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Abstract 
 

Mesenchymal stem cells (MSCs) are heterogeneous cell populations that are 

identified by their in vitro characteristics while their biological properties and in vivo 

identities are often less understood. Different from human teeth, mouse incisors grow 

and erupt continuously throughout their lives and compensate for daily abrasions with 

the existence of stem cells. However, the precise location of the mesenchymal stem 

cells (MSCs) in the incisor is unclear. Generally, the MSCs in the mouse incisor are 

believed to be located in the mesenchyme close to the epithelium cervical loops, since 

the growth and differentiation of the incisor always initiates at the apical end and 

extends towards the incisal end.  

The utilization of label-retaining experiments and transgenic reporter mouse lines has 

enabled further understanding of the less established identities and properties of 

dental pulp stem cells in vivo. The work described in this thesis demonstrates that the 

mesenchymal stem cell niche located at the apical end of mouse incisor contains three 

distinct but connected cell populations: 1) a slow cycling cell population containing 

Thy-1+ cells essential for tooth dental pulp and odontoblast formation 2) a 

Ring1/Bcor-associated fast cycling cell population crucial for maintaining tissue 

growth and homeostasis of epithelium stem cells in labial cervical loop 3) a quiescent 

long-term cell population marked by Flamingo homologue Celsr1 might respond to 

generate new stem cells when the stem cells become depleted.
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Chapter 1 : Introduction 
	

1.1 Stem cells 

As a repair system in the body and means of replenishing tissues, stem cells are an 

undifferentiated cell type, distinguished by their ability to self-propagate and 

differentiate into other cell types. In both murine and human research, two types of 

stem cells have been defined according to the stages of their development. Embryonic 

stem (ES) cells are isolated from the blastocyst stage of early mammalian embryos; 

multiple studies (Evans and Kaufman, 1981, Martin, 1981, Thomson et al., 1998) 

have characterised the ability of these cells to differentiate into any cell type in vivo. 

Adult stem cells (ASCs), also known as somatic stem cells, are distributed throughout 

the body to replenish damaged tissue and facilitate regeneration. More recently, 

however, a novel class of stem cells “Induced” pluripotent stem (iPS) has been 

described (Takahashi and Yamanaka, 2006, Takahashi et al., 2007). iPS are derived 

from differentiated cells which have been transformed into an ES-like cell line by 

expressing four transcription factor genes encoding octamer-binding transcription 

factor 3/4 (Oct3/4); SRY (sex determining region Y) -box 2 (Sox2); Krueppel-like 

factor 4 (Klf 4); and c-mycmyelocytomatosis viral oncogene homolog (c-Myc). Stem 

cells can be grouped into five types, depending upon their potential to differentiate 

into a given lineage. Totipotent cells are capable of dividing and forming various 

differentiated cells; a zygote is an example of a totipotent cell that can develop into a 
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new organism. Pluripotent stem cells have the ability to differentiate into all cell types 

of the three germ layers, i.e., the ectoderm (nervous system and epidermis), mesoderm 

(connective tissue, muscle, bone and circulatory systems), or endoderm (respiratory 

and digestive tracts). Stem cells that demonstrate a selective pattern of differentiation 

toward few lineages are termed multipotent cells; an example is hematopoietic stem 

cells, which can develop into various types of blood cells such as monocytes or 

lymphocytes. Oligopotent stem cells are also able to differentiate into certain cell 

types of specific lineages, such as lymphoid stem cells that can form B and T cells, or 

other blood cell types. Finally, unipotent stem cells can only differentiate into one 

particular cell type (Fig. 1.1, Fig. 1.2). 

 

 

Fig 1. 1: Stem cell hierarchy during the differentiation process. 

Differentiation potential decreases and specialisation increases at each stage of the differentiation 
process. 
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Fig 1. 2: Schematic of stem cell differentiation potential. 

Pluripotent stem cells derived from blastocyst inner mass cells can differentiate into all three germ 
layers. Adapted from (Jones et al., 2007). 

 

1.1.1 Embryonic stem (ES) cells 

First described by Evans and Kaufman in 1981, ES cells originate in the inner cell 

mass of the blastocyst stage of early mammalian embryos (Evans and Kaufman, 

1981). Although variations in growth characteristics, doubling time, cell surface 

markers, signaling pathways and cultivation conditions are observed across different 

species, all ES cells are pluripotent (Yamanaka et al., 2008). In mice, ES cells can 

give rise to a fully viable embryo, with all cell types represented. Produced at the 

blastocyst embryonic stage (achieved at 4-5 days post-fertilisation) that consists of 

between 50 and 150 cells, human ES cells are distinguished by their unrestricted 

scope for in vitro proliferation and differentiation. ES cell lines have been reported to 

propagate all other embryonic multipotent and unipotent stem cells, thus giving rise to 
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all three embryonic germ layers (Wobus and Boheler, 2005). Certain safety concerns, 

however, such as immunocompatibility and potential tumourigenicity as well as 

complex ethical and legal issues have significantly restricted the further application of 

ES cells (Salibian et al., 2013). 

 

1.1.2 Adult stem cells (ASCs) 

Isolated from differentiated cells in an adult tissue or organ, ASCs are 

undifferentiated cells that can self-renew and further differentiate to produce all of the 

cell types of the tissue of origin. Regeneration of damaged tissues and the 

replenishment of cells to maintain cell quantity, along with their differentiation into 

several distinct cell types, appear to be the major functions of adult stem cells in 

human tissues. Given that they are derived from adult tissues and possess the ability 

to differentiate into multiple cell types, ASCs can be applied to research purposes 

without the ethical and technical limitations related to ES cells. Researchers have 

documented multiple sources of ASCs, including stromal cells from adult skin and 

bone marrow and adipose tissue-derived stem cells from fat sources (Al-Nbaheen et 

al., 2013). As demonstrated by a study in 2013, ASCs are readily isolated from adult 

tissues and their ability to differentiate into more than one cell type along with the 

potential they offer for autologous stem cell donation has rendered ASCs an important 

factor in regenerative medicine (Salibian et al., 2013). Although they circumvent 

many of the limitations of ES cell research, ASCs develop into a narrow range of cell 

types and are thus restricted by the cell lineage from which they derive. 
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1.1.3 Induced pluripotent stem (iPS) cells 

As described by Takahashi et al. (2006, 2007), ASCs can, under in vitro 

reprogramming, produce iPS cells. The introduction into ASCs of four key 

transcription factors Oct3/4, Sox2, Klf 4 and c-Myc, causes the cells to reprogram 

themselves into pluripotent stem cells. Initially described in murine cell lines, a 

similar transformation was performed in human fibroblasts using the retroviral 

delivery of Oct3/4, Sox2, Klf4 and c-Myc, the first instance of the production of iPS 

cells from adult human cells (Yamanaka, 2007). A similar outcome was subsequently 

obtained by the use of lentiviral transduction to deliver Oct4, Nanog, Sox2 and Lin28 

(Yu et al., 2007). The production of iPS cells circumvents the need for embryonic 

destruction, given that they are isolated from developed tissue sources. Furthermore, 

iPS cells are derived from individual adult tissues and therefore offer the opportunity 

for application to personalized therapies. As argued by several researchers, however, 

the application of iPS cells for therapeutic transplantation purposes is limited by the 

use of retroviruses in their production, given the risk of mutations being inserted in 

the target cell. Furthermore, several of the reprogramming factors utilised in the 

process are oncogenes with an inherent potential tumourigenicity. However, the 

unrestricted availability of autologous cells holds great potential for future therapeutic 

transplants without the risk of immune rejection (Marion et al., 2009, Selvaraj et al., 

2010). 
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1.1.4 Mesenchymal stem cells (MSCs) 

Initially isolated from bone marrow, as ASCs, MSCs are clonal, plastic-adherent and 

capable of in vivo differentiation into cell types such as osteoblasts, adipocytes and 

chondrocytes (Friedenstein, 1976). Other tissues are also viable sources of MSCs, 

such as cord blood (Erices et al., 2000), peripheral blood (Zvaifler et al., 2000), 

adipose tissue (Zuk et al., 2002), amniotic fluid (In 't Anker et al., 2003), compact 

bone (Guo et al., 2006), articular cartilage (Dowthwaite et al., 2004), foetal tissue 

(Miao et al., 2006) and lung tissue (Sinclair et al., 2013). The term, ‘MSCs’ is 

therefore no longer appropriate, given the range of tissue types from which these cells 

have since been isolated. Although these cells types continue to be referred to as 

MSCs, ‘multipotent stromal cells’ is a more accurate description. The “International 

Society for Cellular Therapy” (ISCT) has proposed a set of minimal criteria in order 

to define MSCs. Firstly, MSCs must be plastic-adherent with a fibroblast-like 

morphology when maintained in standard culture conditions. Secondly, MSCs must 

express CD105, CD73 and CD90, but not CD45, CD34, CD14 or CD11b, CD79a or 

CD19 and HLA-DR surface molecules. Finally, MSCs must be capable of 

differentiating to osteoblasts, adipocytes and chondroblasts in vitro (Dominici et al., 

2006).  

MSCs’ multipotency has been well described in the literature, with research 

describing the differentiation of these cells into cell types such as osteoblasts, 

adipocytes, chondrocytes and myocytes. Neuron-like cells have also been shown to 

derive from MSCs, but further research is required to verify the functionality of these 
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differentiated cells (Jiang et al., 2002, Birbrair et al., 2011). This multipotency exists 

alongside the ability of MSCs to replenish their population. Variations in the levels of 

differentiation of cultures MSCs have been observed between individuals and the 

process has also been shown to depend on the method used to initiate the 

differentiation process. Further work is required to determine whether these variations 

derive from differences in progenitor cell levels, or from variations in the inherent 

capacity for differentiation displayed by a specific progenitor.  

 

 

 
Fig 1. 3: Schematic of MSC differentiation. 

Mesenchymal stem cell can differentiate into osteoblasts, chondrocytes, myocytes, marrow stroma cells 
and tendogenesis cells, which subsequently form bone, cartilage, muscle, marrow and tendon (Firth and 
Yuan, 2012). 
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The therapeutic use of MSCs for transplantation benefits from the lack of allogeneic 

rejection observed in both human and animal studies. This observation can be 

attributed to three factors, as demonstrated by co-culture experiments in vitro. Firstly, 

MSCs often lack MHC-II and co-stimulatory molecule expression. Secondly, MSCs 

are capable of indirectly inhibiting T cell responses through modulation of dendritic 

cells and directly by suppressing the natural killer cell response in addition to the 

activity of CD8+ and CD4+ T cells. Finally, a study has shown that MSCs produce 

immunosuppressive conditions through the local upregulation of prostaglandin and 

interleukin-10 production, in addition to the production of indoleamine 2, 3, 

dioxygenase which suppresses immune responses by depleting local tryptophan (Ryan 

et al., 2005). This research also demonstrated that the activity of local inflammatory 

factors such as interferon-gamma can contribute to the immunomodulatory function 

of MSCs. However, research on the potential mechanisms by which MSCs exert their 

immunosuppressive effects is largely restricted to in vitro studies; further evidence in 

vivo is thus required. 

 

1.2 Adult stem cell niches 

ASCs serving as a reservoir of new cells for tissue growth and repair are located 

among differentiated cells but maintained in ‘niches’ (Schofield, 1978). Stem cells 

within these dynamic microenvironments are capable of balancing homeostasis 

between quiescent and active states of differentiation (Greco and Guo, 2010, Voog 

and Jones, 2010). Unnecessary proliferation of stem cells is prevented when ASCs are 
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maintained within niches and the cells themselves are also protected from depletion. 

An essential component of the stem cell niche is stem cell. However, the presence 

alone of stem cells is not the only factor required when characterising niches as 

demonstrated in 2006, both anatomic and functional components are required in a 

stem cell niche (Scadden, 2006). Well-characterised niches have been shown to exist 

in locations such as the bone marrow, small intestinal crypts and hair follicle bulges 

(Kordes and Haussinger, 2013). These tissues are all characterized by substantial cell 

turnover, facilitating the detection of stem cell activity due to the continuous supply of 

cells. In studies on the mouse incisor, the permanent proliferating cells of the tooth 

organ indicate the presence of stem cells. Murine dental pulp has been shown to 

contain two forms of stem cells, epithelial stem cells that differentiate to ameloblasts 

(enamel producing cells) and MSCs that give rise to odontoblasts (dentine forming 

cells) (Seidel et al., 2010).   

 

1.3 Dental stem cells (DSCs) 

DSCs from the tooth, one of the many types of ASCs, have potential in applications 

such as tissue engineering and regenerative medicine as a result of their capacity for 

multipotent differentiation. There are two main benefits of using DSCs over other 

types of ASCs. Firstly, DSCs are more readily available in that they can be obtained 

in routine clinical practice from both permanent (Gronthos et al., 2000, Arthur et al., 

2009) and human exfoliated deciduous teeth (SHEDs) (Miura et al., 2003). They are 

easily cultivated and can be stored without adverse functional effects (Papaccio et al., 
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2006). Secondly, the neural crest cells, responsible for producing neurons, contribute 

a large portion of a tooth (including dental pulp) (Huang et al., 2008a, Chai et al., 

2000) and give rise to DSCs; the DSCs have a potential to form neurons. This 

suggestes a possible therapeutic use of DSCs in neurodegenerative disorders such as 

Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis (Kanafi et 

al., 2014). To date, researchers have described several types of stem cells identified in 

the tooth, such as dental pulp stem cells (DPSCs) (Gronthos et al., 2000), stem cells 

from human exfoliated deciduous tooth (SHEDs) (Miura et al., 2003), periodontal 

ligament stem cells (PDLSCs) (Seo et al., 2004), dental follicle progenitor stem cells 

(DFPCs) (Morsczeck et al., 2005) and stem cells derived from the apical papilla 

(SCAPs) (Sonoyama et al., 2008). 

 
Fig 1. 4: Stem cell niches located in the adult human tooth. 

Abbreviations: aPDLSCs, alveolar periodontal ligament stem cells; DPSCs, dental pulp stem cells; 
ERM, epithelial cell rests of Mallassez; PDL, periodontal ligament; rPDLSCs, root periodontal 
ligament stem cells; SCAP, stem cells from the apical papilla; SHEDs, stem cells from human 
exfoliated deciduous teeth. Adapted from‘Horizons in Clinical Nanomediciine’ (Mitsiadis, 2009).  
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Table 1.1: Properties of human dental mesenchymal stem cells 

Adapted from ‘Horizons in Clinical Nanomediciine’ (Mitsiadis, 2009) 

Cell Source Abbreviation 
Diffrentiation  Potential 

in vitro               in vivo Markers 

Dental pulp 

 

DPSC 

 

myogenic 

odontogenic         

adipogenic                

chondrogenic 

osteogenic 

neurogenic  

muscles               

teeth   

bone 

heart 

dentin-pulp-like 

complex 

STRO-1  

CD146 

CD44 

Exfoliated 

deciduous teeth 

 

SHED 

 

neurogenic                  

odontogenic  

myogenic 

adipogenic 

osteogenic 

chondrogenic                 

bone 

dentin                

teeth 

 

STRO-1 

CD146 

 

Root apical 

papilla 

 

SCAP 

 

odontogenic 

adipogenic 

dentin STRO-1     

CD146  

CD44         

CD24 

Periodontal 

ligament 

 

PDLSC 

 

adipogenic 

osteogenic 

chondrogenic 

cementogenic 

cementum               

PDL-like-tissues 

 

STRO-1  

CD146 

CD44 

 

Dental follicle 

 

DFSC 

 

cementogenic                   

cementum 

osteogenic 

PDL STRO-1  

CD44  

BMPR-IA 

BMPR-IB 

BMPR-II 
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1.3.1 Stem cells from exfoliated deciduous teeth (SHEDs) 

As described by Miura et al (2003), exfoliated deciduous dental pulp is a source of 

multipotent stem cells. SHEDs can be isolated from dental pulp explants or tissue 

digestion. Multiple neural and glial markers, such as nestin, βIII tubulin, Glutamic 

acid decarboxylase (GAD), Neuron-specific nuclear-binding protein (NeuN), glial 

fibrillary acidic protein (GFAP), Neurofilament-M (NFM) and Cyclic nucleotide 3' 

phosphohydrolase (CNPase), are expressed by SHEDs, along with STRO-1 and 

CD146 surface molecules, a feature shared with DPSCs (Gronthos et al., 2000; Miura 

et al., 2003). Other researchers have demonstrated that SHEDs express additional 

markers, including Oct4, CD13, CD29, CD44, CD73, CD90, CD105 and CD166 

(Huang et al., 2009, Pivoriuunas et al., 2010). SHEDs display a greater rate of 

proliferation than DPSCs, albeit a reduced ability to form dentin-pulp complexes and 

capable of forming bone and dentin, as demonstrated by work in vivo (Miura et al., 

2003). Specific assays have revealed the capacity of SHEDs to differentiate into 

multiple cell types in vivo such as odontoblasts, osteoblasts, adipocytes, neural cells, 

myocytes and chondrogenic myocytes (Miura et al., 2003, Wang et al., 2010). 

Furthermore, SHEDs cultured into biodegradable scaffolds and subsequently 

transplanted into immunodeficient mice gave rise to a dental pulp-like tissue, 

indicating the potential of SHEDs to differentiate in vivo into odontoblast-like cells. 

SHEDs can also produce large quantities of bone tissue as well as endothelial-like 

cells, as shown by several researchers (Arthur et al., 2009, Daltoe et al., 2014). 
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1.3.2 Stem cells from the apical papilla (SCAP) 

The root apical papillae are soft tissues found at the apex of the developing permanent 

tooth and are a source of SCAP. It contains fewer cellular and vascular elements than 

dental pulp, but its cells proliferate 2-3 times faster (Sonoyama et al., 2008). Stem 

cells from the apical papilla have shown an increased rate of proliferation and 

telomerase activity than DPSCs. A study has demonstrated the increased expression 

of markers of MSC and ‘stemness’ within in vivo cultures of apical papillae cells, 

along with increased levels of differentiation inhibitors and CD90 (Ruparel et al., 

2013). In addition to CD24, which is expressed only in SCAPs, both DPSCs and 

SCAPs express the three MSC surface markers STRO-1, CD146 and CD44 

(Sonoyama et al., 2008). In addition to root formation, a study has reported that 

SCAPs can function as precursors for odontoblasts, neural cells, adipocytes and 

dentin-like tissue, as well as reacting to neurogenic stimuli to express nestin, 

neurofilament and other markers of neurogenesis (Huang et al., 2008b). Other studies 

have shown that hypoxia evokes the upregulation of genes specific to neuronal 

differentiation and augmente the neuronal differentiation of SCAP in the presence of 

exogenous differentiation stimuli (Vanacker et al., 2014). 

 

1.3.3 Periodontal ligaments stem cells (PDLSCs) 

Located near the periodontal tooth ligament, PDLSCs are a subset of MSCs with the 

ability to differentiate into functional cementoblasts following transplantation into 

immunocompromised mice. This gives rise to cementum- and periodontal 

ligament-like structures as well as collagen fibres within the cementum-like tissue. 
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These properties of PDLSCs infer a capacity for in vivo replenishment of the 

cementum and PDL (Seo et al., 2004, Mrozik et al., 2010). Sensitive to specific 

external stimuli within a neurotrophic culture medium, PDLSCs can give rise to 

neural cells as well as other cell types such as osteoblasts, chondrocytes and 

adipocytes (Kadar et al., 2009, Gay et al., 2007, Kim et al., 2012). Notably, PDLSCs 

can be discerned from MSCs of the bone marrow by their specific expression of 

apolipoprotein D, major histocompatibility complex-DR-alpha (MHC-DR α) and 

major histocompatibility complex-DR-beta (MHC-DR β) (Fujita et al., 2007). 

Recently, a specific gene for F-spondin that indicates an early stage dental follicular 

cell type with clonogenic potential has been proposed as a marker for PDLSC, along 

with the absence of tenascin-N, a gene indicative of terminally differentiated 

periodontal ligament cells (Nishida et al., 2007). 

 

1.3.4 Stem cells derived from the dental follicle (DF) 

Dental follicle precursor cells, or DFPCs, are derived from the dental follicle, a sac 

containing the developing tooth which is instrumental in tooth development (Cahill 

and Marks, 1980). Expressing the likely markers of stem cells, Nestin and Notch-1 in 

the follicular sacs of human third molars, DFPCs also display increased attachment in 

vitro in addition to the capacity to give rise to cell types such as osteoblasts, 

cementoblasts, chondrocytes and adipocytes (Morsczeck et al., 2005, Yao et al., 2008). 

In a study whereby bovine DFSCs were transplanted into immunocompromised mice, 

the development of cementoblasts was observed, as was the production of a PDL-like 
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tissue in similar in vivo studies using murine DFSCs and severe combined 

immunodeficient (SCID) mice (Handa et al., 2002, Yokoi et al., 2007). The capability 

of DFPCs to produce cementum and periodontal ligament was demonstrated in a 

study in co-cultures with Hertwig epithelial root sheath cells (Bai et al., 2011). A 

study has shown that DFPCs express the mesenchymal cell marker vimentin, as well 

as overexpressing IFF-2 transcripts, a feature that distinguishes DFPCs from BMSCs 

(Morsczeck et al., 2010). This cell type is also distinct from SHEDs and other dental 

stem cells in cell morphologies and stem cell marker expression patterns under 

standard cell culture conditions. For example, different patterns in expression of 

neural cell markers, such as microtubule-associated protein 2, are observed between 

DFPCs and SHEDs when cultured in serum-replacement medium. In addition, SHED 

and DFPCs have different neural differentiation potentials. Furthermore, unlike 

SHEDs, the stem cell marker Pax6 is not expressed by DFPCs (Morsczeck et al., 

2010).   

 

1.4 Dental pulp tissue 

The central cavity of the tooth contains a soft fibrous connective tissue, dental pulp. 

The pulp continues through the length of the tooth as far as the root. The blood 

vessels and nerves of the dental pulp access the tooth where the root canal and the 

periodontium meet, at the apical foramen. Surrounded by dentine for structural 

support and protection from the microbial rich environment of the mouth, dental pulp 

contains elements of all connective tissues, namely cellular, vascular, neuronal and 
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matrix components containing fibrous components collagen type I, II and non-fibrous 

components (Nanci, 2007). Within the dental pulp chamber, dentin-producing 

odontoblasts are capable of depositing dentin matrix to form a continuous dentin layer, 

which encloses the dental pulp during tooth development. Outside of the chamber, 

enamel, the hardest tissue in the human body, covers the dentin at the crown. 

Cementum and periodontal ligament fibres support and connect the tooth to the 

alveolar bones (Fig. 1.5).  

 

 

 
 

Fig 1. 5: Schematic drawing of the typical structures of the tooth. 

Dental pulp tissue resides in the central cavity, enclosed by a continuous dentin layer produced by 
odontoblasts. Enamel covers the crown section of the dentin layer, while cementum covers the root 
dentin. Adapted from: Blausen.com, "Blausen gallery 2014" 
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1.4.1 Dental pulp formation during tooth development 

In common with many other organs, tooth development initiates from interactions 

between the epithelium and mesenchyme. As demonstrated in studies, tooth 

development occurs in a process of sequential and reciprocal interactions between the 

ecto-mesenchyme of the cranial neural crest (CNC) and the epithelium of the mouth, 

following the migration of CNC cells into the appropriate structures of the head and 

neck (Chai et al., 2000, Jernvall and Thesleff, 2000). Figure 1.6 shows the various 

stages of tooth development, each denoted by the resulting shape of the dental 

epithelium at that specific stage. This process initiates morphologically at the 

tooth-forming site with the thickening of oral epithelium. Then leads to invagination 

into the adjacent mesenchymal layer (the E11.5 stage observed in murine models), 

whose cells condense to give rise to an epithelial “bud”, at stages E12.5 to E13.5. The 

E14 stage is characterised by the formation of a “cap”, produced by dental pulp and 

odontoblasts following the expansion of the epithelium and it’s surrounding of the 

condensed mesenchyme-dental papilla (Neubuser et al., 1997). Several researchers, 

have described the generation of the dental follicle or sac from the proliferation of the 

outermost cells of the dental papilla and cells adjacent to the epithelial dental 

compartment (Tucker and Sharpe, 2004). The cementum, periodontal ligament, 

alveolar bone and other tooth-supporting tissues are subsequently generated by the 

dental follicle. Studies also detailed the E16 stage, whereby differentiation takes place 

along the epithelium-mesenchymal interface of the bell-shaped tooth as odontoblasts 

(which produce dentin) are generated from the mesenchyme and ameloblasts (which 
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produce enamel) are produced by the epithelium. The dental root is formed by the 

apical growth of Hertwig’s epithelial root sheath (HERS), a bi-layered sheath 

produced by the cervical epithelium, in parallel with the production of enamel and 

dentin to complete the formation of the crown. This process is followed by the 

eruption of the tooth to the point of the oral occlusal plane. 

 

 

Fig 1. 6: The key stages of tooth development. Adapted from (Volponi et al., 2010) 

 

1.4.2 Dental pulp in continuously growing rodent incisors 

Humans and rodents share many similarities in tooth organ formation and patterning, 

although humans possess more complex tooth types and two sets of dentitions while 

the mouse incisor exhibits continuous growth at the apical end throughout the 
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animal’s lifetime. Mouse incisor development commences later than that of molars 

(Neubuser et al., 1997) through identical development stages except in the cap stage 

(E14.5) where the incisor rotates and develops horizontally along the proximo-distal 

axis of the mandible (Fig. 1.7, A). The labial cervical loop is formed at E16, the bell 

stage and is a specific element of the epithelial compartment produced when the labial 

epithelium lengthens to a greater degree than the lingual epithelium due to the 

generation of differentiated ameloblasts (Tucker and Sharpe, 2004). Previously 

demonstrated as self-renewing due to the subset of epithelial stem cells it contains 

(which lead to the continuous production of enamel through differentiation to 

ameloblasts), the labial cervical loop also consists of stellate reticulum (SR) cells 

enclosed by an epithelial layer (Harada et al., 1999). A further difference between 

molar and incisor germs is that, from the late bell stage (E19.5), the incisor germs 

continue to grow without forming roots (Harada et al., 2002). In rodents, incisors lack 

obvious crowns or roots, but exhibit two specific surfaces as shown in Fig. 1.7, B and 

C, the labial side and the lingual side, with the former covered by enamel produced by 

ameloblasts (Ohshima et al., 2005). 
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Fig 1. 7: Structure and development of the murine incisor. 

A: stages of development of the mouse incisor tooth germ. B: basic structure of the well-formed mouse 
incisor. C: inset of B displaying individual cell types within the mouse incisor. Stem cells are located 
within the stellate reticulum (SR). Colour coding: enamel (red), dentin (blue), epithelium (orange), 
dental mesenchyme (light blue dots) and follicular mesenchyme (green). Abbreviations: cl, cervical 
loop, cm, condensed mesenchyme, dp, dental papilla, eo, enamel organ, m, molar, oe, oral epithelium, 
p, pulp, vl, vestibular lamina, DE, dental epithelium, FM, follicle mesenchyme, IDE, inner dental 
epithelium, ODE, outer dental epithelium, PM, papilla mesenchyme, SR, stellate reticulum, TA, transit 
amplifying. Adapted from (Harada et al., 2002; Wang et al., 2007). 

  

1.4.3 Stem cells within the mouse incisor 

The observation that cells of the rodent incisor proliferate throughout the animal’s 

lifetime is indicative of the presence of stem cells. In contrast to cells located adjacent 

to the incisal region, Studies have demonstrated the rapid division of cells located in 

the incisor apex and the apical-to-incisal direction of differentiation that occurs across 

a gradient (Smith and Warshawsky, 1975). Researchers subsequently showed that the 

apex of the incisor contains enamel- and dentine-producing stem cells, while a study 

in murine dental pulp indicated that enamel was generated by ameloblasts, arising 

from epithelial stem cells, while dentine was produced by odontoblasts, produced 

through the differentiation of mesenchymal stem cells (Harada et al., 1999, Seidel et 

al., 2010). 
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1.4.4 Epithelial stem cells in the cervical loop 

The mesenchymal layer of dental pulp is enclosed by lingual and labial side epithelia 

in the form of an elongated cylinder, as illustrated in studies on the rodent incisor 

(Thesleff et al., 2007). Given that the lingual epithelia does not give rise to 

ameloblasts, enamel is not produced on the lingual surface of the incisor, unlike the 

labial side where it is secreted by ameloblasts derived from epithelial stem cells 

(Harada et al., 1999). 

Label retention assays such as those utilising BrdU (5-bromo-2’-deoxyuridine) can be 

used to confirm the presence of stem cells within the cervical loop of the labium. This 

analogue of thymidine is taken up by the genome during cell division and 

subsequently diluted. The degree of dilution is dependent on the number of cell 

divisions, with actively cycling cells labeled following a short exposure to BrdU. 

Cells that divide slowly will require a longer period of exposure. Previous studies 

demonstrated that cervical loop cells with a low rate of division (slow cycling), 

termed label-retaining cells (LRCs), retained the label after the assay was completed 

while fast cycling cells diluted the BrdU label, thus indicating the presence of LRCs 

within the labial cervical loop (Harada et al., 1999). Other researchers have endorsed 

the existence of stem cells within the cervical loop through studies identifying the 

co-location of important regulatory molecules that mediate the maintenance and 

proliferation of stem cells and TA cells (Harada et al., 2002, Mitsiadis et al., 2007, 

Lapthanasupkul et al., 2012). 
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1.4.5 Perivascular and non-perivascular mesenchymal stem cell niche 

Previous studies have suggested the existence of a perivascular niche (pericytes) in 

the mouse incisor mesenchymal tissue through Cre-mediated genetic lineage tracing 

of pericytes during tooth development. In their study, NG2 Cre mice were crossed 

with Rosa26 (R26R) reporter mice. The result was that odontoblasts were produced in 

vivo by pericyte differentiation during the growth of incisors and also following 

damage. Of the resulting odontoblasts, however, it was shown that only 15% were 

derived from pericytes, indicating the existence of another source of MSCs within 

murine incisor mesenchyme. In order to identify responses to tooth damage within the 

various regions of the incisor pulp, a Dil-labeling assay was performed which labeled 

cells quiescent in the absence of damage in the cervical area but which subsequently 

migrated to the region of damage within 48 hours. This indicates the existence of a 

specific subset of mesenchymal stem cells localized to the mouse incisor cervix (Fig. 

1.8). Further research is required, however, in order to determine the exact location of 

this subset (Feng et al., 2011). 

 
Fig 1. 8: The populations of mesenchymal stem cells located within the dental pulp. 

Pericytes are found in a perivascular location while mesenchymal stem cells are believed to be 
localized to the apical terminus of the mesenchyme (Feng et al., 2011). 
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1.5 Markers for MSCs 

Among the best-characterised type of ASC, MSCs were first identified in bone 

marrow and later in multiple tissue types, displaying a high degree of plasticity. 

MSCs can be extracted, cultured and used in ex vivo research with relative ease, 

rendering them suitable candidates for therapeutic use (Beyer Nardi and da Silva 

Meirelles, 2006). However, the recent identification of heterogeneous populations 

within MSCs with varying degrees of ‘stemness’ and their subsequent isolation 

through plastic adherence culture methods has led to a more complex definition of 

MSCs (Lv et al., 2014). Somewhat obscure physical, phenotypic and functional 

characteristics of MSCs are used in their identification at present, thus the minimal 

criteria of MSCs is not met when isolating cells by cloning on a specific cell surface 

marker. Nonetheless, cell surface markers with individual patterns of expression in 

MSCs derived from various tissues have been proposed, such as STRO-1, SSEA-4, 

CD271 and CD146. However, specific markers associated with the stem cell nature of 

MSCs await identification.  

 

1.6 Thy-1 

Thymocyte differentiation antigen (Thy-1 or CD90), a known MSC marker, has been 

investigated in several tissues, including liver (Petersen et al., 1998), BM (Mayani and 

Lansdorp, 1994), epidermis (Nakamura et al., 2006), pericytes (Shi et al., 2008), 

neural and osteoprogenitor cells (Nakamura et al., 2010, Locatelli et al., 2003). In the 
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previous study of mouse incisor MSCs, the expression of Thy-1 was noticed by our 

research group. Thus, Thy-1 may be a candidate mesenchymal stem cell marker of the 

dental pulp stem cells. Further analysis is required, however, to determine the role of 

cells expressing Thy-1. 

Thy-1 is a heavily glycosylated 25–37 kDa conserved-cell surface protein anchored in 

glycophosphatidylinositol (GPI) (Almqvist and Carlsson, 1988). It was the first T cell 

marker identified during the characterisation of heterologous antisera against murine 

leukaemia cells and was shown to be located to thymocytes, T lymphocytes and 

neuronal cells (Reif and Allen, 1964). Thy-1 exists in many species, in 1982, a study 

detailed the conservation of Thy-1 throughout the evolution of vertebrates and 

selected invertebrates, with homologues demonstrated in squid, frogs, chickens, mice, 

rats, dogs and humans (Williams and Gagnon, 1982). In rodent, Thy-1 core protein 

has 111-112 Amino acid (aa) and was shown to contain three N-glycosylated sites. In 

humans, Thy-1 protein contains only two N-glycosylated sites (Almqvist and 

Carlsson, 1988) and is initially translated as a 161 and 162 aa pro-form (Seki et al., 

1985). 
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Fig 1. 9: The Thy-1 molecule and its proposed soluble forms in mice. 

Thy-1 is first generated in a 161 aa pro form. The initial 19 aa signal peptide is removed and the 
terminal 31 aa is replaced with a GPI anchor, thus producing the mature form anchored to the outer 
leaflet of the cell membrane through the diacyl group of the GPI anchor. N-linked glycosylation sites 
represent conserved, glycosylated asparagine residues within murine Thy-1. Soluble Thy-1 is generated 
either by cleavage of the GPI anchor by GPI-PLD, or by unspecified proteases acting at undetermined 
sites of cleavage (Bradley et al., 2009). 

	

1.6.1 Thy-1 expression 

Murine Thy-1 is located to thymocytes, peripheral T cells, myoblasts, epidermal cells 

and keratinocytes, while the human form has been described in endothelial and 

smooth muscle cells, CD34+ bone marrow cells, umbilical cord blood, cardiac 

fibroblasts and haemopoietic cells derived from foetal liver (Reif and Allen, 1964; 

Nakamura et al., 2006). Study also demonstrated the localization of Thy-1 to certain 

brain cells and fibroblasts in most types of vertebrates (Pont, 1987). In addition, 

Thy-1 is strongly expressed in rat nervous tissue, among other locations, study 
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showed that Thy-1 levels rise by almost 100-fold in the development of the early 

postnatal brain. Of note, cells previous lacking Thy-1 expression can subsequently 

produce high levels of the protein, with the reverse also observed. These 

developmental changes can take place in spatially- or temporally-defined periods of 

maturation (Morris, 1985).  

 

1.6.2 Functions of Thy-1 

Despite the existence of a large body of research on Thy-1, the function of Thy-1 has 

not yet been fully elucidated. At present, the functions of Thy-1 mainly include the 

following aspects: cognition, T-cell activation, neurite outgrowth, apoptosis, tumour 

suppression, inflammation and fibrosis (Abeysinghe et al., 2003, Rege and Hagood, 

2006). 

 

1.6.3 Thy-1 as a stem cell marker 

Thy-1 has been well-established, along with other markers, as a surface marker for 

many MSC types. For example, researchers have inferred that the detection of early 

markers of stem cells, such as Nanog, Oct-3/4 and SSEA-3, is indicative of stem cell 

potential along with stem/progenitor characteristics suggested by the co-location of 

CD90/Thy1, CD105, CD49, CD81, nestin, CD146, STRO-1 and other mesenchymal 

stem cell markers in a subpopulation of labial minor salivary gland cells (Andreadis et 

al., 2014). Thy-1 can also be considered a murine marker of hematopoietic stem cells 

as proved by its widespread use for this purpose (Petersen et al., 1998). Fibroblasts 

and myofibroblasts, plus certain blood progenitor cells of normal rat liver, typically 
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express Thy-1 and a minor subset of Thy-1-positive endogenous mesenchymal- 

epithelial cells has been recently identified within mature rat livers, functioning as 

hepatic stem cells or progenitors (Liu et al., 2015). Furthermore, a study in rodents 

has demonstrated the existence of Thy-1 expressing progenitors forming hepatocytes 

or cholangiocytes (Masson et al., 2006). In addition, a study suggested that Thy-1 

may be a marker for keratinocyte stem cells as Thy-1 was capable of identifying 

enriched populations of human keratinocytes stem cells (Nakamura et al., 2006). It 

can thus be seen that the stem cell marker functionality of Thy-1 is widely described, 

but of additional research interest. 

 

1.7 Flamingo 

Flamingo, as a member of the adhesion-G protein-coupled receptors (GPCR) family 

of proteins, was originally identified in Drosophila. In humans and rodents, three 

Flamingo gene orthologs had been discovered, namely, CELSR1–3 and Celsr1–3 

(Tepass et al., 2000, Vincent et al., 2000, Wu and Maniatis, 2000). These Celsr 

proteins have nine N-terminal cadherin repeats, followed by six EGF-like domains, 

seven putative trans-membrane segments and an intracellular C-terminus. Previous 

studies on Flamingo have centered on two main functions: regulate dendritic field 

deployment and planar cell polarity (Usui et al., 1999). In Drosophila, Flamingo can 

regulate dendrite branch elongation and prevent the dendritic trees of adjacent sensory 

neurons from having overlap of dendritic arbors (Kimura et al., 2006). In a study in 

mammalian, researchers found CELSR2 is involved in the regulation of dendrite 
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growth. CELSR2 expression reduced can lead to simplification of dendrites of 

pyramidal neurons in cortical cultures and purkinje neurons in cerebellar cultures 

(Shima et al., 2004). Another important function of Flamingo is the regulation of 

planar cell polarity. In the Drosophila wing, Flamingo localized at cell–cell 

boundaries, the absence of Flamingo can lead to distorted planar polarity. Studies 

showed that before morphological polarization of wing cells along the proximal-distal 

(P-D) axis, Flamingo is re-distributed predominantly to proximal and distal cell edges 

suggesting that cells acquire the P-D polarity by way of the boundary localization of 

Flamingo (Usui et al., 1999). Similarly, in mice, Celsr1 protein is required for the 

normal polarized position of kinocilia to one side of hair cells of the inner ear (Curtin 

et al., 2003). In addition, a new function of Flamingo in maintaining quiescent cells 

has been identified in a study of HSC niche. The study showed that noncanonical Wnt 

signaling member Flamingo regulates Frizzle family receptor Fz8 distribution at the 

interface between HSCs and N-cadherin+ osteoblasts in the HSC niche. N-cadherin+ 

osteoblasts predominantly express noncanonical Wnt ligands and inhibitors of 

canonical Wnt signaling under homeostasis. Under stress, noncanonical Wnt signaling 

is attenuated and canonical Wnt signaling is enhanced in activation of HSCs. These 

results demonstrated that noncanonical Wnt signaling maintains quiescent long-term 

HSCs through Flamingo and Fz8 interaction in the niche (Sugimura et al., 2012). 
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1.8 Polycomb Group (PcG) proteins 

PcG proteins were initially shown to repress Hox genes in Drosophila melanogaster 

(Cao et al., 2002). Mutations of these proteins in flies result in the homeotic 

transformation of one body segment into the identity of another. Aside from a role in 

the control of body plan and segmentation, studies also revealed several crucial roles 

of PcG proteins in the maintenance of embryonic and adult stem cells, cell 

proliferation, oncogenesis, genomic imprinting and X-chromosome inactivation 

(Valk-Lingbeek et al., 2004). In mammalians, two distinct PcG complexes, Polycomb 

Repressive Complex (PRC) 1 and 2, have been well-characterised (Ku et al., 2008). 

Mammalian PRC1 consists of orthologs of Drosophila Polycomb (Cbx2, Cbx4, Cbx6, 

Cbx7 and Cbx8), Posterior sex combs (Mel18, Bmi1, Nspc1/Pcgf1 and MBLR), 

dRing (Ring1a and Ring1b) and Polyhomeotics (Phc1, Phc2 and Phc3), while core 

PRC2 was shown to consist of Suz12, Eed, Ezh1 and Ezh2 (Schwartz and Pirrotta, 

2007, Ringrose and Paro, 2004). Studies have demonstrated the importance of PRC1 

to the stability of gene repression through its inhibition of nucleosome remodelling. 

Furthermore, a study has shown the key role of Ring1a and Ring1b of PRC1 in terms 

of the E3 ubiquitin ligase activity for histone H2A displayed (de Napoles et al., 2004). 

In a recent study in murine incisor stem cells, researchers described the expression of 

Bmi1 of PRC1, the deletion of which gave rise to fewer stem cells, disrupted gene 

expression and impaired production of enamel. Transcriptional profiling further 

demonstrated that Hox genes’ expressions were typically inhibited by Bmi1 in adults, 

with functional assays revealing the maintenance of the undifferentiated state of stem 
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cells through Bmi1-mediated repression of Hox genes (Biehs et al., 2013). The roles 

of PRC2 include gene repression and as a histone methyltransferase that specifically 

methylates lysine 27 of histone H3 (H3K27) in nucleosomes (Schwartz and Pirrotta, 

2007). 

	

 

 
 

Fig 1. 10: The resolution of bivalent chromatin domains during differentiation of ES cells.  

In ES cells, histone H3K27me3 and H3K4me3 mark several key developmental regulators, bound by a 
non-processive form of RNA polymerase II (poised pol II). PRC1-mediated ubiquitylation of histone 
H2A on lysine 119 (H2AK119ub1) maintains RNA pol II in a poised configuration. Several silent key 
developmental regulators are marked by the histone variant H2AZ, which may further protect these 
genes from DNA methylation and stable silencing. Upon differentiation of ES cells, activated bivalent 
genes are relieved from the repressive H3K27me3 mark and H2AZ is redistributed to a different set of 
highly active genes. Histone methyltransferase MLL1 is required for the resolution of specific bivalent 
domains, potentially by the recruitment of H3K27-specific demethylases (K27DM). Conversely, 
bivalent genes that remain inactive in differentiated cells lose the active H3K4me3 mark through the 
activity of K4-specific histone demethylases (K4DM), such as RBP2. The replacement of H2AZ by 
H2A may lead to CpG island methylation (meCpG, blue circles), causing stable gene silencing (Ku et 
al., 2008). 
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1.9 PRC1 complex and stem cells 

The PRC1 family can be further divided into at least six groups based on the identity 

of the PCGF subunit according to the specific polycomb group ring finger protein 

(PCGF) subunit (Gao et al., 2012). PCGF1, for example, is found in PRC 1.1, along 

with Bcor and Ring proteins, both of which have been shown to play a critical role in 

the suppression of regulators of development and maintenance of the undifferentiated 

state of ES cells (Wamstad et al., 2008). Results from studies in mice lacking Ring1b 

expression indicated that Ring1b might affect the differentiation potential of neural 

stem cells (NSCs) to neurons and glia. In foetal NSCs, Ring1b-deficiency has been 

shown to cause premature neuronal differentiation. In addition, Ring1b gene mutation 

leads to enhanced neuronal differentiation and reduced gliogenesis by modulating the 

temporal specification of developing neural progenitors (Roman-Trufero et al., 2009). 

A recent study in mice demonstrated that the 3T3-L1 pre-adipocyte differentiation 

was inhibited by anti-adipogenic Fbxl10 in a Ring1b knockdown model, suggesting 

that adipogenesis is inhibited through the repressing of key genes such as Pparg by 

Fbxl10 via a non-canonical PRC1 complex pathway (Inagaki et al., 2014). Ring1b 

inactivation in adult stem and primitive progenitor cells within the hematopoietic 

compartment leads to proliferative alterations rather than differentiation proposing a 

critical role for Ring1b in modulating hematopoietic cell turnover by inhibiting the 

proliferation of stem cells while stimulating proliferation of their mature progeny 

(Cales et al., 2008). Bcor has also been reported to regulate mesenchymal stem cell 

function by epigenetic mechanisms (Fan et al., 2009). Bcor mutation increased MSCs 
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proliferation and osteo-dentinogenic capacity in cells derived from the dental pulp 

tissue of an oculofaciocardiodental (OFCD) patient. Although the precise mechanisms 

remain unclear, this preliminary data suggest that members of the PRC1 complex 

have a crucial role in the maintenance of DPSC lineage in both humans and mice. 

 

1.10 Hypothesis and aims of the research project 

Data suggest that MSCs residing in different organs show a high degree of similarity, 

however, certain properties or characteristics may be modified due to functional 

and/or signaling differences in the tissue-specific micro-environments. Therefore, the 

analysis of the microenvironment in which MSCs are located is particularly important 

in understanding their properties and behaviour. 

Hypothesis: Unlike human teeth, murine incisors constantly erupt and grow 

throughout the animal’s lifetime in order to mitigate for regular wear, a process in 

which stem cells within the incisors play an important role. Given the previous 

research of mouse incisors we assume a MSCs niche is located at the apical end of 

mouse incisor. 

Aims: As dental pulp mesenchymal stem cells have been mostly studied based on 

their in vitro characteristics and their in vivo characteristics are not well understood. 

This project seeks to determine the location of the MSC niche and, subsequently, of 

stem cells within the murine incisor while determining the gene profile specific to 

these cells, thus contributing to an increased in vivo understanding of dental pulp stem 

cells and their micro-environments. 
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Chapter 2 : Method and Techniques 

2.1 Tissue processing 

2.1.1 Reagents and solutions 

Paraformaldehyde PFA (4%) Sigma, P6148 

DEPC (Diethyl pyrocarbonate) Sigma, D5758 

Formic acid, 98% Fisher, F/1850/PB17 

EDTA (Ethylenediaminetetraacetic acid) VWR, 20302.293 

Ethanol VWR, 101077Y 

Methanol Fisher, M/4056/PB17 

Histoclear National Diagnostics, HS-202 

1,2,3,4-Tetrahydronaphthalene SIGMA, 429325 

Ultraplast Polyisobutylene Histological Wax Solmedia, WAX060 

Erhlich’s Haematoxylin Solemedia, HST003 

Eosin, aqueous solution (0.5%) Riedel-de Haën, 32617 

DePex BDH, 360294H 

BrdU Sigma, B5002 

CldU Sigma, C6891 

IdU Sigma, I7125 

EdU Invitrogen, A10044 

Tamoxifen Sigma, T5648 

Corn oil Sigma, C8267 
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2.1.2 Obtaining mouse tissues 

The UK Home Office approved all the animal experiments. Unless otherwise stated, 

colonies of wild type and transgenic mice were maintained and carried out breeding by 

Mr. Alex Huhn. The cross and design of mice were performed by myself according to 

experiment demands. As in this project, the Cre/loxP site-specific recombination system 

was used as an important tool to investigate cell fates and gene functions. A 

pCAGCreERT2 mouse line purchased from Jackson’s lab was used to provide ubiquitous 

expression of Cre under  a strong synthetic promoter CAG that is frequently used to 

drive high levels of gene expression in mammalian expression.  Beside, Thy-1 Cre 

mouse line with Thy-1 promoter was purchased to enable Cre expression in all Thy-1 

expressing cells. In addition, two reporter mouse lines: mT/mG double-fluorescent 

reporter mouse line (R26R mT/mG) and a 4-colour reporter mouse line (R26R-Confetti) 

were purchased to provide reporter genes. Moreover, a R26::Cre ERT2 mouse line 

purchased from Jackson’s lab was used to cross the Ring1a−/−  Ring1bfl/fl mice to 

accomplish conditional inactivation of Ring1b in vivo. Furthermore, Bcorfl/+;Pax3Cre 

and Bcorfl/y;Pax3Cre adult tissues which Cre was driven by Pax3 promoter in neural 

crest were provided by Dr. Vivian Bardwell. All mouse lines are listed in the Table 2.1. 

The Thy-1 Cre and Cre-ERT2 transgenic mice lines were maintained as heterozygotes. 

Mice carrying these transgenes were identified by performing a genotyping polymerase 

chain reaction (PCR) that amplified a Cre and Cre-ERT2 product by myself. Thy-1Cre; 

R26R-Confetti and Thy-1Cre; R26R mT/mG were made and confirmed	by PCR (Access 

RT-PCR System Promega, A1250).  
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Table 2.1: Mouse lines used in this project 

Mouse line1 Mouse line2 Compound mouse line 
pCAGCreERT2  

(from Jackson’s lab) 

R26R mT/mG  

(from Jackson’s lab) 

pCAGCreERT2; R26R 

mT/mG 

 

Thy-1Cre  

(from Jackson’s lab) 

R26R mT/mG  

(from Jackson’s lab) 

Thy-1Cre; R26R mT/mG 

R26R-Confetti  

(from Jackson’s lab) 

Thy-1Cre;R26R-Confetti 

Ring1a-/-;Ring1bfl/fl 

generated as described 

previously (Cales et al., 

2008) 

R26::Cre ERT2  

(from Jackson’s lab) 

Ring1a-/-;Ring1bfl/fl; 

R26::Cre ERT2 

Bcorfl/+;Pax3Cre provided 

by Dr. Vivian Bardwell 

 Bcorfl/+; Pax3Cre 

 

Vaginal plugs were checked using a probe the following day after male and female mice 

mated overnight (O/N). The day on which the vaginal plug was discovered was used to 

determine the embryonic stage and was designated as embryonic day 0.5 (E0.5). Home 

office schedule one specification was followed during the collection of embryonic and 

neonatal tissues. Cervical dislocation and CO2 suffocation was used to sacrifice mice. 

Mice mandibular and maxillary were collected in ice-cold 1x PBS. For postnatal pups, 

the day on which pups were born was designated as postnatal day 0 (PN0). Pups and 

adult mice were sacrificed by cervical dislocation or CO2 suffocation followed by 

decapitation. After excess blood was blotted on a tissue paper, pup heads were collected 

in ice-cold 1x PBS. 

 

2.1.3 Nucleosides administration 

Nucleosides, such as BrdU, CldU, IdU and EdU are thymidine analogues that are 

incorporated into the newly synthesized DNA of S-phase cells. Therefore, detection of 

nucleosides can be used to reflect cell division by specific antibodies against BrdU, 
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CldU, IdU and EdU. To detect rapid cell division, per 1kg body weight, 200 mg BrdU 

(10 mg/ml BrdU stock in 0.9% saline) was administrated intraperitoneally to CD1 PN5 

and adult mice. Mice were subsequently sacrificed shortly at time points of 2 hours, 8 

hours and 16 hours after the injection and processed through histology and ICH analysis. 

To detect slow cycling cells, a different nucleoside-administrating strategy was 

performed. CD1 mice continuously received freshly prepared 1mg/ml BrdU in water by 

oral administration for 3 weeks. The BrdU solution was protected from light and 

changed every other day. The mice were then culled after a washout period for 1 day, 8 

days, 16 days, 32 days and 64 days respectively. The BrdU labeling would be retained 

and detected only in slow cycling cells. To label the fast cycling cells and slow cycling 

cells on one sample section, two rounds of nucleosides labeling were subsequently 

performed. In the first round, IdU was used to label slow cycling cells, IdU was given to 

CD1 mice continuously by drinking water for 3 weeks (10 mg/ml) in double distill 

water, followed by a 32 day washout period, then mice received a single dose CldU 

injection (200mg/kg body weight) to label fast cycling cells, they were then culled and 

analyzed the next day. To label fast/slow cycling cells for flow cytometry analysis PN5 

CD1 pups were continually given EdU injections (3.3 µg per g body weight) for 3 

weeks and washed out for another 3 weeks before collection.  

 

2.1.4 Tamoxifen administration 

For pCAGERT2Cre;R26R mT/mG double transgenic mice, PN2 pups were given a single 

low dose intraperitoneal injection of 2 µg tamoxifen (10 mg/ml in corn oil) to randomly 

activate the Cre-expression to produce eGFP fluorescence. Following tamoxifen 

administration, the pups were then sacrificed by cervical dislocation 3 weeks later and 

the teeth were carefully dissected out and stained by ICH to visualize the eGFP 

expression. For the high dose tamoxifen injection group, three high doses tamoxifen 
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injections (67 µg/g body weight, 10 mg/ml in corn oil solution) were given to the 

pCAGERT2Cre;R26R mT/mG double transgenic mice every 2 days to activate the 

Cre-expression in all the cells to produce eGFP fluorescence. The mice were then 

sacrificed by cervical dislocation 1, 2 and 3 weeks later to dissect teeth for ICH and 

analysis. 

To accomplish conditional inactivation of Ring1b in vivo, Ring1a -/-; Ring1bfl/fl; 

R26::CreERT2 mice were generated. Conditional deletion of Ring1b was carried out at 

the desired stage of postnatal life by 4-hydroxy tamoxifen (OHT) treatment (40 mg/kg 

body weight). Ring1a -/-; Ring1bcko/cko mice were obtained by injecting OHT at PN9 and 

PN13 to inactivate Ring1b. The Ring1a -/-;Ring1bcko/cko mice were sacrificed at PN17. 

The efficiency of tamoxifen-induced Cre expression to delete Ring1b was confirmed by 

in situ hybridization (ISH) of PN17 incisors.  

 

2.1.5 Tissue fixation, decalcification and dehydration  

Mouse mandibles and maxillae were dissected in cold 1x nuclease-free PBS and fixed 

up to 2 days in 4% paraformaldehyde (PFA) at 4ºC according to age. For E15.5 or older 

embryonic heads, fixation was about 4-12 hours. For adult head, the fixation time was 

prolonged to 2 days. Mouse tissues older than E16.5 need to be decalcified in 4.3% or 

12.5% EDTA pH8.0 containing 1% PFA for 1-3 weeks at room temperature on a shaker, 

depending on the developmental stages of the embryos/mice. Adult mouse tissues were 

decalcified for 3-6 weeks with Morse’s Solution (10% sodium citrate and 22.5% formic 

acid) or 4-8 weeks with 10% EDTA pH8.0 at room temperature on a shaker. All 

decalcifying solutions were freshly prepared and changed every day. Tissues were 

thoroughly washed with 1x nuclease-free PBS to eliminate residual PFA and decalcified 

solution and then dehydrated in ascending ethanol solutions (30%, 50%, 70%, 85%, 95% 
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and 100%) after fixation and decalcification. The duration of each step was determined 

by the size and age of the sample, as listed in the Table 2.2 below.  

 

Table 2.2: Dehydration time in ethanol according to the specimen 

Sample Ascending Ethanol Solutions 

Embryo head (E11.5 or earlier) 30 minutes per change 

Embryo head (E12.5- E16.5) 2-4 hours per change 

Embryo head (E16.5- E18.5) 4-8 hours per change 

Postnatal 1-10 days O/N per change 

Adult mouse jaw 24 hours per change 

 

 

2.1.6 Paraffin embedding 

After final dehydration in 100% ethanol the tissues were incubated in several changes of 

histoclear. Tissue samples were incubated in a histoclear: paraffin mix (in 1:1 ratio) at 

60°C up to 1 hour, following by several consecutive wax changes to allow the 

replacement of ethanol by paraffin wax. The detailed duration of each step for different 

tissues is specified in Table 2.3. After the long incubation period in paraffin wax, whole 

jaws were embedded in a specific orientation (frontal or sagittal) using metal moulds. 

Paraffin wax blocks were stored at room temperature until sectioning. 
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Table 2.3: Duration of each embedding step according  

to the developmental stage of mouse jaws 

Tissues Histoclear  Histoclear: 

Wax (1:1) 

Wax Vacuum 

Embedding 

E11.5 or earlier 

(Head) 

30 minutes 

x 2  

30 minutes 1 hour x 3  N/A 

E12.5-E16.5 

(Head) 

20 minutes 

x 6  

30 minutes 1 hour x 5  30 minutes 

– 1 hour 

E16.5-E18.5 

(Head) 

30 minutes 

x 6  

30 minutes 1 hour x 5 + 

O/N 

1 hour 

Postnatal 1-10 

days 

1 hour x 5  

 

30 minutes 

 

1 hour x 5 + 

O/N 

1 hour 

Postnatal/Adult 

(Jaw) 

1 hour x 6 + 

O/N 

1 hour  1-2 hours x 5 + 

O/N 

1 hour 

 

2.1.7 O.C.T. compound (O.C.T) embedding for frozen sectioning 

After fixation in 4% PFA according to developmental stages, samples were washed in 

1x PBS 3 times for 5 minutes each to remove residuary PFA. Tissue samples were then 

incubated in 30% surcrose dissolved in 1x PBS at 4°C O/N up to 24 hours and samples 

were subsequently, transferred to surcrose: O.C.T mix (in 1:1 ratio) for 12 to 24 hours at 

room temperature before immersion in O.C.T solution at room temperature O/N to 24 

hours to allow tissues be filled with O.C.T. Samples were then placed in the bottom of a 

plastic mold at a specific orientation (frontal or sagittal) and immersed in the O.C.T. 

These moulds containing samples and O.C.T were placed on the dry ice to solidify the 

O.C.T. The O.C.T block containing samples were kept in -20°C until sectioning. 

	
2.1.8 Tissue sectioning 

Paraffin wax blocks were sectioned using a microtome (Leica RM2245). The samples 

were sectioned to produce wax ribbons of 5-8 µm in thickness. Consecutive sections 
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were then mounted serially on glass slides (SuperFrost®Plus, VWR™) for the next step 

of analysis.  

O.C.T embedded PN5 mouse incisors were sectioned using a cryostat (Bright 

Instrument Ltd). While O.C.T embedded adult incisors were sectioned using an 

alternative (Huntingdon England) with a blade specialized for sectioning hard tissues. 

The samples were sectioned to produce sections of 12-30 µm in thickness. Sections 

were mounted on glass slides (SuperFrost®Plus, VWR™) and stored at -20°C until 

staining and further analysis. 

 
2.1.9 Haematoxylin and Eosin staining (H&E) for histology analysis 

H&E staining was used to assess tissue and cell morphology. Cell nuclei were stained 

blue by haematoxylin, while eosin stained the cytoplasm, connective tissue and other 

extracellular substances pink or red. Paraffin sections were de-paraffinised with two 10 

minutes histoclear washes and rehydrated through a graded series of ethanol washes 

(100%, 90%, 70% and 50%) for 2 minutes each. Sections were washed in distilled water 

for 10 minutes and submerged in Erhlich’s haematoxylin for 10 minutes. The samples 

were washed to remove excess haematoxylin under running water for 10 minutes. Prior 

to differentiation, sections were rinsed in distilled water and submerged in acid alcohol 

(0.5% HCl 35% alcohol) for 15 seconds. Subsequently, the sections were stained with 

0.5% aqueous eosin for 2 minutes and washed in distilled water after dehydration and 

through a series of two minutes ethanol washes (70%, 90% and two 100%). Sections 

were air-dried for up to 1 hour before being coverslipped with DePex in a fume hood. 

To visualize cell morphology, sections were viewed in a light-field using a Zeiss 

microscope (Axioskope 2 plus) and captured with an AxioCam HRC (Zeiss) and 

Axiovision software. 
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2.2 Staining for β-galactosidase (LacZ) activity 

2.2.1 Reagents and solutions 

Trizma® base (Tris base) Sigma, T1503 

Glutaraldehyde MERCK, 104239025 

Sodium deoxycholate  Sigma, D6750 

IGEPAL CA-630 (NP-40)  Sigma, I3021 

Potassium ferrocyanide (K4[Fe(CN)6])  BDH, 102054F 

Potassium ferricyanide (K3[Fe(CN)6]) BDH, 102044D 

Magnesium chloride (MgCl2)  Fisher, BP214-500 

5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside 

(X-Gal) 

Fermentas, R0404 

Phosphate buffered saline (PBS) Fisher, BP-665-1 

Methanol Fisher, M/4056/PB17 

Propan-2-ol (isopropanol)  Acors Organics, 389710025 

1,2,3,4 -Tetrahydronaphthalene Sigma, 429325 

Eosin, Alcoholic Solution (in Ethanol)  

Eosin Y disodium salt (0.25%) Riedel-de Haën, 32617 

21% Distilled H2O  

0.5% ml Glacial Acetic Acid VWR, 20104.334 

Nuclear Fast Red (in H20)  

Nuclear Fast Red (0.2%)  Sigma, 60700 

Aluminum potassium sulphate (10%) Fisher, A/2400/53 

O.C.T. compound BDH, 361306E 

Sucrose Sigma, S0389 
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2.2.2 Whole mount β-galactosidase staining 

Transgenic mice carrying a LacZ reporter were processed through the LacZ staining 

protocol. Samples were carefully dissected in cold 1x PBS. Postnatal teeth were 

carefully dissected from the mandibles and maxillae to allow better penetration of the 

fixative and the staining solution. Dissected tissues were immediately placed in fixative 

solution (0.4% PFA and 0.2% glutaraldehyde in PBS) at room temperature. The fixation 

time varied depending on the tissue (Table 2.4).  

 

 
Table 2.4: Fixation time for X-gal staining 

 

 
 
 
 
The fixed tissue was then washed in 1x PBS and incubated with X-gal staining solution 

(Table 2.5) at 37ºC in the dark. Adequate reaction colour (blue) usually developed after 

approximately 24-48 hours after initial incubation. Samples were washed 3 times in 1x 

PBS for 10 minutes each or longer and then re-fixed in 4% PFA for at least one hour at 

room temperature for histological processing. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 Sample Stage Incubation Time  

E14.5 

Postnatal PN5 

Adult 

30 minutes 

4 hours 

O/N 
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Table 2.5: Components of LacZ staining solution 

Components  Concentration  

Tris HCl pH 7.3  10 mM  

Sodium deoxycholate  0.005%  

IGEPAL  0.01%  

K3Fe(CN)6 5 mM  

K4Fe(CN)6 5 mM  

MgCl2 2 mM  

X-Gal   0.8 mg/ml  

1x PBS  Up to final volume  

 

2.2.3 Processing X-gal stained tissues for sectioning 

After re-fixation, postnatal samples were decalcified 4-8 weeks with 10% EDTA pH 8.0 

at room temperature on a shaker. Samples were dehydrated through a graded series of 

methanol solutions (30%, 50%, 70%, 85%, 95% and 100%) to minimise de-staining. 

The duration for each wash step was dependant on the age of the sample (Table 2.6). 

 

Table 2.6: Methanol dehydration time for X-gal stained sample (per step) 

Sample Stage Incubation Time  

E14.5 

PN5 

Adult 

30 minutes 

60 minutes 

3 hours 

 
 

Following dehydration in 100% methanol, the samples were incubated in isopropanol 

for 15 minutes twice and then they were placed in tetrahydronaphthalene (THN) at 

room temperature until saturated and moved to 60ºC for 15 minutes. Subsequently 

samples were placed in a 1:1 mixture of THN: paraffin wax at 60ºC for 15 minutes. In 
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the end, samples were washed at least four times (each wash lasting 1 hour) in paraffin 

wax at 60oC before embedding. Wax embedded samples were sectioned and mounted.  

 

2.2.4 Counterstaining of X-gal stained sections 

To stain the nuclei, X-gal stained sections were counterstained using eosin to allow the 

identification of unstained structures. Sections were de-paraffinised in histoclear for 10 

minutes twice and dehydrated briefly in descending ethanol solutions (100%, 90% and 

70%) for 2 minutes each. After incubation with alcoholic eosin (0.25%) for 30 

seconds-2 minutes, slides were washed with 95% ethanol to get rid of access staining. 

Sections were then dehydrated in 100% ethanol for 2 minutes twice and rinsed in 

distilled H2O for 2 minutes. The slides were air-dried and then coverslipped with 

DePex.  

To stain the cytoplasm, X-gal stained samples were counterstained with Nuclear Fast 

Red that stains nuclei pink to red and cytoplasm pale pink. Slides were similarly 

de-paraffinised and then briefly rehydrated in descending ethanol solutions (100%, 90%, 

70%, 50% and 30%) for 1 minute each and in distilled water for 2 minutes. Slides were 

then immersed in 0.2% nuclear fast red solution for 30 seconds to 2 minutes and rinsed 

in distilled water until no excess staining was evident. Slides were dehydrated in a series 

of ascending ethanol solutions (70% and 90%) for 1 minute each and in 100% ethanol 

for 1 minute twice. Slides were left at room temperature to air dry and coverslipped 

using DePex in a fume hood.  

 
2.3 Immunohistochemistry (ICH) 

2.3.1 Reagents and solutions 

Blocking Buffer (1% BSA and 10% FBS in 1x PBS)  
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Albumin from bovine serum, BSA (1%) Sigma, A4919 

FBS (10%) Sigma, F7524 

Hydrochloric acid (HCl) VWR, 20252.244 

Trizma® base (Tris base) Sigma, T1503 

Citric Acid Sigma, C7129 

Vectastain Elite ABC Kit Vector Labs, PK-6101 

DAB Peroxidase Substrate Kit  Vector, SK-4100 

Hematoxylin solution according to Delafield 

(Counterstain) 

Fluka, 03971 

  
VECTASHIELD Mounting Medium with DAPI Vector, H1200 

O.C.T. compound BDH, 361306E 

PBST (2% Tween20 in PBS)  

 

2.3.2 ICH on section 

Paraffin sections were de-paraffinised in histoclear for 20 minutes twice and rehydrated 

through decreasing concentrations of ethanol solutions (100%, 95%, 90%, 70% and 

50%) for 5 minutes each followed by washing in 1x PBS. After rehydration, 

permeabilization, antigen retrieval was carried out depending on the primary antibodies 

used (Table 2.7). For the antigen retrieval, both heat-based method and proteinase K 

method were applied in the pre-experiment. Based on pre-experiment results, heat-based 

antigen retrieval was selected as it showed the best result. Heat-based antigen retrieval 

was performed by microwaving slides twice in a 0.1M Tris-HCl pH9.5 solution for 10 

minutes. After antigen retrieval, the sections were thoroughly washed in PBST (2% 

Tween20 in PBS) 3 times for 5 minutes each and then incubated with blocking buffer (5% 

FBS 1% BSA in 1x PBS) for 1 hour at room temperature. Primary antibodies were 

applied to samples in a pre-optimised dilution in 1% BSA and incubated for 3 hours at 
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room temperature or O/N at 4ºC in a humidified chamber. Frozen sections were washed 

in 1x PBS for 20 minutes twice before being incubated with blocking buffer (5% FBS 1% 

BSA in 1xPBS); then incubated with primary antibodies. Before applying secondary 

antibodies (Table 2.8) in pre-optimized dilutions, slides were thoroughly washed 3 

times in PBST for at least 5 minutes per wash to remove the unbound primary 

antibodies. The secondary incubation was performed inside a humidified chamber for 1 

hour at room temperature.  

For fluorescence-conjugated secondary antibodies, sections were washed 3 times in 

PBST solution for at least 5 minutes each before mounted with VECTASHIELD DAPI 

fluorescence mounting medium. Fluorescent images were acquired using Nikon’s 

Fluorescence Microscope H600L or confocal microscopy (Leica Sp5 AOBS) equipped 

with the following lenses: 103 (HCX PL APO CS NA0.40) dry objective; 203 (HCX PL 

FLUOTAR L NA0.40) dry objective; 403 (HCX PL APO NA0.85) dry objective; and 

633 (HCX PL APO NA1.30) glycerol objective. The imaging of the confocal stack was 

done with the z-axis shift of 7 mm for every step. 

For biotin conjugated secondary antibodies, sections were additionally immersed twice 

in 3% H2O2 in methanol for 5 minutes each prior to primary antibody incubation to 

block endogenous peroxidase. To visualize antibodies, the samples were incubated in 

ABC solution (Vectastain kit) for 1 hour at room temperature and then washed in PBST. 

In the end, the colour reaction (brown) was developed by DAB Peroxidase Substrate Kit 

following the manufacturer’s instructions. The sections were then counterstained for 45 

seconds to 2 minutes in diluted Delafield’s hematoxylin (1:4), which leaves nuclei 

stained with a contrasting pale blue colour. The sections were gradually dehydrated and 

mounted with cover slips using DePex mounting medium as previously described. 

Sections were viewed in a light-field using a Zeiss microscope (Axioskope 2 plus) and 

captured with an AxioCam HRC (Zeiss) using Axiovision software. 
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Table 2.7: Optimised dilution and antigen retrieval for each primary antibody 

Primary Antibody Dilution  Antigen 

Retrieval  

Manufacturer 

Anti-BrdU antibody (Rat 

monoclonal, reactive against CldU) 

1:500 Heat-based Abcam, 

ab6326 

Anti-BrdU antibody [IIB5] (Mouse 

monoclonal, reactive against IdU) 

1:100 Heat-based Abcam, 

ab8152 

Anti-Phospho-Histone H3 antibody 

(Rabbit polyclonal) 

1:500 Heat-based Millipore, 

06-570 

Anti-GFP antibody (reactive against 

eGFP) (Chicken polyclonal) 

1:500 Heat-based Abcam, 

ab13970 

Anti-GFP antibody (reactive against 

eGFP) (Rabbit polyclonal) 

1:500 Heat-based Abcam, 

ab6556 

Anti-Thy-1 (CD90)-FITC conjugated 

antibody (Mouse monoclonal) 

1:100 N/A Abcam, 

62009 

Anti-Pax9 antibody (Rabbit 

polyclonal) 

1:100 N/A * 

Anti-Neurofilament antibody (Mouse 

monoclonal) 

1:1000 N/A Abcam, 

24574 

Anti-Celsr1 antibody (Rabbit 

polyclonal) 

1:100 N/A Millipore, 

ABT1119 

Anti-Cre antibody (Rabbit 

polyclonal) 

1:200 N/A Novagen, 

69050-3 

Anti-Ring2 / Ring1b / RNF2 

antibody  

1:500 N/A Abcam, 

ab3832 

 
* Anti-Pax9 (Rabbit polyclonal) was kindly provided by Professor Heiko Peters 
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Table 2.8: Optimised dilution for each secondary antibody 

Secondary Antibody Dilution Manufacturer 

Biotinylated goat anti-rabbit antibody 1:200 Vector, BA-1000 

Biotinylated rabbit anti-rat IgG antibody 1:200 Vector, BA-4001 

Donkey-anti rat IgG (H+L) antibody Alexa 

Fluor 594, A21209 

1:200 Life technologies 

Donkey-anti rabbit IgG (H+L) antibody Alexa 

Fluor 594, A21207 

1:200 Life technologies 

Goat-anti rabbit IgG (H+L) antibody Alexa 

Fluor 660, A21073 

1:200 Life technologies 

Goat-anti chicken IgG (H+L) antibody Alexa 

Fluor 488, A11039 

1:200 Life technologies 

Goat-anti mouse IgG (H+L) antibody Alexa 

Fluor 488, A11017 

1:200 Life technologies 

Goat-anti rabbit IgG (H+L) antibody Alexa 

Fluor 594, A11072 

1:200 Life technologies 

Goat-anti mouse IgG (H+L) antibody Alexa 

Fluor 594, A11020 

1:200 Life technologies 

Goat-anti mouse IgG (H+L) antibody 647 Alexa 

Fluor, A21235 

1:200 Life technologies 

Rabbit-anti mouse IgG (H+L) antibody Alexa 

Fluor, 488 A21204 

1:200 Life technologies 

Rabbit-anti mouse IgG (H+L) antibody Alexa 

Fluor, 546 A11060 

1:200 Life technologies 
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2.4 In situ hybridization (ISH) 

2.4.1 Reagents and solutions 

DH5α™ Competent cells (Subcloning Efficiency) Invitrogen, 18265-017 

Luria-Bertani (LB) broth  

1% NaCl BDH, 102415K 

1% Tryptone Oxoid, LP0042 

0.5% Yeast Extract Oxoid, LP0021 

Luria-Bertani (LB) agar  

1% Tryptone  Oxoid, LP0042 

1% NaCl BDH, 102415K 

0.5% Yeast Extract Oxoid, LP0042 

1.5% Agar Oxoid, LP0011 

Ampicillin Sodium Salts (50 mg/ml) Sigma, A9518 

Fast Plasmid®Mini Eppendorf AG, 955150601 

QIAGEN Plasmid Maxi Kit QIAGEN, 12163 

QIAquick® Gel Extraction Kit QIAGEN, 28706 

Restriction enzymes and buffers Promega 

Polymerase enzymes Promega 

DIG RNA labeling Mix (10x) Roche, 11277073910 

SigmaSpin™Post-Reaction Clean-Up Column Sigma, 5059 

DL-Dithiothreitol (DTT) MP Biomedicals, 100597 

Triton® X-100 (Iso-Octylphenoxypolyethoxyethanol) BDH, 306324N 

Tween-20 Sigma, P7949 

IGEPAL CA-630 Sigma, I3021 

Proteinase K Sigma, P2308 
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Glycine  Sigma, G7403 

Formamide Merck, K36952408 

tRNA (RNA from yeast) Roche, 109223 

Blocking Reagent Roche, 11096176001 

Heparin lithium salt, (Porcine Interstinal mucosa) Sigma, H08078 

CHAPS Sigma, C3023 

SDS (Sodium dodecyl sulfate) Severn, 30-33-50 

Anti-Digoxigenin-AP Fab fragments Roche, 11093274910 

NBT (4-Nitro blue tetrazolium chloride) Roche, 11383213001 

BCIP (5-Bromo-4-chloro-3-indolyl-phosphate) Roche, 11383221001 

Polyvinyl alcohol BDH, 297914D 

TEA (Triethanolamine) BDH, 103704U 

Acetic anhydride BDH, 100022M 

50x Denhardt’s  

1% (w/v) Ficoll 400 Sigma, F4375 

1% (w/v) Polyvinylpyrrolidone BDH, 436032C 

1% (w/v) Bovine Serum Albumin Sigma, A9647 

50% Dextran sulphate Chemicon, 0702051849 

 
2.4.2 Transformation of plasmid DNA to competent E. Coli cells 

Approximately 1.0 µg of plasmid DNA were carefully added to 50 µl gently thawed 

E.coli DH5α competent cells. The mixture was then gently placed on ice for 30 minutes 

to allow the DNA to be adherent to the bacterial cell. The bacteria were then heat 

shocked by incubation for 60 seconds in a water bath at 42ºC, followed by a 2 minutes’ 

incubation on ice. 450 µl of Luria-Bertani-medium (LB-medium) was added to the 

mixture and then incubated at 37ºC for 1 hour. 100 µl of the mixture was streaked on a 

LB-agar plate containing 100 µg/ml ampicillin. The plates were left at room 
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temperature for 10 minutes and then inverted before incubating O/N at 37ºC. The next 

day a single clone was used to inoculate LB-medium for maxiprep plasmid isolation.  

 
2.4.3 Plasmid amplification and isolation 

A single E.coli colony was selected from a LB-agar plate and inoculated into either 4 ml 

(mini-preparation) or 250 ml (maxi-preparation) of LB-medium with the addition of a 

plasmid specific antibiotic. The LB-medium containing the plasmid DNA was 

incubated with agitation at 37°C O/N. A small quantity of plasmid DNA was isolated 

using Fast Plasmid® Mini Kit following manufacturer instructions (mini-preparation). 

Large quantities of plasmid DNA was isolated and purified using DNA purification 

columns from QIAGEN Plasmid Maxi Kit following manufacturer’s instructions 

(maxi-preparation).  

 
2.4.4 DNA quantification 

Plasmid DNA concentration was measured by spectrophotometer (BioPhotomer, 

Eppendorf AG, 22331) measuring absorbance at a 1:100 dilution of the DNA samples at 

260 nm. 

 
2.4.5 DNA template preparation for synthesis of anti-sense probes 

2.4.5.1 Linearization of plasmid DNA 

To make the anti-sense probes, 20 µg of plasmid DNA containing a specific gene 

sequence was digested using an appropriate restriction enzyme (Table 2.9) in the 

reaction mixture listed below (Table 2.10). The reaction was incubated at 37ºC for 2 

hours. 1 µl of linearized DNA product (corresponding to 400 ng of linearized DNA) and 

an equivalent quantity of unlinearized DNA were then loaded onto a 1% agarose gel to 

confirm the completion of the digestion. 
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Table 2.9: Details for plasmids used for making anti-sense probe 

Gene Vector Size of 

insert 

Digestion  

Enzyme 

Polymerase 

Enzyme 

Manufacturer 

Alk5 

 

Psk Bluescript 0.551kb BamH1 T3 

 

Source 

bioscience 

BCor pT7T3-Pac 1.6 kb XhoI T3 

 

Source 

bioscience 

Dkk-1 pSport1 

 

2 kb 

 

Kpn1 

 

Sp6 

 

Source 

bioscience 

Thy-1 pCMV-SPORT

6 

 

2.3 kb 

 

Kpn1 

 

T7 

 

Source 

bioscience 

Ring1 

 

PT7T3D-Pac1 

 

1.5 kb 

 

Pac1 T7 

 

Source 

bioscience 

Shh pBluescript 

 

2.6 kb 

 

EcoR1 

 

T7 

 

Source 

bioscience 

Gli-1 

 

Bluescript 

 

1.7 kb 

 

Not1 T3 

 

Source 

bioscience 

Ptc-1 

 

pBluescript 1 kb BamH1 T3 

 

Source 

bioscience 

Celsr1 

 

pBluescript 0.7 kb EcoR1 

 

T3 

 

Source 

bioscience 

All plasmids were confirmed by DNA sequencing; anti-sense probes were confirmed by checking sizes 

on agarose gel and peoforming ISH on positive tissues according to journal articles.  
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Table 2.10: Reagents for linearizing plasmid DNA (per reaction) 

Reagents Volume 

Bovine serum albumin (10 µg/µl) 

Plasmid DNA (Table 2.9) 

Restriction enzyme 

10x Buffer 

Nuclease-free H2O 

0.5 µl 

20 µg 

2 U/ µg plasmid DNA 

5 µl 

Up to final volume (50 µl) 

 

	
	
2.4.5.2 Purification of linearized plasmid DNA 

A QIAquick Gel Extraction Kit was used to purify linearized plasmid DNA following 

manufacturer instructions once complete digestion was confirmed by running the whole 

digested DNA on an agarose gel.   

 

2.4.5.3 Synthesis of DIG-labeled RNA probes (DIG-RNA) by in vitro transcription 

Anti-sense RNA probes were synthesized from each linearized plasmid by adding 

reagents as outlined in Table 2.11. The reagents were mixed well and incubated at 37ºC 

with 1µl of the specific polymerase for one hour and then another 1µl of polymerase 

was added for a further hour. 1µl of the transcribed DNA was used to run on a gel to 

confirm the production of RNA after the reaction. 2 µl of RNase free DNase was then 

added to the mixture and incubated at 37ºC for 20 minutes to eliminate the DNA 

template. Following the DNase treatment, a SigmaSpin™Post-Reaction Clean-Up 

Column was used to purify the synthesised RNA following manufacturer instructions. 

The RNA probes were collected and stored at -80ºC for future use. 
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Table 2.11: Reagents to transcribe a DIG-labeled RNA probe (per reaction) 

Reagents Volume 

5x transcription buffer 

100 mM DTT 

RNasin (40 U/µl)  

Linearised plasmid DNA 

DIG RNA labeling mix 

Polymerase enzyme (20U /µl) 

Nuclease-free H2O                                             

8 µl   

4 µl 

1 µl 

1 µg 

2 µl 

1 µl  

Up to final volume (40 µl) 

 
 
 
2.4.6 DIG Whole mount ISH 

2.4.6.1 Sample preparation of dig whole mount ISH 

PN5 incisors were carefully dissected in cold 1x DEPC PBS and were then fixed in 4% 

PFA at 4ºC O/N. The fixed teeth were decalcified in 4% EDTA for 5 days at room 

temperature on a shaker. After decalcification, the tooth samples were thoroughly 

washed with ice-cold PBST (0.1% Triton X-100 in 1x DEPC PBS) for 5 minutes three 

times to eliminate residual EDTA. The samples were then dehydrated in a graded 

methanol series diluted in PBST (25%, 50%, 75%, 90% and 100%), for 30 minutes in 

each solution and stored at -20ºC until use. 

 

2.4.6.2 Pre-treatment and hybridization of whole tooth samples 

Whole tooth samples were rehydrated in a 75%, 50% and 25% methanol/PBT series and 

washed in PBT for 5 minutes three times at room temperature. The teeth were treated 

with detergent mix for 3x 20 minutes to permeabilize the tissues. The samples were then 

refixed in 4% PFA for 20 minutes and washed for 5 minutes three times in PBT at room 

temperature. Whole teeth were then briefly rinsed in a 1:1 mixture of hybridization 

solution (Table 2.12) and PBT and followed an immersion in the pre-warmed 
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hybridization solution at room temperature until they sank. The teeth were then 

incubated with pre-warmed hybridization solution at 65ºC for at least 1 hour. In 

hybridization step, the teeth were incubated with pre-warmed hybridization solution 

containing 0.1 µg of DIG-labeled RNA probe per ml of hybridization solution with 

gentle rocking at 65ºC O/N.  

	
	

Table 2. 12: Hybridization solution ( for whole mount ISH) 

Components  Volume 

Formamide  5 ml 

20X SSC (3 M NaCl 0.3 M sodium citrate, pH 4.5) 2.5 ml 

Blocking Reagent (10 %) 2 ml 

10 mg/ml tRNA  1 ml 

0.5 M EDTA, pH 8 100 µl               

50 µg/µl Heparin  10 µl                       

10 % Triton X-100 10 µl                 

10 % CHAPS 100 µl 

 

	
	
2.4.6.3 Post-hybridization washes and detection of the probes 

After the hybridization step, unbound probe was re-collected and the samples were 

washed with pre-warmed washing solution (50% formamide, 1x SSC pH 4.5 and 0.1% 

Tween 20) four times for 30 minutes at 65ºC on a rocking plate. The samples were then 

briefly rinsed in a 1:1 mixture of washing solution and MABT solution (100 mM maleic 

acid pH 7.5, 150 mM NaCl and 0.1% Tween 20) at 65ºC, followed by three washes of 

MABT for 5 minutes each and then another two 30 minute washes at room temperature. 

Next the teeth were blocked with 2% blocking reagent in MAB (100 mM maleic acid, 

pH 7.5 and 150 mM NaCl) for 1 hour at room temperature and then with 2% blocking 
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reagent and 20% sheep serum in MAB for another 2 hours at room temperature. The 

probe was detected by incubating the samples O/N at 4ºC with alkaline phosphatase 

(AP)-conjugated anti-DIG antibody in a 1/2000 dilution of MAB with 2% blocking 

buffer and 20% sheep serum. The following day, the samples were washed six times in 

MABT for 1 hour each at room temperature and washed O/N at 4ºC in MABT on a 

shaker.  

Before the colour development step, the teeth samples were immersed in freshly made 

NTMT solution (100 mM Tris-HCl pH 9.5, 50 mM MgCl2, 100 mM NaCl and 0.1% 

Triton X-100) for 10 minutes four times at room temperature. The samples were then 

incubated in the dark with 1 µl/ml 4-Nitro blue tetrazolium chloride (NBT) and 1 µl/ml 

5-Bromo-4-chloro-3-indolyl-phosphate (BCIP) in NTMT at room temperature with 

gentle shaking. Colour precipitates (bluish-purple) were produced at the sites of the 

target RNA by chemical reaction of NBT and BCIP substrates with alkaline 

phosphatase. The progress of the reaction was monitored periodically and the reaction 

was stopped by washing with NTMT and PBT for 10 minutes each. The whole teeth 

were then fixed and placed in PBT O/N at 4ºC, photographed directly using Leica. 

DFC300 FX microscope for whole mount or Zeiss Axioskop2 plus microscope for 

vibratom sections. 

 

2.4.6.4 Vibratome sectioning 

Before vibratome sectioning (Leica VT 1000S), fixed samples were rinsed briefly in 1x 

PBS and then embedded in the desired orientation in pre-warmed 20% gelatin by using 

plastic disposable moulds. The gelatin blocks were solidified O/N at 4ºC before they 

were fixed and then kept in 4% PFA for a week. Subsequently, gelatin blocks 

containing the sample were fixed onto a metal block holder with super glue for 

sectioning. Sections (50 µm thick) were collected from 1x PBS bath with a brush and 
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transferred to slides. The slides were mounted with coverslips using an aqueous 

mounting reagent. The mounted slides were cleaned to remove excess mounting agent 

before taking photographs using a Zeiss Axioscop microscope. 

 

2.4.7 DIG-section ISH 

2.4.7.1 Pre-treatment and hybridization of tissue on sections 

All the solutions used in the experiment were DEPC-treated and autoclaved. RNase-free 

glassware, slide racks and metal spatulas were wrapped up in foil and baked O/N at 

180ºC. The slides bearing paraffin sections were firstly de-paraffinised twice with 

histoclear for 10-15 minutes each, followed by rehydration through a graded ethanol 

solutions: 100% (2 minutes twice), 95% (2 minutes twice), 70% (2 minutes twice) and 

1x PBS (10 minutes twice). Next, to permeabilise the tissues the sections were 

incubated in 10 µg/ml Proteinase K in 1x PBS at 37ºC for 10 minutes. The sections 

were then incubated in 2 mg/ml glycine in 1x PBS at room temperature for 10 minutes 

to block the protease and rinsed with 1x PBS for 5 minutes followed by a re-fixation in 

4% PFA for 20 minutes at room temperature. Sections were acetylated for 10 minutes in 

a solution (25 ul acetic anhydride 10 ml 0.1 M Triethanolamine). At the end, the 

sections were finally washed with 1x PBS for 5 minutes three times before 

hybridization to remove the remaining positive charges in the tissue.  

To perform hybridization, the sections were incubated in pre-warmed hybridization 

solution (Table 2.13) and placed horizontally on glass rods in chambers with tissue 

towels soaked in 50% formamide and 5x SSC at room temperature for 1 hour. 

Approximately 25 ng/ml of DIG-labeled RNA probe in hybridization solution was 

denatured by heating at 90 ºC for 3 minutes immediately followed by 3-minute 

incubation on ice before being applied it to the slides. About 200 µl of probe diluted in 

hybridization solution was applied to each slide and covered with a glass coverslip. The 
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chambers were sealed with cling film to maintain humidity in the box. The incubation 

was performed at 70ºC O/N in a hybridization oven.  

 

Table 2.13: Hybridization solution (for DIG-section ISH) 

Components  Volume 

Formamide  5 ml 

1 M Tris-HCl pH 7.6 0.5 ml 

10 mg/ml tRNA 1 ml 

50x Denhardt’s solution  

50% Dextran sulphate  

5 M NaCl  

10 % SDS 

1 ml 

5 ml 

6 ml 

1.25 ml 

0.5 M EDTA, pH 8 

Nuclease-free H2O 

100 µl             

1.25 ml 

 
 
 
 
2.4.7.2 Post-hybridization washes and signal detection 

To visualize the signal, firstly, the cover slips were removed by dipping in pre-warmed 

5x SSC solution after hybridization. Then sections were washed in 2x SSC solution 

with gentle rocking at 70ºC for 1 hour to remove unbound probes. Next the slides were 

equilibrated in TBS buffer (100mM Tris-HCl and 150mM NaCl) at room temperature 

for 5 minutes. Secondly, the sections were blocked with 0.01% blocking reagent in TBS 

for 1 hour at room temperature and then incubated in a 1: 5000 dilution of an anti-DIG 

antibody coupled with alkaline phosphatase in TBS blocking buffer O/N at 4ºC. Lastly, 

on the following day, the sections were washed in TBS 5 minutes three times followed 

by incubation in freshly made NTMT solution for 5 minutes at room temperature. The 

colour of the signal (bluish purple) was developed in the dark at room temperature by 
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incubating the sections with 2.5 µl/ml NBT and 1.7 µl/ml BCIP in a basic solution (50% 

Polyvinylalcohol, 100 mM Tris-HCl pH 9.5, 100 mM NaCl, 5mM MgCl2 and 0.1% 

Tween20). When a strong purple colour was achieved in the tissue the reaction was 

stopped by rinsing slides in the NTMT solution and 1x PBS for twice each. The slides 

were air-dried and mounted with cover slips using a DePex mounting medium and 

photographed afterwards as pre-described.  

 

2.5 Optical projection tomography (OPT) 

2.5.1 Reagents and solutions 

Agarose, low gelling temperature                       Sigma, A9414-100G 

Folded filter papers                                           Whatman 

Benzyle Benzoate                                      Sigma, W213810 

Magnetic moulds                                            Bioptonic 

Bioptonic scanner 3001                                       Bioptonic 

	
2.5.2 Method 

After ISH, the teeth samples were washed 3 times for 5 minutes each in PBS and 

embedded in supporting blocks of 1% low-melting point agarose. This agrose block 

afterward was attached on a magnetic mount with a cyanoacrylate adhesive (super glue) 

and trimmed with a sharp blade to give a smooth surface with many facets, leaving a 

few millimetres of agarose around the teeth samples. The agarose blocks containing 

samples were dehydrated in 4 changes of 100% methanol each for half a day. Samples 

turned opaque after dehydration and were subsequently placed in a histological ‘BABB’ 

(a mixture of 2 parts of benzyl benzoate to 1 part benzyl alcohol) for a few hours to 

make them transparent that optically match the refractive index of cell membranes. In 

the last step before scanning, the scanning microscope was aligned using the alignment 
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pin. Then the samples stuck to the mount were inverted and attached by magnetism to 

the rotating plate above the cuvette in the OPT microscope. In the end, the scanning was 

controlled using Skyscan scanner software. 

 

2.6 Micro computerised tomography (Micro-CT) analysis 

Adult mouse heads were fixed for 1 day and washed in 1x PBS for 3 times to remove 

fixation solution and then scanned using a GE Locus SP micro-CT scanner by Dr. 

Christopher Healy. Briefly, mouse heads were immobilised using ultrasound gel and 

cotton gauze and scanned to produce 14 µm voxel size volumes. After scanning, 

Microview software programme (GE) was used for visualisation and analysis. In this 

study, the two-dimensional (2D) images were obtained from micro-CT cross-sectional 

images parallel to the long axis of the mouse teeth. The three-dimensional (3D) 

reconstructions were obtained by creating three-dimensional isosurfaces of the mouse 

teeth. 

 

2.7 Cytospin 

Mouse cells were obtained from the dental pulp tissue of mouse incisor and resuspended 

in 2% BSA. A single chamber cytospin device was assembled according to the Cytospin 

instruction manual. 0.2 ml of diluted cell suspension was applied into the chamber and 

centrifuged slide at a setting of 6 (20g) for 6 minutes, then the slide was immediately 

fixed in 4% PFA for 5 minutes and for immunostaining.  
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2.8 Cell culture 

2.8.1 Reagents and solutions 

Dulbecco’s Phosphate Buffered Saline (DPBS) Sigma, D1408 

Trypsin-EDTA solution Sigma, T4049 

Culture dish (center-well organ culture dish) Falcon, 353037 

MF-Millipore membrane (0.1 µm) Millipore, VCWP02500 

0.4-µm cell culture membranes Becton Dickinson, 35–3090 

Alpha MEM Eagle w/ UGln1 and nucleosides Lonza-BE02-002F 

L-Glutamine Sigma, G7513 

Fetal bovine serum (FBS) Sigma, F7524 

Penicillin-Streptomycin solution Sigma, P0781 

Dimethyl sulfoxide (DMSO) Sigma, D8418 

 

2.8.2 Method 

Cells were collected immediately after the mice used in the experiment were sacrificed. 

Using sterilized instruments, both upper and lower incisors were dissected out from the 

jaws by gently removing the mucosa and the bone shell covering them. The dental pulp 

was then removed from the incisors by pressing it gently with a curved needle in 

sterilized PBS. The dental pulps were kept on ice during operation. Subsequently the 

dental pulp tissue was cut into small pieces using a sharp sterilized blade and digested 

by TypleE for 15-30 minutes in a small tube at 37°C. After checking the completion of 

digestion, the reaction is stopped by adding FBS. Cell suspension then centrifuged at 

1200 (rcf) for 5 minutes at 4ºC to get the cell pellet which was then resuspended in 

medium and went for filter, cells were centrifuged at 1200 (rcf) for 5 min at 4ºC again 

to get the cell pellet and re-suspended in an adequate amount of medium to undergo cell 
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counting before being transferred to a 6 well culture plate (100,000 per well) in CO2 

incubator at 37°C. This passage was defined as passage 0 and later passages were 

named accordingly. The culture medium was then changed twice a week. The cells were 

passaged and trypsinized by Trypsin/EDTA once the cultured cells reach 70% 

confluency. All medium was removed and cell monolayer was washed with sterilized 

PBS X 3. 1-5 ml Trypsin was added to digest cells for 5-8 minutes at 37°C. When cells 

were half detached, an equal amount of medium containing serum was added to stop the 

effect of Trypsin. Cell suspensions were centrifuged at 1200 (rcf) for 5 minutes at 4ºC 

to get the cell pellet. Next the cell pellet was suspended in an adequate amount of 

medium and cells were re-plated a split ratio 1:2. 

 

2.9 Flow cytometry 

2.9.1 Reagents and solutions 

Blocking buffer 

Fetal Bovine Serum (FBS)                        Lonza, DE14-801F 

 

2.9.2 Method 

For fresh tissue samples, the collection of cells was the same as the cell culture 

described above. Cells were re-suspended in medium and went for staining according to 

the following protocol:  

The cell pellet was re-suspended in FACS blocking buffer at a density of 5x10³ cells/ml, 

0.5 µg of conjugated antibodies or primary antibodies (Table 2.14) was added to cell 

suspension and incubated in dark at 4˚C for 30 minutes. Then the antibody was washed 

off using the blocking buffer and centrifuged at 1200 (rcf) for 5 minutes at 4ºC to get 

the cell pellet. For the un-conjugated antibodies, the cell pellet was re-suspended again 
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in blocking buffer and the secondary antibody (0.5-1.0 µg) was added to the cells and 

incubated for the same time and conditions for primary antibody. Then the secondary 

antibody was washed three times using the blocking buffer and centrifuged as 

mentioned to get the cell pellet. Subsequently, the cell pellet was re-suspended in 4% 

PFA for 10-15 minutes at room temperature then washed with PBS and centrifuged to 

get the cell pellet which was re-suspended and kept in 1x PBS until acquisition and 

analysis. FACs data was acquired using BD FACSCanto II flow cytometer and analyzed 

using BD FACSDiva version 6.1.3. Each flow cytometry analysis was replicated three 

times. 

 
 

Table 2.14: Antibodies and their optimal dilution used in flow cytometry 

Gene Dilution Gene 

Localization 

Manufacturer 

Anti-Thy-1 (CD90)- FITC conjugated 

antibody (Mouse monoclonal) 

1:2000 Cell Surface 

 

Abcam 

Anti-Ring1b antibody (Rabbit 

polyclonal) 

1:2000 Nucleus Abcam 

Mouse IgG2bk isotype control FITC 1:2000 Cell Surface Abcam 

Anti-EdU antibody (Mouse monoclonal)  1:2000 Nucleus Abcam 

Anti-GFP antibody (Rabbit polyclonal) 1:2000 Cell Surface Abcam 

DAPI (4',6-Diamidino-2-Phenylindole, 

Dihydrochloride) 

1:10000 Nucleus Life 

technologies 

 
 
 

2.10 Microarray samples preparation 

For fresh tissue, dental pulp cells were collected immediately after the mice used in the 
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experiment were sacrificed. The dental pulp tissues were collected as described above. 

RNA was extracted using RNeasy mini kit (Qiagen) according to the manufacturer’s 

instructions. For cells from fluorescence activated cell sorting (FACs), cells were 

homogenized in a denaturating buffer (RNeasyLysis buffer, RLT) that contains 

guanidine thiocyanate, which instantly inactivates RNases to ensure the purification of 

intact RNA. 70% Ethanol was then added to provide appropriate binding conditions to 

the silica-based membranes of the spin columns. RNA Wash buffer (RW1) and RNA 

pre-elution buffer (RPE) were then added to the columns, which were then spun in the 

microcentrifuge at 10,000 rpm. RNA was eventually eluted in 20-50 µl of RNase-free 

water and sent for analysis. (GeneChip® Mouse Genome 430 2.0 Array Affymetrix, Inc. 

Santa Clara, CA, USA). Microarry results were followed up with qPCR. 

 

2.11 Real-time quantitative PCR 

2.11.1 RNA extraction 

Dental pulp tissue was obtained as described above. Then total RNA was isolated from 

dental pulp tissues by using RNeasy micro Kit (Qiagen) following the manufacturer’s 

recommended protocol. 

 

2.11.2 cDNA synthesis 

cDNA were made by using the reverse transcription system (promega) as Table 2.15 

shows. RNA, primer and RNase free water were added to a 1.5 ml tube up to 14 µl then 

incubated on a heat block for 5 minutes at 70˚C and put on ice for another 5 minutes. 

The leftover solution was prepared at the same time and mixed with the previous 

solution briefly. The whole reaction was incubated at room temperature for 10 minutes 

and then transferred to a 50˚C heat block for 50 minutes. Synthesized cDNA was then 
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applied for real-time PCR. The rest of the cDNA can be kept at -20˚C for long-term 

storage. 

Table 2.15: Reagents used for cDNA synthesis (25µl) 

Components  Volume 

RNA 1 mg 

Primer (Random primer) 2 µl 

RNase free water Up to14 µl 

5x Reaction Buffer (MMLV-RT) 5 µl 

Dntp (10mM) 1.25 µl               

MMLV RT  1 µl                       

RNase free water  3.75 µl                 

	
	
	
2.11.3 Result analysis 

Analysis of the qPCR results was performed by the standard curve method, 

house-keeping gene GAPDH was used for normalization as previous studies have 

shown its constant expression in the dental pulp tissue. Distilled water was always used 

as a negative control, 5 ng of cDNA per reaction was used to detect the expression 

levels of interested genes. Table 2.16 shows the qPCR program. Primers are listed in 

table 2.17. 

 

 

Table 2.16: Program of qPCR 

Cycle Temperature Duration 

Deactivation 95˚C 10 minutes 

*Denaturation 95˚C 15 seconds 

*Annealing 60˚C 30 seconds 

*Extention 72˚C 30 seconds 

 
*Step repeated in 40 cycles in order 
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Table 2.17: Sequence of the primers 

Gene Left Right 

Ring1b L agccgagactcgccatatt R ctgcacagcctgagacattt 

Thy1 L gaaaactgcgggcttcag R ccaagagttccgacttggat 

BcoR L gaactgtatgcagattccagtca R actgtcctcttgtaatccttcca 

GDF11 L acagacctggctgtcacctc R actcgaagctccatgaaagg 

ALK5 L cagctcctcatcgtgttgg R cagaggtggcagaaacactg 

Ctnna2 L ggagctccaatcgggagt R gctgcctggatgagtgatg 

DKK1 L ccgggaactactgcaaaaat R ccaaggttttcaatgatgctt 

Jagged1 L gaggcgtcctctgaaaaaca R acccaagccactgttaagaca 

Jagged2 L tcctcctgctgctttgtgat R ttgcagggctgaaagacac 

Notch1 L ctggaccccatggacatc R aggatgactgcacacattgc 

Notch2 L tgcctgtttgacaactttgagt R gtggtctgcacagtatttgtcat 

Notch3 L agctgggtcctgaggtgat R agacagagccggttgtcaat 

Notch4 L ggacctgcttgcaaccttc R cctcacagagcctcccttc 

Dll1 L gggacagaggggagaagatg R cacaccctggcagacagat 

Dll4 L aggtgccacttcggttacac R gggagagcaaatggctgata  

Furin L ctgaggaggccttctttcg R cctgaggcccagacaaag 

Jak2 L aagattgccaaggccaga R tgttgttccagcactctgtca 

Egfr L ttggaatcaattttacaccgaat R gttcccacacagtgacacca 

Stat3 L ggaaataacggtgaaggtgct R catgtcaaacgtgagcgact 

Tcf3 L cgcagaccaaactgctcat R gggttcaggttgcgttctc 

Wdr12 L gctgaagttgcggaccttagta R ggaaatcaaactcgacatgct 
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Chapter 3 : Characterisation of the Dental Pulp MSC 

Niche in the Continuously-Growing Mouse Incisor 

3.1 Introduction 

In rodents such as mice, the incisors are able to grow throughout the animals life. The 

continous growth of their incisors needs to be maintained by a reservoir of stem cells to 

form epithelial ameloblasts and mesenchymal odontoblasts (Harada et al., 1999, Feng et 

al., 2011). Studies have shown dental pulp pericytes in the mouse incisor contributing to 

the incisor growth and repair along with the well-studied ameloblast forming epithelial 

stem cells in the cervical loop (Feng et al., 2011). However, this contibution is limited. 

Thus, besides pericytes, there may be other stem cell population(s) in the dental pulp 

mesenchymal tissue. However the precise location (stem cell niche) of these stem cells 

and their identity are yet unknown.  

Interestingly, molecular techniques have provided clues about the stem cell niche and 

identified potential markers for dental stem cells (Harada et al., 1999). One of the 

important characteristics of stem cells in adult tissues is that adult stem cells (slow 

cycling cells) divide infrequently to preserve their long-term proliferation potential. 

However, some adult stem cells must also be able to continually produce progeny (fast 

cycling or transit-amplifying cells, TA cells) that rapidly differentiate in organ 

development and after injury (Fig. 3.1). Thus, nucleotide chase experiments allow us to 

identify the location of the mouse incisor mesenchymal stem cell niche by labeling fast 

and slow cycling cells through thymidine analogue labeling strategy.  
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Fig 3. 1: Asymmetric differentiation of adult stem cells. 

As adult stem cells proliferate in the stem cell niche, both stem cells themselves and progenitor daughter 
cells are produced. Stem cells are able to keep existing at a low proliferate rate to maintain a stable size of 
stem cell population in tissue while progenitor cells proliferate quickly and further differentiate into 
different types of cells needed in the tissue and organ (Diaz-Flores et al., 2006).  

	
 
BrdU is a thymidine analogue that can be incorporated into the newly synthesized DNA 

of replicating cells (during the S phase of the cell cycle), thus BrdU labeled cells can be 

used to reflect cell proliferation in the mouse incisor dental pulp tissue. By short 

exposure to BrdU (single pulse injection to mouse), fast cycling cells can be identified 

as they are more easily to be labeled with BrdU. Unlike fast cycling cells with a high 

proliferation rate, the slow cycling cells divide infrequently for stem cells maintenance. 

Only after long exposure to BrdU (consecutive BrdU injection to mice) can slow 

cycling cells be labeled as well as all other dental pulp cells. After a long “wash time”  

slow cycling cells can be identified since all other cells have quickly diluted their BrdU 

labeling over many cell divisions. By performing these BrdU labeling experiments, the 

locations of fast cycling cells and slow cycling cells can be identified, respectively. 

Inspired by the BrdU incorporation method, sequential incorporation of different 
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thymidine analogues (CldU and IdU) into adult mice incisors was developed to better 

elucidate the locations of the slow and fast cell populations during mouse incisor growth. 

Consequently, slow cycling cells labeled with IdU and fast cycling cells labeled with 

CldU can be detected by immunofluoresent staining in the same incisor sample and 

provide a clue regarding the location of MSC niche in mouse incisor dental pulp tissue. 

Furthermore, for long-term maintanance of stem cells in adult tissue, a population of 

long-term “quiescent” cells is required to maintain stem cell population (Haug et al., 

2008). Once stem cells are required they can provide a source for new stem cells to 

avoid stem cell depletion. Thus, identification of the location of these long-term 

quiescent cells in a mouse incisor would add more information about the location of 

MSC niche. To detect the existence of quiescent cells in the mouse incisor, a thymidine 

analogues label-retaining experiment is the best choice. However, the quiescent cells 

hardly divide after tissue formation, thus, a strategy to label tooth cells in the embryonic 

stage when tissue formation begins by giving consecutive IdU to mice from E10.5 

before embryo tooth germs begin forming until birth was developed. By this way we 

were able to identify quiescent cells in the mouse incisor after a long wash time for all 

other cells to dilute labeling. In addition, a recent research in hematopoietic stem cells 

(HSCs) has identified a group of long-term quiescent cells that expressing noncanonical 

Wnt signaling member Flamingo exist in a specialized niche in adult bone marrow 

tissue (Sugimura et al., 2012). This finding provides a possibility to identify quiescent 

cells in mouse incisor by investigating Flamingo expressing cells.    

Lastly, MSCs in the mouse incisor proliferate and differentiate into the dentin forming 

odontoblasts. The investigation of cell fate is of importance to identify stem cell 

population. The Cre/loxP site-specific recombination system has emerged as an 

important tool to trace cell fate by conditionally controlling reporter gene activation or 

inactivation in almost any tissue of the mouse. In the Cre-loxP system, Cre recombinase 
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is expressed under the control of a tissue- or a cell-specific promoter in one mouse line 

(Feil et al., 2009). In the following study, to add inducibility to Cre-loxP system, a 

CreERT2 recombinase was developed. This CreER recombinase can be activated by the 

synthetic estrogen receptor ligand tamoxifen, therefore allowing for external temporal 

control of Cre activity. When that line was crossed with a second mouse line carrying a 

reporter gene that is flanked by a loxP-STOP-loxP (‘‘floxed’’ STOP) sequence, progeny 

animals expressing both constructs were made. In these progeny animals, external 

tamoxifen enable Cre to excise the STOP sequence to produce reporter. Tracing these 

reporters durting organ development and growth, researchers are able to investigate cell 

fate of certain cell type. 

In our study, an mT/mG double-fluorescent reporter mouse line (R26R mT/mG) was 

used to provide reporter gene. This mouse line has a membrane-targeted tdTomato/ 

membrane-targeted eGFP system in which tdTomato is expressed before a 

Cre-mediated recombination event whereas eGFP is expressed after the event 

(Muzumdar et al., 2007). Thus, mating with a pCAGERT2 Cre mouse line that can 

activate Cre in all cells by external tamoxifen, progeny pCAGERT2Cre; R26R mT/mG 

mice enable temporal control of the fluorescence gene expression by converting 

membrane-targeted tandem dimer Tomato (mT) to membrane-targeted green fluorescent 

protein (mG) (Fig. 3.2).  
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Fig 3. 2: Effect of Tamoxifen when injected into inducible pCAGERT2Cre; R26R mT/mG mice. 

With a Tamoxifen injection, CreER is translocated into the nucleus where recombination occurs between 
Cre and Loxp sites leading to the expression of membrane-targeted green fluorescent protein instead of 
the expression of tandem dimer Tomato without Cre. 

 
 
In summary, in order to better understand the properties of MSCs and their role in the 

growth of the mouse incisor, clear identification of the MSC populations and the 

microenvironment in which they exist is obligatory. Thus, the aim of this chapter is to 

identify slow cycling, fast cycling as well as long-term quiescent cell populations to 

characterise the potential MSC niche area and stem cell populations in the mouse 

incisor mesenchymal tissue, using several different approaches.  
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3.2 Results  

3.2.1 Identification of fast and slow cycling cells localization in mouse 

dental pulp 

To locate the fast and slow cycling cells, BrdU chase experiments were performed on 

adult CD1 mice. Mice were divided into two groups: single BrdU injection group and 

constant BrdU injection group. In the single pulse BrdU injected group, mice (n=3) 

were collected each time 2, 8, 24 hours after BrdU injection. The ICH results showed 

that after 2 hours chase time, the labeled cells were located in the area adjacent to the 

cervical loop (Representive picture, Fig. 3.3 B), while after 8 hours, labeled cells were 

more dispersed (Fig. 3.3 C). 24 hours later, more BrdU labeled cells were found in the 

apical end except a vacancy between cervical loops (Fig. 3.3 D). These results 

suggested the fast cycling cells were located in the area adjacent to the cervical loop. In 

the constant BrdU injection group, 3 weeks after BrdU injection, mice (n=3) were 

collected and examined at two time points each time from 1 day to 64 days. The 

detection of BrdU showed that 1 day after BrdU incorporation, almost all the cells in the 

mouse incisor were labeled with BrdU (Fig. 3.3 E), while 2 days after BrdU injection, 

cells located adjacent to the cervical loop have lost BrdU labeling, which suggested a 

high proliferation rate of these cells (Fig. 3.3 F). 32 days and 64 days later, BrdU 

labeling was continously reduced and only existed in the area between cervical loops 

(Fig. 3.3 G, H), which suggested a slow cycling cell population in this area. Taken 

together, results using BrdU incorporation confirmed that two cell populations with 

different proliferation rates exist in the apical end of the mouse incisor, with the slow 

cycling cells being located in the area between cervical loops and fast cycling cells 

being located more distantly (Fig. 3.4). All experiments were repeated 3 times under the 

same conditions. 
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Fig 3.3: BrdU chase experiments in mouse incisor dental pulp. 

(A-D) Short term BrdU chase experiments: (A) Control group, before BrdU injection. (B) 2 hours after 
BrdU injection, labeled cells were located in the area close to the cervical loop. (C) 8 hours after BrdU 
injection, more labeled cells produced. ((D) 24 hours after BrdU injection, BrdU labeled cells were more 
dispersed in the apical end of mouse incisor. (E-H) Long-term BrdU injection results: (E) 1 day after 3 
weeks BrdU injection, all the cells were labeled. (F) 2 days after 3 weeks BrdU injection, cells in the area 
next to the cervical loop firstly lost their labeling. (G) 32 days after 3 weeks BrdU injection, labeled cells 
only were located in the area between two cervical loops. (H) 64 days after 3 weeks BrdU injection, more 
cells lost their labeling. All samples from different mouse showed similar results. Scale bars = 500 µm in 
(A, D). Scale bars =750 µm in (B C, E, F, G, H). 
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Fig 3. 4: Schematic diagram of BrdU incorporation and chase experiments in mouse incisor. 

(A) Short term BrdU chase experiment: Single pulse BrdU was injected to mice, BrdU incorporation was 
chased from 2 hours after BrdU injection to 24 hours after. BrdU labeling cells were located in the area 
close to the cervical loop. (B) Long-term BrdU chase experiment: Consecutive BrdU was injected to mice, 
BrdU incorporation was chased from 1 day after BrdU injection to 64 days after. BrdU labeling was first 
seen in all the dental pulp cells. 1 day after consecutive BrdU injection, cells in the area close to the 
cervical loop firstly lost their labeling. 64 days after consecutive BrdU injection, only cells in the area 
between cervical loops still had their labeling.  
 

To better elucidate the locations of the slow and fast cell population during mouse 

incisor growth, IdU was administered to mice (n=5) for 3 weeks to allow all the dental 

pulp cells including slow cycling cells labeled by IdU. After 30 days “wash time” when 

all other cells except slow cycling cells have lost their labeling, single pulse CldU was 

given to these mice to label the fast cycling cells, then mice were sacrified to examine 

both slow cycling cells labeled with IdU and fast cycling cells labeled with CldU in the 

incisor dental pulp tissue. The results of IdU and CldU double incorporation showed a 

similar pattern detected by the BrdU chase experiments in all 5 mice: slow cycling cells 

were mainly in the area between two cervical loops of the mouse incisor while fast 

cycling cells disperse more distally. (Fig. 3.5 A). Co-incorporation of IdU and CldU 

(Fig. 3.5 A’, A’’) was also observed in some cells suggested that the slow cycling cells 

at the point of transition into fast cycling cells. To further confirm that the cells close to 
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the cervical loop area were fast cycling cells, cell proliferation was analyzed using 

immunostaining with a PH3 antibody that detects cells undergoing mitosis. 

Immunostaining showed that the locations of mitotically active cells (Fig. 3.5 B) were 

consistent with the BrdU labeling of fast cycling cells (Fig. 3.5 C), thereby confirming a 

mitotically active area of cells distal to the slow cycling cells. 

Taken together, these experiments showed that a special niche that consisting of slow 

cycling cells (stem cells) and a fast cycling cell (TA cells) was located in the apical end 

of mouse incisor. 
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Fig 3. 5: Immunostaining results of fast and slow cycling cells. 

(A) Slow cycling cells (IdU+, green) were detected in the dental pulp mesenchymal tissue between 
cervical loops while the fast cycling cells (CldU+, red) were located more distally. (A’, A’’) High 
magnification of dashed area in (A) showed the co-localization of IdU and CldU in some cells (arrows) 
were located between IdU+ and CldU+ cells boundary at the apical end of mouse incisor. (B) PH3+ cells 
(mitotic cells) showed the same location pattern as fast cycling cells in the development of mouse incisor. 
(C) BrdU labeling indicated that highly proliferative cells were located predominantly in the dental 
mesenchyme near labial and lingual cervical loops and in also the TA cells of the dental epithelium. 
Abbreviation: BV, blood vessel; OD, odontoblast; Am, ameloblast; LiCL: lingual cervical loop; LaCL, 
labial cervical loop. Scale bars=25 µm in (A’, A’’). Scale bar = 150 µm in (B). Scale bar =250 µm in (C).  
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Fig 3. 6: Schematic diagram of IdU and CldU incorporation and chase experiments in mouse 
incisor. 

Consecutive IdU was injected to mice for 3 weeks to label all dental pulp cells, after 32 days wash time, 
only slow cycling cells still kept IdU labeling, then single pulse CldU was injected to mice. 1 day after 
CldU injection, mice were collected and examined, showing dual labeling of CldU and IdU in the mouse 
incisors. 
 

 

Furthermore, experiments showed that the label-retaining cells (LRCs) were detected in 

several areas in the mouse incisor after a 32 day chase period, including the cervical 

loop, apical end mesenchyme and pericytes (Fig. 3.7 A). In the labial cervical loop, a 

well-studied stem cell niche, LRCs were detected in the labial cervical loop among the 

stellate reticulum cells, close to the basal epithelium (Fig. 3.7 B’). In addition, LRCs 

were also detected in the outer enamel epithelia that give rise to enamel producing cells, 

ameloblasts (Fig. 3.7 B’), suggesting LRCs in our experiments were epithelium stem 

cells. In the mesenchymal tissue, a subset of LRCs were detected in the middle of the 

dental pulp rich in blood vessels (Fig. 3.7 C, C’). Here a stem cell niche harboring 

pericytes that differentiate into specialised odontoblasts during tooth growth and in 

response to damage in vivo has been reported (Feng et al., 2011). Another LRC 

population was detected in the area between the cervical loops (Fig. 3.7 B, B’’) that 

suggested a potential MSCs source in this area contributing to the development and 

growth of the mouse incisor. 
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Fig 3. 7: Slow cycling cells/LRCs in mouse incisor dental pulp. 

(A) Schematic of stem cells populations in the dental pulp: perivascular stem cell niche, epithelium stem 
cell niche (labial cervical loop) and the putative mesenchymal stem cells niche at the apical end of mouse 
incisor dental pulp (Feng et al., 2011). Accordingly, arrows in (B-C) show LRCs in these stem cell niches 
respectively. Arrows in (B, B’, B’’) showed LRCs were located in the labial cervical loop and close 
mesenchymal tissue; Arrows in (C, C’) showed LRCs were located in the perivascular area close to blood 
vessel (BV). Abbreviation: OD, odontoblasts; CL, cervical loop; LiCL, lingual cervical loop; LaCL, 
labial cervical loop. Scale bars= 50 µm in (B, B’, B’’ and C’). Scale bar = 100 µm in (C). 
 

	
3.2.2 Analysis of fast cycling cells and slow cycling cells 

To further analyze the fast cycling and slow cycling cell populations, adult incisor 

dental pulp cells were collected and analyzed by flow cytometry following EdU 
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labeling. EdU is a replacement of BrdU that allows the use of mild conditions to access 

the DNA incorporation without requiring DNA denaturation (typically using HCl, heat, 

or digestion with DNase). In our study, the incisor pulp cells of 6 adult mice were 

collected and analyzed. This experiment were repeated 3 times. EdU+ (LRCs) cells 

from 42 days after long-term EdU injection were considered as slow cycling cells (stem 

cells) while EdU+ cells from 24 hours after a single EdU injection were considered as 

fast cycling cells (TA cells) in the mouse incisors. Flow cytometry analysis results 

showed that approximately 17.8±2.1% pulp cells were EdU+ from the fast cycling cell 

group while only 4.3±1.5% incisor dental pulp cells were EdU+ / LRC cells (Fig. 3.8). 

This suggested a small number of slow cycling cells and a relatively larger number of 

fast cycling cells in mouse incisor dental pulp tissue. More importantly, the numbers of 

fast cycling cells and slow cycling cells were correlated with the results of 

immunostaining on sections. Approximately 20% pulp cells were fast cycling cells 

while 5% pulp cells were slow cycling cells. Cells that neither slow cycling cells nor 

fast cycling cells (approximately 75%) were considered as descendants of fast cycling 

cells which contributed to the growth of whole dental pulp tissue. 

 

 
 

Fig 3. 8: FACS analysis of fast cycling cells and slow cycling cells in the mouse incisor dental pulp. 

17.8% EdU+ pulp cells were detected in fast cycling cells group (A) in comparison to 4.3% EdU+ cells in 

slow cycling cell group (B). 
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3.2.3 Identification of quiescent cell localized in the mouse dental pulp 

To identify these specialized quiescent cells in the mouse incisor, a quiescent cell 

marker in HSCs niche, Celsr1, was investigated in incisor dental pulp tissue. ISH was 

used to detect Celsr1 mRNA expression in PN5 mouse incisor, result showed that 

Celsr1 mRNA was expressed in the outer region of the incisor mesenchyme between 

two cervical loops. Immunostaining results further confirmed that result: a small 

number of flamingo homolog Celsr1+ cells were located in the outer region of the 

incisor dental pulp mesenchyme adjacent to the dental follicle. In addition, to detect the 

existence of quiescent cells in the mouse incisor, two rounds of label-retaining 

experiments were performed. Howerer, different incorportation strategies need to be 

used to label the quiescent cells since these quiescent cells hardly divide after tissue 

formation but can be only labeled in the embryonic stage when tissue formation initiates. 

Thus, consecutive IdU was given to mice (n=10) from E10.5 before embryo tooth germs 

began forming until birth; consecutive CldU was administrated to the pups until PN30, 

followed by a 30 day wash prior to sacrifice to label the slow cycling cells. 

Immunostaining results of IdU and CldU labeling also revealed that a very small 

number of quiescent cells (IdU+) proximal to the slow cycling cells (CldU+) were 

located in the outer region of the incisor dental pulp where Celsr1+ cells located (Fig. 

3.9). Taken together, these results suggested the existence of a quiescent cell population 

in the apical end of mouse incisor mesenchymal tissue.  
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Fig 3. 9: Location of quiescent cells in the mouse incisor dental pulp. 

(A) Diagram of quiescent cell location. (B, B’) whole mount ISH in PN5 incisor and ISH on section 
showed that Celsr1 was detected in the area between cervical loops. (C) Arrow show quiescence cells 
(IdU, green) were located on the approximal of slow cycling cells (CldU, red) which are mainly 
concentrated on the area between cervical loops. (C’) High magnification of dashed box in (C). (D, D’) 
Arrows showed immunostaining of Celsr1: Celsr1+ cells were observed in the apical end of mouse 
incisor dental pulp. (E) Arrows show Celsr1+ cells (red) and Thy-1+ cells (green) in incisor dental pulp 
tissue. (E’) High magnification of dashed box in (E’). (F, F’) Arrows show Celsr1 + staining in dental 
pulp mesenchymal cells adjacented to dental follicle. Antibody was checked on bone morrow as positive 
control and no signal was detected in negative control (result is not shown). Abbreviation: df, dental 
follicle, LaCL, labial cervical loop. Scale bar in B and F, indicates 500µm. Scale bar = 100 µm in (B, D, 
E,E’,F’). Scale bar =25 µm in (C). Scale bar=10 µm in (C’). Scale bar=50 µm in (D’). 
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3.2.4 Investigation of prospective stem cells and their role in the 

development of mouse incisors 

To locate and trace the stem cell population, a pCAGERT2Cre; R26R mT/mG mouse line 

was generated in our study. In this mouse line, all cells including dental pulp cells can 

express GFP upon tamoxifen injection. Once all the cells are GFP+ and all non- stem 

pulp cells are lost at the tip as mouse incisors grow continuously, only stem cells will 

retain and keep producing TA cells. Thus after a period of time that is long enough for a 

complete repopulation of the tooth pulp and odontoblasts all GFP+ cells will be stem 

cell derived. In our study, mice (n=12) were divided into 2 groups (6 in high dose 

tamoxifen group and 6 in low tamoxifen group). Experiments were repeated 3 times 

under the same condition. Results showed that 3 days after high dose tamoxifen 

adminstration which was enough to activate Cre/loxP system in all the cells, all dental 

pulp cells were GFP+ including odontoblasts and ameloblasts in all samples (Fig. 3.10 

B). This result confirmed the effectiveness of ubiquitous pCAGERT2Cre and that all 

dental pulp cells can be activated under the control of pCAGERT2 Cre. While rather 

interestingly, after 3 weeks chase time, when most pulp cells have migrated out the 

incisor, a larger number of cells in the mouse incisor dental pulp still contained GFP 

(Fig. 3.10 C). These cells formed a large cell stream starting from apical end to the 

middle of incisor suggested the existence of stem cell population at the apical end of 

mouse incisor keep producing TA cells. However, this cell stream could consist of 

several stem cell progeny populations. How an individual stem cell evolves in the 

growth of mouse incisor is still not clear. Thus, in our low tamoxifen group, a low dose 

of tamoxifen was given to pCAGERT2Cre; R26R mT/mG mice to activate GFP expression 

to identify individual stem cell and its progeny populations. Low dose tamoxifen is not 

enough to activate Cre recombination in all the incisor dental pulp cells, but can 

randomly activate dental pulp cells to express GFP. If an individual stem cell was 
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activated among dental pulp cells, when all other pulp cells have been lost from the tip, 

only this stem cell will stay and produce TA cells with GFP expression. Thus, a stem 

cell and its progeny cell population would be identified in the mouse incisor. Our results 

from low dose tamoxifen group showed that most of our samples that received low dose 

tamoxifen adminstrations show GFP expression on random cells as we expected. In 

these samples, GFP was randomly expressed by individual cells in dental pulp tissue 3 

days after the adminstration of tamoxifen (Fig. 3.10 D). 1 week after the low dose 

tamoxifen adminstration, cell clones and streams were observed in some of our samples 

(Fig. 3.10 E, E’, Fig. 3.11). These cells have migrated to the middle of incisor which 

confirmed the effectiveness of our incisor model, however, unfortunately they were no 

MSCs in these samples. Luckily, in one of our samples, a very small GFP+ cell clone 

was found located at the apical end of the mouse incisor mesenchyme 3 weeks after 

tamoxifen adminstration suggesting the existence of individual GFP-producing cells 

that keep proliferating and giving rise to dental pulp cells at the apical end of mouse 

incisor. This mesenchymal cell clone contained about 20 cells that contribute to the 

formation of odontoblasts (Fig. 3.10 F, F’’). If this clone was from a single stem cell, 

they need roughly 4 rounds of cell division to reach this number that may present a 

pattern of how a single mesenchymal stem cell behaves and contributes to the formation 

of odontoblasts in the mouse incisor dental pulp. In addition, a GFP+ cell clone was 

found in the epithelium close to the epithelium stem cell niche cervical loop (Fig. 3.10 

F’), suggesting the effectiveness of pCAGERT2Cre; R26R mT/mG mice in detecting stem 

cell progeny. In summary, the study in pCAGERT2Cre; R26R mT/mG mice suggested the 

existence of prospective stem cells at the apical end and individual stem cell and their 

progency can be followed in the mouse incisors. 
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Fig 3. 10: Label perspective stem cells and their progeny population in pCAGERT2Cre; R26R mT/mG 
mouse mandibular incisors (sagittal sections). 

(A) Control group, no GFP was expressed in pCAGERT2Cre; R26R mT/mG mice mandibular incisor without 
tamoxifen administration. (B-E) High dose tamoxifen group: (B) All dental pulp cells were GFP+ 3 days 
after consecutive high dose tamoxifen injection. (C) Large numbers of dental pulp cells were still GFP+, 
these cells formed cell stream and gave rise to odontoblasts. (D-F) Low dose tamoxifen group: (D) Few 
cells were GFP+ 3 days after low dose tamoxifen was given into pCAGERT2Cre; R26R mT/mG adult mice; 
these labeled cells distributed randomly to the whole dental pulp, no cell clone was observed. (E) Three 
GFP+ cell streams were observed in the incisor dental pulp 1 week after low dose tamoxifen was given 
into pCAGERT2Cre; R26R mT/mG adult mice. (E’) High magnification of dashed area in (E). (F) GFP+ cell 
clone was detected 3 weeks after low dose tamoxifen injection. Cells from mesenchymal clone and cells 
from epithelia clone were detected. (F’, F’’) High magnification of dashed area in C. Abbreviation: dp, 
dental pulp cells; od, odontoblasts; am, ameloblasts; epi, epithelia. Scale bar =250 µm in (A, B, C, D, E, 
F), Scale bar =100 µm in (E’), Scale bar =50 µm in (F’, F’’).  
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Fig 3. 11: Label perspective stem cells and their progeny population in pCAGERT2Cre; R26R mT/mG 

mice mandibular incisor (low dose tamoxifen group, Sagital sections). 

(a,b): Demonstration of random labeled cells and their fate. (A-C) 1 week after low dose tamoxifen 
injection: (A) Few cells were detected in the area between cervical loops, however, a cell cluster in the 
middle of dental pulp tissue was detected (B). (C) Individual odontoblasts cell was observed but no cell 
cluster was seen in molar. (A’-C’) High magnification of dashed area in A and B. (F-H) 2 weeks after low 
dose tamoxifen injection, few cells existed in the apical end, cell cluster was observed in the middle of 
pulp. (F’-H’) High magnification of dashed area in F-H. (D, E, I, J) High magnification of odontoblasts. 
Abbreviation: dp, dental pulp cells; od, odontoblasts. Scale bar =100 µm in (A, B, F, G, H). Scale bar =50 
µm in (D, E, A’-B’, F’-H’). Scale bar =10 µm in (I, J). 
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3.3 Discussion 

3.3.1 Identification of slow and fast cycling cell populations at the 

apical end of mouse incisors 

In adult mice, stem cells reside in specialized physical locations known as niches 

(Schofield, 1978), which constitutes a three-dimensional microenvironment containing 

mesenchymal cells, extracellular matrix, molecule signaling and stem cells (Ohlstein et 

al., 2004). In mouse incisors, extensive studies have been carried out to identify the 

labial side cervical loop region as a stem cell niche containing an epithelial stem cell 

population for continuous renewal of dental epithelial components during incisor 

growth (Harada et al., 1999, Harada et al., 2002). A BrdU incorporation experiment was 

successfully used to identify LRCs in the cervical loop as stem cells. However, in the 

incisor dental mesenchyme, the identity of stem cells and stem cell niche are still not 

well characterized, although MSCs are generally believed to be located in the apical end 

mesenchyme. Thus, simialr BrdU incorporation experiments described in our study 

identified a slow cycling stem cell population in the dental pulp mesenchyme region 

between two cervical loops and a fast cycling cell population distant to this, presenting a 

specialize region (presumably a stem cell niche) located in the apical end of mouse 

incisor. Sequential incorporation of different thymidine analogues (CldU and IdU) into 

incisors of adult mice further confirmed the locations of these two cell populations 

corresponding to one of the important characteristics of adult stem cells, namely stem 

cells that divide infrequently to preserve their long-term proliferation potential (slow 

cycling cells) and their daughter cells (fast cycling or TA cells) which are able to 

continually produce progeny that rapidly differentiate in organ growth (Diaz-Flores et 

al., 2006). Besides mouse incisor, slow cycling cells (LRC) in the salivary glands and 

mouse brain tissue were all found to be stem cells (Furutachi et al., 2015, Zhang et al., 
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2014) .In summary, these samilar results in the mesenchyme campare to well studied 

epithelial stem cell niche strongly suggested a MSC niche is located at the apical end of 

mouse incisor. 

The average eruption rate of the mouse incisor is 365 µm/d, thus, it replaces itself 

approximately 5-6 weeks (Coady et al., 1967). In our BrdU labeling experiment, several 

time points were selected. The results showed that 32 days after BrdU injection, most 

pulp cells at the apical end have renewed. Thus, cells that still retained BrdU labeling 

were roughly defined as slow cycling cells. In the flow cyctometry analysis, pulp cells 

were collected and analyzed 6 weeks after EdU injection to allow the repopulation of 

the whole tooth. The results showed that approximately 5% cells still kept EdU labeling 

which was consistent with the number of BrdU labeling cells from immunostaining of 

sections. However, both the numbers of BrdU+ cells from flow cytometry results and 

the immunostaining results were very crude. The exact number of labeling cells needs 

to be quantitated in the future. Regarding fast cycling cells, as early as 2 hours after 

BrdU injection, pulp cells close to the cervical loop were labeled with BrdU suggesting 

cells in this area were undergoing cell division. In the flow cytometry analysis, 24 hours 

after EdU injection, 2 rounds of cell cycling were noticed, thus, those cells with EdU 

before 24 hours were roughly considered to be fast cycling cells. Similarly, the number 

of fast cycling cells was crude. This needs to be quantitated in the future. However, 

although our nucleoside labeling experiments did not give exact numbers of fast cycling 

cells and slow cycling cells, the results successfully presented two cell populations with 

different proliferation rates and identified their locations which provided a basis for 

future study.  

The identification of slow cycling stem cells and fast cycling cells in the mouse incisor 

provided an opportunity to study the connection of stem cells and TA cells and how 

they support the mesenchymal component. The differences in gene expression between 
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stem cells and TA cells need to be addressed further in future studies. Similarly, how 

stem cells and TA cells were regulated in the stem cell niche was not clear. This MSC 

niche micro-environment regulation needs further study. Studies in other organs have 

provided some clues. For example, evidence from hair follicles showed that emerging 

TA cells constitute a signaling center that orchestrates tissue growth. Whereas primed 

stem cells generate TA cells, quiescent stem cells only proliferate after TA cells form 

and begin expressing Sonic Hedgehog (Shh). Without Shh from TA cells there is not 

sufficient input from quiescent stem cell generation and the TA cell pool wanes. TA 

cells are independent of autocrine Shh, but if they can not produce Shh, replenishment 

of primed stem cells for the next hair cycle is compromised, delaying regeneration and 

eventually leading to regeneration failure. This finding unveiled TA cells as transient 

but indispensable integrators of stem cell niche components (Hsu et al., 2014). 

 

3.3.2 Identification of quiescent cells of mouse incisor 

Mouse incisors grow continuously throughout their lives. This growth requires stem 

cells in the mouse incisors to keep providing daughter cells. To prevent these stem cells 

from depletion, a long-term quiescent cell population is needed. Evidence from adult 

mice showed that for long-term maintenance of HSCs in bone marrow, a subset of stem 

cells is kept in long-term quiescence in a specialized niche. Thus, the identification of 

quiescent cells in the mouse incisor can provide more information of stem cell niche 

together with the locations of slow cycling cells and fast cycling cells. According to our 

BrdU labeling experiments, dental pulp cells can be labeled soon after BrdU 

administration, thus, consecutive IdU given to mice from E10.5 until birth was able to 

label all tooth germ cells including rarely dividing quiescent cells. As a result, a small 

number of quiescent cells were identified proximal to the slow cycling cells in the 

incisor. Unfortunately, technical restriction made it difficult to perform an exact 
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quantitative analysis, however, this result still described a special area consisting of 

different cell populations with different proliferation rates further verified our 

hypothesis that a MSC niche exists at the apical end of mouse incisor. In addition, a 

study in the HSC niche showed that Flamingo, a protein in noncanonical Wnt signaling, 

is expressed in and functionally maintains quiescent long-term HSCs (Sugimura et al., 

2012). Whether these Flamingo expressing cells exist in the mouse incisor was 

investigated. ICH and ISH results showed that Celsr1, a homolog of Flamingo 

expressed in a few cells at the same area of quiescent cell of the apical end of mouse 

incisor further confirming that a quiescent cell population existed in the mouse incisor. 

However, due to limited number of these quiescent cells (4-5 per sample), isolation and 

analysis of these cells has not been successfully performed, more work needs to be done 

in the future. 

 

3.3.3 Investigation of prospective stem cells of mouse incisor 

It remains unclear how MSCs proliferate and differentiate to odontoblasts during the 

continuous incisor growth. Stem cell studies showed that adult stem cells divide 

infrequently to preserve their long-term proliferation potential. Yet, TA cells rapidly 

differentiate in organ development to provide specialized cells. In our genetic lineage 

tracing experiments with pCAGERT2Cre; R26R mT/mG mice, a group of cells were 

observed in the apical end mesenchyme contributed to the formation of a patch of 

odontoblasts, it was reasonable to propose that these labeled cells were a stem cell clone 

which contributed to the formation of odontoblasts. This result further confirmed our 

hypothesis that incisor MSCs are located in apical end of mouse incisor and contribute 

to the formation of dental pulp tissue including odontoblasts. In addition, our result also 

presented a very small cell cluster consisting of approximiately 20 cells in the apical 

end of mouse incisor. If these cells were from a single stem cell, there were 
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approximately 4 rounds of cell division before them gave rise to form patch of 

odontoblasts. However, how stem cell and TA cell act in the stem cell/TA cell 

production was still unclear in this single colour labeling system. The cell clusters and 

streams observed in pCAGERT2Cre; R26R mT/mG mouse incisors might be formed by 

different stem cell progeny cells. Questions such as if stem cells are next to each other 

and how many stem cells stay together cannot be answered due to a lack of evidence. 

Thus, a new four colour labeling transgenic mouse pCAGERT2Cre; R26R-Confetti are 

expected to identify single stem cell clone and it’s progeny in the mouse incisors in 

future studies. 
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3.4 Conclusions 

In the continuously growing mouse incisor, three cell populations existed in the apical 

end: slow cycling cells, fast cycling cells and quiescent cells. The slow cycling cells 

mainly approached the area between the two cervical loops at the apical end of mouse 

incisor while fast cycling cells were located distally. Furthermore, co-localization of 

IdU and CldU was also detected in some cells suggesting that these were slow cycling 

cells in transition to fast cycling cells which supports the theory that adult stem cells 

hardly divide but produce TA cells. These TA cells divide very fast giving rise to all 

other progeny cells. Beside the fast and slow cell population, a quiescent long-term cell 

population marked by Flamingo homologue Celsr1 existed at the apical most end 

mesenchyme.  

In the end, the results of high and low dose tamoxifen injection in pCAGERT2Cre; R26R 

mT/mG mice confirmed the existence of prospective stem cells at the apical end of 

mouse incisor dental pulp that contribute to the formation of dental pulp tissue. 

Furthermore, the results also presented an odontoblast formation pattern: a clonal cell 

cluster consisted of 20-30 cells in the fast cycling cells area that gave rise to a patch of 

odontoblasts.  

In summary, in this chapter we identified a MSCs niche located at the apical end of the 

mouse inciosr pulp tissue as generally believed.
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Chapter 4 : Gene Expression in Dental Stem Cell 

4.1 Introduction 

It has been suggested by many studies that MSCs at the apical end of mouse incisor 

dental pulp mesenchyme and the perivascular area, along with epithelium stem cells in 

the cervical loop contribute to the continuous growth and eruption of mouse incisors 

which is different from that of molars and all human teeth that lack the ability to grow 

throughout lifetime (Harada et al., 1999). Results in chapter 3 showed a stem cell 

population to be located at the apical end of the mesenchyme area between the two cervical 

loops by series label-retaining and lineage tracing experiments. A gene microarray of 

previous study in our laboratory has compared gene expression patterns between incisors 

and molars, the expression of several stem cell genes such as Crabp1, Hus-1, Ikaros and 

Thy-1 were identified to be up-regulated in incisors (Mantesso and Sharpe, 2008). Another 

subsequent microarray compared the gene expression differences between the incisor 

apical end that contains the stem cells and incisor body dental pulp tissues 

(Lapthanasupkul and Feng, 2009) (Fig. 4.1). As a result, Thy-1 gene showed an obvious 

up-regulated expression in both microarrays (Fig. 4.2). Since Thy-1 has been used as a 

marker of stem cells in several tissues such as liver (Petersen et al., 1998), BM (Mayani 

and Lansdorp, 1994) and epidermis (Nakamura et al., 2006), it was selected as a 

candidate marker of mesenchymal stem cell of mouse incisors for further investigation. 
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Fig 4. 1: Heatmap of gene expression comparison between the pulp tissues of incisor body (Body) 
and the cervical loop (CL). 

Compared with the expression in the body pulp tissue (Body1-3) (yellow area), genes in the cervical loop 
area (CL1-3) (red area) were up-regulated. Also fewer genes showed up-regulation in the body samples 
compared with the cervical loop area. Rows represent genes and columns represent the samples. Genes 
that fall into one cluster (vertical axis) had a similar behaviour in the experiments. Genes that fall into one 
cluster (horizontal axis) share the same category. Expression intensities were represented by red and 
yellow, for high and low intensities, respectively. (Mantesso and Sharpe, 2008.) 

	
 

 
Fig 4. 2: Venn diagram of common genes in stem cell and Body/CL microarrays. 

Thy-1 was up-regulated in incisor pulp tissues comparing with molar pulp tissue (Microarray analysis-1 
of stem cell genes); Thy-1 was found up-regulated in the cervical loop side pulp when the genetic 
expression of this area was compared with incisor body areas (Microarray analysis-2), while Distal-less 
homeobox 5 (Dlx5) was up-regulated in molar pulp tissues (Microarray analysis-1) and the incisor 
cervical loop (Microarray analysis-2). Up-regulation of Thrombospondin 1 (Thbs-1) in molar pulp tissues 
(Microarray analysis-1) and the incisor body (Microarray analysis-2) were found.（Lapthanasupkul and 
Feng, 2009） 
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Definitive identification of Thy-1 expression in mouse incisor dental pulp stem cells 

requires lineage tracing. In lineage tracing, a set of labeled progeny cells originate from a 

single cell carrying marks which can be inherited and thus being traced in the whole 

tissue (Kretzschmar and Watt, 2012). This method has been widely used to identify 

adult stem cells (Haegebarth and Clevers, 2009, Joyner and Zervas, 2006, Brumovsky et 

al., 2014). One of the methods of lineage tracing which is different from exogenous 

incorporation is genetic recombination, which usually relies on the Cre-loxP system, 

allowing us to trace certain gene expressing cells (Fig. 4.3 a). In our study, two reporter 

mouse lines (R26R-Confetti and R26R mT/mG) were mated with Thy-1Cre transgenic 

mice, where Cre is driven by Thy-1 promoter, to trace Thy-1 expressing cells inside the 

mouse incisor dental pulp. In Thy-1Cre reporter transgenic mice where Cre is expressed, 

the loxP-flanked sequence is deleted and Thy-1+ cells and all their descendants are 

permanently marked by expression of a specific reporter (Soriano, 1999, Snippert et al., 

2010, Muzumdar et al., 2007). By tracing these cell reporters, the location of 

Thy-1expressing cells and their descendants can be identified. 

In order to examine how different cells contribute to the maintenance and repair of a 

given tissue, multicolor reporter constructs with two or more markers are being used 

increasingly for lineage tracing (Rinkevich et al., 2011). A widely used reporter system, 

the ‘‘Brainbow’’ mouse enables combinatorial expression of four different fluorescent 

proteins in a stochastic manner (Livet, 2007). In the following studies, the Brainbow-2.1 

construct was designed to target the Rosa26 locus to make a reporter mouse 

ubiquitously expressing the construct (Snippert et al., 2010). Researchers have 

successfully used this reporter mouse to randomly label Lgr5 positive stem cell derived 

clones within the intestinal crypt with different fluorescence (Fig. 4.3 b). Thus, in 

addition to mT/mG double-fluorescent reporter mouse line (Fig. 4.3 c) R26R-Confetti 

reporter mouse line was used to investigate how Thy-1 progeny cells contribute to the 
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maintenance of a mouse incisor. Not only questions such as how and where Thy-1 

cells+ are maintained in mouse dental pulp tissue can be addressed by tracing Thy-1 

derived dental pulp cells, but also more importantly, single stem cell clone can be traced 

as cells in same colour were derived from the same single clone.   

 

 

 
Fig 4.3 (a): Schematic of the Cre/loxp lineage tracing methodology. 

(A) Transgenic mice expressing the Cre recombinase under the control of a cell-specific promoter (Thy1). 
(B) Reporter mice with a reporter gene blocked by a constitutively active promoter by transcriptional stop 
sequences that are flanked by loxP sites. (C) Cell specific Cre excise the stop sequences, resulting in 
transcription of the reporter gene (Lounev et al., 2009). 

 
 

 
 

Fig 4.3 (b): Schematic of the possible outcomes of the R26R-Confetti recombination in Cre/loxp 
lineage tracing. 

Brainbow-2.1 constructs encoding four fluorescent proteins driven by the strong CAG promoter into the 
Rosa26 locus (Snippert et al., 2010). Upon Cre recombination, the Neomycin (Neo) cassette is removed 
and the multicolour construct recombines randomly to result in four possible outcomes with different 
fluorescent proteins being expressed (image shows clonal expression of the four fluorescent proteins in 
small intestine, Snippert et al., 2010). 
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Fig 4. 3 (c): Schematic representation of the effect of Cre recombinase excision on the expression of 
dTomato and membrane tethered eGFP. 

Upon Cre recombination, dTomato is removed and the eGFP fluorescent proteins being expressed. 

	
	
 
Besides Thy-1, a set of genes that are associated with DPSCs were chosen and detected 

in the mouse incisor based on a number of criteria to confirm the location of MSC niche. 

To begin with, targets of major signaling pathways that are active within the putative 

stem cell niche (Joyner and Zervas, 2006) were investigated. In the mouse incisor, the 

Hedgehog signaling (Hh) pathway plays an important role in controlling incisor tooth 

growth. Studies have showed that Hh signaling is required for the continuous generation 

of ameloblasts in the adult by blocking the Hh pathway in vivo using a smoothened 

inhibitor (Seidel et al., 2010). In a recent study, Gli1 positive Hh-responsive cells were 

reported as present in both the epithelial stem cell compartment and the dental pulp 

mesenchyme. More importantly, these Gli1 expressing cells contributes to all 

mesenchymal derivatives (Zhao et al., 2014). This suggests its function as a stem cell 

marker in both epithelial and mesenchyme tissue. In addition, Patched, a crucial 

transmembrane protein in the Hedgehog signaling pathway, was also detected in the 

incisor dental pulp mesenchyme as it has been strongly suggested that Hedgehog 

signaling regulates MSCs involved in maintenance and regeneration. Thus, Gli1, Shh 

and Patched from Hh signaling pathway were selectied for investigation in the study. 

The transforming growth factor beta (TGF-β) signaling pathway is also involved in the 

cellular processes of incisor development and growth. TGF-β receptor type I 
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(Alk5/Tgfbr1) has been reported to regulate tooth initiation in the dental mesenchyme 

and development of the incisor epithelium since loss of Alk5 in the neural crest tissue 

resulted in delayed tooth initiation and development (Zhao et al., 2008, Zhao et al., 

2011). When Alk5 was deleted specifically in the dental mesenchyme, the expression of 

Fgf3 and Fgf10 are down-regulated in the mesenchyme, leading to reduced proliferation 

and fewer LRCs in the cervical loop (Zhao et al., 2011). Next, Dickkopf-related protein 

1 (Dkk1), a potent inhibitor of Wnt/β-catenin signaling was investigated. It is known 

that Wnt/β-catenin signaling in the dental epithelium is critical for dental patterning 

during multiple stages of early tooth development (Lohi et al., 2010). During 

embryogenesis, the Dkk1 mediated Wnt inhibition controls the spatio-temporal 

dynamics of cell fate determination, cell differentiation and cell death. Studies have 

shown that Axin2 lacZ signal, which reflects the canonical Wnt signaling pathway, was 

expressed in dental pulp and developing odontoblast cells, but not in ameloblast cells 

postnatally. This suggested a potential role for canonical Wnt signaling in postnatal 

tooth formation (Han et al., 2011). 

In addition to the important targets of major signaling pathways mentioned previously, 

Paired box 9 (Pax9) was also chosen to be investigated in the incisor. Pax9 plays an 

important role in the establishment of the inductive capacity of the tooth mesenchyme. 

In Pax9-deficient embryos tooth development is arrested at the bud stage, where Pax9 is 

required for the mesenchymal expression of Bmp4, Msx1 and Lef1 (Peters et al., 1998). 

In addition to missing teeth, the craniofacial and visceral skeletogenesis is also 

disturbed in Pax9 deficient mice. This crucial gene is essential for the generation of a 

pool of taste bud progenitors and to maintain their competence towards prosensory cell 

fate induction (Kist et al., 2014). Thus it is interesting to locate Pax9 expressing cells in 

the mouse incisor.  
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4.2 Results 

4.2.1 Investigation of the expression of Thy-1 in the dental pulp of 

mouse incisors 

In chapter 3, the stem cell population was identified to be located at the apical end 

mesenchyme area between two cervical loops by a series of label-retaining and tracing 

experiments. Stem cell microarrays by previous studies have also suggested Thy-1 as a 

candidate stem cell marker for further investigation. To confirm those Thy-1 expressing 

mesenchymal cells are stem cells of mouse incisor dental pulp, whole mount ISH and 

immunostaining were performed on PN5 mouse (n=10) incisors, respectively. Results 

showed that Thy-1 was expressed at the apical end of mouse incisor where the MSC 

niche is believed to be located. Optical Projection Tomography (OPT) was used to view 

Thy-1 gene expression patterns in three-dimensions (3D) in which ISH staining was 

observed in the middle of the cervical loop area of the mouse incisor (movies included 

in the enclosed DVD). Representative images of the samples from the movie are shown 

in (Fig. 4.4). In frozen sections of PN5 incisors, immunostaining for Thy-1 showed that 

individual or small groups of Thy-1 expressing cells were in the mesenchymal tissue 

between lingual cervical loop and labial cervical loop, while no Thy-1 expressing cells 

were observed in the mesenchymal tissue close to labial cervical loop or lingual cervical 

loop. This result suggested a small number of Thy-1+ cells are located in the area 

between cervical loops (Fig. 4.5 A, B, C, D).  
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Fig 4. 4: Still images of PN5 mouse mandibular incisor 3D construction after ISH. 

Thy-1 was expressed at the apical area of the mouse incisor where the mesenchymal stem cells are 
located. (Fluorescence in the tip of incisor is due to background and auto-fluorescence).  
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Fig 4. 5: Immunostaining of Thy1+ cells in PN5 mouse mandibular incisor dental pulp (sagittal 
sections). 

(A) Arrows show individual Thy-1+ cells were detected in the area between cervical loops of incisor 
dental pulp. (B) A Thy-1+ cell cluster (green) was located in the slow cycling cells area next to several 
quiescent Celsr1+ (red) cells. (C) High magnification of Thy-1+ cells at the apical end incisor dental pulp 
tissue. (D) Thy-1+ cells were detected to locate at the apical end mesenchyme. Pictures were taken by 
confocal z-stack from cryosection. Thy-1 antibody was checked in salivary gland tissue (not shown). 
Abbreviation: dp, dental pulp; CL, cervical loop; Api, apical end; LaCL, labical cervical; LiCL, lingual 
cervical loop. Scale bar=500 µm in (A). Scale =25 µm in (B, C). Scale bar=10 µm in (D). 

	
 
4.2.2 Analysis of Thy-1 expressing cells in the dental pulp of mouse 

incisors 

Flow cytometry was used to analyze the proportion of Thy-1 expressing cells in the 

mouse incisor dental pulp at different postnatal stages. PN5 (n=24) and adult mice (n=6) 

were used to obtain both upper and lower incisors for this experiment. Incisor dental 
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pulp mesenchymal cells were dispersed and incubated with anti-CD90 (Thy-1) antibody 

prior to do flow cytometry. All experiments were repeated three times. The result of 

flow cytometry showed that 13.2±0.9% of PN5 and 12.4±1.5% of adult incisor pulp 

mesenchymal cells were Thy-1+ cells, suggesting that a relatively stable number of 

Thy-1+ cells exist in the incisor dental pulp (Fig 4.6 A, B). Furthermore, to analyze the 

Thy-1 derived cells from the whole dental pulp at different stages of incisor growth, 

Thy-1+ derived cells in Thy-1Cre; R26R mT/mG were collected and analyzed using 

flow cytometry with anti-GFP antibody at PN5 (n=24) and adult stage (n=6). 

Experiments were repeated three times. The results showed that 17.1±1.9% pulp cells 

were GFP+ in PN5 mouse incisor while 17.9±1.5% cells were GFP+ in adult mouse 

incisor, (Fig 4.6 C, D) suggesting a constant contribution of Thy-1+ cells in the 

formation of dental pulp tissue. Taken together, our flow cytometry analyses confirmed 

that Thy-1 expressing cells constantly contribute to dental pulp formation during 

different postnatal growth. 

 
Fig 4. 6: Thy-1+ cells and their progeny cells in mouse incisor dental pulp. 

(A) The percentage of Thy-1+ cells in digested adult dental pulp tissue was 12.4% comparing 13.2% in 
PN5 incisor dental pulp tissue (B). (C) Thy-1 derived GFP+ cells in Thy-1Cre; R26R mT/mG incisor was 
17.1% at postnatal stage. (D) The percentage of Thy-1 derived GFP+ cells in adult Thy-1Cre; R26R 
mT/mG mouse incisor was 17.9%. The number of gated cells was 10,000.  
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4.2.3 Analysis of Thy-1 expressing cells in fast and slow cycling cells 

To compare the slow cycling cell population, fast cycling cell population and Thy-1+ 

cells in mouse incisor dental pulp, flow cytometry was performed to analyze the 

co-localization within these cells. EdU was given to CD1 mice to label slow (n=12) and 

fast cycling cells (n=12), respectively. Detection of fast cycling cells and slow cycling 

cells is shown in Fig. 4.7, (A and C). 17.8% of pulp cells were EdU+ 24 hours after EdU 

injection that were considered as fast cycling cells; 4.3% of pulp cells were still EdU+ 

after 6 weeks chase time which were defined as slow cycling cells. 

In the co-localization analysis of fast cycling cells and Thy-1+ cells (Fig. 4.7 B), flow 

cytometry analysis results showed that about 20.07% of pulp cells were EdU+ 24 hours 

after EdU injection. This result was consistent with prior percentage of fast cycling cells. 

There was 14.8% of pulp cells detected in the whole pulp were Thy-1+ cells. The result 

also showed that a small proportion of cells were EdU+ (fast cycling cells) and Thy-1+ 

cells, that accounted for 3.27% of all in the incisor pulp cells. Thus, around 16.3% fast 

cycling cells were Thy+, which account for 22% of total Thy-1+ cells (Table 4.1). In the 

colocalization analysis of slow cycling cells and Thy-1+ (Fig. 4.7 D), the result showed 

that 4.63% of pulp cells were slow cyling cells while 10.28% of pulp cells were Thy-1+ 

cells, 1.34% of pulp cells were both positive to EdU and Thy antibody which means 

approximately 30% of slow cycling cells were Thy-1+ cells, suggesting a considerable 

contribution of Thy-1+ cells to the slow cycling cell population (Table 4.1). All 

experiments were repeated 3 times and showed similar results. 
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Table 4. 1: The percentage of cells in each population 

	
29% Slow cycling cells are Thy-1+ 

13% Thy-1 cells are slow cycling cells 

16.3% Fast cycling cells are Thy-1+ 

22% Thy-1+ cells are fast cycling cells 

 

 
Fig 4. 7: Flow cytometry analysis of Thy-1+ cells in the mouse incisor dental pulp. 

(A) The percentage of EdU+ cells in digested adult incisor dental pulp tissue was 17.8% 24 hours after 
EdU injection. (B) Flowcytometry analysis of fast cycling cells and Thy-1+cells showed that 20.07% pulp 
cells were fast cycling cells, 3.27% of pulp cells were fast cycling cells and positive to Thy-1antibody, 
14.87% pulp cells were Thy-1+. (C) 4.3% of pulp cells were still EdU+ after 6 weeks wash time, 
suggesting a slow cycling cell population in the mouse incisor dental pulp. (D) 4.63% pulp cells were 
slow cycling cells and 9.7 % of all pulp cells were Thy-1+ cells. 1.34% pulp cells were slow cycling cells 
and positive to Thy-1 antibody. The number of gated cells was 10,000 for each analysis. 
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4.2.4 Analysis of gene expression changes of Thy-1 expressing cells 

To analyze the gene expression pattern of Thy-1 expressing cells (Thy-1+) in 

comparison with Thy-1 negative (Thy-1-) cells in dental pulp tissue, both Thy-1+ cells 

and Thy-1– cells were collected from adult mice incisors (n=12) by FACS and RNA 

extracted for gene microarray. The gene expression result of Thy-1+ cells showed that 

many genes were up-regulated in comparison with Thy-1- cells, including signaling 

pathway molecules which are important for tooth development such as Integrinα5, 

Notch11, Wnt9a, Bmp1b, Pax6, Pax9, Fgf3, Fgf10, Ncam1 and Vcam1. Intriguingly, 

among those up-regulated genes in Thy-1+ cells, several ESC markers were noticed, for 

example, Klf4, Sox2, CBX7 and Zic3 showed 2-5 fold up-regulated expression in 

Thy-1+ cells, while Nanog – a transcription factor critically involved with self-renewal 

of undifferentiated embryonic stem cells – was dramatically up-regulated, namely 16 

fold compared in Thy-1- cells (Fig. 4.8). 

 
Fig 4. 8: The comparison of up-regulated genes in Thy1 expressing cells with Thy-1 negative cells. 
(Samples were prepared together with Dr. Zhengwen An who performed this data analysis) 

	
4.2.5 Investigation the properities of Thy-1 expressing cells in vitro 

To investigate the properties of Thy-1 expressing cells in vitro, FACS was used to 

purify and enrich the population of Thy-1+ cells by labeling cells with fluorescent 
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antibodies. Incisor dental pulp cells from 10 CD1 mice (PN5) were applied in FACS. In 

the following experiment, Thy-1– and Thy-1+ cells collected from FACS were cultured 

in 6-well plate (100,000 per well). The morphology of cells can be important in many 

contexts, for example the morphology indicates the status of the cells, both in terms of 

health and differentiation. Thus, sorted Thy-1+ cell cultures were monitored and 

compared with the sorted Thy-1- cell cultures. In passage 1, after 3 days in culture, 

Thy-1+ cells were much fewer than Thy-1- cells, which were almost confluent. Thy-1+ 

cells and Thy-1- cells were both heterogeneous: cells had a round, fibroblastic and 

neural appearance (Fig. 4.9 A, B). After 14 days in culture, Thy-1+ expressing cells 

were further reduced in number compared with Thy-1- cells. Individual Thy-1+ cells 

grew bigger in size with a stretched appearance (Fig. 4.9 A’) while most Thy-1- cells 

still kept a fibroblastic spindle shaped appearance (Fig. 4.9 B’). Taken together, these 

results showed that the dental pulp stem cells were heterogeneous and Thy-1+ sorted 

cells grew poorly in culture compared to Thy-1- cells.  

 
 

Fig 4. 9: Morphology of Thy-1+ and Thy-1- cells after 3 days, 14 days in culture. 

Cell culture showed that Thy-1+ cells (A) were fewer in number and hardly grew in culture (A’) when 
compared with the nearly confluent Thy-1- cells after 3 days culture (B) and 14 days culture (B’). Scale 
bar = 100µm. 
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4.2.6 Lineage tracing of Thy-1 expressing cells in mouse incisors dental 

pulp 

To investigate the role of Thy-1+ cells in the mouse incisor dental pulp mesenchymal 

tissue in vivo, lineage tracing of these cells was performed. Two transgenetic mouse 

lines (Thy-1Cre; R26R-Confetti and Thy-1Cre; R26 mT/mG) were generated and 

analyzed. In Thy-1Cre;R26R mT/mG mice, Thy-1 derived cells can be identified by 

detecting GFP expression. In Thy-1Cre;R26R-Confetti mice, Cre recombination 

produced four possible outcomes: red, yellow, blue and green. These colours label all 

Thy-1 derived cells. One single Thy-1 expressing cell and its progeny were in one of 

these four colours. Thus, single Thy-1+ cell clone can be identified by examining the 

colour of cells in Thy-1Cre;R26R-Confetti mice incisors. 

 

4.2.6.1 Validation of Cre expression  

To confirm that Cre expression was driven by Thy-1 gene promoter and an effective 

recombination existed between Cre and loxP sites, immunostaining for Cre was 

performed. Cre protein expression was observed mostly at the apical end of mouse 

incisor between cervical loops. This result was consistent with the immunostaining of 

Thy-1 in which a small number of Thy-1+ cells were found in the area between the 

cervical loops (Fig. 4.5). Thus, both Cre+ and Thy-1+ cells were identified in the incisor 

mesenchyme between cervical loops (Fig. 4.10). These results showed that Cre was 

successfully activated in Thy-1+ cells. Thy-1+ cells and derived cells can be labeled 

with fluorescence in the transgenic mouse incisor dental pulp. 
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Fig 4. 10: Cre expression in PN5 mouse mandibular incisor (Sagital sections). 

Arrows show Cre expressing cells in the Thy-1Cre mouse incisor dental pulp tissue. (A) and (B) Cre 
expressing cells were detected by immunostaining in the area between the cervical loops and adjacent 
dental follicle. (A’) and (B’) High magnification of dashed area in (A) and (B). Abbreviation: am, 
ameloblasts; dp, dental pulp cells; LaCL, labial cervical loop; LiCL, lingual cervical loop. Scale bar=100 
µm in (A and B). Scale bar =50 µm in (A’). Scale =25 µm in (B’).  

 

4.2.6.2 Investigation of Thy-1 derived cells in the mouse incisor dental pulp  

In Thy-1Cre;R26R mT/mG mice, GFP+ Thy-1 derived cells originated from the 

mesenchyme area between the cervical loops where the Thy-1+ cells were located (Fig. 

4.11 A-C). GFP+ cells were initially concentrated in the area between the cervical loops 

and furthermore expanded down to the pulp tissue. This result was consistent with the 

finding that the Thy-1+ cells were located in the area between the cervical loops. 

Similar result came from Thy-1Cre;R26R-Confetti mice, multiple colour labeled cells 

were observed in the same area as GPF+ cells, while these multiple colour labeled cells 

formed their own cell streams from the area between the cervical loops and moved 



Chapter	 4	

123	
	

down to dental pulp tissue (Fig. 4.12 A-C). Since single colour cell stream represent 

single clone of Thy-1+ cells, this result confirmed that individual Thy-1+ clones formed 

from cells that existed in the area between the cervical loops. 

Results form Thy-1Cre;R26R mT/mG mice and Thy-1Cre;R26R-Confetti mice also 

showed that a large number of labeled cells contributed to the dental pulp formation of 

incisors. Most of the labeled cells were distributed throughout the pulp (Fig. 4.11 C). In 

Thy-1Cre;R26R-Confetti mice, cell streams from the mesenchyme area between cervical 

loops were found to have moved toward the whole incisor dental pulp (Fig. 4.12 A, B, 

E). Additionally, more than one colour cell streams were found in one incisor dental 

pulp, indicating several Thy-1expressing cells together contributed to the formation of 

dental pulp mesenchyme (Fig. 4.12 E). Taken together, these results suggested that 

Thy-1+ cells located in the area between cervical loops were able to form cell clone and 

contributed to the formation of dental pulp cells. 

In addition to form dental pulp cells, Thy-1 progeny cells were also found to generate 

odontoblasts. Labeled cells were detected in Thy-1Cre;R26R mT/mG and 

Thy-1Cre;R26R-Confetti mice odontoblasts, respectively. Tracing results showed that 

labeled cell streams from the area between the cervical loops moved along the direction 

of tooth growth and contributed to the generation of odontoblasts in addition to dental 

pulp formation (Fig. 4.11 A’, B’, D, Fig. 4.12 A, D, F). However, the lineage tracing 

results showed that the labeled odontoblasts in both reporter mouse lines were presented 

as cell patches rather than individual cells. Roughly 20-30 cells were found in each 

patch of odontoblasts (Fig. 4.11 D). In the Thy-1Cre;R26R-Confetti mice, these 

odontoblast patches were all in same colour suggested that they might be from a single 

stem clone (Fig. 4.13 A, A’). Taken together, all these results suggested that Thy-1+ 

cells contributed to the formation of odontoblasts and these odontoblasts in one patche 

were from a single Thy-1+ cell clone. 
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Fig 4. 11: Thy-1 derived cells in mouse incisor dental pulp tissue (sagital sections). 

(A, B) Paraffin sections of Thy-1Cre;R26R mT/mG mouse incisor showed that GFP+ (arrow) cells 
originated from slow cycling cells area and contributed to the incisor dental pulp and odontoblast. (A’, B’) 
High magnification of GFP+ cells in odontoblasts (arrows). (C) Cryosections of Thy-1Cre;R26R mT/mG 
mouse incisor showed that GFP+ cell (arrows) streams from slow cycling cells area contributed to dental 
pulp and odontoblast. (D) Arrow shows one patch of Thy-1 derived odontoblasts (approximately 30). 
Abbreviation: dp, dental pulp cells; od, odontoblasts; LaCL, labial cervical loop; LiCL, lingual cervical 
loop; epi, epithelia. Scale bar= 250 µm in (A, B, C). Scale bar= 50 µm in (A’). Scale bar= 25 µm in (B’). 
Scale bar= 10 µm in (D).  
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Fig 4. 12: Cryosections of Thy-1Cre;R26R-Confetti mouse lower incisor (Sagital sections). 

Multiple coloured cells (GFP+, RFP+, YFP+, CFP+) from apical end mesenchyme formed cell stream and 
contributed to the formation of dental pulp tissue in Thy-1Cre;R26R-Confetti mouse incisor. (A) Three 
cell streams were found originated from the apical end of mouse incisor and moved to form dental pulp 
tissue including odontoblasts (arrow). (B, C, E) Muliple coloured cell streams were found at the apical 
end of incisor representing different cell clones in Thy-1Cre;R26R-Confetti mouse incisor. (D, F) More 
odontoblasts (arrow) were formed from coloured cell stream (arrow) in Thy-1Cre;R26R-Confetti mouse 
incisor. Abbreviation: dp, dental pulp cells; od, odontoblasts; LaCL, labial cervical loop; LiCL, lingual 
cervical loop. Scale bar = 250 µm in (A, B, D, F) and 150 µm in (C, E). 
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Fig 4. 13: Thy-1 derived odontoblasts in Thy-1Cre;R26R-Confetti mouse lower incisor (sagittal 
sections). 

(A, A’-C, C’) Streams of traced cells were connected to clusters of odontoblasts (arrows) originating from 
the same recombination events in Thy-1 cells. (D, E) Illustration of clonally-organized pulp and 
odontoblasts (Kaukua et al., 2014). Scale bars = 25 µm in (A, B, C, A’, B’). Scale bars = 10 µm in (C’).  

 

In summary, these lineage tracing results suggested that Thy-1+ cells which were 

located in the area between the cervical loops were able to form cell clones and 

contribute to the formation of mouse incisor dental pulp tissue (Fig. 4.13 D, E). 

However, although a large number of the labeled cells in any of these transgenic mice 

contributed to dental pulp formation in incisor, not all dental pulp cells were derived 

from them. In both of the Thy-1 Cre reporter mouse lines, labeled odontoblasts in 
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incisor dental pulp were located in patches alternating with unlabeled cells. The exact 

percentage of Thy-1+ cell contribution to the whole incisor dental pulp tissue was 

variable but between 20%-40% which was consistent with the flow cytometry results 

showed approximately 30% of slow cycling cells were Thy-1+. 

 

4.2.7 Investigation of other sources of cells in the growth of mouse 

incisor dental pulp 

For decades it has been believed that the dental mesenchymal stem cells gave rise to 

pulp cells and odontoblasts derive from neural crest cells after their migration in the 

early head and formation of ectomesenchymal tissue (Kaukua et al., 2014, Chai et al., 

2000). Studies have shown the connection of sensory nerve and MSCs at the apical end 

neurovascular bundle area (Zhao et al., 2014), thereby in order to investigate the 

function of neural cells in the incisor dental pulp, immunostaining of neural markers 

were performed on the Thy-1Cre; R26R mT/mG mouse incisor sections. Interestingly, 

some odontoblasts and pulp cells were found to be neurofilament+ (an intermediate 

filament normally found in neurons). This neurofilament+ population was exclusive 

from the Thy-1 derived cell population (Figure 4,14 B, C’). Once these neurofilament+ 

cells formed odontoblasts, stained cell bands alternating with non-stained cell bands like 

the pattern of Thy-1 derived odontoblasts were observed. Most importantly, these 

vacant bands were perfectly occupied by Thy-1 derived odontoblasts (Fig. 4.14 A, A’, 

B’, C). This result may suggest another neural crest originating cell population 

contributes to the formation of odontoblasts although further investigated is required. 
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Fig 4. 14: Immunostaining of neurofilament in Thy-1Cre;R26R mT/mG mouse mandibular incisor 
(sagittal sections). 

(A, A’, B’, C) Arrows show odontoblast patches from Thy-1 derived cell population and neurofilament+ 
cells respectively. (B) Arrows showed dental pulp cells fromThy-1 derived cell population and 
immunostaining of neurofilament+ cells respectively. (C’) Arrows show dental pulp cell streams from 
Thy-1 derived cell population and neurofilament+ cells respectively. Abbreviation: dp, dental pulp cells; 
od, odontoblasts; NF, neurofilament. Scale bars = 50 µm in (A, A’, B, B’ C, C’).  
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4.2.8 Investigation the expression of genes involved in incisor MSCs 

regulation 

To investigate the gene expression in tooth MCSs, more important genes and proteins 

involved in the regulation of tooth growth were checked in the PN5 mouse incisor by 

immunostaining and ISH. These genes were chosen based on a number of criteria as 

mentioned earlier. These chosen genes include Shh; Gli1, the sonic hedgehog (Shh) 

responsive gene (Seidel et al., 2010); Hh receptor gene Patched (Ptc-1), a reliable 

indicator of Hh signaling activity (Ingham and McMahon, 2001); TGF-β receptor type I 

(Alk5/Tgfbr1), a member of the TGF-β superfamily that regulate craniofacial 

development; DKK1, a Wnt signaling pathway inhibitor and pax9, a paired box family 

transcription factor which is involved in craniofacial, tooth and limb development, as 

well as other sites during mouse embryogenesis.  

The results showed that Shh was only expressed in the labial side epithelium, including 

in the ameloblasts, TA cells and the undifferentiated cells at the end of the labial 

cervical loop (Fig. 4.15 A, A’). The expression of Gli-1 more restricted in the epithelial 

tissues and in the labial side mesenchyme, however, this expression was very weak, 

optimized experiment is required (Fig. 4.15 B, B’). Hh receptor Ptc-1 was expressed 

both in the epithelial and mesenchyme in the apical end of mouse incisor (Fig. 4.15 C, 

C’). Alk5 was mainly located in the mesenchyme close to the labial cervical loop where 

fast cycling cells were located in the mouse incisor corresponding to the report that loss 

of Alk5 expression in CNC cells resulted in delayed tooth initiation and non-uniform 

mandible defects (Zhao et al., 2008) (Fig 4.15 D, D’). Immunostaining of Pax9 showed 

that plenty of Pax9 positive cells were located in the dental follicle and the dental 

mesenchyme at the apical end of mouse incisor corresponding to the function of Pax9 in 

regulating the development of the tooth during embryogenesis (Fig 4.15 E, E’). Dkk1 

was strictly limited in the odontoblasts that suggested its involvement in Wnt signaling 
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regulating the formation of odontoblasts (4.15 F, F’).  

 

 

Fig 4. 15: Expression of genes involved in incisor development (sagittal sections). 

Shh was strongly expressed in the dental epithelium, including the labial cervical loop and the 
ameloblasts (A, A’). Gli-1 was expressed in epithelium in addition to a narrow part of the mesenchymal 
tissue next to the labial cervical loop where fast cycling cells were located (B, B’). Gli-1 expression was 
carried out together with Dr.Abd-Elmotelb. Ptc-1 was expressed both in dental epithelium, ameloblasts 
precursor cells and the mesenchymal tissue next to the labial cervical loop; a weakly expression in part of 
the mesenchymal tissue between the cervical loops was also detected (C, C’). Alk5 located in the 
mesenchymal tissue next to the labial cervical loop (D, D’). Pax9 positive cells were mainly located in the 
apical end dental pulp and outside dental follicle (E, E’). Dkk1 was strictly limited in the odontoblasts (F, 
F’). All the probes and antibodys were checked on other tissues as positive control, samples from the 
same tissue without probe or antibody were used as negative control (not shown). Scale bar =250 µm in 
(A, B, C, B’). Scale bar =100 µm in (A’, C’). Scale bar =100 µm in (D’ F’). Scale bar =100 µm in (D, E, 
F).  
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4.3 Discussion 

4.3.1 Identification of Thy-1 in the mouse incisor MSCs for further 

investigation 

The continuously growing mouse incisor is an excellent model to study the function and 

regulation of stem cells. In the mouse incisors, cells constituting the mouse incisor are 

mostly derived from two embryonic sources: neural crest ectomesenchyme and 

ectodermal epithelium (Harada et al., 1999). Studies have shown that the epithelial stem 

cells are located mainly in the labial cervical loop while mesenchymal stem cells dwell 

in a niche at the tooth apex where they produce two differentiated derivatives. However, 

the lack of specific surface markers that can distinguish MSCs from their differentiated 

progeny has hampered the widespread use of MSCs for regenerative dentistry (Kaltz et 

al., 2010). Fortunately, the microarray methods for large-scale analysis of mRNA gene 

expression makes it possible to search systematically for key molecules (Duggan et al., 

1999). Thus, a microarray performed in our laboratory in a previous study has compared 

stem cell gene expression between mouse incisor and molar dental pulp tissues 

(Mantesso and Sharpe, 2008). Since the growth of the mouse incisor begins from the 

apical end, gene chip microarrays were also carried out to compare the gene expression 

in the body and cervical loop portions of dental pulp. Subsequently, up-regulated genes 

in the cervical loop area from this microarray were compared with the up-regulated 

genes in the former microarrays. Surprisingly, there were only three genes in common. 

They were Dlx5 which encodes a member of a homeobox transcription factor gene 

family similar to the Drosophila distal-less gene (Sajan et al., 2011), Thbs-1, a 

matricellular glycoprotein first discovered in activated platelets (Lawler et al., 1978) 

and Thy-1. Previous research has shown that Thy-1 was widely used as a marker for 

mouse haematopoietic stem cells (Petersen et al., 1998) and human haematopoietic 
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progenitor cells (Craig et al., 1993). It is also believed to be a general mesenchymal 

stem cell marker (Horwitz et al., 2005). More importantly, Thy-1 is expressed in human 

dental pulp cell lines (Suguro et al., 2008) and was reported to be expressed in the 

subodontoblastic zone (Hosoya et al., 2012). Due to its up-regulated expression in the 

cervical loop area, which harbors the mesenchymal stem cells in addition to its role as a 

general mesenchymal stem cell marker, Thy-1 was selected for further study. 

 

4.3.2 Investigation of Thy-1 expression in the mouse incisor 

Previous studies in the laboratory have identified the expression of Thy-1 in the 

development of mouse teeth. Therefore, ISH was used to investigate Thy-1 expression 

in the mouse incisor dental pulp at postnatal stages PN5. The results revealed that the 

expression of Thy-1 was limited to the apical end mesenchyme where the stem cell 

niche is located. Immunostaining results showed that Thy-1 and Thy-1 derived Cre 

expressions were detected in the slow cycling cell area. In addition, evidence form 

lineage tracing showed that all Thy-1 progeny cells were originated from the apical end 

of mouse incisor. These results all suggested that Thy-1+ cells existed at the apical end 

of mouse incisor dental pulp tissue. However, an inducible Thy-1 Cre mouse line is 

required to confirm which population Thy-1+ cells origin from by temporal controlling 

Thy-1 expression. Collectively, these results suggested that Thy-1 expressing cells in 

mouse dental pulp were MSCs and existed in a MSC stem cell niche in mouse incisor 

dental pulp.  

 

4.3.3 Comparion of Thy-1 expression in the mouse incisor between 

postnatal stage and adult stage 

Our flow cytometry analysis revealed that the Thy-1+ cell number was almost same at 
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adult stage mouse incisor dental pulp in comparision with 5 day-old mice, suggesting a 

constant contribution of Thy-1+ cells in the growth of mouse incisors. It might be 

conflict with the idea that Thy-1 expression started to decrease with aging as the MSCs 

number decreased with age in human bone marrow mesenchymal stem cells (hBMSCs). 

Studies showed that in the early passages of hBMSCs, Thy-1 was one of the stem cell 

markers that decreased significantly with age, although it was expressed in all samples 

regardless of donor age (Stolzing et al., 2008). In addition, a similar decrease of stem 

cell numbers in their niche along with aging has also been reported in Drosophila 

female germ line stem cells (GSC) (Tseng et al., 2014). However, all these evidences 

came from other tissue that different frmm continually growing mouse incisor and were 

collected in in vitro studies. These data may indicate either a tissue specificity of MSCs 

or an effect of their micro-environment.   

 

4.3.4 Analysis of Thy-1 expressing cells in fast and slow cycling cells 

Dental pulp MSCs are heterogeneous cell populations identified based on their in vitro 

characteristics. In our study, a MSC niche was identified comprising fast cycling cells 

and slow cycling cells by a series of label-retaining experiments. In the following study, 

the slow cycling cells were compared with Thy-1+ cells by performing flow cytometry 

analyzes. The results showed that after 6 weeks chase time when odontoblasts and 

ameloblasts in mouse incisors were turned over (Harada et al., 1999; Smith and 

Warshawsky, 1975) 4.3% dental pulp cells were considered as slow cycling cells. This 

result has been verified by a recently study using H2BGFP labeling mice which showed 

that less than 5% incisor dental pulp cells are slow cycling (Zhao et al., 2014). Our 

study also revealed that approximately 30 % of slow cycling cells were Thy-1+ cells, 

which suggested that slow cycling cells possibly are or at least contain stem cells in the 
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mouse incisoras. Lineage tracing experiment has proved Thy-1+ cells contributed to the 

growth and development of mouse incisor. Meanwhile, not all slow cycling cells were 

Thy-1 positive. This suggested a heterogeneity of these label-retaining cells. Evidence 

from a recent study has revealed that a significant population of mesenchymal stem 

cells in mouse incisoris derived from peripheral nerve-associated glia (Kaukua et al., 

2014). Researchers have pointed that pericytes also contributed to the repair and growth 

of mouse incisor as MSCs (Feng et al., 2011). In addition, Gli1+ cells at the apical end 

of mouse incisor have been recently identified as MSCs and contribute to the tooth 

development and growth (Zhao et al., 2014). Thus, these MSCs probably compose the 

slow cycling cells together. Beyond that, the possibility that some differentiated cells 

still keep EdU labeling cannot be excluded.  

In the detection of fast cycling cells, 17.8% of pulp cells were EdU+ 24 hours after 

EdU injection that were considered as fast cycling cells. According to the flow 

cytometry analysis, these cells have finished one cell cycle within 24 hours. This result 

was also consistent with our previous time course study suggesting a quick dividing cell 

population in the mouse incisor. In the co-localization analysis of fast cycling cells and 

Thy-1+ cells, flow cytometry analysis results showed that a small proportion of fast 

cycling cells (16.3 %) were Thy-1+. This is probably a result that a population of fast 

cycling cells from Thy-1+ slow cycling cells were still expressing Thy-1 in the 

beginning stage. However, in our study, nearly 65% Thy-1 cells were neither slow 

cycling nor fast cycling cells, this disposition of these cells are still a question. One 

possibility is that some Thy-1+ cells were derived from slow cycling cells but were not 

included in our fast cycling cells since the criterion of “fast cycling cell” was only set 

on 24 hours time point, not all the slow cycling cells or fast cycling cells proliferated at 

the same time, which led to less number of cells that were counted. In addition, flow 
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cytometry analysis result was obtained based on its sensitivity, the incubation time of 

antibody and the antibody itself could both alter the detectable Thy-1+ cells. For 

example, according to our immunostaining results less Thy-1+ cell were observed in 

comparison to flow cytometry analysis. 

In summary, in the mouse incisor dental pulp, there were approximately 4.3% of slow 

cycling cells and approximately 20% fast cycling cells detected in the whole pulp cells. 

This result was consistent with our ICH result, thus roughly described a MSC niche 

model consisting by two cell polulations with different proliferation rates. In addition, 

our flow cytometry analysis of results further indicated the heterogeneity of MSCs in 

the mouse incisor, though more studies are required in the future. 

 

4.3.5 Investigation of Thy-1+ cell population in vitro 

In cell culture experiments, incisor dental pulp cells were sorted into 2 groups according 

to the Thy-1 expression as Thy-1- and Thy-1+. These sorted Thy-1+ cell cultures were 

monitored and compared with the sorted Thy-1- cultured cells. We noticted that Thy-1+ 

cells were heterogeneous, thereby suggesting their wide origins. Previous work in our 

laboratory had demonstrated such a heterogeneity: CD146, a transmembrane 

glycoprotein, with other markers such as Neural/Glial Antigen 2 (NG2) and 

platelet-derived growth factor receptor-beta (PDGFRβ) used together to locate pericytes; 

a cell type believed to be MSCs has been shown to co-express with Thy-1 and accounts 

for 1.7% of pulp tissue cells by flow cytometry analysis. This CD146+/Thy-1+ 

population probably represents the pericyte MSC population inside the dental pulp. 

Also, CD133, expressed by hematopoietic progenitors and considered as a cell surface 

marker of adult stem cells has been shown to be expressed in a Thy-1+ CD133+ 

subpopulation in dental pulp (Mona Abd-Elmotelb, 2013). Together, these results 
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suggested that the Thy-1+ population is heterogeneous and Thy-1 is expressed by a 

wide variety of cells (Craig et al., 1993, Saalbach et al., 1999). 

Our study also demonstrated that Thy-1+ sorted cells were few in number and grew 

poorly in culture compared with Thy-1- cells. This could be due to an unsuitable culture 

condition. Previous work in our laboratory has shown that in cell culture, with 

successive passaging, the Thy-1+ population declined to 1.9% in passage 4 from 23% in 

passage 1. Nevertheless, when cultured with a feeder layer, the Thy-1+ population did 

not decline (Nakamura et al., 2006). This may suggest an unknown microenvironment 

role controlling Thy-1 expression in vivo (Tseng et al., 2014, Hsu et al., 2014). In 

chapter 3, the MSC niche in the mouse incisor has been characterized. Thy-1 was 

confirmed to be expressed in the stem cell niche of the mouse incisor, accordingly, the 

significantly poor growth of Thy-1+ population compared with the Thy-1- cells could 

be due to either stem cells maintaining their slow cycling state or a lack of regulation of 

the signals from the stem cell niche. However, the Thy-1+ population in murine bone 

marrow increased to 44% in passage 3 (Eslaminejad et al., 2007), which suggested an 

expression difference in comparison with mouse incisor dental pulp tissue. This 

difference of Thy-1+ expression could be caused by different tissue properties, as bone 

marrow is more cellular when compared with the dental pulp (Shi et al., 2001). 

 
4.3.6 Lineage tracing Thy-1 expressing cells in the growth of mouse 

incisor 

In order to identify stem cells in the tissue, label-retaining experiment and lineage 

tracing are two optimal methods. Lineage tracing is a technique originally developed to 

study early embryos, but is now used as the most powerful and reliable tool for 

identifying stem cells and for deciphering other aspects of tissue behavior. In this study, 

two reporter mouse lines (R26R-Confetti and R26R mT/mG) were mated with Thy-1Cre 
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transgenic mice, where Cre was driven by a Thy-1 promoter, to trace Thy-1 expressing 

cells inside the mouse incisor dental pulp. In the Thy-1Cre;R26R mT/mG and 

Thy-1Cre;R26-Confetti mice, labeled Thy-1 progeny cells were found in both dental 

pulp cells and odontoblasts. Labeled cell streams from the slow cycling cell area 

contributed to the whole dental pulp along the direction of tooth growth in addition to 

the formation of odontoblast. This result further confirmed that Thy-1+ cells as dental 

MSCs contribute to the formation of mouse incisors. However, this contribution was 

limited, while alternative patches of cells in the odontoblast zones and pulp cells not a 

labeled Thy-1 progeny cell stream indicated a Thy-1- stem cell population(s) also 

contributed to the dental pulp formation. These findings explained the flow cytometry 

result that not all slow cycling cells were Thy-1+ and corroborated the results presented 

in a previous study, namely that the formation of dental pulp tissue results from more 

than one cell population as they found a limited contribution of pericyte-derived 

mesenchyme to odontoblast formation (Feng et al., 2011). Recently, a study in mouse 

incisors has suggested that a MSC population is peripheral nerve-associated, 

glia-derived. These glia-derived cells contribute to 50% of pulp cells in the mouse 

incisor, further proving the heterogeneous nature of MSCs located in mouse incisors 

(Kaukua et al., 2014). 

 

4.3.7 Investigation of participation of neural crest origin stem cells in 

the development of the mouse ncisor 

Studies of tooth development have proved that odontoblasts, dentine matrix, most 

pulpal tissues and DPSCs are derived from CNC (d'Aquino et al., 2009). During tooth 

development, CNC-derived ectomesenchyme contributes to the condensed dental 

ectomesenchyme during the bud stage and subsequently to the formation of the dental 
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papilla and surrounding dental follicle (Chai et al., 2000). Recent research has 

demonstrated that adult rat DPSCs contain primitive stem cell subpopulations of neural 

crest origin, including Nestin+ precursor cells, Tuj1+ neuron cells and S100+ glial cells 

(Sasaki et al., 2008). Another study has shown that DPSCs express several neural 

crest-related markers such as S-100, Nestin, CD57, CD271 and GFAP (Yan et al., 2011). 

Recently, a study confirmed that a significant population of mesenchymal stem cells 

evident during the development, self-renewal and repair of a tooth are derived from 

peripheral nerve-associated glia. Glial cells generate multipotent mesenchymal stem 

cells that produce pulp cells and odontoblasts (Kaukua et al., 2014). Lastly, in our study, 

the finding concerning the contribution of neurofilament+ cells might provide a 

potential neural-related MSCs source in the mouse incisor. Taken together, these 

evidences suggested stem cells of neural crest origin take part in the development of the 

mouse incisor. 

	
4.3.8 Analysis of the expression of genes involved in the growth of 

mouse incisors 

Besides Thy-1, several signaling molecules reported importantly regulating stem cell 

population were investigated in PN5 mouse incisor. These molecules include Shh 

signaling members Shh, Gli-1, Patch-1, TGF-β family member Alk5, Wnt signaling 

pathway inhibitor Dkk1 and a key molecule in the development of mouse incisors Pax9. 

Results showed that they were all expressed at the apical end of mouse incisor. Many 

studies have proposed that Shh plays a number of roles in stem cell biology, including 

regulation of fate decisions in embryonic stem cells and survival and self-renewal of 

neural stem cells (Balordi and Fishell, 2007, Machold et al., 2003). In mouse incisor, 

Gli1 has been proved expressed in the epithelium stem cells suggesting its function as a 

stem cell marker in tooth epithelium (Seidel et al., 2010). Interestingly, Gli1 positive 
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Hh-responsive cells were also found in the dental pulp mesenchyme and according to 

the recent research in MSCs niche, these cells were considered as MSCs (Zhao et al., 

2014). However, our ISH only showed a weak signal in the labial side mesenchyme 

failed to verify this conclusion, an optimized experiment is required in the future. 

TGF-β signaling is involved in various biological processes including embryonic 

development, cell proliferation, migration and differentiation, extracellular matrix 

(ECM) secretion and epithelial-to-mesenchymal transition (Hill et al., 2009). A study 

has suggested the involvement of the TGF-β family in the growth of mouse incisor 

(Zhao et al., 2008). When Alk5 was knockout specifically in the dental mesenchyme, the 

FGF signaling was down-regulated, leading to a reduced proliferation and fewer LRCs 

in the cervical loop (Zhao et al., 2011). Our result showed that Alk5 was expressed in 

TA cell where FGF signaling exists. This result suggested that Alk5 might control 

incisor growth mainly through regulating FGF signaling in TA cell proliferation. 

Interestingly, down regulation of FGF signaling in fast cycling cell population has been 

associated with Shh signaling expresstion and TGF-β family changes. This indicated an 

elaborated regulating network in the fast cycling cell population (Zhao et al., 2008).  

Pax9, a Pax-family member that is expressed in specific anterior region of limbs, neural 

crest derived mesenchymal cells of the craniofacial region and midbrain (Peters et al., 

1998) was also investigated in our study. Studies in homozygote knockouts mice 

showed that missing Pax9 leads to secondary cleft palate and other abnormalities in 

craniofacial bones and cartilages. More importantly, these Pax9 knockout mice are 

missing all their teeth (Peters et al., 1998). In humans, tooth loss due to function loss of 

Pax9 has also been reported widely suggesting a fundamental role of Pax9 in the tooth 

formation (Stockton et al., 2000, Lammi et al., 2003, Mostowska et al., 2013). Further 

analysis of the developing tooth has showed that in Pax9 null allele homozygotes the 

tooth development is arrested after bud stage while the mesenchyme fails to condense 
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around the growing epithelial bud suggesting the function of Pax9 mainly focus in the 

dental mesenchyme (Peters et al., 1998). Our result of showing Pax9+ cells located in 

the mesenchymal area between the cervical loop where slow cycling cells were located 

and all development initiated, further supported the importance of incisor apical end as 

a stem cell niche which provides cell resource for the tooth growth. 

	
4.3.9 Flow diagram of the chapter 4 
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4.4 Conclusion 

Mouse incisor is an excellent model to study the function and regulation of stem cells 

due to its continuously growing property. However, the absence of specific surface 

markers that can distinguish MSCs from their differentiated progeny always hampers 

the widespread use of MSCs for regenerative dentistry (Kaltz et al., 2010). Microarray 

performed in previous studies comparing stem cell gene expression have shown that 

Thy-1 was up-regulated in the apical end of mouse incisor where MSCs were located. 

Our ISH and immunostaining results further confirmed that: the expression of Thy-1 

was limited to the apical end mesenchyme where the stem cell niche was located.  

By tracing Thy-1+ cells in Thy-1Cre+/-;R26R mT/mG and Thy-1Cre+/-;R26-Confetti 

mice, we found that labeled Thy-1 progeny cells from the stem cell niche contributed to 

the whole dental pulp along the direction of tooth growth in addition to the formation of 

odontoblast. This result confirmed that Thy-1+ cells as dental MSCs contributed to the 

formation of mouse incisors. However, this contribution was limited, alternative patches 

of Thy-1- progeny cell in the odontoblasts indicated a stem cell population(s) also 

contributed to dental pulp formation. Interestingly, the finding of non thy-1 derived 

neurofilament+ cells formed odontoblasts may suggested another cell population that 

contributed to the formation of odontoblasts although further investigated is required. 

In addition, severl molecules reported importantly regulating stem cell population were 

investigated in PN5 mouse incisor including Shh, Gli-1, Patch-1, Alk5, Dkk1 and Pax9. 

Results showed that they were all expressed at the apical end of mouse incisor 

suggesting an elaborated regulating network in this area.
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Chapter 5 : The Role of PRC1 Complex in Mouse 

Incisor Dental Pulp Stem Cells 
 

5.1 Introduction 

Dental pulp stem cells are heterogeneous in vitro and their in vivo identities are still not 

well understood. A previous study has shown that a perivascular stem cell niche 

residing within dental pulp provide precursor cells differentiate into odontoblasts in 

order to repair tooth damage (Feng et al., 2011). However the limited contribution of 

these cells indicates the existence of another stem cell niche. By performing a series of 

label-retaining experiments and lineage tracing Thy-1expressing cells in our study, the 

apical end of mouse incisor was identified as a mesenchymal stem cell niche and was 

further investigated in this chapter (Fig. 5.1). 

 

 
Fig 5. 1: Potential MSCs niches in the mouse incisor. 

Studies have shown a perivascular stem cell niche residing within the dental pulp and responded to tooth 
damage by providing precursor cells that differentiate into odontoblasts (Feng et al., 2011). 
Non-perivascular stem cell niche located in the epical mesenchyme provided heterogeneous cell 
population and contributed to the formation of dental pulp tissue and dentin. 

 
 
In chapter 3, the locations of slow cycling cells, quiescent cells and fast cycling cells 

(stem cell niche) in the mouse incisor were described. It is crucial to know what genes 
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are expressed in these cells. Previously, the role of PRC1 complex in the mesenchyme 

of mouse incisors has been investigated in our laboratory. Whole-mount ISH analysis 

showed that at postnatal stages all of the genes encoding proteins of the PRC1 complex 

were expressed in the dental mesenchyme adjacent to the labial and lingual cervical 

loop epithelium of the mouse incisor (Lapthanasupkul et al., 2012). This indicated that 

the PRC1 complex genes were expressed in highly proliferative cells (TA cells) in 

mouse incisors. The PRC1 complex may control the TA cell fate in the development of 

the mouse incisor. 

 
 

Fig 5. 2: Schematic depiction of PRC1 family complexes. 

In Drosophila, the core PRC1 complex (Saurin et al., 2001) consists of Polycomb (Pc), a chromo domain 
containing protein that binds to H3K27me3 (Fischle et al., 2003); dRing, the H2A ubiquitination enzyme 
(Wang et al., 2004); Posterior sex combs (Psc), which is responsible for in vitro chromatin compaction 
(Francis et al., 2004); and Polyhomeotic (Ph). Additional components such as the PcG protein Sex Comb 
on Midleg (Scm) are also reported. In mammalian, the PRC1 purified from HeLa cells contains various 
chromo domain proteins (CBX) homologous to Pc; RING1A and RING1B that similar to dRing; three Ph 
homologs (PHC1-3); six human Psc homologs that are known collectively as Polycomb group RING 
fingers (PCGFs); and a Scm homolog, SCMH1 (Levine et al., 2002). Combinatorial association of these 
different PcG homologs are likely to give rise to functionally distinct PRC1 complexes in humans (Gao et 
al., 2012). Interestingly, all PRC1 complexes contain RING1A and RING1B (enzymes that catalyze 
H2AK119ub1 and 2). PRC1 complexes can be divided into six different groups, based on the different 
PCGF they contain. RING1/YY1-binding protein (RYBP) or its homolog, YAF2, is found in most PRC1 
complexes except PRC1.2 and 1.4 which contain CBXs, Ph homologs PHCs and SCMs. Adapted from 
(Gao et al., 2012). 
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In the PRC1 complex, Ring1a and Ring1b were considered as core components that 

play an important role in PcG-mediated silencing by possessing E3 ubiquitin ligase 

activity for histone H2A (Wang et al., 2004). In ES cells, a group of genes where 

H2AK119u1 is deposited in a Ring1-dependent manner were identified. These genes 

are the central targets of Polycomb silencing that are required to maintain ES identity 

(Endoh et al., 2012). Evidence from ES cells has demonstrated the possible roles of 

Ring1b in controlling cell proliferation and the maintenance of ES cells. Knockout 

Ring1a/b in mouse ES cells suggested the role of Ring1a/b for the maintenance of ES 

cell identity by silencing the genes that govern differentiation of ES cells. In addition, 

Ring1a/b has been reported to mediate Oct3/4-dependent transcriptional repression. 

These results indicated the role of Ring1a/b in regulating ES cell self-renewal (Endoh et 

al., 2008). Furthermore, in order to maintain undifferentiated ES cells, Ring1b is needed 

to silence a particular subset of genes, which are co-occupied by ES cell regulators 

including Oct4 and Nanog (van der Stoop et al., 2008). This result further supported the 

essential role of Ring1b in the stable maintenance of mouse ES cells.  

Bcor, another key component in the PRC1 complex, has been found to regulate 

developmental genes as early as embryonic stem cell differentiation (Wamstad et al., 

2008). Bcor was reported to regulate mesenchymal stem cell function through 

epigenetic mechanisms, which have been identified as important regulators of MSC fate 

and in the osteogenic and adipogenic differentiation of MSCs (Teven et al., 2011, 

Cironi et al., 2009). In tooth studies, it has been shown that Bcor mutation increases the 

proliferation and osteo-dentinogenic potential of MSCs isolated from the dental pulp of 

a patient with OFCD syndrome, a condition that affects the development of the eyes 

(oculo-), facial features (facio-), heart (cardio-) and teeth (dental) (Fan et al., 2009). 

Previous work in our laboratory on K14-Cre mediated Bcor mutation showed that 

complete deletion of epithelium-specific Bcor can only cause a mild effect on 
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craniofacial development. However, following study in our laboratory by Dr. Jifan Feng 

showed that Pax3-Cre mediated deletion of the Bcor in the craniofacial mesenchyme of 

neural crest origin resulted in an obvious overgrowth of mouse upper incisors (Fig. 5.3). 

This suggested the role of Bcor in the mesenchyme is more crucial for maintaining 

craniofacial development; especially tooth development and growth. Therefore more 

work is required to further understand the role of Bcor in dental pulp stem cell 

homeostasis during development and postnatal growth. 

 

 
Fig 5. 3: Overview of adult Bcorfl/;Pax3 Cre incisor phenotype by 3D micro-CT reconstruction. 

(A) Mutant incisor showed an obvious overgrowth and a bulged cervical loop at the apical end in 
comparison with the normal mouse incisor (B) (Dr Jifan Feng performed first analysis, more micro-CT 
were performed by myself afterwards). Scale bar=500µm. 
 

Taken together, both BcoR and Ring proteins in the PRC1 complex are crucial for 

repressing developmental regulators and maintaining the undifferentiated state of 

embryonic stem cells. Furthermore, they were expressed in the cells with high 

proliferative rate in the apical end of mouse incisor. Loss of Bcor led to an obvious 

overgrowth. Therefore, this chapter will investigate the function of BcoR and Ring1 as 

key components of the PRC1 complex in controlling the fast cycling cells/TA cells of 

mouse incisors. 
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5.2 Results 

5.2.1 Identification of Ring1 and BcoR localization in mouse incisor 

dental pulp 

 
To investigate the location where Ring1 and Bcor genes are expressed, ISH was 

performed in the postnatal mouse incisor pulp. Whole mount ISH analysis showed that 

at postnatal stages Ring1 and BcoR were both expressed in the location of highly 

proliferative cells in mouse incisors (Fig. 5.4 A). In the incisor pulp, Ring1a was 

predominantly expressed in the whole apical end (Fig. 5.4 B, B’) including the fast 

cycling and slow cycling cell area, while Ring1b was more restricted in the 

mesenchymal tissue close to the labial cervical loop (Fig. 5.4 C, C’) where fast cycling 

cells are located. The ISH results of BcoR also showed a similar expression area as 

Ring1b, the fast cycling cell area, but more expression was detected in the 

preodontoblasts, odontoblasts and dental follicle (Fig. 5.4 D, D’) compared with Ring1b. 

Combined with previous work, we have demonstrated that all the gene encoding 

proteins of the PRC1 complex including Ring1 and BcoR are expressed in the TA cells. 

This indicated a main role of PRC1 complex in controlling TA cells for the 

development and growth of the mouse incisor. 
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Fig 5. 4: Whole mount ISH of Ring1 and BcoR in the incisor dental pulp of PN5 (sagittal section). 

(A) Arrows show BrdU labeled fast cycling cells in the mouse incisor. (B-D) Whole mount ISH on PN5 
mice incisors and vibratome sections of ISH results (B’-D’). (B, B’) Whole mount ISH and ISH results 
sections show that Ring1a was expressed in the whole apical end, including the fast cycling cells. (C, C’) 
Ring1b signal was detected mainly in the area close to the cervical loop where the fast cycling cells are 
located. (D, D’) BcoR was expressed mainly in the area close to the labial side cervical loop mesenchyme, 
odontoblasts epithelium and dental follicle (arrows). Abbreviation: LiCL, lingual cervical; LaCL, labial 
cervical; am, ameloblasts; od, odontoblasts; mes, mesenchyme; epi, epithelial; df, dental follicle. Scale 
bar=100µm in (A). Scale bars =500um in (B-D, B’-D’). 
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To detect the Ring1+ and BcoR+ cells, immunostaining was performed both on wax 

section and cryosection of mouse incisors, unfortunately, immunostaining failed to 

show any positive reaction, which was possibly due to the quick degradation of Ring1 

and Bcor protein during the sample preparation. Thus cells were manually dissected 

from the apical end of mouse incisor and quickly fixed on section by cytospin before 

immunostaining was preformed. Immunostaining on these fixed cells (Fig 5.5) showed 

that around 30% (7/23) pulp cells were Ring1+. Considering only apical end cells were 

analyzed and Ring1 is expressed in the fast cycling cell area at the apical end of mouse 

incisor, this number must be higher than the number of Ring1+ cells in the whole dental 

pulp. Thus result roughly consistent with the percentage of fast cycling cells (15-20%) 

in the whole dental pulp tissue. However, the detection of Bcor was still unsuccessful. 

A more effective antibody is required. 

 
Fig 5. 5: Immunostaining of Ring1b in dental pulp cells from the apical end of mouse incisor. 

Apical end dental pulp cells from PN5 mouse incisors were manually dissected and collected for cytospin 
(D), cells were quickly fixed on slides where immunostaining was performed (A-C). Abbreviation: CL, 
cervical loop; dp, dental pulp; ena, enamel; de: dentine. Scale bar=50µm in (A, B, C). 
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5.2.2 Histological analysis of incisor phenotypes of adult Ring1a-/-; 

Ring1bcko/cko mutants 

To investigate the role of Ring1 in the continuously growing mouse incisor, a 

histological analysis was applied by using mouse lines to genetically knockout the 

expression of Ring1 complex. Ring1a-/-;Ring1bfl/fl mice were obtained by crossing the 

Ring1a-/- mice with the Ring1bfl/fl mice. R26::CreERT2 transgenic mice were crossed 

with Ring1a-/-; Ring1bfl/fl mice to generate Ring1a -/-;Ring1bfl/fl;R26::CreERT2 mice to 

accomplish conditional inactivation of Ring1b in vivo. Since an ubiquitous Cre exists in 

all the cells, by giving tamoxifen injection, Cre recombination would be able to cause 

Ring1b inactivation in all the animal cells. The conditional deletion of Ring1b was 

carried out at postnatal stages by injecting OHT at PN9 and PN13 and the 

Ring1a-/-;Ring1bcko/cko mice were sacrificed at PN17 (n=20). The efficiency of 

tamoxifen induced Cre expression to inactive Ring1b was confirmed by ISH of PN17 

incisors and Ring1 deletion was checked by PCR. The result showed that Cre mRNA 

was expressed in all the incisor dental pulp cells (Fig. 5.6) and no Ring1b was 

expressed. 

 

Fig 5. 6: ISH of Cre in PN17 Ring1a-/-; Ring1bcko/cko mouse incisor. 

Cre was ubiquitously expressed in the whole incisor dental pulp tissue, including epithelia and 
mesenchymal tissue. Abbreviation: LiCL, lingual cervical; LaCL, labial cervical, od, odontoblasts, dp, 
dental pulp cells, epi, epithelial. Scale bar=200µm.  
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The histology analysis of the Ring1 knockout mouse incisor showed that PN17 

Ring1a-/-;Ring1bcko/cko incisors had abnormal cervical loops at their apical ends (Fig. 

5.7 A-A5 and Fig. 5.8 B-B5), compared with Ring1a-/-;Ring1bfl/fl Cre- incisors (Fig. 

5.7 a-a2 and Fig. 5.8 b-b2). Furthermore, differentiation of odontoblasts and 

ameloblasts was disrupted in Ring1a-/-; Ring1bcko/ck along most of the incisor length 

(Fig. 5.7 A1-A4 and Fig. 5.8 B1-B4), subsequently leading to disturbances in enamel 

and dentin formation, compared with Ring1a-/-;Ring1bfl/fl Cre- incisors (Fig. 5.7 a2 

and Fig. 5.8 b2). Histological analysis further revealed that in Ring1a-/-;Ring1bfl/fl 

Cre-incisors, the odontoblasts and ameloblasts were elongated and highly polarized, 

while in Ring1a-/- ;Ring1bcko/cko incisors were more round in shape and had no 

nuclear polarization. Moreover, odontoblast and ameloblast differentiation was rarely 

observed at the inner side of the labial cervical loop in Ring1a-/-;Ring1bcko/cko 

incisors, compared with the same region in Ring1a-/-;Ring1bfl/fl Cre- incisors. Lastly, 

the labial cervical loop contained a few cells of stellate reticulum in 

Ring1a-/-;Ring1bcko/cko mice in comparison with Ring1a-/-;Ring1bfl/fl Cre- mice. 
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Fig 5. 7: Hematoxylin and eosin stained sagittal sections of a mandible incisor of 17 day-old 
Ring1a-/-;Ring1bfl/flCre- (a-a2) and Ring1a-/-;Ring1bcko/cko mice (A-A5). 

(a-a2) Ring1a-/-; Ring1b fl/flCre- incisors showed normal incisor development. (a1–a2) Higher power 
views of boxed regions in (a). In Ring1a-/-;Ring1bfl/fl Cre- mouse incisor, normal labial cervical loop 
containing a core of stellate reticulum was shown in (a1); normal odontoblast and ameloblast 
differentiation was seen in (a2). (A-A5) Ring1a-/-; Ring1bcko/cko incisors showed abnormal incisor 
development. Differentiation of odontoblasts and ameloblasts was disrupted in Ring1a-/-;Ring1bcko/cko 
along most of the incisor length, subsequently leading to disturbances in enamel and dentin formation 
(A1-A4). Either dentin or enamel was thinner and less mineralized in mutants when compared to the 
controls (A1, A2). (A5) showed labial cervical loop containing a few cells of SR in Ring1a-/-;Ring1bcko/cko 
mice. Abbreviation: LiCL, lingual cervical loop；LaCL, labial cervical；od, odontoblasts；de, dentin； 
ena, enamel；SR, stellate reticulum. Scale bar= 200µm in (a). Scale bars =50µm in (a1, a2). Scale bar 
=150µm in (A), Scale bars =25µm in (A2-A5), =15µm in (A1). 

 

 

.
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Fig 5. 8: Hematoxylin and eosin stained sagittal sections of a maxillary incisor of 17 day-old 
Ring1a-/-;Ring1bfl/fl Cre- (b-b2) and Ring1a-/-;Ring1bcko/cko mice (B-B5). 

(b) Ring1a-/-; Ring1b fl/flCre- incisors showed normal incisor development, including well formed labial 
cervical loop (b1) and normal differentiated odontoblasts, ameloblasts (b2). (b1) Higher power views of 
labial cervical loop that contains a core of SR in Ring1a-/-;Ring1bfl/fl Cre- mice. (b–b2) Higher power 
views of differentiation regions in (b). (B1-B4) Odontoblast and ameloblast differentiation failed in 
Ring1a-/-; Ring1bcko/cko in mice. (B5) showed labial cervical loop containing a few cells of SR in 
Ring1a-/-;Ring1bcko/cko mice. Abbreviation: od, odontoblasts; de, dentin; ena, enamel; SR, stellate 
reticulum. Scale bar= 200µmin (b), Scale bars =100µm in (b1, b2). Scale bar =100µm in (B). Scale bars 
=25µm in (B1-B5). 

 
 

5.2.3 Investigation of cell proliferation upon Ring1a-/-;Ring1bcko/cko 

deletion 

Histological analysis of Ring1a-/-;Ring1bcko/cko showed a growth arrest in the mouse 

incisors due to the failure of ameloblast and odontoblast formation. Since Ring1a/b was 

expressed in the cells with a high proliferative rate, loss of Ring1a/b seems to affect this 

cell population. Therefore, immunostaining was performed both on 

Ring1a-/-;Ring1bcko/cko incisors and Ring1a-/-;Ring1bfl/fl Cre- incisors to investigate cell 
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proliferation. PH3, a marker of mitotic cells was used to detected proliferation by 

immunostaining. The result showed a significant decrease in cell proliferation in 

Ring1a-/-;Ring1bcko/cko incisor (Fig. 5.9) indicating the abnormal development and arrest 

in growth in the Ring1bcko/cko mouse incisor, possibly because of the loss of proliferation 

in fast cycling cells.  

 

Fig 5. 9: Immunostaining of PH3 on sagittal sections of incisors. 

(A) PH3 signal (arrows) was rarely detected in 17 day-old Ring1a-/-;Ring1bcko/cko incisor compared to 
(B) Ring1a-/-; Ring1bfl/flCre- mice suggesting a decrease in cell proliferation. Scale bars =100 µm in (A 
B).   

 
 

 
5.2.4 Investigation of gene expression changes in Ring1a-/-;Ring1bcko/cko 

mouse incisor 

To investigate gene expression changes upon Ring1 deletion, a microarray comparing 

Ring1a-/-;Ring1bcko/cko and Ring1a-/-;Ring1bfl/fl Cre- mouse incisor dental pulp cells were 

preformed. Ring1a-/-;Ring1bcko/cko mice were administrated tamoxifen and control mice 

were given corn oil at PN9 and PN13 and were sacrificed at PN16 followed by RNA 

extraction and microarray analysis. According to microarray results, about 2000 genes 

showed significant up-regulation and 980 genes were down-regulated more than a 

2-fold change upon Ring1 deletion (Fig. 5.11). Among these, a set of genes of interest 
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were selected and validated by qPCR (Fig. 5.12).  

 

5.2.4.1 Analysis of down-regulated gene expression in Ring1a-/-; Ring1bcko/cko mouse 

incisor pulp 

Combination of the microarray analysis and qPCR validation showed that loss of Ring1 

led to down-regulated pathways that control the cell cycle as well as cell proliferation 

corresponding to the growth arrest in Ring1a-/-; Ring1bcko/cko mouse incisor. Furthermore, 

in Ring1a-/-;Ring1bcko/cko incisor, Wnt signaling pathway inhibitor 1 (Dkk1) was 

down-regulated more than 2 fold. However, this result did not mean an up-regulation of 

Wnt signaling pathway. Axin2, axis inhibition protein 2, a reporter of Wnt/beta-catenin 

signaling, showed an obvious down-regulated expression in Ring1a-/-; Ring1bcko/cko; 

Axin2LacZ mouse incisor, suggesting a down-regulated Wnt/beta-catenin signaling (Fig. 

5.10). The mechanism of down-regulated expression for both Dkk1 and Wnt signaling 

is not clear, but the loss of cell proliferation might be a main reason since both Dkk1 

and Wnt signaling are expressed in the fast cycling cells which greatly reduced their 

proliferation (Fig. 5.11).  

 

Fig 5. 10: Down-regulation of Wnt/b-catenin signaling in the Ring1 knockdout mouse incisor. 

(A) X-gal staining of Wnt/b-catenin reporter mouse incisors showed that Axin2 was strongly expressed in 
the preodontoblasts, odontoblasts and in the mesenchyme surrounding the cervical loops. In addition, 
expression was seen throughout lingual epithelium and weakly in labial preameloblasts and ameloblasts. 
(B) X-gal staining of Ring1 knockout Axin2 reporter mouse incisor showed a weak expression of Axin2 
and a failure formation of odontoblast and abnormal labial cervical loop (arrows). Abbreviation: od, 
odontoblasts; dp, dental pulp; LaCL, labial cervical loop; Li, Lingual cervical loop. Scale bar =100 µm in 
(A). Scale bar =100 µm in (B).  
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Fig 5. 11: WikiPathway analysis of down-regulated pathways in the Ring1a/b knockout mouse 
incisor pulp. 

The result showed that pathways that control cell cycle and proliferation were all down-regulated. 
Furthermore, Wnt signaling and TGF-β signaling pathways were also down-regulated. In addition, cell 
differentiation potential and apoptosis were all down-regulated upon Ring1 deletion.  

 
 

5.2.4.2 Analysis of Notch signaling molecules in Ring1a-/-; Ring1bcko/cko mouse 

incisor pulp 

Among the gene expression changes, about 2000 genes, including Notch pathway genes, 

had higher expression following the loss of Ring1 gene (Fig. 5.12). Previous research 

has shown that polycomb group (PcG) proteins bind to multiple genes in the Notch 

pathway and control their transcription as well as Notch signaling (Martinez et al., 

2009). In a study of Drosophila melanogaster eye, PcG protein Polyhomeotic (PH) as a 

tumour suppressor, controls cellular proliferation by silencing multiple Notch signaling 

components (Martinez et al., 2009). In the mouse incisor model system, microarray and 

qPCR analysis showed that Notch signaling molecules including Notch1, Notch 2, 

Notch 3, Notch 4 and Notch ligands	delta-like (Dll) 1, Dll 4, Jagged1, Jagged 2 were all 

up-regulated following the loss of Ring1. Among these changes, Notch 3 and dll1 were 

dramatically up-regulated, increasing more than 4 fold. These results further confirmed 
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the repressive role of PRC1 to the Notch signaling that regulates the renewal and fate 

decisions of stem cells in the mouse incisor, as well as, other multiple tissues (Hurlbut 

et al., 2007). 

 

 

 
Fig 5. 12: qPCR validation of gene expression changes in Ring1a-/-;Ring1bcko/cko mouse incisor. 

Genes were selected according to microarray, Gdf11 was considered as datum 1, x-axis shows change 
fold compared to Gdf11.  

 

5.2.4.3 Analysis of Hox genes in Ring1a-/-; Ring1bcko/ckomouse incisor dental pulp 

cells 

Polycomb-group proteins (PcG) are well known for silencing Hox genes through 

modulation of chromatin structure during embryonic development in fruit flies (Di 

Croce and Helin, 2013). In mammals Hox gene expression is important in many aspects 

of development (Wang et fal., 2002). For example, Hox genes play a significant role in 

controlling cranial neural crest population development in the formation of craniofacial 

pattern and morphogenesis (Akin and Nazarali, 2005). Studies have demonstrated that 

another PcG gene Bmi1-mediated repression of Hox genes preserves the 
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undifferentiated state of stem cells. Our findings in the mouse incisor further confirmed 

the repressive role of the PRC1 complex in the regulation of Hox genes that are required 

for the maintenance of adult stem cells and for prevention of inappropriate 

differentiation. The microarray analysis of mouse incisor dental pulp cells from 

Ring1a-/-;Ring1bcko/cko and Ring1a-/-;Ring1bfl/fl Cre- showed that 19 Hox genes from 4 

different Hox clusters up-regulated following the loss of Ring1. To better illustrate the 

up-regulation of Hox genes in Ring1 null dental pulp tissue, the comparison of Hox 

genes between Ring1a-/-;Ring1bcko/cko and Ring1a-/-;Ring1bfl/fl Cre- were shown in Fig. 

5.13. This result demonstrated that Hox a9, b7, c8, c10, c13 and d13 were up-regulated 

more than 20 fold, while, Hox a10, c4, d8, d9, d10 dramatically increased more than 50 

fold. Thus, Ring1 suppressed the expression of Hox genes in the mouse incisor dental 

pulp as well as in other tissues.  

 

 

 
Fig 5. 13: Up-regulation of Hox gene family upon Ring1a/b inactivation. 

Gene changes was compared between Ring1a-/-;Ring1bcko/cko and Ring1a-/-; Ring1bfl/fl Cre- mouse incisor 
dental pulp cells. 19 Hox genes from 4 clusters showed at least 2 fold up-regulation. (Samples were 
prepared together with Dr. Zhengwen An who performed this data analysis) 
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5.2.5 Comparison of gene expression changes between MSCs of dental 

pulp and ES cells upon Ring1a/b inactivation. 

Since the Ring1 was detected as being expressed only at the apical end of the mouse 

incisor where MSCs were located and where the tooth grows, how the gene expression 

of these cells in stem cell niche area react to the deletion of the Ring1a/b became of 

interest. Therefore, we compared the microarray results of Ring1a-/-; Ring1bcko/cko mouse 

incisor with the ES cell gene changes after Ring1a/b deletion (Fig. 5.14). The results 

showed that gene changes of the cells in the dental pulp stem cell niche area are similar 

with those of ES cells. Many genes involved in the tooth development showed an 

obvious up-regulation upon Ring1a/b deletion including the Gata6, Tbx18, Zic1, Barx1, 

Bmp6, Crlf1 and Hox gene families. 

 

 

 
 

Fig 5. 14: Up-regulation of genes involved in tooth development upon Ring1a/b inactivation in both 
dental pulp MSCs and ESs. 

Gene changes were compared between Ring1a-/-;Ring1bcko/cko mouse incisor dental pulp cells and 
Ring1a/b knockout ESs (Endoh et al., 2008). (Samples were prepared together with Dr Zhengwen An 
who performed this data analysis) 
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5.2.6 Tooth phenotype in adult Pax3-Cre Bcor conditional knockout 

mice 

Bcor, another component of the PRC1 complex is X-linked, therefore male knockout 

mice completely lose Bcor in all the Cre-expressing cells and showed more severe 

phenotpyes than their female counterparts. Previous studies of tooth phenotypes of 

Bcorfl/y;Pax3Cre mutants by Dr Jifan Feng in our laboratory showed that the lower 

incisors were significantly smaller with delayed odontoblast and ameloblast 

differentiation. The cervical loop structures were also abnormal at both lingual and 

labial sides and the SR were barely distinguishable. The upper incisors of 

Bcorfl/y;Pax3Cre were generally smaller than their Cre-negative littermates. However, 

there could be variable phenotypes of individuals such as additional dental epithelial 

abnormalities.  

Since Bcorfl/y;Pax3Cre mutants die at birth due to severe cleft palate, heterozygous 

Bcorfl/+;Pax3Cre mutants become the only way to further understand the role of Bcor 

postnatally in the continous tooth growth. However, in our studies, of all the samples 

(n=40) analyzed in our analyzes, no incisors showed phenotypical changes compared 

with their littermate controls and both upper and lower incisor appeared relatively 

normal (Fig. 5.15). 
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Fig 5. 15: Hematoxylin and eosin stained incisors of 8 day-old Bcorfl/+;Pax3Cre- (A) and 
Bcorfl/+;Pax3Cre+ mice (B) (sagittal sections). 

Bcorfl/+;Pax3Cre+ mouse incisor (A) showed a normal maxillary incisor development in comparison with 
Bcorfl/+;Pax3Cre- incisor (B). (A1) Higher power views of labial cervical loop contained a core of SR 
(arrow) in Bcorfl/+;Pax3 Cre+ mouse incisor. (A2–A3) Higher power views of differentiation regions in 
(A) showed normal odontoblast and ameloblast differentiation (arrow). (A’-A’’) showed a normal 
mandible incisor development. (B1-B3) Higher power views of boxes in (B) showed a normal labial 
cervical loop (arrow) and cell differentiation regions (arrow) in Bcorfl/+;Pax3Cre-. Abbreviation: LiCL, 
lingual cervical loop; LaCL, labial cervical; od, odontoblasts; ena, enamel; SR, stellate reticulum. Scale 
bars= 500µmin A, B. Scale bars =25µm in (A1-A3, B1-B3). Scale bars =200µm in (A’, B’). Scale bars 
=250µm in (A’’, B’’). 

 
 
 
To investigate the postnatal phenotypes of Bcorfl/+;Pax3 Cre+ incisors, certain genes 

which are known to be markers of functional odontoblasts and ameloblasts, including 

dentin sialophosphoprotein (Dspp), amelogenin and shh were analyzed by ISH. Dspp, 

normally expressed in odontoblasts and newly differentiated ameloblasts, was found to 

be expressed normally both in mutant and WT incisors (Fig. 5.16 A, A’). Amelogenin, a 
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gene encoding the major structural protein of enamel matrix and expressed in functional 

ameloblasts was also detected to be normally expressed in Bcorfl/+;Pax3Cre+ incisors 

(Fig. 5.16 B, B’). Furthermore, Shh, which normally marks pre-ameloblasts, also 

showed no difference in comparison with WT (Fig. 5.16 C, C’). 

 

Fig 5. 16: Expression analysis of Dspp, Amelogenin and Shh in 2 day-old incisors of Bcorfl/+; 
Pax3Cre- and Bcorfl/+;Pax3 Cre+ mice (sagittal sections). 

(A and A’) Expression of Amelogenin in functional ameloblasts in Bcorfl/+;Pax3Cre- and Bcorfl/+;Pax3 
Cre+ incisor, respectively. (B and B’) Dspp expression in the odontoblasts (od) and differentiated 
ameloblasts (am) of Bcorfl/+;Pax3Cre- control and Bcorfl/+;Pax3 Cre+ incisors. (C and C’) Strong 
expression of Shh was observed in pre-ameloblasts in Bcorfl/+;Pax3Cre- and Bcorfl/+;Pax3 Cre+ incisor, 
respectively. Scale bars =50µm in (A-C, A’-C’) 



Chapter	 5	

162	
	

	
However, previous work in our laboratory showed an obvious overgrowth phenotype, 

which varied from a relatively smooth surface to bulges and had a nodular appearance 

affecting the cervical end. Unfortunately, this phenotype could not be reproduced from 

our current samples. 
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5.3 Discussion 

5.3.1 Investigation of functions of Ring1a/b in mouse incisor dental 

pulp stem cells 

Rodent incisors are capable of erupting throughout their lifetime to compensate for 

constant attrition at the incisal edge. Thus, the mouse incisor provides an excellent 

model for MSC study as tooth-forming cells including enamel-forming ameloblasts and 

dentin-forming odontoblasts are required and are achieved by stem cells residing at their 

open proximal (apical) ends (Harada et al., 1999). Our results showed that Ringa/b were 

expressed in the TA cells (fast cycling cells) that contributed to the formation of whole 

incisor pulp tissue. Both histology analysis and microarray results revealed that loss of 

Ring1a/b led to down-regulated proliferation of fast cycling cells and whole incisor 

growth arrest. This finding was consistent with previous studies showing that the loss of 

Ring1a/b causes proliferation defects in ES cells (Endoh et al., 2008). The reduced cell 

proliferation noted in the apical dental mesenchyme fast cycling cells close to both 

labial and lingual cervical loop epithelium where the differentiation of odontoblast 

progenitors takes place suggested that Ring1a/b proteins are required, either directly or 

indirectly, for the proliferation of the dental mesenchymal cells, thereby giving rise to 

dentin-forming odontoblasts. Apart from the dental mesenchyme, a reduced labial 

cervical loop with a dramatic decrease in cell proliferation was also noted in Ring1a/b 

gene knockdown mutants. This finding indicated an interaction between dental 

mesenchyme and cervical loop epithelium, suggesting that Ring1a/b regulates 

proliferative signals not only within mesenchyme but also in relation to the epithelium.  

Under histological analysis, no phenotype of Ring1a-/-Ring1bfl/flCre- was observed, 

possibly because of the compensative role of the remaining Ring1b, as a previous study 
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of Ring1a+/-; Ring1bcko/cko mice did not show any incisor abnormality. That result may 

indicate a redundancy between Ring1a and Ring1b function during incisor development. 

A similar result was observed in ES cells: Ring1b single-knockout ES cells appeared 

normal, whereas Ring1a/b double-knockout ES cells progressively lost ES cell 

characteristics after tamoxifen treatment to inactivate Ring1b (Endoh et al., 2008). 

The mice used in this study became sick shortly after the tamoxifen treatment at PN11, 

while the inactivation of Ring1b happened as early as several hours after tamoxifen 

treatment. The total deletion of Ring1b can be confirmed 1 day later by PCR, thus the 

Ring1b protein level of mice progressively decreased after 24 hours of tamoxifen 

treatment. These mice got the secondary dose of tamoxifen injection at PN13 and 

sacrificed at PN17, therefore they were in the presence of tamoxifen for a maximum of 

8 days and living in the absence of Ring1b for approximately 7 days. It has been 

demonstrated that the eruption rate of unimpeded mandibular mouse incisors is 

approximately 400 µm per day, therefore the phenotype of Ring1a-/-; Ring1bfl/flCre+ 

could be reflected as an obvious shorter incisor, however, a measurement analysis in our 

laboratory showed that the difference of the mean lengths of Ring1a-/- ;Ring1bcko/cko 

was 1500 µm shorter than Ring1a-/-;Ring1bfl/fl Cre- mandibular incisors, less than we 

expected. This suggested that either the Ring1a-/-;Ring1bcko/cko incisors were still 

capable of growing at a lower rate, or that tamoxifen- induced Cre-mediated excision 

may only be fully effective for approximately 3 days.  

In the microarray analysis, many genes showed expression changes in the Ring1a/b null 

mouse incisor and among these changes the down-regulation of Thy-1 looks interesting 

since Ring1b was mainly expressed in the fast cycling cells rather than slow cycling 

cells. One possible explanation is that this down regulation of Thy-1 came from the 
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Thy-1 and Ring1b co-expressing cells in fast cycling cell population. Knockout of 

Ring1a/b in these cells led to a down-regulation of cell proliferation directly affecting 

the expression of Thy-1. Another explanation is that down-regulated Thy-1 expression 

might come from an indirect effect on the slow cycling cell population upon Ring1a/b 

inactivation. A study in hair follicles has shown that TA cells are an early intermediate 

in tissue regeneration, whereas emerging TA cells constitute a signaling center that 

orchestrates tissue growth. Hence primed stem cells (SCs) generate TA cells, while 

quiescent SCs only proliferate after TA cells form and begin expressing Sonic 

Hedgehog (Hsu et al., 2014). Therefore, we assumed that loss of Ring1a/b did not affect 

slow cycling cells (stem cells) directly, but a lower proliferation of fast cycling (TA) 

cells led to a failed signaling transition from fast cycling cells to slow cycling cells, 

which indirectly affected the slow cycling cells.  

The microarray results also revealed that loss of Ring1b led to down-regulated cell 

cycle regulators and up-regulation of Hox gene family and Notch signaling pathway, 

indicating a repressive role of Ring1a/b in regulating cell differentiation. A study in 

neural stem cells (NSCs) has shown that Ring1b may modulate the differentiation 

potential of NSCs to neurons and glia. Ring1b-deficiency in fetal neural stem cells 

causes premature neuronal differentiation. In addition, Ring1b mutation can also affect 

the temporal specification of developing neural progenitors, which showed enhanced 

neuronal differentiation and reduced gliogenesis (Roman-Trufero et al., 2009). 

Therefore, in our mouse incisor system, it is possible to argue that Ring1b promotes fast 

cycling cell proliferation by restricting their differentiation in the stem cell niche. 

However, Ring1b inactivation in adult stem cell and primitive progenitor cells in the 

hematopoietic compartment leads to proliferative alterations, rather than differentiation 

defects. It was suggested that Ring1b might plays an important role in the tight control 
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of hematopoietic cell turnover via restricting progenitor proliferation and promoting the 

proliferation of their maturing progeny by selectively altering the expression pattern of 

cell cycle regulators along hematopoietic differentiation (Cales et al., 2008). These 

findings possibly indicate that the mechanism of Ring1b in regulating cell proliferation 

and differentiation might be different among tissues. 

When comparing the gene expression changes upon Ring1a/b deletion in dental pulp 

cells with ES cells, the results were similar. While many gene expressions involved in 

tooth development were up-regulated, this suggested a similarity between Ring1b 

expressing fast cycling cells and ES cells. Moreover, among these up-regulations, Barx1 

that is restrictively expressed in the molars, suggesting its role in the differentiation of 

molars from incisors also was showing an up-regulation upon Ring1a/b inactivation. 

This result may provide a clue regarding molar and incisor determination. 

Taken together we proposed that a regulatory role of Ring1a/b is in the dental 

mesenchymal stem cell niche in developing and continuously growing mouse incisors. 

Loss of Ring1a/b therefore leads to a failure of the immediate progeny of mesenchymal 

stem cells (TA cells) to undergo proliferation and differentiation into odontoblast 

precursors, resulting in an arrest of the continuous growth of mouse incisors. 

 

5.3.2 Investigation of the downstream targets of Ring1a/b 

Mouse incisors require an intricate molecular network to regulate stem cell populations 

for continuous postnatal growth. In our study, Ring1a/b have been confirmed as 

expressing in the dental mesenchyme at the apical end of the incisor at the postnatal 

stage. Also, loss of Ring1a/b caused incisor abnormality, however the downstream 

targets of PRC1 complex inside dental pulp have not been reported. One candidate that 
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has been analyzed in this study is Wnt signaling, which is closely associated with stem 

cell maintenance (Nusse et al., 2008). A recent study has suggested that Wnt activity 

may play an important role in regulating odontoblast linages, as indicated by the high 

level expression of Axin2 in developing odontoblasts and the loss of Axin2 in terminal 

differentiated odontoblasts (Lohi et al., 2010, Suomalainen and Thesleff, 2010). 

Interestingly, our results showed the expression of Axin2 was up-regulated in this 

Ring1/Bcor-expressing area and down-regulated following the loss of Ring1a/b. This 

suggested that Ring1a/b might maintain the differentiation hierarchy of cells in the 

odontoblast lineage during incisor growth via the modulation of Wnt activity. However, 

this regulation needs be further investigated through analysis of the Wnt pathway 

expression changes following alterations in Ring1a/b gene expression.  

Conditional knockout of Ring1a/b and Bcor caused morphological changes, not only in 

the incisor dental mesenchyme, but also in the incisor epithelium, particularly in the 

cervical loop region, supporting the notion that the maintenance of the cervical loop 

requires regulatory signals from the dental mesenchyme, such as Fgf10 and Fgf3 

(Harada et al., 1999, Harada et al., 2002). Previous evidence has reported that 

expression of Fgf10 and Fgf3 is restricted to the mesenchyme adjacent to basal 

epithelial cells and the underlying TA cells expressing their receptors Fgfr1b and Fgfr2b 

(Harada et al., 1999). FGF signaling has been reported to be essential for proliferation 

of epithelial stem cells and TA cells in the epithelial stem cell niche residing in the 

cervical loop (Harada et al., 1999, Harada et al., 2002). Further studies of Fgf10 null 

mice also showed that the cervical loop was completely missing at late bell stage 

(Harada et al., 2002), while Fgf3 -/-; Fgf10 +/- mice exhibited very thin or no enamel 

(Wang et al., 2007), confirming that FGF signals from the mesenchyme are required for 

the development and maintenance of the cervical loop structure. Work in our laboratory 

has proved that loss of Ring1a/b down-regulated the expression of FGF signaling in the 
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mouse incisor mesenchyme, which is probably the reason why the relative small labial 

cervical loop was observed in Ring1a-/-;Ring1bcko/cko incisors in comparison with 

Ring1a-/-;Ring1bfl/fl Cre- mouse (Lapthanasupkul et al., 2012). Taken together, 

knockdown Ring1a/b proteins of the PRC1 complex in postnatal mouse incisors 

down-regulated Fgf10 and Fgf3 gene expression suggested that the mesenchymal PRC1 

complex might regulate the epithelium via regulating FGF signaling.  

 

5.3.3 Investigation of functions of Bcor in mouse incisor dental pulp 

stem cells 

Bcor has a crucial role in maintaining tooth development in both humans and mice. 

Dental abnormalitiesare are an important criteria for OFCD syndrome diagnosis 

(Schulze et al., 1999). ISH for Bcor has found its expression in a specific region in the 

TA cells and previous work in our laboratory has proved that Bcor is essential to 

maintain the continuous growth of the mouse incisor. Previous studies using 

dental-mesenchyme-specific Bcor-knockout mice have shown that disruption of Bcor 

caused obviously abnormal overgrowth of the mouse incisor. We still do not know 

which cell population plays the important role in this abnormality (slow cycling cells or 

fast cycling cells) because further investigation is required using molecular markers. 

However, one possibility is that since Bcor worked as a repressor in controlling TA 

cells, knockout of Bcor expression in these cells may lead to more cell proliferation to 

form an overgrowth of the mouse incisor. Therefore, although it is suggested that, in 

human dental pulp, BCOR inhibits the osteo-dentinogenic potential and proliferation of 

MSCs, this mechanism might differ within the continuously growing mouse incisor and 

non-growing human teeth. This difference is supported by our current data. ISH results 

showed that the Bcor expressing region is a TA cell area. Stem cells from many tissues 
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are thought to be slow cycling while progenitor/TA cells are known to divide rapidly, 

therefore, it is very likely that Bcor regulates the mesenchymal component for the 

incisor growth via mediating progenitor/TA cell fate. In future studies, conditional 

knock-out mice of the Bcor gene should be used in combination with proliferation and 

damage-response analysis, to further address the effect of Bcor in regulating the 

proliferation and differentiation potential of these rapidly dividing cells.  

However, one of the big issues in studying Bcor is that Pax3-Cre Bcor null mice 

(Bcorfl/y;Pax3Cre) had obvious abnormalities and did not survive postnatally. We were 

only able to analyze mice teeth using Bcorfl/+;Pax3Cre adult heterozygotes, in which 

functional Bcor, although reduced, was still present in part of the mesenchymal cells 

leading to normal phenotype. Therefore, to clarify the effect of a complete deletion of 

mesenchymal Bcor in later teeth development, further experiments, such as in vitro 

organ culture or kidney capsule transplantation, needs to be conducted to study the 

development of Bcorfl/y;Pax3Cre incisors from E18.5 onwards. 
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5.4 Conclusion 

In summary, the results showed that the polycomb group genes Ring1a/b and Bcor are 

required for incisor development and growth. Ring1a/b was needed for the maintenance 

of adult epithelium stem cells in the labial cervical loop and fast cycling mesenchymal 

cells. Inactivation of Ring1a/b led to impaired cell proliferation and reduced stem cells 

due to deregulated gene expression. Furthermore, many genes were up-regulated 

following the deletion of Ring1a/b gene, including the Hox gene family and Notch 

signaling pathway and many other genes involved in tooth development further 

confirmed the repressive role of Ring1a/b protein as a core member of polycomb group 

protein. Completely Bcor loss leads to birth death, however, heterozygous 

Bcorfl/+;Pax3Cre mutants did not show phenotypical changes compared with their 

littermate controls and both upper and lower incisors appeared to be relatively normal.
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Chapter 6: General Discussion and Future 

Considerations 

6.1 In vivo identification of dental pulp mesenchymal stem 

cells 

MSCs are heterogeneous cell populations identified based on their in vitro 

characteristics while their in vivo identities remain contentious (Zhao et al., 2014). 

Mouse incisors are capable of continuously growing throughout their lifetime due to the 

existence of stem cells. The precise location of the mesenchymal stem cells (MSCs) in 

the incisor has however been clear. The utilization of label-retaining experiments and 

transgenic reporter mouse lines enabled further understanding of the less established 

identities and properties of dental pulp stem cells in vivo. In this project, a stem cell 

niche located at the apical end of mouse incisor was described. The work in this thesis 

also demonstrated that three distinct but connected cell populations exist in this stem 

cell niche: a slow cycling cell population containing Thy-1+ cells essential for tooth 

dental pulp and odontoblast formation; a Ring1/Bcor-associated fast cycling cells 

population crucial for maintaining tissue growth and homeostasis of epithelium stem 

cells in the labial cervical loop; a quiescent long-term cell population marked by Celsr1 

possible provide new stem cells to the stem cell niche. 

 
6.1.1 Identification of MSCs in mouse incisor 

Previous studies in our laboratory have demonstrated a limited pericyte contribution to 

the formation of odontoblasts during dentine repair. Another MSC population must 

exist in the apical mesenchyme that continuously provides new cells for mouse incisor 

growth. To clarify the location of MSCs, nucleoside label-retaining experiments were 
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performed to investigate the cell proliferation rate in the dental pulp cells. This showed 

that a slow cycling cell population exists in the dental mesenchyme between cervical 

loops surrounding by a fast cycling cell population more distally. The close proximity 

of the rapid and slow cycling populations suggested that the rapidly dividing cells might 

also function as a niche compartment essential for the slow cycling cells maintenance. 

Unfortunately, gene expression analysis using microarray was not possible since 

detection of nucleosides for FACs is not compatible with mRNA extraction. The 

detection of slow cycling cells with nucleosides can be replaced with the use of 

doxycycline inducible H2B–GFP transgenic mice, which have been suggested as a 

better labeling approach for this analysis. In these mice, ubiquitous and transient 

expression of GFP is rapidly activated after doxycycline administration, following 

washout periods, label-retaining cells can be obtained without damage by FACS. This 

approach will enable us to investigate slow cycling cells (stem cells) in greater detail, in 

the future. 

 
6.1.2 Investigation of quiescent long-term cells and noncanonical Wnt 

signaling 

For long-term maintenance of stem cells in adult tissues, a subset of stem cells needs to 

be kept necessarily in long-term quiescence in a specialized niche (Sugimura et al., 

2012). These cells are able to provide a source of new stem cells in the adult tissue. A 

study in HSCs has shown a quiescent long-term HSC cell population regulated by 

flamingo mediated noncanonical Wnt signaling in the HSC niche (Sugimura et al., 

2012). These quiescent long-term HSCs predominantly express noncanonical Wnt 

ligands and inhibitors of canonical Wnt signaling under homeostasis. But, under stress, 

these cells become active and exhibit enhanced canonical Wnt signaling and attenuated 

noncanonical Wnt signaling (Sugimura et al., 2012). In the mouse, dental pulp stem 

cells have been reported to date. Since dental pulp stem cells are needed for continuous 
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tooth growth, an interesting question appeared. Is there a similar quiescent long-term 

cell population at which noncanonical Wnt signaling functions to in the incisor?  

Many Wnts and Wnt pathway mediators are expressed during the development of 

embryonic teeth. The indispensable role of Wnt signaling in tooth morphogenesis has 

been demonstrated in mouse and human studies (Dassule and McMahon, 1998, Sarkar 

and Sharpe, 1999, Kratochwil et al., 2002, Obara et al., 2006, Adaimy et al., 2007). For 

example, it has been shown that Wnt/β-catenin signaling is observed almost exclusively 

in mesenchymal tissue of mouse incisor (Suomalainen and Thesleff, 2010). Tooth 

development in mouse embryos is arrested at an early stage when Wnt signaling is 

inhibited by expressing the Wnt inhibitor Dkk1 and by inhibiting epithelial β-catenin 

and when Lef1 (Lymphoid enhancer factor, a nuclear mediator of Wnt signaling) 

function is deleted (van Genderen et al., 1994, Andl et al., 2002, Liu et al., 2008). 

Furthermore, Wnt5a, which is often associated with the noncanonical Wnt pathway 

(Mikels and Nusse, 2006), is intensely expressed in the dental mesenchyme around the 

cervical loops indicating a negative regulation of the epithelial stem cells in their niche 

by means of a noncanonical Wnt pathway in the developmental stage (Sarkar and 

Sharpe, 1999). Therefore, to identify the noncanonical Wnt signaling mediated 

mesenchymal cells, a long-term label-retaining experiment and immunostaining was 

performed in the mouse incisor pulp tissue. The result showed that a small number of 

Celsr1+ (Flamingo homologue) cells were located in the very outer layer of the dental 

mesenchymal as quiescent cells were, suggesting a long-term quiescent cells population 

mediated by noncanonical Wnt signaling exists in the stem cell niche of mouse incisor. 

These long-term quiescent cells might respond to generate new stem cells when the 

stem cells become depleted. 

 
6.1.3 Lineage tracing of prospective stem cells 

To identify prospective stem cell populations in the mouse incisor, a transgenic mouse 
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line pCAGERT2Cre; R26R mT/mG were used in our studies. By temporal control of gene 

recombination with tamoxifen, a group of labeled cells at the apical end mesenchyme 

that form patches of odontoblasts were successfully identified. It is reasonable to 

propose that these labeled cells were from (a) stem cell clones and their location is a 

stem cell niche, because only stem cell could stay in the mouse incisor and keep 

producing progeny while all other cells have moved out from the tip of incisor as the 

tooth growth. However, we still can not answer the questions that how many progeny 

cells a stem cell can produce, because the group of cells we observed may come from 

more than one stem cell. Thus, a new four colour labeling transgenic mouse 

pCAGERT2Cre; R26R-Confetti is expected to provide more information by labeling 

different stem clones with different colours in future studies. 

 

6.2 Thy-1 and MSCs 

Dental pulp MSCs are heterogeneous cell populations and are identified based on their 

in vitro characteristics. Their identities in vivo are not yet known because of the lack of 

specific markers (Bianco et al., 2008). In order to identify specific markers for MSCs in 

mouse incisor, microarray analyzes of mouse incisor and cervical loop area had been 

done in a previous study. Thy-1, a well known MSCs marker in vitro (Horwitz et al., 

2005) that is up-regulated in both incisors and the cervical loop areas which contain 

stem cell niches (Harada et al., 1999), was selected as a candidate to study further.  

 

6.2.1 Analysis of Thy-1 expression in the mouse incisor dental pulp 

It has been common practice to use mRNA concentrations to represent the activities of 

the corresponding proteins, thereby assuming that transcript abundances are the main 

determinant of protein abundances (Vogel and Marcotte, 2012). Our results of ISH 
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showed that the expression of Thy-1 was more intense at the apical end of mouse 

incisor dental pulp tissue where slow cycling cells and fast cycling cells are located. 

However, at the protein level, Thy-1 was only detected in the slow cycling cell area. A 

similar result came from the Cre protein expression of Thy-1 Cre mouse, 

immunostaining result showed that Thy-1 promoter driving Cre expression was only 

detected in the slow cycling cells area. It might argue that this result could be caused by 

low sensitivity of immunostaining since the flow cytometry, a more sensitive analysis 

showed more Thy-1 expressing cells in the incisor pulp. According to the flow 

cytometry result, 12.4% pulp cells were Thy-1 positive, however, that number could 

change by alternating antibody incubation time and concentration as Thy-1 expression 

increases progressively. One explanation for this progressive expression of Thy-1 is that 

Thy-1+ cells are stem cells, which can produce many progeny cells, a small amount of 

Thy-1 protein could still exist in all these progeny cells. 

On the other hand, mRNA concentrations sometime can not truly reflect the 

corresponding proteins as many post-transcriptional modifications occur once mRNA 

are synthesized. After the DNA is transcribed and mRNA is formed, protein expression 

process still needs to be modulated. Besides, cells can rapidly adjust their protein levels 

through the enzymatic breakdown of existing protein molecules. Lastly, cell division 

may further dilute the protein concentration, as has been suggested by independent 

studies (Eden et al., 2011, Vogel and Marcotte, 2012). If this applies to our study, it is 

not surprising that fast cycling cells in the mouse incisor showed a low Thy-1 protein 

expression.  

The co-localization of Thy-1 and EdU labeling results by flow cytometry seemed to 

confirmed the ISH result, as it showed that approximately 30 % of 6 weeks chase slow 

cycling cells were Thy-1+ cells while in the 24 hours EdU label cells, 16.3% cells were 

also detected positve to Thy-1. It may argue that these Thy-1+; 24 hours EdU label cells 
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were Thy-1 progeny cells which still have the remaining protein. However, this 

experiment left a big blank before and after 24 hours chase timing. More data from 

different time points in the future is required to answer these questions 

 

6.2.2 Lineage tracing of Thy-1+ cells in the mouse incisor dental pulp 

One way to identify stem cells in the tissue is linage tracing, thus to trace Thy-1 

expressing cells in vivo, two transgenic mouse reporter lines: Thy-1Cre;R26R mT/mG 

and Thy-1Cre;R26R-Confetti were used in our studies. Our results showed that, in adult 

stages, Thy-1 expressing cells from the apical end of mouse incisor, contributed to the 

whole incisor pulp formation. In Thy-1Cre;R26R-Confetti mice incisors, cell streams in 

different colours were found to contribute to the formation of odontoblasts, suggesting 

different individual Thy-1+ cells and their progeny cells function as stem cell source in 

the growth of mouse incisor. However, in most Thy-1Cre;R26R-Confetti mouse incisors, 

only a few cell streams of one or two colours were detected. These results were 

consistent with the finding that only a few Thy-1+ cells were detected by 

immunostaining, suggesting a limited number of Thy-1 expressing stem cell in the stem 

cell niche. Interestingly, Thy-1 progeny cells did not form the whole dental pulp tissue 

suggesting a different stem cell population exists together with the Thy-1+ population, 

contributing to the formation of dental pulp tissue. This result further confirmed the 

heterogeneity of dental pulp MSCs and left more questions in the future to fully 

understand the MSCs in the mouse incisor. 

 

6.2.3 Thy-1+ cells in vitro 

Thy-1 positive cells from PN5 dental pulp did not grow well in vitro. This result may 

either indicate that the Thy-1+ population cannot be maintained in high numbers, or 

Thy-1+ cell state changes due to lack of signaling regulation when leaving the stem cell 
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niche microenvironment. Thus, optimizing the cell culture conditions and mimic in vivo 

environments to support Thy-1+ proliferation and expansion is recommended. Many 

studies have been performed to test the optimal conditions to maintain MSCs in their 

undifferentiated state, starting from the usage of different medium to sera 

concentrations or serum free medium (Lapi et al., 2008, Ayatollahi et al., 2012, Chase et 

al., 2010). However, these above mentioned studies suggested that, the culture 

conditions varied in different progenitor cells, as different cells have differential 

sensitivity to medium, sera and growth factors. This issue may raise questions as to the 

utility of Thy-1+ dental pulp stem cells in therapeutic transplantation, because 

transplantation requires a large number of cells. How to produce large number of these 

Thy-1+ cells in vitro is still an obstacle.  

 

6.2.4 Analysis of heterogeneity of slow cycling cells and Thy-1+ cells 

In our study, a group of dental pulp MSCs was identified by a series of label-retaining 

experiments. These slow cycling cells were compared with Thy-1+ cells by performing 

flow cytometry analysis. The results showed that approximately 30 % of 6 weeks chase 

slow cycling cells were Thy-1+ cells, suggesting a considerable Thy-1+ cells 

contribution to the slow cycling cell population. This number could vary if the chase 

time is altered, however, it still indicated a heterogeneity of both the Thy-1+ cells and 

slow cycling cells populations. Evidence from a recent study has revealed that a 

significant population of mesenchymal stem cells during development, self-renewal and 

repair of a tooth are derived from peripheral nerve-associated glia. Glial cells generate 

multipotent mesenchymal stem cells that produce pulp cells and odontoblasts (Kaukua 

et al., 2014). The study also revealed that a population of Schwann-cell-derived dental 

MSCs are Thy1+. When quantified the amount of schwann-cell-derived progeny in 

PLP-CreERT2/R26R-YFP mice there are approximately 47.28 ±4.02% positive cells 
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(Kaukua et al., 2014). Hence, including Thy-1+ cells (30%), Schwann cells and SCPs 

(47.28 ±4.02%) also include other cell populations 

One possible candidate is pericytes. Lineage tracing of NG2Cre;R26R transgenic mice 

has demonstrated that there is a pericyte-derived mesenchymal contribution to 

odontoblast formation (Feng et al., 2011). However, according to their results only 

around 12% of odontoblasts are possibly derived from pericytes. Recently, new 

evidence further confirmed this finding. A study suggested that NG2+ pericytes 

represent an MSC subpopulation that are actively involved in injury repair rather than 

contribute only a little to homeostasis in mouse incisor (Zhao et al., 2014). These results 

all indicate that pericytes are part of MSCs in the mouse incisor dental pulp tissue. 

In addition, recent studies have revealed that a Gli1 expressing periarterial cell 

population contributes to mesenchymal derivatives in mouse incisor (Zhao et al., 2014). 

Previous results have suggested that Gli1 may be a dental epithelial stem cell marker 

(Seidel et al., 2010). However, a recent study in Gli1 reporter mice showed that Gli1 

was expressed both in the dental epithelial cells and at the apical end mesenchyme 

where the stem cell niche is located. Lineage tracing of Gli1+ cells showed that Gli1+ 

cells give rise to the entire incisor mesenchyme including NG2+ and CD146+ 

perivascular cells but not the CD31+ endothelium further supported the idea that Gli1 is 

a dental mesenchymal marker. FACS analysis of incisors from Gli1-GFP mice 

suggested that there are around 2300 Gli1+ cells in each lower incisor, comprising 

about 2% of the entire incisor mesenchyme population (Zhao et al., 2014). This number 

is less than our label-retaining cell population, which account for about 4.3% of total 

dental pulp cells suggesting that Gli1+ cells may not contribute all MSCs.  
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6.3 Ring1, Bcor and fast cycling cells 

6.3.1 Analysis of Ring1 and Bcor expression in fast cycling cells 

In the MSC niche of mouse incisor, we identified two cell populations with different 

proliferation rates: slow cycling cell population in the area between the cervical loops 

and fast cycling cell population located close to the cervical loop. We further presented 

evidences that the slow cycling cell population, which expressed the stem cell marker 

Thy-1, contributed to the formation of whole dental pulp tissue, while the population of 

dental pulp mesenchymal cells with high proliferation rate, expressed PRC1 proteins 

(Ring1a/b and Bcor) and had characteristics of cell progenitors (TA cells) in tooth 

growth. Nonetheless, further investigation is required to address the lineage and biology 

of Ring1a/b expressing cells in the mesenchyme fast cycling cells, as well as the 

functional roles of Ring1a/b in this population.  

 

6.3.2 Histology analysis of Ring1a/b and Bcor knoctout mouse incisors 

In the histology analysis of Ring1a/b knockout mice incisors, the results showed that the 

morphology of the whole cervical loop was remarkably abnormal in thePN17 Ring1a-/-; 

Ring1bcko/cko mice, in comparison to the cervical loop of Ring1a-/-; Ring1bfl/fl Cre- mice. 

Upon Ring1a/b deletion, the labial cervical loop that is believed to be the stem cell 

niche was smaller and holding fewer satellite reticulum cells. While in the dental pulp 

mesenchyme, fast cycling cells proliferation rate was obviously down-regulated, which 

further led to a failed odontoblasts formation. All of these indicated an abnormal 

development and arrest at growth in the Ring1bcko/cko mouse incisor. Contrastingly, a 

previous study using dental-mesenchyme-specific Bcor-knockout mice showed a totally 

different phenotype. An obviously abnormal overgrowth of the mouse incisor was seen 

by the disruption of Bcor. It is still not known which cell population plays an important 
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role in this abnormality (slow cycling cells or fast cycling cells) because further 

investigation still needs to be done by using molecular markers, however, one 

reasonable guess is that since Bcor functions as a repressor in controlling TA cells, 

knockout of Bcor expression in these cells leads to more cell proliferation to form an 

overgrowth of mouse incisor. This result is very interesting because Ring1a/b and Bcor 

are both components of the PRC1 complex that is well known for keeping ESs state, 

however, they play different roles in controlling MSCs of mouse incisor dental pulp. It 

possibly because of Ring1a/b and Bcor target different downstream signaling. In 

Ring1a/b knockout mutants, FGF signaling has been shown to be down-regulated 

expressed which caused a reduced cell proliferation in both epithelium and 

mesenchymal tissue. While a recent study of Bcor revealed that upon Bcor deletion 

main effectors of the Shh pathway Gli1 and Gli2 were strongly up-regulated (Tiberi et 

al., 2014). Since a Gli1+ cell population has been considered as stem cells both in 

mouse incisor epithelium and mesenchymae (Zhao et al., 2014), up-regulated 

Gli1expression may activate stem cell proliferation contributing to the overgrowth 

observed upon Bcor deletion.  

 
6.3.3 Analysis of gene expression changes upon Ring1a/b deletion 

Polycomb group proteins including Ring1a/b are well known for silencing Hox genes 

through modulation of chromatin structure during embryonic development in 

Drosophila melanogaster (Di Croce and Helin, 2013). The microarray results showed a 

significant up-regulation of Hox genes along with a stem cell niche phenotype in 

Ring1a/b deletion mouse incisor. It is reasonable to wonder if Hox genes act as 

downstream targets of PRC complex that are involved in the regulation of TA cells. In a 

study of Bmi (PCGF4), a component of PRC complex protein, histological analysis 

showed a similar cervical loop phenotype with an up-regulated Hox gene expression. It 
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has been demonstrated that reducing Hox a9/c9 expression reconstituted the incisor 

epithelial stem cell expression signature. When introducing exogenous Hox a9/c9 by 

lentiviral transduction into cultured control labial cervical cells, over-expression of Hox 

genes caused enlarged cell size (Biehs et al., 2013). Collectively, all these results 

suggested that Hox gene expression was suppressed by PRC complex proteins in the 

dental pulp tissue and knockout Ring1a/b, a core component of PRC1 complex, would 

cause an epithelia stem cell phenotype via alteration of Hox gene expression.  

In addition, our microarray results also showed that gene expression changes in dental 

pulp stem cells niche area cells are identical with ESs. Many genes involved in tooth 

development showed an obvious up-regulation upon Ring1a/b deletion including Gata6, 

Tbx18, Zic1, Barx1, Bmp6 and Crlf1, enforcing the idea that Ring1a/b regulated those 

cells in the dental pulp stem cell niche as a repressor.  

 

6.4 Understanding of MSC niche regulation 

Several signaling pathways critical for the formation and maintenance of the incisor 

stem cells both during development and in adults are found in the mouse incisor apical 

end mesenchyme where fast and slow cycling cells located. Among the most well 

studied of these is FGF signaling. Fgf10 is expressed in the mesenchyme neighburing 

both the lingual and labial cervical loops. Fgf3 expression, in contrast, is only present in 

the mesenchyme adjacent to the labial cervical loop (Harada et al., 1999, Wang et al., 

2007). Our study in Ring1a/b knockout mice showed that FGF signaling was reduced in 

the fast cycling cell area, which led to a growth arrest of mouse incisor and abnormality 

of labial cervical loop in epithelia. This result not only suggested that Ring1a/b in fast 

cycling cells are required for maintaining endogenous levels of FGF expression but is 

also essential for the regulation of FGF signaling which is import in the formation and 
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maintenance of epithelial stem cells in the labial cervical loop. This also indicated a 

mesenchymal-epithelial interaction in regulating the stem cell niche in epithelium 

tissue.  

The ISH results confirmed that Alk5 (Tgfbr1) was expressed at the apical mesenchyme 

where fast cycling cells are located, suggesting an involvement of TGF-β family in the 

growth of mouse incisor. Studies in mouse incisor suggested that Alk5 in the dental 

mesenchyme regulates proper tooth initiation and development of the incisor epithelium 

(Zhao et al., 2011). When Alk5 was deleted specifically in the dental mesenchyme, FGF 

signaling was down-regulated, leading to reduced proliferation and fewer LRCs in the 

cervical loop (Zhao et al., 2011). This result may indicate either a direct or an indirect 

involvement of TGF-β family to FGF signaling in the growth of mouse incisor. 

Interestingly, Pax9, which is required in the establishment of the inductive capacity of 

the tooth mesenchyme (Peters et al., 1998), was found expressed in the slow cycling 

cells area. Studies have suggested that the activation of mesenchymal FGF expression 

occurs at least in part through the transcription factors Msx1 and Pax9, which interact to 

initiate the expression of Fgf3 and Fgf10 at E12.5 and thus the subsequent formation of 

the incisors (Kuang-Hsien Hu et al., 2014). Therefore, Pax9 may still work as an up 

stream regulator in the slow cycling cells, initiating the expression of Fgf3 and Fgf10 

genes in the fast cycling cells during postnatal stage. 

It has been proposed that signaling through the Hedgehog (Hh) pathway plays a number 

of roles in stem cell biology, including regulation of fate decisions in embryonic stem 

cells (Gaspard et al., 2008) and survival and self-renewal of neural stem cells (Balordi 

and Fishell, 2007). In addition to FGF and TGF-β/BMP signaling, Hh pathway is also 

an important regulator of mouse incisor stem cells. As mentioned earlier, Gli1 positive 

Hh-responsive cells were found in both the epithelial stem cell compartment and the 

dental pulp mesenchyme. According to the recent research in MSCs niche, these cells 
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were considered as MSCs in the mesenchymal (Zhao et al., 2014). However, in adult 

Ptc-1fl/fl;CreERTm mouse incisor, where Shh signialing was blocked by conditional 

knockout of the Shh receptor Ptc-1, histological analysis of ameloblasts and 

odontoblasts did not show any abnormity in the tamoxifen treated mice. Although 

another study group reported a similar result (Cobourne et al., 2009), it might be due to 

an inadequate exposure to prolonged increased Shh signaling.  

Members of the Notch signaling pathway demonstrate intriguing expression patterns in 

the incisor. Several studies have pointed to a role for these genes in the regulation of the 

epithelium stem cells. In mouse incisors, Notch 1 and Notch 2 expression is in the 

cervical loop (Harada et al., 1999). Notch 3, on the other hand, is reported to be 

expressed both in the dental mesenchyme (Harada et al., 1999) and cervical loop 

(Mitsiadis et al., 1998). The genes encoding the Notch ligands, Dll1 and Jagged 2 are 

also expressed in the cervical loop dental epithelium (Mitsiadis et al., 1998). Our 

microarray analysis upon Ring1a/b gene deletion mice showed that Notch signaling was 

repressed by Ring1a/b. Knockout Ring1a/b gene can lead to an up-regulation of Notch 

signaling members and a reduced stem cell number in the cervical loop. However, when 

cervical loops dissected from new born mice were cultured with the Notch signaling 

inhibitor, DAPT, they had reduced proliferation and increased apoptosis, leading to an 

overall reduction in size (Felszeghy et al., 2010). These conflicting results further 

suggested a complicated regulation network of stem cells in mouse incisors.  

In summary, the continuous growth of the mouse incisor is orchestrated by a fine-tuned 

dynamic regulatory interaction between the mesenchyme and epithelium. Transforming 

growth factor beta (TGFß), bone morphogenetic protein (BMP), Wnt, fibroblast growth 

factor (FGF) and Hedgehog pathways are involved in this process. The signals from the 

underlying mesenchyme are essential for epithelial stem cell and MSCs maintenance in 

the cervical loop area. Polycomb proteins Ring1a/b from fast cycling cells are required 
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for maintaining endogenous levels of FGF expression in mesenchyme and repress Hox 

and Notch pathways.  

 

6.5 MSCs and incisors 

Stem cells are found in many adult organs where they respond to provide a source of 

cells needed for tissue growth or to repair tissue damage. Adult human teeth do not 

grow and have only a limited ability to repair following damage, however, the incisors 

of rodents grow continuously to accommodate wear and tear. This is achieved by 

resident stem cell populations existing in the tooth that provide sources of cells to 

replace all mesenchymal-forming odontoblasts and epithelium-forming ameloblasts. 

Our study highlights the incisor as an excellent model for studying MSCs. With the 

establishment of MSCs niche consist of quiescence cells, slow cycling cells and fast 

cycling cells and stem cell marker Thy-1, we will be able to target MSCs specifically 

and precisely to inactivate a specific gene in order to test its in vivo function in 

regulating MSCs. In summary, the dental mesenchymal stem cell niche identified in 

mouse incisors provides an attractive, easily visualized and manipulated, experimental 

system to study the characteristics and behaviour of adult stem cells. 

 

6.6 Stem cell niches in molar and incisor 

Dental hard tissues are formed particularly by odontoblasts (dentin) and ameloblasts 

(enamel). In human, however, once the tooth erupts into the oral cavity, the dental 

epithelial tissue is lost, thus teeth lose the potential to regenerate enamel. The remaining 

mesenchymal tissues have a limited capacity to regenerate dentin, cementum and pulp 

which suggests that the MSC populations exist in the adult teeth (Kuang-Hsien Hu et al., 

2014). To date, several types of dental stem cells have been isolated from human teeth, 
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including DPSCs (Gronthos et al., 2000), SHEDs (Miura et al., 2003), PDLSCs (Seo et 

al., 2004), DFPCs (Morsczeck et al., 2005) and SCAPs (Sonoyama et al., 2006). These 

stem cells reside in different part of teeth (niches) and were identified according to their 

MSC-like properties in vitro and tissue forming capacity in vivo. However, as 

previously mentioned, human adult teeth lose the potential to regenerate enamel and 

human epithelial stem cells in adult teeth was never reported (Volponi et al., 2010). 

In contrast, mice, which are an important and commonly used model for investigation of 

tooth development, exhibit two different types of tooth growth. Like human, mouse 

molar have limited capacity to regenerate dentin. Our BrdU chase experiment did not 

detect as much BrdU Labelling cells in the molar as in the incisor, while, mouse incisors 

grow throughout their lifetime and BrdU chase experiment showed a continuous cell 

proliferation. The continuous formation of enamel and dentin in incisor is made by the 

presence of active adult epithelial and mesenchymal stem cells respectively. The 

epithelial stem cells, which have been well studied, reside in a niche called the cervical 

loop. BrdU chase experiments have confirmed the existence of label-retaining cells in 

the cervical loop of mouse incisor. Following studies have further elucidated the 

mechanism about the signaling pathways regulating the stem cell niche such as FGF 

signaling pathway, SHH signaling pathway and TGFβ-BMP signaling pathway (Harada 

et al., 1999). Several potential markers for dental stem cells in the cervical loop have 

been identified such as Sox2, Bmi1 and Gli1. It is possible that these markers mark 

different stem cell populations. There also appear to be Lgr5 expressing stellate 

reticulum cells in the cervical loop (Chang et al., 2013) and it is possible that these cells 

represent yet another subgroup of stem cells as Lgr5 is a stem cell marker in other tissue 

(Schuijers and Clevers, 2012).  

The mesenchymal stem cell niche in the mouse incisor dental pulp has not yet as well 

characterized as their epithelial counterparts. Numerous experiments have consistently 
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suggested that MSCs are associated with the vascular niche. In vascular niche pericytes 

can differentiate into a variety of mesenchymal populations ranging from osteoblasts, 

chondrocytes and adipocytes to fibroblasts (Doherty et al., 1998, Farrington-Rock et al., 

2004). In human, the vascular niche was studied using BrdU chase experiment in 

immature third molars. One day after deep cavity preparation BrdU labelling was found 

in blood vessels surrounding the cavity, while after 4 days, the labelling was restricted 

only to the cavity area suggesting that perivascular progenitor/stem cells can proliferate 

in response to odontoblast injury and migrate to the injury site (Tecles et al., 2005). In 

mice, researchers applied an in vivo approach by using transgenic mouse lines to 

genetically label and linage trace pericytes and characterise their properties during 

development and following tooth damage. Results showed that pericytes had limited 

contribution to tooth growth, however, upon tooth damage stimuli, they were actively 

involved in dentin repair via migration, proliferating and differentiating into 

dentin-producing odontoblasts suggesting pericytes from vascular niche could serve as a 

MSC population in the dental pulp tissue of mouse incisor (Feng et al., 2011). Besides 

vascular niche it is generally thought that another MSC niche is located at the apical end 

of the incisor between the laCL and liCL. This notion was supported by the findings 

that cells in this area retain BrdU labeling (Seidel et al., 2010) and respond to 

odontoblast damage in explant cultures (Feng et al., 2011). Interestingly, Bmi1 and Gli1, 

markers for the cervical loop epithelial stem cells, are also expressed in the BrdU 

retaining mesenchymal cells in the area between cervical loops (Biehs et al., 2013, 

Seidel et al., 2010), reinforcing the idea that a MSC niche is located at the apical end of 

mouse icnsir. In this MSC niche, researchers have reported that sensory nerves secrete 

Shh protein to activate Gli1 expression in periarterial cells that contribute to all 

mesenchymal derivatives (Zhao et al., 2014). This suggested an important 

neurovascular function in the stem cell microenvironment.   
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To date, several stem cell populations have been reported in this stem cell niche besides 

Gli1 periarterial cells. For example, a significant population of mesenchymal stem cells 

during development, self-renewal and repair of a tooth are derived from peripheral 

nerve-associated glia. Glial cells generate multipotent mesenchymal stem cells that 

produce pulp cells and odontoblasts. In addition, our lineage tracing experiment of 

Thy-1 expressing cells showed that Thy-1 progeny contributed odontoblasts with non 

Thy-1 progeny ones. In summary, in comparison to stem cell niche in the molar, mouse 

incisor MSCs are mainly located in the niche at the apical end and continuously 

contribute to the growth of mouse incisor in adulthood while stem cells in the molar 

localized in several different locations and only limited regenerate dentin, cementum 

and pulp. Nonetheless, further experiments are required to investigate the architecture of 

the MSC niche, as well as the functional roles of certain molecules in it. In the future, 

expression profiling using gene expression microarray or RNA sequencing at the single 

cell level will be desirable to provide more informations. 

 

6.7 Future work 

As discussed above, additional work is needed to be accomplished in terms of 

elaborating the MSC niche of mouse incisor in the future. Firstly, stem cell identity 

needs to be further explored. A multi-colour reporter mouse line (CAGET2Cre; 

R26R-Confetti) is needed to trace single MSC clone in the mouse incisor to better study 

the stem cells and their progeny cells. In addition, a H2B-GFP mouse line which can 

activate GFP expression by external control, is needed to collect GFP expressing cells 

for gene analysis and in vitro cell studies. These transgenic mice express the human 

histone 1, H2bj, protein (HIST1H2BJ) and GFP fusion protein, HIST1H2BJ/GFP, under 

the control of a tetracycline-responsive promoter element (TRE; tetO). When 

hemizygotes are bred with another transgenic mouse expressing reverse 
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tetracycline-controlled trans-activator protein (rtTA) or tetracycline-controlled 

trans-activator protein (tTA) to create bi-transgenic animals, tissue-specific 

HIST1H2BJ/GFP transgene expression can be regulated with the tetracycline analog, 

doxycycline. Pulse-chase administration of doxycycline results in retention of GFP 

signal in rarely dividing, or infrequently cycling, label-retaining cells. This approach 

will avoid the damage of cells when cells are sorted with nucleotide labeling. Thus, 

cells can remain a healty state for microarray analysis to provide more information 

about the molecular mechanism of the quiescent state of stem cell. Furthermore, both 

slow cycling cells and fast cycling cells can be acquired without damage and be used for 

gene expression comparsion. The difference of gene expression between these two 

populations may provide us a clue of molecular mechanism for stem cell activation. 

Secondly, more time points need to be selected to trace fast cycling cells and slow 

cycling cells in the mouse incisor. In our study, these two populations were identified to 

localize a MSC niche. However, the exact numbers of these two populations is still 

needed to be determined. Thirdly, a conditional homozygous Bcor knockout mouse line 

is required to investigate the function of Bcor in the regulation of mouse incisor stem 

cells in adulthood as homozygotes may show more obvious phenotypes of mouse 

incisors. By labelling the cells with necloeside markers in this mouse line, the question 

of which cell population contributes to the overgrowth of mouse incisor can be 

addressed. 

 

6.8 Summary 

In this study, a MSC niche of mouse incisor was identified by 1) detecting the 

asymmetric division of MSCs through labeling cells with different proliferation rates; 2) 

detecting the location of stem cell clone through space-time control of GFP expression 
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in pCAGERT2;R26R mT/mG mouse incisor; 3) detecting the location of quiescent cells 

that are usually located in the stem cell niche through label-retaining experiment and 

Celsr1 expression; 4) selseting Thy-1 as a MSC marker in the mouse incisor dental pulp 

and performing cell fate tracing of Thy-1+ cells. In addition, Ring1, that are expressed 

by the fast cycling cells was investigated. 

 

 

Fig 6.1: Project overview. 

	
	
In summary, in the continuously growing mouse incisor, three cell populations exist in 

the apical end: slow cycling cells, fast cycling cells and quiescent cells. The slow 

cycling cells mainly approach the area between two cervical loops at the apical end of 

mouse incisor. As MSCs marker, Thy-1 expressing cells in this area contribute to the 

formation of dental pulp tissue. While fast cycling cells are located distally and 

regulated by PRC1 complex. Beside the fast and slow cell population, a quiescent 

long-term cell population marked by Celsr1 exists at the apical most end mesenchyme. 

All these results suggest a MSCs niche locating at the apical end of the mouse inciosr 

pulp tissue as generally believed. 
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Fig 6. 2: Schematic diagram of project conclusion.
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a b s t r a c t

Rodent incisors are capable of growing continuously and the renewal of dental epithelium giving rise to

enamel-forming ameloblasts and dental mesenchyme giving rise to dentin-forming odontoblasts and

pulp cells is achieved by stem cells residing at their proximal ends. Although the dental epithelial stem

cell niche (cervical loop) is well characterized, little is known about the dental mesenchymal stem cell

niche. Ring1a/b are the core Polycomb repressive complex1 (PRC1) components that have recently also

been found in a protein complex with BcoR (Bcl-6 interacting corepressor) and Fbxl10. During mouse

incisor development, we found that genes encoding members of the PRC1 complex are strongly

expressed in the incisor apical mesenchyme in an area that contains the cells with the highest

proliferation rate in the tooth pulp, consistent with a location for transit amplifying cells. Analysis of

Ring1a�/�;Ring1bcko/cko mice showed that loss of Ring1a/b postnatally results in defective cervical loops

and disturbances of enamel and dentin formation in continuously growing incisors. To further

characterize the defect found in Ring1a�/�;Ring1bcko/cko mice, we demonstrated that cell proliferation

is dramatically reduced in the apical mesenchyme and cervical loop epithelium of Ring1a� /�;Ring1bcko/

cko incisors in comparison to Ring1a�/�;Ring1bfl/fl cre- incisors. Fgf signaling and downstream targets

that have been previously shown to be important in the maintenance of the dental epithelial stem cell

compartment in the cervical loop are downregulated in Ring1a�/�;Ring1bcko/cko incisors. In addition,

expression of other genes of the PRC1 complex is also altered. We also identified an essential postnatal

requirement for Ring1 proteins in molar root formation. These results show that the PRC1 complex

regulates the transit amplifying cell compartment of the dental mesenchymal stem cell niche and cell

differentiation in developing mouse incisors and is required for molar root formation.

& 2012 Elsevier Inc. All rights reserved.

Introduction

Rodent incisors including mouse incisors differ from molars as
they are capable of continuously growing throughout the lifetime of
the animal. These incisors grow and erupt continuously in order to
compensate for functional attrition that constantly occurs at their
incisal edges as the mouse feeds. Whereas molars have an obvious
crown and root axis, mouse incisors have no conventional crown or
root, rather the labial, enamel-covered surface is equivalent to a
crown and the lingual, enamel-free surface to a root (Ohazama et al.,
2010; Tummers and Thesleff, 2008; Tummers et al., 2007). The most
proximal end of the incisor is open to provide a channel for blood and
nerve supplies. Since the incisors continue grow, the renewal of

tooth-forming cells including enamel-forming ameloblasts and den-
tin-forming odontoblasts is required and is achieved by stem cells
residing at their open proximal (apical) ends (Harada et al., 1999;
Smith and Warshawsky, 1975). The mouse incisor is therefore an
interesting model to study the regulation of dental epithelial and
mesenchymal stem cells in the same organ. It has been proposed that
stem cells reside in specific compartments called ‘stem cell niches’
that provide essential signals required for their function and main-
tenance. Besides the stem cells themselves, components of the niche
are thought to include supporting cells, extracellular matrix as well as
neurovascular tissue. Communication among the cells inside the
niche via signaling molecules is crucial to accomplish the balance
between self-renewal and differentiation of stem cells (Jones and
Wagers, 2008; Schofield, 1978). Additionally, the stem cell niche also
protects stem cells from depletion and protects the host from
excessive proliferation of stem cells (Scadden, 2006).

Early stages of mouse incisor embryonic development are similar
to those of molars but when the incisor buds reach the cap stage
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they rotate anteroposteriorly. Subsequently, at the bell stage (E16.5)
the epithelial compartments of the apex form a special structure
called ‘‘ the cervical loop’’. Histologically, the cervical loop comprises
a central core of star-shaped cells called stellate reticulum that are
surrounded by a layer of epithelial cells (Fig. 1A). The cervical loop at
the labial aspect that is responsible for the continuous generation of
ameloblast precursors, is larger than the one at the lingual aspect
that does not generate ameloblasts and contains a larger number of
stellate reticulum cells. It has been shown that these stellate
reticulum cells contain slowly dividing stem cells that subsequently
undergo asymmetric cell division. As these stem cells proliferate,
one daughter cell remains within the niche as an undifferentiated
stem cell whereas the other daughter cell is displaced away from the
niche, enters a zone of transit-amplifying cells (TA cells) and
differentiates into ameloblast (Harada et al., 1999). In addition to
molecular signals in the cervical loop epithelium, it has been
proposed that mesenchymal signals are also of importance and
direct the continuous proliferation of epithelial progenitor cells.
Members of Fibroblast growth factors (FGFs) family, Fgf10 and Fgf3,
are found to be expressed in the incisor mesenchyme and their
receptors, including Fgfr1b and Fgfr2b are expressed adjacently in
the dental epithelium (Harada et al., 1999). The potential role of
Fgf10 in the maintenance of the stem cell compartment is further
confirmed by a hypoplastic cervical loop and a decreased growth
rate of the dental epithelium in Fgf10 null mice during late stages of
incisor development. Additionally, in vitro experiments using an
anti-FgF10 neutralizing antibody showed that functional distur-
bance of Fgf10 results in apoptosis of cervical loop cells (Harada
et al., 2002). A similar phenotype was observed by epithelial-specific
deletion of Fgfr2 in the cervical loop confirming that Fgf signals from
the mesenchyme are required for the development and mainte-
nance of the cervical loop stem cell niche (Lin et al., 2009).

The precise location of the mesenchymal stem cell niche in the
incisor is unclear although the mesenchymal stem cells (MSCs)
are generally believed to be located in the apical end mesench-
yme, close to the cervical loops, since the growth and differentia-
tion of the incisor always initiates at the apical end then extends
towards the incisal end. Feng et al. (2011) suggested dual origins
of dental pulp mesenchymal stem cells during incisor growth and
repair, one of which located in the apical dental mesenchyme
tissue (Feng et al., 2011). This was also confirmed by another
study, using consecutive 5-bromo-2-deoxyuridine (BrdU) admin-
istration followed by a chase period, which showed a label-
retaining slow-cycling stem cell population located in the very
apical end of the incisor dental pulp mesenchyme (Seidel et al.,
2010).

Polycomb Group (PcG) proteins were first described as repres-
sors of Hox genes in Drosophila melanogaster. Mutations of these
proteins in flies result in homeotic transformation of one body
segment into the identity of another (Lewis, 1978). A number of
studies in flies and mammals demonstrated that most PcG
proteins are not classic DNA binding proteins but present as large
multimeric protein complexes and exist as heterogeneous com-
plexes of varying compositions. This existence is thought to result
from a distinction of target genes for these complexes and also
contributes to different functions of each complex (Satijn et al.,
1997). It has been shown that the function of PcG complexes is to
maintain the transcriptional repression of target genes by binding
to the chromatin and inducing higher-order chromatin structure
(Ringrose and Paro, 2004; Schuettengruber et al., 2007). Aside
from the role in the control of body plan and segmentation,
accumulating studies also revealed crucial functions of PcG
proteins in the maintenance of embryonic and adult stem cells,
control of cell proliferation, cancer development, genomic
imprinting and X-chromosme inactivation (Delaval and Feil,
2004; Heard, 2005; Sparmann and van Lohuizen, 2006).

In mammals, two distinct PcG complexes have been extensively
studied: Polycomb Repressive Complex (PRC) 1 and PRC2. While the
PRC1 is essential for stable maintenance of gene repression by
preventing nucleosome remodeling, PRC2 is involved in the initiation
of gene repression and functions as a histone methyltransferase that
specifically methylates lysine 27 of histone H3 (H3K27) in nucleo-
somes (Cao et al., 2002; Schwartz and Pirrotta, 2007; Valk-Lingbeek
et al., 2004). Mammalian PRC1 consists of orthologs of Drosophila

Polycomb (Cbx2, Cbx4, Cbx6, Cbx7 and Cbx8), Posterior sex combs
(Mel18, Bmi1, Nspc1/Pcgf1 and MBLR), dRing (Ring1a and Ring1b)
and Polyhomeotics (Phc1, Phc2 and Phc3). The core PRC2 consists of
Suz12, Eed, Ezh1 and Ezh2 (Ringrose and Paro, 2004; Schwartz and
Pirrotta, 2007). Among the core PRC1, Ring1a and Ring1b have been
shown to possess E3 ubiquitin ligase activity for histone H2A that
plays an important role in PcG-mediated silencing (de Napoles et al.,
2004; Wang et al., 2004). Apart from the PRC1, Ring1a/b have further
been identified in other protein complexes with BCoR and Fbxl10/
Kdm2R (Gearhart et al., 2006; Sanchez et al., 2007).

Emerging evidence has demonstrated possible roles of Ring1b in
the control of cell proliferation as well as the maintenance of ES
cells. Using Ring1a/b knockout mouse ES cells, Ring1a/b have been
shown to be required for the maintenance of ES cell identity by
silencing the genes that govern differentiation of ES cells. It has been
demonstrated that transcriptional repression mediated by Ring1a/b
is Oct3/4-dependent. Moreover, in the presence of enforced expres-
sion of the differentiation inducer, Gata6, Ring1a/b target genes
become derepressed and the Ring1a/b binding is also significantly
reduced. These results indicate that Ring1a/b act downstream of the
core transcriptional regulatory circuit to regulate ES cell self-renewal
(Endoh et al., 2008). Subsequent studies further supported the
essential role of Ring1b in stable maintenance of mouse ES cells.
In order to maintain undifferentiated ES cells, Ring1b is needed to
silence a particular subset of genes, which are co-occupied by ES cell
regulators including Oct4 and Nanog. These Ring1b target genes also
possess bivalent histone marks with CpG-rich promoters, and
include developmental transcriptional factors, morphogens and cell
surface markers (van der Stoop et al., 2008).

We provide here evidence that PRC1 gene expression localizes to
a population of cells distal to the predicted location of the mesench-
ymal stem cells that have characteristics of transit amplifying cells
and that the Ring1 components of the PRC1 complex are essential
for proliferation and differentiation of these cells.

We show that in addition to providing precursors for the
continuous replacement of mesenchymal cells during incisor
growth, Ring1 proteins are essential for maintaining expression
of Fgfs that act to regulate the adjacent epithelial stem cell niche,
the labial cervical loop. In addition we also identify a role for
Ring1 proteins in supporting normal molar root development.

Results

Genes encoding proteins of the PRC1 complex are expressed in highly

proliferative cells in the apical mesenchyme in continuously growing

incisors

Whole-mount in situ hybridization analysis showed that at post
natal stages all of the genes encoding proteins of the PRC1 complex
were expressed in the dental mesenchyme adjacent to the labial and
lingual cervical loop epithelium of the mouse mandibular (Figs. 1 and
2) and maxillary (data not shown) incisors. Ring1a and its homolog,
Ring1b, were expressed in the apical mesenchyme of the incisors
(Fig. 1B,B0,C,C0; Fig. 2 A,A0, B,B0). Ring1b was also expressed in cells of
the dental follicle and some patchy expression was evidence in the
epithelial cells in the area of preameloblast formation (Fig. 2 B0).
Expression of Nspc1/Pcgf1 was observed in the apical mesenchyme

P. Lapthanasupkul et al. / Developmental Biology 367 (2012) 140–153 141



and part of the dental epithelium and follicle of the mouse incisor
(Fig. 1D,D0; Fig. 2C,C0). Fbxl10/Kdm2r showed a similar but weaker
expression compared to the expression of Nspc1 (Fig. 1E,E0). Skp1

expression was observed weakly in apical mesenchyme and in cells of
the dental follicle covering the apical part of the developing incisor as
well as the enamel-forming ameloblasts (Fig. 1F,F0; Fig. 2D,D0).

Many stem cell populations contain slow-cycling cells that
produce progenitor cells that are rapidly dividing, often called
transit-amplifying (TA) cells. We analysed the proliferation char-
acteristics of the apical mesenchymal cells by administration of a
single short pulse of synthetic nucleoside analogue, BrdU and
located labeled cells using immunohistochemistry. BrdUþve
rapid-dividing cells were located in mesenchymal cells at the
apical end as previously shown in a position that closely matched
the location of PRC1 expressing cells, distal to label retaining cells
(Fig. 1G,G0), suggesting that these cells are transit amplifying cells
(Harada et al., 1999; 2002;Seidel et al., 2010).

Ring1a� /�;Ring1bcko/cko mice display incisors with defective cervical

loops and abnormal enamel and dentin formation

In order to determine the roles of Ring1 proteins in incisors,
postnatal conditional inactivation using tamoxifen-inducible Cre

was used. Since Ring1a� /� mice survive and are fertile, Ring1bfl/fl

mice were crossed with Ring1a�/� and double homozygotes then
crossed with Rosa26::CreERT2 transgenic mice. Administration of
tamoxifen between postnatal days 9 to 13 created double Ring1a/b

loss of function animals that were analysed at P17.
Morphology of mouse maxillary and mandibular incisors was

examined using microCT scanning and analysis revealed that P17
Ring1a� /�;Ring1bcko/cko incisors (Fig. 3B) had a similar gross
morphology to Ring1a� /�;Ring1bfl/flcre- incisors but were
obviously shorter (Fig. 3A). In order to evaluate the incisor length,
measurement analysis of incisor length (indicated by dotted lines
in Fig. 3A and B) was carried out as described in the Materials and
Methods section. The mean lengths of mandibular incisors of
Ring1a� /�;Ring1bcko/cko mice were 6576 mm (Fig. 3B), whereas
those of Ring1a� /�;Ring1bfl/flcre- mice were 8085 mm (Fig. 3A).
Statistical analysis by t-test additionally revealed that mandibular
incisors (asterisks in Fig. 3C; Po0.01) of Ring1a� /�;Ring1bcko/cko

mice (n¼8) were significantly shorter than those of Ring1a� /�;

Ring1bfl/fl cre- incisors (n¼6).
Histological examination revealed that P17 Ring1a� /�;Ring1bcko/cko

incisors had abnormal cervical loops at their apical ends
(Fig. 4B5, Fig. 2S), compared to Ring1a� /�;Ring1bfl/fl cre- incisors
(Fig. 4D5, Fig. 2S). Differentiation of odontoblasts and ameloblasts

Fig. 1. Co-expression of genes encoding proteins of the PRC1 complex and cell proliferation marker BrdU in 2 day-old mouse mandibular incisor apical mesenchyme.

(A) The apical end of incisor consists of cervical loops at both lingual and labial sides surrounding the dental mesenchyme. The labial cervical loop contains a stellate

reticulum (SR) core surrounded by dental epithelium. TA, transit-amplifying. (B, B0 , C, C0) Ring1a and Ring1b are strongly expressed in the dental mesenchyme close to both

labial and lingual cervical loops of the incisor and in the area of cells with high rates of proliferation (TA cells). (D, D0) Nspc1 is expressed in the dental mesenchyme near

labial and lingual cervical loops, and in the transit-ampifying cells of the dental epithelium. (E, E0) Fbxl10 expression is notable in the labial mesenchyme and the transit-

ampifying cells of the dental epithelium. (F, F0) Skp1 is weakly expressed in the mesenchyme and more highly expressed in cells of the dental follicle (df) of the incisor germ

and the ameloblasts (Am). (G, G0) BrdU expression indicates that highly proliferative cells were located predominantly in the dental mesenchyme near labial and lingual

cervical loops, and in also the transit-amplifying cells of the dental epithelium.
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was disrupted in Ring1a� /�;Ring1bcko/cko along most of the incisor
length (Fig. 4D1–D4), subsequently leading to disturbances in
enamel and dentin formation, compared to Ring1a� /�;Ring1bfl/flcre-

incisors (Fig. 4B1–B4). While in Ring1a
� /�

;Ring1bfl/flcre- incisors the
odontoblasts and ameloblasts were elongated and highly polarized
(Fig. 4B1–B4), in Ring1a� /�;Ring1bcko/cko incisors they were more
round in shape and had no nuclear polarization (Fig. 4D1–D4).
No evidence of any odontoblast and ameloblast differentiation
was observed at the inner side of the labial cervical loop in
Ring1a� /�;Ring1bcko/cko incisors (Fig. 4D4), compared to the same
region of Ring1a� /�;Ring1bfl/flcre- incisors (Fig. 4B4). Furthermore,
in Ring1a� /�;Ring1bcko/cko incisors, the tips of labial cervical
loop were still present but they appeared smaller (Fig. 4D5) than
those of Ring1a� /�;Ring1bfl/fl cre- incisors (Fig. 4B5). MicroCT
and histological examination of Ring1a� /�;Ring1bfl/flcre- incisors
showed them to be indistinguishable from wild type (data not
shown).

Loss of Ring1a and Ring1b leads to down-regulation of genes

important for enamel and dentin formation

Abnormal odontoblasts and ameloblasts observed in Ring1a� /�;

Ring1bcko/cko incisors were further analysed by in situ hybridization
analysis of genes known to be markers of functional odontoblasts
and ameloblasts, including Dentin sialophosphoprotein (Dspp),
Amelogenin and Shh. Dspp, normally expressed in odontoblasts and
newly differentiated ameloblasts (Begue-Kirn et al., 1998), was
found to be down-regulated in Ring1a� /�;Ring1bcko/cko incisors
(Fig. 5C), compared to wild type (WT) incisors (Fig. 5A) and
Ring1a� /�;Ring1bfl/flcre- incisors (Fig. 5B). Amelogenin, a gene encod-
ing the major structural protein of enamel matrix and expressed in
functional ameloblasts (Zeichner-David et al., 1995), was absent in
Ring1a� /�;Ring1bcko/cko incisors (Fig. 5F), in comparison to WT
(Fig. 5D) and Ring1a� /�;Ring1bfl/flcre- incisors (Fig. 4E). Furthermore,
Shh which normally marks pre-ameloblasts (Bitgood and McMahon,

Fig. 2. Radioactive in situ hybridisation of PRC1 complex genes. Radioactive in situ hybridisation for Ring1 (A, A0), Ring1b B, B0), Nspc1/Pcgf1(C, C0) and Skp1 (D, D0) on sagittal

sections of P5 mandibular incisors (A, A0). Silver grains were false coloured in red cervical loop outlined by black dashes. All four genes are expressed in mesenchymal cells

between the lingual and labial aspects of the epithelial cervical loop. (For interpretation of the references to color in this figure legend, the reader is reffered to the web

version of this article.)
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1995), was also downregulated in Ring1a� /�;Ring1bcko/cko incisors
(Fig. 5I), compared to WT (Fig. 5G) and Ring1a� /�;Ring1bfl/fcre-

incisors (Fig. 5H). In all these cases, gene expression was maintained
in the most distally-located cells at a reduced level and was
significantly reduced or absent from proximal cells (Fig. 5C, F, I).
These results additionally confirmed the defects previously observed
in odontoblasts and ameloblasts in histological sections.

Absence of Ring1a and Ring1b results in reduced cell proliferation in

the apical mesenchyme and cervical loop epithelium of the

continuously growing mouse incisor

To further investigate the defects found in Ring1a� /�;Ring1bcko/cko

incisors, cell proliferation analysis was carried out. Cell proliferation
was analysed by immunohistochemistry with an antibody that
detects mitosis, Phospho-histone H3(PH3). Immunohistochemical
staining showed that mitotically active cells were markedly reduced
in the apical mesenchyme adjacent to labial and lingual cervical loops
and in the epithelial cells of the labial cervical loops of Ring1a� /�;

Ring1bcko/cko incisors (Fig. 5L) in comparison to WT (Fig. 5J) and
Ring1a� /�;Ring1bfl/flcre- incisor (Fig. 5K). This suggests that Ring1a
and Ring1b, either directly or indirectly (possibly by an affect on the
mesenchymal stem cells) are required for mitosis of the dental
mesenchymal stem/progenitor cells that constantly give rise to
dentin-forming odontoblasts and also the cervical loop epithelium,
giving rise to enamel-forming ameloblasts.

Loss of Ring1a and Ring1b results in down-regulation of Fgf signaling

in the apical end of continuously growing incisors

Fgf signaling has previously been shown to be important for
the maintenance of the epithelial stem cell compartment in the

cervical loop of continuously growing mouse incisors. Among
members of the Fgf family, several Fgfs including Fgf3, Fgf10 and
Fgf9 have been found to be involved in the development of mouse
incisors. The cervical loop has been found to be absent in Fgf10

null mice (Harada et al., 2002) while expression of Fgf3 in the
dental mesenchyme was shown to stimulate epithelial stem cell
proliferation (Wang et al., 2007). Radioactive in situ hybridization
revealed that Fgf10, normally expressed in both labial and lingual
mesenchyme, was down-regulated in both Ring1a� /�;Ring1bfl/fl

cre- (Fig. 6B) and Ring1a� /�;Ring1bcko/cko (Fig. 6C) incisors in
comparison to WT incisors (Fig. 6A). Fgf3, which is restrictedly
expressed in the labial mesenchyme was down-regulated in
Ring1a� /�;Ring1bfl/flcre- (Fig. 6E) and completely absent in
Ring1a� /�;Ring1bcko/cko (Fig. 6F) incisors in comparison to WT
incisors (Fig. 6D). Analysis of direct downstream targets of Fgf
signaling including Pea3 and Erm (also known as Etv4 and Etv5,
respectively) (Raible and Brand, 2001; Roehl and Nusslein-
Volhard, 2001) was also performed. Expression of Pea3 and Erm,
normally detected in the epithelial cervical loops and adjacent
mesenchyme (Fig. 6G and J), were markedly down-regulated in
Ring1a� /�;Ring1bfl/flcre- (Fig. 6H and K) and completely absent in
Ring1a� /�;Ring1bcko/cko (Fig. 6I and L) incisors in comparison to
WT incisors (Fig. 6G and J). This suggests that Ring1a and Ring1b

regulate Fgf signaling in developing mouse incisors.

Loss of Ring1a and Ring1b leads to alterations of expression of genes

encoding the PRC1 complex

Expression analysis of genes encoding members of the PRC1
complex including Nspc1/Pegf1 and Fbxl10/Kdm2r, was further
examined in the absence of Ring1a and Ring1b. Interestingly,
Nspc1/Pcgf1 mRNA was shown to be unaffected in both

Fig. 3. MicroCT anaylsis of P17 Ring1a� /�;Ring1bfl/flcre- and Ring1a� /�;Ring1bcko/cko incisors. (A) Ring1a� /�;Ring1bfl/flcre- shows a normal shape of mouse incisor.

(B) Incisor of Ring1a� /�;Ring1bcko/cko mouse is shorter than that of Ring1a� /�;Ring1b fl/flcre-. Red dots in (A) and (B) indicate the measurement points used to determine the

incisor length in MicorCT scans. (C) Mean incisor length7standard deviation (SD) of mandibular (lower) incisors of Ring1a� /�;Ring1bfl/flcre- mice (n¼6) and Ring1a� /�;

Ring1bcko/cko mice (n¼8). Asterisk (*) indicates values significantly different between incisor length of Ring1a� /�;Ring1bcko/cko mice and that of Ring1a� /�;Ring1b fl/flcre-

mice according to Student’s t test (Po 0.01). (For interpretation of the references to color in this figure legend, the reader is reffered to the web version of this article.)
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Ring1a� /�;Ring1bfl/flcre- (Fig. 6N) and Ring1a� /�;Ring1bcko/cko (Fig. 6O)
incisors compared to WT incisors (Fig. 6M), while Fbxl10/Kdmr2

expression appeared to be down-regulated only in Ring1a� /�;Ring1-

b
cko/cko

(Fig. 6R) but not in Ring1a� /�;Ring1bfl/flcre- (Fig. 6Q) incisors
compared to WT incisors (Fig. 6P). These data show that Ring1a and
Ring1b possibly regulate transcription of members of the PRC1
complex including Fbxl10/Kdmr2.

Ring1a and Ring1b are required for the development of molar roots

The apical incisor phenotype observed in Ring1a� /�;Ring1bcko/cko

mice prompted us to examine PRC1 gene expression and postnatal
development of molars. The key postnatal developmental event is the
formation of tooth roots. Expression of Ring1a, Ring1b, Nspc1, Fbxl10

and Skp1 were all found to be localized in postnatal molars in apical
areas at the early stages of root formation, particularly in root
odontoblasts (Fig. 7). Micro CT analysis of first molars in P17 postnatal

Ring1a� /�;Ring1bcko/cko mice (Fig. 8 B and D) revealed a lack of root
formation compared to cre- controls (Fig. 8 A and C). Histological
sections of the developing roots identified abnormal root odontoblasts
that were small and non-polarised in the Ring1a� /�;Ring1bcko/cko

molars (Fig. 9 B0) in comparison to the cre- molars (Fig. 9 A0).
In order to begin to understand the molecular consequences of

loss of Ring proteins on root formation we investigated the expres-
sion of Bmp4 since this has been linked to the formation of Hertwigs
epithelial root sheath formation during root development (Hosoya
et al., 2008; Yamashrio et al., 2003). Expression of Bmp4 was highly
restricted to developing root odontoblasts in wild type molars but
was more widely distributed in mesenchymal cells in the area of
arrested root formation in Ring1a� /�;Ring1bcko/cko (Fig. 9C and D,
respectively). This suggests that restriction of BMP signaling to
specific areas of root formation involves Ring proteins and in their
absence expression becomes more widespread and as a result
interferes with the normal development of root odontoblasts.

Fig. 4. Hematoxylin and eosin stained sagittal sections of a maxillary incisor of 17 day-old Ring1a� /�;Ring1bcko/cko and Ring1a� /�;Ring1bfl/flcre- mice. (A, B) Ring1a� /�;

Ring1b fl/fl cre- incisors show normal incisor development. (B1–B5) Higher power views of boxed regions in (B) showing normal odontoblast and ameloblast differentiation

(B4), labial cervical loop containing a core of stellate reticulum (SR) in Ring1a� /�;Ring1bfl/fl cre- mice (B5). (C, D) Ring1a� /�;Ring1bcko/cko incisors show abnormal

development. (D1–D4) Higher power views of regions boxed in (D) showing abnormal morphology of odontoblasts and ameloblasts. (D5) Higher magnification of the black

box in (D) shows small labial cervical loop containing a few cells of stellate reticulum (SR) in Ring1a� /�;Ring1bcko/cko mice.
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Discussion

Ring1a/b regulate a mesenchymal stem cell niche in

developing incisors

Whilst Ring1a�/�;Ring1bfl/flcre- mice do not exhibit any incisor
phenotype, mice lacking both Ring1a and Ring1b postnatally display
abnormal incisor development with an impairment of continuous
growth. Furthermore, the lack of any incisor abnormalities in
Ring1aþ /�;Ring1bcko/cko, indicates a redundancy between Ring1a
and Ring1b function during incisor development. However this
redundancy is not complete since although Ring1a�/�;Ring1bfl/flcre-

incisors show no phenotypic abnormalities, they do show molecular
changes in FGF activity. It has been shown that on the inactive X
chromosome, the ubiquitination of histone H2A was retained in cells
lacking Ring1a or Ring1b but not in cells lacking both (de Napoles
et al., 2004). In addition, Ring1b single-knockout ES cells appeared
normal whereas Ring1a/b double-knockout ES cells progressively
lost ES cell characteristics after tamoxifen treatment to inactivate
Ring1b (Endoh et al., 2008). It is possible that the absence of a tooth
phenotype in Ring1a

þ /�

;Ring1bcko/cko is due to a compensatory role

of the remaining copy of Ring1a for Ring1b. The compensatory role
of Ring1a for Ring1b has previously been suggested owing to an
increased expression of Ring1a protein in Ring1b-null ES cells
(Endoh et al. 2008).

Rodent incisors are capable of erupting throughout their lifetime
since the constant attrition at the incisal edge is compensated by the
renewal of tooth-forming tissues at the apex of incisors deeply
embedded in the jawbone. Our results show that the morphology of
the whole cervical loop is remarkably abnormal in the P17 Ring1a� /�;
Ring1bcko/cko mice, in comparison to the cervical loop of Ring1a� /�;
Ring1bfl/flcre- mice. The mice used in this study exhibited a level of
Ring1b protein that progressively decreased after 48 h of tamoxifen
treatment. These mice were injected with treated tamoxifen at P9 and
P13 and sacrificed at P17, therefore they were in the presence of
tamoxifen for a maximum of 8 day. Since there would likely be a
delay of around 24h for the drug to start working, the maximum
period during which Ring1b inactivation could take place in postnatal
tissues was thus approximately 7 day. Our measurement analysis
showed that the growth of Ring1a� /�;Ring1bcko/cko incisors was
arrested and the incisor lengths of Ring1a� /�;Ring1bcko/cko mice were
significantly shorter than those of Ring1a� /�;Ring1bfl/flcre- mice. It has

Fig. 5. Expression analysis of Dspp, Amelogenin and Shh and Phopho-histone H3 (PH3) in 17 day-old maxillary incisors of wild-type, Ring1a� /�;Ring1bfl/flcre- and Ring1a-/�;

Ring1bcko/cko mice (sagittal sections). (A and B) Dspp expression in the odontoblasts (od) and differentiated ameloblasts (am) of WT control and Ring1a� /�;Ring1bfl/flcre-

incisors. (C) Down-regulation of Dspp in Ring1a� /�;Ring1bcko/cko incisor. (D and E) Expression of Amelogenin in functional ameloblasts in WT and Ring1a� /�;Ring1bfl/flcre-

incisor, respectively. (F) Amelogenin expression is down-regulated in Ring1a� /�;Ring1bcko/cko incisor. (G and H) Strong expression of Shh is observed in pre-ameloblasts in

WT and Ring1a� /�;Ring1bfl/flcre- incisor, respectively. (I) Shh transcript is absent in Ring1a� /�;Ring1bcko/cko incisor. Immunohistochemistry against Phopho-histone H3

(PH3) shows a significant decrease of cell proliferation in 17 day-old Ring1a� /�;Ring1bcko/cko incisor (L). A number of mitotic cells are identified in the apical mesenchyme

(black arrows) and inside the cervical loop epithelium (blue arrows) in WT (J) and Ring1a� /�;Ring1bfl/flcre- incisor (K). (L) A minimal staining of mitotic cells is noted in the

apical end of Ring1a� /�;Ring1bcko/cko incisor. (For interpretation of the references to color in this figure legend, the reader is reffered to the web version of this article.)
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been demonstrated that the eruption rate of unimpeded mandibular
mouse incisors is approximately 400 mm per day (Ness, 1965) and the
difference of the mean lengths of Ring1a� /�;Ring1bcko/cko and cre-

mandibular incisors was 1500 mm, thus they were slightly longer
than what we expected if the growth of these incisors was halted for
7 day. This suggests that either the Ring1a� /�;Ring1bcko/cko incisors

Fig. 6. Fgf signaling and transcripts encoding proteins of the PRC1complex are down-regulated in the apical end of Ring1a� /�;Ring1bfl/fl cre- and completely absent in

Ring1a� /�;Ring1bcko/cko incisors. (A-R) In situ hybridization analysis using 35S probes on paraffin sections of P17 WT, Ring1a� /�;Ring1bfl/flcre- and Ring1a� /�;Ring1bcko/cko

incisors (red color represents expression). (A) Fgf10 expression is noted in both labial and lingual mesenchyme in a WT mouse incisor. (D) Fgf3 is expressed only in the

labial mesenchyme in a WT mouse incisor. Fgf10 (B) and Fgf3 (E) are down-regulated in Ring1a� /�;Ring1bfl/flcre- and absent in Ring1a� /�;Ring1bcko/cko incisors (C and F).

Expression of Erm (G) and Pea3 (J) in WT incisors. (H, K) Erm and Pea3 transcript is decreased in Ring1a� /�;Ring1bfl/flcre- (H and K) and missing in Ring1a� /�;Ring1bcko/cko

incisors (I and L). (M) High expression of BCoR is noticed in the labial and lingual mesenchyme (arrows) in WT mouse incisors. (N, O) (M) Expression of Nspc1 is widespread

in the dental mesenchyme of WT incisors. (N, O) Expression pattern of Nspc1 is unchanged in Ring1a� /�;Ring1bfl/flcre- (N) and Ring1a� /�;Ring1bcko/cko (O) incisors.

(P) Strong Fbxl10 expression is noted in the labial and lingual dental mesenchyme (black arrows) as well as part of the dental epithelium (blue arrow) in WT incisors.

(Q) Fbxl10 expression is unaffected in Ring1a� /�;Ring1bfl/flcre- incisors. (R) Down-regulation of Fbxl10 is clearly recognized in Ring1a� /�;Ring1bcko/cko incisors.

(For interpretation of the references to color in this figure legend, the reader is reffered to the web version of this article.)
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were still capable of growing at a lower rate, or that tamoxifen-
induced cre-mediated excision may only be fully effective for
approximately 4 day.

When comparing the cervical loops of Ring1a� /�;Ring1bcko/cko

and Ring1a� /�;Ring1bfl/flcre- mice, the secretion of enamel and
dentin as well as the differentiation of ameloblasts and odonto-
blasts that normally appear as an increasing gradient from the
apical end towards the incisal end were absent in the double-
knockout mice. It is interesting to note that further in the
incisal area, the odontoblasts facing the dentin matrix and the

ameloblasts facing an empty space of enamel left by histological
processing also appeared abnormal. These ameloblasts and odon-
toblasts were round in shape and had lost their nuclear polariza-
tion, suggesting that disruption may have occurred when these
cells were differentiating and that they could not achieve term-
inal differentiation. Other possibilities are that soon after Ring1b
was depleted, these cells became atrophic, suggesting an addi-
tional maintenance role or were unable to complete their normal
rounds of cell division. It is known from tissue recombination
experiments that functional differentiation of ameloblasts relies

Fig. 7. Expression of genes encoding proteins of the PRC1 complex during postnatal molar development. (A, C, E, G, I) At P7, Ring1a, Ring1b, Nspc1, Fbxl10 and Skp1 are all

expressed in the dental mesenchyme (mes) at the cervical area of developing molar roots (B, D, F, H, J) At P10, their expression is still maintained in the apical mesenchyme

with a weaker expression in the mesenchyme of the coronal pulp. (B0, D0 , F0 , H0 , J0) High magnification views of the apical region of one of the developing molar roots as

shown in B, D, F, H and J, respectively. Expression of genes encoding members of the PRC1 complex is present in the apical mesenchyme (mes) and in the root

odontoblasts (rod).
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on epithelial-mesenchymal interactions and requires a contact
with dentin matrix to trigger differentiation (Karcher-Djuricic
et al., 1985; Zeichner-David et al., 1995). The disruption of
enamel-forming ameloblasts in Ring1a� /�;Ring1bcko/cko incisors
could be due to a lack of dentin matrix secretion that results from
aberrant odontoblasts in these double mutant mice. It is therefore
possible that that the inability of mesenchymal cells to differ-
entiate into odontoblasts is a cause of the odontoblast defects
observed in Ring1a� /�;Ring1bcko/cko mice and that the abnormal
ameloblast differentiation is a secondary consequence of this.
Alternatively, ameloblast differentiation may be impaired as a
consequence of a requirement for Ring proteins in mesenchymal
transit amplifying cells for maintenance of the epithelial stem cell
niche (see below) or the patchy expression of Ring1b in pre-
ameloblasts may have a functional role. The aberrancy of odonto-
blasts and ameloblasts observed in Ring1a� /�;Ring1bcko/cko

incisors was further confirmed by down-regulation of functional
molecular markers of these cells, including Dspp in odontoblasts
(D’Souza et al., 1997) and Amelogenin in ameloblasts (Zeichner-
David et al., 1995). In addition, Shh which is expressed in early
ameloblasts (Bitgood and McMahon, 1995) was also reduced from
the dental epithelium of Ring1a� /�;Ring1bcko/cko incisors. The
reduced expression of these genes in the mutant incisors corre-
lated with abnormal cell morphology and since cells were more
abnormal closer to the proximal (cervical loop) end, this would
indicate that temporal effects of tamoxifen administration leading
to incomplete recombination at early time points. Thus abnormal
cell differentiation was thus more extensive that reduction of
growth rate. An alternative explanation that cannot be excluded
is that loss of Ring proteins has more long-range effects on cell
differentiation.

The reduced cell proliferation noted in the apical dental
mesenchyme close to both labial and lingual cervical loop epithe-
lium where the differentiation of odontoblast progenitors takes
place suggests that Ring1a/b proteins are required either directly
or indirectly) for proliferation of the dental mesenchymal cells
giving rise to dentin-forming odontoblasts. This finding is in agree-
ment with previous studies that have shown that loss of Ring1a/b
causes proliferation defects in ES cells (Endoh et al., 2008). Apart
from the dental mesenchyme, a dramatically decrease in cell
proliferation was also noted in the transit-amplifying cells of the
cervical loop epithelium. This finding suggests that Ring1a/b regu-
lates proliferative signals not only within the dental mesenchyme

but also from the dental mesenchyme to the cervical loop epithe-
lium. The most likely explanation for this is that Ring1a/b directly
regulates a signaling molecule in the dental epithelium that controls
epithelial cell proliferation (see below).

All these findings indicate that Ring1a/b double-knockout
mutant incisors have lost the ability to grow continuously, high-
lighting the essential role of Ring1a/b in the regulation of the
continuous growth of mouse incisors. We propose that Ring1a/b
act in the dental mesenchymal stem cell micoenvironment (niche)
in developing mouse incisors and that the loss of Ring1a/b therefore
leads to a failure of the immediate progeny of mesenchymal stem
cells (TA cells) to undergo proliferation and differentiation into
odontoblast precursors, subsequently resulting in an arrest of the
continuous growth of mouse incisors.

Ring1a/b regulate Fgf signaling in continuously growing mouse

incisors

The importance of Ring1a/b during incisor development was
further illustrated by a down-regulation of Fgf signaling in
Ring1a� /�;Ring1bfl/flcre- and Ring1a� /�;Ring1bcko/cko incisors.
Notably, Fgf signaling appeared to be reduced in both Ring1a� /�;

Ring1bfl/flcre- and Ring1a� /�;Ring1bcko/cko incisors, with a bigger
decrease in the latter. Prior evidence has revealed that Fgf
signaling plays essential roles during the development of mouse
incisors, in particular Fgf3 and Fgf10, which are restrictedly
expressed in the dental mesenchyme underlying the rapidly
proliferating cells of the inner enamel epithelium. Fgf10 has been
shown to be a signal necessary for the maintenance of the
epithelial stem cell niche residing in the cervical loop, owing to
the hypoplastic cervical loops observed in Fgf10� /� mice (Harada
et al., 2002). Fgf3� /� mice display abnormal enamel and Fgf3� /�;

Fgf10þ /� mice exhibit very thin or no enamel (Wang et al., 2007).
It is interesting to note that despite the down-regulation of Fgf10

in Ring1a� /�;Ring1bcko/cko incisors, the tips of cervical loops,
containing putative epithelial stem cells, do not become hypo-
plastic as seen in Fgf10� /� mice. They only appear slightly smaller
than those in Ring1a� /�;Ring1bfl/flcre- incisors. This may be
explained by the fact that Fgf10 was not completely absent in
the dental mesenchyme surrounding the entire tip of cervical
loops and that this residual Fgf10 expression is sufficient to
sustain the tips of cervical loops. Another possibility might be
that Ring1b in these double-knockout mice was conditionally

Fig. 8. MicroCT analysis of 17 day-old Ring1a� /�;Ring1bfl/flcre- and Ring1a� /�;Ring1bcko/cko molars. (A, C) Ring1a� /�;Ring1bfl/flcre- mice show normal maxillary (A) and

mandibular (C) molar root development. (B, D) Ring1a� /�;Ring1bcko/cko incisor mice exhibit very short maxillary (B) and mandibular (D) molar roots.
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inactivated for a short period of time that perhaps was not
sufficient to cause an overt phenotype on the tips of cervical
loops. Since the asymmetric expression of Fgf3 on the labial
aspect has been shown to stimulate epithelial stem cell prolifera-
tion and since enamel defects are observed in both Fgf3� /� and
Fgf3� /�;Fgf10þ /� mice (Wang et al., 2007), it is possible that the
down-regulation of both Fgf3 and Fgf10 in Ring1a� /�;Ring1bcko/cko

incisors is likely to be a cause of reduced cell proliferation in the
dental epithelium of the cervical loop, leading to the disruption
of ameloblast formation. Among the members of Fgf ligands
known to be present at the apex of mouse incisors, Fgf9, which
is normally expressed in the limited area of TA cells or pre-
ameloblasts in the labial epithelium was not investigated. How-
ever, it has been shown that mesenchymal Fgf3 and Fgf10 are
targets of epithelial Fgf9 (Klein et al., 2008; Yokohama-Tamaki
et al., 2007).

The impairment of Fgf activity in Ring1a� /�;Ring1bcko/cko incisors
was confirmed by the down-regulation of Pea3 and Erm. Pea3 and
Erm belong to the Erythroblastoma Twenty-Six (ETS) family of
transcription factors that are involved in a variety of transcriptional
regulation events during growth and development, including pro-
liferation, differentiation and oncogenic transformation (Monte

et al., 1994; Wasylyk et al., 1998; Xin et al., 1992). Both genes have
been demonstrated to be direct targets of Fgf signaling, based upon
the closely related expression domains and the susceptibility to Fgf
signaling interference (O’Hagan and Hassell, 1998; Roehl and
Nusslein-Volhard, 2001). Besides being downstream targets of Fgf
signaling, particular functions of these genes have not been
described, however, it has been suggested that the close connection
of Erm and Pea3 transcription to Fgf signaling may serve to integrate
Fgf signaling with other signals (Raible and Brand, 2001). Whether
this is the case for the continuous growth of mouse incisors is an
interesting issue for future research. Reduced Fgf signaling in
Ring1a� /�;Ring1bfl/flcre- incisors did not result in an obvious pheno-
type but does suggest that both Ring1a and Ring1b are required for
maintaining endogenous levels of FGF expression indicates that
these mice have a molecular abnormality and that Ring1a itself is
essential for the regulation of Fgf signaling.

Ring1a/b regulate genes encoding proteins of the PRC1 complex

The transcriptional alteration of protein members of the PRC1
complex observed in Ring1a� /�;Ring1bfl/flcre- and Ring1a� /�;

Ring1bcko/cko incisors provides evidence that members of the

Fig. 9. Histology characteristics and Bmp signaling is altered in the mandibluar molar of Ring1a� /�;Ring1bcko/cko mice. (A-B0) Hematoxylin and eosin stained sections of a

P17 mandibular molar of and Ring1a� /�;Ring1bfl/flcre- and Ring1a� /�;Ring1bcko/cko mice. (A and B) Ring1a� /�;Ring1bfl/flcre- maxillary mandibular (A, box) molars show

normal root development whereas very short roots are observed in Ring1a� /�;Ring1bcko/cko mandibular (B, box) molars. (A0) Higher magnification of the white box in

(A) shows normal root odontoblasts (Rod) differentiating adjacent to Hertwig’s epithelial root sheath (HERS) in Ring1a� /�;Ring1bfl/flcre- molar. (B0) Higher magnification of

the white box in (B) shows aberrant odontoblast differentiation (blue arrow) close to Hertwig’s epithelial root sheath (HERS). (C, D) In situ hybridization analysis of Bmp4

expression using 35S probes on paraffin sections of P11 WT and creþ developing first molars (red color represents expression). (C) Normal expression of Bmp4 in early

odontoblasts (arrows) in WT developing first molars. (D) Expression of Bmp4 is upregulated in Ring1a� /�;Ring1bcko/cko developing molars with ectopic expression in the

dental pulp (asterisk). (For interpretation of the references to color in this figure legend, the reader is reffered to the web version of this article.)
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PCR1 complex including Fbxl10 are targets of the complex during
the continuous growth of mouse incisors. The importance of
Ring1, particularly Ring1b, on the transcription levels of other
members of the same protein complex has previously been
demonstrated in PRC1. Loss of Ring1b in ES cells leads to a
down-regulation of Phc1/Mph1 and an up-regulation of Bmi1,
Mpc2, Rypb and Phc2. However, these altered transcription levels
do not seem to be entirely reflected in the protein levels,
suggesting a distinct post-translation regulation of PRC1 mem-
bers by Ring1b (Leeb and Wutz, 2007; van der Stoop et al., 2008).

Transcription of Fbxl10 appears to be regulated by Ring1b but
not Ring1a during mouse incisor development, indicating distinct
interactions within this complex. Nspc1/Pcgf1 expression was not
altered in the absence of either Ring1a or Ring1a/b. The down-
regulation of Fbxl10/Kdm2r expression observed only in Ring1a� /

�;Ring1bcko/cko incisors but not in cre- incisors suggests that only
Ring1b may regulate Fbxl10/Kdm2r during the development of
mouse incisors. It is likely that this is a direct interaction since in
vitro protein binding assay has shown that Ring1b protein is able
to directly interact with Fbxl10/Kdm2r (Gearhart et al., 2006;
Sanchez et al., 2007).

The evidence we present here identifies a population of dental
pulp mesenchymal cells that are highly proliferative, express
PRC1 proteins and have characteristics of cell progenitors (TA
cells) in normal tooth growth and in response to tooth damage.
The dental mesenchymal stem cell niche in rodent incisors thus
provides an attractive, easily visualized and manipulated, experi-
mental system to study the molecular characteristics and beha-
viour of mesenchymal and epithelial stem cells in an adult organ.

Ring1a/b also regulate molar root formation

The severely impaired development of molar roots following
postnatal loss of Ring1 proteins is consistent with aspects of the
changes observed in incisors in these mutants. Molar root
odontoblasts were very small, non-polarised and unorganized in
the developing roots of Ring1a� /�;Ring1bcko/cko mice, similar
features to those in the incisors. A molecular downstream con-
sequence of loss of Ring proteins is a change in the spatial
expression of Bmp4 from being restricted to developing root
odontoblasts to being widely expressed in undifferentiated root
mesenchyme cells. Repression of BMP4 expression in cells other
than root odontoblasts may thus be one possible function of PRC1
complex in regulating molar root formation.

Materials and methods

Production of mouse lines

Mutant Ring1a and Ring1b floxed alleles were generated as
described previously (Cales et al., 2008; del Mar Lorente et al.,
2000). Compound Ring1a� /�;Ring1bfl/fl mice were obtained by cross-
ing the Ring1a� /� mice with the Ring1bfl/fl mice. To accomplish
conditional inactivation of Ring1b in vivo, the Ring1a� /�;Ring1bfl/fl

compound mice were crossed with Rosa26::CreERT2 transgenic mice
to generate Ring1a� /�;Ring1bfl/fl;Rosa26::CreERT2 mice. The Rosa26::-

CreERT2 transgenic mice were produced by inserting a tamoxifen-
inducible CreER fusion protein gene into the ubiquitously expressed
Rosa26 gene (Seibler et al., 2003). Conditional deletion of Ring1b was
carried out at the desired stage of postnatal life by 4-hydroxy
tamoxifen (OHT) treatment (40 mg/kg body weight). Ring1a� /�;
Ring1bcko/cko mice were obtained by injecting OHT at P9 and P13 to
inactivate Ring1b and the Ring1a� /�;Ring1bcko/cko sacrificed at P17.
The efficiency of tamoxifen-induced Cre expression to delete Ring1b
was confirmed by in situ hybridisation of P17 incisors (Fig. 1S).

BrdU administration

To detect rapidly dividing cells, 50 mg/kg body weight BrdU
was administered intraperitoneally to wild type postnatal day 2
(P2) pups. Pups were subsequently sacrificed 2 h later and
processed through histology and immunohistochemistry analysis.

Gene expression analysis

Whole-mount digoxigenin-labelled in situ hybridization was
carried out according to Shamim et al. (1998). Digoxigenin-labelled
section in situ hybridization was carried as previously described
(Nakatomi et al., 2006). Radioactive section in situ hybridization
using 35S UTP radiolabelled riboprobes was performed on 8-mm
sections as described previously (Wilkinson, 1982).

MicroCT analysis

Mouse heads were scanned using a GE Locus SP microCT scanner
to produce 14 mm voxel size volumes. After scanning, Explore
Microview software program (GE) was used for visualization and
analysis. Mouse teeth were characterised by generating three
dimensional reconstructions and three dimensional isosurfaces of
mouse teeth were then produced. For measurement of mouse
incisor length, the locations of the centre points of incisors were
identified on every 5 cross-sections from the most incisal to apical
end. The position of each centre point was identified on the micro CT
planes as three co-ordinates (x,y,z). The distance between every two
points ((x1,y1,z1) and (x2,y2,z2)), was then calculated using the
formula derived from the three dimensional version of the Pythgor-
ean theorem (Distance¼O(x2�x1)2

þ(y2�y1)2
þ(z2�z1)2). The

length of the curved incisor was calculated from the sum of all the
distances between each dot.

Immunohistochemistry

Sections were incubated with antibody to Phospho-Histone H3
(Upstate, 06–570) or BrdU (Abcam, ab6326) following heat-based
antigen retrieval. To perform peroxidase visualization for the
biotin conjugated antibody, the sections were incubated in ABC
solution (Vectastain kit, Vector, PK-6101). The colour reaction was
then developed by applying DAB solution (0.5 mg/ml DAB and
0.1% H2O2) onto the sections or using a DAB peroxidase substrate
kit (Vector, SK-4100).

Summary

Stem cells are found in many adult organs where they provide
a source of cells needed for tissue growth or to replace cells lost as
a result of tissue damage. Adult human teeth do not grow and
have only a limited ability to repair following damage, however,
the incisors of rodents grow continuously to accommodate wear
and all the specialised cells of the tooth must be continuously
replaced. This is achieved by stem cell populations at the base of
the tooth that provide sources of cells to replace all mesenchymal
and epithelium-derived tooth cells. Whereas the incisor epithelial
stem cell niche is well characterised, the mesenchymal stem cell
niche is poorly understood. We have identified genes that are
required for incisor tooth growth and cell differentiation that
belong the PRC1 complex that is known to be essential for
maintenance of embryonic stem cells. We how that PRC1 genes
are expressed in the mesenchymal transit amplifying cells and
are essential for mesenchymal cell proliferation and also for
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expression of signals from the mesenchyme that regulate the
epithelial stem cell niche.
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Mesenchymal stem cells occupy niches in stromal tissues where they
provide sources of cells for specialized mesenchymal derivatives dur-
ing growth and repair1. The origins of mesenchymal stem cells have
been the subject of considerable discussion, and current consensus
holds that perivascular cells form mesenchymal stem cells in most
tissues. The continuously growing mouse incisor tooth offers an excel-
lent model to address the origin of mesenchymal stem cells. These
stem cells dwell in a niche at the tooth apex where they produce a
variety of differentiated derivatives. Cells constituting the tooth are
mostly derived from two embryonic sources: neural crest ectomesen-
chyme and ectodermal epithelium2. It has been thought for decades
that the dental mesenchymal stem cells3 giving rise to pulp cells and
odontoblasts derive from neural crest cells after their migration in
the early head and formation of ectomesenchymal tissue4,5. Here we
show that a significant population of mesenchymal stem cells dur-
ing development, self-renewal and repair of a tooth are derived from
peripheral nerve-associated glia. Glial cells generate multipotent mes-
enchymal stem cells that produce pulp cells and odontoblasts. By com-
bining a clonal colour-coding technique6 with tracing of peripheral
glia, we provide new insights into the dynamics of tooth organogen-
esis and growth.

Shortly after the dental placode is induced, nerves intimately associate
with the developing tooth7. To address whether glia-derived cells con-
tribute to dental mesenchymal stem cells (MSCs) during tooth organo-
genesis, we used mouse strains allowing for permanent genetic labelling
of multipotent8,9 Schwann cell precursors (SCPs) and Schwann cells.

Proteolipid protein 1 (PLP1) and sex-determining region Y-box 10
(Sox10) are expressed in cranial neural crest, but after migration around
embryonic days (E)9–10, they are retained in SCPs and not in mesench-
yme10,11. SCPs at E11.5–12.5 express typical markers of Schwann cell
lineage (Supplementary Information and Extended Data Fig. 1). PLP-
CreERT2 and Sox10-CreERT2 mice8,12 were therefore used for lineage
tracing of SCPs. We controlled the specificity of PLP1 expression at
E12.5 (Fig. 1a, b) and confirmed SCP-selective recombination in PLP-
CreERT2/R26YFP mice by injecting tamoxifen at E12.5. Twenty-four
hours later, traced cells expressing yellow fluorescent protein (YFP1)
were located along nerves (Fig. 1c, Supplementary Information and Ex-
tended Data Fig. 1m–p). CreERT2 protein was confined to Sox101 SCPs
(Supplementary Information and Extended Data Fig. 1q–t). After tracing
for 36 h, mesenchymal YFP1/CreERT22 cells appeared close to nerves at
the tooth site (Supplementary Information and Extended Data Fig. 2a–d).
Induction of recombination at E12.5 and harvesting at E15.5–17.5 resulted

in numerous traced cells along peripheral nerves and inside develop-
ing incisors (Fig. 1d–f, Supplementary Information and Extended Data
Fig. 3a–g). YFP1 cells formed streams towards the odontoblast layer in
spatial coordination with YFP1 odontoblasts (Fig. 1d). This was indepen-
dently confirmed in Sox10-CreERT2 embryos (Fig. 1i–k and Supplemen-
tary Information and Extended Data Fig. 3h–k). Sox10 is expressed in
SCPs and not in mesenchyme at E12.5 and at E15.5 (Fig. 1g–h, Sup-
plementary Information and Extended Data Figs 1a–c, g–k, q–s, 2e–o
and 3l–n). YFP1 pulp cells and odontoblasts formed the same pattern
as seen with PLP-CreERT2 tracing (Fig. 1i–k). Therefore, SCPs must
contribute to pulp and odontoblasts since CreERT2 protein in Sox10-
CreERT2 and PLP-CreERT2 embryos was confined to SCPs (Supplemen-
tary Information and Extended Data Figs 2a–d, m–p and 3c–k).

To examine if patches of SCP-derived odontoblasts and pulp cells have
clonal structure, we crossed the PLP-CreERT2 mice to the R26RConfetti
reporter strain that allows for colour-encoded identification of clones6.
This experiment revealed an organized clonal relationship between SCPs,
pulp cells and odontoblasts (Supplementary Information and Extended
Data Fig. 4a–d) and demonstrated that SCP-derived single MSCs pro-
duce pulpal and odontoblast fates (Supplementary Information and
Extended Data Fig. 4e). We next examined whether ectomesenchyme-
derived MSCs generate the same fates and patterns as SCP-derived MSCs.
We induced recombination in neural crest at E8.5 in PLP-CreERT2/
R26RConfetti strain, before segregation of CreERT2 expression into glial
lineage. Recombination in both nerve-associated cells and ectomesen-
chyme was confirmed at E9.5 (Fig. 2a). When embryos were analysed
at E17.5, it became apparent that ectomesenchyme- and SCP-derived
MSCs generate the same fates and patterns in pulp and odontoblast layer
(Fig. 2b–f).

To address whether Schwann cells generate MSCs also in adult grow-
ing incisors, we first confirmed that all Sox101 cells in the apical pro-
liferative zone were nerve-associated (Supplementary Information and
Extended Data Fig. 5) and expressed Schwann cell markers (Supplemen-
tary Information and Extended Data Fig. 6a–g). CreERT2 protein was
found in the apex at nerve sites in Sox10-CreERT2 and PLP-CreERT2
teeth (Supplementary Information and Extended Data Fig. 6h–q). Addi-
tionally, expression of CreERT2 protein driven by the PLP-promoter
was identified exclusively in a subpopulation of Sox101 Schwann cells
(Supplementary Information and Extended Data Fig. 6j–q). Next, we
used PLP-CreERT2 and Sox10-CreERT2 animals to analyse the progeny
in growing incisors. We injected tamoxifen at postnatal day 60–85 and
analysed the teeth 2–3 days later. Small numbers of YFP1 cells appeared
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adjacent to nerves in the apical incisor (Fig. 3a–c, Supplementary Infor-
mation and Extended Data Fig. 7a–e). After 5 days YFP1 cells at the apex
increased in numbers (Supplementary Information and Extended Data
Fig. 7f–h). The fates of the progeny were examined at times exceeding
the incisor self-renewal (from 30 days after tamoxifen injection). We
found that Schwann cells give rise to dental MSCs producing pulp cells
and odontoblasts in adult teeth (Fig. 3d–f, Supplementary Information
and Extended Data Fig. 7i–k).

Tracing in PLP-CreERT2/R26RConfetti mice demonstrated that streams
of traced cells were connected to clusters of odontoblasts originating from
same recombination events in Schwann cells (Fig. 3g–r, Supplementary
Information and Extended Data Fig. 7i–k). The streams appeared increas-
ingly dispersed as they approached odontoblasts labelled by the same

colour (Fig. 3m). Clonal streams of pulp cells and odontoblasts intermin-
gled at borders with non-labelled or different-coloured cells (Fig. 3l–p).
MSCs produced high numbers of offspring, only a part of which was local-
ized proximally to the dental epithelium and later became pre-odontoblasts.
The majority of the progeny acquired a pulpal fate and formed orga-
nized streams, with earlier cells progressively displaced distally. Con-
sequently, pulp cells and odontoblasts from the same clone remained
associated during growth. These data suggest that progenies of several
clones compete for the limited space at the inner surface of the cervical
loop and, thus, for the odontoblast fate and final contribution. Indeed,
the proportion of odontoblasts within the progeny of a single stem cell
varied widely (Fig. 3s). Accordingly, the proximity of an MSC to the
cervical loop correlated with the amount of odontoblast-fated progeny
and may thus regulate the balance between odontoblast and pulp fates
within a single clone (Fig. 3t). Additionally, streams originating closer
to the cervical loop contained more cells and connected to larger clusters
of odontoblasts than more central streams (Fig. 3q, t–v, Supplementary
Information and Extended Data Fig. 8). Lastly, we found no support for
a hypothesis that odontoblasts and pulp cells are generated from differ-
ent pools of MSCs.

Sox10 expression at E15.5 E15.5–E17.5 genetic tracing with Sox10-CreERT2/R26YFP

PLP1 expression at E12.5 

E12.5–E13.5 PLP-CreERT2/R26YFP

E12.5–E17.5 genetic tracing with PLP-CreERT2/R26YFP

PLP1 ISH

Tuj1

YFP
Col4

YFP
PGP9.5

Sox10 ISH

Tuj1

d e

f

j

k

i

b

h

a

g

Pulp

Pulp

Pulp

Apical
mesenchyme

Pulp
Pulp

c

Background

CL1

CL1

CL2

CL2

CL1

Pulp

CL1

YFPYFP
PGP9.5PGP9.5

BackgroundBackground

YFPYFP
PGP9.5PGP9.5

YFP
PGP9.5

YFPYFP
DAPIDAPI
YFP

DAPI

YFPYFP
Col IVCol IV

YFP
Col IV

YFP
PGP9.5

Background

YFP
PGP9.5

Background

Figure 1 | SCPs give rise to pulp cells and odontoblasts in the developing
tooth. a, b, In situ hybridization with PLP1 riboprobe (a) on a section of
developing mandibular incisor at E12.5 post-stained for Tuj1 (b-III-tubulin)1

nerves (b). Arrows indicate identical locations. c, Mandible of PLP-CreERT2/
R26YFP embryo traced from E12.5 to E13.5. See Extended Fig. 2 for details.
d–f, Incisor (d) traced from E12.5 to E17.5, PLP-CreERT2/R26YFP embryo.
e, Magnified region from d. f, Nerve and apical mesenchyme, confocal stack.
In e, arrows indicate odontoblasts. g, h, In situ hybridization with Sox10
riboprobe (g) on an E15.5 mandible post-stained for Tuj11 fibres (h). Arrows
point at identical locations. i, j, Incisor at E17.5 (i) from Sox10-CreERT2/
R26YFP embryo traced from E15.5. j, The area outlined in i; arrows indicate
odontoblasts. k, E17.5 incisor from Sox10-CreERT2/R26YFP embryo traced
from E15.5, confocal stack. Collagen IV labelling: blood vessels; YFP1: pulp
cells and odontoblasts (arrows). a–k, Dotted line: enamel organ. Scale bars,
100mm (a–d, g–i); 25mm (e, f, j, k). CL1 and CL2 indicate labial and lingual
aspects of cervical loop.

E17.5 mandibular incisor

Nerve

CL1

CL2

Pulp

Hard
matrix

E9.5 embryo head with labelled neural crest

E17.5 mandibular incisor

c

a b

d

e f

g

CFP

GFP

YFP

RFP

CFP

GFP

YFP

RFP

Pulp

Pulp

Pulp

Mandible

CL1

CL2

CL1 CL2

Pulp

G
e
n

e
ti
c
 t

ra
c
in

g
 o

f 
c
ra

n
ia

l 
n

e
u

ra
l 
c
re

s
t 

w
it
h
 P

LP
-C

re
E

R
T2

/R
26

C
on

fe
tt

i, 
ta

m
o

x
if
e
n
 i
s
 i
n
je

c
te

d
 a

t 
E

8
.5

 

CFPCFP

GFPGFP

YFPYFP

RFPRFP

CFP

GFP

YFP

RFP

CFPCFP

GFPGFP

YFPYFP

RFPRFP

CFP

GFP

YFP

RFP

Figure 2 | Clonal contribution of neural crest to tooth development.
a–f, Tracing of neural-crest-derived cells in PLP-CreERT2/R26Confetti
embryos. a, Embryo traced from E8.5 to E9.5, projection of confocal stack.
Dotted line demarcates developing head. Arrow: mandible. b–f, Sections
of incisor traced from E8.5 to E17.5. d, f, Projections of stacks corresponding
to areas outlined in c and e. Note correlation between colours of
odontoblasts and adjacent pulp cells. g, Illustration of clonally organized
pulp and odontoblasts. b, c, e, Dotted line: enamel organ. Scale bars,
100mm (a–c); 25mm (d–f). CL1 and CL2 indicate labial and lingual aspects
of cervical loop.

RESEARCH LETTER

5 5 2 | N A T U R E | V O L 5 1 3 | 2 5 S E P T E M B E R 2 0 1 4

Macmillan Publishers Limited. All rights reserved©2014



To prove the importance of the innervation for tooth growth, we dener-
vated incisors 24 h after tamoxifen injection in PLP-CreERT2/R26YFP
mice. After 10 days we found almost no progeny in denervated teeth, while
contralateral control teeth contained abundant YFP1 odontoblasts and
pulp cells (Supplementary Information and Extended Data Fig. 8j–p). Thus,
generation of a progeny from PLP1 cells is impaired without innervation.

We quantified the amount of Schwann-cell-derived progeny in PLP-
CreERT2/R26YFP mice (Supplementary Information and Extended Data
Figs 7l and 9a) and found that it varied from 8.23 6 3.3% (single tamox-
ifen injection) to 47.28 6 4.02% (multiple injections) (Supplementary
Information and Extended Data Fig. 7m–o). Hence, in addition to Schwann
cells and SCPs, there are other sources of dental MSCs, possibly pericytes,
which generate odontoblasts in injured teeth13. We addressed whether
pericytes could be derived from peripheral glia, using NG2 staining14

on sections from traced mice. However, NG21 pericytes in teeth were
never YFP1. Similar results were obtained in adult incisors (Supplemen-
tary Information and Extended Data Fig. 10). Thus, we exclude pericytes
as an intermediate for the Schwann-cell- and SCP-derived pulp cells
and odontoblasts.

Next we searched for stem cell markers in Schwann-cell-derived dental
MSCs. Results from an array of methods strongly suggest that a population
of Schwann-cell-derived dental MSCs are Thy1 (CD90)1 (Supplemen-
tary Information, Extended Data Fig. 9 and Supplementary Video 1).

Finally, we examined if Schwann-cell-derived cells produce regen-
erative dentine after trauma. We induced recombination in adult PLP-
CreERT2/R26YFP mice, and allowed Schwann cells to generate progeny
for 1 month. We then inflicted a confined damage to the tooth (Fig. 4a).
Six days later, numerous traced cells were observed at the injury site,
including odontoblast-like alizarin-red-positive cells adjacent to matrix
fragments (Fig. 4b–f). Such features were not seen in intact teeth (Fig. 4g–h)
or other controls (Fig. 4i). To confirm that PLP-CreERT2-traced cells
produce mineralized matrix, we cultured dissociated traced tooth pulp
explants for 1 week. YFP1 cells were then sorted by fluorescence-activated
cell sorting (FACS) for cultivation in an osteogenic assay (Fig. 4j). Under
these conditions, YFP1 cells deposited mineralized matrix (Fig. 4k–l).
Thus, Schwann-cell-derived cells exhibit MSC-like characteristics and
participate in the regeneration of dentine after damage.

To conclude, SCPs and Schwann cells contribute to development,
growth and regeneration of teeth. The concept of glia-to-MSC trans-
ition expands the borders of the multipotency of SCPs15 and suggests
that Schwann cells and SCPs are dormant neural-crest-like cells that
can be recruited from nerves and contribute to peripheral tissues. On
the basis of our results, Schwann cells and SCP might be the in vivo origin
of neural-crest-derived multipotent stem cells identified in cultures of
dissociated embryonic and adult tissues and designated as postmigra-
tory cranial neural crest cells16 and skin-derived precursors17.
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Figure 3 | Schwann cells give rise to dental MSCs
in the adult incisor. a–c, Incisor traced for 3 days
from adult PLP-CreERT2/R26YFP mouse. Note
protein gene product 9.5 (PGP9.5)1 nerve fibres (a).
b, c, Magnified areas from a. d, e, Incisor traced
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PLP-CreERT2/R26Confetti mouse with YFP1 and
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from l. n, Stream of pulp cells (arrows) in proximity
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projections of confocal stacks. q, r, Clonal
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and mineralized matrix. Scale bars, 100mm
(a, d, f, g, k, l); 50mm (b, c, e, m–p). CL1 and
CL2 indicate labial and lingual aspects of cervical
loop. d.p.i., days post-injection. s, Incidence of
mesenchymal clones depending on fraction of
odontoblasts within the clone. t–v, Proximity
of dental MSCs (dMSCs) to cervical loop (CL)
correlates with clonal size and proportion of
odontoblasts in clone.
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METHODS SUMMARY
We used PLP-CreERT2/R26YFP9,12, Sox10-CreERT2/R26YFP8, Thy1-Cre/R26YFP18

and R26Confetti6 mouse strains. Immunohistochemistry and in situ hybridization
used standard protocols on frozen sections of embryos or adult teeth. Multispectral
imaging used Zeiss LSM700 and Zeiss LSM780 confocal systems11.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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Osteogenic potential of glia-derived cells Six days after the damage inflicted to PLP-CreERT2/R26YFP incisor traced for 1 month
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recovery for 6 days. Needle silhouette shows
direction of damage. c, d, Magnified area from
b, confocal stack. e, Alizarin red staining of
damaged region outlined in b. Note stained area
around ectopic matrix. Arrows in c–e point at
YFP1 cells adjacent to ectopic matrix; dotted line
indicates mineralized matrix. f, Ectopic matrix in
damaged area with YFP1 odontoblast-like cells
(arrows). g, YFP1 odontoblasts and NG21

pericytes in intact control incisor. h, Alizarin red
staining of the odontoblast layer in control.
i, Matrix fragment from damaged incisor displaced
into facial muscle. Note absence of alizarin red
staining around matrix fragment compared with
ectopic matrix within the pulp (e). j, Experimental
design for addressing mineralizing potential of
Schwann-cell-derived cells. k, l, Mineralization
assay. Schwann-cell-derived YFP1 cells
(k) produce alizarin red1 matrix (l) in vitro after
1 week in osteogenic media. k, DIC, differential
interference contrast. Scale bars, 100mm (b);
50mm (c–e); 25mm (f–l).

RESEARCH LETTER

5 5 4 | N A T U R E | V O L 5 1 3 | 2 5 S E P T E M B E R 2 0 1 4

Macmillan Publishers Limited. All rights reserved©2014

www.nature.com/doifinder/10.1038/nature13536
www.nature.com/doifinder/10.1038/nature13536
www.nature.com/reprints
www.nature.com/doifinder/10.1038/nature13536
mailto:Igor.Adameyko@ki.se
mailto:Kaj.Fried@ki.se


METHODS
Mouse strains and animal information. All animal work was permitted by the
Ethical Committee on Animal Experiments (Stockholm North Committee) and
conducted according to The Swedish Animal Agency’s Provisions and Guidelines
for Animal Experimentation recommendations. Glia-specific genetic tracing mouse
strains PLP-CreERT2/R26YFP12, Sox10-CreERT2/R26YFP8 and Thy1-Cre/R26YFP18

(Jackson Laboratory stock number 006143) were used in this study. R26Confetti6

mice were received from the laboratory of H. Clevers. To induce genetic recom-
bination, pregnant females were injected intraperitoneally with tamoxifen (Sigma
T5648) dissolved in corn oil (Sigma C8267). A range of tamoxifen concentrations
(1.5–5 mg per animal) was used to gain different efficiency of genetic tracing. Mice
were killed with isoflurane (Baxter KDG9623) overdose and perfused with PBS and
then with 4% paraformaldehyde (Merck 818715) before collection of adult teeth.
The tissue was additionally fixed for 3 h in 4% paraformaldehyde at 4 uC on a
rocking table, cryopreserved in 30% sucrose (VWR C27480) overnight at 4 uC,
embedded in OCT media (HistoLab 45830) and cut into 14mm or 30mm sections
on a cryostat (Microm). All animal work was done according to the high interna-
tional ethical standards applied in Sweden and approved by the ethical committee
at Stockholm Norra Djurförsöksetiska Nämd.
Staining procedures and In situ hybridization. Immunohistochemistry used
standard protocol on 14mm sagittal frozen sections of the embryonic heads, and
30mm sections of the adult teeth. Antigen retrieval with Dako solution (Dako S1699)
and quenching by peroxidase treatment (Merck 1072090500) were done before
application of primary antibodies to reduce background fluorescence. Primary anti-
bodies were applied to the tissue and incubated at room temperature (21 uC) over-
night. Primary antibodies were CD13 (BD Pharmingen 558745, 1:300), PECAM-1/
CD31 (BD Pharmingen 553370, 1:200), collagen IV (AbD Serotec 2150-1470, 1:500),
NG2 (Millipore AB5320, 1:200), PGP9.5 (Cederlane CL95101, 1:500), SOX10 (Santa
Cruz sc-17342, 1:500), CRE (Novagen 69050, 1:500), green fluorescent protein (GFP;
Abcam ab6662, 1:500), 2H3 (generated by Developmental Studies Hybridoma Bank,
provided by F. Lallemend, 1:100), BFABP (generated by T. Müller, 1:1,000), Krox20
(Nordic Biosite AB, 1:500), Tuj1 (Promega G712A, 1:1,000), S100b (DAKO A5110,
1:1,000), p-c-Jun (Santa Cruz sc-822, 1:200), Ki67 (Thermo Scientific RM-9106-S1,
1:1,000), GFAP (Abcam ab7260, 1:300), Thy1 (Abcam ab3105, 1:500), P75 (Promega
G323A, 1:500), P0 (Abcam 134439, 1:1,000), MBP (Abcam ab7349, 1:200) and ErbB3
(R&D AF4518, 1:500). Alexa secondary antibodies (Invitrogen, 1:800–1:1,000) were
used and slides were mounted with glycerol mounting media (Merck 1040942500).
Additional stainings were done with 49,6-diamidino-2-phenylindole (DAPI; Invi-
trogen D1306, 300 nM applied for 1–5 min at room temperature) and Alizarin red
(Sigma A5533, 2% in distilled H2O applied for 30 s to 3 min).

In situ hybridization on sections was done as previously described9. Plp1 probe
corresponded to the open reading frame of PLP1 protein with National Center for
Biotechnology Information (NCBI) accession number NM_011123. Sox10 probe
was a gift from T. Müller. Embryo heads were fixed in 4% paraformaldehyde for
2 h and then rinsed in 30% sucrose overnight at 4 uC. Subsequently, the samples were
immersed in OCT and kept at 220 uC until sectioning. Images were taken with Carl
Zeiss Axioplan 2 light microscope.

Thy1 antisense probes were generated from 2.3 kilobase complementary DNA
fragment sequences cloned into pCMV-SPORT6 vector and transcribed in the pres-
ence of digoxigenin-labelled UTP, using Kpn1/T7 DIG RNA labelling kit (Roche).
Whole-mount digoxigenin-labelled in situ hybridization was performed on 5-day
postnatal CD1 pups. Incisor samples after whole-mount in situ hybridization were
embedded in 1% low-melting-point agarose, dehydrated in methanol and cleared
in BABB (two parts benzyl benzoate to one part benzyl alcohol) before optical pro-
jection tomography scanning. Optical projection tomography scanning was per-
formed using a Bioptonics 3001 OPT scanner (Bioptonics). Reconstructed images
were generated using NRecon version 1.6.1.0 (Skyscan) software and further assessed
using a Bioptonics viewer version 2.0 (Bioptonics).
Tooth damage. Tamoxifen (5 mg) was administered once a day for two consec-
utive days to the adult PLP-CreERT2/R26YFP animals before a tracing period of
4 weeks, which allowed tracing of both the glia-derived progenitor cells and their
progeny forming streams in the dental pulp. Traced mice were anaesthetized by
intraperitoneal injection of a combinational drug consisting of 75 mg per kg keta-
mine (Ketaminol, Intervet 511485) and 1 mg per kg medetomidinhydrochlorid (Dor-
mitorVet, OrionPharma 015602) prepared in sterile water for injection (Braun
12250031). The fine damage to the mandibular incisor was done with a syringe
needle (BD Microlance 3, 25 gauge3 5/8, 0.5 mm3 16 mm) on the left side by insert-
ing the needle from the outside through the masseter muscle while the contralateral
side was kept untouched and used as an internal control. To prevent or minimize
postoperative pain, 0.08 mg per kg Tamgesic (Tamgesic 086188) dissolved in
sterile saline was injected intramuscularly before the animal was given the antidote
(AntisedanVet, OrionPharma 471953) by subcutaneous injection. Six days after

the operation, mandibular teeth were collected from the damaged and the contra-
lateral sites.
Explant culture, cell sorting and osteogenic culture. PLP-CreERT2/R26YFP
mice were injected with 5 mg tamoxifen and traced for 1 month before being killed
with an overdose of isoflurane. All incisor teeth were harvested and the tooth pulps
were extracted, cut into pieces and seeded as explants in 24-well plates (BD Falcon)
at 37 uC with 5% CO2. The culture medium was composed of Gibco MEM a cul-
ture medium with GlutaMAX, 20% fetal bovine serum (FBS, Gibco), 55 nM 2-b-
mercaptoethanol (Gibco) and 13 penicillin/streptomycin solution (Gibco), which
was changed two or three times during a week. After 1 week of explant culture, cells
were harvested for cell sorting. Cells were washed with Dulbecco’s phosphate
buffered saline (DPBS, Gibco), treated with TrypLE Express (Gibco), centrifuged
to obtain cell pellets which were re-suspended in DPBS with 1% FBS and passed
through 40mm cell strainers (BD Falcon). The cells were then sorted with gating
for enhanced YFP in a BD FACSAria II cell sorter. YFP1 cells were then further pro-
pagated up to 60% of confluency and consequently directed into osteogenic lineage
with the application of a StemPro Osteogenesis differentiation kit and protocol
(Gibco). Osteogenic cultures were analysed after 7 days. Cells were fixed with 4%
paraformaldehyde for 10 min, washed with distilled H2O and stained with DAPI
nucleic acid stain (Invitrogen). Thereafter, cultures were stained with 40 mM Alizarin
R solution (Sigma-Aldrich) following several intensive washes with distilled H2O.
Denervation. Adult male and female PLP-CreERT2/R26YFP mice (weighing 25–
30 g) were injected with 5 mg tamoxifen and traced for 24 h before unilateral dener-
vation. The contralateral undamaged mandibular site was used as control. Traced
mice were anaesthetized by intraperitoneal injection of a combinational drug con-
sisting of 75 mg per kg ketamine and 1 mg per kg medetomidinhydrochlorid pre-
pared in sterile water for injection. Then 0.08 mg per kg Tamgesic dissolved in
sterile saline solution was injected intramuscularly. When anaesthetized and sedated,
the eyes of the animals were covered with eye gel (Oculentum simplex APL 336164).
The operation site was sterilized with ethanol, and a 15 mm incision of the facial
skin over the right masseter muscle was made. The mandibular bone surface was
then exposed through a careful blunt dissection of the muscle. Care was taken not
to damage the superficial muscle branches of the facial (VII) nerve. The thin bone
layer covering the mandibular canal cranial to the incisor apex was carefully removed
and the inferior alveolar nerve was exposed and transected with microscissors.
Finally, muscle and cutaneous tissue were sutured. To awaken the animals, Anti-
sedanVet (OrionPharma 471953) was given by subcutaneous injection. Wet food
was administered to the animals during the survival period. The mice were mon-
itored twice a day and given Tamgesic for pain relief every 12 h for the first 3 days
and then once a day thereafter until they were fully recovered. Subsequently, they
were continuously monitored. After 10 days, 4% paraformaldehyde perfusion was
performed, and both mandibular incisors were then dissected out and processed
for microscopy.
Flow cytometry. Dental pulps were obtained from the incisors of PLP-CreERT2/
R26YFP animals, where the genetic tracing was induced during adulthood for a
period of 4 weeks or longer. For each experiment, eight dental pulps were incubated
by shaking at 225 r.p.m. in a mixture of collagenase/dispase (2.5 mg ml21; Roche
11097113001) dissolved in 13 TrypLE Express (Gibco) for 1 h at 37 uC. After the
enzymatic dissociation, cells were sorted using a cell strainer and washed in PBS. For
subsequent staining, cells were used either live or fixed in cold methanol (45 min on
ice followed by wash with PBS) depending on the applied antibody. Cell suspension
was first incubated with primary antibodies in PBS at a concentration of 4mg ml21

(anti-Thy1, anti-Ki67, anti-GFP) for 45–60 min on ice and washed with PBS after-
wards. Secondary antibodies diluted 1:1,000 in PBS (Alexa Fluor 405, 488 and 647;
Life Technologies) were applied to the cell suspension for 45 min on ice, protected
from light and then washed with PBS. Flow-cytometry analysis used FACSCantoII
and BD FACSDiva 6.1.3 software. Each experiment with a given staining combina-
tion was performed in triplicate and controlled by using unstained sample and
corresponding unspecific IgG-stained (4mg m12l, Santa Cruz) sample.
BrdU and EdU incorporation analysis. BrdU was injected once or every day for
3 weeks at a concentration of 200mg per g body weight. Mice were then killed after
different periods (8 h, 24 h, 32 days, 64 days) and the tissue was sampled. Immuno-
staining and detection of BrdU was done according to a standard protocol (Abcam
BrdU Immunohistochemistry Kit ab125306). Genetic tracing with label-retaining
assay (Supplementary Fig. 13e–j): PLP-CreERT2/R26YFP mice were injected with
5 mg tamoxifen twice within two sequential days. After 7 months of genetic trac-
ing, five injections of EdU (65mg per g body weight, every 48 h) were performed.
Seventy-one days after the last EdU-injection, the animals were killed and tissue
was harvested. EdU flow cytometry assay for the slow cycling cells labelling in vivo
(Supplementary Fig. 13k–m): 5-day postnatal CD1 pups were continually given
EdU injections (3.3mg per g body weight) for 3 weeks and washed out for another
3 weeks before collection. The incisor pulp cells were freshly collected and EdU
staining for flow cytometry was performed according to the manual (Invitrogen).

LETTER RESEARCH

Macmillan Publishers Limited. All rights reserved©2014



Thy1-FITC antibody (Ebioscience) was incubated with cells for 10 min at room
temperature before cell fixation and EdU detection. A BD Fortessa cell analyser
(BD Biosciences) was used with FACSDIVA software for acquisition and Flowjo
software for analysis. EdU-Alexa647, Thy1-FITC and DAPI were detected with
laser 633 nm, 488 nm and 351 nm excitation and with emission filter 670/30 nm,
530/30 nm and 450/50 nm respectively.
Cell counting and statistics. Statistical data are represented as mean 6 s.e.m.
Unpaired and paired versions of Student’s t-test were used to calculate the statistics
(P value). Pearson’s product-moment correlation coefficient (r) was calculated to
investigate the association of variables in Fig. 3t–v (n 5 29 for Fig. 3t–u and n 5 27
for Fig. 3v). Every value corresponding to a dot refers to a single clone; in total,
clones were analysed from 11 different animals. Linear regression was used to build
an approximation line in Fig. 3t. To analyse the position of dental MSCs in relation
to the cervical loop (Fig. 3t–u), multiple sequential sections were analysed. Generally,
we devoted several (always more than three) animals to every experiment to accom-
plish at least a biological triplicate. This was valid for all non-quantitative analyses
including work done on sections or in a whole mount. For the genetic tracing exper-
iments reported as graphical panels, at least six embryos derived from at least two
females were analysed; in most cases 15–20 embryos were used before conclusions

and supporting graphics were generated. During our study more than 100 genetically
traced animals of different strains were analysed before concluding final results.
The animals were selected and distributed into groups in all experiments randomly.
The control for the denervation experiment was an internal control coming from
the same animal: the non-operated contralateral side (biological (number of indi-
vidual animals) n 5 5, while technical (number of sections analysed) n 5 15). To
quantify the contribution from Schwann-cell-derived MSCs, we analysed three ani-
mals per condition counting three sections in every animal (technical n 5 9). YFP1

cells and DAPI1 cell nuclei inside the tooth were identified on confocal images, seg-
mented in IMARIS software and counted in a semi-automated way.
Microscopy and imaging. Confocal microscopy used Zeiss LSM700 CLSM and
Zeiss LSM780 CLSM instruments. Image processing and analysis used ZEN2010
and Imaris software. The settings for the imaging of Confetti fluorescent proteins
were previously described6. For Fig. 2a the imaging of the confocal stack was done
with a Zeiss LSM780 CLSM, Plan-Apochromat 310/0.45 M27 Zeiss air objective,
23 optical slices of 12mm each with the z-axis shift of 12mm for every step. For Sup-
plementary Fig. 1a–c the whole-mount staining, imaging and reconstruction of an
embryo were done with instruments, objectives and software according to a pub-
lished protocol11.
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Extended Data Figure 1 | Expression of SCP markers and genetic tracing in
nerves of E11.5–13.5 embryos. a–c, Whole-mount immunohistochemistry
performed on an E11.5 mouse embryo with antibodies against 155 kDa
neurofilaments (2H3), MITF and Sox10. Note that Sox101 cells are localized
at the nerves in maxillary and mandibular regions. d–f, Whole-mount
immunohistochemistry performed on an E11.5 mouse embryo with antibodies
against 155 kDa neurofilaments (2H3) and BFABP. d–e, Arrows point at
posterior ventral spinal nerves hosting immature embryonic glial cells that lack
BFABP expression. f, Magnified area outlined in d by white rectangle. Roman
digits show corresponding numbers of cranial ganglia. Dotted line follows
the contour of an embryo. g–l, Sagittal section through E12.5 mandible stained
for Sox10 (g–l), Tuj1 and BFABP (g), GFAP (h) and p75 (i). j–l, ErbB3 is

expressed in all Sox101 nerve-adjacent SCPs. k–l, Magnified area outlined by
white rectangle in j. Dotted line indicates epithelial organ. m–o2, Sagittal
section through E13.5 mandible, sequential single plane optical slices 2 mm in
z-axis. m1–m2, Magnified area outlined in m; n1, n2, magnified area from n;
o1–o2, respectively, show an area from o. p–p2, Region on a section shown in
m–o, maximum intensity projection image. p1, p2, Magnified area that is
outlined by white rectangle in p. m–p, White dotted line indicates incisor
placode. q–t, Expression of CreERT2, Sox10 and Tuj1 in a mandible traced
from E12.5 to E13.5 in PLP-CreERT2 embryo. Note the full co-localization of
Sox10 and CreERT2. Sox101/CreERT21 cells are adjacent to the innervation.
Scale bars, 100mm (a–c, g–i); 500mm (d–f); 50mm (j–l); 50mm (m–t).
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Extended Data Figure 2 | Expression of Sox10, YFP and CreERT2 in a
genetically traced mouse embryonic head. a–d, Expression of CreERT2
protein in a 36 h genetically traced PLP-CreERT2/R26YFP embryo at E13.5.
c, d, Magnified areas outlined in a and b. Open arrows point at CreERT21/
YFP1 cells attached to the nerve whereas filled arrow points at CreERT22/
YFP1 cell proximal to the nerve. e, f, In situ hybridization with Sox10
riboprobe (e) on a section of a mouse embryonic E12.5 head post-stained with
Tuj1 (b-III-tubulin, neuronal marker) antibody (f). g–h, In situ with Sox10
probe on a section of E12.5 developing mandible (g) with incisor tooth bud
(outlined by dotted line) post-stained with Tuj1 antibody (h). i–j, Sox10 and

PGP9.5 (marker for neurites) are visualized by immunohistochemistry on a
section of an embryonic mandible at E12.5. Dotted line outlines incisor bud.
k–l, Sections of developing mandible with incisor (k) and molar (l) buds from a
Sox10-CreERT2/R26YFP embryo genetically traced from E12.5 to E13.5 and
stained with antibody against the neuronal marker PGP9.5. Arrow in l points at
developing cartilage. m–p, Expression of CreERT2 protein in a 24 h genetically
traced Sox10-CreERT2/R26YFP embryo at E13.5. The developing Meckel’s
cartilage is outlined by the red dotted circle in m and o. n, p, Magnified areas
outlined in m and o. White dotted line shows the borders of tooth bud. Scale
bars, 200mm (e–h); 100mm (i, m, o); 50mm (a, b, j–l, n–p); 10mm (c–d).
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Extended Data Figure 3 | Expression of Sox10 and CreERT2 at intermediate
stages of incisor development. a–g, Incisor traced from E12.5 to E15.5 in
PLP-CreERT2/R26YFP animals. Enamel organ is outlined by dotted line.
a, b, YFP1 cells in the nerve and in the pulp are shown together with Ki67
staining. c–g, Note that the expression of CreERT2 is confined to nerve sites
only, as shown in low (c, d) and high (e–g) magnification images of developing
incisor. e–g, Area from c, d shown at high magnification. YFP1/CreERT21

cells are indicated by arrows in e–g. Note the presence of CreERT22/YFP1

proximally to the nerve and in the apical mesenchyme. h–k, Incisor traced from
E15.5 to E16.5 in Sox10-CreERT2/R26YFP animals. Panel i represents a

magnified area from h. j, k, Magnified area outlined by white rectangle in
i. Arrows in j and k point at CreERT22/YFP1 cells in the apical mesenchyme;
note that the expression of CreERT2 is confined to the nerve sites only.
l–m, Developing incisor at E15.5 stained with antibodies against Sox10 to show
SCPs, Tuj1 to visualize nerves and Col IV to outline the position of vessels. Note
that all Sox101 cells are nerve adjacent. n, Schematic drawing showing the
position of Sox101 cells during early bell stage of tooth development. Scale bars,
50mm (a–d, h, i, l, m); 25mm (e–g, j, k). CL1 and CL2 are the labial and lingual
aspects of the cervical loop respectively.
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Extended Data Figure 4 | Sub-optimal genetic recombination highlights
clonal relationships between pulp cells and odontoblasts during tooth
organogenesis. a–c, Consecutive sections through the incisor from
PLP-CreERT2/R26Confetti mouse embryo traced from E12.5 to E17.5
(sub-optimal recombination). Note the pulp and odontoblasts progenies of
CFP1 SCPs (white arrows in a and b). c, Section throughout the same tooth

where cyan arrows point at columnar CFP1 odontoblasts. d, Section through
another clonally traced (sub-optimal recombination) incisor. Note the presence
of YFP1 clone in the pulp. Arrow points at a single YFP1 cell positioned at
the innervation site. e, Reconstructed lineage tree of the neural-crest-derived
compartment in the tooth. a–d, Scale bars, 100mm. CL1 and CL2 are the labial
and lingual aspects of the cervical loop respectively.
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Extended Data Figure 5 | Distribution of Sox101 cells in adult incisor.
a, Localization of Sox101 cells and Tuj11 nerve fibres in the pulp of adult
incisor. Note that apical mesenchyme between the aspects of a cervical loop
contains a population of nerve-adjacent Sox101 cells while the distal pulp
harbours an additional population of Sox101 cells (outlined by a yellow dotted
line) that are not adjacent to the nerves. b–e, Magnified areas from a where
they are outlined by numbered white rectangles. b, Magnified image of apical
mesenchyme and cervical loop area with nerve-adjacent Sox101 cells pointed
out by arrows. c, Region in the distal pulp showing scattered Sox101 cells.
Note that these cells are not in contact with Tuj11 fibres. d, Cervical loop area
including a region of proximal pulp and apical mesenchyme. e, Neural bundle
in the apical mesenchyme with nerve-adjacent Sox101 cells pointed out by

arrows (projection of a stack). f–k, Localization of Sox101 cells in relation to the
proliferative growth zone outlined by the expression of Ki67. g–h, Magnified
cervical loop area outlined in f by white rectangle 1. Arrows point at detected
Sox101 cells. i–j, Magnified area shown in f by white rectangle 2. Arrows point
at Ki671 cells in the distal pulp. Note that Ki67 does not label the distal
population of Sox101 cells outlined by yellow dotted line in f. k, Schematic
drawing showing two separated populations of Sox101 cells in the pulp: one
population is represented by nerve-adjacent cells and located in proliferative
apical mesenchyme while another population is scattered in distal pulp at a
significant distance from a cervical loop. Scale bars, 100mm (a, b, f); 50mm
(c–e, g–j). CL1 and CL2 are the labial and lingual aspects of the cervical loop
respectively. White dotted line shows enamel organ epithelium.
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Extended Data Figure 6 | Expression of Schwann cell markers and CreERT2
in adult incisor. a, Schematic drawing showing the position of a focus area
(red frame) selected for demonstration of Schwann cell markers in b–g.
Schwann cell markers are expressed in Sox101 nerve-adjacent cells located in
apical mesenchyme: S100b and P0 in b, P0 and p-c-Jun in c, p75 and Krox20
in d, MBP in e and GFAP and P0 in f–g. h–q, Expression of CreERT2 under
the control of Sox10- (o, p) and PLP1- (q–u) promoters in adult incisor.
h, i, Note that CreERT2 protein is found in cells adjacent to the Tuj11 nerve
fibres in the apical mesenchyme of 30-day traced Sox10-CreERT2/R26YFP

animals. j–q, CreERT2 protein is detected in the nuclei of Sox101 cells
(58 6 7.9% of nerve-adjacent Sox101 cells are CreERT21, n 5 5) in the apical
mesenchyme of 20-h traced PLP-CreERT2/R26YFP animals. l–n, Magnified
area outlined in j, k. Arrows point at CreERT21 nuclei. o, p, Expression of
CreERT2 is not detected in a population of Sox101 non-glial cells in distal pulp.
q, Expression of CreERT2 is not found in a cervical loop area. Scale bars, 50mm.
CL1 and CL2 are the labial and lingual aspects of the cervical loop respectively.
Dotted line shows enamel organ epithelium.
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Extended Data Figure 7 | Short and long tracing intervals reveal YFP1 cells
at initial positions and uncover the later contribution of Schwann-cell-
derived cells to the growing incisor. a–e, Section through adult incisor traced
for 2 days from a Sox10-CreERT2/R26YFP mouse stained for collagen IV and
Tuj1 to visualize blood vessels and nerves, respectively. b, c, Magnified area
outlined by rectangle 1 in a. Arrows point at YFP1 cells adjacent to the
innervation of a vascular bundle between cervical loops. d, e, YFP1 cells
(arrows) also appear adjacent to the nerve fibres of vascular bundle distally
from cervical loop (position is outlined by rectangle 2 in a). Images represent
maximum intensity projections of confocal stacks. e, f, Incisor after 5 days of
genetic tracing in a PLP-CreERT2/R26YFP animal, sequential sections. Note
that YFP1 progeny is located at the apex as indicated by the arrows; YFP1 cells
are not detected in the distal pulp. Dotted line outlines enamel epithelium and
mineralized matrix. i–k, Ki67 labelling of a section of an incisor traced for
6 months from an adult PLP-CreERT2/R26YFP mouse, single tamoxifen
injection at sub-optimal concentration. i, Arrows point at a cluster of YFP1

odontoblasts (magnified in inset). Note the presence of YFP1 streams of cells

in the pulp after 6 months of genetic tracing. j, k, YFP1 genetically traced pulp
cells are positive for Ki67 only in proximity to the cervical loops. k, Magnified
area outlined by white rectangle in j. Note the absence of Ki671 cells in the
odontoblast layer and in pulp cells at a distance from the cervical loop (CL).
l, Scheme of genetic tracing experiments involving single and serial tamoxifen
injections. m, n, Segmentation of odontoblast and pulp cell nuclei in the adult
genetically traced incisor (m) injected eight times with subsequent
identification of YFP1 nuclei (n) for semi-automated counting in IMARIS.
Magnified areas outlined by rectangles are shown in the insets; m.p.i., months
post-injection. i–n, CL1 is a labial cervical loop; dotted line outlines enamel
epithelium with adjacent hard matrix. o, Contribution of Schwann-cell-
derived cells to the incisors from single and multiple injected PLP-CreERT2/
R26YFP animals (n 5 3 for each type of experiment). For the quantification of
contribution to the odontoblast lineage, only labial odontoblasts were analysed.
a–k, Scale bars, 100mm (a, f–j); 50mm (b–e, k); 100mm (i–j); 25mm (k).
CL1 and CL2 are the labial and lingual aspects of the cervical loop respectively.
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Extended Data Figure 8 | Clonal analysis reveals diversity of progeny
originating from different Schwann-cell-derived MSCs that are nerve
dependent. a–f, Consecutive sections of an incisor traced for 1.5 months from
a PLP-CreERT2/R26Confetti mouse (sub-optimal recombination).
b, d, f, Magnified areas from a, c and e respectively. Note numerous dispersed
RFP1 pulp cells in a–d and large amounts of adjacent RFP1 odontoblasts
in c–f. g–i, Another example of an incisor traced for 1.5 months (g) from a
PLP-CreERT2/R26Confetti mouse also stained for PGP9.5 to visualize nerve
fibres. h, i, Magnified areas from g. Note the narrow stream of RFP1 cells in the
middle of the dental pulp in g and h. j, k, Contralateral control (j) and
denervated (k) incisor teeth 10 days after inferior alveolar nerve transection
surgery and 11 days after initiation of genetic tracing by single tamoxifen

injection (PLP-CreERT2/R26YFP animals). Arrows in j point at abundant
clusters of YFP1 odontoblasts and pulp cells. White dotted line indicates
enamel organ and hard matrix. l–m, Wallerian degeneration within the distal
stump of the inferior alveolar nerve after the surgery, an area outlined by
red rectangle in k. n, Control nerve. o, Quantification of YFP1 progeny in
denervated and contralateral control teeth 10 days after surgery (paired t-test
P , 0.0001, mean difference 86.6; 95% confidence interval 83.58–89.63; n 5 5).
p, Quantification of distances between a cervical loop and most distal YFP1

progeny in control (1,479 6 246.5mm) and denervated (282.4 6 71.52mm)
teeth 10 days after the surgery (unpaired t-test P 5 0.0016, n 5 5). a–i, Scale
bars, 100mm (a, c, e, g); 25mm (b, d, f, h, i); 100mm (j, k); 50mm (l–n). CL1 and
CL2 are the labial and lingual aspects of the cervical loop respectively.
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Extended Data Figure 9 | Schwann-cell-derived MSCs express stem cell
marker Thy1. a–c, Flow cytometry analysis of cell populations from
dissociated incisor pulp cells. Incisors were isolated from two PLP-CreERT2/
R26YFP animals that were traced for 5 months after a single tamoxifen
injection (5 mg). a, Dot plots of isotypic control and immunostaining of
non-fixed dissociated pulp cells on the basis of expression of YFP. A region, P1,
has been drawn around the YFP1 cells (also shown in black). b, Dot plots of
isotypic control and immunostaining of non-fixed dissociated pulp cells on the
basis of Thy1 expression. A region, P2, has been drawn around the Thy11 cells
(shown in blue). c, Dot plots of selected sub-populations on the basis of
expression of proliferative marker Ki67 and Thy1, staining on fixed cells. YFP1

cells are shown in black. Right panel shows population of YFP1 cells only.
A region, P3, has been drawn around Thy12/Ki671 cells. P4 has been
drawn around Thy11/Ki671 cells and P5 around Thy11/Ki672 cells.
d, d1, Immunostaining for Thy1 and Tuj1 in an adult incisor. d1 Magnified area
outlined by white rectangle in d. e, f, Ki67, Sox10 and Thy1 in dental MSC
niche between labial and lingual aspects of a cervical loop. Arrows point at
Sox101 nuclei of Schwann cells. Note that some Schwann cells are Ki671.
Inset in e shows only the Thy1 staining channel from area outlined by white
rectangle; inset in f shows only the Ki67 staining channel from the same area.
g–h, Incisor from a PLP-CreERT2/R26YFP mouse genetically traced for
8 months. Note Thy11/YFP1 cells located proximally to the cervical loop CL1
in the low-magnification image (g) and indicated by arrows in magnified

images (g1–h). Magnified area is highlighted by white rectangle in g.
i, j, Genetically traced incisor from a Thy1-Cre/R26YFP mouse. Note
abundant progeny in the pulp (i, j) and odontoblast layer specifically shown in
inset in j. k–m2, Genetically traced incisor from a Thy1-Cre/R26Confetti
mouse. Note streams of YFP1 cells in the pulp (k–l1) and a few odontoblasts
(m2). l1, m2, Magnified area outlined by white rectangle in k. Dotted line
marks enamel epithelium and mineralized matrix. n–q, BrdU incorporation
analysis of fast and slowly cycling cells in the incisor. r, s, EdU1 slowly cycling
cells 71 days after the last EdU injection in Thy1-stained and genetically traced
incisor (9 months after last tamoxifen injection). t1, u1, Magnified area from
r and s outlined by white rectangle 1. EdU1/YFP1 cells are marked by arrows.
Note numerous EdU1 cells in the Thy11 zone proximal to the cervical loop
(CL1) in s. v2, w2, Magnified area from r and s outlined by white rectangle 2.
Arrows indicate Thy11/EdU1 cell. x–z, Flow cytometry analysis of EdU-
retaining (21 days after last the injection) and Thy11 cells from dental pulp.
x, Dot plot showing the gating for Thy1-expressing cells. y, Dot plot showing
the gating of EdU1 cells among total DAPI1 population. Note that EdU1 cells
represent 4.3% of total cell numbers. z, Dot plot of subpopulations on the
basis of expression of Thy1 and incorporation of EdU. EdU1/Thy11 cells are
in the upper right square, constituting 1.34% of total population. Scale bars,
100mm (d, i, k); 50mm (g, j); 100mm (n–s); 25mm (t1–w2). CL1 and CL2 are
the labial and lingual aspects of the cervical loop respectively.
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Extended Data Figure 10 | Populations of pericytes and glia-derived cells
do not overlap in the tooth. a–e, Sox10 and NG2 immunohistochemistry
on a section of mandibular incisor from a PLP-CreERT2/R26YFP embryo
genetically traced from E8.5 to E17.5. a, Dotted line outlines enamel organ.
b, c, and d, e, Magnified areas from a outlined by white rectangles. Arrows
in d, e show NG21/YFP2 pericytes. f, g, YFP1/NG21 pericytes (arrows) in the
forebrain of an E8.5 to E17.5 genetically traced PLP-CreERT2/R26YFP embryo.

h, Immunohistochemistry with Sox10 and NG2 antibodies on a section of
mandibular incisor traced for 30 days in a PLP-CreERT2/R26YFP adult mouse.
Note the stream of YFP1/NG22 cells in the pulp of the incisor and numerous
YFP2/NG21 pericytes on the same section. a–h, Scale bars, 50mm (a);
25mm (b–h). CL1 and CL2 are the labial and lingual aspects of the cervical
loop respectively.
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