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Abstract 
 

Azathioprine (AZA) and mercaptopurine (MP – also known as 6-mercaptopurine or 6MP) are the 

first line immunomodulatory treatments for inflammatory bowel disease (IBD) with proven 

efficacy for multiple clinical outcomes (fistula closure, steroid withdrawal, maintenance of 

remission etc.). They also have a wide application in the fields of rheumatology, dermatology, 

haematology and transplant medicine.  However these drugs also cause toxicity and may be 

ineffective.  Both of these outcomes can have serious consequences for the individual concerned.  

A proportion of toxicity caused by these drugs is explained by genetic polymorphism in the 

enzyme thiopurine methyltransferase (TPMT), however the majority of toxicity remains 

unexplained and as yet there is no satisfactory explanation for the variable efficacy of these 

drugs.   

 

In this thesis I explore the impact of genetic polymorphism in several novel candidate genes 

involved in thiopurine metabolism on the success of thiopurine treatment.  Single nucleotide 

polymorphisms (SNPs) in xanthine oxidase/dehydrogenase (XDH) and the final enzymatic step 

which activates its essential cofactor (molybdenum cofactor sulfurase, MOCOS) are shown to 

protect against side effects to AZA therapy.  Polymorphism in aldehyde oxidase (AOX) and 

multi-drug resistance protein 5 on the other hand, are shown to predict a lack of response to 

thiopurine treatment.  Sequencing  AOX validated the real-time PCR results and suggested that 

there were no other coding SNPs likely to be contributory. A pharmacogenetic index 

incorporating these new markers with established predictors of outcome on thiopurines is 

presented and the clinical utility of such an index discussed.  Finally, clinical data supporting the 

optimisation of azathioprine therapy, both by the measurement of thioguanine metabolite profiles 

and through co-prescription of allopurinol are presented.   
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Chapter One:  Literature Overview 

1.1 Brief introduction to Inflammatory Bowel Disease (IBD): 

Crohn’s disease (CD) and ulcerative colitis (UC) are chronic inflammatory diseases of the 

gastrointestinal tract, affecting primarily young adults. Both result in distressing symptoms of 

diarrhoea, abdominal pain, loss of weight and fatigue and are associated with a reduced quality of 

life and significant occupational loss
1
. Both the disease and its treatments affect family planning, 

sexual function and fertility/fecundity
2
.  Children, particularly adolescents, are also affected, with 

additional problems of impaired growth, delayed sexual maturation, educational loss and adverse 

psychological impact3.  

 

Despite much research and many new developments in this field, the treatment of IBD remains 

challenging and often fails to restore patients to their former quality of life.  Treatment of all but 

the mildest disease consists of either immunosuppression or surgery.  The majority of patients 

receive long-term immunomodulatory treatment and the success of these agents can determine 

the course of their disease.  

 

In UC, first line treatment is the use of 5-aminosalicylates (5ASAs), with steroid treatment for 

acute flares that cannot be controlled on 5ASAs alone.  The importance of reducing steroid 

exposure and the inefficacy of steroids as maintenance therapy are widely acknowledged.  This 

means that frequent steroid courses or inability to wean from steroids should result in an early 

escalation of treatment to include a thiopurine.  Whilst evidence for the efficacy of anti-TNF 

antibody therapy in UC is beginning to accumulate, the National Institute for Clinical Excellence 

(NICE) have still not approved their use outside acute severe UC, and evidence to support other 

immunomodulators is lacking.  This means that for these patients optimisation of thiopurine 

treatment is essential.  Failure to achieve remission on these agents will generally result in 

recourse to surgery – a devastating event in this predominantly young population. 

 

In CD, the number needed to treat for 5ASAs to achieve clinical remission is high and they are 

generally not considered to be a suitable maintenance therapy.  Steroids, as for UC, can be useful 

to induce remission in an acute severe attack, but reducing exposure to steroid therapy is 
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considered a key quality indicator in the treatment of CD.   Whilst “top-down” (anti-TNF 

antibody initiated early) strategies for the treatment of CD are proposed in recent clinical trials, in 

practice this has translated to a “rapid step-up” regime, in which immunomodulators (in practice 

– thiopurines) are introduced early to limit steroid exposure and target mucosal healing and 

disease remission, rather than symptoms alone.  Early recourse to anti-TNF therapy is 

implemented if these drugs are not achieving adequate disease control or the patient is considered 

to be at high risk from their disease due to its severity, behaviour and distribution.   

 

Thiopurines have proven efficacy in IBD, reducing relapses, permitting steroid withdrawal, and 

closing fistulae4,5.  Indeed, as many as 60% of patients with Crohn’s disease (CD) now receive 

Azathioprine (AZA) or Mercaptopurine (MP)
6
, reflecting the changing goals of treatment in IBD 

away from symptom control alone, towards mucosal healing and altered natural history.  This 

change has resulted in a push towards more aggressive treatment, maximising the chances of a 

successful clinical response.  Newer biologic therapies appear to have a higher primary response 

rate than the classical immunomodulators, and their use is increasing.  Co-prescription of 

azathioprine with these newer agents however, appears to provide additional benefit both for 

achievement and maintenance of remission
7-9

 a benefit which may be thiopurine specific
9
, 

meaning that the advent of newer therapies has extended rather than reduced the indications for 

thiopurine use in the treatment of IBD. 

1.2 Thiopurine Drugs 

AZA and MP are therefore considered an important mainstay in the armamentarium of 

immunomodulators used to treat IBD, and are first line immunomodulatory treatments in the 

practice of most physicians.  AZA is a more stable and soluble pro-drug of MP, to which it is 

converted by both enzymatic
10,11

 and non-enzymatic
12

 cleavage of the imidazole moiety during 

gut absorption.   Both drugs are analogues of the purine nucleotides adenine and guanine, one of 

the most important building blocks of life (figure 1.1). 

 

In addition to their role as essential elements of both DNA and RNA, purine nucleotides store and 

transfer the energy required for intra-cellular processes and are involved in cell signalling and co-

factor synthesis.   
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Azathioprine    Mercaptopurine 

  

 Guanine      Adenine 

 

 

 

 
Figure 1.1 Chemical structure of AZA and MP, compared to the canonical nucleotides guanine and adenine.  

Images taken from http://pubchem.ncbi.nlm.nih.gov/ 
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1.3  What is the evidence that thiopurines work in IBD? 

AZA and MP have become first-line treatments for steroid-dependent or chronic relapsing IBD
4
.  

There are now several trials and meta-analyses which confirm the efficacy of thiopurines in IBD.  

The evidence is stronger and more plentiful for CD than UC, but there is now good evidence for 

efficacy of thiopurines in induction/maintenance of remission and steroid-sparing in both diseases 

and for fistula healing in CD13-17.  There is also a growing body of evidence for a role in the post-

operative prevention of relapse in patients with CD.
18-23

 

 

1.4  How do thiopurines work? 

It has long been considered that incorporation of “rogue” thiopurine nucleotides into DNA was 

essential for the action of these drugs
24

.  However, the initial proposition that incorporated 

thioguanine nucleotides (TGNs) would truncate a replicating strand has been shown to be 

inaccurate.  DNA can continue to replicate beyond an incorporated thioguanine nucleotide, but 

the presence of the bulky sulphur atom in thioguanine subtly disrupts DNA structure
25

 and the 

base pairs formed are much less stable
26

.  In addition to these structural alterations, thioguanine 

codes ambiguously and could be paired with either a cytosine or a thymidine base, creating the 

potential for mutations to develop26.   

 

Thioguanine is also much more susceptible to methylation than standard nucleotides
27,28

.  This 

further disrupts DNA structure, and has been shown to encourage point mutation, silence gene 

expression
29

 and increase mis-pairing with thymidine 
27,30

.  Equally, incorporated TGNs are more 

sensitive to attack by reactive oxygen species than canonical bases and, once oxidised, are unable 

to form a stable pair with any base 
31,32

.  The situation is complex however, and recent studies 

have demonstrated a reduction in global DNA methylation in response to MP and 6-thioguanine 

(6-TG) treatment, thought to be important in the anti-leukaemic action of thiopurines
33

. 

 

Importantly, all bases (even cytosine) are identified by mismatch repair (MMR) systems as 

coding faults when they pair with thioguanine (due to a combination of altered structural 

conformation and decreased strength of base-pairing)
27,28

.  The “faulty” daughter strand of DNA 

is cleaved and the cell attempts to recopy this section of DNA.  However, if the thio-GTP has 



MD thesis Azathioprine in IBD Melissa Ann Smith 

17 

 

been incorporated into the parent strand, the fault can never be repaired.  Repeated failure to 

correct DNA abnormalities caused by TGN incorporation triggers cellular apoptosis
27,28,34-36

.  

This selective killing of dividing cells is thought to be important in the mechanism of action of 

thiopurines for both their anti-inflammatory and anti-leukaemic effects. 

 

Although this process renders cells with functioning MMR systems more sensitive to 

thiopurines
28,35

, cells without functional MMR will still suffer cytotoxicity from thiopurines
37

.  A 

different DNA-binding protein complex is formed in these situations, which also triggers cell 

death in response to thiopurine incorporation in cellular DNA
38

. 

 

Incorporated thioguanine also inhibits cell division by interfering with the activity of a whole 

spectrum of enzymes responsible for DNA replication and repair, including DNA polymerase, 

ligase and endonuclease 
25

, topoisomerase II
39

 and RNase H 
40

.  Thio-GTP can also be 

incorporated into the telomere at the 3’ region of chromosomes.  The telomere is present in 

dividing cells and is thought to play an important role in allowing cell lines to continue to divide.  

When thio-GTP is incorporated into the telomere, it prevents telomerase from binding and this 

could also block cell division
41

.  Reduced telomerase activity has been demonstrated in the white 

cells of IBD patients receiving AZA
42

.  

 

In addition to these mechanisms, all of which depend on rogue nucleotide incorporation into 

DNA, there have been many other observations on the influence of thiopurines which suggest 

additional mechanisms of action. The best established of these is the role played by methyl-

mercaptopurine ribonucleotides which interfere with purine de novo synthesis
43,44

.  This effect is 

thought to be mediated by inhibition of phosphoribosyl pyrophosphate (PRPP)-

aminotransferase45,46, the first enzyme in the pathway of purine synthesis.  This has two 

important effects; firstly decreased competition for thioguanine, thereby increasing the likelihood 

of TGNs being incorporated into DNA, and secondly an accumulation of PRPP which is essential 

for TGN formation
47

.  It is these methylated metabolites which may in part explain the equivalent 

therapeutic effects of MP and 6-TG, despite the significantly higher TGN levels seen with 6-TG 

therapy48,49. 
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Another explanation for the anti-proliferative effects of the thiopurines has been proposed by 

Dayton et al
50

 who demonstrated inhibition of T-cell proliferation (in association with depletion 

of their adenosine triphosphate (ATP) and guanine triphosphate (GTP) pools), caused by both 

AZA and MP.  Replenishing these depleted nucleotides blocked the anti-proliferative effect of 

MP but not AZA.  In this same paper, further experiments showed that MP did not interfere with 

GTP cell receptor binding but that AZA had some ability to do this
50

.  The concept that 

thiopurines may be able to interfere with the role of GTP in cellular signalling was taken further 

in experiments by Tiede et al
51

 who demonstrated that thio-GTP (derived from AZA) binds Rac-1 

receptors on T-cells in place of GTP, blocking activation and thereby down-regulating various T-

cell mediators including NF-Κb, bcl-XL and mitogen-activated protein kinase (MEK) resulting in 

T-cell apoptosis
51,52

. 

 

Another anti-inflammatory mechanism of action of thiopurines is an effect on macrophages.  

Several studies have demonstrated altered macrophage function in the presence of thiopurines.   

Effects are wide ranging and include decreased circulating monocyte numbers53, attenuated 

recruitment
53-55

, altered phenotype and gene expression
56,57

 decreased production of nitric oxide
58

 

and impaired handling of antibody-antigen complexes
55

.  Most studies have failed to demonstrate 

an effect of thiopurines on phagocytosis, however a recent abstract describes enhanced 

phagocytosis by macrophages in the presence of 6-thioguanine
59

. 

 

Thiopurines have also been shown to down-regulate a variety of T-cell mediators such as TRAIL, 

TNFRS-7, α4-integrin
60

.  TGN levels have been shown to correlate inversely with IFN-γ levels
61

, 

and natural killer cell activity (including specific actions against tumour cells) has been shown to 

be down-regulated in CD patients treated with MP
62

.  Ben-Horin et al have shown that 

thiopurines can arrest the proliferation of activated T-cells and also have the ability to selectively 

reduce the CD4+ memory cell response to repeatedly encountered antigens
63

. 

 

1.5  Challenges to the successful use of thiopurines 

Despite their central role in the treatment of IBD, immunomodulators are not without their 

problems.  Firstly, there is considerable individual variation in clinical response to each 

medication64 and secondly, but just as importantly, these drugs can cause serious side effects65-67.  



MD thesis Azathioprine in IBD Melissa Ann Smith 

19 

 

As they are employed in a more aggressive fashion, predicting clinical outcome and avoiding 

toxicity are becoming increasingly important.  Work in this area has demonstrated that 

pharmacogenetics has a significant role in determining an individual’s outcome on thiopurine 

therapy. It had been hoped that this inter-individual variation could be circumvented by giving 6-

t(h)ioguanine (6-TG) directly68.  However, this strategy has been shown to have its own 

problems, particularly with hepatotoxicity
69

, and is now reserved for expert use in resistant cases.  

This means that the study of thiopurine metabolism has taken on a new importance. 
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Figure 1.1: Thiopurine Metabolism.  Production of the active thioguanine nucleotides from azathioprine and 

mercaptopurine by the endogenous purine salvage pathway. 
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Figure 1.2 Abbreviations: 

Metabolites:   

AZA- azathioprine, 6MP- 6-Mercaptopurine, 8OH 6MP- 8-hydroxy 6-mercaptopurine, MeTIMP- 6-

methylthioinosine monophosphate, 6MeMP– 6-methylmercaptopurine, 6TU– 6-thiouric acid, thioIMP– 6-thioinosine 

monophosphate, thioXMP– 6-thioxanthine monophosphate, thioGMP– 6-thioguanine monophosphate, thioGDP– 6-

thioguanosine diphosphate, thioGTP- 6-thioguanosine triphosphate, dthioGDP– deoxy-6-thioguanosine diphosphate, 

dthioGTP- deoxy -6-thioguanosine triphosphate. 

Enzymes:  

GST- glutathione-s-transferase, TPMT– thiopurine methyltransferase, XDH- xanthine oxidase/dehydrogenase, 

HGPRT– hypoxanthine guanine phosphoribosyltransferase, ITPase– inosine triphosphatase, IMPDH– inosine 

monophosphate dehydrogenase, GMPS– guanine monophosphate synthetase, NPK– nucleotide phosphokinase, 

dGDP kinase– deoxyguanine diphosphate kinase. 

 

 

1.6  What is known about thiopurine metabolism? 

As a result of their molecular similarity to the purine nucleosides (figure 1.1), thiopurines are 

subject to the action of a large number of enzymes, primarily those from the “purine salvage” 

pathway, (figure 1.2).  This is a complex network of enzymes which retrieve purine nucleosides 

produced by the breakdown of DNA and RNA and recycle them, limiting the need for energy-

expensive de novo nucleotide synthesis (figure 1.5).  Salvage of the purine bases hypoxanthine, 

guanine and adenine by phosphoribosyltranferases further reduces the need for expensive de novo 

synthesis. A separate parallel system exists for the salvage and inter-conversion of pyrimidines. 

 

Thiopurine metabolism is similarly complex with clinically relevant variations in key enzymes.  

The best characterised of these is the enzyme thiopurine methyltransferase (TPMT).  Genetically 

determined variation in TPMT activity is now considered a classic example of the clinical utility 

of the emerging field of pharmacogenetics.  However, there are multiple other enzymes involved 

in purine and thiopurine metabolism.  Many of these are also known to be subject to genetic 

polymorphism, the functional impact of which is as yet unknown.  Since TPMT only explains a 

proportion of toxicity experienced on azathioprine
70,71

 it is logical to suppose that some of these 

other enzymes will also have a role to play.   
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TPMT competes with xanthine oxidase/dehydrogenase (XDH) and hypoxanthine guanine 

phosphoribosyltransferase (HGPRT) to act on MP, see figure 1.2.  Whilst both TPMT and XDH 

catabolise and inactivate MP, HGPRT is the first enzyme in the anabolic pathway which will take 

MP on to be converted into its active metabolite – thioguanine nucleotides (TGNs) 
72,73

.  A 

diagrammatic representation of thiopurine metabolism is presented in figure 1.2.  There follows a 

more detailed look at what is known about each of the enzymes involved in this system in 

relation to variability in thiopurine metabolism.  Other key pharmacogenetic targets (from outside 

the purine salvage pathway) are then also reviewed. 

 

1.7  TPMT 

TPMT is just one of many enzymes involved in thiopurine metabolism, but it plays a key role 

both in tolerance of and response to these treatments
74

.  There is naturally occurring variability in 

TPMT activity across the population according to genetic polymorphism.   

 

To date, 42 polymorphisms of TPMT have been reported in the literature and to the TPMT allele 

nomenclature committee75 (TPMT*2 and *4-*36 *3A-*3E and *1, *1A & *1S) 75-79.  Most 

compromise TPMT activity by accelerated breakdown of the TPMT protein, partly by autophagy 

80
, but there are other mechanisms. These include reduced efficiency of the enzyme’s active site 

(TPMT*5), disrupted initiation of translation and therefore zero TPMT protein production 

(TPMT*14) and alternative splicing (TPMT*4 and *15) 
81

.  At  http://www.imh.liu.se/tpmtalleles 

an up to date list of all alleles is maintained and assigned a standard nomenclature75. 

 

The distribution of TPMT activity in the population is tri-modal (figure 1.3), reflecting genetic 

co-dominance.  Approximately 10% of the Caucasian population have one TPMT polymorphism 

resulting in half “normal” TPMT activity, whilst approximately 1 in 300 have two variant alleles 

resulting in negligible TPMT activity82.  Allele frequencies in other populations vary but TPMT 

polymorphism remains relevant in all studied ethnic groups
83,84

.   
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Figure 1.2 TPMT activity in the population.  Data from the PRL, previously published at
85
 

  

 

 

In normal circumstances, this variation in TPMT activity has no known impact on health, but 

prescribing thiopurine drugs for these patients is hazardous.  TPMT inactivates a large proportion 

of ingested thiopurine by methylation, leaving only a small proportion available to be processed 

by other enzymes.  As a result, giving standard AZA or MP doses to those people who have no 

TPMT activity effectively creates a huge thiopurine overdose, with over-production of TGNs and 

severe life-threatening leucopenia 
86

.  Those who have just one effective copy of the TPMT gene 

have intermediate (approximately 50%) activity levels and suffer milder side effects and 

myelotoxicity if given normal treatment doses
71,87

.  The discovery of TPMT polymorphism now 

means that these individuals can be identified before treatment is given.  This could be life-saving 

in the case of those with zero TPMT, (in whom thiopurines are usually avoided,
85

 although there 

are reports of successful treatment on 5-10% of the usual target dose).
88,89

 In those with 

intermediate TPMT activity, pre-treatment knowledge of their reduced methylation capacity 

allows dose-reduction to avoid toxicity, particularly myelotoxicity
85

.  At a dose of 1mg/kg
85

 of 

AZA (equating to 0.5mg/kg MP), those with pre-treatment TPMT in the intermediate range 

generally tolerate thiopurines well.  Table 1.1 shows the recommended use of TPMT in clinical 

practice.  
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Table 1.1 Tailoring AZA treatment on the basis of TPMT status.  

  

Pre-treatment TPMT status 

 

TPMT activity 

pmol/h/mgHb 

 

Dosing strategy 

Zero 

homozygous TPMT deficiency 

<10 avoid or consider dosing at 

0.1-0.2mg/kg 

Titrate dose by TGN at 4 weeks 

Intermediate 

heterozygous TPMT deficiency 

10-24 dose at 1-1.5mg/kg 

Titrate dose by TGN at 4 weeks 

Normal 

TPMT wild type 

 

25-50 dose at 2-2.5mg/kg 

Titrate dose by TGN at 4 weeks 

High 

TPMT wild type 

>50 dose at 2-2.5mg/kg or 

0.5mg/kg with 100mg allopurinol  

Titrate dose by TGN at 4 weeks 
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Genetically determined variation in activity of TPMT is known to account for up to 30% of all 

adverse drug reactions (ADRs) experienced on AZA, particularly myelotoxicity, although this 

still leaves approximately 70% of side effects unaccounted for 
70,71,87

.   

 

In addition to the well-documented impact of TPMT deficiency on the occurrence of side effects, 

TPMT status may also determine clinical response to thiopurines. Individuals with more active 

TPMT predominantly methylate thiopurines, leaving little to be converted to TGNs
90-92

.  Dose 

escalation in this group has been shown to be ineffective, as methylation continues to dominate.  

This translates to reduced rates of response to thiopurines and a high risk of hepatotoxicity, 

thought to be caused by an accumulation of methylated metabolites64,93.  Interestingly, such 

patients do well on a reduced dose of azathioprine (approximately 25% of standard) in 

combination with allopurinol, a xanthine oxidase dehydrogenase (XDH) inhibitor 
94,95

.  This 

strategy maintains therapeutic TGN levels whilst dramatically reducing methylated metabolite 

production, possibly because the lower dose of AZA/MP provides less substrate for TPMT 

activity, but recent research suggests that increased production of thioxanthine in the presence of 

allopurinol blocks TPMT activity
96

. The use of allopurinol co-prescription is addressed in chapter 

7 of this thesis. 

 

1.7.1  The relationship between TPMT genotype and phenotype 

Although TPMT genotyping correlates well with phenotype (TPMT activity) for most patients, 

discrepancies remain an issue, particularly for those who are heterozygous carriers of a TPMT 

mutation
97-100

.  The variation seen between studies could relate to differences in the methodology 

of the enzyme assays, however, studies consistently demonstrate a difference between the two.  A 

proportion of this will be accounted for by rare genotypes not included in standard laboratory 

assays (which often test only for the *3A,*3C and *2 variants) but these are very rare and other 

factors must account for the majority of the genotype:phenotype discrepancy in addition to  the 

wide variation in TPMT activity found within the wild-type population
101

.  It is likely that a 

substantial proportion of this variability is also genetic. Indeed, family studies have shown that 

within the TPMT wild-type population, TPMT activity shows additional familial correlation
102

. 
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A HapMap analysis seeking association between genetic polymorphism and TPMT activity found 

that polymorphism in 96 other genes was more strongly linked to TPMT activity than 

polymorphism in TPMT itself
103

, a finding which does not fit with the striking correlation 

between TPMT genotype and outcome on thiopurines in most studies.  Amongst those genes 

implicated there was a significant over-representation of DNA glycosylase enzymes, which repair 

errors in DNA transcription.  The relevance of this is not entirely clear but perhaps it could 

explain the minor mis-match seen between TPMT genotype and activity / outcome on 

thiopurines.  This study also raises the possibility that, when used without target genes in mind, 

HapMap may be of limited value, producing a large number of “red herrings” for every true hit.  

Results are likely to be biased by the fact that the patients included were from 30 family trios.  To 

date, no confirmatory studies have been done to verify any of these associations in other 

populations. 

 

Another modifying influence on TPMT activity has been identified in the TPMT promoter 

region, which contains a GCC repeat motif.  Roberts et al identified that the presence of 5 or 7 

repeats (vs. 6 in most individuals) was associated with increased TPMT activity
104

.  Spire Vayron 

de la Moureyre et al. reported that a variable number tandem repeat element (VNTR) also in the 

promoter, predicted TPMT activity, with high numbers of repeats (7 or 8 vs. the usual 4-6) being 

associated with reduced enzyme activity
105

.  This result has been reproduced by other groups, 

although the size of the effect appears to be small and would only account for a small proportion 

of the variation seen in TPMT activity
106

.  A recent publication establishes that it is not just the 

number, but also the type of VNTR which determines TPMT activity, and provides a rationale for 

this effect by demonstrating that the VNTR region acts as a transcription factor binding site 
107

. 

 

An additional determinant of TPMT activity is the level of available S-adenosylmethionine 

(SAM).  SAM acts as the methyl donor for the methylating reactions catalysed by TPMT, and is 

additionally thought to bind to, and stabilise, the TPMT protein backbone, although the direct 

evidence for this comes from a SAM analogue (sinefungin) acting on the wild-type bacterial 

equivalent of TPMT
108

.  SAM is created by the action of ATP on methionine.  Methionine is 

derived directly from dietary sources or can alternatively be synthesised from homocysteine by 

methyl exchange from either 5-methyl-tetrahydrofolate, (a B12 dependent process
109

) or betaine. 
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Methionine production is therefore influenced by the folate cycle, vitamin B12 and betaine levels 

and folate and vitamin B12 deficiency are known to result in raised homocysteine levels
110

. Once 

patients are on treatment with thiopurine agents there is a further complexity to the process.  

Milek and co-workers have shown that Me-TIMP reduces intra-cellular ATP levels and SAM 

production, creating negative feedback on TPMT activity.  Administration of exogenous SAM 

reversed these changes with increased TPMT activity resulting in higher MeMP levels but lower 

TGN and Me-TIMP, which lead in turn to cell salvage with reduced apoptosis
111

. 

 

Methionine production from homocysteine also competes with the conversion of homocysteine to 

cystathione and then on to glutathione.  This pathway tends to predominate during conditions of 

oxidative stress, such as during a period of active disease, as glutathione is a key endogenous 

anti-oxidant
109,112

.  Glutathione is also required for the conversion of azathioprine to MP.  Figure 

1.4 shows the inter-relationship between TPMT, SAM, methionine and the folate cycle. 

 

As a result of the importance of TPMT activity during thiopurine usage, pharmacogenetic study 

has extended to key enzymes in the folate cycle to establish whether, by modulating TPMT 

activity, they have an influence on clinical outcome. 

 

1.8  MTHFR 

5,10-methylene-tetrahydrofolate reductase (MTHFR) is the enzyme responsible for the 

production of 5-methyl-tetrahydrofolate (MeTHF), the methyl donor for the reaction converting 

homocysteine to methionine.  Theoretically, deficiencies in this process would be predicted to 

lead to reduced SAM availability and therefore compromised TPMT activity.   

 

MTHFR is subject to genetic polymorphism, including common variants known to have an 

impact on enzyme function, most importantly the MTHFR 677C>T polymorphism.  In the 

presence of folate deficiency, this SNP has been shown to be associated with high homocysteine 

levels
113

.  Reduced DNA methylation (also SAM dependent) has also been demonstrated where 

the MTHFR 677C>T polymorphism and folate deficiency co-exist
114

.  This is an important 

consideration in IBD, where folate deficiency is a common complication of disease. MTHFR 

677C>T has been associated with a wide variety of disease states, from an increased risk of 
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recurrent pregnancy loss
115

 and babies with neural tube defects
116

, to increased cancer risk 

(including oesophageal
117

 and colorectal cancers
118,119

, acute lymphoblastic leukaemia in 

children
120

, and from thrombophilia
121

 and vascular dementia
122

 to mental health problems such 

as schizophrenia and bipolar and unipolar depression
123

. 

 

 

 

Figure 1.3:  Impact of the folate cycle (and therefore MTHFR and TYMS) on TPMT activity.  

 

Abbreviations: 

Metabolites:  6MP- 6-Mercaptopurine, MeMP – 6-methylmercaptopurine, tIMP – 6-thioinosine monophosphate, 

tXMP – 6-thioxanthine monophosphate, TGNs – thioguanine nucleotides (6-thioguanine monophosphate, 6-

thioguanosine diphosphate, & 6-thioguanosine triphosphate), Me-TIMP – methyl-thioinosine monophosphate,  

Enzymes:  TPMT – thiopurine methyl transferase, HGPRT – hypoxanthine guanine phosphoribosyltransferase, 

IMPDH – inosine monophosphate dehydrogenase, GMPS – guanine monophosphate synthetase, TYMS – 

thymidylate synthase, MTHFR – methyltetrahydrofolate reductase, MTR- 5-methyltetrahydrofolate homocysteine 

methyltransferase MAT-methionine adenosyl transferase 

Substrates: SAM – S-adenosyl methionine, SAH S-adenosyl homocysteine, THF – tetrahydrofolate, 5-MeTHF – 5-

methyl tetrahydrofolate, 5,10-MeTHF – 5, 10 dimethyltetrahydrofolate, DHF – dihydrofolate, dUMP – deoxyuridine 



MD thesis Azathioprine in IBD Melissa Ann Smith 

29 

 

monophosphate, dTMP – deoxythymidine monosphosphate, ATP – adenosine triphosphate, ADP - adenosine 

diphosphate, Pi – inorganic phosphate,. 
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Arenas et al have demonstrated that this MTHFR SNP is much more common than expected in 

those patients found to have intermediate TPMT activity, despite wild type TPMT genotype
124

, an 

effect which may be dependent on gender
125

 and result in reduced TPMT activity as a result of 

reduced SAM levels destabilising TPMT. 

 

In patients with ALL treated with MP, there are some early suggestions that MTHFR genotype 

may be associated with an increased risk of adverse events (particularly haematological toxicity) 

and interruption of therapy
126-128

, and in one study, the occurrence of MTHFR and TPMT 

polymorphism together was particularly problematic127.  However, the picture is clouded by the 

fact that ALL patients are generally on both MP and methotrexate at the same time, during their 

maintenance therapy stage.  Since the folate cycle is more intimately linked to the mechanism of 

action of methotrexate, MTHFR mutations are often considered more likely responsible for 

toxicity due to methotrexate rather than MP
126

.  This is despite the fact that one study clearly 

demonstrates that MTHFR polymorphism was only related to toxicity in those on the protocol 

using MP and not the protocol for high risk ALL which uses methotrexate alongside alternative 

agents
128

.  In other contexts, MTHFR polymorphism has not yet been demonstrated to be 

associated with toxicity
129,130

. 

 

1.9  TYMS 

The other key enzyme which influences the availability of methyl-THF is thymidylate synthase 

(TYMS). TYMS competes with MTHFR for methyl-THF, which it uses as a cofactor during the 

recycling of dUMP to dTMP to maintain the pool of nucleotides required for DNA synthesis and 

repair.  TYMS is also known to be subject to genetic polymorphism which has an impact on 

enzyme activity, in this case, due to the occurrence of a common tandem repeat in the 5’ 

untranslated region.  The more active (wild type) 3/3 variant is associated with lower folate and 

higher homocysteine levels
131

, an effect compounded both by poor folate intake and the 

occurrence of the MTHFR677C>T polymorphism 
131

.  Studies on the clinical impact of this 

variability are currently lacking. 
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Whilst TPMT is the only pharmacogenetic marker that has translated into clinical practice in 

IBD, there are many other potential pharmacogenetic markers and for some of these, a 

considerable body of evidence now supports an association with clinical outcome.  This evidence 

is reviewed below. 

 

1.10  ITPase 

All cells require purine nucleotides and have two alternative methods by which to obtain them.  

Dividing cells need to make new DNA and RNA and therefore synthesize purine nucleotides de 

novo.  This process requires a lot of energy however, so where possible, purine nucleotides are 

salvaged and recycled.  It is this same pathway of enzymes which is responsible for the 

conversion of MP to active thioguanine nucleotides (TGNs). 

 

Whilst the desired end-products of both de novo purine synthesis and purine salvage are the 

canonical purine nucleotides adenosine and guanine, the first nucleotide produced by both purine 

salvage and de novo synthesis is inosine monophosphate (IMP).  IMP can then be converted to 

either adenosine monophosphate (AMP) or guanine monophosphate (GMP) as required by the 

cell, see figure 1.5. 

 



MD thesis Azathioprine in IBD Melissa Ann Smith 

32 

 

 

Figure 1.0.4:   Purine nucleotide inter-conversion and the role of ITPase 

 

Figure 1.5 Relationship between and importance of the purine nucleotides 

 

Nucleotides: 

AMP – Adenosine monophosphate 

ADP – Adenosine diphosphate 

ATP – Adenosine triphosphate 

GMP – Guanine monophosphate 

GDP – Guanine diphosphate 

GTP – Guanine triphophate 

IMP – inosine monophosphate 

IDP – inosine diphosphate 

ITP – inosine triphosphate 

 

Enzymes: 

IMPDH – inosine monophosphate dehydrogenase 

GMPS – guanine monophosphate synthase 

ASS – adenylsuccinyl synthestase 

ASL – adenylsuccinly lyase 
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Nucleotide kinases convert AMP and GMP into their active triphosphate forms (see figure 1.5) in 

which they can be incorporated into DNA and RNA, transfer energy etc.  These same kinases act 

on IMP to create inosine diphosphate (IDP) and inosine triphosphate (ITP).  However, to date, no 

function for IDP and ITP has been discovered and they are considered by-products of the purine 

metabolic pathway.  To avoid wasting such valuable compounds, cells recycle ITP back to the 

useful building block IMP using the enzyme ITPase, see figure 1.5.  The action of ITPase also 

prevents accumulation of ITP 
132,133

. Experimental evidence now confirms that an excess of dITP 

will result in its incorporation into DNA in place of canonical nucleotides
134

, encouraging the 

occurrence of coding errors135.  Once incorporated, DNA repair enzymes struggle to uncouple 

and remove inosine nucleotides, especially when paired with cytosine
135

.  Recent work in patients 

with scleroderma suggested a link between high levels of inosine nucleotides and DNA 

damage
136

 and adding inosine nucleotides to normal cells is an accepted experimental technique 

for encouraging mutagenesis
136,137

.  This raises an important question about the wisdom of 

prescribing thiopurines to patients known to be ITPase deficient, although to date no link with 

cancer has been demonstrated. 

 

1.10.1  Human ITPase deficiency 

ITPase deficiency in human subjects was discovered during studies on blood donors which 

identified that a small proportion of the healthy population have very high intracellular levels of 

ITP associated with low ITPase activity
138

.  In 2002, Sumi et al. reported the genetic basis of 

ITPase deficiency, describing ITPA c.94C>A and ITPA IVS2 +21A>C variants in individuals 

with raised ITP levels139.  The ITPA c.94C>A variant encodes a Pro32Thr substitution139-141 and 

has the most significant impact on ITP activity.  Individuals heterozygous for this variant have 

approximately 22.5% of expected ITPase activity and those with homozygous deficiency 

approximately 0%
139

.  Heterozygosity for the ITPA IVS2 +21A>C mutation in intron 2 reduces 

ITPase activity to 60% of expected 
139

.   

 

Since these original reports, other SNPs have been shown to have an impact on ITPase activity 

including ITPA IVS2+68T>C
142

, ITPA 359_366dupTCAGCACC
143

 and ITPA IVS2 

+68T>G
144

and synonymous coding region SNPs have also been identified
139

.  However, a recent 
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detailed analysis of ITPA haplotypes suggests that the ITPA c.94C>A and IVS2 +21A>C are the 

major determinants of ITPase deficiency and that other SNP associations with reduced ITPase 

activity are either very rare or only likely to occur in linkage with these two causative SNPs
145

.   

 

The ITPA c.94C>A SNP has been detected in all world populations investigated with the lowest 

frequency in Central and Southern American populations (1-2%), intermediate in Caucasians 

(7%) and a relatively high incidence in Asian individuals (11-15%)
146

.  The frequency of ITPA 

IVS2+21A>C in the Caucasian population appears to be approximately 13%
139

. Interestingly, it 

has not been detected in Japanese cohorts
144

. 

 

The mechanism by which these SNPs cause such a reduction in ITPase activity is of interest.  The 

fact that individuals heterozygous for the ITPA c.94C>A variant had approximately 25% of wild-

type ITPase activity led to suggestions that the enzyme was dimeric
139

, and this has subsequently 

been confirmed by crystallography
140

.  The location of the Pro32Thr substitution in the 

crystalline structure of ITPase prompted the suggestion that the ITPA c.94C>A mutation would 

disrupt the catalytic site 
140

.  More recently, substrate affinity has been shown to be unaltered, but 

pyrophosphohydrolysis is compromised
147

 and protein stability reduced
148

.  However, such a 

mechanism would not adequately explain the 75% reduction in activity observed and in 2007, 

Arenas et al demonstrated that both the ITPA c.94C>A and the ITPA IVS2+21A>C variants 

cause mis-splicing of ITPase, resulting in deletion of exons 2 and 3, or exon 3 only, from the 

mRNA
149

.  This would evidently have a much greater impact on the protein structure than a 

single amino acid substitution.  It is interesting to note that 2 of the other 3 SNPs associated with 

ITPase deficiency are situated in close proximity to ITPA IVS2+21A>C within intron 2, 

suggesting that they could affect ITPase function in the same manner
142,144

. 

 

1.10.2  Pharmacogenetic importance of ITPase deficiency 

In the light of all this information it has been suspected that genetically determined ITPase 

deficiency must be associated with a specific clinical phenotype, but to date none has been 

successfully identified.   
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In the presence of thiopurines, ITPase has a new role, recycling 6-thio-ITP back to 6-thio-IMP
147

 

so that it can be either converted into the active end-product of thiopurine drugs, thioguanine 

nucleotides (TGNs) or broken down and excreted
150

.  In those with ITPase deficiency, thiopurine 

therapy would cause an accumulation of 6-thio-ITP which could result in toxicity
147,151

. The only 

study to look at the molecular effect of an accumulation of thio-ITP showed that in vitro, thio-ITP 

inhibits the activity of RNA polymerases
152

.  This effect could be overcome by increasing the 

concentration of canonical nucleotides in the reaction mixture, suggesting that the mechanism is 

competitive inhibition.  The authors suggest that this could be an additional mechanism of 

azathioprine action, but in the absence of ITPase deficiency, levels of ITP and IDP (and therefore 

presumably thioITP and thioIDP) are kept extremely low153.  It could however explain how 

ITPase deficiency causes adverse events, particularly myelotoxicity – see below. 

 

Pharmacogenetic interest in ITPA was sparked by a report from Marinaki et al. who examined a 

cohort of 62 patients who had experienced toxicity on exposure to thiopurine medication, seeking 

pharmacogenetic explanations for these adverse drug reactions (ADRs).  A retrospective analysis 

was performed to look for ITPase genetic polymorphism.  A much higher than expected 

incidence of ITPase mutations was detected in this group and there seemed to be a particular 

association between ITPA c.94C>A and rash, pancreatitis and flu-like symptoms
151

.   

 

Since then several other studies have addressed this issue.  Some of these have confirmed the 

association
87,154

 but this finding was not universal, see below.   Von Ahsen et al collected data 

prospectively on a cohort of 71 patients with CD treated with 2.5mg/kg azathioprine.  The cohort 

was originally recruited to assess whether the use of TGN measurements improved clinical 

outcomes.  They reported that early drop out from the study and drop out specifically due to 

ADRs were both associated with ITPA c.94A>C154.  Ansari et al prospectively recruited 207 

patients with IBD starting treatment with 2mg/kg of azathioprine.  They detected an association 

between ITPA c.94A>C and flu-like symptoms, but no other specific ADR, and no association 

was seen between ITPA c.94A>C and overall withdrawal from the study due to ADRs
87

.  Zabala-

Fernandez confirmed this in their retrospective cohort of 232 IBD patients on thiopurine 

monotherapy155.  In the post-transplant context, flu-like symptoms and GI disturbance have also 
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been associated with ITPA c.94A>C.  This study contained three patients homozygous for ITPA 

c.94A>C, none of whom could tolerate thiopurine therapy
156

. 

 

Several other studies have, however, failed to find a link between ADRs and ITPA c.94A>C 
157-

160.  These negative studies are mostly retrospective and contain small numbers in the relevant 

subgroups (2 contained no patients homozygous for the ITPA c.94C>A variant).   Others have 

reported atypical genotype frequencies which raises the suspicion of either genotyping errors 

[frequently reported for restriction fragment length polymorphism TPMT genotyping
161

] or a bias 

in recruitment
157,159,162

.   

 

Gearry et al retrospectively recruited 147 patients with IBD of whom 73 had stopped azathioprine 

within 6 months due to ADRs and 74 had tolerated 6 months of treatment.  They found no 

significant over-representation of ITPA c.94A>C in the group that had experienced ADRs and no 

association between ITPA c.94A>C and specific ADRs, including rash, pancreatitis and flu-like 

symptoms158.  Van Dieren et al reported that in 109 patients beginning azathioprine treatment for 

IBD, no association between ITPA c.94A>C and ADRs could be demonstrated
159

, whilst de 

Ridder et al, working with the same group, failed to detect an association in 72 paediatric 

patients
157

.  Hindorf et al prospectively recruited 60 patients starting 2.5mg AZA or 1.25mg MP 

for IBD. 27 patients completed the study and 27 were withdrawn due to ADRs.  Again, there was 

no association detected between ITPA c.94A>C and either specific or overall ADRs160. 

 

The original Marinaki cohort did not show an association between ITPase deficiency and 

myelotoxicity but this association has been examined in other groups.  Again, results have been 

conflicting, some groups showing a significant association
163,164

 but others finding none
157,165,166

.   

 

Zelinkova et al. published the results of a Dutch retrospective study of 262 patients treated with 

AZA doses between 2 and 2.5mg/kg for IBD.  They found a significant association between ITPA 

c.94A>C and leucopenia with an odds ratio of 3.5 (95%CI 1.1-11.0).  No other side effects were 

studied
163

.  Hawwa et al. studied a mixed group of patients, 19 children being treated for ALL 

and 35 IBD patients, genotyping them for both the ITPA c.94C>A and ITPA IVS2+21A>C.  In 
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their cohort, occurrence of the ITPA IVS2+21A>C variant was associated with a decrease in 

platelet count, but not a change in white blood cells
164

. 

 

Meanwhile, a multi-centre retrospective study from Italy reported the outcome of 422 patients 

treated with AZA or MP for IBD.  Whilst finding a trend towards lower white cells in those with 

the ITPA c.94C>A variant, this failed to reach significance (p=0.2)
167

.  Allorge et al reported a 

cohort of patients experiencing myelotoxicity on thiopurines, sequencing for the ITPA c.94C>A 

and ITPA IVS2+21A>C variants.  In this group, the allele frequency of the ITPA variants was 

similar to that seen in a control population
165

.  Similarly, a study in 157 renal transplant recipients 

could not identify any link between ITPA variants (ITPA c.94C>A or ITPA IVS2+21A>C) and 

myelotoxic events
166

. 

  

Two recent studies have re-awakened interest in ITPA polymorphism and myelotoxicity.  The 

first showed a high prevalence of the ITPA c.94C>A polymorphism in the Japanese population 

where it was associated with an increased risk of myelotoxicity168.  The second, a study in 

childhood ALL, demonstrated that if thiopurine doses are adjusted for an individual’s TPMT 

activity, ITPase polymorphism emerges as a predictor of myelotoxicity, apparently in association 

with a higher level of methylated metabolites, which they postulate could be caused by an 

accumulation of methyl-thioITP
169

.  

 

An accumulation of thio-ITP could theoretically reduce the amount of thiopurine drug available 

to be converted to the active metabolite, thioguanine nucleotides (TGNs) and therefore be 

associated with lack of clinical response to azathioprine.  Palmieri et al did report this in the 

Italian cohort of 422 IBD patients described above
167

 and a retrospective cohort of 232 Spanish 

patients with IBD and also found an association between ITPA 94A>C and non-response155.  

However, in another study, TGNs were found to be increased in those with the ITPA IVS2+21A 

variant (although unchanged in those with the ITPA 94A>C variant)
164

.  In a cohort treated with 

azathioprine for SLE, those with the ITPA 94A>C variant had a higher chance of achieving 

clinical response
170

.  This could be due to the effect of thio-ITP on RNA production described 

above and raises the possibility that thio-ITP has therapeutic, as well as adverse effects. 
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A meta-analysis performed in 2007 failed to find a consistent association between the ITPA 

c.94A>C variant and all ADRs, myelotoxicity, hepatotoxicity or pancreatitis
171

.  However, the 

studies that did find a significant association between azathioprine ADRs and ITPase deficiency 

were relatively robust prospective cohorts.  This means that the role of ITPase deficiency in 

adverse ADRs to thiopurines remains uncertain. 

 

1.10.3  Testing for ITPase deficiency 

Due to the lack of consistency in these results, ITPase testing has not been widely adopted in 

clinical practice and is currently only performed in one clinical laboratory
150

.  ITPase activity can 

be measured directly in red cells
142,172

 and inferred from the relative concentrations of ITP and 

IMP
153

, making pre-treatment testing alongside TPMT feasible.  Although activity does decrease 

if the cells are kept in storage, this seems to be a slow and consistent process which would allow 

such measurements within a realistic laboratory timeframe173.  The only problem with this 

approach is that heterozygous carriers of those SNPs with only a minor impact on enzyme 

activity (such as ITPA IVS2+21A>C) could be overlooked143.  An alternative would be to look 

for the two important ITPase mutations directly
174

.  In view of the recent haplotype analysis
145

 

this would be a reasonable approach to screening, but as with genetic TPMT testing, carries a risk 

of missing novel and rare variants. 

 

In isolation, knowledge of an individual’s ITPase status cannot yet aid prescribing decisions. 

However, with modern thiopurine treatment mainly individualised to TPMT status, it is 

anticipated that ITPA polymorphism will emerge more strongly as a predictor of both toxicity 

and outcome175.  Additionally, as increasing numbers of pharmacogenetic predictors of both 

toxicity and lack of response to thiopurines are discovered, it is likely that ITPase will form an 

important part of a panel of markers which would give the physician a personalised thiopurine 

risk:benefit assessment for each patient.  ITPA variants may be particularly important in Asian 

populations where ITPA c.94C>A is more common and has been linked to more serious side 

effects such as myelotoxicity. Further studies are warranted to elucidate the exact risk of 

prescribing thiopurines in individuals with ITPase deficiency. 
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1.11  Other enzymes 

TPMT and ITPase have been the subject of the vast majority of the work undertaken on 

azathioprine pharmacogenetics. However, TPMT accounts for only 10-25% of azathioprine 

intolerance and less then 30% of myelotoxicity.
70,71

  The role of ITPase is still unclear.  This 

leaves a large amount of azathioprine-related toxicity and non-response unexplained, a proportion 

of which is highly likely to be due to polymorphism at additional loci.  The following section 

reviews the evidence for the involvement of additional enzymes in the pharmacogenetics of 

azathioprine. 

 

1.11.1   Xanthine Oxidase/Dehydrogenase 

Xanthine oxidase/dehydrogenase (XDH) competes with TPMT to inactivate MP 
74,176

 (see figure 

1.2).  The competition is indirect as XDH is mainly responsible for the significant first pass 

metabolism of orally administered thiopurines in the small intestine and liver
177

, but is absent 

from the target tissue itself
72

.  Low XDH activity would be predicted to cause high TGN levels 

with dose-related toxicity, a supposition backed by the effects of blocking XDH activity with 

allopurinol whilst on thiopurine treatment, and the 70-80% thiopurine dose-reduction required in 

this situation178.  High XDH activity would be predicted to be associated with non-response to 

thiopurine agents.   

 

XDH activity is influenced by genetic polymorphism associated with both increased and 

decreased activity 
179

.  Most of these polymorphic variants alter XDH activity against 

thioxanthine180 and appear to alter azathioprine metabolite levels164.  Although true deficiency 

(Type 1 Xanthinuria) is rare
181

, there is a case report of a renal transplant patient experiencing 

profound and early neutropenia after administration of thiopurines due to a combination of 

congenital XDH deficiency and TPMT heterozygosity
182

.  

 

Variations in XDH activity would also be predicted to be associated with hepatic and 

gastrointestinal toxicity to orally administered thiopurines, due to its concentration in these 

tissues and the effect of first pass metabolism.  In keeping with this, orally administered 

thiopurines cause predominantly gastrointestinal side effects 
71,87

, whilst when given 

intravenously (as in early ALL studies) the most commonly occurring side effect was 
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myelosuppression
183

. An in vitro study found that rat hepatocytes cultured in the presence of 

therapeutic concentrations of thiopurines deteriorated much more quickly that those cultured 

without them.   This effect was blocked by the addition of allopurinol, strongly suggesting that 

the action of XDH on the thiopurines was responsible 
184

.  In a further attempt to confirm that the 

cell damage was being caused by XDH, the group postulated that the damage could also be 

blocked by a strong anti-oxidant such as Trolox.  This was borne out in further experiments and a 

combination of Trolox and allopurinol completely inhibited the damaging effects seen in 

previous cultures with thiopurines.
184

 The authors also postulated that the relative preponderance 

of thiopurine-associated liver injury in male patients could result from the higher XDH activity 

seen in males.   

 

Not all studies have, however, found that reactive oxygen species (ROS) are the cause of 

thiopurine liver injury.  In a study on human hepatocytes and hepatoma cell lines, Petit et al 

demonstrated that the damage appears to relate instead to ATP depletion and by implication 

mitochondrial damage185 rather than damage by ROS. This process could still however be related 

to the actions of XDH as allopurinol has been shown to preserve ATP pools and mitochondrial 

function in hepatic ischaemia/reperfusion injury
186

.  Allopurinol could also contribute to reduced 

liver toxicity by raising hypoxanthine levels which could lead to improved cell salvage/repair
187

. 

 

This provides a rationale for using reduced dose AZA with allopurinol for treatment of patients 

experiencing thiopurine hepatotoxicity in the presence of normal methylated metabolite levels.  

The use of allopurinol co-treatment is addressed in chapter 7. 

 

1.11.1.1  Interaction between XDH and TPMT 

Co-prescription of allopurinol with AZA (effectively obliterating XDH metabolism of AZA188), 

requires a dose-reduction to 25% of the usual target AZA dose.  This demonstrates that XDH is a 

major contributor to metabolism of thiopurine drugs, although complete TPMT deficiency 

requires an azathioprine dose reduction to 2.5-5%85,189 of the standard dose, suggesting that 

methylation by TPMT is dominant. Why deficiency of either one of these enzymes should require 

such large dose reductions is of interest.  Ansari et al demonstrated that in patients on standard 

dose AZA, approximately 10% of the daily dose could be retrieved in urine as 6-thiouric acid (6-
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TU).  However, in a TPMT deficient patient receiving 5mg/day of AZA, 89% of the daily AZA 

dose was retrieved in the urine as 6TU, whilst in a patient co-prescribed AZA and allopurinol 

urinary 6TU was undetectable
188

.  Additionally, patients co-prescribed allopurinol and AZA 

demonstrate very low methylated metabolite levels
190

. The reason why blocking XDH should 

have such a profound effect on methylated metabolite levels is not clear.  Allopurinol (or the 

active metabolite oxypurinol) are not thought to have a direct impact on TPMT activity
94

, 

although published data is lacking in this area.  A novel explanation is that increased production 

of thioxanthine in the presence of allopurinol inhibits TPMT
96,191

.  An alternative explanation is 

that the pharmacokinetics of TPMT are such that, at the lower drug doses permitted by co-

administration of allopurinol, TPMT metabolism of thiopurines and thiopurine metabolites is 

much less efficient. The shift in balance between TGN and methylated products may also be 

partly explained by decreased breakdown of the TGNs, for which XDH and aldehyde oxidase are 

responsible.   

 

The relationship between genetic variability in XDH and clinical outcome of patients with IBD is 

addressed in the research presented in this thesis and can be found in chapters 3 & 5. 

 

1.11.2  Molybdenum cofactor sulfurase 

XDH and AOX require an essential cofactor, molybdenum cofactor (MOCO), in order to be 

active
192

.  MOCO is also required for the action of sulphite oxidase, and MOCO deficiency 

results in severe neuro-degeneration and early infant death due to inactivity of this enzyme
193

.  

The final step in MOCO adaptation for compatibility with XDH and AOX is performed by the 

enzyme molybdenum cofactor sulfurase (MOCOS).  MOCOS deficiency, in which sulphite 

oxidase activity is unaffected, is associated with Type 2 XDH deficiency, a relatively benign 

condition, with a minor predisposition to renal stones 194 being the only described phenotype.  

The MOCOS gene is subject to genetic polymorphism but no studies have addressed the impact 

of this on thiopurine pharmacogenetics. 

 

The relationship between genetic variability in MOCOS and clinical outcome of patients with 

IBD is addressed in the research presented in this thesis and can be found in chapters 3 & 5. 
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1.11.3  Aldehyde Oxidase 

It has also been demonstrated that aldehyde oxidase (AOX) acts on azathioprine, MP and their 

metabolites, contributing to catabolism of thiopurines
176,195-197

.  However, the contribution of this 

enzyme tends to be neglected in reviews on the subject and little additional work has been done 

in this area.  Despite significant quantities of AOX products being found in the above studies, it 

seems to have been assumed that the role of AOX is relatively minor. The only functional study 

of the thiopurine metabolites produced by AOX showed that 8-hydroxy-6-MP did not slow the 

growth of rat sarcoma
198

.   

 

AOX is a close relation of XDH and also has an essential requirement for MOCO
192

.  The role of 

AOX in human physiology remains unclear.  It is much more widely distributed than XDH and 

has a broad range of substrates
195,199

.  It is therefore thought to have additional functions over and 

above its contribution to purine catabolism
200

.  There is significant inter-individual variability in 

AOX activity
201,202

, whether this is genetic or attributable to other factors
203

 remains unknown.  

However, rat studies have demonstrated a SNP which prevents dimerisation, and therefore 

activity of AOX204 and studies on methotrexate suggest that there are 2 phenotypes in the human 

population
205,206

 with implications for clinical outcome.   

 

Interestingly AOX has been shown to interact with and alter the activity of the membrane-bound 

pump ABCA1
207

.  Whilst this specific pump is not thought to be involved in thiopurine 

metabolism, nothing is known about whether AOX interacts with other ABC pumps, some of 

which do transport thiopurine metabolites (see below).   No study has addressed the implications 

of AOX genetic variability in thiopurine treatment to date. 

 

Work addressing the relationship between genetic variability in AOX and clinical outcome of 

patients with IBD is presented in chapters 3 & 5. 

 

1.11.4  Hypoxanthine Guanine Phosphoribosyltransferase (HGPRT) 

As the first enzyme in the metabolic pathway converting MP to its active metabolite TGNs, 

variation in HGPRT would be predicted to have a profound effect on MP metabolism.  Although 

significant systemic loss of activity of HGPRT has serious results for the affected person, 
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resulting in Lesch-Nyhan syndrome
208

, HGPRT activity in PBMCs has been shown to be highly 

variable both within and between patients with IBD.  Administration of thiopurines appears to 

induce HGPRT activity in white cells, although higher and much more stable levels were 

documented in red cells
209,210

.  Activity also appears to be enhanced on azathioprine/allopurinol 

co-treatment when compared to monotherapy211. 

 

Studies on leukemic cell lines demonstrate that lower HGPRT activity is associated with 

thiopurine resistance 
212

.  The clinical significance of this for thiopurine therapy in IBD is not yet 

clear. 

1.11.5 Inosine monophosphate dehydrogenase (IMPDH) 

IMPDH I & II constitute the enzymatic step subsequent to HGPRT on the pathway to TGN 

production.   Acting in direct competition with TPMT, the balance of activity of these enzymes 

partly determines how much active end-product is produced from the administered thiopurine213.  

It would be logical to suppose that reduced IMPDH activity would create a bottleneck in the 

creation of TGNs, allowing TPMT the opportunity to inactivate a greater proportion of the 

ingested drug.  This would manifest clinically as a predominant methylation phenotype, known to 

be associated with non-response to thiopurine therapy and an increased risk of hepatotoxicity
64

.   

 

Mycophenolate mofetil (MMF), an alternative immunosuppressive agent, acts by inhibiting 

IMPDH and this has allowed the effect of IMPDH activity on nucleotide pools to be studied.  

Blocking IMPDH has the predicted effect (decrease) on GTP levels in white cells
214

, but in red 

cells, the opposite effect is seen
215

.  The authors propose that this could be due to MMF 

stabilising IMPDH in red cells, where the lack of a nucleus means that no new enzymes can be 

made.  The only study to date which has looked at IMPDH activity and nucleotide pools during 

thiopurine therapy did not demonstrate the expected relationship to TGN levels, suggesting that 

the proposed model is over-simplistic or that TGN measurements in red cells are not a suitable 

surrogate marker 
216

.  

 

Roberts et al studied the IMPDH gene in a small group of patients who were azathioprine 

resistant, with predominant methylation despite TPMT activities in the normal range.  Whilst 

they did find one patient with an IMPDH promoter mutation, all the other subjects had wild type 
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IMPDH.  They concluded that this mutation, even if it was demonstrated to affect IMPDH 

activity, could only be a very rare cause of azathioprine resistance
213

. 

 

1.11.6    5’-nucleotidase 

5’-nucleotidase cleaves a phosphate from the 5’ end of sugar moieties, converting mono-

phosphorylated nucleotides to their respective nucleosides.  It exists as membrane-bound ecto-5’-

nucleotidase (where it appears to form an important part of a cellular circulation of 

nucleotides217) and in soluble form, see figure 1.6.  Regulation of 5’-nucleotidase is not fully 

understood.  Activity levels have been shown to decrease with age and be lower in men in a 

population of patients with arthritis and normal controls
218

.  Multiple SNPs have been 

demonstrated in the 5’-nucleotidase gene and its 5’ flanking region, many of which have been 

demonstrated to have an impact on function
217

. 

 

Early work in ALL demonstrated that patients in whom blasts expressed 5’-nucleotidase had a 

lower chance of complete remission219.  More recently 194 ALL cell lines have been analysed 

with gene-expression profiling. 5’-nucleotidase expression was positively correlated with TGN 

levels and was one of only 3 genes for which expression correlated with toxicity experienced on 

thiopurine therapy (the other 2 were TPMT and ABCC4)217.   

 

A small study in rheumatoid arthritis showed that higher 5’-nucleotidase activity was associated 

with good response, whilst those with lower activity developed side effects during AZA and MP 

treatment
220

.  Other work by the same group, (again in patients with RA) failed to confirm this 

association221 although they have since reported a series of patients developing myelotoxicity, 

despite normal TPMT activity, who were all discovered to have low 5’- nucleotidase activity 

222,223.  No work has been done to date on the effect of 5’-nucleotidase activity in patients with 

IBD.   

 

1.11.7   Nucleoside phosphokinase 

Nucleoside phosphokinases are responsible for conversion of thioguanine monophosphate to 

diphosphate, and diphosphate to triphosphate
224

.  As it has become clear that the triphosphated 
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form acts differently to the other forms of thioguanine
51

 and that the ratio of di- to triphosphate is 

associated with response
225

, phosphokinase has become of pharmacogenetic interest. However, to 

date no work has been done on its clinical significance in thiopurine therapy.  Inter-individual 

variation in nucleoside diphosphate kinase (NDPK) has been demonstrated
224

 but whether this is 

genetically determined is not known.  Additionally, the activity of NDPK is not related to the 

concentration of the triphosphated nucleotide
224

.  The reason for this is not clear but reflects the 

complexity of the system.  

 

The same enzyme is responsible for the conversion of methyl-mercaptopurine riboside to methyl 

thioIMP226 which is the metabolite responsible for the inhibition of de novo purine synthesis227.  

This provides an alternative mechanism by which nucleoside kinases might be responsible for 

pharmacogenetic variability in thiopurine response. 
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Figure 1.0.5: Cellular circulation of thiopurine nucleotides as proposed by Li et al
217

 

 

Figure 1.6: Nucleotide and nucleoside transport across cellular membranes 

 
Abbreviations: SLC28 & 29 are the genes for 2 families of transporters – the concentrative nucleoside transporters 

and the equilibrative nucleoside transporters respectively, NT5E – Ecto-5’-nucleotidase, MRP4 – multi-drug 

resistance protein 4, ATP – adenosine triphosphate, ADP – adenosine diphosphate, Pi – inorganic phosphate. 
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1.11.8   MRP4 & MRP5 

Multi-drug resistance proteins are ATP-binding cassette (ABC) transporters which are located on 

the cell surface and are responsible for energy-dependent efflux from cells, particularly the 

removal of xenobiotics, including drugs.  There are a large number of different ABC transporters 

which are all thought to derive from a common ancestor.  The sequence is highly conserved 

across pro and eukaryotes, suggesting an essential function.  Their location (renal tubule, bile 

cannaliculae, placenta, gut epithelium) suggests a role in physiological efflux. Work to date has 

centred on p-glycoprotein (Multi-drug resistance protein-1, MDR-1) in which common 

polymorphism has been shown to influence outcome on chemotherapy, conferring resistance to a 

wide variety of chemotherapeutic agents.  There is also evidence that polymorphism in MDR-1 is 

associated with steroid-refractoriness in IBD
228

 and may possibly be a factor in the development 

of IBD
229,230

 although this finding has not been universal
231,232

. 

 

However, although most studies have focussed on MDR-1 (p-glycoprotein), thiopurines cannot 

be transported by this pump 233,234, but have instead been shown to be exported from cells by 

MRP-4 and MRP-5 (otherwise known as ABCC4 & ABCC5).  Efflux is so efficient that 

additional pumps are postulated
235

, early evidence suggesting that ABCG2 could also be 

involved236.  AZA and MP cannot themselves be transported 237, but their metabolites, essential 

for these pro-drugs to work, are effluxed in an ATP-consuming process. More detailed studies 

have shown that Me-tIMP and other methylated metabolites
238

 are exported by both transporters 

but more efficiently by MRP-4, which also preferentially transports tGMP
235

.  tIMP is exported 

more efficiently by MRP-5 whilst tXMP can only be exported by MRP-5 
235

.  MRP5 can also 

transport unphosphorylated nucleotides238.  Cells expressing high numbers of these pumps efflux 

thiopurine metabolites so rapidly that lower intra-cellular TGN levels have been documented
239

 

and several authors postulate that they could have a role in non-response to thiopurine drugs 

235,240,241
. 

 

The question of whether over-expression of MRP-4 & 5 leads to MP resistance has been 

addressed in a number of ways.  Peng et al
242

 grew ALL cell lines in medium containing MP to 

select out resistant cells.  These were then characterised and found to have higher MRP-4, (but 

lower hENT1, hCNT2 and hCNT3 levels and higher TPMT activity).  The cells accumulated less 
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MP and metabolites suggesting that a transporter was responsible and this process was ATP-

dependent, implying a role for MRP-4.  Meanwhile, Wijnholds et al
241

 transfected cells with 

MRP-5 and discovered that this also conferred resistance to MP by rapid efflux of tIMP.  Reid et 

al
243

 found that HEK293 cell lines which over-express MRP-4 & 5 demonstrate resistance to 

thiopurines which is proportional to the level of MRP expression.  However, in these experiments 

the kinetics of the transport suggest that MRPs only transport thiopurines when they reach high 

intracellular levels and may therefore only be a minor factor in in vivo resistance.  This 

conclusion would however be challenged by emerging evidence from the clinical context that 

MRPs do indeed affect an individual’s response to drug therapy. 

 

Plasschaert et al
244

 took blasts from 105 ALL patients at diagnosis and characterised their level of 

expression of MRP 1-6 before patients received their standard chemotherapy regimens, which 

included MP in the maintenance phase.  Levels of all 6 MRPs correlated with risk of relapse and 

this reached significance for all except MRP-4 (p=0.208), for MRP-5 p=0.016.  The authors 

noted that patients found to over-express one MRP often expressed high levels of several other 

MRPs.  Further experiments have however shown that blasts taken at the point of relapse do not 

necessarily have higher MRP levels than paired blasts from the time of original diagnosis
245

. 

 

The importance of MRP-4 has been further explored by the development of an MRP knock-out 

mouse model which under normal circumstances has no phenotype 246.  When exposed to 

nucleotide analogues, serum levels of MRP were the same as those seen in wild type animals but 

several tissues, particularly bone marrow, thymus, spleen & gastrointestinal tract, experienced 

severe toxicity and PMEA accumulated in the brain
246

.  Additional experiments demonstrated 

that MRP-4 KO mice accumulated higher levels of TGNs in the bone marrow after exposure to 

thiopurines (despite normal serum levels) which translated to dose-dependent toxicity239. This 

effect could be mimicked in wild type animals by blocking MRP-4 activity with drugs.
239

 

 

Thus, as would be predicted, over-expression of MRP-4 & 5 has been linked to drug resistance 

and deficiency to drug-induced toxicity.  Cells over-expressing MRPs seem to have an increased 

sensitivity to methotrexate241,242 which is difficult to account for, but makes the MRPs extremely 
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interesting pharmacogenetic targets, as information on MRP expression could direct personalised 

choice of immunomodulatory agent. 

 

MRPs are subject to genetic polymorphism, which could be an important predictor of MRP 

function217, see below.   However, regulation of MRP expression is complex and many other 

factors are involved, for example, availability of other substrates (e.g. folate
247

) and other 

transporters (e.g. NHERF1
248

).  Other substrates can also be co-excreted or compete for 

transport.
249

 A number of drugs act as inhibitors to MRPs e.g. ibuprofen, sildenafil, probenecid, 

dipyridamole, celecoxib and indomethacin
250,251

.  Evidence from KO mice suggests that reducing 

levels of one MRP results in up-regulation of others with a similar spectrum of substrates. In the 

case of MRP-4 KO mice this has been demonstrated with ABCG2
236

.  Pharmacogenetics does, 

however, still play a role, and several groups have now produced evidence that SNPs in MRP 

relate to measurable changes in drug transport and even in clinical outcome. 

 

Abla et al252 transfected cells with naturally occurring variants of the MRP-4 gene which they 

found by sequencing an ethnically diverse population.  They demonstrated that the polymorphism 

MRP4 G559T correlates with decreased expression of MRP-4 protein and resulted in a 69% 

decrease in 9-(2-phosphonomethoxyethyl)adenine (PMEA) transport and a 43% decrease in 

zidovudine (AZT).  MRP4 G1460A also significantly decreased transport of both drugs, whilst 

MRP4 C232G and MRP4 C1208T both caused a significant decrease in AZT and a trend to 

decrease PMEA transport.  The MRP4 G2867C polymorphism resulted in increased efficiency of 

drug extrusion.  MRP4 G559T, A934C and A2230G are all of particular interest as they have a 

frequency of >5% in their population. In vitro studies by Janke et al
253

 also showed that in MRP4 

Y556C, E757K, V776I & T1142M all resulted in decreased expression of MRP-4 and V776I was 

associated with a significant reduction in the transport of MP.   

 

In patient studies, Anderson et al. 
254

 demonstrated that MRP4 SNPs T4131G and G3724A were 

associated with increased levels of nucleotide analogues (lamivudine and zidovudine 

respectively). 
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In a Japanese cohort MRP4 G2269A caused decreased membrane localisation of MRP-4 and 

increase sensitivity to thiopurines 
239

.  When this was looked at specifically in IBD, MRP4 

G2269A was associated with higher TGNs and lower WBCs, although it was not associated with 

the 3 cases of severe low WBC 
255

.  Ansari et al
256

 analysed all MRP4 SNPs and found 8 SNPs 

which tag the most frequent haplotypes, some of which have a frequency of >5%: C-1015T & 

A4131C.  They then analysed this in childhood ALL where the tag SNPs T-1393C & A934C 

affected both toxicity and outcome.  However, another group failed to replicate this in their 

cohort
257

. A study of 194 ALL cell lines demonstrated that MRP4 gene expression was one of 

only 3 candidates found to be associated with the experience of toxicity on thiopurine therapy
217

. 

 

A large number of the ABC transporters have been characterised and they have been divided into 

subfamilies, see Figure 1.7.  MDR-1 is in the B-subfamily and otherwise known as ABCB1.  

Other key members of ABCB subfamily are: ABCB4 which encodes MDR-3 p-glycoprotein and 

ABCB5 which encodes MDR-5 p-glycoprotein, both of which are thought to be closely related to 

ABCB1258.  These transporters have been the subject of much less study than ABCB1. However, 

current knowledge about their function is presented below. 

 

ABCB4 has been implicated in resistance to paclitaxel in ovarian cancer
259

 and is up-regulated in 

chemo-resistant cell lines
260

.  It has recently been shown to predict a shorter disease-free period 

after chemotherapy for colorectal cancer with 5-fluouracil261.  Deficiency due to genetic 

polymorphism creates a wide spectrum of problems, particularly biliary / lipid abnormalities 
262

.  

 

ABCB5 has been the subject of detailed studies in doxorubicin resistant melanoma cell lines
263

, 

and shown to predict resistance to chemotherapy in hepatic tumours
264

, bowel cancer
265

 and in 

haematological malignancy266.  Expression level has been shown to correlate with resistance to a 

wide variety of chemotherapeutic agents
267

 and differing variants of MDR-5 confer different 

levels of resistance to chemotherapy regimens
268

.  Additional roles are postulated for ABCB5, 

which has been demonstrated to be responsible for cell fusion and differentiation
269

.  ABCB5 is 

subject to multiple potentially deleterious single nucleotide polymorphisms
258

.  
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The relationship between polymorphism in MDR/MRP genes and clinical outcome of patients 

with IBD is part of the research presented in this thesis and can be found in chapters 4 and 5. 
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Figure 1.7: The ABC transporters divided into their subfamilies, Taken from: The human ABC Transporter 

Superfamily   M. Dean, 2002    http://www.ncbi.nlm.nih.gov/books/NBK31/ accessed on 24.5.12 
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Table 1.2: SNPs in MRP genes and reported associations with altered function (Gene freq. for Caucasians) 

SNP αα substitution rs number gene freq functional data 

G559T Gly187Trp rs11568658  0.04 reduced expression of MRP4 and significantly 

reduced transport of PMEA & AZT
252

 

G1460A Gly487Glu rs11568668 0.000 significantly reduced transport of PMEA & 

AZT
252

 

C232G Pro78Ala  rs11568689 0.000 sig. reduced transport of AZT, trend for 

PMEA
252

 

C1208T Pro403Leu rs11568705 0.018 sig. reduced transport of AZT, trend for 

PMEA
252

 

G2867C Cys956Ser  rs11568707 0.002 increased efficiency of drug extrusion
252

 

G2326A Val776Ile rs146708960 0.000 decreased expression of MRP4 & significant 

reduction in MP transport
253

. 

C3425T Thr1142Met rs11568644 0.018 decreased expression of MRP4
253

 

 Y556C not in dbSNP  decreased expression of MRP4 but increased 

PMEA transport
253

 

T4131G   not in dbSNP  increased drug level zidovudine, 

lamivudine
254

 

G3724A  not in dbSNP  increased drug level zidovudine, 

lamivudine
254

 

G2269A  

 

Glu757Lys rs3765534 0.027 decreased expression of MRP4
253

, decreased 

membrane localisation of MRP4 & increased 

sensitivity to thiopurines.
239

  higher TGNs and 

lower WBCs
255

 

T-1393C     higher promoter activity, better event free 

survival and lower methotrexate plasma 

levels
256

  Not replicated
257

 

A934C Lys304Asn rs2274407 0.05 high incidence of severe thrombocytopaenia 

& lower event free survival
256

Not replicated
257

 

2000C>T Pro667Leu rs11568697 0.002 None 

C52A Leu18Ile rs11568681 0.06 None 

G2459T Arg820Ile rs11568659 0.009 None 

G3211A Val1071Ile rs11568653 0.009 None 

C3425T Thr1142Met rs11568644 0.018 None 

G3659A Arg1220Gln rs11568639 0.018 None 

A2230G Met744Val rs9282570   0.000-0.05 did not correlate with PMEA or AZT 

transport or membrane levels of MRP4
252
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1.11.9  Glutathione S-transferase 

The conversion of AZA to MP is usually reported as being non-enzymatic.  However, there is 

quite a body of evidence supporting an enzymatic component to this conversion, due to the action 

of the glutathione S-transferases, (GST)
10,11,270-272

.  The action of these enzymes, particularly 

through glutathione depletion, and therefore organ specific oxidative stress, is implicated in 

adverse events on azathioprine therapy.272-277  Patients with IBD have been shown to have low 

glutathione levels in gut mucosa, especially at sites of active disease
278

.  It is possible that this 

could contribute to the high incidence of GI side effects experienced on azathioprine therapy and 

the success in these cases of switching to MP therapy
279

, although there is no evidence to support 

this theory at present. 

 

Recently, it has been established that the subtypes of GST involved in azathioprine metabolism 

are GST M1-1, A1-1 and A2-2
272

.  Genetic variation in these enzymes has been shown to result 

in variability in their activity
280

 which is now known to specifically relate to azathioprine 

metabolism
281

.  A more active version, particularly if found in association with low TPMT 

activity, could cause side effects272.  Stocco et al published the only clinical data to date and 

reported that, in their cohort of 70 patients on azathioprine for IBD, those with wild type GST M1 

were at increased risk of lymphopenia and adverse events.  The authors provide rationales for 

supposing that GST might be particularly involved in the development of pancreatitis and liver 

damage, but unfortunately their numbers were inadequate to show a significant association with 

other subtypes of ADR277.  The confirmation of an association between GST wild-type status and 

the development of pancreatitis in other situations
273,282

 would strengthen this hypothesis. 

 

1.11.10  Soluble –HLA-G 

HLA-G is not involved in the transport or metabolism of thiopurines.  However, the gene 

encoding HLA-G contains a 14 base-pair insertion deletion polymorphism which has been 

associated with response to methotrexate in the context of rheumatological disorders
283

.  HLA-G 

is a non-classical HLA protein, which has much less genetic variability than other HLA subtypes 

and exists at immunologically privileged sites, such as in the placenta, cornea and thymus284,285.  

It inhibits both adaptive and innate immunity by inhibition of natural killer cells
286

, 

lymphocytes
287

 and dendritic cells
288

.  HLA-G has been found to be up-regulated in a variety of 
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pathological states such as cancer
289

 and expression appears to be enhanced by some viruses as 

part of their strategy for evasion of host immunity
288

.  Induction of HLA-G is considered to be an 

important part of successful tolerance of transplanted organs
290

. It was therefore considered that 

polymorphism in HLA-G could contribute to the variable response to thiopurines in IBD.  Work 

by my colleague Dr Bijay Baburajan in the PRL was directed at investigating the effect of this 

polymorphism on response to both methotrexate and azathioprine in IBD and this work is 

included in the pharmacogenetic index presented later in the thesis. 

1.12  Thiopurine Metabolite Monitoring 

As discussed in the sections above regarding thiopurine metabolism, the active end product of 

azathioprine metabolism (figure 1.2) is considered to be the thioguanine nucleotides, (TGNs).  

These can be measured, alongside methylated metabolites, in the clinical setting as a guide to 

treatment decisions, and are increasingly recognised as a useful adjunct to therapy in clinical 

guidelines
291-293

.  A lack of correlation between the dose/kg of thiopurine given and the level of 

TGNs achieved has been extensively reported
294-296

.  Some of this will represent inter-individual 

variability in metabolism of thiopurines and therefore, metabolite monitoring is considered by 

some groups to be extremely valuable in the assessment of cases of non-response to thiopurine 

therapy
297

.  TGN / MeMP measurements confirm adherence to therapy
298

, detect preferential 

methylation
190

 (associated with a low probability of clinical response and high risk of 

hepatotoxicity) and identify over-dosing and under-dosing
299

.  TGN levels reach a plateau within 

4 weeks of initiating therapy
87,300

, facilitating early treatment optimisation which could save these 

patients months of poorly-controlled disease and decrease the likelihood of developing disease 

complications.  TGNs can also establish the cause of non-response in those established on 

therapy and allow individualised dosing in treatment responders, maintaining effective therapy 

whilst minimising the risks of toxicity.   

 

Measurement of MeMP is also important.  Some studies relate MeMP and Me-TIMP to 

therapeutic effects
44-46,227

 by a potent inhibition of de novo purine synthesis, whilst others 

implicate these methylated metabolites in toxicity
64

.   Dervieux et al
44

 showed that in those cells 

with active TPMT, MP was more effective at suppressing cell division than TG, whilst in those 

without TPMT the opposite was true.  The authors attributed this differential effect to the creation 

of methylated metabolites which appear to work synergistically with TGNs36.  This could explain 



MD thesis Azathioprine in IBD Melissa Ann Smith 

56 

 

why in patients with TPMT mutations, despite 50% dosing, equivalent response rates and toxicity 

are seen with TGN levels twice that expected in the wild-type population
301

.  Several authors 

have instead suggested that the ratio of different metabolites would better predict thiopurine 

efficacy.  An example of this is the work of Derijks et al. who showed that a ratio of MeMP to 

TGN of <11 predicted efficacy more accurately than the levels of either metabolite in isolation.300 

This ratio has been associated with both non-response and toxicity in other studies
64

 and patients 

with a ratio greater than 11 do well on combination azathioprine and allopurinol treatment (see 

chapter 7). 

 

Despite mounting evidence for their usefulness and the publication of guidelines recommending 

their use however, many physicians do not use TGN measurements in routine clinical practice. 

   

1.12.1  Problems with the current systems of TGN monitoring 

There are a few issues with current metabolite measurements which are easily surmountable.  

These include: 

 

1) TGN levels have been measured by two separate methods which provide very different results 

from the same samples and are not directly comparable.302 Care must therefore be taken that the 

methods used are standardised and particularly that the normal range adopted is relevant to the 

measurement method. TGNs degrade steadily if samples are stored at room temperature but are 

stable for a week in the fridge or 6 months in a freezer at -80ºC.  Methylated metabolites, on the 

other hand, decrease steadily and significantly by day 7 despite refrigeration and by 6 months 

despite freezing at -80 ºC 303 

 

2) Even those studies which use the same analysis method have produced conflicting results, 

some showing a significant relationship between TGN level and response to thiopurine treatment 

and others showing no relationship.  Meta-analysis
297

 confirms that the relationship is significant 

and that the study by Lowry et al304, which seemed to provide the strongest evidence against the 

usefulness of TGNs, is a statistical outlier. Exclusion of these results strengthens the association 

further.  Those studies which took more than one measurement of TGN level showed that this 

also strengthened the relationship with clinical outcome
305,306

.   
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3) TGN levels in most studies have been measured in erythrocytes (RBC) for practical 

ease
91,295,305,307,308

.  This is problematic both because erythrocytes are not the target cells for 

AZA, but also because, lacking a nucleus, they do not have all the enzymes requisite for 

thiopurine metabolism and production of TGNs183,309.   Such levels are therefore a distant 

reflection of the situation in the target white blood cells (WBCs) and bone marrow
183

 and may 

not be fit for purpose
216

.  TGN levels in white cells are, however, difficult to measure as WBCs 

are a heterogeneous cell population and are difficult to extract without RBC contamination
183,310

. 

 

Some work has been done however on WBC metabolite levels,60,61,310-312 although most is from 

other disease backgrounds such as leukaemia and renal transplantation,
310,312

 where MP is given 

differently (intravenously or in the context of multiple other immunomodulatory treatments), 

making interpretation for our purposes difficult.  This work does however highlight the difference 

between red and white cell TGN levels which appear to be most dramatic when using 6-

thioguanine313.  In IBD, a small pilot study showed a correlation between white cell TGN levels 

and those measured in RBCs
311

, confirmed in a later study by the same group
61

.   

 

4) TGN measurements have traditionally been performed using a method which cannot 

distinguish the mono, di and triphosphate subgroups from each other, neither can they tell the 

difference between these activated nucleotides and exogenously administered 6TG183.  However, 

since Thio-GTP is likely to be primarily responsible for bioactivity of AZA
51

 measuring all 

nucleotides together could loosen the association between metabolite measurements and response 

to treatment.  As a result, the three subgroups of nucleotides have been measured separately and 

the levels analysed with treatment response
225

.  This shows that a threshold level of 

100pmol/8x108RBC of the triphosphate nucleotide predicts response to treatment, and patients 

with an elevated fraction of thio-GDP show an attenuated response.  Conversion from thio-GDP 

to the active thio-GTP is the responsibility of the enzyme nucleotide diphosphate kinase, and 

inter-individual variability in this enzyme might account for some of the variability seen in 

response to thiopurines
225

 (see above). High variability in thio-GDP:thioGTP ratios has also been 

seen in treatment with 6-thioguanine314. 
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1.12.2   Alternatives to TGNs 

Mean cell volume (MCV), change in MCV, WBC and lymphocyte counts have all be shown to 

change during thiopurine treatment and have been proposed as suitable alternatives to TGN 

measurement for treatment monitoring.  However, whilst these markers correlate overall with 

TGN levels
5,307,315-318

, their value in clinical practice is limited by a high degree of inter-patient 

variability294,299,318-320. Likewise, deliberately pushing white cell counts down to ensure adequate 

thiopurine dose has been shown to cause toxicity
299,321-323

.   

 

One group has described the use of an algorithm based on standard blood monitoring results 

which apparently out-performs TGNs in terms of correlation with clinical response 
324

.  Perhaps 

the ability of this algorithm to measure response so accurately is not surprising, since changes in 

MCV and white cell counts are, in a way, directly measuring the body’s response to thiopurines.  

Within the group of non-responders in this study however, the algorithm could not tell whether 

TGNs were sub-therapeutic, therapeutic or high, although non-adherence and predominant 

methylation could be predicted.  There are several problems with using this however. The first is 

that interpretation is difficult, secondly the usefulness of such an algorithm is justified mainly on 

how expensive it is to request TGNs in the USA whilst in the UK TGN testing is considerably 

cheaper and thirdly, and perhaps most importantly, it is not clear how this measure guides 

therapy
325

.  It cannot prevent toxicity from early detection of high TGN levels or optimise dosing 

at 4 weeks.  Even at 3-4 months, it does not give an explanation for non-response unless due to 

non-adherence or predominant methylation.  A study to determine the usefulness of TGNs in IBD 

clinical practice is presented in chapter 6 of this thesis. 
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Aims of the thesis: 
 

The work presented in this thesis aimed to explore different strategies to optimise and personalise 

the way in which thiopurines are prescribed for our patients.  In chapters 3 & 4 work to identify 

new, clinically relevant pharmacogenetic markers of outcome on thiopurines is presented.  This 

work sought association between frequently occurring SNPs in key genes involved in thiopurine 

metabolism with clinical outcome (toxicity and non-response) on thiopurine therapy.  Chapter 5 

explores how this new information could be collated with established predictors of toxicity and 

non-response to create a pharmacogenetic index which would guide selection of 

immunomodulators and aid dosing and monitoring decisions in clinical practice.  Chapter 6 

presents the result of introducing thiopurine metabolite monitoring into clinical practice in an 

IBD clinic and chapter 7 presents the clinical outcome of introducing co-prescription of 

azathioprine and allopurinol. 



MD thesis Azathioprine in IBD Melissa Ann Smith 

60 

 

Chapter Two:   Materials and Methods 
 

2.1  Patient Recruitment 

2.1.1   Genotyping studies  (chapters 3 & 4): 

Samples originated from a prospective study of the pharmacogenetics of AZA in the treatment of 

IBD
87

.  208 patients were included in the analysis of the original study, but only 192 were 

included in these genotyping studies, due to availability of adequate DNA for analysis.  Patients 

were all adults, gave written informed consent, had IBD diagnosed by standard criteria and 

received 2mg/kg of AZA. Complete TPMT deficiency was an exclusion criterion, however none 

of these patients were encountered.  Ethical approval was obtained for both the original study 

(Guy’s Hospital Research Ethics Committee, MREC 00/1/33) and the additional 

pharmacogenetic work (Bexley and Greenwich LREC, 06/Q0707/84). 

 

2.1.2  AOX sequencing (chapter 3) 

Patients were selected from the cohort described above for more complete assessment of 

polymorphism in AOX by sequencing of the entire exomic sequence of this gene.  This was partly 

to ensure that the real-time markers were accurate, but also to check that the highlighted 

polymorphism was not linked to a second polymorphism responsible for the observed problems 

with non-response to thiopurines.  Five patients heterozygous for the SNP AOX 3404A>G by 

real-time testing and five who were wild-type for this gene were selected.  All were non-

responders to azathioprine despite therapeutic TGN levels and were wild-type for TPMT*3C and 

*3A and ITPA c.94C>A variants.  

 

2.1.3   TGN study (chapter 6) 

Patients who had TGNs measured to monitor either AZA or MP treatment were identified from 

clinical records and from the Purine Research Laboratory (PRL) database.  Only those patients 

attending the specialist IBD clinic at Guy’s and St Thomas’ NHS Foundation Trust were eligible 

for inclusion.  In a proportion of patients, multiple TGN measurements had been taken.  Patients 

receiving tioguanine or thiopurine/allopurinol co-treatment at the index TGN were excluded. In 
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each case, clinical records and laboratory results were reviewed retrospectively to record data on 

demographics, type/extent of IBD, indication for treatment, thiopurine dose and toxicity 

 

2.1.4 Azathioprine and allopurinol co-treatment 

Patients prescribed combination treatment with allopurinol and AZA or MP were identified from 

pharmacy and clinic records of co-prescription, and via TGN monitoring requests received by the 

PRL, GSTS Pathology, Guy’s and St Thomas’ NHS Foundation Trust (GSTFT), London, UK.  

Patient demographics, disease characteristics, indication for allopurinol co-treatment and clinical 

outcome were established retrospectively from electronic and paper case notes.   

2.1.4.1 Eligibility for combination therapy with azathioprine and allopurinol 

Combination treatment with thiopurine and allopurinol was considered in the following 

circumstances: 

Hepatotoxicity on thiopurine monotherapy – new abnormality of liver function tests (LFTs) 

occurring on thiopurine therapy which the treating physician attributed to the thiopurine drug.  

All patients developing hepatotoxicity were investigated for other causes of abnormal LFTs. 

Other side effects on thiopurine monotherapy.   These ADRs had to coincide with thiopurine 

therapy and resolve on ceasing the drug, and the treating physician must both attribute the ADR 

to the thiopurine and consider it severe enough to stop the thiopurine.  In cases where low doses 

of thiopurine were tolerated but side effects limited dose-escalation (and therefore clinical 

response), patients were included as sub-optimal/non-responders. 

Sub-optimal response – inability to achieve clinical remission on thiopurine monotherapy.  

Additionally, the TGN profile had to suggest either hyper-methylation (MeMP:TGN>11)  or 

under-dosing which could not be corrected due to side effects on dose-escalation.  This group 

also included patients with a historical label of non-response alongside a TPMT activity >35 

pmol/h/mgHb suggesting that they were at high risk of hyper-methylation. 

Predominant methylation only – patients with a ratio of MeMP:TGN>11 but not currently 

experiencing a loss of response or toxicity. 

High pre-treatment TPMT activity – patients with a TPMT greater than 35 pmol/h/mgHb have 

previously been demonstrated to be at high risk of non-response
87

 and were considered for 

combination treatment with allopurinol as first line thiopurine therapy. 
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2.2  Determination of response 

In all of the studies, determination of response to thiopurines was a key measure of outcome.  The 

methods used for this in each section of the study are detailed below. 

2.2.1  Genotyping studies (chapters 3 & 4) 

Response was defined according to each patient’s stated treatment goal.  This was most 

commonly steroid withdrawal, which was defined as withdrawal of steroid treatment by 3 months 

and maintenance, steroid-free, for a further 3 months.  If AZA was started for maintenance of 

remission, then remission had to be maintained for at least 6 months for treatment to be 

considered successful.  Remission of active disease was recorded prospectively and defined by 

Harvey-Bradshaw index or Truelove and Witts criteria.  Any patient who required escalation of 

treatment, either to surgery or a biologic agent, and any who required addition of, or switch to, an 

alternative immunomodulator was considered to have experienced treatment failure.  Adverse 

drug reactions were included only if they resulted in cessation of the AZA or MP treatment. 

2.2.2  TGN study (chapter 6) 

Clinical response was established retrospectively from review of the notes and electronic patient 

records.  In addition to the assessment of the treating physician, (considered a soft measure, 

particularly when determined in retrospect from the clinical records) steroid-free remission rates 

at 6 months from index TGN were recorded for all those patients in whom the TGN result 

dictated optimisation of thiopurine therapy (rather than recourse to surgery or biologic).  

 

Any documentation of a change in management based on the TGN level was noted and outcomes 

were analysed according to whether the management decisions made in clinic were appropriate 

(according to the TGN result) or at odds with what the TGN result would suggest.   

 

Assessment of non-response to thiopurines is a key indication for TGN measurement. Therefore, 

a separate analysis of the impact of the TGN results on the management of non-responders was 

made.  Patients were only included in this analysis if it was clear from the documentation at the 

time of the initial TGN test that it had been ordered to establish the cause for clinical non-

response. 
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2.2.3   Azathioprine / allopurinol co-treatment 

The primary outcome measure for this part of the work was successful circumvention of the 

problem encountered on thiopurine monotherapy. In some cases this was a failure to achieve 

clinical remission, but in the majority was drug intolerance, normalisation of LFTs or 

normalisation of the thiopurine metabolite profile.  Our primary outcomes could therefore be 

obtained objectively from biochemistry results for the majority of patients. 

 

In order to confirm that combination therapy was effective in achieving good clinical outcomes in 

all patients, clinical remission rates for the whole group were also calculated as a secondary 

endpoint.  Due to the nature of the study, this was a retrospective analysis and formal clinical 

disease activity measures (Harvey-Bradshaw Index [HBI], Simple Colitis Activity Index [SCAI] 

etc.) were not generally available.  Clinical response was therefore assessed at one year of 

combination treatment on the basis of the treating physician’s global assessment, as determined 

retrospectively from clinic records.  Whilst this measure could be rather subjective, the use of 

steroids, biologics or surgery (much harder measures) was interpreted as an indication of 

treatment failure. Patients who had been on treatment for long enough to assess outcome (greater 

than 4 months) but not yet for one year were included in a secondary analysis.   

 

Adverse Drug Reactions (ADRs) were defined as any adverse event occurring on combination 

therapy which was both severe enough to require the cessation of combination treatment and 

which was considered to relate to combination therapy by the treating physician. 
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2.3   Genotyping Studies: laboratory methods 

2.3.1. SNP selection 

Known coding region SNPs in XDH, MOCOS and AOX1 with a Caucasian minor allele 

frequency of at least 0.02 were selected for genotyping.  SNPs that encoded a non-conservative 

change in amino-acid were preferred. 

 

 

 

Table 2.1: SNPs selected for analysis in AOX, XDH &MOCOS including predicted minor allele frequencies in 

the Caucasiasn population  

 

rs number Gene Exon cDNA base 

change 

Amino-acid 

substitution 

Frequency 

rs2295475 XDH 2p23.1a 21 2211C>T Ile737Ile 0.31 

rs1884725 XDH 2p23.1a 27 3030C>T Phe1010Phe 0.23 

rs4407290 XDH 2p23.1a 10 837C>T Val279Val 0.02 

rs207440 XDH 2p23.1a 34 3717G>A Glu1239Glu 0.06 

rs17011368 XDH 2p23.1a 20 2107A>G Ile703Val 0.05 

rs17323225 XDH 2p23.1a 18 1936A>G Ile646Val 0.05 

rs59445 MOCOS 18q12.2a 11 2107A>C Asn703His 0.34 

rs623053 MOCOS 18q12.2a 4 509T>C Ile170Thr 0.03 

rs678560 MOCOS 18q12.2a 6 1072A>G Met358Val 0.03 

rs1057251 MOCOS 18q12.2a 15 2600T>G Val867Ala 0.10 

rs3744900 MOCOS 18q12.2a 4 359G>A Ser120Asn 0.03 

rs55754655 AOX 2q33.1e 30 3404A>G Asn1135Ser 0.16 

C – cytosine, T – thymine, G – guanine, A – adenine.  Ile – isoleucine, Phe – phenylalanine, Val – valine, Glu – 

glutamate, Asn – asparagine, His – histidine, Thr – threonine, Met – methionine, Ala - alanine.   
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In ABCB4 there was one reported common non-synonymous coding SNP and 2 common 

synonymous SNPs with proposed functionality in other contexts
326

 which we selected for 

analysis.  In ABCB5 modelling has proposed 4 key polymorphism sites for drug resistance
258

, of 

these only 3 are common in the Caucasian population, and were selected for analysis.   

 

Table 2.2 Details of the SNPs in ABCB4 and ABCB5 which were selected for pharmacogenetic analysis 

including minor allele frequencies in the Caucasian population. 

rs number Gene Exon Base 

change  

Amino acid 

change 

Minor allele 

frequency 

Frequency in 

our 

population 

rs2302387 ABCB4 4 175C>T  Leu59Leu 0.11-0.21 0.15 

rs2109505  ABCB4 8 711A>T  Ile237Ile 0.14-0.27 0.18 

rs8187799  ABCB4 16 1954A>G  Arg652Gly  0.04-0.14  0.08 

rs34603556  ABCB5 4 2T>C  Met1Thr 0.2-0.34 0.2 

rs2301641  ABCB5 5 343A>G  Lys115Glu 0.27-0.43  0.26 

rs6461515  ABCB5 15 1573G>A  Glu525Lys  0.12-0.17  0.16 

C – cytosine, T – thymine, G – guanine, A – adenine.  Leu- leucine, Ile – isoleucine, Arg- arginine, Gly – 

glycine, Glu – glutamate,  Thr – threonine, Met – methionine, Lys – lysine.   

 

2.3.2 DNA extraction: 

DNA extraction had already been performed as part of the original study
87

.  However, additional 

DNA extractions were necessary from some patient samples, to obtain sufficient DNA for study. 

DNA was extracted from EDTA whole blood samples using the QIAmp DNA Mini Kit (Qiagen 

Ltd. Crawley, UK).  Briefly, protease and buffer AL were added to 200 µl whole blood. This 

mixture was vortexed and incubated at 56°C for 10 min.  200µl of 100% ethanol was added, the 

mixture was vortexed again and transferred to a spin column from the above DNA extraction kit, 

within a 2ml collection tube and centrifuged at 8000g for 1 min.  The column was then washed to 

remove contaminants and transferred to a clean collection tube in which the DNA was eluted 

using 200µl of buffer AE from the QIAmp kit and a further centrifuge at 8000g for 1 min.  In the 

experience of the laboratory, this method produces 6µg of total DNA in 20-30kb lengths from 
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200µl of whole blood.  The extracted DNA was mixed with 50µl of tris-EDTA (x1 mixture) to 

inhibit DNAases and stored in a freezer at -20°C. 

 

2.3.3   Real-time PCR genotyping 

Patients were genotyped by real-time PCR using a Biorad Miniopticon (Biorad, Hemel 

Hempstead, UK).  1.8µl of DNA was mixed with Absolute QPCR Mix (Abgene, Epsom, UK) 

and the selected TaqMan® SNP genotyping assays (Applied Biosystems, Warrington, UK).  The 

reaction mixture was made up to a volume of 10µl with DNA-free water.  SNP probe details are 

shown in Table 3.1.  PCR conditions were 15 min enzyme activation at 95°C, then 42 cycles of:  

denaturation (15 s at 95°C) and anneal/extension (1 min at 60°C).  

 

 

Figure 2.1  Example of a real-time trace from a wild-type individual 
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Figure 2.2  Example of a real time trace from a heterozygous carrier  
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2.3.4   Statistical Analysis 

Genotypes for each SNP were tested for departure from Hardy-Weinberg equilibrium and the 

frequency in the study population compared to those published for Caucasian individuals in 

dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/).  Dominant and recessive models were used 

to test for association between the SNP minor allele and clinical outcome (adverse drug reaction 

or clinical response). Chi square tests or Fisher’s Exact tests were used to test for differences 

between groups in a 2x2 contingency table using Instat version 3.0a for Macintosh (Graphpad 

Software, San Diego, CA, USA www.graphpad.com).  Chi square test for trend was used for 

2x2x2 contingency tables.  An unpaired Student’s t-test was used to assess difference in means.  

No correction for multiple testing was applied.  Haplotype analysis was performed in XDH and 

MOCOS using UNPHASED
327

. 

 

 

2.4  Sequencing the Aldehyde Oxidase Gene in non-responders to 

azathioprine 

2.4.1 Primers: 

For AOX sequencing, primers for each exon were designed using the web-based tool primer3 

(http://frodo.wi.mit.edu/) and synthesised by MWG Biotech, (London, UK).  The primer 

sequences are shown in Table 2.3.   
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Table 2.3:  Primers used to amplify and sequence AOX exons. 

Exon forward primer reverse primer 

1 5’-AGCTCAGGAACGTTGGATCTTA-3’ 5’-AGGAAAGGGGACATAAGGAAG-3’ 

2 5’- GGTGGGGCTCAAGATTACAC-3’ 5’- GTTCTTCTGACGGCCACATT-3’ 

3 5’-GTTGTTTTCAAAGGGAGAATGC-3’ 5’AGGACCATGTCTGTCTTGTTCA-3’ 

4 5’-TCACTCTGATCCTCAGATTCCA-3’ 5’-ATATGCCAGGCTTCACTCTTGT-3’ 

5 5’-GCCTTAAGTGAAGCTCAAAAGC-3’ 5’-GCACAAGAATTGCTTGAACCT-3’ 

6 5’-TGTCACAAGCAGAAGGCATAAC-3’ 5’-GCCCTGCTCAAGATCAAATAAC-3’ 

7 5’-TAATGCTATGTGCCACGCTTAG-3’ 5’-AGATGGAGTGAGAATGGGAGAG-3’ 

8 5’-TTTGTGTTAGAGCCCTTGGTTT-3’ 5’-TCCTCCTCCTCTTCCTTAGTCC-3’ 

9 5’-TCTTTGAGACAAGAGCACCAAA-3’ 5’-GACTGCTTTTCCTGAGAACACA-3’ 

10 5’-CCAGCCATTCTCTCTGTATGTG-3’ 5’-AATGGGCAAAGGATATGAACAG-3’ 

11/12 5’-TGGACATTTTCAGATCAGCAGT-3’ 5’-TTCCAGTATCCAGAAAAGCAGA-3’ 

13 5’-GAAGCATAGGAAGAGCACCTGT-3’ 5’-ATAGGGGCATGCGTAATACAAG-3’ 

14 5’-ACATACACATACCGTCCAGCAC-3’ 5’-TCCCAGCCATTAAATAGAAAGGT-3’ 

15 5’-TGCCTGATCCAGAGCTTGTACT-3’ 5’-AAACTCATACCCACCCACAGAC-3’ 

16 5’-CTGGTGGAAGCCAGTTACCTAC-3’ 5’-CCCATAAAGAGGCTGTGAGTTT-3’ 

17/18 5’CAGCCCAATAGTGCTTTTTCATA-3’ 5’-TGAAGCACCGTTAACTGAGAAA-3’ 

19 5’-GAGGCCAGCTGTGGTTATAGTC-3’ 5’-AGCAGAGAAGAGTGGCAAAAAG-3’ 

20 5’-TTACATTTCCTCACTGGGGAGT-3’ 5’-AGGGAAACACATTTGTGAATGA-3’ 

21 5’-GGCAGACACAAAAGATTCTCCT-3’ 5’-GAGTGCAGTGGTGTGATCATAGA-3’ 

22 5’-GGTTGTTGGACATTATCCCATT-3’ 5’-GCAGCTTGTTTGTGTGTTTGTA-3’ 

23 5’-TGGCATTATTCCCTGACCTAAC-3’ 5’-CTAAGCAGAAAAGCCTCCATTG-3’ 

24 5’-TGGTTACACAGCTTGCCTAAGA-3’ 5’-TGTGTGCATCTAGGAAAAGAGC-3’ 

25 5’-TGGTTTTGGTCTGAGGTCGTAG-3’ 5’-CAGTCCTCAGGATCTTCTGCTT-3’ 

26 5’-TGAATGGATGAGCCTATGTCTG-3’ 5’-GCTCTGGTCTCCTCTGGAGTAA-3’ 

27 5’-CACCCCAAAAAGAAACCTAAAA-3’ 5’-CTGGTCTCGAACTCCTTCACTT-3’ 

28 5’-AAGAAACTTTTCATGGCTGGAG-3’ 5’-GGAGTGAGGGAGAAAAAGAGGT-3’ 

29 5’-AGGCCAGTTCTCTCTCTCACAC-3’ 5’-ACAAGAGTTCCTCCACCACACT-3’ 

30 5’-AGGTGCTGAACAAACAGCTACA-3’ 5’-CCACAACCATGGATTAACTAGC-3’ 

31 5’-GAGGCACCAGTCAGGAGTAGTT-3’ 5’-TCTGGTAATCCAGGGAAATCAC-3’ 

32 5’-TCTGTTGCATCATACAGCTTGA-3’ 5’-ATTTGAGCTCTGCAGTTGGTCT-3’ 

33 5’-AAAATTCAAGCAAACAGCATGA-3’ 5’-CAATCCTGGTAAAAATCCCAAA-3’ 

34 5’-GAGGTTGCAGTGAGCTGAGATT-3’ 5’-AGTGCGTTCACGAAAACTTACC-3’ 

35 5’-AGATGATAACCCCAGGACCTCT-3’ 5’-GACGGATATCACCCTAGAGGAA-3’ 
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2.4.2 PCR 

The primers were diluted to a concentration of 50pmol/µl and then 1µl of each primer for the 

exon under investigation was included in a 100µl per reaction master mix.  This master mix 

contained (per 100µl reaction) 10µl of 10x PCR buffer, 6µl of 25mM MgCl2, 4µl of 5mM 

deoxyNTP mixture and 0.5µl of 5U/µl Taq DNA polymerase, the volume was made up to 100µl 

with sterile deionised water.  Finally, 2µl of the selected patients’ DNA was added.  PCR 

conditions were 1 minute denaturation at 94°C then 35 cycles of: 45 s denaturation at 94°C, then 

30 s annealing at 54°C and 50 s extension at 72°C.  When 35 cycles were complete an extension 

phase of 5 min was added to ensure all strands had reached the full required length. A template 

control was included in each PCR run for each set of primers to check for contamination. 

 

Where initial attempts at polymerisation failed, various strategies were attempted to optimise the 

PCR reaction.  These included altering the annealing temperature of the PCR reaction, the 

addition of 5% dimethylsulfoxide (DMSO) to the master mix and the use of a hot-start Taq 

polymerase. 

 

Once the PCR reaction was complete, 10µl of the PCR product was mixed with loading buffer 

(bromophenol blue, xylene cyanol and sucrose) and PCR fragments separated on a 2% agarose 

gel containing ethidium bromide. Fragments were sized relative to a 100 bp DNA ladder.  The 

gels were then visualised under ultraviolet light to ensure that PCR had been successful, before 

any further work was done on the reaction products. 
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2.4.3   PCR Product Purification: 

Where the checking gels confirmed a successful PCR reaction, the remaining 90µl of PCR 

product was then purified to remove unincorporated nucleotides and primers using QIAquick 

PCR clean-up kit according to the manufacturer’s instructions (Qiagen Ltd. Crawley, UK).  

Briefly the 90µl of remaining PCR product was added to a QIAgen spin column with 500µl 

buffer PBI. This mixture was then centrifuged at 12000 g for 30 s to adsorb the DNA onto the 

column matrix.  After two washing steps using 750µl buffer PE, the columns were spun for one 

minute to dry them before being transferred to clean collection tubes.  30µl of elution buffer 

(10mM Tris-Cl, pH 8.5) was added to each column and these were then re-centrifuged for 1 min 

at 12000 g.  The resultant purified DNA was transferred to a clean tube sealed and frozen at -

20°C until required. 

 

2.4.4  Sequencing: 

The purified PCR products were then sequenced using Beckman Coulter Dye Terminator 

Sequencing Kit, (Fullerton, CA, USA), according to the manufacturer’s instructions.  Briefly, 4µl 

of Dye Terminator Cycle Sequencing (DCTS) Quick Start Master Mix was combined with 4µl of 

sequencing dilution buffer and 8µl of DNA-free de-ionised water per reaction.  Each exon was 

sequenced in both forward and reverse directions by adding 3µl of purified PCR product and 1µl 

(5 pmol) of either the forward or the reverse primer to the above mixture.  The sequencing 

protocol was: 1 minute at 94°C, then 35 cycles of (1 min at 94°C, 30 s at 48°C and 3 min at 

68°C) and finally an extension step of 10 min at 68°C. 

 

Agencourt CleanSEQ (Beckman-Coulter) was used to remove unincorporated dye terminators 

from the sequencing reaction. Briefly, the products of the sequencing reaction were bound to 

paramagnetic particles in the presence of 62µl of 80% ethanol.  The tubes were then transferred 

to a ring magnet plate which pulls the particles with attached DNA to the edge of the tube.  The 

beads were then repeatedly washed with 80% ethanol and then left to dry.  Finally, 30µl of 

formamide was added to each tube and the tubes removed from the magnetic plate and frozen at -

40°C until run on a Beckman capillary sequencer.   
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The sequences were analysed using Chromas (http://technelysium.com.au) and Mutation 

Surveyor (Biogen, Kimbolton, UK)   

 

These sequences were examined for any polymorphism and compared to the reference sequences 

obtained from the NCBI website (http://www.ncbi.nlm.nih.gov/sites/entrez?db=Nucleotide, 

cDNA:BC117179, genomic DNA:  AC007163). 

 

 

 

 

 

 
 
Figure 2.3  A sample of the sequence obtained for aldehyde oxidase in the middle frame.   

The reference sequence is shown in the top frame of the Mutation Surveyor display and the lower 

frame contains analysis of the difference between these two traces - the green line indicates the 

threshold for significant deviation and therefore the possible presence of a polymorphism / 

mutation.  
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2.5:  The impact of TGNs on clinical practice  

 

2.5.1   Measurement of TGNs and MeMP 

TGN and methylated thiopurine metabolite (MeMP) concentrations were measured as the 

hydrolysed base in whole blood in a protocol adapted from the method of Dervieux and 

Boulieu
328

 in the PRL (GSTS Pathology at St Thomas’ Hospital, London).  For clinical purposes, 

the PRL uses the therapeutic range 200-400 pmol/8x108RBC for TGNs.   

 

Briefly this method comprises: blood samples were collected into EDTA tubes, with erythrocyte 

counts obtained from each sample, so that drug concentrations could be normalised to 8x10
8
 

RBCs.  After this analysis, 0.5 mL of blood was transferred into a micofuge tube. 100 µl of 

dithiothreitol (DTT) 100 mg/ml was added and the sample rapidly deproteinised using  250 µl of 

15% perchloric acid. The deproteinised samples were then centrifuged at 12000xg for 2 min. The 

supernatants was transferred to a screw cap microfuge tube and heated for 1 h at 100°C to 

hydrolyse all the thiopurine nucleotides to their bases.  After cooling, 2µl is then injected onto a 

Waters UPLC-reverse phase system with an Acquity column (C18, size 2.1x100 mm, 1.7 µm).   

TGNs and MeMP were analysed simultaneously, and detected at 341 nm and 304 nm 

respectively by retention time and maximal absorbance. 

 

2.6 Co-treatment with allopurinol and azathioprine 

2.6.1   Thiopurine dosing and monitoring on combination treatment 

TPMT activity, TGN and MeMP levels were measured by the PRL, with TPMT activity 

measured in all patients prior to first thiopurine prescription.  TPMT activity in the range 11-

25pmol/h/mgHb was considered intermediate (representing heterozygous deficiency with a target 

single agent AZA dose of 1-1.5mg/kg) whilst activity >25pmol/h/mgHb was considered to 

represent normal TPMT metabolism (with a target single agent AZA dose of 2-2.5mg/kg).  Table 

2.4 documents the dosing protocol for combination treatment according to TPMT result.  

Allopurinol was given at 100mg per day.  Those patients with TPMT activity >35pmol/h/mgHb 

were considered to be at high risk of predominant methylation and were considered for primary 

therapy with combination AZA and allopurinol.  
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Blood monitoring following thiopurine initiation was undertaken in a standard manner and 

consisted of FBC and LFT testing at weeks 2, 4, 8 and 12 after initiation of combination therapy 

and TGN/MeMP levels were assessed at 4 weeks to permit dose optimisation.  Blood monitoring 

was then undertaken every 3 months. 

 

Table 2.4:   Dosing strategy for low dose thiopurine and allopurinol 

TPMT genotype TPMT phenotype 

pmol/h/mgHb 

 

AZA dose with 

100mg Allopurinol 

MP dose with 

100mg Allopurinol 

wild-type 

 

≥26 0.5-0.8 mg/kg 0.25-0.5 mg/kg 

heterozygous 

 

11-25 0.25-0.5 mg/kg 0.125-0.25 mg/kg 

homozygous 

 

0-10 Avoid Avoid 

 

 

Blood results, particularly liver function tests, full blood counts and TGN and MeMP levels were 

compared before and after the addition of allopurinol. 

2.7 A pharmacogenetic  index to predict clinical outcome on azathioprine 

therapy 

 

Four markers considered to predict non-response to thiopurine therapy were measured in the 

same prospectively recruited cohort of patients starting therapy with azathioprine for their IBD.  

These markers were: TPMT > 35 pmol/h/mgHb, AOX1 3404G, ABCB5 c.343A>G and the 

presence of the insertion allele for sHLA-G.  High TPMT activity has been established in the 

literature as a cause on non-response to thiopurines.  AOX1 3404G and ABCB5 c.343A>G were 

found, in the above work, to be associated with non-response to thiopurines. Finally, the presence 

of the insertion allele for sHLA-G has also been found to predict non-respone in parallel work by 

a colleague in the PRL. 
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2.7.1 Methods used to determine presence of the insertion/deletion HLA-G 

polymorphism  

 

HLA-G genotyping was done by Dr B. Baburajan and is included here for completeness.  

 

The presence of the 14bp insertion/deletion in HLA-G exon 8 3’untranslated region was 

established using fluorescent PCR and size-based allelic discrimination using capillary 

electrophoresis on an ABI sequencer. Briefly, venous blood was collected in EDTA tubes and 

genomic DNA isolated using standard techniques.  The primers:  5KBHLAG, 5′-

AGCTTCACAAGAATGAGGTGGAGC-3′ and  

PROHLAG3, 5′-AATGAGTCCGGGTGGGTGAGCGA-3′ 

were used to amplify the HLA-G gene.  The reaction mixture included recombinant Taq DNA 

polymerase recombinant (Invitrogen Ltd, Paisley, UK), 0.5 µM of each primer, 2 µg of genomic 

DNA reaction buffer (Roche, Basel, Switzerland) 1×; each deoxynucleoside triphosphate (Roche) 

0.2 mmol/l & MgCl2 (Roche) 1.5 mmol/l.   The thermo-cycling conditions were 94°C for 2 min, 

25 cycles of 94°C for 30 s, 64°C for 60 s, and 72°C for 2 min, followed by 72°C for 10 min. The 

amplified products were visualized by electrophoresis on a 2.5% agarose gel (Invitrogen, Paisley, 

Scotland, UK) containing ethidium bromide (0.5 µg/ml) 

 

The details of the pharmacogenetic work which lead to the identification of additional markers is 

described in chapters 3 and 4.  This information has been collated to establish whether measuring 

these additional markers allows more accurate risk stratification than measurement of TPMT 

alone. 

 

Statistics were performed using Chi-square for trend using Instat version 3.0a for Macintosh, 

(Graphpad Software, San Diego, CA, USA www.graphpad.com).   

 

2.8  Statistical Methods Used 
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The majority of the statistics used in this thesis involved the analysis of 2x2 contingency tables 

containing data about categorical values (generally the presence or absence of a particular SNP 

and its relationship to outcome such as: responder or non-responder, side effects or no side-

effects).  Where sample sizes were large enough Chi-square testing was applied.  If any field in 

the contingency table contained a sample less than 5, then Fisher’s Exact Test was applied in its 

place.  This is because Chi-squared statistics produce an approximate probability, and its 

accuracy is affected by low sample sizes and very uneven distributions of the sample across the 

table.  Fisher’s Exact Test however is perfectly suited to this situation, (running into problems 

only with very large samples).  In the analysis of the pharmacogenetic index, a number of 

different SNPs were being analysed against the categorical variable: responder or non-responder.  

Since this generated larger contingency tables, Chi-square for trend was applied. In larger 

contingency tables chi-square is thought to be applicable so long as 80% of the fields are 

expected to have more than 5 units in them.  There is an extension to the Fisher’s Exact Test 

which can be applied to larger contingency tables (the Freeman-Halton extension) but this again 

struggles with larger sample numbers and cannot be used at all if the total number of data points 

in the table is 120 or more. 

 

In the analysis of blood count variables and TGNs the unpaired Student’s t-test was used to 

compare means.  This tests whether a normally-distributed variable such as mean cell volume 

differs between two populations.  The unpaired t-test was used as we were comparing 2 different 

populations (rather than the same population under different conditions).  If the data-sets failed 

the normality test then they were instead compared using Wilcoxon-Rank testing.  Where the 

means of more than 2 sets were compared ANOVA (analysis of variance) was applied, again this 

is only applicable if the samples are normally distributed, where the data set failed the normality 

test then Kruskal-Wallis Testing was used in its place.  These 2 tests are reported as significant if 

a difference is detected between any of the analysed groups.  For example these tests reported 

that there was a significant difference in MCV according to TGN level, but on further analysis it 

was seen that the significant difference was only when those patients that were completely non-

adherent were compared with those who were over-dosed on thiopurines. 
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Statistical analysis was performed using Instat version 3.0a for Macintosh, (Graphpad Software, 

San Diego, CA, USA www.graphpad.com).  Haplotype analysis was performed using 

UNPHASED
327

.  This analysis was performed by Dr Cathryn Lewis in the Genetics group at 

King’s College London. 
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Chapter Three:  The role of polymorphism in XDH, MOCOS and 

AOX1 as pharmacogenetic markers of clinical response to 

azathioprine treatment in inflammatory bowel disease 
 

3.1   Introduction 

 

According to the accepted model, three metabolic pathways compete to metabolise MP.  Firstly 

the purine salvage pathway, beginning with hypoxanthine-guanine phosphoribosyltransferase, 

(HGPRT) which produces the desired end-product of thiopurine metabolism, thioguanine 

nucleotides, (TGNs) and secondly, two enzymes which compete against this process in order to 

inactivate MP: thiopurine methyltransferase (TPMT) and xanthine oxidase/dehydrogenase 

(XDH).  These pathways compete indirectly, XDH being primarily responsible for first pass 

metabolism in the gut and liver.  TPMT has been the subject of extensive pharmacogenetic study 

and is known to have pharmacogenetic importance in thiopurine therapy, see chapter 1. However, 

whilst inter-individual variability in XDH is also thought to contribute to variability in response 

to thiopurines, little work has been done to elucidate this relationship. 

 

Alongside its key position in the purine salvage pathway, there are additional reasons to suppose 

that polymorphism of XDH could be relevant to clinical outcome on thiopurines.  Blocking XDH 

activity (using the drug allopurinol) causes severe toxicity with standard-dose thiopurines, 

highlighting the important contribution of XDH to thiopurine catabolism.  Also, genetic 

polymorphism in XDH is common, has functional consequences for the efficiency of the enzyme 

produced(23) and can influence azathioprine metabolite levels(24).   

 

Molybdenum cofactor (MOCO) is a prerequisite for the action of XDH, aldehyde oxidase (AOX) 

and sulphite oxidase.  MOCO deficiency is rapidly fatal due to the loss of sulphite oxidase 

activity(31), however, MOCO is further adapted (from the essential form required by sulphite 

oxidase) for use with XDH and AOX, by the enzyme molybdenum cofactor sulfurase (MOCOS).  

MOCOS deficiency (which has no effect on sulphite oxidase but creates deficiency of both XDH 

and AOX), is relatively benign, being associated only with a minor predisposition to the 
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development of renal calculi(32).  The MOCOS gene is also subject to genetic polymorphism 

with the potential to affect its activity.  Problems with the production of MOCO would have a 

knock-on effect on XDH and AOX activity and therefore also have the potential to influence the 

efficiency of AZA metabolism. 

 

AOX is rarely mentioned in discussion of thiopurine metabolism but it has been shown to act on 

AZA, MP and their metabolites, contributing to thiopurine catabolism(18;34;37), (figure 1.2).  

The metabolites AOX produces have been the subject of very little study and their importance is 

not known.  AOX occurs as a single isoform in humans, is widely distributed and has a broad 

range of substrates(33-35) suggesting a more extensive role than its known contribution to purine 

catabolism(36).  Inter-individual variability in AOX activity has been documented(38;39), but the 

role of genetic polymorphism in this variability has not yet been established. 

 

The work presented in this chapter seeks links between clinical outcome and genetic 

polymorphism in XDH, MOCOS and AOX in a well-defined prospective cohort of patients 

receiving AZA for IBD. It also includes the results of sequencing the exomic sequence of AOX 

in a subset of patients, to confirm the validity of the PCR method and seek linked polymorphism.  

. 

3.2   Methods  

 

Samples originated from a prospective study of the pharmacogenetics of AZA in the treatment of 

IBD
87

.  208 patients were included in the analysis of the original study, but only 192 were 

included in these genotyping studies, due to availability of adequate DNA for analysis.  Patients 

all received 2mg/kg of AZA. Complete TPMT deficiency was an exclusion criterion, however 

none of these patients were encountered.  Response was defined according to each patient’s 

stated treatment goal.  This was most commonly steroid withdrawal, which was defined as 

withdrawal of steroid treatment by 3 months and maintenance, steroid-free, for a further 3 

months.  If AZA was started for maintenance of remission, then remission had to be maintained 

for at least 6 months for treatment to be considered successful.  Remission of active disease was 

defined by Harvey-Bradshaw index or Truelove and Witts criteria.  Any patient that required 

escalation of treatment, either to surgery, biologic or alternative immunomodulator, was 
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considered to have experienced treatment failure.  Adverse drug reactions were included only if 

they resulted in cessation of AZA treatment.   

 

Known coding region SNPs in XDH, MOCOS and AOX1 with a Caucasian minor allele 

frequency of at least 0.02 were selected for genotyping.  SNPs that encoded a non-conservative 

change in amino-acid were preferred.  For details of the SNPs selected see Methods.  Patients 

were genotyped by real-time PCR using a Biorad Miniopticon (Biorad, Hemel Hempstead, UK).  

For details of the PCR protocol see Methods. 

 

A subgroup of patients was selected from the cohort described above for more complete 

assessment of polymorphism in AOX by sequencing of the entire exomic sequence of this gene.  

Five patients heterozygous for the SNP AOX 3404A>G by real-time testing and five who were 

wild-type for this gene were selected.  All were non-responders to azathioprine despite 

therapeutic TGN levels and were wild-type for TPMT*3C and *3A and ITPA c.94C>A variants.  

Details of the methods used for this sequencing are detailed above in the methods chapter 2.4. 

 

3.2.1   Statistical Analysis 

Details of the statistical analysis can be seen in the methods chapter above, section 2.8. 

3.3   Results 

 

192 patients were included in this pharmacogenetic analysis. The mean age was 39 years, (range 

16-84) and 80 (42%) were male, 178 (93%) were Caucasian. 105 (55%) had Crohn’s disease 

(CD), 86 (45%) ulcerative colitis (UC) and 1 had IBD-unclassified.  There was a high rate of 

withdrawal due to ADRs: 77 of 192 (40%) patients. However, in those completing 6 months of 

treatment per protocol, clinical response rate (defined by indication, see above) was 71/115 

(62%). 

 

SNP genotyping was successful in greater than 99% of cases.  All genotypes were in Hardy-

Weinberg equilibrium and the allele frequencies measured in our cohort were similar to those 

reported in SNP databases, see table 3.1.  SNPs MOCOS c.509T>C, c.1072A>G and c.359G>A 
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were linked.  SNPs c.509T>C and c.1072A>G in absolute linkage disequilibrium (r
2
=1, HapMap 

data), with both minor alleles occurring together, the linkage to SNP c.359G>A had an r
2
 of 0.89 

(HapMap data). These SNPs were therefore analysed together against outcome.  

 

3.3.1  XDH and MOCOS 

The relationship between genotype and clinical outcome (response and ADRs) is summarised in 

Table 3.2.  The XDH 837T variant appeared to protect against the occurrence of ADRs although, 

whilst statistically significant, the association was weak (p=0.048, OR 0.23, 95% CI 0.05-1.05).  

This appeared to be due to an under-representation of atypical side effects (headache, flu-like 

symptoms / myalgia, rash, etc.) although this additional analysis just failed to reach statistical 

significance (p=0.07), perhaps due to the rarity of the XDH 837T SNP.   

 

A similar protective effect was documented with the MOCOS 2107C variant, although again, this 

just failed to reach significance (p=0.058 in a recessive model, p=0.13 in a dominant model, OR 

0.64, 95%CI 0.36-1.15).  Removing those side effects which were already accounted for by 

TPMT polymorphism from the analysis strengthened the association between SNP MOCOS 

2107A>C and protection against side effects, but this still just failed to reach significance 

(p=0.078 under a dominant model). 

 

Patients with the haplotype of both protective variants (MOCOS c.2107A>C and XDH c.837C>T) 

did not experience ADRs [n=7, p=0.019 (Chi-square for trend)].   

 

Restriction of the analysis to the Caucasian population had a minor impact on the significance of 

these associations (XDH 837T variant and ADRs p=0.08, OR 0.26, 95%CI 0.06-1.22, MOCOS 

2107C variant and ADRs p=0.056 in recessive model, OR 0.26, 95%CI 0.36-1.20).  Using 

haplotypes across all markers genotyped in MOCOS and XDH did not increase the signal strength 

(p= 0.23 and 0.24, respectively). 

 

There was no relationship seen between XDH or MOCOS genotype and successful outcomes on 

thiopurine therapy. 
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Table 3.1:  Gene frequencies in our cohort compared with reported frequencies in SNP databases 

(http://www.ncbi.nlm.nih.gov/SNP ) 

 

SNP Expected frequency Documented frequency 

XDH 2211C>T 0.31 0.25 

XDH 3030C>T 0.23 0.23 

XDH 837C>T 0.02 0.04 

XDH 3717G>A 0.06 0.06 

XDH 2107A>G 0.05 0.08 

XDH 1936A>G 0.05 0.08 

MOCOS 2107A>C 0.34 0.29 

MOCOS 509T>C 0.03 0.06 

MOCOS 1072A>G 0.03 0.06 

MOCOS 2600T>G 0.10 0.10 

MOCOS 359G>A 0.03 0.05 

AOX 3404A>G 0.16 0.12 
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3.3.2  AOX1 

 

The AOX1 3404G variant was associated with a lack of clinical response to AZA (p=0.035, OR 

2.54, 95%CI 1.06-6.13, unchanged by excluding non-Caucasians p=0.036).  The strength of this 

association was increased by excluding patients who were non-adherent to thiopurine treatment 

according to TGN level [p=0.012, (OR 6.94, 95%CI 1.58-30.43)].  TGN levels and TPMT 

activity were similar in those with and without the SNP (p=0.46, and p=0.44 respectively) and 

could not therefore account for this difference.   

 

The AOX1 3404G variant did not predict the occurrence of ADRs. 

 

3.3.3  Sequencing of AOX 

The commercial real-time SNP assay was 100% accurate for the presence or absence of the SNP 

AOX c.3404A>G.  No additional or linked polymorphism was detected in the exons of AOX1.   
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Table 3.2:  The association between the selected SNPs in XDH, MOCOS & AOX and treatment outcome.   

Responders are those defined as having a complete response (CR-therapeutic target reached with no steroid therapy, 

NR – therapeutic target not reached or alternative drug / surgery required to achieve it) and adverse drug reactions 

(ADRs) must have caused therapy to be discontinued.  Statistics have been performed using the chi-squared test with 

a dominant model, to look for clinically relevant associations.   

 

SNP CR 

with 

SNP 

(%) 

NR 

with SNP 

(%) 

p-value OR 95%CI Tolerant 

with SNP 

(%) 

ADRs 

with 

SNP 

(%) 

p-value OR 95%CI 

XDH c.837C>T 7/71 

(10) 

5/44 

(11) 

0.79 1.17 0.35-3.95 12/115 

(10) 

2/77 

(3) 

0.048 0.23 0.05-1.05 

XDH c.1936A>G 6/71 

(8) 

4/44 

(9) 

1.0 1.08 0.29-4.08 10/115 

(9) 

6/77 

(8) 

0.82 0.89 0.31-2.55 

XDH c.2107A>G 6/71 

(8) 

2/44 

(5) 

0.71 0.52 0.10-2.68 8/115 

(7) 

5/77 

(6) 

0.89 0.93 0.29-2.95 

XDH c.2211C>T 38/71 

(53) 

21/44 

(48) 

0.54 0.79 0.37-1.68 59/115 

(51) 

33/77 

(43) 

0.29 0.73 0.41-1.31 

XDH c.3030C>T 25/71 

(35) 

17/44 

(39) 

0.71 1.16 0.53-2.52 42/115 

(37) 

33/77 

(43) 

0.38 1.3 0.72-2.35 

XDH c.3717G>A 7/71 

(10) 

4/44 

(9) 

1.0 0.91 0.25-3.32 11/115 

(10) 

11/77 

(14) 

0.31 1.58 0.65-3.84 

MOCOS 

c.509T>C, 

1072A>G & 

359G>A 

13/71 

(18) 

6/44 

(14) 

0.43 0.7 0.25-2.01 19/115 

(17) 

7/77 

(9) 

0.14 0.51 0.20-1.27 

MOCOS 

c.2107A>C 

38/71 

(54) 

24/44 

(55) 

0.92 1.04 0.49-2.22 62/115 

(54) 

33/77 

(43) 

0.13 
(0.058 
recessive) 

0.64 0.36-1.15 

MOCOS 

c.2600T>G 

12/71 

(17) 

10/44 

(23) 

0.43 1.45 0.57-3.70 22/115 

(19) 

18/77 

(23) 

0.47 1.29 0.64-2.61 

AOX1 c.3404A>G 12/71 

(17) 

15/44 

(34) 

0.035 2.54 1.06-6.13 27/115 

(23) 

13/77 

(17) 

0.26 0.66 0.32-1.38 

 

3.4  Discussion 

This work demonstrated that there was an association between the polymorphism AOX 3404 

A>G and non-response to thiopurine therapy.  There were also weak associations between 

polymorphism in XDH (XDH 837C>T) and MOCOS (MOCOS 2107A>C) and a reduced 

occurrence of side effects during thiopurine therapy. 

 

The prediction and avoidance of thiopurine toxicity by detection of genetic polymorphism in 

TPMT has become a classic example of the usefulness of pharmacogenetics and is one of the few 

to be widely adopted in clinical practice85.  Polymorphism in ITPA also appears to account for a 

proportion of thiopurine toxicity 
87,151,168,329,330

, although unlike TPMT, there is no clear strategy 

for circumventing this, hence ITPase measurement has not translated to clinical practice in most 
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centres. Likewise, no other putative markers proposed in the literature have been translated into 

clinical markers and the majority of thiopurine non-response and toxicity remains unexplained. 

 

If the AOX1 3404G variant adversely affects the activity of AOX, then the association between 

this SNP and lack of clinical response would suggest that AOX produces clinically active 

metabolites. 8-hydroxy-MP has been shown to be unable to slow the growth of rat sarcoma
331

, 

but no functional data is available on any of the other AZA metabolites produced by AOX and 

neither has any functional work been done on immunomodulation in IBD.  Alternatively, the 

AOX1 3404G variant could increase the activity of AOX, perhaps inactivating a high enough 

proportion of the ingested thiopurine to restrict TGN production.  Against this, TGNs were 

normal in those with the AOX1 3404G variant in our cohort, but numbers in this subgroup were 

small and the result could have been confounded by variability in TGN measurements. Higher 

AOX activity might also increase breakdown of TGNs to thiouric acid. 

 

Another mechanism by which reduced AOX activity could improve outcome on thiopurines 

relates to the order in which the available sites on the MP molecule are oxidised by AOX and 

XDH.  XDH preferentially oxidises MP at the 8-position, then at the 2-positon to form thio-uric 

acid
332

. However during normal purine catabolism, hypoxanthine is initially oxidised at the 2-

position, by XDH and AOX, to form xanthine, then at the 8 position to form uric acid. If AOX 

oxidises some MP at the 2-position first, this would form thioxanthine, a potent inhibitor of 

TPMT
191,333

 and a metabolite known to be produced in increased quantities when XDH activity is 

blocked
334,335

. Thus patients with higher AOX activity would produce more TGNs and fewer 

methylated metabolites and have an improved response on thiopurines, whilst a patient that was 

partially deficient in AOX would produce less thioxanthine and therefore more methylated 

metabolites at the expense of TGN, a metabolite pattern which is known to be associated with an 

increased risk of non-response.  The only study which has attempted to reproduce this effect of 

AOX could not demonstrate thioxanthine production
176

, but this result conflicts with the excess 

of thioxanthine found in conditions of XDH inhibition in other studies (Blaker P, personal 

communication) and more work is required in this area.  Thiouric acid, which is created from 

thioxanthine and is also hydroxylated at the 2 position, is also a TPMT inhibitor191.  It is also 



MD thesis Azathioprine in IBD Melissa Ann Smith 

86 

 

possible therefore, that reduced AOX activity could result in reduced thiouric acid levels, 

increasing TPMT activity, leading to non-response.   

 

Sequencing demonstrated that the commercial SNP assays used for the preceding chapters is an 

accurate way of establishing the presence of genetic polymorphism, specifically the AOX 

c.3404A>G SNP which was the most important finding in our analysis.  At the time this work 

was performed, the SNP AOX c.3404A>G was the only coding SNP described in AOX and it 

remains the SNP with the highest frequency in the Caucasian population.  The SNP rs3731722, 

His1297Arg, c.3890A>G, has been described since this work was completed.  With a frequency 

of 0.0833 in the Caucasian population, this would be of interest for future pharmacogenetic work.  

The other mis-sense SNPs reported to date occur too infrequently to study in a cohort of our size, 

but might be amenable to study in larger cohorts, in particular, SNP rs143935618 Ile598Asn, 

c.1793T>A  which occurs at a frequency of 0.0128 in the Caucasian population. 

 

Although the findings in this study are based on data and genetic material collected from a large 

and carefully documented prospective cohort, the association between the described XDH and 

MOCOS SNPs and protection against ADRs during AZA treatment must be interpreted with 

caution, due to the borderline significance of the findings, and confirmation should be sought in 

other cohorts. This is particularly true as XDH c.837C>T does not encode an amino acid 

substitution.  It is possible that the association is real, but that this specific SNP is not causal, but 

rather in linkage disequilibrium (LD) with another more important polymorphism.  Within a 200 

kbp region spanning from 50kbp upstream of the 5’UTR to 69kbp downstream of the 3’UTR for 

XDH HapMap contains 2 other SNPs (rs17011353 and rs17011359) in LD with SNP XDH 

c.837C>T with an r
2
>0.5.  Both of these SNPs are intronic but could be part of a regulatory or 

splicing element as seen with ITPA149.  For SNPs with a lower allele frequency the study may 

have been under-powered and numbers were not sufficient to define which side effects these 

variants are protective against.  Additionally, as the majority of subjects were Caucasian, the 

findings are of uncertain significance for individuals from other ethnic groups.   

 

It was anticipated that XDH and MOCOS SNPs would, by reducing inactivation of AZA to 6-TU, 

increase TGN production and therefore improve response or cause dose-dependent ADRs such as 
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myelotoxicity.  The association with a reduction in ADRs however, suggests that thiopurine 

metabolites produced by XDH are toxic.  A lot of work has been done in other contexts on the 

damaging effects of oxygen free radicals produced by XDH
177

, an effect confirmed for thiopurine 

metabolites in vitro
336

 and supported by the successful use of allopurinol co-prescription 

alongside low dose AZA to circumvent hepatotoxicity in some patients95. 

 

In conclusion, the study in this chapter documents the discovery of a novel pharmacogenetic 

marker of non-response to AZA, the SNP AOX1 3404G.  Polymorphism in XDH and MOCOS 

has also been demonstrated to be associated with a weak protective effect against ADRs.  Whilst 

all these findings require replication in other cohorts, as more pharmacogenetic loci which affect 

success of thiopurine therapy are identified, it may be that, rather than checking a single locus 

(TPMT) before commencing thiopurine treatment, a panel of relevant enzymes or genes could be 

assessed, aiding drug selection and dosing, and better informing our monitoring and patient 

advice, see chapter 5. 

 

 

 

 



MD thesis Azathioprine in IBD Melissa Ann Smith 

88 

 

Chapter Four:  A study of polymorphism in MDR4 and MDR5 and 

clinical outcome on azathioprine in patients with inflammatory 

bowel disease 
 

4.1  Introduction 

The MDR transporters are trans-membrane pumps which export xenobiotics from cells.  MDR1 

has been the subject of extensive clinical work, analysing its relevance to outcomes on a variety 

of drugs, particularly in cancer treatment.  However two very closely related pumps, MDR3 and 

MDR5 (encoded by the genes ABCB4 & ABCB5) have been the subject of very little research and 

their relevance to clinical outcomes is not known. 

4.2  Aims: 

To establish whether common coding SNPs in ABCB4 and ABCB5 affect treatment outcome on 

thiopurines in IBD.  

4.3   Methods: 

Samples originated from a prospective study of the pharmacogenetics of AZA in the treatment of 

IBD
87

.  208 patients were included in the analysis of the original study, but only 192 were 

included in these genotyping studies, due to availability of adequate DNA for analysis.  Patients 

were all adults, gave written informed consent, had IBD diagnosed by standard criteria and 

received 2mg/kg of AZA. Complete TPMT deficiency was an exclusion criterion, however none 

of these patients were encountered.  Ethical approval was obtained for both the original study 

(Guy’s Hospital Research Ethics Committee, MREC 00/1/33) and the additional 

pharmacogenetic work (Bexley and Greenwich LREC, 06/Q0707/84). 

 

Response was defined according to each patient’s stated treatment goal.  This was most 

commonly steroid withdrawal, which was defined as withdrawal of steroid treatment by 3 months 

and maintenance, steroid-free, for a further 3 months.  If AZA was started for maintenance of 

remission, then remission had to be maintained for at least 6 months for treatment to be 

considered successful.  Remission of active disease was defined by Harvey-Bradshaw index or 

Truelove and Witts criteria.  Any patient that required escalation of treatment, either to surgery, 
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biologic or alternative immunomodulator was considered to have experienced treatment failure.  

Adverse drug reactions were included only if they resulted in cessation of AZA treatment.   

 

In ABCB4 there was one reported common non-synonymous coding SNP and 2 common 

synonymous SNPs with proposed functionality in other contexts326 which we selected for 

analysis.  In ABCB5 modelling has proposed 4 key polymorphism sites for drug resistance
258

, of 

these only 3 are common in the Caucasian population, and they were all selected for analysis.  

Detailed information on the selected SNPs is shown in the methods chapter. 

 

DNA extraction had already been performed as part of the original study87.  However, additional 

DNA extraction was necessary from some patient samples to obtain sufficient DNA for study, see 

methods chapter above for further detail on DNA extraction methods.  Patients were genotyped 

by real-time PCR, SNP probe details are shown in Table 3.1.  More detailed methods, sample 

traces and statistical methods are included in the methods chapter above. 
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Table 4.1:  The results of testing ABCB4& ABCB5 SNPs against treatment outcome on thiopurines.   

 Data for ADRs is not shown. * denotes significant associations 

 

SNP CR with SNP 

(%) 

NR with SNP 

(%) 

P-value OR 95% CI 

ABCB4 

c.1954A>G  

10/76 

(13) 

7/45 

(16) 

0.79 1.22 0.42-3.5 

ABCB4 

c.711A>T  

26/76 

(34) 

13/43 

(30) 

0.69 0.83 0.37-1.86 

ABCB4 

c.175C>T  

21/76 

(28) 

13/43 

(30) 

0.83 1.11 0.49-2.54 

ABCB5 

c.1573G>A  

24/76 

(32) 

15/44 

(34) 

1 1.08 0.49-2.38 

ABCB5 

c.2T>C  

21/76 

(28) 

18/45 

(40) 

0.17 1.75 0.8-3.81 

ABCB5 

c.343A>G  

29/76 

(38) 

27/45 

(60) 

0.02* 2.43 1.14-5.17 
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4.4   Results: 

The variants genotyped and their association with clinical response or adverse events are shown 

in Table 4.1.  SNP ABCB5 c.343A>G was associated with a lack of clinical response to 

thiopurine treatment (p=0.02, OR 2.43, 95%CI 1.14-5.17) and was associated with lower TGNs, 

mean difference = -40 pmol/8x10
8
 RBC, 95% CI: -75.7 to -3.3, p=0.033 (unpaired Student’s t-

test, with Welch correction for unequal variance).   

 

No other SNP had a significant effect on clinical response.  No SNP had a statistically significant 

association with ADRs, although the same SNP ABCB5 c.343A>G showed a trend towards 

association with adverse events, (p=0.08, OR 1.7, 95%CI 0.96-3.03). 

 

4.5   Discussion 

The results of this study demonstrate that the SNP ABCB5 c.343A>G is associated with lower 

TGN concentrations and associated lack of response to thiopurine therapy. 

 

The role of the ABC transporters in drug-resistance is complex.  There are many proposed 

mechanisms.  Their hydrophilic pore joined to the ATP-dependent pump (which can extrude 

compounds against a concentration gradient) combine to create conditions for rapid drug 

efflux
337

.  However, these pumps are also believed to possess floppase activity
338

 which prevents 

drug entry and to create a membrane potential difference which affects drug transport.  ABC 

transporters have also been shown to have a role in cytokine release
339

 and the prevention of  cell 

differentiation and apoptosis339. 

 

There are no functional studies on ABCB4 and ABCB5 in this context and the precise 

mechanism by which polymorphism in ABCB5 would confer drug resistance is not clear.    The 

association with low TGN suggests that it is caused by efflux of AZA/MP and/or their 

metabolites from cells.  In precisely which compartment this effect is occurring is also unclear.  It 

could be a white cell phenomenon or due to extrusion from hepatic cells or total body excretion 

in the gut or kidney. 
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Recent work has suggested that the transporters responsible for the transport of thiopurines are 

actually in the ABCC subfamily of transporters
340

.  However, ABCB transporters are responsible 

for the efflux of a wide variety of compounds and relevant metabolites could still be substrates 

for these ABCB transporters.  

 

Despite the strength of using a large prospectively recruited cohort for this work, as with all 

newly identified pharmacogenetic associations, this warrants confirmation in other cohorts and a 

chance association cannot be excluded. 

 

If these associations are confirmed, it is possible that the ABCB5 c.343 genotype could be used 

alongside other markers of non-response to stratify an individual’s likelihood of responding to 

thiopurine medication. As discussed for AOX in the preceding chapter, the marker could be used 

as part of a pharmacogenetic index seeking to predict more accurately an individual’s chance of 

obtaining clinical remission on a thiopurine (see chapter 5).  This information would be clinically 

useful, allowing physicians to make personalised drug prescriptions and prompting timely review 

of the efficacy of thiopurine therapy with the ultimate goal of improved clinical outcomes. 
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Chapter Five:  A pharmacogenetic index using novel markers to 

stratify patients’ risk of non-response to single agent thiopurine 

drugs 
 

5.1   Introduction 

Pharmacogenetics is the study of the impact of variation in candidate genes, most commonly drug 

metabolising enzymes, drug transporters and receptors, on clinical outcome during drug therapy. 

In pharmacogenomics by contrast, the whole genome is mined for association with outcome on 

drug therapy, with no attempt to target genes with predicted relevance to clinical outcome on 

therapy. 

 

Both disciplines aim to improve treatment outcomes by facilitating personalised drug prescription 

based on an individual’s genetic profile.  Treatments could be modified to improve clinical 

responses or to minimise drug toxicity.  This is particularly relevant where drugs have a narrow 

therapeutic window between potentially serious toxicity and the impact of non-response.  

 

All three of these considerations are relevant to the use of thiopurines in IBD.  The use of pre-

treatment TPMT testing can prevent serious toxicity, assist tailored dosing and identify a group of 

patients for whom there is an increased risk of non-response and hepatotoxicity due to 

predominant methylation.  However, this still leaves the majority of cases of non-response to 

thiopurines and the majority of toxicities experienced unexplained.  The identification of other 

markers, which could be used alongside TPMT to improve on clinical outcome would be a major 

breakthrough in the use of thiopurine therapies. 

 

The work described in this thesis and work of my colleagues Dr Azhar Ansari and Dr Bijay 

Baburajan has identified potential markers of non-response to thiopurine therapy.  In this chapter 

I have collated all this data to present a pharmacogenetic index, using the available markers of 

non-response to stratify a patient’s chance of response to thiopurine therapy before treatment 

begins. 
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In addition to the markers considered in the preceding chapters, this analysis incorporates a 14 

base-pair insertion deletion polymorphism in the gene coding for soluble HLA-G.  This 

polymorphism has already been associated with response to methotrexate in the context of 

rheumatological disorders
283

 and was being investigated for its impact on response to both 

methotrexate and azathioprine in IBD.  HLA-G is a non-classical HLA protein, which has much 

less genetic variability than other HLA subtypes and exists at immunologically privileged sites, 

such as in the placenta, cornea, thymus
284,285

.  It inhibits both adaptive and innate immunity by 

inhibition of natural killer cells
286

, lymphocytes
287

 and dendritic cells
288

.  HLA-G has been found 

to be up-regulated in a variety of pathological states such as cancer
289

 and expression appears to 

be enhanced by some viruses as a strategy for evasion of host immunity288.  Induction of HLA-G 

is considered to be an important part of successful tolerance of transplanted organs
290

. 

 

5.2   Methods 

High TPMT activity is known to be associated with non-response to thiopurine therapy and this 

was confirmed in the prospective cohort described in the above chapters
87

.  In addition to this, the 

work described in chapters 3 & 4 above identified 2 new putative markers of non-response to 

thiopurines. 

 

Work done by a colleague (Dr Bijay Baburajan) as part of his PhD thesis, identified a fourth 

marker of non-response to thiopurines, the presence of a 14bp insertion/deletion in HLA-G exon 

8 3’untranslated region. 

 

Since all this work had been done in the same prospectively recruited cohort of patients starting 

therapy with azathioprine for their IBD, it was possible to collate all this information in order to 

establish whether, used in combination knowledge of a panel of markers of non-response allowed 

more accurate risk stratification than measurement of TPMT alone. 

 

The methods for genotyping are described above in the Methods chapter and the relevant results 

chapters (3 & 4). 

 

Details of the statistical analysis can be seen in the methods chapter above, section 2.8. 
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5.3  Results 

 

In patients with both genotype AOX1 3404G and TPMT activity >35pmol/h/mgHb only 33% 

(4/12) responded to treatment, compared to 44% (24/55) for those with either one and 86% 

(42/49) for those with two favourable markers (p<0.0001, Chi-square for trend, unaffected by 

excluding non-Caucasians).  SNP ABCB5 c.343A>G was associated with a lack of clinical 

response to thiopurine treatment (p=0.02, OR 2.43, 95%CI 1.14-5.17) and was associated with 

lower TGNs, mean difference = -40 pmol/8x108 RBC, 95% CI: -75.7 to -3.3, p=0.033 (unpaired 

Student’s t-test, with Welch correction for unequal variance).  When this marker is incorporated 

in the analysis then a further cumulative effect is demonstrated, with non-response being strongly 

associated with number of adverse predictors, p<0.0001 (Chi-square for trend). 

 

Figure 5.1 The cumulative influence of the three known pharmacogenetic markers of non-response on 

percentage complete clinical response to AZA.   

Three markers: TPMT >35 pmol/h/mgHb, AOX c.3404A>G & ABCB5 c.343A>G.  Patients classified according to 

the number of these markers which they carry. 
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When the results of the sHLA-G polymorphism is included in the place of ABCB-5, then a 

similar pattern is seen.  See figure 5.2  Interestingly, adding both ABCB-5 and sHLA-G does not 

add further discrimination with those having 3 and 4 markers of non-response faring just as 

poorly, see figure 5.3 

 

 

Figure 5.1  The accumulative influence of the three known pharmacogenetic markers of non-response on 

percentage complete clinical response to AZA.   

Percentage response plotted against the number of markers of adverse outcome each patient has.  Markers included 

are: TPMT >35 pmol/h/mgHb, AOX c.3404A>G & presence of the insertion allele for sHLA-G . 
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Figure 5.3  The accumulative influence of all four known pharmacogenetic markers of non-response on 

percentage complete clinical response to AZA.   

Percentage response plotted against the number of markers of adverse outcome each patient has.  Markers included 

are: TPMT >35 pmol/h/mgHb, AOX c.3404A>G, ABCB5 c.343A>G & presence of the insertion allele for sHLA-G 

.   

 

5.4  Discussion 

This study demonstrates that certain novel non-TPMT pharmacogenetic markers add to the 

predictive value provided by TPMT testing in terms of clinical response on thiopurine therapy.   

The markers assessed were: coding SNP AOX1 c.3404A>G, TPMT activity >35 pmol/h/mgHb, a 

14bp insertion/deletion in sHLA-G exon 8 3’untranslated region and ABCB5 c.343A>G. 

 

The chance of each individual responding to AZA treatment could be stratified to low, moderate 

or high probability according to the number of markers present.  Such stratification could be done 

prior to initiation of thiopurine therapy, in the same way in which TPMT testing is currently 

already adopted.  A low probability of response could indicate a prompt and critical review of 

treatment efficacy, with more rapid switch to an alternative immunosuppressive agent or even the 

first line use of reduced-dose azathioprine with allopurinol94 or an alternative immunomodulator 

or biologic agent.  
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Use of alternative drugs as first line treatment, however, should be approached with caution, as 

some of these markers are likely to have an impact on the efficacy of a wide range of agents.  For 

example, the sHLA-G insertion-deletion is known to also predict clinical outcome on 

methotrexate341 and AOX breaks down methotrexate, producing an inactive 7-hydroxy 

metabolite
206

, raising the possibility that AOX1 c.3404A>G could also affect response to 

methotrexate.  The impact of ABCB-5 polymorphism on other immunomodulators is completely 

unknown. 

 

Although the trends demonstrated are signficant, the numbers in each group are small, 

particularly once patients with 3 or 4 markers are analysed.  These results should be confirmed in 

other cohorts before any index would be ready for translation into clinical practice.  However, 

these results would suggest that pharmacogenetic markers do still hold promise for translation 

into clinical practice and support the idea that personalised medicine is becoming an achievable 

goal. 
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Chapter Six:  The use of thioguanine nucleotide monitoring to 

optimise clinical outcomes on thiopurine therapy in patients 

with inflammatory bowel disease  
 

6.1   Introduction 

AZA and MP remain central to the treatment of IBD, but they do not act directly but via the 

active end-product of their metabolism: thioguanine nucleotides (TGNs).  The production of 

TGNs is competed against by the production of inactive methylated metabolites (MeMP) by the 

enzyme TPMT.  TGN and MeMP levels can be easily measured in red blood cells, and 

monitoring of circulating TGNs has therefore been proposed as a way of optimising and 

individualising thiopurine treatment.   

 

By monitoring TGN levels clinicians can detect non-adherence. TGNs also correlate with 

response to thiopurine treatment
297

 and disease activity
305,342

, whilst high levels predict dose-

dependent toxicity 343,344.  This means that a therapeutic range can be established, allowing 

dosing to be optimised and individualised more effectively and detecting biochemical resistance 

(predominant methylation) 
295,296,305,343,345,346

 which can be circumvented by co-prescription of 

allopurinol (see chapter 7).  A recent paper addressing the utility of measuring TGNs in 

paediatric practice found that their use altered management in 36% of cases
299

.   

 

Haematological indices such as mean cell volume (MCV), change in MCV, white blood cell 

(WBC) and lymphocyte counts are known to be affected by thiopurine therapy.  This has led to 

the suggestion that these markers could be used to monitor treatment without the need for TGNs.  

However, although these markers correlate with TGN concentrations over large cohorts
5,307,315-

318, there is considerable inter-individual variability which restricts their application to clinical 

practice
294,299,318-320

 even when incorporated into algorithms
324,325

. 
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Figure 6.1  The metabolism of azathioprine showing the therapeutic/harmful effects of the 2 measured 

metabolites 

 
Abbreviations: 

Drugs: AZA – azathioprine, MP – mercaptopurine. 

 

Metabolites:  tIMP – thioinosine monophosphate, tXMP -  thioxanthine monophosphate, TGNs – thioguanine 

nucleotides, , tITP – thioinosine triphosphate,  

6-MeMP – 6-methylmercaptopurine, 6-Me-tIMP – 6-methyl thioinosine monophosphate, 8-OH 6-MP – 8-hydroxy 

mercaptopurine, 6TU – 6-thiouric acid 

 

Enzymes: TPMT – thiopurine methyltransferase, XDH – xanthine oxidase / dehydrogenase, AO – aldehyde oxidase, 

ITPase – inosine triphosphatase, IMPDH – inosine monophosphate dehydrogenase, HGPRT – hypoxanthine-guanine 

phosphoribosyltransferase, GMPS – guanosine monophosphate synthetase. 
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The American Gastroenterological Association advocate using TGNs to monitor thiopurine use
293

 

and British paediatric
291

 and European guidelines 
292

 support their use for patients with 

suboptimal response to thiopurine drugs.  However, many centres still manage their thiopurine 

patients without metabolite monitoring and many clinicians perceive that measuring TGNs would 

not change their practice or improve patients’ outcome. 

 

The aim of this study was to determine the impact of TGN monitoring on treatment decision 

making and clinical outcome in patients in the specialist IBD clinic at GSTT. 

6.2   Methods: 

Patients who had TGNs measured to monitor either AZA or MP treatment were identified from 

clinical records and from the Purine Research Laboratory (PRL) database.  Only those patients 

attending the specialist IBD clinic at Guy’s and St Thomas’ NHS Foundation Trust were eligible 

for inclusion.  In a proportion of patients, multiple TGN measurements had been taken.  Patients 

receiving t(h)ioguanine or thiopurine/allopurinol co-treatment at the index TGN were excluded. 

In each case, clinical records and laboratory results were reviewed retrospectively to record data 

on demographics, type/extent of IBD, indication for treatment, thiopurine dose and toxicity 

 

Clinical response was established from review of the notes and electronic patient records and in 

addition to the assessment of the treating physician, steroid-free remission rates at 6 months from 

index TGN were recorded in those patients where the TGN result dictated optimisation of 

thiopurine therapy (rather than recourse to surgery or biologic).  

 

Any documentation of a change in management based on the TGN level was noted and 

management decisions divided into those which were appropriate (according to the TGN result) 

and those which were different from that dictated by the TGN result.  Assessment of non-

response to thiopurines is a key indication for TGN measurement. Therefore, a separate analysis 

of the impact of the TGN result on the management of non-responders was made. Since full 

blood count (FBC) indices have been proposed as surrogate markers of TGN values, these were 

assessed against TGN results in order to calculate the usefulness of FBC parameters  in predicting 

TGN results using sensitivity/specificity analysis. 
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TGN and methylated thiopurine metabolite (MeMP) concentrations were measured as the 

hydrolysed base in whole blood according to the method of Dervieux and Boulieu
328

 in the PRL 

(GSTS Pathology at St Thomas’ Hospital, London).  For clinical purposes, the PRL uses the 

therapeutic range 200-400 pmol/8x10
8
RBC for TGNs.  More detailed laboratory methods are 

provided in chapter 2. 

 

Statistical analysis was performed using Instat version 3.0a for Macintosh, (Graphpad Software, 

San Diego, CA, USA www.graphpad.com).  Using Chi-square and Fisher’s Exact test, variance 

in means was tested by ANOVA where results were normally distributed, or alternatively by 

Kruskal-Wallis. 

6.3   Results: 

189 patients were identified, several of these had had multiple TGN levels measured and in total 

608 TGN results were available for analysis.  Patients’ ages ranged from 12 to 83 years, (median 

38 years), 103 were female, 134 had CD, 50 UC and 5 IBD-unclassified.  At their index TGN 

measurement, 15 patients were on concomitant biologic therapy with either infliximab or 

adalimumab.  

 

 

Figure 6.2:  Distribution of patients, according to their initial TGN levels relative to our therapeutic range of 

200-400pmol/8x108RBC.  “Zeros” are patients with no detectable TGNs or methylated metabolites. 
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Of the 189 patients, only 75 (40%) had TGN levels in the therapeutic range. 12 patients (6%) had 

zero detectable thiopurine metabolites, indicating non-adherence. 47 (25%) had sub-therapeutic 

TGNs indicating either under-dosing (n=39) or thiopurine resistance (n=8), and 55 (29%) had 

high TGN levels suggesting that their dose of thiopurine was too high. An overview of these 

index TGN results is provided in figure 6.2.   

 

TGN levels predicted response to therapy with response rates varying from 84% in those who had 

TGNs in the therapeutic range to just 18% in those with no detectable TGNs (indicating non-

adherence), see figure 6.3.  Remission rate was equivalent in those with TGNs in the range 200-

250 pmol/8x10
8
RBC (9/13) and those with TGNs in the range 350-400 pmol/8x10

8
RBC (14/17), 

confirming that the therapeutic range is appropriate (p=0.4). 

 

6.3.1   Non-adherence 

12 (6%) of patients were non-adherent at the time of their index TGN measurement with zero 

detectable TGN and MeMP levels. One of these patients had been started on a biologic at the 

same time as the thiopurine so that response to the thiopurine agent could not be accurately 

established.  Of the remaining 11 patients on thiopurine monotherapy, 9 were non-responders.  

These results allowed non-adherence to be addressed with patients, prompting useful 

conversations about the importance and safety of their therapy and allowing alternative treatment 

approaches and a time-frame for thiopurine withdrawal to be discussed.  Concerns about being on 

thiopurines at conception and during pregnancy were also raised.  Health care workers are often 

concerned about approaching patients over issues of non-adherence but, in this study, patients 

generally admitted that they were not taking their therapy and the interaction prompted by this 

was a positive one.  When all TGN measurements (not just the first on record for each patient) 

were included, 8% of results were zero, indicating variability in adherence over time.  The two 

commonest reasons for patients to discontinue their thiopurine were: starting infliximab therapy 

(4/15) and attempting to conceive (4/15). 
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6.3.2  TGN concentrations below and above the therapeutic range 

 
 

At the time of the index TGN measurement, 47/189 patients (25%) had sub-therapeutic TGN 

level, (Table 6.1). This led to 18 dose increases, (9 of which were in patients in complete 

remission) and 2 patients being switched to combination low dose AZA with allopurinol co-

therapy, due to high MeMP levels, indicating preferential methylation / biochemical resistance to 

thiopurines. 

 

55/189 patients (29%) had TGN concentrations above the upper end of therapeutic range (400 

pmol/8x108 RBC), 2 of whom had extremely high TGNs >1000 pmol/8x10
8
 RBC (Table 6.1).  In 

these patients, dose reductions were, in practice, triggered by a TGN >550 pmol/8x10
8
 RBC.  

None of the 30 patients with TGN in the range 400-550 pmol/8x108 had a dose reduction.  In 

contrast, dose reductions were made in 14/24 patients with a TGN greater than 550 

pmol/8x10
8
RBC (p=0.0001, Fisher Exact Test).  At review, 7/7 patients in remission at the time 

of dose-reduction remained in remission, one patient continued to be steroid-dependent and the 

remaining patients had additional changes in their management (e.g. starting biologic) making the 

effect of thiopurine dose-reduction impossible to analyse in isolation. 
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Figure 6.3: Percentage of patients unresponsive to thiopurine therapy in each TGN result classification: zero 

TGNs (non-adherent), low TGNs (<200pmol/8x108 RBC), therapeutic TGNs (200-400pmol/8x108 RBC) or 

high TGNs (>400pmol/8x108 RBC). 
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6.3.3   Non-responders 

 

 

53/189 patients were non-responders to thiopurine monotherapy at the time of their index TGN, 

39 (74%) of these had management decisions prompted by the TGN result.  12 incidences of non-

adherence were detected, 13 patients had a TGN-directed dose change and 3 patients were 

switched to allopurinol combination therapy on the basis of the TGN result.  An additional 4 

patients had changes made after a follow-up TGN measurement – 2 dose changes and 2 switch to 

AZA and allopurinol combination treatment.  This brings the total with a change of treatment 

directed by TGN to 43/53 (81%).  Most non-responders in whom no change was made were 

either lost to follow up or had entered remission at the time of their review.  If non-responders 

had simply had their AZA dose increased at the time of index TGN, this would have been 

appropriate for 11 patients. However, 11 non-responders with existing high TGNs would have 

been dose-escalated inappropriately, as would 8 patients with predominant methylation, meaning 

that this strategy would potentially have caused more harm than good.  In this cohort, 7/8 non-

responders with preferential methylation (by ratio) avoided dose-escalation and its associated 

complications as a result of TGN monitoring.  The one patient where dose-escalation was 

attempted despite preferential methylation developed hepatotoxicity. 11 non-responders went 

directly to a change in treatment plan including 6 undergoing surgery for stricturing disease.  

Blind dose escalation in this group could have delayed effective therapy whilst thiopurine dosing 

was altered inappropriately and then monitored for 3-4 months to await the effect of the dose 

change.   

 

Where appropriate response to the TGN result was the only change in treatment, 18/20 (90%) 

patients had an improved clinical outcome versus 7/21 (33%) where the treatment decision was 

counter to that indicated by the TGN level (p<0.001, Chi-square). If the treatment decisions 

directed purely at optimisation of thiopurine therapy (rather than an escalation to surgery or 

biologic) are considered, then where thiopurines were appropriately optimised, 14/20 patients 

were in steroid-free remission at 6 months and a further 3 patients were slowly weaning from 

long-term steroid treatment.  This compares to only 3/10 patients achieving steroid-free remission 

for whom management decisions were contrary to that indicated by the TGN result (p=0.037 or 

0.003 if slow steroid-weaners are included as treatment successes).   
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6.3.4   Methylated metabolites 

At the index TGN measurement, 21/177 (12%) adherent patients demonstrated preferential 

thiopurine methylation by ratio (MeMP/TGN >11).  5/177 had a MeMP greater than 5700 

pmol/8x108RBC (4 of these 5 also had a MeMP/TGN ratio >11).  

 

Predominant methylation, as defined by MeMP/TGN ratio >11, was associated with TGN 

concentrations below the target range (p<0.001, Chi-square) but not with clinical response to 

thiopurines (p=0.47).  Abnormal liver function tests were documented in 5/21 (24%) of patients 

with predominant methylation by ratio and 1/5 (20%) with high absolute MeMP levels (>5700 

pmol/8x10
8
RBC). 

 

2 patients could not have the clinical response to thiopurine determined in isolation from other 

treatments.  Amongst non-responders, 2/8 were switched to combination treatment with 

allopurinol (one after an inappropriate dose-increment caused abnormal liver function tests), 3 

patients went rapidly to surgery and 3 continued on thiopurine monotherapy.  In predominant 

methylators who had a good clinical response to their thiopurine at the time of their index TGN 

measurement, no action was taken in 6/11 cases.  However, in the other 5 cases, 1 patient had 

their treatment stopped, 2 had dose adjustments and 2 were switched to low dose thiopurine in 

combination with allopurinol.   
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6.3.5   Predicting TGN and clinical outcome from full blood count indices 
 

Table 6.1: Index thioguanine nucleotide concentrations and haematological indices in patients receiving 

azathioprine or mercaptopurine for the treatment of IBD.   

 

TGN 

concentration 

pmol/8x10
8
RBC 

number 

(%) 

mean MCV 

fl (range) 

mean WBC 

(range) 

 

mean lymphocyte 

count (range) 

Zero 12 (6) 89*  (74-98) 6.7  (4.9-12.4) 1.6**  (0.9-2.6) 

Low (<200) 47 (25) 93  (69-118) 6.5  (2.7-14.9) 1.3  (0.4-2.9) 

Normal (200-

400) 

75 (40) 94  (74-112) 6.7  (3.5-12.0) 1.3  (0.3-5.8) 

High (>400) 55 (29) 96* (78-105) 6.0  (2.4-14.3) 1.1** (0.2-2.1) 

Significant differences:  *p=0.03, ANOVA,  **p=0.02, Kruskal-Wallis  

 

Table 6.2:   Summary of all TGN results and full blood count indices. 

 

TGN 

concentration 

pmol/8x10
8
RBC 

number 

(%) 

mean MCV 

fl (range) 

mean WBC 

(range) 

 

mean lymphocyte 

count (range) 

Zero 46 (8) 88  (67-117) 9.0  (3.6-14.3) 1.5  (0.5-2.6) 

Low (<200) 136 (22) 91  (69-118) 6.7  (2.7-14.9) 1.3  (0.2-5) 

Normal (200-

400) 

260 (43) 94  (69-113) 6.5  (1.5-17.4) 1.2  (0.2-5.8) 

High (>400) 166 (27) 97  (78-119) 6.1  (1.7-19.7) 1.1  (0.2-2.4) 

 

A comparison between TGN and full blood count indices is shown in Table 6.1 for the index 

TGN result and in Table 6.2 for all available TGN results in these patients. Table 6.3 shows the 

rates of non-response to therapy at the time of the index TGN, divided according to whether the 

patients were non-adherent by TGN measurement or whether they had sub-therapeutic, 

therapeutic or high TGN levels. (Response data excludes patients receiving concurrent 

infliximab/adalimumab or any levels taken on patients that had received less than 4 months of 
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thiopurine treatment i.e. all patients where response to thiopurines could not be accurately 

judged). 

 

Table 6.3:   The relationship between first TGN concentration taken for each patient and clinical response at 

that time to azathioprine/mercaptopurine.   

 

TGN concentration 

pmol/8x108 RBC 

Non-Responders (%) 

Zero 9/11 (82) 

low (<200) 22/45 (49) 

normal (200-400) 11/67 (16) 

high (>400) 11/46 (24) 

 

When MCV and lymphocyte counts were compared across all four groups there was a significant 

difference between the MCV and lymphocyte count in those with TGN levels above the 

therapeutic range and those who were non-adherent (p=0.03, ANOVA and p=0.02, Kruskal-

Wallis respectively). There was no significant difference in MCV or lymphocyte count between 

those with TGN in the target range and any other group.  There was no statistically significant 

difference in total white cell counts across all groups (p=0.4, ANOVA).  In terms of the raw data, 

the haematological indices were remarkably similar across all TGN groups (Table 6.2). Using 

haematological indices with previously published cut off values to predict TGN level revealed 

that these markers have poor sensitivity and specificity and are not suitable surrogate markers.  

Using WBC <4x109cells/L to predict therapeutic or high TGN levels gives a specificity of 91.4% 

but a sensitivity of only 8.7%.  Meanwhile, using an MCV cut off of 95fl gives a sensitivity of 

53% and specificity of 58%.   

 

Waljee et al
324

 suggested that the MCV/WBC ratio, using a cut of value of 12, predicts response 

to thiopurine treatment as accurately as TGN.  In the study group presented here, there was a 

separation in response rate using this published cut off, 22/40 with a ratio less than 12 were non-

responders, whilst only 33/124 were non-responders in group with a ratio above 12 (p=0.001, 
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Fisher Exact Test).  This ratio predicted therapeutic or high TGN with a sensitivity and 

specificity of 75% and 25%.  Within the current data set, it performed slightly better using a cut 

off of 20, which improved the sensitivity and specificity to 72% and 79% respectively).  

 

6.4   Discussion 

The results of this study show that TGNs are useful in clinical practice, identifying not just non-

adherence, but also issues of dosing and preferential methylation.  Where patients were 

unresponsive to thiopurines despite adequate TGN concentration, availability of this information 

allowed rapid decisions about treatment change.  

 

In non-responders TGN measurement directed therapy, providing vital information regarding the 

reason for an individual’s non-response and thereby facilitating personalised treatment decisions.  

If TGNs had not been measured and a strategy of blind dose-increment had been employed, this 

would have been likely to benefit 14/53 (26%) patients where TGN results demonstrated simple 

under-dosing.  However, in 22/53 individuals who already had adequate or even high TGN 

concentrations, and in 8/53 demonstrating predominant methylation, it would have been 

potentially harmful, delaying effective treatment decisions whilst waiting another 4 months for an 

unnecessary dose-change to take effect or even causing toxicity.  In the 9 non-adherent 

individuals, dose-increments would have had no effect and the issues causing non-adherence and 

therefore unsuccessful treatment would not have been explored. This raises an interesting point 

regarding patients given a historical label of non-response.  Rather than abandoning thiopurines 

as a treatment option in this group, a retrial could be attempted with TGN measurements at 4 

weeks and 4 months to ensure that they were not unresponsive due to issues of adherence, under-

dosing or predominant methylation, all of which can be successfully circumvented with the use of 

TGNs.   

 

In responders, the TGN measurements also provided useful information, detecting non-adherence 

and dosing issues, including cases with extremely high TGN concentrations, where toxicity was 

likely to have been avoided by timely dose-reduction.   
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Methylated metabolites provided additional information and identified the previously described 

group of patients who are biochemically resistant to thiopurines
64

.  Consistent with the literature, 

this study also demonstrated that individuals with hypermethylation had a high incidence of 

abnormal liver function tests and lower TGN levels.  In reviewing these results it became clear 

that not all clinicians were responding appropriately to the information from methylated 

metabolites, resulting in missed and delayed opportunities to optimise therapy.  As a result, a 

virtual clinic has been developed at GSTT in which all TGN and MeMP results are reviewed to 

ensure they are appropriately acted upon, and a handbook for clinicians produced in the IBD 

clinic providing practical advice on interpretation of the TGN and MeMP results.  An overview 

of the guidance given on the interpretation of TGN/MeMP results is presented in Table 6.4. 

 

Retrospective collection of clinical outcome data in this cohort introduces the possibility of a bias 

in the interpretation of results.  However, remission rate was not our primary endpoint and we 

have attempted to make this assessment as objective as possible by introducing an analysis of 

steroid-free remission rates at 6 months, alongside the more global and subjective measure of the 

treating physician’s assessment. 

 

The only prospective study which addressed the utility of TGN measurement in clinical 

practice
347

 failed to show a higher remission rate in the group with TGN monitoring.  However, 

this study had several limitations. Of particular concern was the short study period (16 weeks) 

and the extensive co-prescription of steroid which made the contribution of the thiopurine 

difficult to assess (all patients received steroid until 12 weeks, with 56% still on steroids when 

clinical outcome was measured at 16 weeks).  Additionally, it would be difficult for a statistically 

significant difference in response rate to emerge where the control group received an average of 

2.7mg/kg whilst the dose in the treatment group was not permitted to exceed 3mg/kg.  This study 

did show that TGN monitoring could predict toxicity and was able to confirm the existence of a 

biochemically resistant group in whom dose-escalation did not increase TGN 

concentrations
94,330,347

. A recent report of the use of TGNs in paediatric clinical practice supports 

the fact that measurement aids clinical decision making and improved patient outcomes
299

.   
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200-400 pmol/8x10
8
RBC was chosen as the therapeutic range in the PRL.  There is a lack of 

evidence regarding the upper limit of the range although this figure is consistent with that used in 

other trials
347

.   The lower limit derives from the literature and the PRL experience of TGN 

monitoring
87

, although 200 pmol/8x10
8
RBC is slightly lower than the cut off used in other 

studies. We attempted to address this by comparing remission rates between those with a TGN 

between 200 and 250 pmol/8x10
8
RBC and those between 350 and 400 pmol/8x10

8
RBC and 

found no significant difference, suggesting that the therapeutic range is appropriate, although the 

sample is probably under-powered to draw a definitive conclusion.  There is little data in the 

literature which addresses the question of how to respond to moderately high or low TGN 

concentrations or what should be done with a patient with a good response to treatment but TGNs 

outside the target range.  Long term complications of thiopurine use, particularly the occurrence 

of malignancy, may relate to high TGN levels
348

 and since the experience presented here suggests 

that if TGNs are greater than 550pmol/8x10
8
RBC, dose-reduction can be undertaken without 

compromising clinical benefit, we would recommend that such patients have their dose of 

thiopurine adjusted. The effect of dose-reduction with TGN between 400 and 550 

pmol/8x10
8
RBC could not be assessed as no dose-reduction was attempted on patients with 

TGNs within this range.  In patients who have a good clinical response to thiopurines despite 

TGNs below the target range, it is usual practice to cautiously increase the thiopurine dose and 

repeat levels.  However, whilst it is logical to presume that this increases the chances of these 

patients remaining in remission, there is no evidence base to support this practice. 

 

Those patients with a therapeutic TGN concentration had no significant difference in any blood 

count parameter, even when compared to those who were non-adherent.  Blood count indices 

predicted TGN with very poor sensitivity and specificity.  The WBC/MCV ratio performed 

slightly better but still failed to reach a sensitivity or specificity which would replace TGN in 

clinical practice.  MCV, WBC, and lymphocyte counts varied substantially within all TGN 

ranges, some individuals maintaining completely normal full blood counts despite therapeutic or 

even high TGN levels. Together, these findings suggest that blood count indices are not an 

adequate replacement for TGN monitoring in clinical practice.  An additional advantage of TGN 

monitoring is that concentrations reach a steady state 4 weeks87,300  after therapy is initiated.  This 

allows optimisation of dosing long before clinical response is assessed at 3-4 months, which we 
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anticipate would shorten the time to achieving remission.  Changes in surrogate markers of 

response such as lymphocyte count and MCV evolve over the same time-frame as clinical 

response and so would not contribute to achieving a more rapid remission. 

 

TGN measurements cost approximately £30 at the PRL.  If restricted to use in non-responders, 

each TGN result should direct a change in therapy.  In reality, 39/53 non-responders had a change 

in their treatment made on the basis of the TGN result, which represents a cost of £41 per 

treatment change (£56 if those who would have benefited from blind dose-increments are also 

excluded). This represents very good value for money.  Comparison with the measurement of 

TPMT activity, which is widely adopted to support the use of thiopurines in IBD, reveals that, 

although the test costs the same, £300 will be spent on TPMT testing per change in treatment (if 

the starting dose is titrated down to 50% for heterozygotes) and £9000 if TPMT testing is used 

only to save a homozygous patient from potentially fatal overdose.   

 

Not using TGN measurements in clinical practice also has costs. Patients may unnecessarily lose 

one of the few established treatment options for IBD, by not having their reasons for non-

response explored.  They may experience avoidable toxicity or relapse / develop progressive 

disease due to suboptimal use of thiopurines.  They may also experience avoidable treatment 

escalation to biologic or surgery.  For the hospital there are also the financial implications of a 

patient developing serious toxicity or requiring treatment escalation to biologics or surgery.  If 

even a small proportion of patients could be salvaged and made to respond to thiopurine 

monotherapy, this would represent a significant cost saving. 

 

In summary, therefore, in our practice, TGN monitoring guides clinical decision-making and 

appears to improve clinical outcomes.  Checking TGN concentrations in non-responders is cost-

effective and in each case should prompt a change in treatment.  Testing TGNs in all patients on 

thiopurines will confirm continuing adherence, identify under- and over-dosing and predominant 

methylation.  Responders with TGN concentrations >550 pmol/8x10
8
RBC can safely have their 

dose of thiopurine reduced.  The results of this study support the measurement of TGN and 

MeMP concentrations in all thiopurine-treated patients with IBD, at 4 weeks after treatment 
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initiation or following any change in dose, in any cases of non-response to thiopurines and as a 

periodic check (6-12 monthly) in patients in established remission. 

 

Table 6.4:  Use of TGN and MeMP levels in clinical practice 

 

 

TGN level 

pmol/8x10
8
RBC 

 

 

Interpretation 

 

 

Action required 

 

 

Zero 

 

 

non-adherence 

 

Discussion with patient 

 

Low (<200) 

 

MeMP:TGN <11 

under-dosed 

 

MeMP:TGN≥11 

hypermethylation 

 

 

Dose increment & recheck TGN in 4 weeks 

 

 

Switch to low dose AZA & Allopurinol (see chapter 7) 

 

Normal (200-

400) 

 

adequate dose 

 

In responders no action required. For non-responders – 

recheck TGN, seek alternative explanation for 

symptoms, consider switch to alternative therapy e.g. 

methotrexate 

 

 

High (>400) 

 

over-dose 

 

In responders consider dose-reduction, particularly if 

TGN>550.  In non-responders, recheck TGN, seek 

alternative explanation for symptoms, consider switch to 

alternative therapy e.g. methotrexate 
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Chapter Seven:  Optimising thiopurine outcomes by the co-

prescription of allopurinol 
 

7.1   Introduction 

Thiopurines remain first line treatment for IBD and have a growing role as concomitant 

immunomodulation alongside biologic therapy. However, many patients are unable to tolerate 

conventional thiopurine treatment and a further proportion of eligible patients will not respond to 

thiopurine therapy.  Any strategy which could overcome these problems would, by ensuring the 

greatest possible number of patients could benefit from thiopurines, be an important addition to 

our treatment armamentarium. 

 

Allopurinol, an off-licence drug, which is widely used in the treatment of gout, inhibits xanthine 

oxidase/dehydrogenase (XDH) and therefore alters the metabolism of thiopurines.  It was 

originally developed alongside thiopurines, for exactly this reason, but, when the early studies in 

leukaemia failed to demonstrate improved outcomes, thiopurine and allopurinol co-prescription 

was abandoned349.  Decades later, combination treatment was trialled in the context of renal 

transplant immunosuppression where improved outcomes were demonstrated, with improved 

graft survival
350

 and optimisation of thiopurine metabolite profiles
351

.  

 

In the IBD literature a subgroup of patients who predominantly methylate thiopurines has been 

characterised64, these patients are at risk of both hepatotoxicity95 and non-response during 

treatment with thiopurines
94,190

.  The discovery that this phenomenon could be circumvented by 

the co-prescription of allopurinol resulted in a resurgence of interest in this treatment 

combination
352

. 

  

Allopurinol blocks the activity of XDH, a major contributor to thiopurine catabolism, responsible 

for a significant first pass metabolism in the gut and liver, see figure 7.1.  Blocking this first pass 

metabolism increases the proportion of ingested thiopurine that will be converted to TGNs and 

the dose of administered thiopurine must therefore be reduced to approximately 25% of the usual 
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dose, in order to avoid dose-related toxicity, especially myelotoxicity
190

 (see Table 7.1).  The 

mechanism by which allopurinol also reduces the production of methylated metabolites is the 

subject of much debate, but new data from our laboratory suggests that it may be a result of 

higher thioxanthine levels achieved in the presence of allopurinol, inhibiting TPMT activity
96

. 

 

This Chapter documents a new large cohort of patients with IBD prescribed thiopurine / 

allopurinol co-treatment, and describes indications for co-treatment, treatment outcome and 

toxicities encountered. 

 

7.2  Aims: 

This study aimed to establish the outcome of attempts to overcome contra-indications for / 

problems with thiopurine monotherapy with a strategy of using azathioprine and allopurinol co-

prescription.  The rate of success overcoming these contra-indications was the primary outcome 

measure, however overall remission rates were also to be calculated. 
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Figure 7.1 The effect of allopurinol on azathioprine metabolism. 
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7.3  Methods 

Combination treatment was considered in patients experiencing hepatotoxicity or other “atypical” 

side effects on thiopurine monotherapy.  It was also used for those who were achieving a sub-

optimal response (with a thiopurine metabolite profile suggesting either hyper-methylation or 

under-dosing which could not be corrected due to intolerance of higher doses).  This group 

included a few patients with a historical label of non-response to thiopurine monotherapy and a 

TPMT activity >35 pmol/h/mgHb.  Patients were identified who had been switched as a result of 

a ratio of MeMP:TGN>11, predicting adverse outcome, but not currently experiencing a loss of 

response or toxicity.  Finally, patients with a TPMT greater than 35 pmol/h/mgHb (the activity 

threshold previously demonstrated to predict non-response
87

) were considered for combination 

treatment as first line thiopurine therapy. 

 

The protocol for dosing and monitoring of combination treatment is detailed in the methods 

section above. 

  

The primary outcome measure for this study was whether or not co-prescription with allopurinol 

could successfully overcome whatever problem had been encountered on thiopurine 

monotherapy. In some cases this was a failure to achieve clinical remission, but in the majority 

was drug intolerance, normalisation of LFTs or normalisation of the thiopurine metabolite 

profile. 

 

In order to confirm that combination therapy was effective in achieving good clinical outcomes in 

all patients, clinical remission rates for the whole group were also calculated as a secondary 

endpoint.  This was a retrospective analysis of results from clinical practice and therefore formal 

clinical disease activity measures (such as the Harvey Bradshaw Index) were not generally 

available.  Clinical response was therefore assessed at one year of treatment, on the basis of the 

treating physician’s global assessment (according to each patient’s indication for treatment).  The 

use of steroids, biologics or surgery was interpreted as an indication of treatment failure. Patients 

who had been on treatment for long enough to assess outcome (greater than 4 months) but not yet 

for one complete year were included in a secondary analysis.  ADRs must have been significant 
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enough to require cessation of combination therapy and be considered to be possibly related to 

combination therapy by the treating physician. 

 

Laboratory methods for determination of TGN/MeMP results are detailed in the methods chapter 

above.  Statistical methods are also detailed in the methods chapter, at section 2.8. 

7.4   Results 

110 patients being treated with a combination of low dose thiopurine and allopurinol were 

identified, of which109 had adequate information available for analysis of clinical outcome on 

combination therapy.  69 patients had CD, 33 had a diagnosis of UC and 4 patients had IBD-

unclassified (IBD-U). 3 patients were treated for orofacial granulomatosis (OFG) and one for 

eosinophilic colitis.  The male:female ratio was 51:59, age range 20-84 years, disease duration 1-

34 years.  Follow up was for a mean of 16 months (range 0.5-47 months)   

 

There were 4 main indications for co-prescription: predominant methylation found on TGN 

monitoring (n=27 non-responders,  n=8 responders), hepatotoxicity (n=24), other “atypical” side 

effects (n=28), and primary treatment due to high TPMT (n=23).  The majority of patients had 

failed on single agent thiopurine therapy due to either non-response or ADRs (failure on 

azathioprine n=69, on mercaptopurine n=8, having tried both as monotherapy n=12) 20 patients 

had no recorded prior exposure to thiopurine monotherapy.  Three patients were initiated on 

combination therapy on the basis of high TPMT activity, but had medical records of a historical 

exposure to single agent therapy. 

 

In patients with TPMT activity in the normal range, single agent AZA doses ranged from 0.6-2.5 

mg/kg, average 1.9mg/kg, MP doses ranged from 0.37-1.77mg/kg, average 1.03mg/kg, (lower 

doses due to ADRs restricting dose-escalation).  In combination with 100mg of allopurinol, AZA 

doses ranged from 0.16-1.0mg/kg, average 0.54mg/kg,  

7.4.1  Success in overcoming problem with monotherapy 

Overall, 64/78 (82%) patients treated with AZA and allopurinol combination therapy successfully 

overcame the problem preventing successful treatment with single agent thiopurine.  This 

analysis does not include the whole cohort, as patients were excluded if they were given 
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combination treatment first line, lost to follow up or if clinical response was the outcome 

measure, but could not be accurately assessed due to concomitant biologic therapy.  In one 

instance, a patient was excluded due to inadequate duration of combination treatment to 

accurately assess clinical response.  If those prescribed combination treatment as their first line 

therapy (on the basis of high TPMT activity) were included, with steroid-free remission at one 

year as their outcome measure, then 78/96 (81%) of patients successfully circumvented the 

problem encountered on thiopurine monotherapy. 

 

7.4.2   Overall Clinical Response Rate 

When a more rigorous endpoint of remission at one year of treatment was applied, then the 

overall clinical response rate was 39/63 (62%).  If patients that had not yet completed a full year 

on combination therapy (but where treatment was for longer than 4 months, allowing an 

assessment of response) were included in the outcome analysis, then 59/83 (71%) of all patients, 

where the effect of thiopurine could be studied in isolation, achieved clinical remission.  

 

Lastly, if only those patients that had previously failed on thiopurine monotherapy are included 

then 39/59 (66%) were in remission at one year.   

 

7.4.3   Thioguanine nucleotide and methylated metabolite levels 

During combination treatment TGN levels increased from a median of 213 to 397 

pmol/8x10
8
RBC, p<0.0001. In one case there appears to have been issues of compliance with 

combination therapy with zero detectable TGN levels.  A few patients did have a drop in TGN 

after co-prescription, which is likely to reflect a cautious dosing strategy. 

 

MeMP levels dropped from a median of 3559 pmol/8x10
8
RBC during thiopurine monotherapy to 

115 pmol/8x10
8
RBC during combination treatment, p<0.0001.  Paired metabolite levels before 

and after the switch to combination therapy are shown in Figure 7.2 (TGN) and Figure 7.3 

(MeMP). 
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7.4.4  TPMT actvity 

The median TPMT activity for the whole cohort was higher than the general population at 

39.5pmol/h/mgHb.  This could be skewed by the deliberate selection of a subgroup due to high 

pre-treatment TPMT activity.  Hence, the analysis was repeated without this group – giving a 

median TPMT of 37 pmol/h/mgHb, still above the general population median. 

 

7.4.5   Blood counts 

Various full blood count indices have been considered to be suitable surrogate markers of TGN 

concentration.  Total white blood cell counts were statistically lower on combination therapy than 

on single agent thiopurine therapy, although the difference was numerically small [6.4 vs. 6.9 

(p=0.02)].  Interestingly, this was not, as might be anticipated, due to a reduction in lymphocyte 

count, which was unchanged (p=0.27) but instead due to a reduction in neutrophil count [from 

4.7 to 4.3, (p=0.02)], which could represent improved disease control or a reduction in steroid 

dosage. 

 

Similarly, MCV measurements were statistically significantly higher on co-therapy than on single 

agent thiopurines, but with a small numerical difference (mean of 92.3 vs. 92.6, p<0.0001).  The 

MCV/WBC ratio, also thought to be a suitable surrogate marker of thiopurine responsiveness 

increased a small but statistically significant amount, from 15.1 to 16.8 (p=0.002). 

 

7.4.6   ADRs during combination therapy 

The literature contains no reports of adverse events on combination thiopurine and allopurinol 

therapy, aside from those caused by thiopurine dosing errors.  However, in our series there were a 

total of thirteen adverse events reported which were serious enough to require an alteration in 

treatment.  Three patients developed mild, self-limiting rashes attributable to allopurinol, but 

there were no cases of toxic epidermal necrolysis. Two patients developed abnormal liver 

function tests attributed to the allopurinol.  One of these patients was diagnosed with early 

primary sclerosing cholangitis (PSC) during work up for this but the improvement in his LFTs 

when returned to single agent thiopurine was considered to indicate that allopurinol was 

contributory.  The other patient had a colectomy for refractory UC and discontinued thiopurine 
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therapy with subsequent resolution of his LFT abnormalities.  One patient continued to take full 

dose AZA alongside allopurinol, this was detected by TGN monitoring before any change in 

blood counts occurred and combination therapy was stopped. 

 

In addition, six patients experienced “atypical” side effects commonly encountered on thiopurine 

monotherapy, predominantly nausea and vomiting.  These ADRs all resolved when thiopurines 

were discontinued.  Five of these represented a recurrence of the side effect which had precluded 

thiopurine monotherapy whilst a final patient discontinued combination treatment as it was 

considered to be contributing to a deterioration in the control of their chronic obstructive 

pulmonary disease.   

 

7.4.7   Results according to indication for combination treatment 

7.4.7.1  Hepatotoxicity 

20/25 patients for whom the indication for combination treatment was hepatotoxicity could 

tolerate combination therapy with normalisation of their LFTs.  One discontinued therapy 

immediately due to a recurrence of the nausea also experienced on single agent thiopurine and 

one was lost to follow up.  Three patients had an alternative (or possibly additional) explanation 

for abnormal LFTs  (1 had genetic haemochromatosis and 2 were diagnosed with early PSC).  

These patients initially all continued on combination treatment to minimise the risk of super-

added thiopurine-induced hepatotoxicity.  However, one of the PSC patients later went back to 

single agent AZA as they believed the combination therapy coincided with a worsening of their 

LFT results.  They did experience some improvement in his LFTs, suggesting that the allopurinol 

may indeed have been contributory.   

 

In most published studies of drug related hepatotoxicity, transaminases have to reach twice the 

upper limit of normal before hepatotoxicity is diagnosed. However, in this clinical experience, 

9/21 patients were switched before this endpoint was reached. Nevertheless, alanine 

aminotransferase (ALT) was significantly reduced by the switch to combination treatment, from a 

mean of 151 IU/L to 30 IU/L (mean difference 124 IU/L, 95%CI 61 to 187, p=0.0006).   The 

same was also true for both gamma glutaryl transferase (GGT) [which dropped from a mean of 
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163 IU/L to 49 IU/L, (mean difference 133 IU/L, 95%CI 48-217, p=0.005)] and ALP [mean 

reduced from 134 IU/L to 76 IU/L, (mean difference 50 IU/L, 95%CI 8-93, p=0.02)].   

 

7.4.7.2  Other ADRs 

This group contained 28 patients with non-hepatotoxic side effects on monotherapy.  These 

included flu-like symptoms, fatigue, gastrointestinal disturbance, rash, alopecia, tremor, 

headaches, myalgia/arthralgia, myelotoxicity and frequent respiratory infections.  Most patients 

in this group experienced multiple adverse effects but, despite this, 24/28 (86%) were able to 

tolerate co-treatment with allopurinol. Two patients stopped co-treatment due to a recurrence of 

the side effects they had experienced on monotherapy (arthralgia, nausea and fatigue) and one 

patient discontinued combination therapy due to abnormal LFTs. One patient progressed rapidly 

to colectomy for uncontrolled UC after which their thiopurine therapy was no longer required.   

 

In those patients where a judgement about the clinical outcome of combination treatment could 

be made, 11/20 (55%) achieved a clinical remission at 1 year (or the latest available assessment if 

treatment duration was for less than one year). If only those completing a full year of therapy 

were included in this analysis, the figure was 47%. (Patients discontinuing treatment due to side 

effects were included in this analysis as treatment failures). 

 

7.4.7.3  Non-response to single agent thiopurine 

This group includes 27 patients, 18 of whom demonstrated predominant methylation on TGN 

monitoring.  An additional 6 patients had a historical label of non-response to azathioprine 

alongside a high TPMT activity and 3 patients were partial responders in whom dose-

optimisation could not be achieved due to side effects.   

 

In those for whom a judgement about the clinical outcome of combination treatment could be 

made in isolation from other treatment changes 10/17 (59%) achieved clinical remission at one 

year, this figure rose to 13/20 (65%) when those doing well, but yet to reach a full year of 

therapy, were included.  Again, those unable to tolerate combination treatment due to side effects 

were included in the analysis as treatment failures. 
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7.4.7.4   Combination therapy as a first line treatment 

 

This group included 23 patients, 5 of whom could not be accurately assessed for clinical response 

to combination therapy (1 concomitant biologic, 2 inadequate duration of treatment and 2 non-

adherent by TGN). Of the remaining 18 patients, 14 (78%) achieved clinical remission on 

combination treatment.  

7.4.7.5   Response to an adverse metabolite profile 

 

This group contained 8 patients, 7 of whom improved their thiopurine metabolite profile and 

maintained clinical remission (one was also on a biologic throughout).  One patient developed a 

rash on allopurinol and was transferred back to single agent treatment without any loss of 

response.  The rash resolved on monotherapy suggesting that allopurinol was the causal agent.  
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Figure 7.2: The effect of co-prescription of allopurinol on TGN levels pmol/10x10
8
RBC.  

This figure excludes the patient who did not reduce his AZA dose appropriately, and therefore had extremely high 

TGN levels.  Values on the left are those on monotherapy, those on the right are on combination treatment. Only 

those subjects with paired values are shown. 

AZA AZA & Allopurinol 
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Figure 7.3 The effect of allopurinol co-prescription on Methylated metabolite levels pmol/10x10
8
RBC.   

Values on the left are those on monotherapy, those on the right are on combination treatment. Only those subjects 

with paired values are shown. 

 

AZA & Allopurinol AZA 
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7.5   Discussion 

 

This study has demonstrated that co-prescription of allopurinol alongside appropriately reduced 

doses of AZA or MP circumvents not just hepatotoxicity on single agent thiopurine, but also 

other side effects.  This emerging role for combination therapy is important, as atypical side 

effects are responsible for a large number of patients losing thiopurines as a treatment option.  

The study also demonstrated that the majority of these patients tolerated combination treatment 

and achieved clinical remission, providing an important treatment option both for patients starting 

thiopurine therapy and those with a historical label of thiopurine intolerance. 

 

The study also demonstrated that combination therapy could achieve a clinical response for a 

significant number of those failing to respond to thiopurine monotherapy.  This is important both 

for patients failing to achieve remission on single agent thiopurine and also those on thiopurines 

alongside biologic therapy.  Combination therapy could therefore recapture clinical response in a 

significant proportion of patients in whom thiopurine therapy would otherwise have been 

abandoned.   

 

Using figures from the literature, we have calculated the theoretical size of this missed 

opportunity.  In a cohort of 207 patients with IBD
87

 initiating thiopurine therapy, 60 patients had 

their thiopurine discontinued as a result of non-specific side effects, 8 due to hepatitis and 32 

were non-responders with a TPMT activity greater than 35pmol/h/mgHb (a surrogate marker of 

hypermethylation).  This is a total of 100 patients, nearly half of the cohort, that may have 

benefitted from co-treatment with allopurinol.  From the results of this study, it can be predicted 

that 53 of these would achieve remission if offered combination therapy with allopurinol as an 

alternative treatment. This represents 26% of the whole original cohort, an extremely significant 

proportion of our patients.  This analysis could be skewed by a high side effect rate, but even 

using a lower rate of 7.2 % (10% total side effects 
14

 with 2.8% experiencing side effects 

unsuitable for combination therapy i.e. pancreatitis and myelotoxicity) would still leave 12% of 

all patients started on AZA, who could be rescued from thiopurine failure to 1 year remission on 

combination therapy. 
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The use of combination therapy for hepatotoxicity was originally restricted to those patients with 

high methylated metabolite levels.  However, combination treatment could theoretically provide 

additional benefits in those with liver disease, by reducing doses of thiopurine for first pass 

metabolism, altering the balance of other thiopurine metabolites, blocking the production of 

oxygen free radicals190 and by raising hypoxanthine levels which provides purines, through 

salvage pathways, for cellular repair
187

.   This study also reports (for the first time) the 

development of abnormal liver function in 2/109 patients attributable to allopurinol co-treatment, 

and practitioners must be aware of this possibility. 

 

Our understanding of most ADRs encountered on thiopurines is very limited.  Myelotoxicity is 

known to be dose-related in most instances and to result from high TGNs.  However, even 

“atypical” ADRs appear to be dose-related to some extent.  Many patients tolerate thiopurines at 

low doses but are unable to tolerate escalation to their target dose or therapeutic TGN level, 

limiting response.  Nausea and the myalgic flu-like syndrome fall into this category and it is 

postulated that these result from an accumulation of alternative thiopurine metabolites (thioITP 

being specifically implicated in the flu-like syndrome
87,353

). The significantly reduced parent drug 

concentration and/or altered balance of metabolites produced by combination treatment is thought 

to be the mechanism by which these ADRs are circumvented 

 

Whilst using combination therapy, the standard FBC and LFT monitoring regimen which was 

used in the department for patients on monotherapy was also adopted for combination treatment. 

Blood monitoring remains at least as important on combination therapy and practitioners should 

be aware that dose-adjustments whilst on allopurinol have a much larger impact on TGNs and 

clinical outcome. Dose-adjustments should also, therefore, be 25-33% of those usually attempted 

on monotherapy.  Safety concerns over the combination of allopurinol and AZA in the literature 

relate to inadvertent co-prescription of these two drugs without suitable dose reduction of the 

thiopurine.  Correct dosing (see Table 7.1), supported by TGN measurement, should avoid this 

problem.  Measurement of TGN/MeMP levels facilitates safe, personalised dose-adjustment.  

TGN’s were therefore checked at 4 weeks after initiation, and 4 weeks after any dose-change on 

combination therapy.  They were also used to investigate inadequate response and 6-12 monthly 
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in those established on therapy. The 4 week check avoided a potentially serious ADR due to 

over-dosing in this cohort.   

 

Side effects reported for allopurinol include rash, gastro-intestinal disturbance, malaise, 

headache, vertigo, drowsiness, visual and taste disturbances, hypertension, alopecia, paraesthesia 

and neuropathy, gynaecomastia and blood disorders.  Although previous reports of the use of 

combination therapy in the literature have not encountered any toxicity associated with 

allopurinol, 2 cases of hepatotoxicity possibly related to the use of allopurinol were encountered 

in this study, as well as 2 cases of self-limiting rash.  Rash is the most significant side effect of 

allopurinol therapy and whilst most are mild and self-limiting, allopurinol is the commonest drug 

associated with the development of toxic epidermal necrolysis (TEN)
354

.  There appears to be a 

pharmacogenetic basis for this with an association demonstrated with the HLA-B*5801 allele. 

TEN is more common in individuals of Asian parentage, particularly among the Han Chinese 

population
355,356

.  Since TEN carries a significant mortality
357

, pre-treatment pharmacogenetic 

testing for this HLA-type has been proposed by some groups356 although TEN remains a very 

rare occurence
354

.  The dose of 100mg, as used in this study, is also thought to be relatively 

safe
354

. 

 

First line combination treatment was adopted in the IBD service at GSTT for patients with very 

high TPMT activity in an attempt to reduce the occurrence of ADRs and non-response in this 

high risk group.  Subsequent work on this area in the PRL has highlighted that the reasons for 

patients developing predominant methylation are much more complex than a simple elevation of 

TPMT activity and combination treatment on the basis of high TPMT activity alone is no longer 

used. Instead, combination treatment is initiated once predominant methylation is demonstrated 

on TGN monitoring (or for adverse effects). As more is uncovered about the reasons for 

predominant methylation and a more comprehensive pre-treatment risk assessment can be 

performed, it is likely that first line combination treatment will be introduced more widely for a 

sub-group of patients. A head-to-head prospective trial of single agent thiopurine against 

combination therapy is needed to establish whether all patients might be better off on 

combination therapy from the outset, in view of the high response and relatively low side effect 

profile reported here and in other studies of combination therapy. 
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Whilst blocking XDH with allopurinol would logically increase TGNs (both by decreasing TGN 

breakdown and reducing first pass metabolism – see figure 7.1) and therefore necessitate a 

thiopurine dose reduction, it is not clear why it has such a profound effect on methylated 

metabolite levels.  Allopurinol and its active metabolite oxypurinol are not known to alter TPMT 

activity
94

, although published data is lacking.  Early work from the PRL has, however, 

demonstrated that thioxanthine inhibits TPMT activity and increased production of thioxanthine, 

due to the presence of allopurinol, could account for the effect of combination treatment on 

methylated metabolites.
96

 The lower thiopurine doses permitted by co-administration of 

allopurinol could result in reduced methylation, if TPMT is unable to efficiently work at these 

lower concentrations.  This could additionally explain the partial reversal of predominant 

methylation achieved by splitting the dose of thiopurine drugs
358,359

.   

 

In conclusion, combination treatment with low dose thiopurine and allopurinol is a safe and 

effective option for patients that would not otherwise be able to benefit from thiopurine 

treatment, whether due to intolerance or lack of clinical response. Treatment is cheap and can be 

monitored in the same way as standard AZA treatment.  TGN/MeMP measurements identify 

suitable candidates for co-treatment and are essential to guide personalised adjustments to dosing 

and to avoid dose-related toxicity and accidental over-dosing. 
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Conclusions: 
 

In this thesis I have explored the impact of genetic polymorphism, in several novel targets, on 

success of thiopurine treatment.  SNPs in xanthine oxidase/dehydrogenase (XDH) and the final 

enzymatic step which activates its essential cofactor (molybdenum cofactor sulfurase, MOCOS) 

are shown to protect against side effects on AZA.  Polymorphism in aldehyde oxidase (AOX) and 

multi-drug resistance protein 5 (ABCB5), on the other hand, are shown to predict a lack of 

response to thiopurine treatment.  Sequencing AOX validated the real-time PCR results but 

suggested that there were no other coding SNPs likely to be contributory. The way in which these 

markers of non-response could be combined to produce a clinically applicable pharmacogenetic 

index is explored, and the hope expressed that these, and/or similar markers of response to 

thiopurine treatment, will soon be applicable to clinical practice improving patient experience and 

outcome on these drugs. 

 

Clinical data supporting the optimisation of azathioprine therapy by the measurement of 

thioguanine nucleotide concentrations, alongside methylated metabolite levels are presented.  

These support the use of TGNs in the clinic to aid decision making and provide explanations for 

non-response to azathioprine.  Additionally, co-prescription of allopurinol to optimise 

azathioprine response (for those who are intolerant of thiopurines or have biochemical 

resistance), is explored using analysis of the outcomes of the largest reported cohort in the 

literature.  This data confirms the usefulness and safety of this strategy in a variety of contexts 

and confirms co-prescription as an essential tool in the treatment of IBD. 

 

The conclusion of my thesis is that there is much that can be done to improve the outcome of 

patients receiving thiopurines. The studies here have focussed on IBD, but the impact on outcome 

should be relevant to the use of these drugs across many other disciplines, including treatment of 

leukemia and the prevention of transplant rejection. Strategies such as measurement of TGNs and 

the use of allopurinol co-prescription have already reached the bedside in some centres and 

should be adopted in a more widespread manner.  The pharmacogenetic markers of response 

presented here are of interest, but their significance clearly needs replication in another cohort 

before they can be considered for incorporation into clinical practice.  If this were to be achieved 
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however, this would be a major break-through, as the ability to stratify the chance of success on 

thiopurine agents, before starting therapy, could significantly shorten the time taken for a patient 

to achieve an important clinical remission and avoid futile therapy in patients with predictable 

drug resistance. 

 

In a wider context, pharmacogenetics / pharmacogenomics and individualised prescribing is the 

subject of a huge amount of on-going research.  Whilst very little of this has yet reached the 

bedside (even TPMT is still not routine in some centres), global interest in pharmacogenetics / 

pharmacogenomics is growing and the FDA is promoting translation of this research into clinical 

practice by putting information on known pharmacogenetic markers onto drug labels.  This 

includes the use of TPMT testing prior to prescription of azathioprine. 

http://www.fda.gov/Drugs/ScienceResearch/ResearchAreas/Pharmacogenetics/ucm083378.htm 

What is needed to reap the rewards of all this work however, is a greater awareness and 

understanding of this area from clinicians in all areas of medical practice, so that each 

prescription becomes the result of an individualised assessment of risks and benefits, improving 

outcomes for our patients. 
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