respect to the weight values,

in this case: w
ij

and w
jk

. More recently, the neural network community has

adopted the Cross-Entropy (CE) cost function [93], which can be defined as,

CE = ≠
Nÿ

n=1

t
n

log(y
n

) (2.8)

or in our case, in a similar fashion to Equation 2.7, as,

CE = ≠
Nÿ

n=1

t
n

log

Q

cca
1

1 + exp
3

≠ q
j

w
jk

1

1+exp(≠
q

i

w

ij

x

i,n

)

4

R

ddb . (2.9)

When compared to MSE, the CE cost function has more attractive analytical

properties [94]. CE has been proven to speed up the neural network training

process through back-propagation, as well as enhancing the overall classifica-

tion performance with relatively short stagnation periods [94, 95].
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Algorithm 1 MLP NN Training using Backpropagation Algorithm
Require: Learning rate÷

1: for all training examples x do
2: procedure Forward Propagation Stage

3: Apply an input vector x to calculate y
n

using Equation 2.5
4: Calculate MSE error E Using Equation 2.7
5: end procedure
6: procedure Backpropagation Stage

7: Calculate all ”s in the hidden layer using Equation 5
8: end procedure
9: procedure Weight update:(calculate new weights using Eq. 4)

10: for all w do
11: w := w ≠ ÷”z
12: end for
13: end procedure
14: end for

Minimizing Equation 2.7 is not trivial, and it actually hindered the progress in

neural nets research for some time. However, in 1982, Rumelhart et al. used

the Backpropagation Algorithm [81, 83, 84] to compute the partial derivatives

of at each neuron e�ciently. The Backpropagation Algorithm is summarized

in Algorithm 1.

Please refer to Appendix A for the derivation involved in backpropagating the

error value and adjusting the weights of a neural network. Also, for a more de-

tailed treatment of Backpropagation algorithm, the reader is kindly suggested

to see Bishop’s book on Pattern Recognition and Machine Learning [96].

There are two types of training methods, Online and Batch. In the Online

training method, weights are updated after every input training example.

While in the Batch method, training is done on all of the training samples, or

a batch of them, at every training epoch. In this chapter, we opt for training

the MLP neural network via stochastic online processing, although the batch

method has been found [97] to yield a lower residual error E than online train-

ing. The intuition behind this is that in online training, since the weights of
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the network are updated after back-propagating each training forward pass, it

might be the case where a correctly learned weight vector in the previous step

be destroyed by training the network on a noisy data point in the subsequent

step. Yet, as will be discussed next section, due to the sequential operation

nature of cognitive radios, it is imperative to classify signals as they are re-

ceived. In this regard, and in order to experiment in a realistic scenario, we

have trained out neural network in an online fashion.

More recently, the shift in research is toward unsupervised automatic fea-

ture extraction [98], such as Recursive Boltzmann Machines (RBMs) [99, 100],

Auto-Encoder Neural Network [93] and Deep Belief Nets (DBNs) [101] which

are both under the category of Deep Neural Nets (DNNs) [102]. In the

next subsection we will briefly discuss Deep Learning and Deep Sparse Auto-

Encoder Neural Networks.

2.2.3 Deep Learning

In this section, we will be focusing on Deep Neural Network (DNN) based

methods that have been recently given lots of attention in the literature. Some

of these deep learning architectures have had significant success in image recog-

nition competitions, e.g., Convolutional Neural Nets (CNNs) in ILSVRC-2012

competition [102–104]. For instance, one of the well-known CNN architec-

tures [105] that was used to classify the MNIST digits database [106] was

consisting of convolutional layers each of which is usually followed by a sub–

sampling or pooling layer, in addition to other layers, such as Rectified Linear

Unit and Dropout2 layers, and finally a fully connected conventional MLPNN

layer. It is worth mentioning, however, that the idea of cascading several stages
2Dropout is not a unit or layer per se, however, it interacts as a layer to the neural layer

in front of it i.e. its e�ect to its forthcoming layer is such that there is a layer of neurons
that changes the number of connections to the upcoming layer.
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of neurons actually have already been proposed in the eighties by Fukushima’s

Neocognitron architecture [107].

In general, the architecture of DNNs is di�erent from the conventional Multi–

Layer Perceptron Neural Networks (MLPNN) in a few ways [102, 105, 108]. In

a DNN there are more intermediary hidden layers. These hidden layers exhibit

a distributed representation through local connectivity between the preceding

and intermediary layers, where each layer may have di�erent functionality.

Recently, a few works have been noticed in the literature that use such tech-

niques. In [109] the authors have attempted to use Deep Belief Network (DBN)

for primary user signal classification. However, SNR values considered are

equal to or above 0 dB, and therefore the research lacks testing the algorithm

under negative SNR scenarios.

In [110] the authors have proposed what they call a Cognition-based Network

(COBANET), where a linear classifier have been designed concatenating a Re-

cursive Boltzmann’s Machine (RBM) to extract content related features from

video sequences. The extracted information is then meant to be used by a

radio resource manager for Quality-of-Experience (QoE) improvement. In a

subsequent work on this topic, the authors of [111] have put forward a Gen-

erative Deep Neural Network (GDNN) that would learn in an unsupervised

fashion from various types of signals that could be captured in a communica-

tion network. Some of their initial results were presented where the trained

GDNN was used to estimate the quality-rate characteristics of video flows as

discussed in [110]. The latter work is a more comprehensive description of the

proposed concept, but it avoids indicating that a solution to the Cognitive Ra-

dio paradigms has found, rather it eloquently points several di�erent research

challenges in the implementation of COBANETs. Inline with this research, in

Chapter 5 we propose a very similar concept using Deep Sparse Auto-Encoders
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and a modified version of Q-Learning to achieve DSA via exploiting channel

RAT information. It is worth mentioning that the timing and topic of research

of our work happens coincide with the works in [110, 111].

In a very recent and interesting work [112] (published after obtaining our

results in Chapter 5), shows that better power control can be achieved between

a number of distributed CRs using a DNN architecture. The DNN is here used

to infer future aggregate-noise levels in a radio environment based on CR local

information according to Taken’s Theorem. Although this work show great

potential, it is however based on the assumption that the aggregated noise is

generated by the CRs and that external sporadic sources of noise does not

contribute enough to make the noise estimation too complicated. Another

assumption is that the considered set of CRs are all within a close range of

each other for their transmissions/interference to be perceived by one another

and therefore be able to correctly estimate the necessary number of dimensions

of the dynamic system. However, this might not easily be the case in wireless

communications when there is a Hidden Node Problem [113].

Deep Sparse Auto-Encoder Neural Networks

In the recent years there has been a surge in the research on deep architectures.

Deep artificial neural networks has been one of the top ranking research topics

in artificial intelligence research [102]. Auto-Encoders (AE) are a type of neural

network model, that are unsupervised learning methods and that learn from

a representation of data. Literature on Auto-Encoder models go back to the

80s [98] when the term was first coined, although the use of these models was

somehow marginal until lately. In recent years, research in this area has picked

up speed as the analytical bases of these methods were better understood [98].
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Simply, an Auto-Encoder/Decoder neural network tries to match its inputs

and outputs by first learning the intermediary compressed representation of

the data. In light of researching distributed representation for more meaning-

ful features, researchers have recently succeeded in training multiple layers of

Auto-Encoders and stacked them on top of each other to form a deep learning

architecture3.

There are several flavors of Auto-Encoders: Sparse Coding [114], Sparse Auto-

Encoders [108] and Contractive Auto-Encoders [115]. In Chapter 5 we will

give further details on the technical background and cost function formulation

of the designed Sparse Auto-Encoder Architecture.

2.2.4 Self-Organizing Maps

The development of SOFM Neural Nets (or simply SOMs) [116] was initially

motivated by research on understanding the spatial organization of the func-

tions of cerebral cortex region of the brain [117, 118]. Nonetheless, SOFMs

have been used in a multitude of applications since its invention, e.g. in vi-

sualizing financial data [119], interpreting patterns of gene expression [120],

ecological sciences [121], and so on.

A SOFM is an unsupervised learning neural network architecture, which at-

tempts to cluster the input data independently without external help. These

clusters are each comprised of identified common features. Conventionally, in

Data Science, high-dimensional input vectors are reduced for various reasons,

such as finding the most important dimensions, lowering computational com-

plexity and visualization purposes. This problem, in fact is called Manifold

Learning or Dimensionality Reduction
3
Stacked or Deep Auto-Encoders and are hereafter used interchangeably.
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In [122], an incremental SOM integrated with hierarchical neural network HNN

(ISON-HNN) has been utilized to discriminate between authorized and unau-

thorized signal transmissions of SNRs ranging between -5 and 5 dB. The au-

thors of [123] proposed the usage of a SOM in conjunction with Linear Vector

Quantization (LVQ) to classify a range of di�erent wireless communication

standards, however, they did not perform stress tests in order to demonstrate

the SNR at which the classification was performed. All of the scenarios de-

scribed above are limited to the classification of the RATs that they are trained

for and have not described a method to extend the list of considered RATs.

SOMs have been also used in the context of security in [124, 125].

A basic description of the architecture and training steps of a SOFM model is

provided in Section 4.3.1.

2.2.5 Support Vector Machines

Support Vector Machine (SVM) [126, 127] is a powerful supervised machine

learning technique used for classification and regression purposes. In its basic

form, an SVM is linear binary classifier; however, it can be extended to multi-

class classifiers as well. One of the reasons of SVM’s popularity is that unlike

neural nets SVM does not su�er from local minima problem, do not su�er from

the curse of dimensionality and it comes with theoretical guarantees about its

performance [128].

In [129], a combination of spectral correlation analysis and SVM was used for

signal classification in the context of CR. Here, a set of modulation schemes

where classified based on features extracted from spectral correlation analysis

of the received signals. The results show that at 0 dB SNR a classification per-

formance of 85% and above can be achieved on a set of 6 modulation schemes.
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In [130] the authors have studies RAT classification through a two-stage fea-

ture extraction and classification method. Various techniques have been used

in the classification stage, such as SVM, k-Nearest Neighbor (kNN) [131], and

C4.5 decision tree [132]. One of the results of this paper is that in the case of

longer sensing periods SVM proves to be a better classifier that its C4.5 coun-

terpart. However, information regarding the SNR levels at which the signals

dataset was compiled has not been included.

Mathematical Formulation: Primal. Consider a data point x
i

œ D, i =

[1, ND] dataset that needs to di�erentiated into one of two classes. The sepa-

rating hyper-plane equation can be described as: Èw, xÍ+b = 0, where w œ Rd,

Èw, xÍ is the dot product of w and x, and the bias value b is real. The following

problem then defines the best separating hyperplane. Find w and b that mini-

mize ÎwÎ, such that y
i

(Èw, x
i

Í + b) Ø 1, ’ (x
i

, y
i

). The x
i

on the boundary of

the separating hyper-plane, that satisfy

y
i

(Èw, x
i

Í + b) = 1, (2.10)

are the support vectors, as shown in Figure 2.3.

The optimization problem can be formulated as minimizing Èw, wÍ /2, for

mathematical convenience. This problem is a quadratic programming problem,

where the optimal solution w, b enables classification of a vector z as follows:

class(z) = sign (Èw, xÍ + b) . (2.11)

Mathematical Formulation: Dual. In order to solve the above quadratic

programming problem in a more computationally feasible manner it is advis-

able to use its Dual form. This is done by taking positive Lagrange multipliers



2.2 Machine Learning in Cognitive Radios 58

Fig. 2.3 SVM Anatomy on Linearly Separable Dataset, indicating
Support Vectors, Separating Hyper-plane and the Inter-class Margin

–
i

multiplied by each constraint, and subtract from the objective function:

L
P

= 1
2 Èw, wÍ ≠

ÿ

i

–
i

(y
i

(Èw, x
i

Í + b) ≠ 1) , (2.12)

where we try find a stationary point of L
P

over w and b. Setting the partial

derivative of L
P

with respect to w and b to 0, we get w = q
i

–
i

y
i

x
i

and

0 = q
i

–
i

y
i

. Substituting into L
P

, we get the dual L
D

:

L
D

=
ÿ

i

–
i

≠ 1
2

ÿ

i

ÿ

i

–
i

–
j

y
i

y
j

Èx
i

, x
j

Í , (2.13)

which we maximize over –
i

Ø 0. In general, many –
i

are 0 at the maximum.

The nonzero –
i

in the solution to the dual problem define the hyper-plane, as

shown above, where w is presented as the sum of –
i

y
i

x
i

. The data points x
i
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corresponding to nonzero –
i

are the support vectors.

The derivative of L
D

with respect to a nonzero –
i

is 0 at an optimum. This

gives, y
i

(Èw, x
i

Í + b) ≠ 1 = 0. In particular, this gives the value of b at the

solution, by taking any i with nonzero –
i

.

Non-separable Data A separating hyper-plane, in the case of non-separable

data, may not be able to separate the two classes from each other. Hence, we

can use a margin which shall be more flexible. In other words, we should

attempt to separate most of the data and penalize the data points that lie

outside this “soft margin”.

There are two standard formulations of soft margins. Both involve adding

slack variables s
i

and a penalty parameter C.

• The L1-norm problem is:

min
w,b,s

A
1
2 Èw, wÍ + C

ÿ

i

s
i

B

(2.14a)

such that, y
i

(Èw, x
i

Í + b) Ø 1 ≠ s
i

, and s
i

Ø 0. The L1-norm refers to

using s
i

as slack variables instead of their squares.

• The L2-norm problem is:

A
1
2 Èw, wÍ + C

ÿ

i

s
i

2

B

(2.15)

subject to the same constraints as above.

Note that increasing C will place more weight on the slack variables s
i

,

which leads to a more strict separation between the di�erent classes.

Likewise, decreasing C towards 0 makes misclassification less important.
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Mathematical Formulation of the ‘Dual’ for Non-separable Data case

To facilitate simpler computation, the soft-margin formulation of the L1 dual

problem is considered. Using Lagrange multipliers µ
i

on the L1-norm problem,

the Lagrange function to be minimized is:

L
P

= 1
2 Èw, wÍ + C

ÿ

i

s
i

≠
ÿ

i

–
i

(y
i

(Èw, x
i

Í + b) ≠ (1 ≠ s
i

)) ≠
ÿ

i

µ
i

s
i

(2.16)

where we look for a stationary point of L
P

over w, b, and positive s
i

. Setting

the partial derivative of L
P

with respect to w, b, –, s, and µ to 0, we get:

b =
ÿ

i

–
i

y
i

x
i

,
ÿ

i

–
i

y
i

= 0, –
i

= C ≠ µ
i

, –
i

, µ
i

, s
i

Ø 0. (2.17)

The set of equations in 2.17 leads to the formulation of the dual as follows:

ÿ

i

–
i

≠ 1
2

ÿ

i

ÿ

i

–
i

–
j

y
i

y
j

Èx
i

, x
j

Í (2.18a)

subject to the constraints:

ÿ

i

–
i

y
i

= 0, 0 Æ –
i

Æ C. (2.18b)

The gradient equation for b gives the solution b in terms of the set of nonzero

–
i

, which correspond to the support vectors. For a more detailed discussion,

please refer to Chapter 7 of [96].

Both dual soft-margin problems are quadratic programming problems, where

we are going to solve them by using MATLAB’s ‘svmtrain’ command [133].
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2.2.6 Reinforcement Learning

Considering the highly dynamic nature of the transmissions of the primary and

the secondary users in the TVWS, we would only perceive partial feedback in

terms of the success rate of a communication link. In this context, we will

investigate the performance on using Reinforcement Learning (RL) methods

with side information to improve sensing e�ciency based on prioritized sensing

mechanism. Recently, RL has gained much attention due to the multitude of

successful applications in various domains: such as in robotics [134–136], game

playing [104, 137–139], stock trading [140–142], etc. There has been indeed

many uses of RL in the cognitive radio context as well.

The use of RL is distinguishable from Supervised Learning methods, as de-

scribed in [135], in that only partial feedback is given to the learner about

the learner’s predictions. Supervised Learning assumes that each example is a

separate learning sample, while RL inherently captures the sequence of events,

where an action taken may be the cause of a future event. In RL, states and

actions are encoded to be able to measure the value of being at particular state

and taking a specific action; while the goal is to maximize the rewarding signal

that is perceived from the environment [82].

A brief analytical description of Reinforcement Learning and Q-Learning, in-

cluding greedy Q-learning, functional Q-learning, and Approximate Q-learning,

and Transfer learning has provided inline within Chapter 5 in sections 5.4.1,

5.4.2, and 5.5.7, respectively.
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2.2.7 Matched Filter

Matched Filtering is a versatile technique that has found its way into many

applications, such as image processing where 2-dimensional matched filters

are used to extract features, for instance, from X-ray images [143] or retinal

images [144]; in radar systems [145, 146] for time delay estimation where a

reflected known signal is passed through a matched filter to detect objects

at far distances; and finally, in gravitational-wave astronomy [147] to identify

known shapes by matched filtering many detectors output at scale. Matched

Filters are widely used for signal detection in communication systems as well

[148–151]. In digital communications MFs have been chiefly utilized to de-

tect pulses in the received noisy signal because of optimal detection and SNR

maximization properties [149].

For comparison purposes, as a baseline scheme in thesis we are considering

Matched Filter spectrum sensing technique to benchmark the performance of

the proposed machine learning classification architectures. Below, we present

a brief technical background review of this method.

To be an optimal detector, MFs require a priori knowledge of the actual

undistorted transmitted signal, i.e. both Physical and Medium Access Con-

trol (MAC) layer such as pulse shaping, modulation type and packet format

information needs to be available at the receiver [151, 152]. In cognitive ra-

dio networking, primary user signal information is hardly fully available at

the receiving cognitive radio [151], therefore MFs are severely limited in such

coherent detection scenarios. However, partial primary user transmission in-

formation can be recovered from the periodic pilot and preamble components

of the received packet frame. Therefore, in our comparison work we use MFs
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in a non-coherent fashion, i.e. we attempt to learn a MF kernel4 including

di�erentiating features of various received primary user signals from the past

experience of the cognitive radio. This can be achieved by averaging the vari-

ous received signals over a period of time, allowing for the periodic always-on

pilot and preamble components to protrude from varying data carrying com-

ponents of the received signal and thereby forming template for a particular

RAT at a time. The template building process is discussed in Sections 3.3 and

4.4 for time and frequency domains, respectively.

Analytically, matched filtering is done as follows. Let x(n) be the received

signal such that,

x(n) =

Y
________]

________[

wimax(n) H
1

wcdma(n) H
2

wifi(n) H
3

(2.19)

where n is the bin of the received frame, and H
1

, H
2

and H
3

are matched filter

test hypotheses, each of which is defined according a chosen threshold ⁄, such

that, Y
___]

___[

H+ if q
N

n=1

x(n)KH(n)ú Ø ⁄

H≠ if q
N

n=1

x(n)KH(n)ú < ⁄

(2.20)

where H+ and H≠ indicate whether the hypothesis is tested true or false,

respectively; KH(n) is the trained kernel for a particular RAT class match fil-

ter H, N is the total number of bins per frame and ‘ú’ is the complex conjugate

operator. The filtering process done in Equation 2.20 is equivalent to convolu-

tion of the received unknown frame with the conjugated time-reversed version

of the kernel.
4In regards to Matched Filters, the terms ‘kernel’ and ‘template’ are used interchangeably

in this thesis.
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The major advantage of the MF is that it can achieve high processing gain due

to coherent/semi-coherent detection. However, one needs to design a separate

MF for each class of RAT needed to be identified, which would increase the

complexity of the overall design. In addition, the threshold ⁄ should also be

manually tuned in order to achieve optimum results.

2.2.8 Perspective research trends

In the preceding subsections we reviewed research works done in the past. In

this subsection, we briefly review possible future trends and challenges in next

generation communication networks.

Each xG communication technology has aimed at improving the broadband

experience. Meanwhile, rapid innovation in telecommunications has also en-

abled us to flood ourselves with data of all types, sizes, and speeds—to the

extent that our conventional processing paradigms break down when mining

these massive datasets in order to drive profitability.

In a joint study, Ericsson and Chalmers University have shown that doubling

the broadband speed for an economy increases its Gross Domestic Product

(GDP) by 0.3%, which is equivalent to USD 126 Billion in the OECD region

[153]. Moreover, the report indicates that for a 10% increase in Internet pene-

tration, the GDP improves by 1%. It is thus obvious that the incentives are in

place to further advocate for higher broadband speeds and wider availability.

This has become the driver for innovation in terms of R&D Projects to come

up with new technologies. These new technologies have in turn led industry

to develop a plethora of various applications, all relying on the premise of

ubiquitous high–speed Internet access. The applications that made it to mass

markets and were desirable became more demanding in terms of performance
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Fig. 2.4 xG Communication Technology Innovation Cycle

and services they provisioned. Finally, when the supply provided by the tech-

nology of the time was not enough to meet the demands, the R&D community

came up with new techniques, hence closing the innovation cycle as shown in

Figure 2.4.

From the standpoint of the mobile communications industry, these perfor-

mance demands have essentially become the bases for 5G communication tech-

nologies’ ambitious requirements: a 1000x increase in data rates, under 1ms

E2E network delay, 90% reduction in network energy use, and so on as dis-

cussed in [15, 16, 30].

Taking the above discussion into account we have recently realized that there

is a twist to the capacity crunch problem. Today, we have unintentionally dug

ourselves into a hole as we are witnessing a tsunami of data that we have never

experienced before. Neither our computing power nor processing methodology

is adequate to tackle the heaps of information at our datastores. The issues

caused by this data explosion can be analyzed into three degrees of freedom:
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Volume, Velocity and Variety; known as the 3Vs of Big Data:

• Volume – the scale of stored data elements is too large for traditional

datastores to handle. For instance, a 10 Terabyte dataset cannot fit into

most of the current available hard drives in the market; actually finding

a PC with more than a few Terabytes of disk space out of the box is very

rare. Data files need to be distributed but also easy to read and write

to.

• Velocity – new (streaming) data is arriving at a rate that cannot be

processed at real–time. Algorithms need to be parallelized such that each

computing unit can take on a portion of the computation, outputting

timely answers to real–life events. In Figure 2.5a, Cisco’s predictions for

global mobile data growth [1] indicate a 10 fold exponential increase by

2019, reaching a 24.3 Exabytes (million Terabytes) per month.

• Variety – data is gathered by combining multiple di�erent sources with

di�erent data structures. This is an obstacle when importing data to

conventional Relational Databases, since each data source needs to be

manually restructured in order to be consistent with data imported from

other sources. Figure 2.5b shows the outcome of a survey conducted by

IBM and Oxford University in 2013 indicating the percentage usage of

di�erent big data sources by a group of companies [2].

As shown in Figure 2.6, a Big Data problem is any instance of a system pos-

sessing one or more of the above 3 Vs. A Big Data enabled network thus

would be a solution that tackles any of the 3V bottlenecks of that network.

The ICT industry, in general, is the founder of Big Data. Telco’s have been

dealing with Big Data day in and day out. However, as the buzzword “Big

Data” has gained more recognition, many other sectors have started to look at
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Fig. 2.5 Data Tra�c Trends, (a) 10-fold increase in mobile data
tra�c by 2019 from Cisco [1], (b) Big Data Sources from IBM [2]

the potential of their untapped data under Big Data techniques. As of 2015,

95% of the Fortune 500 businesses have initiated at least one Big Data project

within their premises [2].

Therefore, for the past few decades and throughout the generations of com-

munication technology that has been developed, the wireless communications

community have consistently aimed at increasing capacity and bit rate. This

has, in e�ect, led to the accommodation a plethora of applications, which

has resulted in the data explosion experienced today. Communication service

providers are under a lot of pressure to reduce costs, protect the margins, and

retain their customer base. One of the best ways to do that is to use the data

chaos to their advantage by mining the data that traverses their networks to

Fig. 2.6 Next Generation Communication Systems’ Big Data
Challenges
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drive profitability. The communication engineering community has recently

started researching these aspects [30, 154–157].

2.3 Testbed Setup and Data Collection

For CRs to process information, they need to maintain a cognitive engine that

is able to analyze the sensed raw data. Beneficially from this, a CR is required

to be flexible in order to adapt to changed circumstances and integrate new

knowledge into its knowledge base on the go. Since almost all of the radio

reconfigurability in today’s communication devices is inherent to their software

defined nature, it is often assumed that the implementation of Cognitive Radio

Systems (CRS) will be based on Software Defined Radios (SDRs) [9].

In order to examine the performance of the RAT classifiers in a realistic sce-

nario than mere PC-based simulations, a practical testbed is assembled. All of

the experiments conducted for the purpose of this thesis where based on the

initial testbed setting shown in Figure 2.7. This setup was a collaborative work

done with Ss. Cyril and Methodius University in Skopje, Macedonia, within

the ICT EU project “Advanced coexistence technologies for radio optimization

in licensed and unlicensed spectrum” (ACROPOLIS) [158].

As shown in the figure above we used Universal Software Radio Peripheral

(USRP) model N210 from Ettus Research (www.ettus.com/product/details/UN210-

KIT) as the SDR communication device. Three di�erent radio access tech-

nologies were taken into account: DVB-T to exemplify Digital TV signals,

WCDMA to represent a primary mobile network signal, and IEEE 802.11a

WiFi to represent an unlicensed secondary transmission. These 3 RAT types

were simulated and tested in MATLAB first, then ported to the USRP to be

transmitted over-the-air.
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Fig. 2.7 DVB-T, WiFi, UMTS (WCDMA) Radio Access Technology
Emulation and Transmission Using MATLAB, SIMULINK and a

USRP device.

In the beginning we programmed the USRP to transmit di�erent RAT sig-

nals designed in MATLAB and SIMULINK software packages and verified the

output RAT waveform via the R&S Spectroscope. The Spectrum Analyzer

was later replaced by another USRP acting as the receiver as shown in Fig-

ure 2.8. So the actual testbed used for RAT signal generation and reception

was composed of two N210 USRPs driven by two Windows 8 PCs connected

via a Gigabit-Ethernet Local Area Network (LAN). All experiments were con-

ducted at 2.45 GHz Industrial, Scientific and Medical (ISM) band. VERT2450

antennas were used along with USRP SBX daughterboards, which cover a

variety of bands in the 400 MHz–4400 MHz range.

Finally, the dataset was compiled in 3 batches such that each RAT configura-

tion would be loaded to the transmitting USRP at a time and the receiving

USRP would record the received signals. Time series data was collected from
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Fig. 2.8 A Schematic of the Testbed Network

the receiving USRP for the duration of one second—which is to be used later

for o�ine analyses. As discussed in the coming chapters, algorithms proposed

in this thesis ran on the stored data, in a Hardware-in-the-Loop (HIL) fashion.

In Chapter 3 the time-domain version of the captured data will be used. While

in Chapter 4 we will use Welch’s method to transform the received signals to

frequency-domain. The rationale behind the domain change is based on the

fact that communication transmissions are encoded in frequency-domain in

order to lower frequency-selective fading [150]. For the same reason, some of

the prominent and high-power frame components are assigned in frequency

domain, such as pilot subcarriers [113]. These pilot signals, as will be shown

later, will be important features in correctly classifying the di�erent radio

access technologies considered in this thesis.
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Chapter 3

Radio Access Technology

Classification for Cognitive

Radio Networks using

Multi-Layer Perceptron Neural

Networks

3.1 Introduction

In the previous chapter we presented a general overview of the main challenges

of wireless communication systems in the current day. One of the prominent

challenges was the capacity problem, where future communication systems

need to accommodate the exploding data demand. Therein we discussed the

proposal of the Cognitive Radio paradigm and Dynamic Spectrum Access.

In this chapter, we proceed with the RAT recognition research which is an
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essential function of cognitive radios to achieve DSA and therefore we inves-

tigate means to achieve this goal. Here we aim to demonstrate the suitability

of learning algorithms for classification of various RATs, especially for the

foreseen case of primary-secondary cooperation in shared spectrum bands—a

highly regarded scenario in the ITU’s World Radio Conference (WRC) 2012.

Building upon the background information given in Chapter 2, in the next

section we start by setting the stage for our neural network design and elabo-

rate on the pre-processing stage to put the data in the most appropriate form.

Later, we propose a Multi-Layer Perceptron neural network, and train it with

Backpropagation algorithm to classify di�erent emulated wireless signals under

various levels of noise. In Section 3.4 we unveil the results of the neural signal

processing, and later discuss potential applications in Section 3.5. Section 3.6

summarizes results and concludes the work.

3.2 Supervised Learning Neural Network For

RAT Classification

The neural network considered in this chapter is structured as a Multi Layer

Perceptron (MLP) network and it comprises of two layers: a hidden layer

and an output layer. Through trial and error experimentation, the number of

nodes in the hidden layer was set to 20. DVB-T, WCDMA and WiFi signals

are fed into the network separately. The tra�c generator is set to operate on

a full-bu�er basis. The received packets from the receiving USRP are cut into

chunks of 22200 samples representing the features that are input to the neural

network.

The 22200 time-domain sample window length was chosen such that one full
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RF packet frame of any of the di�erent RATs could be fully captured. In this

regard, we have found out that the DVB–T signal transmissions to be the

least frequent of all the three RATs considered, with a full frame length of

22200 samples per frame, which was calculated by taking the autocorrelation

of a sample of each RAT and then choosing index of the first peak. The

autocorrelation function can be described as,
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where Y is the time-domain signal of N samples, Ȳ is the sample mean value.

Note that the value of the chosen window length depends on the sampling

frequency of the device used to capture the signal and not only the original

periodic time duration of the RAT frames sent. However, as long as this figure

is set constant throughout the experiment such that it captures at least one

frame of each of the three RATs the value of this figure should not be an

obstacle in the neural network training process. On the other hand, if the

sample window is taken to be less than one full RAT transmission frame, all

of the features of that RAT frame may not be captured, leading to the loss of

features and thus lower classification performance.
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The raw captured signals from the USRP is in the complex form,

z(n) = a(n) + i b(n). (3.4)

These are converted to Complex Magnitude (or Modulus) Power, such that,

s(n) = |z(n)|2 = a2(n) + b2(n). (3.5)

The signal power s(n) is also passed through a normalization stage such that its

values range from 0 to 1. This is an essential pre-processing step in getting the

data into the correct form for the MLP neural net to be unbiased of the received

power strength of the various RATs considered. Otherwise, if the power of one

of the RATs is on average higher than the others, the neural network would

rather classify that particular RAT based on based on the power content of

the signal rather than its features. Therefore if such neural network is fed with

a lower power frame of the mentioned RAT it would not be able to classify

the frame correctly. This is a well-documented and often-cited side-e�ect of

neural network [159, 160]. In this regard, a decent classification performance

could be achieved if the received power levels were held relatively constant

throughout all the training examples. However, in wireless communications

it is evidently known that this not the case, where transmitters and receivers

can be at arbitrary di�erent range of distances and thus at di�erent receive

power levels. Therefore, it is crucial to standardize each received RAT frame

before feeding it to the MLP neural network training stage. In this regard,

we use the z-score standardization method, where every received frame s(n) is

first subtracted by mean value of the frame and then divided by its standard
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deviation, as described below in Equation 3.6,
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Time-domain Frame Synchronization

Another important aspect in time-domain pattern recognition using MLP neu-

ral nets is the synchronization of the incoming frames. If the features present

in the captured frames are shifted (in terms of their location with respect to

the frame bins), then it would be very di�cult for the MLP architecture to

have a good classification performance. This is due to such shallow neural

network’s inability to provide local invariance, a highly sought after feature

in pattern recognition tasks [108]. In other words, the performance of shallow

MLP networks vary if some or all of the features of the input signal are not

confined to certain bin positions.

In our case, where we capture various RATs with di�erent frame periodicity

the above discussed issue poses a challenge in e�ciently training the neural

network. Take for instance the case of fixing the capture time window ac-

cording to the DVB-T signals as discussed above; Since the WCDMA and the

WiFi signal possess di�erent frame periods, each of their incoming consequent

frames su�er a shift in time as compared to the original frame.

Luckily, the synchronization pilot and preamble features found in these RATs

allow us to synchronize these frames such that their feature are aligned from

one frame to another. In this work we have achieved frame synchronization by
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simply measuring the time-delay between the kernel and each of the incoming

22200 time sample bins.

Using cross-correlation, if the signal was found to be lagging the kernel then a

leading trail of zeros equal to the number of delayed bins are prepended and

the same of number bins are truncated from end of the frame. On the other

hand, if the signal was found to be leading the kernel then the leading number

of bins equal to the delay are truncated and a trail of zeros of the same number

of bins are appended to the end of the frame. This process is repeated for all

of the captured frames of each radio access technology mentioned.

3.2.1 MLP Neural Net Design

750 signal examples each of which comprises of 22200 bins/elements (vector

dimensions) for the three classes were parsed together to form the design matrix

(input data). A schematic depicting the 2-layered neural network is shown in

Figure 3.1.

The choice of the number of neurons at the hidden layer is an essential part of

the MLP architecture design. We have ran 10 simulations for 3 di�erent MLP

architectures with 5, 20 and 35 hidden layer neurons at a time, where their

Fig. 3.1 A 2-Layer Neural Network with 20 hidden nodes
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overall classification performance is shown in Figure 3.2. Here we can see that

the performance of the architecture with 35 hidden neurons is slightly superior

to that with the 20 hidden neurons and clearly superior than that with the 5

hidden neurons. Since the slight di�erence between architectures with the 35

and 20 hidden neurons is where the classification is below even below the 50%

mark, this performance di�erence does not have a major e�ect. On the con-

trary, choosing the least complex architecture of the mentioned approximately

equally performing architectures would make the final architecture computa-

tionally more e�cient. Therefore, in this chapter we will stick to the MLP

architecture that has 20 neurons at its hidden layer.

The hidden-layer transfer function takes the total weighted input and bias

values and passes them through a Hyperbolic Tangent Sigmoid (Tanh-Sig)

function, provided by Equation 2.4, and the output layer passes its weighted

input and bias values through a Cross-Entropy function CE, as described in

Equation 2.8.

The weights are initialized according to Nguyen-Widrow layer initialization

Fig. 3.2 2-Layer MLP Neural Network Performance Evaluation While
Varying the Number of the Hidden Nodes
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method [92]. Back propagation is used to calculate derivatives of the per-

formance function, or in other words the cost function, with respect to the

weight and bias variables. The Scaled conjugate gradient algorithm [161] im-

plemented in MATLAB was used to apply the conjugate gradient updates.

This algorithm can train any network as long as its weight, net input, and

transfer functions have derivatives [92].

The scaled conjugate gradient algorithm is based on conjugate directions but

this algorithm, unlike other versions of the conjugate gradient back propagation

algorithm, does not perform a line search at each iteration to find the learning

rate ÷(n) that minimizes the cost function [92]. Instead, as stated in [162]

÷(n)is given by
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and P is given by

P = ˆE(n)
ˆw

. (3.9)
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E(n) is the Minimum Square Error function, and w is the neuron weight

vector. For a more detailed observation of the scaled conjugate gradient back

propagation algorithm the reader is kindly referred to [162].

Practical Guidelines

For many of the optimization algorithms used for network training, such as

conjugate gradients, the error is a non-increasing function of the iteration

index. Nevertheless, the error generated by test dataset, which is not used in

the training process, decreases in the beginning, and then starts to increase

when the neural net starts over-fitting the data. In this regard, the data

is divided randomly into three datasets: 70% for training, 15% for testing

and 15% for validation. Therefore, in order to avoid the neural network to

over-fit the training data, alongside the training data, a validation dataset

is used as a test dataset so that it validates the performance of the training

as it proceeds. Training will be discontinued at the point of smallest error

after it has not decreased for a certain number of iterations (called Maximum

validation failures) with respect to the validation dataset. This is done in

order to obtain a neural network having a good generalization performance and

avoid over-fitting the training dataset. This method is called Early Stopping

approach [96].

There are other practical guidelines one could take to reach a better perfor-

mance. In our case of RAT Classification, training stops when any of the

following conditions occurs [162]:

• Validation error has been equal or increased more than a specific maxi-

mum number of failing times since the last time it decreased.

• The performance gradient falls below the minimum specified gradient
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Table 3.1 Neural Network Parameters

Maximum validation failures 6

Maximum Epochs 1000

Maximum Training Time Inf

Performance Goal 0

Minimum Gradient 10≠6

Transfer Function Tanh–Sigmoid

Network Cost Function Cross–Entropy

Network Training Function Scaled Conjugate Gradient

value. The above discussed neural network parameters and their corre-

sponding values are indicated in Table 3.1.

• The maximum number of epochs (repetitions) is reached before reaching

some acceptable level of classification error.

• The maximum amount of time set to reach the performance levels is

exceeded.

• Performance is minimized to the goal, which is usually set to zero.

3.3 Matched Filter Design

In order to benchmark the performance of the proposed MLP neural network

architecture mentioned above, we have implemented a Matched Filter spec-

trum sensing method to serve as a baseline for comparison. As discussed in

Section 2.2.7, Matched Filters are widely used in pattern recognition task in a

multitude of varying applications and industries [143–149, 163]. In this chap-

ter, we are going to use matched filters with time-domain transmission frame
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kernels for each RAT considered. In order to optimize the performance of the

matched filters we also need to find the optimum decision threshold value ⁄ as

mentioned in Equation 2.20.

First, regarding building the Kernels, since initially we do not have them at the

receiving cognitive radio, we need to acquire them in a non-coherent fashion

on the fly. This can be done by first collecting a number of high SNR frames

for each RAT and later averaging them out. This way the consistent features,

such as the protruding pilot and preamble frame components, throughout the

captured set of frames of a particular RAT will be kept and the rest of the

fluctuating data and noise part will be relatively diminished due to the aver-

aging stage. As shown in Figure 3.3, the kernels built for the purpose of the

research in this chapter are based on signals captures at a SNR of 25 dB and

250 frames for each RAT.

Fig. 3.3 Time-domain Kernels for DVB-T, WCDMA and
IEEE 802.11a WiFi Radio Access Technologies
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Finally, regarding the decision threshold ⁄ optimization, we have ran a Monte

Carlo experiment to find the ⁄ value that maximizes the overall classification

performance. According to Figure 3.4, which presents the classification perfor-

mance of a range of ⁄ values with respect to SNR values ranging from -40 dB

to 20 dB, where ⁄ = 0.2 is found to have the best performance.

3.4 Simulation Results and Discussion

Having discussed design parameters and settings for both the MLP neural net

and Matched Filter classifiers in the previous section, next we elaborate on

their classification performances. We first start by taking a more detailed look

at the 0 dB SNR case. Later, we extend the range of the simulated SNR cases

to test how the classifiers resist to extremely noisy scenarios.

Figure 3.5 presents the training, testing and validation results of the MLP

Fig. 3.4 Classification Performance of a Range of Matched Filter
Threshold Values ⁄
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neural net. The training, testing and validation cross-entropy errors decrease

until epoch 25 where the Early Stopping algorithm comes to play. Otherwise, if

the di�erence between the training and validation errors increases the network

is said to be over-fitting the input data.

The confusion matrices shown in Figure 3.6 demonstrate the potential of the

MLP neural net classification method. Confusion matrix are typically used in

machine learning classification problems to indicate the performance of a su-

pervised learning classification algorithm where the number of correct guesses

of the neural network is shown along their diagonals, and the misclassifications

are displayed outside the diagonal with respect to each class accordingly. Here

class 1 represent the DVB-T, class 2 WCDMA and class 3 the WiFi radio

access technologies.

Regarding performance neural network, as indicated by the confusion matrices,

to avoid misperception it is necessary to mention the close proximity of the

transmitter and receiver USRPs, ranging between 2 to 3 meters of horizontal

distance from each other. This has certainly led to a strong signal reception at

Fig. 3.5 Training, testing and validation Cross-Entropy graphs at
SNR = 0 dB
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the receiver and henceforth a better classification. The SNR of the originally

received signals were about 20 to 25 dB. Factoring in AWGN in the scenario

considered in Figure 3.6, the SNR is lowered to 0 dB. However, the MLP still

achieves a descent performance at the mentioned SNR.

The lower section of Figure 3.7 displays the errors made in the validation

set versus epoch index. At epoch 25, where the best validation performance

is reached, which is approximately equal to 0.01, the neural network fails to

Fig. 3.6 Training, Testing and Validation Confusion Matrices at
SNR = 0 dB
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Fig. 3.7 (upper) Gradient at each epoch, (lower) validation error
count, at SNR = 0 dB

optimize its performance for the next 6 consecutive epochs and thus comes to

a halt as it was programmed to do so according to Early Stopping method.

Comparison with Matched Filter Classifier

Figures 3.5, 3.6 and 3.7 only show the results of one training experiment. In

order to avoid an optimistic and biased result, it is advisable to take the av-

erage of a set of simulations by performing many training experiments and

averaging over the number of experiments. In this regard, the designed neural

net was trained 100 times and the resulting average confusion matrix gen-

erated is shown in Figure 3.8a. As compared to the Matched Filter classifier

performance shown in Figure 3.8b, at 0 dB SNR, we cannot notice a significant

classification error di�erence.
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(a) MLP Neural Net (b) Matched Filter

Fig. 3.8 Average MLP Neural Net and Matched Filter Confusion
Matrices at SNR = 0 dB

Extending the Range of SNRs

All of the above classification results were achieved at the 0 dB SNR scenario.

In the Figures presented in this section, we show the performance of MLP

architecture with and without data frame synchronization and compare them

against the baseline Matched Filter method across a set of SNRs ranging from

-40 dB to 20 dB in steps of 5 dB.

Figure 3.9 presents various configurations of MF classification performance. At

the threshold value ⁄ = 0.2 we get a very high performance for SNRs of 20 dB

and down to -5 dB, but achieving poor results from -5 dB and lower. Although

at ⁄ = 0.1 we can observe a much higher performance when the SNR is equal

to -10 dB, however the overall performance of this configuration is rather low

and inconsistent. When the threshold is kept very low, the MF passes all of the

incoming signals which leads a higher probability of false alarm and therefore
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higher confusion value.

Fig. 3.9 Overall Classification Performance of Matched Filters with
DVB-T, WCDMA and WiFi Kernels at Threshold Values=[0.1,0.6]

Using the synchronized dataset as was discussed in Section 3.2, a set of simu-

lations for the same range of SNRs as above have been run and mean classifi-

cation results achieved are given by Figure 3.10.

Finally, Figure 3.11 presents a comparison between the 3 classifiers considered

in this chapter. We can clearly observe that the MLP neural net with 20

hidden neurons which was trained on the synchronized dataset consistently

achieves better classification results than the other two classifiers. As for the

MLP architecture which was not trained on the synchronized dataset, it could

not beat the baseline MF classifier when the SNR was higher than -10 dB. As

was mentioned before in Section 3.2, in this case the MLP neural net su�ers

from inconsistent appearance of the RAT features at di�erent locations for

each training example.

In our experiments the superior classification performance of the MLP design
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Fig. 3.10 Classification Performance of MLP Neural Net with 20
Hidden Neurons trained on Synchronized Time-domain Frames with

SNR=[-40,20]

compared to the MF comes at the cost of first forming a synchronized dataset

so that the time-domain RAT features appear at the same position consistently.

However, one may argue that this pre-processing stage is not a real design cost,

since almost all communication systems employ some sort of synchronization

technique anyway.

Classification Performance E�ect on CR Throughput

Finally, one way to connect the above performance values to CR throughput

in terms of misclassification could be explained as follows. Looking at the

throughput of generic primary system communication link from a SNR per-

spective and using the throughput definition used by the authors of [164], it

can be shown that the throughput of a link is a cascaded multiplication of

several probabilities as indicated by Equation 3.10.
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Fig. 3.11 Mean Correct Classification Percentage at various SNR
levels for the three classifiers: Neural Net with Data Synchronization
(yellow), Neural Net without Data Synchronization (blue), Baseline

Matched Filter with Threshold=0.2 (purple)

Namely, the probability whether the transmitting node is actually transmitting

at a particular moment, whether the receiver is silent and is not transmitting

at this moment, and, finally, the probability for the communication channel to

be regarded as a reliable link.

T = P{probe transmits}P{receiver silent}P{no outage} (3.10)

The latter term fundamentally means,

P{no outage} = P{SINR Ø “ú} (3.11)

Where “ú is a tolerated threshold that ensures reliability over a communication

link. The SINR at the receiver needs to exceed “ú for the received signal to be

successfully recovered [164]. In the case of secondary-secondary cooperation
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working in an underlay scenario the misclassification of a signal, i.e. a primary

user to be classified as secondary user, will lead to an increased outage in the

primary system, and hence a lower throughput.

The down side of this technique is that security aspects could be exploited

by adversaries. Primary User Emulation [165], Connection attack [125], and

Random Noise attacks [124] are a few to name. For this reason, unsupervised

learning techniques, and specifically K-means clustering and Self-organizing

maps (SOMs), have been researched to do the signal classification; in which

case the classifier will have to tolerate little availability of a priori information

[125]. Nevertheless, the MLP neural net technique from the implementation

point of view was very simple and straightforward. It can easily be imple-

mented for online mode operation. It is fast, where new inputs are just passed

through the trained network and are classified with a class immediately.

3.5 Potential Applications

In what follows we will discuss use cases of this technique in the context of

cognitive mobile spectrum sharing and enriching Radio Environmental Maps.

Cognitive collaboration in overlay CRNs

Considering adaptation mechanisms in overlay CRNs, when SUs recognize

the type of the access technology used by the PUs they have the privilege of

exploiting their tra�c pattern so that they can fill up the gaps/silent instances

of the PUs that they usually produce by using a particular RAT.
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Secondary-secondary cooperation in shared spectrum

Another application is to reduce interference generated by the SUs a�ecting

other SUs. In most of the published papers, authors assume that there are

only PUs in a certain frequency band, e.g. TV Bands, and they try to fill

up the white space in between PU channels while one can have more than

one secondary network trying to transmit in the same white space band. To

counteract situation alike, through RAT recognition an SU may observe the

RAT used by another SU currently occupying a certain band, e.g. detection

of a WiFi transmission (which is inherently a contention based multiple access

scheme), and would want to contend for bandwidth. Even if the working

SU is not currently using a contention based multiple access, both SU can

negotiate a multiple access scheme, e.g. WiFi, so that both can use the band

simultaneously.

3.6 Summary and Conclusion

This work has shown a simple yet e�cient Multi-Layer Perceptron neural net-

work classifier that is able to discriminate between three di�erent radio access

technologies in an automated supervised learning manner while consistently

beating the baseline Matched Filter results. The MLP architecture achieves

99% correct classification at SNR=-10 dB and 97% at SNR=-15 dB, while the

baseline method only achieves 55% at SNR=-10 dB and 33% at SNR=-15 dB.

Traditionally, multilayer neural nets have been used with manually selected

feature inputs. However, in this chapter we presented an neural network ar-

chitecture that relied least on predefined system parameters, within which

we abstained from manually extracting features from the received input sig-
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nals. Minimal signal pre-processing avoids over-parametrizing the classifier

and make it as generic as possible so that it can be extended to other types

of RATs. A testbed implementation has demonstrated the practicality of the

research undertaken. Using such a classifier, secondary users will be able to

sense whether a band is occupied by a primary or secondary user through de-

tecting the type of radio access technologies received. The classifier can also

be an enabler in the concept of coexistence between secondaries with di�erent

types of radio access technologies.

The performance limitations of MLP neural nets stem from the kinds of fea-

tures used. If appropriate features are used, one can successfully train neu-

ral networks on very sophisticated datasets. However, if wrong features are

used, perceptrons are extremely limited in terms of their learning capabil-

ity. This has been verified via our experiments with the synchronized and

non-synchronized RAT frames, where the same MLP architecture gives very

di�erent results the mentioned two cases.

In the next chapter, a novel Self-Organizing Map (SOM) and Support Vec-

tor Machine (SVM) based RAT signal clustering and classification scheme is

presented for further enhancement of the classification performance.
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Chapter 4

Radio Environment Feature

Extraction and Classification

using Self-Organizing Feature

Maps and Support Vector

Machines

4.1 Introduction

In the previous chapter we relied on the MLP neural network architecture to

identify the type of the Radio Access Technology and we were able to achieve

97% correct classification at -15 dB SNR level. The research was aimed at

scenarios were there may be coexistence of Primary Users and Secondary Users.

We established that signal classification of the PU and other SU transmissions

as one of the essential functions of Cognitive Radios. This is because while
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RAT recognition enables a CR to avoid collision with PUs’ communication,

it also allows the SU CR to be aware of transmit opportunities in contention

with other SUs. Otherwise, if channel occupancy detection was based only on

power spectrum density (PSD) the CR would lose transmission opportunities

under the assumption that a particular channel(s) is occupied by a PU.

This chapter, inline with the incentives of Chapter 3, aims to first demon-

strate the suitability of a combined bespoke machine learning architecture for

classification of di�erent RAT frames, however in this case using frequency

domain data. As shown in Figure 4.1, the proposed method in this chapter

is comprised of a concatenation of an unsupervised Self-Organizing Feature

Map (SOFM) neural network layer followed by a supervised Support Vector

Machine (SVM) discriminator, forming a semi–supervised machine learning

technique. Later, toward the end of the chapter we attempt to generalize

the bespoke methodology of this work to the useful recognition of new RATs

that have not been trained on before. Achieving such classification of di�er-

ent transmissions in noisy environments, will be essential to the realization of

the CR paradigm, especially in the foreseen case of PU and SU cooperation

and SU-SU coexistence which are currently highly regarded scenarios by the

research community [166, 167].

The remainder of this chapter is organized as follows. Section 4.2 describes

the data collection and pre-processing stages. Later, Section 4.3 discusses

the machine learning techniques proposed for RAT classification as applied to

the collected data. The results of the experiments are discussed in Section 4.4.

Some of the potential application scenarios such as Radio Environmental Maps

(REMs) are discussed in Section 4.5. Finally, a summary and some concluding

remarks are provided in Section 4.6.
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4.2 Frequency-domain Dataset

In order to replicate a practical scenario for the purpose of this research, a

testbed was assembled as was previously presented in Section 2.3, and shown

in Figure 2.8.

In Chapter 3 we used the raw received power, captured from the USRP in

time domain, as input to the MLP neural network classifier. However, in this

chapter, we intend to transform the data to the frequency domain based on

the fact that some of the features are encoded in frequency domain by design,

such as the pilot synchronization subcarriers. In this regard, the data samples

pertaining to each noise level are transformed to the Frequency domain via

Welch’s Power Spectral Density (PSD) estimate [168], with a Hamming win-

dow. Welch’s method can be simply described as the averaged periodograms

of overlapped and windowed signal sections.

Fig. 4.1 Flowchart of the Proposed SOFM-SVM Method
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Analytically, Welch’s PSD can be described as follows. Let the mth window

of a received time-domain frame be denoted by,

x
m

(n) , w(n)x(n + mR), (4.1)

where R is defined as the window hop size, K denotes the number of windows,

n = 0, 1, . . . , M ≠ 1 and m = 0, 1, . . . , K ≠ 1. Then the periodogram of the

mth window is given by,

P
x

m
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Finally Welch’s PSD estimate is given by,

ŜW
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m

,M

(Ê
k

) (4.3)

It is worth mentioning that in line with our technique’s obviation to system

parameters, Welch’s PSD estimation method is a non-parametric method too,

where the PSD is estimated directly from the signal itself, avoiding possible

modeling errors.

In order to display the performance of the SOFM-SVM technique, a stress test

experiment has been developed. Under this experiment, a range of di�erent

levels of white Gaussian noise has been added to the original signal so that

the SNR varies from 20 dB to -40 dB in steps of 5 dB. Figure 4.2 presents an

instance of each of the considered RATs at di�erent SNRs.

Finally, the data pre-processing stage ends by applying z-score to the data as
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show in Equation 4.4.

z = x ≠ x̄

‡
(4.4)

z is a z-score of a spectrum data vector, x is the spectrum data vector, x̄

and ‡ are the mean and standard deviation of that spectrum data vector,

respectively. Essentially, in our research we regard each received frame as a

single data vector. Thus our data pre-processing analysis is done on a vector-

by-vector basis. In Data Science, this step is called Data Standardization,

and it is particularly useful when analyzing data from di�erent sources. The

standardized data from all RAT sources have zero mean and unit standard

deviation, with 95% of the data confined within -2 and +2 in magnitude.

However, it retains the shape properties of the RAT data set, such as skewness

and kurtosis measures, which are essential for the pattern recognition task at

hand. Data standardization also helps in correcting for the di�erent power

levels received by the di�erent USRPs.
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4.3 Self–Organizing Feature Maps and Sup-

port Vector Machines

In the following two subsections we will give a brief description of the two main

machine learning techniques used in this chapter.

4.3.1 Self-Organizing Feature Map

The algorithm driving the Self-Organizing Feature Map (SOFM) makes use

of the competitive learning concept, where small computation units, called

“neurons”, compete against each other such that only one neuron, the “winning

neuron”, is activated at a particular time. This results in neurons drifting

to areas in the feature space that the sample vectors match most, and thus

eventually forming clusters. This is illustrated in Figure 4.3, where the winning

neuron (in black) is attracting the neighboring neurons towards itself.

Fig. 4.3 Self-Organizing Feature Map indicating a the Input Layer,
Computational Layer and the Winning Neuron. Note: the SOFM is

layed out in gridtop topology here for illustration purposes only.
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As shown in the Figure 4.3, the input layer has D dimensions where an input

vector x
i

= {x
i

: i = 1, . . . , D} , and the weights of the connections between

each input neuron and the output computational layer can be written as w
ji

=

{w
ji

: j = 1, . . . , N ; i = 1, . . . , D} , where N is the total number of neurons at

the computational layer. The SOFM algorithm iterates the following steps

until the feature map is established:

1) Initialization: initialize the values of the weight vectors w
ji

in a random

manner.

2) Sampling: randomly draw a data vector x
i

from the input space.

3) Similarity Matching: calculate the discriminant function,

d
j

(x
i

) =
Dÿ

i=1

(x
i

≠ w
ji

)2 , (4.5)

which is the sum of squared Euclidean distance, and then de-map the

index winning neuron I(x
i

).

4) Updating: update the weight vectors by applying the weight update

equation,

w
ji

= ÷ (t) T
j,I(x

i

)

(t) (x
i

≠ w
ji

) , (4.6)

where ÷ (t) is the learning rate where 0 < ÷ < 1, and T
j,I(x

i

)

(t) is a

Gaussian Neighborhood function,

T
j,I(x

i

)

(t) = e≠
S

2
j,I(x

i

)
2‡

2 . (4.7)

S2

j,I(x

i

)

is the lateral distance between an input neuron i and an output

neuron j. In order to get definite clusters, the size of the clusters ‡(t)

needs to shrink with time. A well-known distance decay function is the
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Fig. 4.4 SOFM Neighbor Weight Distances, SNR=20 dB

exponential decay function,

‡ (t) = ‡
0

e≠ t

·

‡ , (4.8)

where ‡
0

is the initial neighborhood distance at t = 0, and ·
‡

is the mean

lifetime of the size of the neighborhood decay. SOFM neighborhood

distances are shown in Figure 4.4, where light and dark colored neural

connections indicate closely situated further apart neurons. Similarly,

the learning rate shall also decay in order for the algorithm to converge

and stabilize.

5) Continuation: return to step 2 until the feature map is stable.



4.3 Self–Organizing Feature Maps and Support Vector Machines 102

SOFM Simulation Parameters

The SOFM has a peculiar neural network architecture. Unlike normal MLP

neural nets, the weight matrix in a SOFM forms the feature map, which is the

intended output of this clustering technique. Based on extensive experimenta-

tion, the essential parameters involved in configuring and training the weight

matrix of the SOFM are described as follows:

• The similarity distance function, as discussed above, is the negative Eu-

clidean distance z between the input vector p œ P and the corresponding

neuron weights w, which can be described as,

z = ≠
Ûÿ

P

(w ≠ p)2 (4.9)

• The initial neighborhood size is set to 3.

• The chosen topology of the SOFM is hextop, which defines the pattern

of the neurons surrounding the winning neuron as shown in Figure 4.4.

• Number of steps for neighborhood to shrink to 1 (·
‡

)= 100.

• Number of neurons in the computational layer = 6 ◊ 6 = 36 neurons,

with the number of weights = 6400.

• Input weight initialization function: Principal Component Initialization.

This method initializes the weights of an N-dimensional self-organizing

feature map so that the initial weights are distributed across the space

spanned by the most significant N principal components of the inputs.

This leads to a significant speed up in the SOFM training process [92].

• The SOFM training algorithm is based on batch unsupervised weight/bias

training. The maximum number of training epochs = 1000.
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4.3.2 Training the SVM Layer

Having trained the SOFM layer, in this step, pairwise combinations of the

neuronal clusters are fed into an SVM model, where each neuron from the

SOFM layer is weighted according to the number of times it was chosen as the

winning neuron, or simply said the number of “sample hits” it has received

during the SOFM training period. With the aid of the Kernel trick, SVMs

can perform non-linear classification e�ciently [169]. In this work a Radial

Basis Function has been applied as the kernel function. A brief analytical

introduction to SVMs Primal Formulation has been discussed in Section 2.2.5.

Below we discuss nonlinear transformation with the help of the kernel trick.

However, for a more comprehensive treatment of SVMs’ background review,

setup and training, the reader is kindly suggested to refer to [96].

Nonlinear Transformation with Kernels

There is a solution to avoid training complicated hyperplanes in binary classi-

fication problems. Using the Kernel Trick [170] we can transform observations

to another space where we can use linear classification – as if the data was

linearly separable.

This approach uses these results from the theory of reproducing kernels:

• For two data points x and xÕ, there is a class of functions K(x, xÕ) with the

following property. There is a linear space S and a function Ï mapping

x and xÕ to S such that

K (x, xÕ) = ÈÏ (x) , Ï (xÕ)Í (4.10)

The dot product ÈÏ (x) , Ï (xÕ)Í takes place in the space S.
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• The class of functions used in this research is the Gaussian Radial Basis

Function (RBF), where for some positive number ‡,

K(x, xÕ) = exp
A

≠ÈÏ (x) , Ï (xÕ)Í
2‡2

B

(4.11)

where ÈÏ (x) , Ï (xÕ)Í is the squared Eclidean-distance Î x≠xÕ Î2 between

x and xÕ.

Dot products are at the core of classification hyperplane calculation. In order

to built non-linear classifiers, nonlinear kernels can also use the same technique.

Where in this case the we will obtain hyper-surfaces in some space S, instead.

Kernel Selection Procedure

In order to optimize for the most suitable kernel function and parameters, the

following steps have been taken in designing the SVM model [92]:

1. Train a model using SVM, starting with C = 1 and scaling factor ‡ = 1

2. Cross-validate the trained model in step 1, with the cross-validation fac-

tor k=10.

3. Use the model to classify (predict) new data.

4. Tune the type of the kernel function and its parameters.

In this Kernel tuning exercise, we considered the ‘RBF’ and the ‘linear’ type

of kernels. As for the Hamming window used in Welch’s method, as was

mentioned in Section 4.2, we considered a set of window lengths ranging from

300 to 900 bins. As a result of an extensive set of simulation runs, we found out

that the Hamming Window of 600 bins with either Linear or the RBF kernel

was achieving better classification results than the rest of the configurations.



4.4 Results and Discussion 105

4.4 Results and Discussion

To demonstrate the potential of the SOFM clustering technique, Figure 4.5

shows the SOFM Sample Hits diagram at SNR = 20 dB, where the size of

the hexagons indicate the relative number of sample hits at each neuron. The

hexagon with 249 sample hits, shown in the middle of figure, represents the

exact 249 training samples from the recorded WCDMA transmissions that were

fed into the SOFM. The sample hits on the right and left belong to the other

two RATs. The empty space between these regions is a clear fundamental

indication that there were no confusing hits between the clusters. In other

words, if we were to draw separating boundary, 100% correct clustering of the

di�erent RATs can be achieved.

Fig. 4.5 SOFM Sample Hits, SNR=20 dB

In order to test the performance of the SOFM architecture in a noisy signal

scenario, white Gaussian noise has been added to the signal to lower the SNR.
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The performance for the resulting new adapted data set, at 0 dB SNR, is

shown in another simulation run in Figure 4.6. Here, dark-red colored inter-

neuronal links indicate that such pair of neurons are situated far apart in

the SOM feature space, and the vice-versa for the dark-blue colored links.

In this experiment we can here observe that non-linear classification will be

an essential requirement since as we add noise to the received data frames

the SOFM neuronal clusters eventually starts to overlap and become linearly

inseparable.

Fig. 4.6 SOFM Neighbor Weight Distances, SNR=0 dB

In Figure 4.7 we show the SOFM sample hits diagram with the decision bound-

aries drawn by the SVM. Due to the considerable amount of noise added,

around 20 dB, the decision boundaries between the di�erent RAT clusters

have been fused to some extent. Note that the number of neurons in the com-

putation layer of the SOFM is also increased from 5 ◊ 5 = 25 to 6 ◊ 6 = 36
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neurons. This way the number of hits that each neuron gets becomes relatively

less, and thus allowing for a higher resolution of the neuronal hits.

Fig. 4.7 SOFM Sample Hits, SNR=0 dB. Shown in di�erent colors
are the 3 RAT clusters that have been separated from each other the

SVM decision boundaries

In order to benchmark the performance of the proposed SOFM-SVN method,

Matched Filters are used as the baseline performance measure. The spectral

kernels used here were built from taking an average of the highest 20 dB SNR

spectra of each RAT as shown in Figure 4.2. This is also the same methodology

used to build the time-domain kernels in Chapter 1

Figure 4.8 shows classification results using matched filters with di�erent thresh-

old values ranging from 0.75 to 0.9 in steps of 0.05. Note that although the

MF configuration with threshold equal to 0.75 provides the best classification

results at SNR=-10 and -5 dB, it performs poorly at 15 and 20 dB. The lower
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Fig. 4.8 Performance of SOFM-SVM technique under various SNRs

performance at -10 and -5 dB SNR is due to the fact that, when the thresh-

old level is lowered, more than one RAT passes the threshold value when

filtered with the spectral kernels used. This leads to an increase in false-alarm

probability and thus a higher confusion value. As for the MF with threshold

value equal to 0.8, we observe a similar performance to that of threshold=0.7

at SNR=-10 dB, but we are trading o� lower classification performance at

SNR=-5 dB for relatively higher performance at SNR=20 dB. Therefore, we

choose the MF with 0.8 threshold value as the candidate MF for comparison

with the proposed method as discussed below.

Figure 4.9 presents the final classification performance result of the proposed

SOFM-SVN method. In our research in the beginning we considered two types

of kernels: Linear And Radial Bases Function (RBF). However, we found out

that their results were not significantly di�erent from each other. A possi-

ble explanation of this case could be that the SOFM clusters were linearly

separable.
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Fig. 4.9 Performance of SOFM-SVM technique under various SNRs
ranging from -40 dB to 20 dB, as compared to 3 MLP neural network
classifiers with 2 and 20 hidden neurons (the latter being trained on
both frequency and synchronized time-domain data as discussed in
Chapter 3), and a matched filter classifier with threshold value=0.8

from Figure 4.8

Note that the final result of the SOFM-SVM method shown in Figure 4.9 in

blue with square markers is the average of the binary classification performance

combinations between all possible pairs of RATs. In other words, we have taken

the average classification performance value for DVB-T vs. WCDMA, DVB-T

vs. WiFi and WCDMA vs. WiFi averaged at every SNR level.

In Chapter 3 we had considered an MLP architecture with 20 hidden neurons

trained over synchronized time-domain transmission frames. In order to com-

pare the research done in this chapter to that of the previous, we have again

trained an MLP neural net with 20 hidden neurons, however, unlike before, the

training here is done on frequency spectrum data. The synchronization stage

introduced previously is also not necessary here since the considered PSD es-

timate of the RAT features, i.e. the preamble and pilot signals, stays constant

in terms of its position in the train data vector. The dashed green line in Fig-
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ure 4.9 with diamond markers represents the previously trained MLP neural

net with 20 hidden neurons in time-domain, which is the same classification

result gotten from Chapter 3, included here for the purpose of comparison.

4.5 Potential Application Scenarios

The RAT recognition technique discussed in this chapter has multiple potential

applications. Such a technique could be part of SU sensing-enhanced White

Space Database (WSDB) access [5], augmenting the capabilities achieved un-

der current regulations (see, e.g., [171]). In the following subsections we will

elaborate more on the above mentioned potential case scenarios.

4.5.1 Radio Environmental Map

Ofcom allows qualifying database operators to provide TVWS database service

[4, 5]. Figure 4.10 shows a schematic representation of the plan to adopt

WSDBs by Ofcom in the UK.

Secondary users that would wish to be authorized to use TVWSs need to

initially choose a database operator from a list of qualifying database oper-

ators provided by Ofcom [4]. Broadly speaking, each SU needs to inform

the database about its location and provide other information allowing the

database to identify its radio characteristics. In response, the WSDB will re-

ply to the SU with the currently authorized frequencies and power levels, and

an expiry time of this authorization [4, 5]. WSDB operators can in e�ect en-

hance their database service provision with Radio Environmental Map (REM)

functionality. REMs, in the cognitive radio networking framework, may track

the locations and activities of SUs, act as policy enforcing nodes, and be the
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Fig. 4.10 A schematic showing Ofcom’s plan to adopt WSDBs

main point for storage of common geographical information.

In this context, we believe that integrating RAT classification functionality

into REM-enabled WSDBs could add to their value. One example of this is to

assist secondary-secondary coexistence [166]. It might commonly be the case

that many secondary devices are equipped with a range of di�erent qualifying

white space standards, which might be chosen from for white space access

with that choice being unknown to the WSDB. A REM-enabled WSDB, having

recognized the chosen characteristics of particular white space devices (WSDs)

within each other’s vicinity, might be aware of coexistence issues between the

WSDs and might adjust allowable transmission powers accordingly. Such an

option is, nevertheless, outside of regulatory and WSDB scope and would

require regulatory enhancements to be implementable.

Such REM-enabled WSDB capability might also even be beneficial for the con-

ventional primary-secondary coexistence purpose of WSDBs. It is noted that



4.5 Potential Application Scenarios 112

aggregate interference issues of WSDBs have generally not been su�ciently

embedded in current proposed regulations. A WSDB, through detecting infor-

mation on the utilized RATs and extent of utilization of them by authorized

WSDs, might detect the potential for aggregate interference to become a prob-

lem to primaries, and adapt authorized powers to WSDs accordingly.

4.5.2 Learning By Collaboration

The SOFM-SVM techniques’ functioning could be to some extent analogous

to how we, humans, classify things around us. For instance, when a new item

is for the first time presented to us, we instantly categorize it according to its

pertinent physical properties. Then we either ask for its name or call it a name

if it was discovered or invented. Thereon, mentioning the new objects name

will be su�cient to remember its properties.

In the same manner, we put forward the following two scenarios on how a RAT

classification in a cognitive radio networking context could take place. In case

we already have labeled training data, then after clustering the data via the

SOFM technique we can basically map the data to their labels and classify

the received frames by using SVMs or MLP NNs. On the other hand, in

some situations we may not have labeled data – which corresponds to the case

where a CR receiving transmissions that it does not know to which standard

it belongs. The SOFM algorithm will be able to create a new cluster for

this new type of RAT, however, it will not be able to recognize it since it

has not seen this type of RAT yet. The solution to such a situation could

be such CRs will have the capability to send multiple samples of this newly

discovered RAT or their operating frequencies to the REM WSDB as shown in

Figure 4.10. These REM-based WSDBs are generally presumed to have a high
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computational power compared to secondary CRs. They are also the most

knowledgeable of the devices currently in the area, their frequencies and the

type of RATs they use. After classifying the received samples from the CR or

looking up the type of RAT inhibiting the inquired frequency band, the REM

database can then respond to the CR with the requested information.

Considering the case of Docitive Networks [76], where intelligent CRs may

wish to teach or learn from one another, it is also worth mentioning that no

two communication devices necessarily possess the same radio characteristics

and hardware performance – e.g. dynamic range, phase noise, noise floor.

Thus, in this context, device configuration exchange may not lead to enhanced

performance in scenarios where CRs could copy other CRs internal configura-

tions. This could be especially the case with current SDR equipment: each

of which feature diverse technical characteristics. Thus, inter-CR-device con-

figuration transfer, e.g. in the realm of Docitive Networks concept, may turn

out to be di�cult. CRs may therefore need to build their own optimized cog-

nitive engine configuration; which directly depends on how much noise they

can tolerate, how many neurons in their cognitive engine’s neural network is

computationally feasible, how much CPU (Central Processing Unit) power and

RAM (Random Access Memory) they carry on board, and other technical fea-

tures alike. Henceforth, we believe that semi-supervised techniques similar to

the SOFM–SVM technique discussed in this chapter shall present a good first

step forward.

4.6 Summary and Conclusion

In the previous chapter, our radio access technology classification analysis

was based on time-domain signals collected from the USRPs. In this chapter
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we moved on to consider the frequency domain spectrum which has shown

a higher classification performance using the proposed SOFM–SVM classifier

to discriminate between three di�erent RATs. Using the SOFM–SVM tech-

nique, secondary users can sense whether a band is occupied by a primary or

another secondary user through detecting their transmission protocols, in ad-

dition to alternative possible benefits, such as the application of this concept

in REMs used to enrich WSDB capabilities. This approach has been com-

pared with a fully supervised Matched Filter and MLP neural net classifiers

in frequency domain and with the MLP neural net classifier in time-domain,

as was previously discussed in Chapter 3. The SOFM-SVM method consis-

tently achieves superior performance than the above mentioned methods, as

was presented in Figure 4.9, where it is 8% better classification performance

at -30 dB and below, and at least the same or better performance at -25 dB

and above.[140, 172] Apart from the superior classification performance the

proposed SOFM-SVM technique has the advantage getting rid of the frame

synchronization stage we had introduced the previous chapter. In this chap-

ter, however, we had to transform the received data from time to frequency

domain. This was achieved using Welch’s PSD estimate which was optimized

over a set of hamming window periods.

Regarding the challenges encountered in developing the SOFM part, in order

to better locate each neuronal cluster on the computational layer of the SOFM,

we had to increase the number of neurons. This, of course, come at an increased

computational cost to execute such an algorithm. In SVM’s case, the Scale

and C parameters had to be optimized.
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Chapter 5

Radio Access Technology-Aware

Cognitive Radio Spectrum

Access: Using Deep Neural Nets

and Reinforcement Learning

5.1 Introduction

For cognitive radios to access the TV White Space (TVWS) spectrum, they

need to be aware of the frequency spectrum for transmission opportunities

periodically. It will be crucial for the cognitive radios to retain their previous

experience when scanning di�erent spectrum bands. Storing the spectrum

availability pattern at di�erent locations could be an additional cost. However,

looking this information up periodically in order to find appropriate bands of

spectrum will save a cognitive radio a certain amount of time. Moreover, when

the TV white space spectrum can be scanned on a prioritized manner, the time
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spent on spectrum scanning can be further reduced.

One way to accomplish this prioritization is to di�erentiate between TVWS

channels1 according to their license type, i.e. Primary Users (PUs) and Sec-

ondary Users (SUs). When a channel is occupied by a PU, access to such

a channel is prohibited. However, if a channel is used by a SU, other SUs

can contend for access. This is based on the fact that regulators protect PUs

against interference [4, 173], while there is regarding restriction on interfer-

ence on SU communications. Considering Dynamic Spectrum Access [12, 65]

in such HetNets, a cognitive radio should have the ability to classify di�erent

RATs according to their usage license of the frequency spectrum, i.e. whether

a RAT is a primary signal or a secondary signal.

Due to the various applications that require wireless connectivity, today we can

find diverse combinations of Radio Access Technologies (RATs), which have

led to Heterogeneous Networks (HetNets) [174]. It is it foreseen that in the

coming 5G radio communication systems, various wireless technologies will be

working side–by–side to complementing each other’s functionalities to form a

fast and e�cient networking experience. For instance, one of the upcoming last

mile wireless technology integrations is the combination of mobile and home

networking. Within the 5G paradigm, an 802.11x home networking technology

is going to be coordinating with the mobile connection of the members of that

home [16, 30]. For cognitive radios to be part of such envisaged 5G HetNet they

need to be able to recognize di�erent RAT in their proximity [12], such that

handover can take place between the cellular and home networks seamlessly.

In this sense, here we consider a mixed primary–secondary HetNet where each

RAT represents a particular licensing group. Here, we will consider Digital

Video Broadcast–Terrestrial (DVB-T) and Wideband Code Division Multiple
1For the sake of brevity, hereinafter we refer to ‘TVWS Channels’ as ‘Channels’ and use

them interchangeably.
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Access (WCDMA) to represent primary user transmissions, and 802.11–based

WiFi signal to be a secondary user transmission.

In the previous chapters we have presented machine learning-based RAT clas-

sification techniques that perform well under various levels of AWGN. This

chapter presents yet another RAT classification technique, however, most im-

portantly, it shows that RAT type recognition can be an important factor when

used as contextual information for dynamic channel sensing and allocation.

The rest of the chapter is organized as follows. In Section 5.2, the system

model and problem formulation in terms of combined Auto-Encoder NN and

Reinforcement Learning algorithm; relevant features are obtained from the NN

architecture as will be discussed in 5.3. Later, in Section 5.4, the extracted

feature, along with others features, are used by a type of RL with function

approximation. The goal of the chapter in to propose a novel algorithm that is

implements a resilient and context-aware cognitive radio. In this regard, to test

the suitability of the proposed algorithm for operation as an intelligent radio,

Section 5.5 presents extensive simulation to evaluate the various performance

metrics relevant to CR.

5.2 System Model and Problem Formulation

In this section, we will provide the system model for the simulation scenarios

that will be discussed in the next section. In this chapter, we model a Cognitive

Radio as a single agent trying to maximize its performance opportunistically,

while respecting spectrum regulators’ rules. The spectrum sensing and ac-

cess will be done via Reinforcement Learning using the contextual information

extracted by the DNN.
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Herein, the operation of the DNN-RL algorithm is modeled in a dynamic radio

environment, where:

1. The spectrum is divided into n channels of equal bandwidth, 8MHz as

per UK TVWS [5].

2. The state s of a CR is the TVWS channel that it occupies.

3. The action a taken by a CR to access channel, is a deterministic process,

where the agent will always land in the channel that was attempted to

access. Sometimes, action a results in a collision if a primary was already

using that channel, otherwise it is considered a benign transmission.

A flow chart of the proposed algorithm that will govern the functioning of the

Cognitive Radio is shown in Figure 5.1, and its steps can be enumerated as

follows:

1. Receive the spectral information from the interested portion of the spec-

trum band

2. Preprocess the data: cleansing, segmentation

3. Classify the transmissions as Secondaries or Primaries through a Deep

Learning NN

4. Take an action to access a channel using reinforcement learning based

on the labeled spectrum data (primary or secondary)

5. Receive reward from the radio environment

For the purpose of this chapter we shall consider a few di�erent RATs coexisting

in a contiguous chunk of spectrum. In our experiments, RATs pertaining to our

hypothetical but realistic radio environment, where dynamic spectrum access

is considered, are indicated in Table 5.1. The licensing information extracted
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Fig. 5.1 Deep Neural Network and Reinforcement Learning based
Dynamic Spectrum Access Flowchart

from the deep learner, based on the RAT types discussed above, is utilized by

the reinforcement learning algorithm to avoid colliding with the primary users

and exploit the less occupied frequency bands.

In Chapter 2, we discussed the di�erent types of deep learning architectures.

Here, we show how a DNN infers the licensing information of the incoming

transmissions as either primary or secondary signals.
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Fig. 5.2 A One Layer Auto-Encoder Neural Network

In this work we will consider Sparse Auto-Encoder Neural Nets [108] with

regularized weight decay and sparsity. An architecture of an Auto–Encoder is

given in Figure 5.2.

5.3 Sparse Auto-Encoders

This section is based on the Neural Network foundations developed in Chap-

ter 2. A detailed description of Sparse Auto-Encoders (SAEs) can be found

in [108].

Similar to MLP-Neural Nets, the cost function J(◊) of the model considered

Table 5.1 RATs used and their corresponding categories

802.11 WiFi Secondary System

WCDMA Primary System

DVB–T Primary System
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in this work is given by Equation 5.1, where:

• x is a training example indexed by n œ N , where N is total number of

training examples

• x̂ is the reconstructed version of the input example x

• i is the index of elements in an input x training example

• j is the index of the hidden units in the RBM layers

• l is the index of an RBM layer, l œ L

• ⁄ is Weight Decay Regularizer

• w
ij

is the weight on the link between input i and hidden neuron j.

• — is the sparsity regularization coe�cient

• KL is the Kullback–Leibler divergence and its given by Equation 5.2,

where:

– fl is the desired mean activation, fl π 1

– p̄l

j

is the mean probability of hidden unit j in layer l being active,

as given by Equation 5.3

J(◊) = 1
2N

Nÿ

n

ÿ

i

(x(n)

i

≠ x̂
(n)

i

)2

¸ ˚˙ ˝
MSE Error

+⁄
1
2

ÿ

l

ÿ

i

ÿ

j

(w(l)

ij

)2

¸ ˚˙ ˝
L

2
W eight Decay

+—
ÿ

l

ÿ

j

KL(fl Î p̄l

j

)
¸ ˚˙ ˝

Sparsity P enalty

(5.1)

KL(fl Î p̄l

j

) = fl log( fl

pl

j

) + (1 ≠ fl) log( 1 ≠ fl

1 ≠ pl

j

) (5.2)
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p̄l

j

= 1
N

Nÿ

i=1

hl

j

(5.3)

The first term in Equation 5.1 is the error term which is modeled as the Mean

Square Error (MSE) di�erence between the raw input and be reconstructed

version as discussed previously. The second term is a weight decay [128] applied

to counteract over-fitting, governed by the Weight Decay Regularizer ⁄. This

term is also sometimes called L2 Regularization. This regularization factor

tries to prevent high weight values which may consequently lead to a low value

at the output of a hidden unit and thus disguise as sparsity. Minimizing the

error function J(◊) ensures high wights to be penalized. The third term is a

sparsity penalty measure using the Kullback–Leibler (KL) divergence. Here,

KL is used to calculate similarity between the distribution of a hidden neuron’s

activation, p̄l

j

, to that of the desired mean activation distribution fl. In other

words, if p̄l

j

is equal to fl then this term will be zero, otherwise a penalty will

be added to the cost function.

Softmax Layer

The penultimate layer of the stack auto-encoder neural network is a Softmax

layer. The purpose of this layer is to calculate the probability of the output

being associated with a particular class given the input x, P (y = k|x). A

Softmax layer outputs a K-dimensional vector, where, upon a correct classifi-

cation, the kth index of the output vector should be the highest in value among
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others. Analytically, a Softmax layer can be described as follows [175]:

h
◊

(x) =

S

WWWWWWWWWWU

P (y = 1|x; ◊)

P (y = 2|x; ◊)
...

P (y = K|x; ◊)

T

XXXXXXXXXXV

= 1
q

K

j=1

exp(◊(j)€x)

S

WWWWWWWWWWU

exp(◊(1)€x)

exp(◊(2)€x)
...

exp(◊(K)€x)

T

XXXXXXXXXXV

(5.4)

which is also equivalent to,

P (y(i) = k|x(i); ◊) = exp(◊(k)€x(i))
q

K

j=1

exp(◊(j)€x(i))
. (5.5)

Note that the 1q
K

j=1 exp(◊

(j)€
x)

normalizes the exponential in the numerator

and therefore we get a probability function. Here, the model parameters are

◊(1), ◊(2), . . . , ◊(K) œ Ÿn. For training a Softmax layer we will minimize the cost

function,

J(◊) = ≠
C

mÿ

i=1

Kÿ

k=1

I
Ó
y(i) = k

Ô
log exp(◊(k)€x(i))

q
K

j=1

exp(◊(j)€x(i))

D

(5.6)

Since we cannot minimize the equation above analytically, we will be using an

iterative optimization algorithm. In this regard, we will be using the stochastic

conjugate gradient descent. Taking the gradient of the equation above we get,

Ò
◊

(k)J(◊) = ≠
mÿ

i=1

Ë
x(i)

1
I{y(i) = k} ≠ P (y(i) = k|x(i); ◊)

2È
(5.7)

where I is the Identity Function.
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Stacked Auto-Encoder Training Methodology

Training an Auto-Encoder may involve a data preprocessing stage for better

classification performance. Since an Auto-Encoder tries to reconstruct its out-

put based on its input, it is necessary that the raw input data match the range

of the Encoder/Decoder Transfer Functions, i.e. in this case, logsig function,

which ranges from 0 to 1.

Algorithm 2 Stacked Auto-Encoder Neural Network Training
Require: ⁄, —, fl, D

1: Preprocessing: Divide raw data D into training D
train

and testing D
test

sets, Scale data
2: Set feat0 Ω D

train

3: for all Auto-Encoder hidden (AEh) layers l œ [1, . . . , L] do
4: train AEhl with input featl≠1 and output featl≠1

5: featl Ω apply featl≠1 to AEhl

6: end for
7: train softmax layer with featL

8: NeuralNet
final

Ω Stack (concatenate) All trained AEhl layers
9: train NeuralNet

final

with feat0 Û Fine Tuning

Fine Tuning

After separately training all the hidden sparse auto-encoder layers and the final

Softmax layer, as described above, we need to stack them up. All of the trained

layers are concatenated according to their training sequence chronologically.

This will form the deep stacked sparse auto-encoder neural network, as shown

at the lower part of Figure 5.3. The performance of this type of deep neural

network can be further enhanced by training the whole network together one

last time. We call this part the Fine-Tuning stage.

Table 5.2 presents the hyper-parameters that are chosen in the implementation

of the Stacked Auto-Encoder. The final softmax layer used a scaled conjugate
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gradient method for training and employs cross-entropy function for perfor-

mance calculation. The total number of training examples is 10500, where

this figure is divided into two datasets: a Training dataset comprising 80% of

the samples, and a 20% Testing dataset.
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Table 5.2 Stacked Sparse Auto-Encoder Training Parameters

Parameters Hidden Layer 1 Hidden Layer 2

Neuron (per layer) 100 50

Desired Mean Activation fl 0.15 0.1

L2 Weight Regularization ⁄ 0.004 0.002

Sparsity Regularization — 4 4

Max Epochs (Layers) 500 500

Encoder Function logsig logsig

Decoder Function logsig logsig

Test/Train Ratio 1/5 1/5

Finally, in order to group classes of similar protection priorities (i.e. Primary

or Secondary system), we have included a simple Mapping Function as shown

in Figure 5.4. The mapper associates each class k group to a particular output

as discussed previously in Table 5.1.

Stacked Auto-Encoder RAT Classification Performance

Similar to the classification performance stress test mentioned in Chapters

3 and 4, the trained Stacked Auto-Encoder is tested under a range of noisy

versions of the received signal from the lab experiment described in Chapter

2. Below we describe the performance evaluation in terms of boxplots2 figure.

Here, we note that we have outperformed our previous results in Chapter 3

and Chapter 4. Figure 5.5 presents the average percentage correct classification

as the SNR decreases over 30 simulations. We notice that even at SNR of -

25dB and -30dB we can correctly recognize signals above 95% and 80% of the
2A brief description of the anatomy of a boxplot can be found in Appendix B: Boxplot

Anatomy.
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Fig. 5.4 Stacked Auto-Encoder Neural Net with Mapper Function

time (on average), respectively. These are better results than the MLP NN

and SOFM-SVM architectures presented in Chapters 3 and 4, respectively. In

Figure 5.6, we show another SAE architecture with an additional hidden auto-

encoder layer, though we find out that it does not perform as well as results

gotten from 3 hidden layers of SAE. In addition, for the sake of clarity, the

internal representation of the learned features at the first hidden layer of the

SAE architecture is show in Figure 5.5. Note than some of the subplots show

clear resemblance of some of the features found in the raw dataset already

shown in Figure 4.2.

In the next section we will show how the learned features here, namely, for a

signal being classified as a Primary or Secondary, will be used in the linear

functional approximator of a Q–Learning algorithm.
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Fig. 5.5 3 Layer Stacked Auto-Encoder

Fig. 5.6 4 Layer Stacked Auto-Encoder
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5.4 Reinforcement Learning

In this section, we will talk about the second main point of this chapter: the

reinforcement learning engine. Previously, we discussed how the RAT class was

identified through the deep learning network. Here, we will use the extracted

features in combination with a type of reinforcement learning algorithm called

Q–Learning [176], that will decide which channel to sense and access at every

time step (iteration) of the algorithm.

5.4.1 Reinforcement Learning Model

In its basic form, Reinforcement Learning problem, similar to Markov Decision

Process (MDP), can be described according to the following building blocks:

1. A set of states s œ S

2. A set of actions (per state) A

3. A state transition model T (s, a, sÕ), where next state,

p(sÕ|s, a) = Pr{S
t+1

= sÕ|S
t

= s, A
t

= a} (5.8)

4. A reward function R(s, a, sÕ), where next reward,

r(sÕ|s, a) = E{R
t+1

|S
t

= s, A
t

= a, S
t+1

= sÕ} (5.9)

A summary description of all the parameters used in this section is given in

Table 5.3.
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The type of problem

We consider a CR channel assignment task that is classified as stochastic,

one-player game with incomplete information. First of all, it is a stochastic

(stationary) setup, since we have modeled the primary system’s packet arrival

as a Poisson process (which is stochastic stationary). While there might be

several radio agents in a simulation scenario, the task researched here is one-

player task since we consider channel assignment problem from the point of

view of one CR agent that interacts with the radio environment (except in

Section 5.5.7 where there is interaction between the CRs). Furthermore, the

CR learns about the channel availability without knowing the model of the

radio environment; in other words, the CR does not know beforehand which

channels are going to be available in the next time steps, and thus it is a

Model-Free task, as it is called in RL literature [170].

Table 5.3 Reinforcement Learning related parameters

s, sÕ, S Current state, Next state, State Space

a, aÕ, A Current action, Next action, Action Space

Q State-Action pair Q-Table/Matrix

F State-Action Frequency F -Matrix

T Transition Matrix

r, R Reward, Reward Matrix

Pr Probability Distribution Function

E Expected Value

“ Discount Rate

– Learning Rate

fi, fiú Policy, Optimal policy

w Weights

f Feature function
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Reinforcement Learning tasks can in general be divided into two main cat-

egories: on-policy and o�-policy. Policy-based RL, attempts at finding the

optimal policy fiú(s) æ a to achieve maximum future reward. While o�-policy

RL try to reach optimal value function Qú(s, a) which is the maximum achiev-

able value under any policy [134, 135, 170].

Without dwelling too much on the background review of RL, which is a broad

subject on its own, below we discuss several types of o�-policy learning. We

choose the well-known algorithm called Q-learning [176] and discuss one of its

variants, called Approximate Q-learning, that forms the basis of the research

in rest of this chapter.

System Model

We assume Heterogeneous Network (HetNet) of homogeneous ad–hoc connec-

tions between CRs which are within each other’s decodable ranges. There are

N CRs and a set of L uni–cast connections, L, where l œ L is a single uni–cast

connection. These connections, can be either primary or secondary as was laid

out previously in table 5.1. Furthermore, let B
i,t

œ B be the set of TV channels

available to a CR, i œ N , at a particular time step, t œ [0, T ], where N is the

set of CRs in the CRN and T is the End Time of the mobile CR trajectory and

hence the simulation. B = fi
iœN B

i,t

is thus the set of all TV bands considered

in the CRN, with B
i,j,t

= B
i,t

fl B
j,t

representing the set of TV bands available

at time t at both CR nodes i and j. We also assume the presence of common

control signaling [113] between the CRs.
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5.4.2 Q-Learning

Q–Learning (QL) builds a table, called Q–Table, from learning the optimal

state–action pair values, called Q–values, during the training period. This

table is consequently kept for reference when an action needs to be chosen

given a particular state. The Q–values of state–action pairs are updated as in

Equation 5.10 when T (s, a, sÕ) and R(s, a, sÕ) matrices are available and the

system is trained in O�ine mode, such that,

Q(s, a) Ω
ÿ

s

Õ
T (s, a, sÕ)

5
R(s, a, sÕ) + “ max

a

Õ
Q(sÕ, aÕ)

6
. (5.10)

However, in Q–Learning, neither the transition model nor the reward functions

are known to us when we first start training a model. The Q–values of state–

action pairs are updated as in equation 5.11 when T (s, a, sÕ) and R(s, a, sÕ)

Matrices are not available and the system is trained in Online mode.

Q(s, a) Ω (1 ≠ –)Q(s, a) + –
5
r + “ max

a

Õ
Q(sÕ, aÕ)

6
. (5.11)

Considering an MDP with several thousands of states and/or actions, the prob-

lem becomes intractable as the state-action space explodes; On the one hand,

the increase in the number of states and actions increases the complexity of the

problem in terms of finding the optimal policy fiú = arg max
aœA Qú(s, a), ’s œ

S, on the other hand, it will take longer to reach a certain rate of convergence.

In this chapter we propose applying an Online Approximate Q–Learning tech-

nique to track and access the TVWS spectrum band. This band is modeled

similar to the actual TV channels in the United Kingdom, where each channel

having a bandwidth of 8 MHz using DVB–T type transmission [4].
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Fig. 5.8 Reinforcement Learning Cycle

5.4.3 Greedy Q–Learning

A Q-learning algorithm with greedy exploration policy as described above

in Equation 5.11, is the simplest form of QL. Here, the radio agent tries to

maximize its immediate reward by choosing the action that yields maximum

value. It has no exploration mechanism, and thus in the channel assignment

context it does not spend time exploring channels not visited. As we will

see in the performance analysis section, this approach is usually inferior in

performance when used in non-stationary scenarios, such as the channel access

problem considered in this chapter. The Greedy QL procedure is presented in

Algorithm 3.

Algorithm 3 Q–Learning Algorithm, with greedy policy
Require: –, “

1: Initialize Q-table, arbitrarily
2: Sense the targeted TVWS spectrum band
3: repeat for iteration step k
4: Choose a

k

such that arg max
a

Õ Q(s
k+1

, aÕ)
5: Execute action a

k

, observe r
k

and s
k+1

6: Calculate
Q(s

k

, a
k

) = Q(s
k

, a
k

) + – [r
k

+ “ max
a

Õ Q(s
k+1

, aÕ) ≠ Q(s
k

, a
k

)]
7: s Ω s

k

8: until end of episode
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5.4.4 ‘-greedy Q–Learning

A simple but powerful alternative to the greedy policy approach discussed

above is the ‘-greedy method. An agent following this policy would still try to

exploit to find the channel that results in lower number of collisions, however,

every now and then it would explore other channels at random with probability

‘ — hence the name [134]. Algorithm 4 displays the steps taken in ‘-greedy

Q–Learning.

Algorithm 4 Q–Learning Algorithm, with ‘-greedy policy
Require: –, “, ‘

1: Initialize Q-table and F (s, a) arbitrarily
2: repeat for iteration step k
3: Choose a

k

, using ‘–greedy policy fi

a
k

=
I

arg max
a

Q(s
k

, a) w.p. (1 ≠ ‘
k

)
random w.p. ‘

k

4: Execute action a
k

, observe r
k

and s
k+1

5: Calculate
Q(s

k

, a
k

) = Q(s
k

, a
k

) + – [r
k

+ “ max
a

Õ Q(s
k+1

, aÕ) ≠ Q(s
k

, a
k

)]
6: s Ω s

k

7: until end of episode

5.4.5 Functional Q–Learning

The proposed Algorithm 5 shown below, is very similar to ‘-greedy QL but

with a subtle di�erence. Here, when choosing action a
k

with probability 1≠‘
k

,

rather than taking the max of the Q-table, we apply a function to the Q-table

beforehand, such that,

a
k

= arg max
a

Q(s
k

, a) + k

F (s
k

, a) w.p. 1 ≠ ‘
k

, (5.12)
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Algorithm 5 Functional Q–Learning Algorithm, with ‘–greedy policy
Require: –, “, ‘, k

1: Initialize Q-table, arbitrarily
2: repeat for iteration step k
3: Choose a

k

, using ‘–greedy policy fi

a
k

=

Y
_]

_[
arg max

a

Q(s
k

, a) + k

F (s
k

, a) w.p. (1 ≠ ‘
k

)

random w.p. ‘
k

4: Execute action a
k

, observe r
k

and s
k+1

5: Calculate
Q(s

k

, a
k

) = Q(s
k

, a
k

) + – [r
k

+ “ max
a

Õ Q(s
k+1

, aÕ) ≠ Q(s
k

, a
k

)]
6: s Ω s

k

7: until end of episode

where F (s, a) œ NN

Ch

◊N

Ch is the State-Action Frequency Matrix, and N
Ch

is

the total number of channels.

The rationale behind what we refer to the functional Q-learning algorithm is

to extend the basic ‘-greedy QL to be more aware of the frequency of choosing

each state-action pair, such that less explored actions get higher ratings and

eventually get selected.

5.4.6 Approximate Q–Learning (AppQL)

As discussed, basic Q–Learning technique builds a Q–Table which will contain

the Q–Values for each state–action pair. However, when the number of the

states and or actions become too large, or infinitely large, as in the case of a

continuous action space [134], such as power control problem, this approach

becomes intractable. Similarly, when the complexity of the problem grows,

time to convergence may potentially increase as well, and we may run into

out–of–memory problems. Ultimately, We would like to generalize in the state-

action value function that appears in Equation 5.10.
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One way to implement generalization in QL is through the use of Function

Approximators [177]. Concretely, we can implement a ‚Q–Function, which is

the weighted sum of a set of manually selected feature functions,

‚Q(s, a) = w
1

f
1

(s, a) + w
2

f
2

(s, a) + ... + w
n

f
n

(s, a), (5.13)

where f
i

is the ith feature function capturing a characteristic of the input

example, and w
i

is the weight for feature i œ [1, n].

In regular Q–Learning algorithm, after each transition (s, a, r, sÕ), we calculate

the temporal di�erence ”,

” =
5
r + “ max

a

Õ
Q(sÕ, aÕ)

6
≠ Q(s, a), (5.14)

and then update the Q–table,

Q(s, a) = Q(s, a) + –”. (5.15)

However, in the Approximate Q-Learning Algorithm, instead, we update the

weights of the Q-Function in Equation 5.16 as follows,

w
i

= w
i

+ –”f
i

(s, a). (5.16)

The pseudocode of Approximate Q–Learning approach is shown in Algorithm 6.

For the sake of clarity on how the AppQL algorithm functions, perhaps it is

best to explain it via an illustration of single simulation run. Figure 5.9 below,

presents (from top to bottom of the figure) feature weights w, error in terms
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Algorithm 6 Approximate Q–Learning Algorithm, with ‘–greedy policy
Require: –, “, ‘

1: Initialize all weights, W , arbitrarily
2: repeat for each iteration k
3: Sense the targeted TVWS spectrum band
4: Choose the most underutilized channel, s

k

5: for all a œ A(s) do
6: f

a

Ω set of features present in s
k

, a
k

7: Q
a

Ω q
iœf

a

w
i

8: end for
9: Choose a

k

, using ‘–greedy policy fi

a
k

=
I

arg max
a

Q(s
k

, a) w.p. (1 ≠ ‘
k

)
random w.p. ‘

k

10: Execute action a
k

, observe r
k

and s
k+1

11: Calculate ”
k

= r
k+1

+ “ max
a

Õ Q(s
k+1

, aÕ) ≠ Q(s
k

, a
k

)
12: for all w œ W do
13: w

i

Ω w
i

+ –”
k

f
i

(s, a) Û Update W
14: end for
15: until No more episodes

of collisions, reward gained r, and finally successful transmissions (blue circle)

and collisions (red asterisk) in a 10 channel setting for the entire 1000 iteration

steps. There are a few things to observe here. First, we can easily point out

that for the first 100 iterations the agent is su�ering from several collisions as

compared to the rest of the iterations. We refer to this period as the Learning

Stage, as depicted in the red box. Second, the agent is actively exploring more

than one channel, as can be provably shown in the bottom figure. Third,

the feature weights values as shown in the top figure, display precedence of

used feature functions compared to each other. For instance, the feature that

indicates the RAT type of the signals is ranked the highest among the others.

Having covered the necessary foundations of Q–Learning, in the next section

we will conduct a thorough analyses of the Approximate Q–Learning algorithm

in particular and compare it to the other algorithms discussed in this section.
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Fig. 5.9 CR using Q-Learning with Functional Approximation
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5.5 Performance Analyses

In this section we put all Q–Learning algorithms discussed above to various

tests. Through extensive simulations, greedy, ‘-greedy and functional-form

QL approaches are compared against AppQL over key networking related per-

formance measures. As the chapter title also states, the main performance

metric taken into consideration in this work is the collision rate of a secondary

CR with the transmissions of a primary system. To this end, the forthcoming

subsections will involve answering the following questions:

• Scalability: How does the primary-secondary collision rate change as the

number of channels increase?

• Agility: How does the collision rate change when the channel jumping

frequency of the primary user increases? In other words, what is the

e�ect of an increasingly more frenetic primary user on a secondary’s

spectrum access performance?

• Mobility: What happens when the secondary CR is mobile? does the

channel quality a�ect the collision rate?

• Convergence: Does the CR approach an globally or locally optimal sta-

tionary value?

• Diversity: Does the CR make use of all the channels available to it, or

does it stick to one channel and hope that the receiver will not experience

frequency selective fading?

• Complexity: How much time and memory does the channel access scheme

take up?

• Learnability: Did the cognitive radio learn? Can its learned knowledge

be useful for new agents to achieve more e�cient training?
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Grid–Search Optimization

In order to make a fair comparison between the di�erent Q–Learning tech-

niques discussed in this chapter, the hyperparameters of each method should

be optimized. Hyperparameters that were optimized in this work are the fol-

lowing: the learning rate –, the discount factor “, the exploration vs exploita-

tion rate ‘, and the special hyperparameter of the functional form Q-Learning

method k.

The optimization process that was used in this work is known as Grid-Search.

Each hyperparameter was optimized over a range and size as indicated by

Table 5.4. Note that the table does not give the full range of values for some

parameters; this is just to accelerate the lengthy simulation time. For instance,

we clipped the upper limit of the parameter – so that it ends on 0.01 rather

than 1; Due to our initial simulation runs, we found than all QL algorithms

did better when the – Æ 0.5. For each unique combination of these parameter

values, a range of simulations were run, and the average of each simulation was

stored. Later the combination of parameters that performed best were chosen.

This final set was used as the optimum values to simulate each corresponding

Q–Learning method and generate the figure shown therein for fair comparison

purposes. In other words, each method used its own set of hyperparameters

Table 5.4 Grid Search Parameter Ranges

Parameter Start Step End

– 0.0001 0.001 0.5

“ 0.001 0.01 1

‘ 0.001 0.01 1

k 0.001 0.01 0.1
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Fig. 5.10 Percentage Prediction Error Using ‘-greedy Algorithm

rather than one common tuple of (–, “, ‘, k).

For the sake of demonstration, Figure 5.10 presents an instance of optimizing

one hyperparameter for one of the access mechanisms, ‘-greedy. Here, a set

of values for the learning rate – is simulated and the value that leads to the

minimum amount of error (collisions) was chosen as the best – for the ‘-greedy

Q–learner.

In the subsections below, we will examine all of the performance measures

mentioned at the outset of this section.
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5.5.1 Scalability

Scalability is one of the key testing measures in networking-related performance

evaluations. In e�ect, when the number of channels that are desired to be

sensed and accessed are increased, an adequate channel selection algorithm’s

performance should not be significantly a�ected. In this work, by scalability

testing we refer to simulating di�erent scenarios where a cognitive radio will

be sensing and attempting to access a range of finite number of channels.

For this purpose we setup 5 di�erent sets of simulations. Figure 5.11 displays

channel access resiliency in terms of primary-secondary collision rate as the

number of channels are varied from 5 to 25 channels.

Here we observe that for low number of channels, e.g. 5 channels, the greedy,

‘-greedy, and the functional form Q-Learning algorithms have similar behavior.

Fig. 5.11 Scalability of all algorithms as the number of channels
increase, f

d

= 10Hz, Agility=Light
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However, we clearly note that these methods are severely a�ected when they

are set to take on larger number of channels. The functional form Q-Learning

exhibits the worst performance among the rest, since it takes the frequency of

the state-action pair into consideration. As the number of channels (and hence

actions) increase, there will be the square of number of state-action pairs in

the frequency matrix. Therefore, the value N

Itr

N

2
Ch

, where N
Itr

is the number of

iterations and N
Ch

is the number of channels, will decrease exponentially. As

a result, this method will be busy exploring most of the time, since it tries to

uniformly populate the channel-action frequency matrix.

A more detailed figure would show finer performance evaluation of the algo-

rithms. Specifically, considering the low number of channels cases, e.g. 5 or

10 channels, as shown in Figure 5.12, we can better note that the lower-bound

whiskers (representing 25th percentile) of the greedy and ‘-greedy methods

achieve the same collision rate as the 75th percentile of AppQL. We suspect

this to be due to the fact that the experiment was run in agility mode 4,

meaning, for the whole duration of the experiment (1000 iterations) the pri-

mary user changes its channel 3 times (every 250 iteration). In other words,

the primary system channel dynamics is not (relatively) very high. As a result,

there might be a case where one channel will be free for the entire duration

of the simulation run (1000 iterations), and thus a greedy policy should play

very well in such a situation.

As for the AppQL algorithm, we note that it exhibits a stable performance

throughout the test. A few collisions are recorded, and these happen during

the learning stage as previous shown in Figure 5.9.
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Fig. 5.12 Log-scaled Boxplot of Primary-Secondary Collisions as the
Number of Channels Increase, averaged over 100 simulations, f

d

= 10Hz,
Number of PU channel jumps=3.
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5.5.2 Agility

In this work, we consider Cognitive Radios to coexist alongside Primary sys-

tems who also would like to make use of the best transmission opportunities

are they arise. For instance, a primary mobile user, could be informed to

transmit on di�erent TVWS channels as they traverse an area where TVWS

channels are shadowed out. Therefore, we simulate the wireless tra�c on the

TVWS band as a Poisson arrival process with arrival rate ⁄ as the average

number of arrivals in a unit of time. The arrival probability of n packets in

time interval, T , then can be modeled as,

P
n

= (⁄T )n

n! exp(≠⁄T ) (5.17)

and therefore the inter-arrival times are exponentially distributed, such that,

P (interarrival time > t) = exp(≠⁄T ). (5.18)

Figure 5.13 displays three di�erent realizations of a primary system’s agility,

namely, Dense, Moderate and Light activity.

The collision rates from the three di�erent scenarios are shown in Figure 5.14,

where the N
Ch

= 10 and exponentially decrease in collisions as the primary

system agility decrease linearly.

5.5.3 Mobility

A CR may be mobile as well, and thus could be relocated to other locations

where the radio environment is di�erent from where it was before. Following

a trajectory, a CR shall be able to adapt to the available channels along the
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Fig. 5.13 Three Di�erent Realizations of Primary System Agility
Over 10 Channels. Yellow means the the primary user is on, and green

indicates the primary signal is not identified.

Fig. 5.14 Log-Scale Secondary-Primary Collision Rate in Di�erent Primary
System Tra�c Models with Dense, Moderate and Light PU channel jumping

frequency. N
Ch

= 10, N
Sim. Runs

= 50, Avg. Packet Size = 200
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path. This adaptation could be shown through a heat map of the states, or

in other words the frequency of choice of the available channels. Furthermore,

TVWS is not totally sporadic but exhibit a spatial correlation. In this section,

we will consider a CR, equipped with the above discussed QL learning algo-

rithms, and traversing an geographical area while it tried to solve the channel

assignment problem at the 700Mhz TVWS band. In such a scenario, our aim

is to test whether channel fluctuations caused by being mobile will a�ect the

performance on the CR.

Mobility Model

The scenarios we have considered so far were of a static CR sensing the radio

environment and testing its performance to access the TV white space. Here,

we will test the CR’s collision rate while we mobilize the CR in simulation from

point A to point B at di�erent speeds. The set of velocities considered are: 10

km/h, 100 km/h and 360 km/h to yet again test the convergence performance

of the Approximate Q–learning technique under higher mobility.

The chosen channel model in the scenario is the 3GPPTUx model (TU for

Typical Urban) [178], which is a simplified realization of the COST 259 model

[179]. The propagation properties that were considered in COST 259 can found

in Table 5.5. Coherence Time decreases inversely proportionally with Doppler

Shift, as indicated by Equation 5.19.

Coherence Time ¥ 1
Doppler Shift (5.19)

As the Doppler spread is increased, the coherence time decreases and thus it

will make it harder for the CR to settle in a stable channel. Table 5.6 lays
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Table 5.5 Propagation Properties considered in COST 259 Model [179]

1 Path Loss

2 Shadow Fading

3 Fast Fading

4 Time Dispersion

5 Angular Dispersion

6 Polarization

7 Multiple Clusters

8 Dynamic Channel Variation

out three di�erent instances of this model that has been taken into account in

regards to stationary and vehicular modes, based on the maximum Doppler

shifts calculated according to Equation 5.20 [150]. The Maximum Doppler

Shift f
d

is calculated such that,

f
d

= f
c

v
rel

c
, (5.20)

where v
rel

is Relative Velocity, f
c

is the Carrier Frequency and c is the Speed

of Light (3 ◊ 108 m/s). An instance of the simulated channel model for the

mentioned three scenarios in Table 5.6 is shown in Figure 5.15.

Table 5.6 Mobility Scenarios indicating Relative Velocity and Maximum
Doppler Shift

Scenario v
rel

f
d

Semi-stationary 10 km/h 7 Hz

Urban vehicular 100 km/h 65 Hz

Highway vehicular 360 km/h 234 Hz
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The collision rate results regarding the above mentioned three mobility sce-

narios are shown in Figures 5.16, 5.17 and 5.18. As a general remark, we can

note that in the light PU agility scenario all methods except the Functional

Q-learning method do relatively well in terms of the number of collisions in-

curred. As the level of PU agility increases all methods collision rates increase,

nonetheless, AppQL su�ers around 6-times less than the other methods at the

Dense PU agility case.

In regards to mobility, we could not notice a major e�ect of increasing the

Maximum Doppler Shift f
d

. The reason for this is mainly due to operation

in a low frequency band where in this case we have run our simulations at

700 MHz band – resembling a TVWS radio environment.

5.5.4 Diversity

A general phenomena that arises in wireless communications is that on Rayleigh

fading channels the attenuation in Bit-Error-Rate (BER) as the SNR increases

is linear, and not exponential as it is with Additive White Gaussian Noise

(AWGN) Channels [150]. Herein, a heuristic measure is proposed to quantify

the degree of diversity provided by the algorithm under research.

In order to explain the intuition behind such a heuristic measure, which will

be referred to as the Channel Utilization Diversity (CUD), consider the three

di�erent CR channel access instances shown in Figure 5.19. In the first case (a),

the CR depicted in blue, achieves maximum channel diversity since it visit all

of the channels equally in the three iterations available to it. In (b), the black

CR achieves sub-optimal diversity since it does not visit the middle channel

while there is an opportunity to do so, has it visited the channels in a di�erent

order, e.g. (1,3,2). The final case (c), only achieves minimum diversity since it
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Fig. 5.16 Mobility test result at maximum Doppler frequency f
d

= 7 Hz

Fig. 5.17 Mobility test result at maximum Doppler frequency f
d

= 65 Hz

Fig. 5.18 Mobility test result at maximum Doppler frequency f
d

= 234 Hz
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C
ha
nn
el
s

Iterations

CR.1 CR.2 CR.3 Occupied Free

(c)(b)(a)

1

2

3

321 321 321

Fig. 5.19 Explaining Channel Utilization Diversity (CUD) Measure

only exploits one channel for the duration of all iterations. Thus, the heuristic

measure designed should give maximum value to case (a) and minimum to (c),

while (b) should be assigned a value somewhere in between.

For a fair calculation of CUD, the capacity vector Cdiv œ RN

Ch of the available

channels for secondary transmissions weighted by the complement of the chan-

nel strength matrix S
Õ
c,i

œ RN

Ch

◊N

Itr shall be taken into account, where N
Ch

is the number of channels and N
Itr

is the number of iterations in a simulation

experiment. Here the complement of the channel strength matrix is defined as

S
Õ

c

= 1 ≠
S

c,i

≠ S
c,(min)

S
c,(max)

≠ S
c,(min)

’i œ [1, N
Itr

]. (5.21)

As an example, consider Cdiv

c

for all channels c œ [1, N
Ch

] in Figure 5.19 is 2

(where c = 1) + 1 (where c = 2) + 3 (where c = 3) ∆ C
div

= {2, 1, 3}T . More

formally,

Cdiv

c

=
N

Itrÿ

i=1

I(¬PU | c, i)S
c

, (5.22)

where I is the Indicator function, and its use in the equation above implies that

the output will be equal 1 if the channel c sensed, at iteration i, is not occupied
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by a PU. Additionally, let the matrix F œ RN

Ch

◊N

Itr be recording the channels

a CR visits at every iteration. Then CRs’ transmissions in every channel for

the duration of each simulation run (1000 iterations) can be presented as a

vector T , such that,

T
c

=
N

Itrÿ

i=1

F
c,i

, (5.23)

where i œ [1, N
Itr

] and T œ RN

Ch . Finally, we define CUD to be,

CUD =
ÿ q ≠C

div

◊ (T ≠ C
div

)
max(q ≠C

div

◊ (T ≠ C
div

)) (5.24)

which can be put more conveniently as,

CUD =
ÿ q

C2

div

≠ TC
div

max(q
C2

div

≠ TC
div

) (5.25)

The results obtained from running 100 simulations of 1000 iterations each

for all the algorithms according to Equation 5.25 under di�erent PU agility

measures are shown in Figure 5.20. Here it can be noticed that the AppQL and

the functional form of Q-Learning show approximately similar performance.

The good results that the functional form achieves here are a manifestation

of its exploration property which was essentially enabled by the taking the

channel frequency matrix into account. In other words, in the functional Q-

Learning algorithm if a channel was less favored, e.g. visited less by a CR

due to its channel strength properties, its channel frequency feature function

would be higher in value and eventually making this channel more likely to be

explored by the CR every now and then.

The greedy policy, as was expected, did not do well in this test due to its

greedy nature to exploit rather than explore and hence achieved the worst

diversity performance. On the other hand, the ‘-greedy algorithm, since it
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Fig. 5.20 Cognitive Radio Channel Utilization Diversity (CUD).
(a) Maximum diversity (b) Intermediate diversity (c) Minimum diversity.

N
Ch

= 25 Channels, and PU Agility=2a jumps, where a=1,2,3,4.

explores other channels randomly with probability ‘, behaved better than the

greedy algorithm in all the di�erent PU agility scenarios, yet worse than the

Approximate and functional Q-Learning Algorithms.

5.5.5 Complexity

Complexity is another important aspect of algorithms that needs to be evalu-

ated. Here, we investigate the empirical time and theoretical space complexi-

ties.

Time Complexity

The time complexity in this work is only empirically evaluated; while it is com-

mon to measure it theoretically however in this case it would be fairly compli-

cated. Essentially, here we have recorded the time taken by the implemented



5.5 Performance Analyses 157

Fig. 5.21 Algorithmic Time Complexity

algorithm for every simulation episode and then repeated the experiment 10

times, taking the average over all simulation runs. The bar graph shown in

Figure 5.21 indicates the time taken by each QL algorithm as the number of

channels was increased from 5 to 165 in increments of 40. Due to the sim-

plicity of the greedy-QL algorithm, it achieves the best delay performance.

This is due to the fact that it does not even run on a probabilistic exploration

policy as compared to the other QL algorithms. The greedy-QL rather sticks

to the channel that it expects to give the maximum reward in the next time

step. While this might be a sound exploitation strategy, it does not fit very

well for wireless communications where the radio environment is intense and

non-stationary.

On the other hand, the ‘-greedy and functional Q-Learning methods behave

similarly, though taking slightly longer than greedy-QL. However, the time
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taken by the proposed AppQL is found to be several times longer than its

counterparts, which can be considered a major draw-back of this technique.

The reason for this is mainly due to the fact that the Approximate Q-Learning

algorithm employs three feature functions that needs to be evaluated on every

iteration, and thus would entail an additional time and computational costs.

Among all a performance analyses done in this chapter, time-complexity hap-

pens to be the biggest caveat of the AppQL. Nevertheless, if we take a closer

look at Figure 5.15, we note that for both the f
d

= 10 Hz and f
d

= 100 Hz,

the channel response is quite stable. In other words, the coherence time is

expected to be longer than what was simulated i.e. ·
Coherence

> 1msec, and

thus for such sub-GHz spectrum bands packet size could be longer. Finally,

as a general remark, it is obvious that with the increase of the set of channels

considered, the delay also increases. However the rate of time delay increase on

Fig. 5.22 Algorithmic Space Complexity
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the AppQL is noted to be slightly more severe than the rest of the algorithms.

This is most probably the direct cause of extra computation time needed to

consider the max function inherent to the AppQL algorithm.

Space Complexity

Calculating the space complexity, or in other words, the Random Access Mem-

ory (RAM) taken by the algorithms is more straight-forward. To calculate this

figure, we shall ask: what are the size of variables (in memory) that we need

to store in-between subsequent iterations for the algorithm to proceed? In this

case, the answer essentially is the size of matrices the algorithms store. Figure

5.22 indicates the space required by every algorithm, where an element of a

matrix is counted as one unit of memory.

For the tabular greedy and ‘-greedy Q-Learning algorithms, their Q-tables

depend on N
Ch

. As the number of channels increase, the space complexity

also increases with exponent 2 (since the Q-tables are square tables). The

functional-QL execution entails the storage of an additional matrix F
c,i

as was

previously discussed in Equation 5.23, and thus su�ers the most among the

simulated QL methods. Finally, we note that the algorithmic space complexity

of the AppQL stays constant, since what we essentially retain between every

iteration is the learned feature function coe�cients. This in e�ect achieves one

of the main goals of function approximation techniques.

5.5.6 Convergence Test

Convergence of a reinforcement–based learning algorithm is an important prop-

erty where approaching the (optimal) solution is guaranteed. However, it has

been shown that Approximate Q-Learning may diverge in some scenarios. In
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an o�-policy setting, Q-learning with function approximation may oscillate

about an optimal solution, leading to a never-ending learning process within

the prescribed error margin. This has been found to be due to the fact that

TD(0) does not implement true gradient, and it can be shown as follows [180].

From Equation 5.14, let “ max
a

Õ Q(sÕ, aÕ) be equal to “wT f ú(s, a) where f ú(s, a)

is vector of function values f
1...n

(s, a) evaluated at the action a that maximizes

the sum of each of these function values. Thus, Equation 5.14 can now be

re–written as,

” = r + “wT f ú(s, a) ≠ wT f(s, a). (5.26)

Assume there is a parametrized cost function, J(w), needs to be minimized

via gradient descent. First, a sample gradient, Ò
◊

J
t

(w), is found analytically

such that
ˆJ

ˆw
i

= ”f
i

. (5.27)

Then, small steps are taken in w in the direction of this sample gradient such

that

w Ω w ≠ –Ò
◊

J
t

(w). (5.28)

However, taking the second derivation of the cost function, J(w), to test for

Symmetry,
ˆ2J

ˆw
j

ˆw
i

= ˆ(”f
i

)
ˆw

j
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this cost function is found to be asymmetric [181], in that, Equation 5.29 is

not equal to Equation 5.30.

However, on the positive side, Q-Learning with linear function approximation

is found to be (almost surely) converging if the follows are held true [135, 172]:
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1. A linear function approximation is used f : S æ Rd

2. The stochastic process governing the state space S is an ergodic Markov

process.

3. the learning rate – satisfies the Robins-Monro (RM) conditions,

Œÿ

t=0

–
t

= Œ,
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t=0

–2

t

< +Œ (5.31)

More recently, RL research has attracted significant attention especially with

the emergence of faster [181] and convergent [182] o�-policy algorithms. In

particular, in [180] a gradient-like Temporal Di�erence algorithm, namely,

greedy-GQ has been proposed which is not based on the hard conditions set

out by [172].

AppQL Convergence Results Considering experimental results which hint

at AppQL’s convergence as well, Figure 5.23 present the weight variance with

2.7 standard deviation shaded confidence bounds. While Figure 5.24 is a fur-

ther simplification of Figure 5.23, showing boxplots of the weights of each

feature function averaged over 100 simulation runs.

Through these two Figures, we also note the importance of each feature weight

value. Here we can see that the RAT feature is the most critical parameter

with respect to the channel strength or channel utilization feature. This is

evidently so, since the RAT feature contributes the highest reward and incurs

the highest punishment (or negative reward) to the simulated reward function

(as the reward function was intentionally designed to behave so). The channel

strength feature comes second in this matter as it was also taking up the

role to be the deciding feature when two channels of equal access priority

(either both primaries or both secondaries) was encountered. Therefore, the
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channel strength feature weight would also be considered important, yet not

as important as the RAT feature. Finally, since channel utilization was not

accounted for in the reward function (and this is rightly so since its an internal

feature of the CR), its weight value was only updated when the CR thought

a channel has not been explored with respect to the other channels. In this

case, the contribution of the weight value of the channel utilization feature of

a such a channel would be high enough to candidate the mentioned channel to

be accessed and explored.

Additionally, for the sake of comparison Figure 5.25 gives the mean collision

rates for all mentioned algorithms herein. Here the primary changes its fre-

quency at certain time instants, to be adequately compared with one another.

It is clearly evident that all algorithms converge in practice since their collision

rates decrease after every primary users’ jump. However, it is also very evi-

dent that not all methods converge at the same rate. After the first primary

user jump, all of the QL algorithms’ learning rates are deteriorated, as was

implemented intentionally. After obtaining the initial impression of the chan-

nels availability, they become a slower learner there after. As for the AppQL,

however, we notice it commits minimal mistakes throughout, thanks to having

learned which features, if detected, are important and how to avoid them.

5.5.7 Learnability

A very important criteria to evaluate the level of cognition of a cognitive radio

is the amount of knowledge learned in a finite period of time. In reinforcement

learning, the agent learns from trial and error which results in positive rewards

or negative feedback on its interaction with the surrounding environment, as

was shown in Figure 5.8. In this sense, the learning process is sequential
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Fig. 5.23 Approximate Q–Learning Empirical Weight Convergence

Fig. 5.24 Box Plots of the Weight Coe�cients (logarithmic scale)
Used in Approximate Q–Learning Algorithm
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Fig. 5.25 Collision Rate for all Algorithms with 7 Primary Channel
Jumps

in nature, based on a series of actions taken. In a complex learning problem,

however, this learning process is indeed time as well as energy consuming [183].

Researchers have tackled this problem in Machine Learning literature in the

subject of Transfer Learning (TL) [184, 185]. There is a substantial amount

of literature on transfer learning, especially recently because of success of RL

in various applications as discussed in Section 5.1. In the context of cognitive

radio, transfer learning has also been applied in [186–188] to balance Quality

of Service (QoS) and information exchange overhead in channel assignment

task with up to 50% [186] reduction in retransmissions. Likewise, TL has been

used in green communications context, where in [189] information is exchanged

between radio agents to achieve more e�cient basestation on-o� switching.

Authors in [76, 190, 190] have coined the term “Docitive Networks”, where

they refer to mature radio agents teaching less experienced agents.
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To elaborate further, perhaps is it worth identifying the di�erence between

information transfer and knowledge transfer. According to Oxford dictionary,

Information in computing is defined as, “Data as processed, stored, or trans-

mitted by a computer”. Knowledge on the other hand, is defined as “Facts,

information, and skills acquired through experience or education”. In this con-

text, co-located cognitive radios that share the same radio environment, can

exchange information such as TVWS channel availability (if co-located close

enough) or channel RAT types, at a specific time and location; while, if it was

desired to share knowledge, this could be in terms of the types of features the

CR uses or the ranking of the features importance, e.g. RAT feature is more

important than average channel PSD (as discussed in section), which is true

at di�erent times and places. Therefore, here, by knowledge we refer to infor-

mation that can be generalized upon. In this sense, knowledge data would be

still valid (in a specific context) regardless of spatial or temporal di�erences.

Putting the above into practice, it will be essential to find out whether the

RL-based radio agents discussed in this chapter actually gained knowledge

after training, such that previously learned knowledge can be harvested and

disseminated to reduce the above mentioned costs in any future learning, be it

for the cognitive radio itself, or to transfer the learned knowledge to another

agent radio. Putting our cognitive radios to test, let us define a 3 stage sce-

nario as shown in Figure 5.26. In stage one, Figure 5.26a, CR
1

using AppQL

algorithm is learning the channel selection task. In stage 2, if CR
1

improved

on its channel access performance e.g. through increased reward or reduced

collisions, CR
1

then transfers its feature weight values w (see Equation 5.13)

to CR
2

. In stage 3, again, if CR
2

improved on its channel access performance,

CR
2

then transfers its feature weight values w to CR
3

.

As shown in Figure 5.27, the taught cognitive radios, i.e. CR
2

and CR
3

, startup
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Fig. 5.26 3 Stages of learning: Learning, Teaching, Re-teaching

having already converged to the semi-optimal collision rate.

Fig. 5.27 Convergence Rate comparison between Teacher and Taught
Cognitive Radios

To quantify the improvements made after one stage and two-stage transfer-

learning process, Figure 5.28 shows the results in terms of primary-secondary
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collisions experiences by CR
1

, CR
2

and CR
3

. Here, we can clearly observe two

phenomena:

1. The number of collisions is drastically reduced after one learning stage,the

case shown in 5.26b, such that the percentage average collisions after

learning is reduced by 66%.

2. In the second stage of learning, it would not have made a significant

di�erence whether CR
3

learned from the original teacher, CR
1

, or the

actual teacher, CR
2

, since the improvements in collisions observed is a

mere 6%.

Fig. 5.28 Collision Rate before and after Transfer Learning

Another benefit of the technique can shown in terms of the overhead entailed

in the information exchange. The overhead of AppQL is very low, since only

the coe�cients of the feature function (three coe�cients, for the configura-

tion discussed above) needs to be transferred to the naive cognitive radio, as

compared to the whole Q–table as proposed by [76].
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5.6 Summary and Conclusion

In this chapter, we reached several interesting conclusions, of which some did

not turn out as initially envisioned. Herein, we discussed a deep learning al-

gorithm, Sparse Stacked Auto-Encoder NN, that was used to extract features

from a frequency domain of the received signals. These features were subse-

quently input into a reinforcement learning algorithm, which exploited this

information in order to sense and access the frequency channels while trying

to avoid causing interference to the primary system.

The Stacked SAE NN achieved very good results in classifying the incoming

signals. In fact it outperformed our previous RAT classification attempts in

Chapters 3 and 4. Likewise, the proposed Approximate Q-Learning Algorithm

yielded a better performance in most of the performance analyses exercises as

compared to greedy-QL, ‘-greedy QL and the functional QL algorithms.

In RL tasks, we generally find that the choice of the optimal algorithm depends

on the nature of the problem: if the channels were absolutely noiseless, then

the Greedy QL algorithm would accomplish the goal of the problem only after

visiting each channel once. However, this is not the case in practice, since the

radio environment is chaotic and non-stationary since many di�erent signals

interact with each other simultaneously, due to the implemented Poisson packet

arrival process. On the other hand, ‘-greedy has the advantage of exploring

channels in a more systematic (on average) manner and thereby would perform

better in noisy radio environments as compared to a QL algorithm with greedy

behavioral policy.

With regards to the functional Q-Learning form that was proposed in an at-

tempt to make the algorithm aware of the frequency the channels were visited

in addition to the feedback reward signal: Although this came at an additional
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time and space complexity cost, we did not see a overall improvement, apart

from the channel utilization diversity test. As for the proposed Approximate

Q-Learning algorithm, which makes up one of the main contributions of this

work, we noticed that it possesses very good features, as was tested in section

5.5. In short, it performed best in the scalability, agility, mobility, diversity

(on a par with the functional QL form) and space complexity.

Here we also found out that mobility did not have a significant e�ect on the

performance of the algorithms in terms of primary-secondary collision rate.

This was found to be true since the TVWS band considered has lower frequen-

cies, e.g. 700 MHz, than the frequency bands used for 3G systems, 1800 MHz.

In other words, the Doppler spread was very low and thus did not contribute to

a major change in the channel strength during the time scale of one simulation

run (1000 iterations).
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Chapter 6

Conclusions and Perspective

Although there has been an explosion of new techniques in AI in the past

decade, the pace of CR research involving the latest techniques has been slow.

Therefore, the goal of the works herein has been twofold: first, to exploit the

most e�ective learning techniques from the field of computer science and apply

them appropriately to cognitive radios; second, to explore new approaches and

propose novel algorithms that combine the best of all worlds for the purpose

of enhancing the performance of a CR at Radio Access Technology recognition

and channel assignment tasks.

In this chapter we will draw overall conclusions from previous chapters and set

the perspective from the point of view of this thesis into the future.

6.1 Conclusions

Going back to the main goals of CR technology [7–9, 12] since its inception

the aspirations behind the cognitive radio technology has been intelligent, au-

tonomous operation and self-organization. Therefore, the bases of this thesis,
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as well, inline with that of Cognitive Radio technology, was to put in place in-

telligent mechanisms that are Autonomous and Context-Aware, breaking away

from the traditional hard-wiring of code to do a specific task.

In this research work we started by laying out the challenges that currently

obstruct the adoption of cognitive radios in a wider sense. Some of these

challenges were: interference to primary users caused by coexisting secondary

transmissions and lack of regulatory policy enforcement mechanism.

To address some of the above-mentioned challenges, in this thesis, we have

taken the following approach. Based on the fact that we can infer the priority of

a radio node’s transmission license from its RAT type, we have first attempted

identify di�erent classes of Radio Access Technologies. This was the subject

of Chapters 3, 4 and Section 5.3 of Chapter 5. In these works, we proposed

novel RAT recognition techniques, namely, MLP Neural Nets, SOFM-SVM

and Deep SAE classifiers, and showed their viability in severely noisy scenarios,

e.g. at SNR of -25 dB. To the best knowledge of the authors, these results are

currently thought to be unrivaled.

One of the key contributions of Chapters 3 and 4 is that unlike previous works

in the literature where sets of selected features were manually hand engineered,

in both of these chapters we designed learning algorithms that learned directly

from the raw data. However, perhaps it is worth mentioning that learning

from time-domain raw data was less straightforward. As we found out in

Chapter 3 that fixing the time-domain sample window for the acquisition of the

samples of one particular RAT introduces a wrap-around e�ect that leads to

the shifting of the salient features from one frame to another. This ultimately

made the MLP neural net training impossible at the low SNR regime. We

overcame this challenge at the cost of introducing frame synchronization by

using cross-correlation of subsequent frames. This lead to around 200% better
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classification error as compared to matched filter baseline method at -15 dB.

One might reasonably argue that synchronization is a preprocessing stage that

would come at a cost to the computational complexity of such a learning

architecture. However almost all wireless receivers already perform some sort

of synchronization anyway and therefore we believe its fine to assume that the

data fed into the MLP architecture to be in its synchronized form.

Apart from achieving an excellent classification error rate at -25 dB SNR, the

key novelty of the SOFM-SVM method proposed in Chapter 4 is that, unlike

the fully supervised training method used in Chapter 3, the data is first passed

through an unsupervised SOFM neural net that acts as non-linear generaliza-

tion of PCA method [117]. The benefit of using an intermediary SOFM layer

is two-folds: it is an unsupervised feature extractor; and it helps in dimension-

ality reduction from the number of dimensions of the raw spectrum vector to

the number of neurons at the SOFM computational layer, and therefore also

lowers the complexity involved in training the succeeding SVM classifier.

Chapter 5, which is the core Chapter of the thesis, showed that:

• Using contextual information extracted from the received signal, we can

enhance the performance of the CR in channel assignment task, by low-

ering primary-secondary collision rate.

• Reinforcement Learning fits the framework of a cognitive radio operation

very well due to its light-weight distributed nature. There are many

types of Reinforcement Learning algorithms that could be used by a CR,

however the ones that are adequate in a realistic scenario need to be

model-free and o�-policy.

• Through extensive simulation results using Approximate Q-learning we

have proposed a new method to sense and access a candidate white-space
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spectrum channel in many ways better than tabular greedy, ‘-greedy and

functional Q-learning.

• We have also been able to achieve channel assignment-related parameter

compression, as was shown in the space complexity analysis in Chapter 5.

• The learning capability of AppQL was tested in Section 5.5.7, Based on

the results that knowledge learned by a CR was shown to be beneficial in

teaching other naive CRs, we can conclude that a learning process had

taken place. However, the assumption therein shall be noted such that

the taught CRs were thought to be able to understand what the feature

coe�cients meant, i.e. they were also making use of a linear function

approximator with the same feature functions.

• We also discussed that another advantage of the AppQL method is that

the reward feature can be altered on demand to reflect the rules and

policies of a spectrum regulator in a particular spectrum band. Due to

the short learning time of CRs equipped with such an access mechanism,

new policies can be put in place in a dynamic fashion.

Our final contribution to the research community will be our real-life testbed

datasets. We are planning to upload our DVB-T, WDCMA and WiFi RAT

datasets of over a gigabyte in capacity online for academic research use. One of

the reasons it is hard to benchmark a classification algorithm on di�erent RATs

at di�erent SNRs is basically because (to the best of our knowledge) there is

no common dataset available online to all researchers. We spent a significant

amount of time and e�ort to come up with a discussed testbed setup presented

in Chapter 2 and we think we would make it easier for fellow researchers of

this topic to either benchmark their results against each other or just use it

for educational purposes.
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6.2 Future Works and Perspective

There are several important items discussed in this thesis that can be pursued

further:

• It is possible that a complicated algorithm would do the job of the RL

learning methods described in this work. However, the point in using

RL is to generalize rather than design a hard-wired model to execute a

certain task. In this regard, it Q–Learning with some sort of function

approximation technique, easily allows for extension in terms of the fea-

ture function employed to model the state of an environment. A more

profound question here, is, however, which feature functions? and how

to automatically generate these functions? A possible attempt could be

connecting the internal representations of a deep neural network,that are

excited when they see a specific feature, to Equation 5.13 and run the

Q-learning algorithm first in reverse to identify those feature functions

whose coe�cients, w, get higher values. This is a novel and exciting

research direction that we consider to undertake in the future.

• Uniqueness: Unless two devices are precisely identical in hardware and

software, it cannot be easily assumed that exchange learned knowledge

will be straightforward, especially in the case of a cognitive radio, where

radio agent experience matters most. Even when two CRs operate the

same software, there might be subtle di�erent radio characteristics at

hardware [24] where the information taught would be interpreted dif-

ferently. After all, cognitive radios are not all meant to be talking the

same language, e.g. use the same RAT, yet they should be able to share

learned knowledge. For instance, a WiFi and Bluetooth device coexist-

ing in the 2.4 GHz band, should be able to share knowledge e.g. how to
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avoid interference, how to improve throughput, etc. This would be an

interesting issue to tackle in future research.

• Simulation time is not necessarily the same as real-time. Works published

in scientific journals in wireless communications that rely on simulations,

often times the model that runs on the computer does not reflect the

actual physical time. This may lead to failure when an algorithm is

taken from development stage to production. In this work, according to

the mobility model discussed, we have stated that the 1000 iterations,

that was run in every experiment, maps to around 1 msec of actual

physical time. Thus we assume it is within an acceptable time-frame,

since an LTE system the Transmission Time Interval (TTI) is also 1 msec.

However, in order to make sure this is the case, as a future work it would

be appropriate to compare the system-level simulation timing analyses

presented in Chapter 5 with a on-chip timing performance of the AppQL.

Critics may argue that other recent technologies such as software defined com-

munication may also be well fit to execute the task at hand. For example, a CR

can be made to download specific instructions that would change its internal

configurations such that it becomes up to date with the regulations of white-

space channel access of a certain area. Although, getting frequent updates from

a regulatory system and the throughput overhead that it entails in updating

radio units could be an obstacle. However, against all odds, this is certainly

another possible option. Taking this approach further we need deal with a

massive connectivity challenge, frequent periodic data base updates, handle

large volume of channel access requests and harmonize the various sources on

input. This is were Big Data techniques come handy.

Big Data analytics is wrought with complexity. It must define the available

data, cleanse the data, join the data with other databases, store and visualize
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the data. To move from manually guiding big data analytics through each step

of the process to automating each step is a considerable challenge. Previously

data was considered plain IP packets as it traversed telco networks. With

the advent of Big Data enabled networking, the cognitive advantage of such

systems is envisioned to aid in optimizing the data flow through contextual

information extracted from metadata of di�erent industries. In Section 6.2.1,

as the bases for our future works we entertain the uses of Big Data tools in

Telecoms and propose a novel Big Data-based Mobile Network architecture

that is designed to be able to scale with the massive inflow of data.

6.2.1 The Role of Big Data in Future Communication

Systems

A part of our ongoing works that did not fully make it into this thesis is

the research of applications of Big Data systems in next generation wireless

communication networks. Below we briefly present an extract of these works.

Mobile RF data, similar to Big Data, is large in volume, unstructured and di-

verse in type, and travels at various speeds. As shown in Figure 2.5a, according

to Cisco’s projections [1], between 2013 and 2018, mobile network connection

speeds will increase two–fold, and global mobile data tra�c will increase nearly

11–fold, while it continues to grow 3 times faster than global fixed IP tra�c.

In addition, the types of data that will make up these figures are going to be

unstructured, that is, it will constitute of many various types of raw data from

documents and log data to audio and visual data [2]. Figure 2.5b illustrates

some of these statistics.

However, since the time we have crossed over from a voice dominant era and

entered the realm of data–oriented networking, mobile service providers are
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experiencing a Cost–Revenue decoupling. As shown in Figure 6.1, costs of

running a cellular system, driven by the exponential increase in data demand,

have increased tremendously; however, revenues have started to plateau be-

cause of saturated markets, flat–rate tari�s, competition and regulatory pres-

sure to make Internet access more a�ordable. From the network economics

point of view, this commoditization of network services is a clear indicator

that requires mobile operators to rethink their business models so that they

can stay financially sustainable.

One of the most valuable but underused assets of a mobile communication

service provider is its users’ data. As millions of direct customers of a mobile

operator use the network on daily bases they leave behind digital footprint and

metadata that could be analyzed and turned into new revenue streams in terms

of new apps and services. This is where Big RF comes in. A Big RF framework

is one that is able to take advantage of the current huge tra�c surge that passes

through the telco’s pipes, turning its passive pipes into smart pipes by applying

sophisticated analytics such as Artificial Intelligence and Machine Learning

techniques to the data passing through it. By applying complex analytics, a

Big Data enabled system will have the potential to predict future events and

thereby improve wireless networks response, e.g., aiding dynamic spectrum

access for increased capacity and to achieve superior network management

dynamically. The Big RF framework is foreseen to be the enabler for Self–

Organizing Networks (SONs) by predicting and managing spectrum usage and

also improve network performance after initial deployment [191].

Functional Architecture

Big Data in Telecoms may go back to early generations of mobile communica-

tion systems. However, at the time, neither adequate data storage nor capable
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Fig. 6.1 Mobile Operator Cost–Revenue Decoupling

analytical techniques was available at the scale required. However, the de-

velopment of both software and hardware technologies especially in the past

decade gradually alleviated these bottlenecks paving the way towards massive

distributed parallel processing paradigm in the realm of Big Data.

In general, there are two main classifications of data processing and these are

batch, for relatively static data, and streamed, for relatively dynamic data,

processing. Like big business, Big RF also has unique requirements that must

be satisfied; Because of the velocity, variety and enormity of the amount of data

ingested by Telcos, meeting this challenge requires the use of both distributed

computing methods mentioned above. Figure 6.2 illustrates a novel hybrid

architecture that utilizes both stream and batch processing methods to satisfy

these needs. Batch processing is used to analyze imported static databases

from a variety of sources, such as Regulatory and Television White Space

(TVWS) database managers, while stream processing is tapped to process

near real time incremental data, such as localized spectrum usage, wireless

microphone registrations with a TVWS database, user behavior analysis for

congestion control, etc. In the case of Big RF analytics the stream processing
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is essential since the huge amount of data ingested by the network at a high

velocity would result in long processing delays if conventional batch processing

is used.
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The Big RF functional architecture illustrated in Figure 6.2 generally follows

a sequence of steps from the ingestion of the raw data from various sources to

producing actionable insights that reconfigures the wireless network and main-

tains its robustness. A list of steps corresponding to the data flow illustrated

in Figure 6.2 are as follows:

1. Ingest: First, data sources, such as spectrum data, social media and

network logs are identified. Then, depending on the type of the data,

if steaming, stream links are setup, otherwise, data is queued up in a

database until data batches are formed. The targeted data then can be

either ingested via the Internet or an operator’s private backhaul.

2. Store: Storage of vast amounts of ingested data happens both before

and after the processing phase (step 3):

(a) Prior to analyzing a massive dataset it is essential to curate the

data, e.g. normalization and distillation, to avoid bias and reduce

variance.

(b) After the main data processing stage, the results of the computation

are stored on the database again.

3. Analyze: The curated data is passed through multiple computing nodes

of a cluster for the information to be processed according to some pre-

scribed topology. Two noticeable processing candidates for this system

would be Hadoop [192] for batch1 data and Storm [193, 194] for streaming

data. Meanwhile, Spark [195, 196] is also another cluster computing sys-

tem that speeds data analytics by utilization of in–memory (RAM based)

computation rather than disk based processing as with Hadoop. Spark

can be used for both batch and stream distributed data processing. A
1Recent developments in Hadoop allow for stream processing as well.
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comparison of these three well–known cluster–computing tools is given in

Table 6.1. The combination of these two distributed architectures could

Table 6.1 Comparison of di�erent distributed cluster computing
systems for Big RF

Language RAM
Based

Processing
mode

Latency Application

Hadoop Java No Batch Slow General purpose

Storm Clojure and
Java

No Stream Depends Good at processing small
incremental incoming
data at Near Real–Time

Spark Scala, sup-
ports Java and
Python

Yes Batch
and
Stream

Fast Best for iterative algo-
rithms, and interactive
data mining

be collocated on the same computer cluster through YARN (Yet Another

Resource Negotiator), which is a cluster management tool. Hadoop is the

most well–known distributed batch processing platform and is supported

by the Hadoop Distributed File System (HDFS) for managing massive

number of data files, and the MapReduce runtime system that provides

the scalable foundations of distributed analytics over the data in addition

to numerous other tools. Storm, on the other hand, is an event–based

stream processing system where data streams flow through multi–nodal

topologies, and each node performs sophisticated data processing with

the results saved on a storage system.

4. Visualization: In order to gain technical or business insight from the

processed data and make better decisions, visualization is an essential

tool. Data visualization can happen at two stages:

(a) During data analysis: to gain immediate feedback, especially if the

data processing time is on the order of tens of minutes or higher.

(b) While data is parked either before or after processing step (Step 3).
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5. Network Intelligence: Predictive and retrospective analyses are key

to delivery of Big RF. After the unstructured raw data is processed, the

knowledge that it generated need to be turned into specific machine–

understandable actions. At this step, final analysis can be applied to

learn from the subscribers past behavior where users network perfor-

mance metrics could be tracked to identify faults in the mobile Radio

Access Network (RAN) and fix them.

6. Predictive Models: Applying Predictive Models, which are advanced

statistical or machine learning methods that are trained on past data to

project future data, is also desired so that the system can predict and

avoid possible future network failures, such as network congestion due to

an accident or massive event.

Traditionally, carriers’ network operations were based on custom made hard-

ware mostly running proprietary software, which often led to a vendor locked

situation. Furthermore, since an operator’s equipment, e.g., base stations,

were distributed over a geographical area, each computing unit’s power sup-

ply, cooling system, site rental and maintenance had to be managed separately

[197]. Having foreseen these di�culties, carriers are increasingly moving op-

erations into the cloud to better allocate and manage resources, and reduce

geographic–footprint costs. Although, a decade ago the distributed architec-

tures were ascendant, e.g., giving more responsibility to distributed eNodeBs,

today, centralization is becoming increasingly popular. The rethinking of carri-

ers’ core network and last mile architectures has led to two key paradigms: the

Carrier Cloud (C–Cloud), and the Cloud–Radio Access Network (C–RAN).

Looking into the future, we find that the state-of-the-art data center and net-

working technologies, such as SDN, NFV (Network Function Virtualization)

and SON, to be inherently based on the dynamics of the network. Therefore,
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we believe that data-driven Big RF–like solutions will be one of the main pillars

to drive the profitability of telecoms industry by adding intelligence on how

the network handles Big Data. Realizing such an automated and intelligent

self–organizing, self-healing solution is an important area of research that we

will further explore. In particular, we are interested in further researching the

following three possible advantages:

• O�oading computation to the local BBU (Baseband Unit): Information

processing on the cached data o�oads communication and processing

overhead that would otherwise be required if one main cloud computing

system was used.

• Enhanced Security and Privacy: Localizing information reduces the at-

tractiveness of any one target and reduces the number of potentially

interceptable information transfers.

• Reduced Latency: For those applications that require only local com-

munications, running algorithms locally on the data cached at the BBU

reduces the end–to–end RTT delay [198].
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Appendix A: Derivation of

Backpropagation Formula

This section briefly presents the derivation of the Backpropagation algorithm

in adjusting the weights of a neural network. Here, we consider the hidden

neuron z
j

, identified in green as shown in Figure 2.2. Assuming a general

K–RAT classification problem, we can formulate the error at z
j

, which is the

di�erence between the output y
n

of Equation 2.3 and the Backpropagation

value, as follows. Through Chain Rule [Leibniz, 1676 and L’Hôpital, 1696], we

can evaluate the partial derivatives,

ˆE
n

ˆw
ij

= ˆE
n

ˆa
i

ˆa
i

ˆw
ij

. (1)

Let, the symbol ” be defined as the error as follows,

”
j

© ˆE
n

ˆa
i

. (2)

Now, using Equation 2.2, we can write,

ˆa
i

ˆw
ij

= z
j

. (3)
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Substituting Equations 3 and 2 into Equation 1, we get,

ˆE

ˆw
ij

= ”
j

z
j

, (4)

which simplifies and generalizes Backpropagation the error from any layer l+1

to any node j in the previous layer l.

Referring back to Equation 2, we can use Chain Rule like before to derive the

partial derivative formula,

”
j

© ˆE
n

ˆa
i

=
ÿ

k

ˆE
n

ˆa
k

ˆa
k

ˆa
j

. (5)

Finally, substituting Equation 2 into 5, and making use of 2.3 and 2.4, we

obtain the Backpropagation formula,

”
j

= y
n

≠ ŷ
n

= gÕ(a
j

)
Kÿ

k=1

w
jk

”
k

. (6)

Time Domain Sample

Figures 3,4 and 5 present a time domain sample of the three radio access

technologies considered in this thesis. Each subplot of the figures represent

a version of the original signal ranging from 20 dB to -40 dB of Signal to

Noise Ratio (SNR). In order to achive this we passed the samples through

an Additive White Gaussian Noise (AWGN) channel with varying noise levels

such that at the output of the channel the SNR of the signal is lowered 5 dB

at a time.
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Fig. 3 A Sample DVB-T signal in Time Domain ranging from 20 dB to -40 dB
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Fig. 4 A Sample WCDMA signal in Time Domain ranging from 20 dB to -40 dB
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Fig. 5 A Sample of the WiFi (IEEE 802.11a) signal in Time Domain ranging from
20 dB to -40 dB
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Appendix B: Boxplot Anatomy

Since boxplots are often used to display results in this thesis, here we give a

brief description of its anatomy, as illustrated in Figure 6. each box represents

a series of data points, where each data point could be the outcome of an

experiment. The red mid line indicates the median. The lines with T-shaped

ending that protrude from the box are called whiskers, and they are depicted

to represent the data samples s such that q
3

+ w(q
3

≠ q
1

) Ø s > 75th percentile

of the top, and 25th percentile Ø s > q
3

≠ w(q
3

≠ q
1

) of the bottom samples.

The maximum length of the whiskers, w = 1.5 units, in figures, approximately

represents ±2.7‡ (‡: Standard Deviation), which is equivalent to 99.3 cover-

age2 in a Gaussian distribution. The red plus signs are the most extreme data

points, or, in other words, outliers.

2percentage of area under a distribution
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Fig. 6 Anatomy of Boxplot
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