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Abstract

In this thesis project, we model a sub-part of the adaptive immune system, com-

posed of B and T lymphocytes, which interact to produce a suitable immune

response against antigens.

From a statistical mechanics perspective, this system can be modelled as a

bipartite network with sparse links where the nodes represent B and T cells re-

spectively, signalling via particular proteins called cytokines. Assuming that B

lymphocytes evolve on a faster timescale than T cells, we study the dynamics of

an effective mono-partite graph of T cells only where the B cells have been inte-

grated out. Interestingly, this system can be mapped into a Hopfield-like associa-

tive network, which is able to retrieve and perform multiple immune strategies

simultaneously.

Using techniques such as Kramers-Moyal expansions for master equations, we

carry out a dynamical analysis of the network evolving via Glauber sequential

update. We derive equations quantifying the evolution in time of the immune

response strength, analysing the nature and the stability of the stationary solu-

tions in different regimes of dilution and network connectivity via linear stability

analysis and Monte Carlo simulations.

The model has also been extended to include the effect of receptors promis-

cuity, sampling B-T interactions locally from heterogeneous degree distributions
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and the effect of the antigens. Finally, we introduce interactions between B

lymphocytes, called idiotypic interactions, studying their effect on the system’s

dynamics.

We also analyse the effect of idiotypic interactions in the high storage and finite

connectivity regime at equilibrium, using the cavity method to derive equations

for the distributions of observables of the system. In particular, we obtain the

B clone size distribution, studying its behaviour in different regions of the phase

space.
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Glossary

• Antigen: substance or molecule that induces an immune response and the

antibodies production.

• Epitope: a specific piece of an antigen that is recognised by the immune

system, e.g. by antibodies, B cells, or T cells.

• BCR: a B-cell receptor is a transmembrane protein located on the external

surfaces of B-cells. It has a unique antigen binding site, through which B

cells recognise external pathogens.

• TCR: a T-cell receptor is a transmembrane protein located on the exter-

nal surface of T-cells. This receptor can recognise fragments of antigen as

peptides bound to the so-called major histocompatibility complex (MHC)

molecules.

• Clone: group of identical cells derived from the same progenitor sharing

the same type of antigen receptor.

• Cytokine: signalling protein that is secreted by lymphocytes and affects

the behaviour of nearby cells with appropriate receptors.
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I find it astonishing that the immune system embodies a de-

gree of complexity which suggests some more or less super-

ficial though striking analogies with human language, and

that this cognitive system has evolved and functions with-

out assistance of the brain.

N. K. Jerne, Nobel Lecture. 1
Introduction

The immune system is a complex collection of organs, tissues and cells which is

present in all vertebrates and protects the organism from external pathogens and

infections [1, 2]. The constituents of this system coordinate themselves, recipro-

cally sending signals, to produce an immune response targeted at defeating the

infection.

The initial protection against external microbes is provided by the so-called

innate immunity. Epithelial barriers, which contain natural antibiotics, can block

the body invasion, while so-called natural killer (NK) cells and phagocytes de-

stroy the microbes that managed to elude the first defence barrier and entered

blood circulation or tissues. Despite the fact that the innate immune response

can potentially deal with many types of microbes and infections, the microbial

evolution has also created pathogens able to resist it. To deal with this class of

pathogens, the body takes advantage of the adaptive immune system, whose main

constituents are lymphocytes and their products, such as antibodies. The adap-

tive immune response is, generally, enhanced and triggered by the components
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1.1. Behind the scenes of the adaptive immune response 26

of the innate immune system, but is characterised by a higher specificity: lym-

phocytes have specific receptors that can bind to particular substances produced

by the microbes, called antigens. The main constituents of the adaptive immune

system are:

• B cells: the only lymphocytes that are able to produce antibodies, i.e. Y-

shaped proteins that can recognise, tag and eventually kill external invaders.

• T cells: they are responsible for the so called cell-mediated immunity and

can recognise fragments of antigens if bound to particular cells called Anti-

gen Presenting Cells (APC).

In the following, we will introduce the details of the interaction process be-

tween T and B lymphocytes, which is responsible for the onset of an immune

response (sec. 1.1). In addition, in sec. 1.2 we will discuss the mathematical

approach to the adaptive immune system modelling and the statistical mechanics

tools that we will use in this thesis.

1.1 Behind the scenes of the adaptive immune

response

When a pathogen enters the host overcoming the first defence barrier of the

innate immune system, it is (hopefully) recognised and attacked by lymphocytes.

B cells, in particular, have specific receptors called BCR to recognise the antigen

binding to it. The antigen is then internalised, broken into pieces and displayed

on the B cell surface: B cells behave as an antigen presenting cell (APC), showing

parts of the recognised antigen and waiting for an extra confirmation signal to be

activated.

At this stage, T cells come into play. They are not able to directly identify

and bind to an antigen, but can recognise it if displayed on APC cells. Indeed,
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T cells have a receptor, the TCR, which can bind to the B cells and trigger their

activation or suppression sending confirmatory signals in the form of excitatory

or inhibitory signalling proteins, the cytokines.

This response (when activated) consists of the secretion of antibodies (proteins

able to chemically bind and neutralise the antigen) by B cells, thus (possibly)

avoiding the propagation of the infection. This two-signals mechanism prevents

erroneous B cells activations from mismatching antigens or other cells of the

organism.

In this process, both activated T and B cells proliferate, undergoing the so-

called clonal expansion. This generates the amount of cells required to eliminate

the infection from a small pool of näıve lymphocytes, which have never encoun-

tered an antigen before. They form clones or groups of identical cells sharing

the same type of receptors, either TCR or BCR, and therefore responding to

the same type of antigens. The newly generated B and T cells also differentiate

into effector cells, which effectively deal with the infection attacking the antigens,

and memory cells, which keep information and memory of the infection in the

immune system. The memory cells remain in an inactive state in the system but

are able to respond faster to a new encounter of the same pathogen: this immune

response, which is more rapid and effective than the first one, is called secondary

immune response. Once the infection has been eliminated, the stimulatory sig-

nals triggering the lymphocytes are removed and cells die during the apoptosis

process.

To summarise, specificity and memory are two features of the adaptive im-

mune response that allow for a targeted and tailored reaction to pathogens at the

first encounter with them and a faster and stronger response in case of repeated

infections.
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1.2 Immunology and Mathematics

The 1950s witnessed several important progresses in our theoretical under-

standing of the adaptive immune system. In particular, two important theories

were formulated:

• The clonal selection theory by F. Macfarlane Burnet [3], stating that each

lymphocyte expresses only one receptor type, specific for a particular anti-

gen.

• The idiotypic network theory by N. K. Jerne [4], stating that lymphocytes

can interact via the so-called idiotypes, unique determinants of cell receptors

[5], forming a network.

These theories, formulated by experimentalists, were originally presented in a

qualitative form but paved the way to a mathematical formulation. For instance,

models of clonal selection theory include the first work by Bell [6] describing the

B cells clonal proliferation and antibodies production in the presence of anti-

gens, followed by several modifications and extensions by Perelson and collabo-

rators [7–9]. In these models, the evolution in time of the B clones system was

described by a set of coupled differential equations, solved via numerical integra-

tion. In addition, the clonal selection theory raised important questions about the

size of the repertoire, i.e. the size of the receptors space, needed to recognise any

antigen that one may encounter. This repertoire may include also self-reactive

cells attacking the organism, which survived the selection process [2]. Quantify-

ing the receptor space in both size and specificity was important to understand

the mechanisms of self/non-self recognition and antigen identification [10]. The

repertoire completeness issue is also subject of several more recent investigations,

based on Bayesian inference and maximum entropy models including comparison

with available data [11–13].
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For what concerns the idiotypic network theory, several models of interactions

between cells have been proposed to investigate their effect on the immune re-

sponse. We will summarise them in more details in sec. 3.3, where we will also

introduce our approach to the modelling of these interactions. For an excellent

review of previous literature on the subject we refer to [14].

Mathematical modelling also includes T clones dynamics and activation via

stochastic and probabilistic models. One of the main issues analysed in this

context is the T clones activation threshold, i.e. the minimum number of triggered

TCR needed to activate their response [15–17].

Finally, there is a general tendency to gradually abandon the reductionist

approach, based on single cells or molecules analysis, and rather focus on the

collective behaviour and emergent properties of the adaptive immune system as

a whole [12,18–24].

The first model to pave the way to a statistical mechanics approach to the

immune system modelling was introduced in 1990 by G. Parisi [18]. In this

work, antibodies concentrations ci, i = 1, . . . , N , in the absence of antigens, are

modelled as binary variables 0, 1 evolving in time in discrete steps τ according to

the simple rule

ci(t+ τ) = θ[hi(t)] , (1.2.1)

where θ[x] is zero for x < 0 and 1 otherwise, and hi(t) =
∑N

j=1 Jijcj(t). The

matrix Jij represents the interactions between antibodies i and j. The state of

the immune system is, then, determined by the values of the concentrations of

all possible N antibodies.

The main problem consists in understanding how the network decides which

antibodies should be produced and are physiologically relevant. To this purpose,

one assumes that only a fraction α of the N antibodies can be predefined and
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studies what the highest number M = αN of antibodies concentrations (compat-

ible with (1.2.1)) in a system of N possible antibodies is. In this framework, M

can be mapped into the storage capacity of the network and the maximum capac-

ity can be explicitly computed. Hence, the problem can be translated into finding

one or more equilibrium states with M predetermined concentrations where the

maximum value of M (Mc = αcN) for which it is still possible to find equilibrium

states represents the storage capacity of the system.

In this model, the interactions are assumed to be symmetric (Jij = Jji),

with zero diagonal terms (Jii = 0) and randomly sampled from the interval

[−1, 1]: under these conditions it reduces to the well-known infinite-range spin

glass model [25]. Indeed, in this work the common features between the immune

system, spin glasses and neural networks were discussed for the first time.

Under this assumption one can easily compute the value of αc using standard

techniques in statistical mechanics. Indeed, for spin glasses it has been shown that

the number of stationary configurations is proportional to 2λN with λ ∼ 0.3 [25].

Assuming that the average number of solutions can be also seen as the most

probable, then there exists an equilibrium state only for α < αc = λ. Hence,

using a simple framework one can show that the number of selected antibodies

to be produced or inhibited is proportional to the size of the whole repertoire.

In more recent years, the system composed of interacting T and B lymphocytes

has been looked at through the prism of statistical mechanics to understand its

global features and functionalities and a systematic connection between neural

networks and immune system has been made [20–24].

Fully connected models of idiotypic interactions have been analysed in [20–22]

to understand the mechanism of clonal anergy in self-directed lymphocytes, which

managed to escape from the selection process during the initial stages of develop-

ment [1], and the inhibitory effects of the idiotypic network. These models also

include important basic phenomena characterising real immune systems such as
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low-dose tolerance, i.e. unresponsiveness to antigens presented in low concentra-

tions, memory of the encountered pathogens and self/non-self discrimination, i.e.

the ability to distinguish external invaders from the host’s cells.

The signalling process between B and T lymphocytes using statistical me-

chanics techniques has been introduced in [23], where the basic features of the

model on a fully connected topology are discussed and the mapping to an asso-

ciative memory with “cytokine” patterns representing immunological strategies

is presented. The full connectivity assumption was, then, relaxed in [24] where

associative memories with diluted patterns were first introduced in the context of

the immune system modelling. The features of these types of networks, in partic-

ular the ability to simultaneously recall multiple patterns or strategies, have been

studied in statics in different regimes of dilution and at low, medium storage and

near saturation in [24,26,27].

In particular, in the low and medium load [24, 26], the retrieval properties of

the network, i.e. the number of patterns successfully recognised, and the different

types of activation, i.e. symmetric (all patterns retrieved in the same fashion)

or hierarchical (one patterns is prioritised with respect to the others), have been

studied varying the parameter of the system, in particular noise and dilution. In

the high storage regime [27], using graph theory and the replica method it has

been shown that N T cells can orchestrate the immune responses to an extensive

number of antigenic attacks simultaneously, coordinating P = αN B cells in

parallel. Increasing α, the system undergoes a second order transition to a phase

characterised by clonal cross-talk, where each B clone feels the presence and

interfere with all others B clones in the system, possibly affecting its activation.

However, in the clonal cross-talk region the system’s performance in terms of

patterns retrieval is not drastically compromised, but degrades smoothly.

In the following, we will analyse the dynamics of these B-T interactions mod-

els and we will extend them to incorporate other important mechanisms of the
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immune response. In particular, the analysis of the dynamics of the system will

allow us to find the region of stability of the various types of activation patterns

(symmetric or hierarchical) in the different regions of the phase space in the low

and medium storage regime, as we will show in ch. 2. Moreover, we will include

in the model idiotypic interactions, receptors promiscuity and antigens to anal-

yse their effects on the retrieval capabilities of the system (3). Finally, we will

also study the system in the saturation regime, including B-T and B-B interac-

tions and using the cavity method to detect the clonal cross-talk region in this

framework, varying the system’s parameters including noise and B-B interaction

strength (ch. 4).

1.3 The statistical mechanics approach

We summarise below this model, which constitutes the starting point of our

thesis. We consider an immune repertoire composed of P different B clones whose

log-concentration is bµ, µ = 1, . . . , P and N T cells σi, i = 1, . . . , N . B cells can

be modelled as real variables: in the absence of interactions with T cells, i.e. at

rest, we assume the bµ’s to be Gaussian. When a B clone receives signals from T

clones, it can either expand (growing by several orders of magnitude with respect

to the typical size at rest), i.e. bµ � b0, or be inhibited and reduce its size,

i.e. bµ � b0. T clones are modelled as binary variables or “spins” σi = ±1,

i = 1, . . . , N , which can be active i.e. secreting cytokines (+1) or quiescent (−1).

B and T clones communicate with each other exchanging signalling proteins,

the cytokines, which are assumed to be quenched discrete random variables. A

cytokine ξµi sent from a T clone i to a B clone µ can be excitatory ξµi = +1,

inhibitory ξµi = −1 or there might be no connection between the specific clones

i and µ, hence ξµi = 0. In fig. 1.1 we provide a schematic summary of the main

features of this model.

The interacting system of B-T cells can be phenomenologically described by
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Figure 1.1: Schematic representation of the B-T cells interactions via cytokines

and summary of the assumptions of the model.

the Hamiltonian

H(σ,b|ξ) = −N θ

N∑

i=1

P∑

µ=1

ξµi σibµ +
1

2

P∑

µ=1

b2
µ , (1.3.2)

where the exponent θ ensures the correct scaling of the Hamiltonian with the

system size N . In order to better understand its meaning, let us assume that

the B clones variables evolve according to a gradient descent on the Hamiltonian

(1.3.2), yielding

dbµ
dt

= −∂H
∂bµ

+ ηµ(t) = N θ

N∑

i=1

ξµi σi − bµ + ηµ(t) . (1.3.3)

B clones concentration increases (decreases) in presence of excitatory (inhibitory)

interactions with T clones, as modelled by the first term in (1.3.3). Moreover,

B clones may die at a rate proportional to the log population size (second term

of (1.3.3)), which for simplicity we assume to be the same for all clones. In the

absence of T clones and assuming a Gaussian white noise with 〈ηµ(t)〉 = 0 and
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〈ηµ(t)ην(t
′)〉 = 2Tδµ,νδ(t − t′), where T = 1/β is the strength of the noise, eq.

(1.3.3) represents an Ornstein-Uhlenbeck process with stationary distribution

p(bµ) =
1√
2πT

e−
b2µ
2T . (1.3.4)

The partition function ZN(β|ξ) at inverse noise level β, which is consistent with

our assumption bµ = N (0, T ), is given by

ZN(β|ξ) =
∑

σ

∫
db1 . . . dbP exp [−βH(σ,b|ξ)] . (1.3.5)

Integrating over bµ yields

ZN(β|ξ) =
∑

σ
exp [−βH(σ|ξ)] , (1.3.6)

where

H(σ|ξ) = − 1

2N θ

N∑

i,j=1

Jijσiσj , (1.3.7)

Jij =
P∑

µ=1

ξµi ξ
µ
j . (1.3.8)

Interestingly, eq. (1.3.7) represents the Hamiltonian of the Hopfield model for

associative networks [28–30], whose features will be introduced in next section

(sec. 1.3.1). Therefore, the interacting system of B and T cells via cytokines

as described by the Hamiltonian H(σ,b|ξ) is thermodynamically equivalent to

a Hopfield-like network [28–30] encoded in an effective Hamiltonian H(σ|ξ) con-

taining interacting T cells only via the cytokines. A schematic representation of

the marginalisation process is shown in fig. 1.2.

1.3.1 The Hopfield model in a nutshell

The Hopfield model was introduced to model neurons interactions via synaptic

connections in the brain. In particular, the idea was to model the human memory
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Figure 1.2: Scheme of the marginalisation process that leads from a bipartite

network of interacting B and T clones (left) to an effective T clones-only system

(right).

as a collective phenomenon involving large networks of connected neurons. The

N neurons in the brain are equivalent to the T cells in the immune system model:

they can, indeed, be in two states, firing (+1) or quiescent (-1) and can be mod-

elled as spin variables σi = ±1, i = 1, . . . , N . During the learning process [31],

we store P patterns of information, each as a N -bit vector ξµ = (ξµ1 , ξ
µ
2 , . . . , ξ

µ
N),

µ = 1, . . . , P with entries ξµi ∈ {+1,−1}. The state of the network at each time

t is defined by the configuration of all neurons σ = (σ1, σ2, . . . , σN).

The dynamics of the network state is determined by the interactions Jij be-

tween neurons, defined in eq. (1.3.8) according to the so-called Hebb Rule [30].

The interactions directly depend on the information stored in the system: when

a new pattern is stored, Jij’s are linearly modified by the addition of a new term

in the sum. The learning process, therefore, corresponds to a modification of the

connections between neurons. In the Hopfield model, patterns are randomly and

independently drawn from the distribution

P(ξµi ) =
1

2

(
δξµi ,+1 + δξµi ,−1

)
. (1.3.9)

The stored patterns, hence, act as a quenched disorder in the system. The latter

is described by the Hamiltonian,

H(σ|ξ) = − 1

2N

N∑

i,j=1

Jijσiσj . (1.3.10)
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This system works differently from other types of memories, in particular for what

concerns the process of information retrieval; Hopfield-like memories, indeed,

work by association using the actual content of the information patterns rather

than the physical location where they are stored to recall the information. The

human memory is a good example of associative memory as it associates a new

input with the memories it contains, stored during the learning process. When

seeing a face or listening to a part of a song we can reconstruct by association a

previously learnt piece of information.

Hence, this system works as an associative memory when it manages to re-

trieve one of the stored patterns of information: this happens when the network

configuration exactly corresponds to one of the stored patterns, namely when

σi = ξµi , ∀i = 1, . . . , N . To monitor the retrieval properties one introduces the

so-called magnetisations or overlaps, which are defined as follows

mµ =
1

N

N∑

i=1

ξµi σi , (1.3.11)

and measure the similarity between the network state σ and the µ-th stored

pattern. A magnetisation different from zero would indicate the retrieval of the

corresponding pattern.

It has long been known that away from saturation, i.e. for P � N , the

patterns {ξµ} are stable attractors of the system dynamics for any T < 1. The

specific attractor approached under dynamical evolution depends on the system’s

initialisation. In addition, even/odd mixtures of n patterns are also solutions,

although they do not correspond to any stored information and this retrieval is

generally undesired. At low temperature, odd mixtures of n patterns are stable

and they destabilise at n-dependent temperatures Tn, which increase with de-

creasing n. This implies that, in the vicinity of T = 1 from below, only pure

states (n = 1) are stable [28,29]. Even mixtures of n patterns are instead always

unstable. Hence, this system is able to retrieve one pattern at a time.
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1.3.2 The importance of being diluted

One of the strongest non-biological assumption of the Hopfield model lies in

the full connectivity choice, meaning that all neurons send signals to all others.

To improve this choice, several diluted models have been proposed, where for each

neuron a fraction c of randomly selected links has been removed. Different choices

of the scaling of c with the system size N have been analysed, leading to different

behaviours of the system:

• c = N , which corresponds to the case with no dilution [29,32];

• lim
N→∞ c = +∞ and lim

N→∞
c
N

= 0 or extreme dilution case [33, 34];

• c = O(1), finite connectivity with dilution independent of the system size

N [35].

The goal was mostly to probe the network resilience to dilution and its capability

to work as an associative memory. Still the information processing remained

unchanged, with the system being able to handle and retrieve one pattern at a

time.

But this is not the only possible way to introduce the dilution in such net-

works. Using the mapping introduced in sec. 1.3, one could think of cutting links

in the bipartite graph first and only then transform it into a Hopfield-like associa-

tive memory. Interestingly, this process leads to a drastic change in the system’s

performance, making it able to parallel process the information and simultane-

ously retrieve multiple patterns. In practical terms, this choice corresponds to

introducing “zeros” in the patterns entries, whose distribution is now chosen of

the form

P({ξ}) =
∏

iµ

[
d
(
δξµi ,1 + δξµi ,−1

)
+ (1− d)δξµi ,0

]
, (1.3.12)
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where d tunes the dilution level in the network. In the retrieval phase, when

the system state σ tries to converge and align with one particular pattern, for

example ξ1, not all the entries σ are involved: the entries corresponding to the

zeros of ξ1 can be aligned with a second pattern, e. g. ξ2, and so forth as shown in

fig. 1.3. A detailed analysis of the properties of such systems in equilibrium can

be found in [36], where multitasking associative networks were first introduced.

ξ1 ξ2 . . . . . . ξP σ


∗
∗
∗
0
...
...
...
...
0







0
0
0
∗
∗
∗
0
...
...
0




· · · · · ·




0
...
·
...
...
0
∗
∗
∗







∗
∗
∗
∗
∗
∗
...
∗
∗
∗




dN

{

Figure 1.3: Illustrative explanation of the parallel retrieval. During the retrieval

process the network state σ entries are first aligned with the dN non-zero entries

of ξ1 (asterisks represent ±1 entries); the remaining σ entries are aligned with

the non-zero entries of the second available pattern vector ξ2 , etc.

Intuitively, it is clear that the retrieval of an extensive number of patterns

P = O(N) will require finite connectivity, i.e. d = c
N

with c = O(N0). A sub-

extensive number of patterns P = O(N δ), with δ < 1, can be instead recalled

in the extremely diluted regime, where d = c
Nγ and γ < 1. In chapters 2,3 we

will solve the dynamics of this model and its extensions in the extremely diluted

regime. In chapter 4 we will consider the static of this model in the finitely

connected case.
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2
Dynamics of associative

memories and B-T clones

interactions

2.1 Introduction

Associative memories are neural networks able to retrieve and recognise pre-

viously stored information. The pioneering work on brain memory is due to J.

J. Hopfield, where the neural network performs the retrieval of one information

pattern at a time. Recently, new types of associative memories with diluted

patterns have been introduced [36] as a generalisation of the standard Hopfield

model [28–30,32]. Interestingly, the introduction of dilution in the stored patterns

of information drastically changes the collective behaviour of the system, switch-

ing its operational behaviour from sequential to parallel processing of multiple

pieces of information at the same time.

39



2.2. Introducing the dynamics 40

This feature has potentially sound applications in artificial intelligence [31,37,

38], where existing models can only accomplish a sequential processing of infor-

mation. In addition, it has been shown that these models are thermodynamically

equivalent to bipartite networks [36] useful to describe systems with two inter-

acting parties of agents. In particular, they have recently been used to model

signalling processes between B and T lymphocytes in immune networks, which

are able to orchestrate several immune responses in parallel [24].

Despite the wide range of possible applications, these types of memories have

been studied analytically only in statics so far, where several dilution and storage

regimes were investigated [26,27,39]. Dynamical studies are limited to numerical

simulations and are restricted to the low storage regime, where the number of

stored patterns is finite [40].

In this chapter, we will study the dynamics of the associative memories with

diluted patterns in different dilution and storage regimes via non-equilibrium

statistical mechanics techniques, first developed in [41–43] for standard Hopfield

networks and spin glasses.

2.2 Introducing the dynamics

In this section, we study the dynamics of diluted associative memories with

interactions of the form in eq. 1.3.8. Patterns are quenched random variables,

independently and identically distributed with probability distribution

P({ξ}) =
∏

iµ

[
c

2Nγ

(
δξµi ,1 + δξµi ,−1

)
+

(
1− c

Nγ

)
δξµi ,0

]
, (2.2.1)

where {ξ} involves a collection of PN random variables ξµi . The fraction of non-

zero entries in the stored patterns will determine the degree of dilution of the

system: for γ = 0 the system is finitely diluted, whereas for γ > 0 the system

is extremely diluted. Indicating the number of stored patterns with P = αN δ,
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with α ∈ R+ and tuning δ ∈ [0, 1) one may explore different storage regimes. For

δ > 0, the number of patterns stored in the system diverges in the thermodynamic

limit, however as long as δ < 1, it grows sub-linearly with the system size, and

the system is away from saturation. We assume that the T clones σi evolve

minimising the same energy function as the B clones

H(σ,b|ξ) = −Nγ−1

N∑

i=1

P∑

µ=1

ξµi σibµ +
1

2

P∑

µ=1

b2
µ , (2.2.2)

where the prefactor Nγ−1 ensures that the Hamiltonian is O(N). We can, there-

fore, write their dynamics in the presence of noise in discrete time with steps ∆

as

σi(t+ ∆) = sgn

(
P∑

µ=1

ξµi bµ(t) + ζi(t)

)
, (2.2.3)

where ζi(t) represents a zero-average noise drawn from P (ζ) = β
2
(1− tanh2(βζ))

with inverse temperature β. In addition, assuming that B clones evolve on faster

timescales than T clones, we can insert the stationary solution of (1.3.3) in (2.2.3),

obtaining

σi(t+ ∆) = sgn

(
P∑

µ=1

N∑

j=1

ξµi ξ
µ
j σj(t) + ζi(t)

)
. (2.2.4)

For ∆ = 1
N

with N � 1, the σi’s follow a random sequential Glauber dynamics

[31] via an effective local field

hi(σ) =
1

N1−γ

N∑

j 6=i

Jijσj . (2.2.5)

The interactions Jij are defined in (1.3.8) and the normalisation N1−γ ensures

that hi = O(N0). The probability pt(σ) of finding the system in a state σ =
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(σ1, . . . , σN) at time t, evolves according to the master equation

∂pt(σ)

∂t
=

N∑

i=1

[
pt(Fi(σ))wi(Fi(σ))− pt(σ)wi(σ)

]
, (2.2.6)

where Fi is the i-th spin-flip operator Fi(σ1, .., σi, ..., σN) = (σ1, ...,−σi, ...σN) and

transition rates between σ and Fi(σ) have the Glauber form

wi(σ) =
1

2
[1− σi tanh (βhi(σ))] , (2.2.7)

where β = 1/T is the inverse temperature of the system, giving the rate of

spontaneous spin flips.

For symmetric couplings, such as those given in (1.3.8), the dynamics obeys

detailed balance and the process evolves towards equilibrium, described by the

Boltzmann distribution, with Hamiltonian:

H(σ|ξ) = − 1

2N1−γ

N∑

i,j=1

P∑

µ=1

ξµi ξ
µ
j σiσj . (2.2.8)

We note, however, that our approach does not require this symmetry restriction

and paves the way to a broader range of applications where symmetric interactions

would not be realistic, particularly in theoretical immunology [24]. One can show

that the prefactor provides the correct normalisation to the Hamiltonian [26].

A heuristic argument is that, since the number of non-zero entries in a given

pattern is O(N1−γ), one has, for condensed 1 patterns,
∑

i ξ
µ
i σi = O(N1−γ) with

the expected number of condensed patterns being O(N/N1−γ) = O(Nγ), so their

contribution to the Hamiltonian is O(N). Non-condensed patterns, for which
∑

i ξ
µ
i σi = O(N (1−γ)/2), are present only for δ > γ and are O(N δ), thus providing

a contribution which is always sub-leading away from saturation, as expected.

1Set of patterns that have been retrieved, hence with non zero associated magnetisation.
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2.2.1 Macroscopic dynamics

For large N , finding a solution for the set of 2N coupled, non-linear differ-

ential equations (2.2.6) is very hard, and a convenient approach is to use the

microscopic stochastic laws for the T clones dynamics (2.2.6) to derive dynamical

equations (2.2.24) for the probability distribution of a suitable set of macroscopic

observables. As for the standard Hopfield model, it is convenient to choose these

as (suitably normalised) overlaps between the microscopic configurations of the

system and the stored patterns ξµ, µ = 1, . . . , P

mµ(σ) =
1

cN1−γ

N∑

j=1

ξµj σj , (2.2.9)

with the prefactor chosen to make these quantities of order O(1). These order

parameters quantify the pattern retrieval of the system, as in the absence of

retrieval they vanish in the thermodynamic limit, whereas an order O(1) overlap

mµ indicates that the system has retrieved the pattern ξµ. We note that for large

N and γ < 1, the effective fields (2.2.5) depend on σ only through the overlaps,

i.e. hi(σ) = c
∑

µ ξ
µ
i mµ(σ), where c controls the dilution.

In the context of the immune system modelling, the overlap mµ quantifies the

activation level of the µ-th B clone through the signals sent from the T clones σj

according to the stored “immune strategies” or cytokine patterns ξµj .

2.2.1.1 Master equation and Kramers-Moyal expansion

The probability of finding the system, at time t, in a state where the macro-

scopic parameters (2.2.9) take values m = (m1, ...,mP ), is

Pt(m) =
∑

σ
pt(σ)δ(m−m(σ)) . (2.2.10)
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The latter evolves in time, due to equation (2.2.6) governing the microscopic

probability pt(σ), as

dPt(m)

dt
=
∑

σ

N∑

i=1

δ(m−m(σ))
[
pt(Fi(σ))wi(Fi(σ))− pt(σ)wi(σ)

]
, (2.2.11)

where relabelling Fi(σ)→ σ in the first term on the RHS gives

dPt(m)

dt
=
∑

σ

N∑

i=1

pt(σ)wi(σ)[δ(m−m(Fi(σ)))− δ(m−m(σ))] . (2.2.12)

By introducing the increments

∆iµ = mµ(Fi(σ))−mµ(σ) =
2

cN1−γ ξ
µ
i σi (2.2.13)

and Taylor expanding (2.2.12) in powers of ∆iµ, we obtain the so-called Kramers-

Moyal (KM) expansion. In order for the expansion to hold, increments ∆iµ must

be small. This condition is satisfied in the thermodynamic limit N →∞ for any

γ < 1. The case γ = 1, where each T clone is finitely connected to other T clones,

violates the condition necessary to perform the KM expansion and will not be

considered here. The finitely connected regime (γ = 1) for a similar model will

be studied in chapter 4 at equilibrium. By Taylor expanding the δ-function in

powers of ∆iµ, we obtain

dPt(m)

dt
=

N∑

i=1

∑

σ
wi(σ)pt(σ)×

×
∑

`≥1

(−1)`

`!

P∑

µ1=1

· · ·
P∑

µ`=1

∂`

∂mµ1 · · · ∂mµ`

[
δ[m−m(σ)][∆iµi · · ·∆iµ` ]

]
.

(2.2.14)

Defining

F (`)
µ1...µ`

(m, t) =

〈
N∑

i=1

wi(σ)∆iµ1 · · ·∆iµ`

〉

m,t

, (2.2.15)
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with

〈(. . . )〉m,t =

∑
σ δ(m−m(σ))(. . . )pt(σ)∑
σ δ(m−m(σ))pt(σ)

, (2.2.16)

we can write the equation for the time evolution of Pt(m) as

∂Pt(m)

∂t
=
∑

`≥1

(−1)`

`!

P∑

µ1=1

· · ·
P∑

µ`=1

∂`

∂mµ1 · · · ∂mµ`

[Pt(m)F (`)
µ1...µ`

(m, t)] . (2.2.17)

Keeping only terms up to the first order in the ∆iµ’s leads to the Liouville equa-

tion, corresponding to a deterministic evolution of the order parameters m. Sec-

ond order terms lead to the Fokker-Planck equation, which includes diffusive

processes [44]. Hence, a sufficient condition for the observables m(σ) to evolve

deterministically, in the limit N →∞, is

lim
N→∞

∑

`≥2

(−1)`

`!

P∑

µ1=1

· · ·
P∑

µ`=1

N∑

i=1

∂`

∂mµ1 · · · ∂mµ`

〈|∆iµ1 · · ·∆iµ` |〉m,t = 0 . (2.2.18)

Each ∆iµ, as defined in (2.2.13), contributes to the sums an orderO(N−1) because

the entries ξµi are non-zero with probability cN−γ. Recalling that P = αN δ,

condition (2.2.18) reduces to

lim
N→∞

N2δ−1 = 0 , (2.2.19)

which is satisfied for δ < 1
2
. For this range of values of the storage load δ, higher

order terms in the KM expansion vanish in the thermodynamic limit and the

equation for Pt(m) reduces, to leading order in N , to the Liouville equation

∂Pt(m)

∂t
= −

P∑

µ=1

∂

∂mµ

[
Pt(m)F (1)

µ (m)
]
, (2.2.20)
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where F
(1)
µ results from insertion of (2.2.7) and (2.2.13) in (2.2.15) and is inde-

pendent of time. Setting β̂ = βc, we have

F (1)
µ (m) =

1

cN1−γ

N∑

i=1

ξµi tanh

(
β̂

P∑

ν=1

ξνimν

)
−mµ . (2.2.21)

Inserting 1 =
∑
ξ δξ,ξi

and rearranging the terms we obtain

F (1)
µ (m) =

Nγ

c

〈
ξµ tanh

(
β̂

P∑

ν=1

ξνmν

)〉

ξ

−mµ . (2.2.22)

Indeed, for large N we can define P(ξ) = limN→∞
1
N

∑N
i=1 δξ,ξi

and introduce the

average 〈f(ξ)〉ξ =
∑
ξ P(ξ)f(ξ) hence obtaining (2.2.22). In particular, in this

step the average over all sites for one specific realisation of ξ has been replaced

by the average over the distribution of patterns at one particular site.

If the number N of vectors ξi is much larger than the number 2P of vectors ξ,

this replacement is justified by appealing to the law of large numbers. However,

for larger P this statement is non-trivial and relies on the assumption of self-

averageness, whereby a quantity does not depend on the particular realisation of

the disorder {ξµi } but only on the distribution the disorder is sampled from [29,31].

The distribution P(ξ)

P(ξ) =
∏

µ

[
c

2Nγ

(
δξµ,1 + δξµ,−1

)
+

(
1− c

Nγ

)
δξµ,0

]
, (2.2.23)

then involves a collection of P random variables {ξµ} instead of the original NP

random variables {ξµi }. We note that F
(1)
µ is O(1) as each ξµ is non-zero with

probability cN−γ. The Liouville equation corresponds to a deterministic evolution

for themµ’s, given by the set of ordinary, coupled, non-linear differential equations

dmµ

dt
=
Nγ

c

〈
ξµ tanh

(
β̂

P∑

ν=1

ξνmν

)〉

ξ

−mµ . (2.2.24)
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In the following sections we will investigate the nature and stability of the steady

state solutions of (2.2.24) in different regions of the tunable parameters (noise,

dilution, storage load).

2.2.2 The steady state: possible classes of solutions

The steady state of the dynamics, dm/dt = 0, is given by the self-consistency

equation for m

m =
Nγ

c

〈
ξ tanh

(
β̂(m · ξ)

)〉
ξ
. (2.2.25)

One can show that the system undergoes a phase transition at Tc = c, with the

equilibrium phase at T > Tc characterised by m = 0 and retrieval occurring at

T < Tc, where m 6= 0. Taking the scalar product of (2.2.25) with m and using

the inequality | tanhx| ≤ |x|, gives

m2 ≤ Nγ

c
β̂
〈
(m · ξ)2

〉
ξ = β̂m2 , (2.2.26)

which implies m = 0 for β̂ > 1. By linearising the system (2.2.24) about m = 0,

dmµ

dt
=
(
β̂ − 1

)
mµ , (2.2.27)

we find that m = 0 is stable for β̂ < 1 and reached exponentially fast with rate

τ = 1/(1 − β̂). For β̂ = 1, i.e. at the critical temperature, the first order terms

vanish and an expansion of (2.2.24) up to third order

dmµ

dt
= mµ

((
c

Nγ
− 1

3

)
m2
µ −

c

Nγ
m2

)
+O(m5

µ) (2.2.28)

shows a power law decay mµ ∼ t−1/2 towards m = 0. Hence, for T > c there is

no retrieval. On the other hand, for T < c the solution m = 0 becomes unstable

and we expect nonzero solutions m 6= 0 to bifurcate continuously from the m = 0

solution as we decrease the temperature below Tc. We will inspect the stability
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of the non-zero steady state solutions m? below Tc by means of linear stability

analysis.

What is, then, the structure of the first class of solutions m? to bifurcate away

from m = 0 below Tc? To answer this question, we Taylor expand (2.2.25) for

small |m| in powers of ε = β̂ − 1:

mµ '
Nγ

c

[ P∑

ν=1

β̂〈ξνξµ〉ξmν −
β̂3

3

P∑

ν,ρ,λ=1

〈ξνξµξρξλ〉ξmνmρmλ +O(m5)

]

= (1 + ε)mµ −
mµ

3

(
m2
µ +

3c

Nγ

P∑

ρ6=µ

m2
ρ

)
+O(m5, εm3) , (2.2.29)

where we have used β̂3 = (1+ε)3 ' 1+3ε+. . . and anticipated that mµ = O(ε1/2).

Note that from the definition of P(ξ) in (2.2.23) it follows that 〈ξµ〉ξ = 0 and

〈ξµξν〉ξ = c
Nγ δµν . This yields

0 = mµ

[
ε− 1

3

(
m2
µ +

3c

Nγ

(
m2 −m2

µ

))]
, (2.2.30)

which gives either the trivial solution mµ = 0 or

m2
µ =

3ε− 3c
Nγm2

1− 3c
Nγ

. (2.2.31)

For γ > 0 and large N we get

m2
µ = 3ε− 3c

Nγ
m2 , (2.2.32)

whereas for γ = 0 one has

m2
µ = 3

ε− cm2

1− 3c
. (2.2.33)

Since each component mµ only depends on the whole vector m, it is clear that,

close to criticality, we have, for each component, mµ ∈ {−m, 0,m}, where m is the

amplitude of the magnetisations. Using the invariance of the dynamical equations

under mµ → −mµ, we can from now on focus on non-negative solutions, which
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we can write, up to permutations of pattern indices, as m = m(1, . . . , 1, 0, . . . , 0),

with

m2 = m2n, (2.2.34)

where n represents the number of non-null entries of the vector of magnetisations

m. We will call this class of solution symmetric, as condensed patterns are

retrieved all with the same intensity.

Different storage and dilution regimes will yield different scaling for the num-

ber n of condensed patterns, as we shall detail below. In the following sections,

we will derive the stability region of this class of solutions and we will discuss

how the system breaks the symmetry at low temperature.

2.2.3 Noise distribution

Interestingly, the nature and stability of the non-trivial solution below criti-

cality depend on the values of the parameters δ and γ, controlling the storage load

and the dilution in our system, respectively. To investigate this, it is convenient

to manipulate (2.2.24)

dmµ

dt
=

〈
tanh

(
β̂

(
mµ +

P∑

ν 6=µ

ξνmν

))〉

ξ

−mµ , (2.2.35)

where we already performed the average over ξµ 6= 02. Inserting 1 =
∫ +∞
−∞ dzδ

(
z−

∑P
ν 6=µ ξ

νmν

)
, we can express the dynamical equations

dmµ

dt
=

∫ +∞

−∞
dz tanh

(
β̂ (mµ + z)

)
Pµ(z|{mν})−mµ (2.2.36)

2In the following, for the sake of simplicity, the notation 〈(· · · )〉ξ will denote either the full

average over all ξ’s, or the average over the remaining ξ’s after performing the average over
non-zero values of one (or more) patterns ξµ. The use of one meaning or the other should be
clear from the context.
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in terms of the noise distribution

Pµ(z|{mν}) =

〈
δ

(
z −

P∑

ν 6=µ

ξνmν

)〉

ξ

. (2.2.37)

The latter can be calculated using the Fourier representation of the δ-function

Pµ(z|{mν}) =

∫ +∞

−∞

dẑ

2π
eizẑ

〈
P∏

ν 6=µ

e−iẑξνmν

〉

ξ

(2.2.38)

and performing the average over the disorder

〈e−iẑξνmν 〉ξν = 1 +
c

Nγ
(cos(ẑmν)− 1) ' e

c
Nγ

(cos(ẑmν)−1) , (2.2.39)

where the last approximation holds for large N . This leads to

Pµ(z|{mν}) =

∫ +∞

−∞

dẑ

2π
eizẑe

∑P
ν 6=µ

c
Nγ

(cos(ẑmν)−1) . (2.2.40)

Different choices of the parameters δ, γ, confer different properties to the distri-

bution (2.2.40), thus leading to different dynamical behaviours. In particular,

when γ > 0, extending the sum to all ν in (2.2.40) gives a negligible contribution

in the thermodynamic limit, so the distribution Pµ(z|{mν}) converges, for large

N , to the distribution

P (z|m) =

〈
δ

(
z −

P∑

ν=1

mνξ
ν

)〉

ξ

=

∫ +∞

−∞

dẑ

2π
eizẑ+

∑P
ν=1

c
Nγ

(cos(ẑmν)−1) , (2.2.41)

which depends on the whole vector m = (m1, . . . ,mP ). This highlights the

possibility of having symmetric solutions as fixed points of the dynamics in large

regions of the phase diagram, meaning that all patterns are retrieved with the

same intensity. In contrast, for γ = 0, the distribution in (2.2.40) retains its

dependence on µ in the thermodynamic limit and one expects the symmetry
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of patterns to be broken and that the system retrieves patterns with different

intensities, i.e. hierarchically.

In addition, we note that for γ > δ, (and γ > 0, since δ ≥ 0), using P = αN δ,

the probability distribution P (z|m) reduces to a δ-function in the thermodynamic

limit

P (z|m) =

∫ +∞

−∞

dẑ

2π
eizẑe

∑αNδ

ν=1
c
Nγ

(cos(ẑmν)−1) ' δ(z) . (2.2.42)

This leads to a decoupling of the dynamical equations (2.2.36) and the model

reduces to P independent Hopfield models with a single stored pattern, or, equiv-

alently, to a set of P independent Curie-Weiss ferromagnets,

dmµ

dt
= tanh

(
β̂mµ

)
−mµ , µ = 1, . . . , P , (2.2.43)

with a rescaled critical temperature T̂c = Tc/c, due to the presence of dilution

in the patterns. Each overlap approaches exponentially (one of) the non-zero

(gauge-symmetric) solutions of m = tanh(β̂m) and the stable steady state of the

system is given by m = m(1, . . . , 1), for any temperature below criticality. This

shows that the system is able to retrieve all the stored patterns in parallel and

that the retrieval is symmetric. This behaviour is confirmed by Monte Carlo

simulations, shown in figure 2.1, where the trajectories of the overlaps are seen

to approach (up to finite size effects) the expected steady states, represented by

the symbols. Details of the Monte Carlo simulation algorithm are summarised in

appendix A.

Conversely, for any γ ≤ δ, the dynamical equations (2.2.36) are coupled, which

is a signature of interference between patterns. This holds true even when the

number of patterns is finite, i.e. for δ = γ = 0. In the sections below, we will

study the nature and stability of the stationary points of the dynamics for γ ≤ δ

and show that despite the presence of pattern interference, the system is able

to retrieve all stored patterns in parallel, although symmetric solutions will no
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Figure 2.1: Results of Monte Carlo simulations with N = 104 spins at c = 0.8,

T̂ = T/c = 0.6, γ = 0.3 and δ = 0.25. We plot the overlaps mµ with different

patterns ξµ, drawn from (2.2.23), as a function of time t. Red symbols represent

the magnetisations at the steady state predicted by (2.2.43). Deviations from the

predicted values are small and compatible with finite size effects O(N−γ).

longer be stable at all temperatures below criticality.

We will analyse, separately, the dynamics of the system for δ = 0, i.e. the

so-called low storage regime (sec. 2.3), where the number of stored patterns is

finite, and for δ > 0, i.e. the so-called medium storage regime (sec. 2.4), where

the number of stored patterns is sub-linear in the system size.

2.2.4 Linear stability analysis

In order to determine the regions where different classes of solutions are stable

we can inspect the eigenvalues of the Jacobian of the dynamical system (2.2.24).

By definition, the Jacobian matrix is given by

Jµν =
∂F

(1)
µ (m)

∂mν

∣∣∣∣
m=m?

, F (1)
µ (m) =

Nγ

c

〈
ξµ tanh

(
β̂

P∑

ν=1

ξνmν

)〉

ξ

−mµ ,

(2.2.44)
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evaluated at the steady state m?. When the system recalls a number n of patterns,

we have, up to permutations of pattern indices, m? = (m1, . . . ,mn, 0 . . . , 0) with

mµ 6= 0 ∀ µ ≤ n, and the resulting matrix is

Jµν =
Nγ

c
β̂
〈
ξµξν

(
1− tanh2

(
β̂m · ξ

))〉
ξ
− δµν . (2.2.45)

Jµν is a block matrix, whose diagonal elements are

Jµµ = β̂(1− rµ)− 1, for µ ≤ n , (2.2.46)

Jµµ = β̂ (1− r)− 1, for µ > n , (2.2.47)

with

rµ =

〈
tanh2

(
β̂

(
mµ +

n∑

ν 6=µ

ξνmν

))〉

ξ

, (2.2.48)

r =

〈
tanh2

(
β̂

n∑

ν=1

ξνmν

)〉

ξ

. (2.2.49)

Off-diagonal elements are

Jµν = −β̂ c

Nγ
R , for µ, ν ≤ n , (2.2.50)

Jµν = 0 , otherwise , (2.2.51)

with

R =
〈
ξµξν tanh2

(
β̂m · ξ

)〉
ξ
. (2.2.52)
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Note that the matrix becomes diagonal forN →∞ as off-diagonal terms Jµν → 0.

Exploiting the block structure of the matrix, we can easily compute its eigenvalues

Eigenspaces Eigenvalues

x = (1, . . . , 1, 0, . . . , 0) λ1 = β̂(1− rµ)− 1− β̂(n− 1)
c

Nγ
R ,

x = (x1, . . . , xn, 0, . . . , 0),
∑

µ xµ = 0 λ2 = β̂(1− rµ)− 1 + β̂
c

Nγ
R ,

x = (0, . . . , 0, xn+1, . . . , xP ) λ3 = β̂(1− r)− 1 .

(2.2.53)

Fixed points of the dynamical systems will be stable in the region of the parameter

space (T, c) where the largest eigenvalue of the Jacobian is negative, i.e. all

eigenvalues are negative.

2.3 Low Storage and Finite Dilution: γ = δ = 0

In the next sections we analyse the regime δ ≥ γ, where, as explained in sec.

2.2.3, a cross-talk between patterns appears.

2.3.1 A toy model: P = 2

Let us first illustrate the main features of the dynamics at low storage (finite

number of patterns, δ = 0) and with finite dilution (γ = 0), by considering the

simple toy model with P = 2 patterns. In this case, the dynamical equations

(2.2.24) reduce to

dm1

dt
= (1− c) tanh

(
β̂m1

)
+
c

2

[
tanh

(
β̂(m1 +m2)

)
+ tanh(β̂(m1 −m2))

]
−m1 ,

dm2

dt
= (1− c) tanh

(
β̂m2

)
+
c

2

[
tanh

(
β̂(m1 +m2)

)
− tanh

(
β̂(m1 −m2)

)]
−m2 .

(2.3.54)
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Note that in this case the patterns distribution in (2.2.23) becomes

P(ξ) =
∏

µ

[
c
2

(δξµ,+1 + δξµ,−1) + (1− c)δξµ,0
]
. Close to criticality (β̂ ' 1), we

have from (2.2.33), m1 = m2 = m, with amplitudes

m2 =
3ε− 3cm2

1− 3c
(2.3.55)

and m2 = 2m2, yielding

m2 =
3ε

1 + 3c
. (2.3.56)

We analyse the stability of the symmetric mixtures studying the eigenvalues of

the Jacobian (2.2.44) evaluated at the fixed point m? = m(1, 1). Thanks to the

simple form of the matrix, eigenvalues are easily found as

λ1 = β̂ − 1− (1− c)β̂ tanh2
(
β̂m
)
− cβ̂ tanh2

(
2β̂m

)
, (2.3.57)

λ2 = β̂ − 1− (1− c)β̂ tanh2
(
β̂m
)
. (2.3.58)

We note that λ1 < λ2, hence the stability is given by the region where the largest

eigenvalue λ2 is negative. Analytically we can also study the behaviour of λ2 near

T ' Tc and T ' 0.

Near the critical temperature, we expand (2.3.58) in powers of β̂ = cβ = 1 + ε

and using (2.3.56) we find

λ2 = −2ε(1− 3c)

1 + 3c
. (2.3.59)

Hence, for T ' Tc solutions are stable when c < 1/3.

In the opposite limit, T → 0, i.e. β →∞, we have tanh2(β̂m)→ 1, and

λ2 ∼ β̂c− 1 > 0 . (2.3.60)

Hence, symmetric solutions are unstable at low temperature for any value of
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Figure 2.2: Eigenvalue λ2 as a function of the temperature T̂ = T/c, for a fixed

c = 0.2. The red dashed line gives the theoretical prediction near the critical

temperature (2.3.59). The figure in the inset shows agreement with (2.3.60),

which gives λ2/(T̂ c)→ 1 as T̂ → 0 (red marker).

c >
√
T . The full temperature-dependence of λ2 can be obtained numerically

and is shown in figure 2.2 for dilution c = 0.2. The limits for temperature close

to zero and to the critical point are in agreement with the theoretical predictions

(2.3.59) and (2.3.60), shown in the graph and in the graph inset as the dashed

line and the symbol, respectively.

We highlight three regions: a paramagnetic region (P) for T > Tc = c where

the only solution is m = 0; a region (S) for T < c and for c < 1/3 where

symmetric solutions are stable; finally a region (H) where m 6= 0 and symmetric

mixtures are unstable, so that a new class of asymmetric solutions takes over, the

so-called hierarchical solutions. For T → 0 these take the form

m = (1, 1− c) , (2.3.61)

which is the steady state of the system (2.3.54). Calculating the eigenvalues λ1, λ2

of the stability matrix (2.2.44) evaluated at m? = (1, 1− c), we have λ1, λ2 → −1

as β → ∞, so m = (1, 1 − c) is an attractor at low temperature. This type of

retrieval prioritises the activation of one particular B clone, e. g. b1, with respect

to the other.
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Figure 2.3: Phase diagram in the parameter space (T, c) for the case δ = γ = 0

(P = 2). The (S) area represents the region where the symmetric mixtures are

stable; the (H) region is characterised by hierarchical states, while the paramag-

netic state (P) is stable for T > Tc = c. The (S) region is obtained as the contour

plot of the equation λ2 = 0 solved numerically together with equations (2.3.54)

at stationarity. The approach to zero is consistent with c =
√
T predicted by the

theory (dashed line).

This behaviour is confirmed by Monte Carlo simulations and by the phase

portrait of the dynamical system (2.3.54), both shown in fig. 2.4. One can see

that phase curves for T̂ = T/c = 1.25, i.e. T > Tc, evolve to the steady state

m = 0; phase curves at temperature T̂ = 0.8 and c = 0.25, (inside the (S)

region), evolve to symmetric mixtures (where m1 = m2); at smaller temperature,

T̂ = 0.01, and c = 0.5 (inside the (H) region), symmetric states become unstable

with phase velocities pointing away from them, and non-symmetric stable steady

states (with m1 6= m2) appear. At T̂ = 0.01, the system evolves towards the

low temperature hierarchical state m = (1, 1− c). Results are in agreement with

equilibrium analysis and simulations [24,36,40].
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Figure 2.4: Left panels: Phase portraits of the dynamical system (2.3.54) in

different regimes of noise T and dilution c for P = 2 patterns. Red lines represent

the null-clines and stationary states are at the intersections of null-clines. Right

panels: Monte Carlo simulations with N = 104 spins, with T and c as in the

left panels; red markers represent the stationary states of the dynamical system.

From top to bottom: c = 0.4, T̂ = 1.25; c = 0.25, T̂ = 0.8; c = 0.5, T̂ = 0.01: in

the latter regime, stationary states are given by m = (1, 1 − c), as expected at

low temperature.
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2.3.2 Generalisation to P > 2 patterns

Generalising to P patterns, and assuming we have, close to criticality, m =

m(1, . . . , 1, 0, . . . , 0) with m2 = nm2, we get from (2.2.33)

m2 =
3ε

1− 3c+ 3cn
, (2.3.62)

which coincides with (2.3.56) for P = n = 2. To study the stability of sym-

metric mixtures, we evaluate the Jacobian (2.2.44) at the steady state m? =

m(1, . . . , 1, 0, . . . , 0). Diagonal elements are given by (2.2.46), (2.2.47) where, for

symmetric states,

rµ =

〈
tanh2

(
β̂m

(
1 +

n∑

ν 6=µ

ξν

))〉

ξ

, (2.3.63)

r =

〈
tanh2

(
β̂m

n∑

ν=1

ξν

)〉

ξ

. (2.3.64)

In contrast, off-diagonal elements are, for γ = 0,

Jµν = −β̂cR , for µ, ν ≤ n , (2.3.65)

Jµν = 0 , otherwise , (2.3.66)

with

R =

〈
ξµξν tanh2

(
β̂m

n∑

ν=1

ξν

)〉

ξ

. (2.3.67)

Due to the symmetry of the problem, we have three distinct eigenspaces, with

rµ = r1 ∀ µ:

λ1 = β̂(1− r1)− 1− β̂c(n− 1)R , (2.3.68)

λ2 = β̂(1− r1)− 1 + β̂cR , (2.3.69)

λ3 = β̂(1− r)− 1 . (2.3.70)
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Near T ' Tc we Taylor expand r1, r, R in powers of ε = β̂ − 1, obtaining respec-

tively:

r1 =
3ε+ 3(n− 1)cε

1− 3c+ 3cn
, (2.3.71)

r =
3ncε

1− 3c+ 3cn
, (2.3.72)

R =
6ε

1− 3c+ 3cn
. (2.3.73)

Hence, eigenvalues near the critical temperature are given by

λ1 = −−2ε+ 6cε− 6cεn

1− 3c+ 3cn
, (2.3.74)

λ2 =
−2ε+ 6cε

1− 3c+ 3cn
, (2.3.75)

λ3 =
ε− 3cε

1− 3c+ 3cn
. (2.3.76)

We note that λ1 < 0 for any c, and, as in the case P = 2, λ2 < 0 for c < 1/3. On

the other hand, λ3 < 0 for c > 1/3. Since the eigenvalue λ3 only comes into play

for P > n, symmetric mixtures m = m(1, . . . , 1) , where all patterns are recalled,

i.e. with n = P , are stable for any c < 1/3 near criticality. In contrast, there is no

region of the phase space where mixtures of the form m = m(1, . . . , 1, 0, . . . , 0),

in which a number of patterns is not recalled, is stable. Results are confirmed by

Monte Carlo simulations shown in fig. 2.5. Interestingly, the stability threshold

c < 1/3 near Tc is independent of the number of patterns P . However, we note

that for a general temperature T the eigenvalues and their stability will in general

depend on the number of patterns involved [40].

2.3.2.1 Low-T instability

At low temperature, symmetric mixtures become unstable. In order to show

this, it is convenient to introduce a discrete noise distribution. In analogy with
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Figure 2.5: Simulations with N = 104 spins and P = 4 patterns of mµ as a

function of time. Left Panel: Symmetric solutions for T̂ = 0.5, c = 0.2. The

markers represent the amplitude of the symmetric mixtures evaluated solving the

self-consistency equation (2.3.80) for P = 4. Right Panel: hierarchical retrieval

for c = 0.5 and T̂ = 0.4.

what we did in sec. 2.2.3, we consider

P̃n(z) =
〈
δz,

∑n
ν=1 ξ

ν

〉
ξ =

∫ π

−π

dω

2π
e−iωẑ

n∏

ν=1

〈eiωξν 〉ξ

=

∫ π

−π

dω

2π
e−iωz [1 + c(cosω − 1)]n , (2.3.77)

where n is the number of retrieved patterns. The discrete noise distribution is

correctly normalised, as one can check by summing over z ∈ {−n, . . . ,+n}, i.e.
∑+n

z=−n P̃n(z) = 1. We can express r1 and r, as given in (2.2.48), (2.2.49), in

terms of (2.3.77):

r1 =
∑

z

P̃n−1(z) tanh2
(
β̂m (1 + z)

)
, (2.3.78)

r =
∑

z

P̃n(z) tanh2
(
β̂mz

)
, (2.3.79)

where z runs over the support of P̃n(z) and P̃n−1(z) respectively. The self-

consistency equation for the amplitude m of the symmetric mixtures (2.2.34)
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becomes

m =
∑

z

P̃n−1(z) tanh
(
β̂m(1 + z)

)
. (2.3.80)

It is easy to see that P̃n(z) satisfies a useful recursion relation. Using the definition

of P̃n(z) in(2.3.77), one has

P̃n(z) =

∫ π

−π

dω

2π
e−iωz [1 + c(cosω − 1)] [1 + c(cosω − 1)]n−1

= (1− c)
∫ π

−π

dω

2π
e−iωz [1 + c(cosω − 1)]n−1 +

c

2

∫ π

−π

dω

2π
e−iω(z−1) [1 + c(cosω − 1)]n−1 +

+
c

2

∫ π

−π

dω

2π
e−iω(z+1) [1 + c(cosω − 1)]n−1 . (2.3.81)

Hence, this yields

P̃n(z) = (1− c)P̃n−1(z) +
c

2

(
P̃n−1(z + 1) + P̃n−1(z − 1)

)
, (2.3.82)

which represents a discrete-time lazy, symmetric random walker, taking right

and left unit steps along the z-axis with equal probabilities c/2. All the P̃n(z)’s

in the hierarchy can then be determined from the knowledge of P̃0(z) ≡ δ(z).

The random walker is lazy for c < 1 because at each iteration n it has a finite

probability to take no step.

When β →∞, r1 → 1− P̃n−1(−1), r → 1− P̃n(0) and R→ 0, hence

λ1,2 → β̂P̃n−1(1)− 1 , (2.3.83)

λ3 → β̂P̃n(0)− 1 , (2.3.84)

where we used P̃n(z) = P̃n(−z). We note that for c < 1, we have a non-zero

probability P̃n(0) > 0 for the walker to be at the origin for any finite time n ≥ 0,

hence symmetric mixtures are unstable for any value of n at low temperature.

In contrast, c = 1 introduces a periodicity in the return times of the walker, so

that P̃n(0) = 0 for n odd and P̃n(1) = 0 for n even. This means that for n odd



2.3. Low Storage and Finite Dilution: γ = δ = 0 63

(even) all eigenvalues are negative (positive), in agreement with the standard (i.e.

undiluted) Hopfield model [29], where, at zero temperature, all odd mixtures are

attractors and all even mixtures are unstable. In particular, for n = 1, λ1,2 = −1

and from (2.3.82) we have

P̃1(z) = (1− c)δ(z) +
c

2
(δ(z + 1) + δ(z − 1)) , (2.3.85)

so λ3 = β̂(1 − c) − 1. Hence, the so-called pure state, where the system recalls

only one pattern, is stable at low temperature only for the undiluted case c = 1,

but is unstable for any c < 1.

In [36,40] an ansatz was made for the form of the magnetisation vector in the

hierarchical state at T = 0,

mµ = (1− c)µ−1 , µ = 1, . . . , n , (2.3.86)

where n ≤ P is the number of condensed patterns and mµ = 0 ∀ µ > n. We shall

denote briefly this state as mH . We note that (2.3.86), with n = P , are indeed

fixed points of (2.3.54) for β → ∞ and P = 2, and for larger P , they solve self-

consistently (2.2.25) for β →∞ for wide regions of the dilution parameter c. The

stability of this solution is given by the eigenvalues of the stability matrix (2.2.44)

evaluated at m? = mH . The matrix is again diagonal in the limit N →∞, with

elements given in (2.2.46), (2.2.47) and

rµ =

〈
tanh2

(
β̂

(
mµ +

n∑

ν 6=µ

ξνmν

))〉

ξ

, (2.3.87)

r =

〈
tanh2

(
β̂

n∑

ν=1

ξνmν

)〉

ξ

. (2.3.88)

Upon introducing as in section 2.2.3, Pµ(z|{mν}) =
〈
δ
(
z −∑n

ν 6=µ ξ
νmν

)〉
ξ

and
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P (z|m) = 〈δ (z −∑n
ν=1 ξ

νmν)〉ξ, we can rewrite the expressions as

rµ =

∫
dz tanh2

(
β̂(mµ + z)

)
Pµ(z|{mν}) , (2.3.89)

r =

∫
dz tanh2

(
β̂z
)
P (z|m) . (2.3.90)

For β →∞, the eigenvalues become

λµ = β̂Pµ(−mµ|{mν})− 1 , for µ ≤ n , (2.3.91)

λµ = β̂P (0|m)− 1 , for µ > n . (2.3.92)

For γ = 0 and n condensed patterns, Pµ(z|{mν}) and P (z|m) respectively read

Pµ(z|{mν}) =

∫ ∞

−∞

dω

2π
e−iωz

n∏

ν 6=µ

〈eiωξνmν 〉ξ =

∫ ∞

−∞

dω

2π
e−iωz

n∏

ν 6=µ

[1 + c(cos(ωmν)− 1)]

(2.3.93)

and

P (z|m) =

∫ ∞

−∞

dω

2π
e−iωz

n∏

ν=1

[1 + c(cos(ωmν)− 1)] . (2.3.94)

Similarly to what was shown in sec. 2.3.2.1 (see eq. (2.3.81) for details), we can

relate P (z|m) and Pµ(z|{mν}), ∀ µ, as follows

P (z|m) = (1−c)Pµ(z|{mν})+c
Pµ(z +mµ|{mν}) + Pµ(z −mµ|{mν})

2
. (2.3.95)

It is worth stressing that, differently from the case γ 6= 0 analysed in sec. 2.2.3,

here for γ = 0 the distribution Pµ(z|{mν}) does not converge to P (z|m) in the

thermodynamic limit. Setting z = 0 in (2.3.95) to check the stability condition,

as required by (2.3.92), we have

P (0|m) = (1− c)Pµ(0|{mν}) + cPµ(mµ|{mν}) . (2.3.96)

The stability along the directions µ = n + 1, . . . , P requires P (0|m) = 0. It
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also implies the stability along the directions µ = 1 . . . , n, i.e. Pµ(mµ|{mν}) =

Pµ(0|{mν}) = 0 ∀ µ as for 0 < c < 1 the two terms on the RHS are both non-

negative. However, P (0|m) = 〈δ (
∑n

ν=1 ξ
νmν)〉ξ is bounded from below by the

probability of drawing ξ = 0, i.e. P (0|m) ≥ (1−c)n > 0, so hierarchical mixtures

can only be stable for P = n and the stability condition is given by λµ < 0 in

(2.3.91). The condition for their stability is Pµ(mµ|{mν}) = 0 ∀ µ ≤ P .

We can check this condition for the simple case with P = 2, where we also

derived the form of the hierarchical ansatz (2.3.61). In particular, we have to

compute P1(m1 = 1|m2 = 1− c) and P2(m2 = 1− c|m1 = 1) from (2.3.93). They

respectively read

P1(1|m2) =

∫ ∞

−∞

dω

2π
e−iω[1 + c(cos(ω(1− c))− 1)] , (2.3.97)

P2(1− c|m1) =

∫ ∞

−∞

dω

2π
e−iω(1−c)[1 + c(cos(ω)− 1)] . (2.3.98)

With simple manipulations we obtain

P1(1|m2) = c[δ(c) + δ(2− c)]/2 , (2.3.99)

P2(1− c|m1) = (1− c)δ(1− c) + c[δ(c) + δ(2− c)]/2 , (2.3.100)

both vanishing for any c ∈ (0, 1). This shows that the hierarchical mixtures, of

the form m = (1, 1 − c), are stable at low temperature, since their eigenvalues

λ1 = β̂P1(1|m2)− 1 and λ2 = β̂P2(1− c|m1)− 1 are negative. Note that in sec.

2.3.1 we were able to check only when symmetric mixtures destabilise, but we

did not analyse directly the stability of hierarchical mixtures.

2.4 Extreme dilution and medium storage regime

In the following sections, we analyse the dynamical behaviour of the system

in the medium load regime (i.e. δ > 0), where the number of patterns scales

sub-linearly in the system size, when patterns are extremely diluted (i.e. γ > 0).
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We will analyse the retrieval properties and obtain the phase diagram for the

stability of symmetric or hierarchical solutions.

2.4.1 Cross-talk effect for δ = γ

In this section we study the case δ = γ. We have shown in sec. 2.2.1 that the

first class of stationary states to bifurcate away from m = 0 below criticality, are

the symmetric mixtures m = m(1, . . . , 1, 0, . . . , 0), with m2 = nm2, where n is

the number of retrieved components.

For δ = γ > 0, we assume that n is a fraction of the total number of patterns

P = αNγ, hence we set n = φNγ, with 0 ≤ φ ≤ α. Using m2 = φNγm2

in (2.2.32), we obtain the amplitude of symmetric mixtures near the critical

temperature β̂c = 1 + ε

m2 ' 3ε

1 + 3cφ
. (2.4.101)

We analyse the stability of symmetric mixtures by looking at the eigenvalues of

the Jacobian Jµν (2.2.44) evaluated at m = m(1, . . . , 1, 0, . . . , 0). Its elements

are given by (2.2.46), (2.2.47) and (2.2.51), where, for symmetric states

rµ =

〈
tanh2

(
β̂m

(
1 +

φNγ∑

ν 6=µ

ξν

))〉

ξ

, (2.4.102)

r =

〈
tanh2

(
β̂m

φNγ∑

ν=1

ξν

)〉

ξ

. (2.4.103)

Note that in this case rµ = r1 ∀ µ. As before, it is convenient to consider the

discrete distribution3 P̃φ(z) =
〈
δ
z,
∑φNγ

ν=1 ξν

〉
ξ

. In the thermodynamic limit it can

3In principle one should introduce a second distribution Qµ(z) =
〈
δ
z,
∑φNγ

ν 6=µ ξ
ν

〉
ξ

but it can

be easily shown that the two differ by an amount that is negligible, O(N−γ).
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be written as

P̃φ(z) =

∫ π

−π

dω

2π
e−iωz+cφ(cosω−1) = e−φcIz(φc) , (2.4.104)

where Iz(φc) is the modified Bessel function of the first kind [45]. Clearly, P̃φ(z) =

P̃φ(−z), and due to the property of the Bessel functions,

dIz(φc)

d(φc)
=

1

2
[Iz−1(φc) + Iz+1(φc)] , (2.4.105)

P̃φ(z) evolves according to

dP̃φ(z)

dφ
=
c

2

[
P̃φ(z − 1) + P̃φ(z + 1)− 2P̃φ(z)

]
, (2.4.106)

which describes a continuous-time symmetric random walker taking unit steps

along the z-axis with rate c/2, as φ increases. We can rewrite r1 and r in terms

of P̃φ(z), as:

r1 =
∑

z

P̃φ(z) tanh2
(
β̂m(1 + z)

)
, (2.4.107)

r =
∑

z

P̃φ(z) tanh2
(
β̂mz

)
. (2.4.108)

In the thermodynamic limit, N → ∞ , Jµν → 0 for µ 6= ν and the stability

matrix is diagonal, with two eigenvalues

λ1 ' β̂(1− r1)− 1 , with deg(λ1) = φNγ , (2.4.109)

λ2 ' β̂(1− r)− 1 , with deg(λ2) = Nγ(α− φ) , (2.4.110)

where deg(λi) represents the degeneracy of eigenvalue λi. Near T ' Tc = c we

Taylor-expand r1 and r in powers of ε = β̂ − 1

r1 '
3ε(1 + cφ)

1 + 3cφ
, r ' 3εcφ

1 + 3cφ
, (2.4.111)
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and compute the eigenvalues

λ1 ' −
2ε

1 + 3cφ
< 0 , λ2 '

ε

1 + 3cφ
> 0 . (2.4.112)

Near T ' 0, we have

r1 → 1− P̃φ(−1) , λ1 → β̂e−φcI1(φc)− 1 , (2.4.113)

r → 1− P̃φ(0) , λ2 → β̂e−φcI0(φc)− 1 , (2.4.114)

where the asymptotic holds for large β̂. The functions I0(x), I1(x) are non-

negative and O(1) for any finite x > 0, and become small only for x → ∞,

as e−xIn(x) ∼ 1/
√

2πx ∀ n for large x. However, for δ = γ, φ ≤ α, hence

λ1, λ2 > 0 and symmetric mixtures are unstable for any finite value of α, at low

temperature.

From the analysis above it follows that λ2 > 0 near T ' 0 and T ' Tc. Indeed,

one can check numerically that λ2 stays positive ∀ T < c, for any value of φ, by

computing it from (2.4.108) and (2.4.110), with m solving the self-consistency

equation

m =
∑

z

P̃φ(z) tanh
(
β̂m(1 + z)

)
. (2.4.115)

Since λ2 only comes into play for α > φ, symmetric mixtures bifurcating from

m = 0 must be in the form m = mα(1, . . . , 1), i.e. with φ = α, indicating parallel

retrieval of all patterns.

Their stability is controlled by λ1. In fig. 2.6 we plot the eigenvalue λ1 as a

function of the scaled temperature T̂ = T/c for a fixed value α̂ = αc, as well as the

theoretical predictions near Tc (2.4.111) and T ' 0 (2.4.113). In fig. 2.7 we show

the critical line in the parameter space (T̂ , α̂) separating the region (S) where
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Figure 2.6: Eigenvalue λ1 as a function of the temperature T̂ , for a fixed α̂ = 0.2.

The red dashed line gives the theoretical prediction near the critical temperature

(eq. (2.4.111)). The figure in the inset is in agreement with eq. (2.4.113), which

holds for T → 0 and gives λ̂ = λ/e−φcI0(φc)→ 1.

symmetric mixtures are stable, from the region (H) where they are unstable.

The phase diagram shows that for large regions of the tunable parameters (noise

and storage load) the system is able to recall all the stored patterns in parallel

and symmetrically. However, for low temperature, the symmetry of patterns is

broken and should not be assumed at zero temperature [26]. We suggest in the

next subsection the hierarchical structure of the steady state at zero temperature.

The dotted line in fig. 2.7 is given by the α→ 0 limit of eq. (2.4.113) for φ = α

λ1 ' β̂(1− αc)αc
2
− 1 , (2.4.116)

where we used e−αcI1(αc) ' (1 − αc)αc
2

+ O(α3). The stability condition for

symmetric mixtures for small α becomes

T̂ >
α̂

2
, (2.4.117)

with T̂ = β̂−1 = T/c and α̂ = αc.

In fig. 2.8 (left panel) we show Monte Carlo simulations of a system with

N = 104 spins, evolving according to a sequential Glauber dynamics with δ =
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Figure 2.7: Phase diagram in the regime δ = γ. In the parameter space (T̂ , α̂)

the purple area represents the region where symmetric mixtures exist and are

stable, which correspond to λ1 < 0. The area denoted by (H) represents the

region where we expect a hierarchical retrieval. The dotted line is given by the

small α behaviour of λ1 in eq. (2.4.117).

γ = 0.25, T̂ = 0.75, c = 0.8 and α = 1. This choice of the parameters corresponds

to the region in the phase space where symmetric mixtures are stable. Overlaps

with different patterns evolve to symmetric, non-zero values in agreement, up to

finite-size effects, with the values predicted by the theory (2.4.115).

In conclusion, pattern cross-talk appears in this regime as noise affecting the

random-walk distribution (2.4.106), which has the effect of shrinking the ampli-

tude of symmetric mixtures with respect to the regime without cross-talk. There

P̃φ(z) crosses over to a delta function centered in z = 0 and amplitudes are given

by the Curie-Weiss equation (2.2.43).

Finally, let us briefly digress into the properties of the network analysed here.

It is, indeed, interesting to compute its percolation threshold for δ = γ = 1. In

network theory we have a giant component in a graph G when the average number

of second nearest neighbours is larger than the average number of first nearest
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neighbours [46]. In this case, this condition is translated as follows

(αc2N1−γ)2 > αc2N1−γ , (2.4.118)

as we have P = αNγ patterns with probability c
Nγ of having a non-zero link with

N T clones. The condition reads

αc2 > Nγ−1 . (2.4.119)

In the regime γ < 1, this condition is always satisfied for α > 0, hence the

network is always above the percolation threshold for any value α. In contrast, for

α = 0, which corresponds to the case δ < γ, the system is below the percolation

threshold and, as discussed in sec. 2.2.3, it separates into a set of independent

Curie-Weiss models. In chapter 4, we will instead analyse the case with δ = γ = 1

where the percolation threshold is given by αc2 = 1. There, our approach will

allow us to predict the structure of states in two cases: (i) at T = 0 for αc2 below

the percolation threshold (ii) at T > 0 and for values αc2 below a T -dependent

threshold (see sec. 4.6.2).

2.4.1.1 Extending the hierarchical ansatz to the medium storage regime

As explained above, symmetric mixtures are unstable at low temperature.

It is not a priori clear how the symmetry is broken, however for T → 0 one

may expect that the system retrieves patterns in a hierarchical fashion similar

to the one found in the low storage regime. Reasoning as in [24, 36, 40], we may

assume that the system starts aligning its entries to the non-zero entries of the

first pattern, which are cN1−γ, sparing N − cN1−γ entries of σ to align with the

cN1−γ non-zero entries of the second pattern and so forth. Hence, we have the

following expressions for the non-normalised overlaps Mµ = cN1−γmµ, with mµ
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Figure 2.8: Monte Carlo simulations of a system with N = 104 spins, γ = δ = 0.25

and α = 1 evolving according to sequential Glauber dynamics. We plot the

overlaps mµ with different patterns ξµ as a function of time t. Left: T̂ = 0.75,

c = 0.8. Red markers represent the values theoretically predicted by (2.4.115).

Right: T̂ = 0.01, c = 1. Red markers represent the values heuristically predicted

by the ansatz (2.4.121) at T = 0.

as defined in 2.2.9:

M1 = cN1−γ ,

M2 =
c

Nγ

(
N − cN1−γ) = cN1−γ

(
1− c

Nγ

)
,

M3 =
c

Nγ

(
N − cN1−γ − cN1−γ + c2N1−2γ

)
= cN1−γ

(
1− c

Nγ

)2

.

. . . (2.4.120)

Proceeding iteratively, we arrive at the following heuristic general expression for

the normalised overlaps

mµ =

(
1− c

Nγ

)µ−1

, µ = 1, . . . , φNγ , (2.4.121)

whose stability at T = 0 is given by the eigenvalues

λµ = β̂P̃ (mµ) , µ = 1, . . . , φNγ ,

λν = β̂P̃ (0) , ν = φNγ + 1, . . . , αNγ , (2.4.122)
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where the distribution P̃ (z) is defined in (2.2.41). As in sec. (2.3.2), the probabil-

ity P̃ (0) is bounded by the probability of drawing ξ = 0, P̃φ(0) ≥ (1−cN−γ)φNγ '
e−cφ > 0, hence a necessary condition to have stability is α = φ. Monte Carlo

simulations at small temperature support the validity of the ansatz (2.4.121) for

γ > 0, with φ = α (see fig. 2.8, right panel). Remarkably, the first pattern of the

hierarchy is recalled without errors, besides the presence of cross-talk.

2.4.2 Strong interference for δ > γ

As the number of patterns whose dilution is insufficient is increased, the par-

allel retrieval capabilities of the system may be naively expected to get drastically

compromised. In this section, we will actually show that the patterns recall de-

grades only very slowly, highlighting the regions where symmetric retrieval is

stable. Here we consider P = αN δ patterns, with δ > γ, and we assume the

number of retrieved patterns to be n = ψN δ.

As in sec. 2.4.1, we analyse the stability of symmetric solutions of the form

m = m(1, . . . , 1, 0, . . . , 0). The amplitude of symmetric mixtures follows from

(2.4.115) as

m =
∑

z

P̃ψ(z) tanh
(
β̂m(1 + z)

)
, (2.4.123)

where P̃ψ(z) =
〈
δ
z,
∑ψNδ

ν=1 ξν

〉
ξ

is the discrete noise distribution. Using the integral

representation of the Kronecker-δ and averaging over ξ, the latter can be written

as

P̃ψ(z) =

∫ π

−π

dω

2π
e−iωz+cψNδ−γ(cosω−1) . (2.4.124)

As for large N the integral above has most of its mass concentrated around ω = 0,
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we can use a small-ω expansion in the exponent, yielding

P̃ψ(z) =

∫ π

−π

dω

2π
e−iωz− cψN

δ−γ
2

ω2

. (2.4.125)

Setting ω → ω/
√
cψN δ−γ and extending the rescaled boundaries to infinity, due

to the fast decay of the exponential at large values of ω, by Gaussian integration

we obtain

P̃ψ(z) =
e−z

2/2cψNδ−γ

√
2πcψN δ−γ

. (2.4.126)

Hence, in this regime the cross-talk between a large number of insufficiently

diluted condensed patterns appears as a Gaussian noise. The variance of the

Gaussian noise is given by ψ̂ = cψN δ−γ and quantifies the interference level be-

tween patterns. The effect of interference on the symmetric mixtures is stronger

compared to the δ = γ regime, analysed in sec. 2.4.1, leading to smaller ampli-

tudes of the symmetric recall.

Analysing the statics of this system in the very same regime, an ansatz was put

forward [26] that symmetric mixtures were stable in all regions of the phase space

(T̂ , ψ̂). Our analysis based on a dynamical approach highlights the limitations

of the ansatz and its regime of validity. In particular, we anticipate that in the

limit of large interference, ψ̂ � 1, symmetric mixtures become unstable and a

hierarchical recall is, instead, accomplished.

The linear stability analysis of the symmetric mixtures m = m(1, . . . , 1, 0 . . . , 0)

with n = ψN δ can be performed as in Sec 2.4.1, by identifying φ = ψN δ−γ. In

particular, we have

λ1 ' β̂(1− r1)− 1 , with deg(λ1) = ψN δ , (2.4.127)

λ2 ' β̂(1− r)− 1 , with deg(λ2) = N δ(α− ψ) , (2.4.128)
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with

r1 =
∑

z

P̃ψ(z) tanh2
(
β̂m(1 + z)

)
, (2.4.129)

r =
∑

z

P̃ψ(z) tanh2
(
β̂mz

)
. (2.4.130)

For T ' Tc, we get from equations (2.4.129) and (2.4.130),

r1 '
3εcψN δ−γ

1 + 3cψN δ−γ ' ε
(

1 +
2

3cψN δ−γ

)
, (2.4.131)

r ' 3εcψN δ−γ

1 + 3εcψN δ−γ ' ε
(

1− 1

3cψN δ−γ

)
, (2.4.132)

where we performed a series expansion for large N . From eq. (2.4.127), (2.4.128)

and the expansion above, we find

λ1 '
−2ε

3cψN δ−γ , deg(λ1) = ψN δ , (2.4.133)

λ2 '
ε

3cψN δ−γ , deg(λ2) = N δ(α− ψ) . (2.4.134)

For any large but finite N , symmetric mixtures near Tc are stable only if all com-

ponents are recalled, as λ1 < 0 and λ2 > 0. In this case we would have α = ψ, i.e.

P = n, and the positive eigenvalue accounting for the stability of non-retrieved

patterns would disappear. In the thermodynamic limit, eq. (2.4.133)(2.4.134)

vanish, and stability cannot be assessed to linear order in ε. In the low tempera-

ture limit, T → 0, we have, similarly to (2.4.113, 2.4.114),

r1 → 1− P̃ψ(−1) , λ1 → β̂P̃ψ(1)− 1 , (2.4.135)

r → 1− P̃ψ(0) , λ2 → β̂P̃ψ(0)− 1 . (2.4.136)

Note that we used the symmetry P̃ψ(z) = P̃ψ(−z). For large N , P̃ψ(1) ' P̃ψ(0) '
N (γ−δ)/2/

√
2πcψ and we get

λ1 ' λ2 →
β̂N (γ−δ)/2
√

2πcψ
, (2.4.137)
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Figure 2.9: Eigenvalue λ1 as a function of the temperature T̂ , for a fixed ψ̂ =

cψN δ−γ = 5. The red dashed line gives the theoretical prediction near the critical

temperature (2.4.133). The figure in the inset shows agreement with (2.4.137),

which gives λ1(T̂ )→ N(γ−δ)/2
√

2πcψ
as T̂ → 0 (red marker).

hence for any large but finite N , both eigenvalues are positive and symmetric

mixtures are unstable, indicating that a hierarchical retrieval must take place. We

can compute λ1,2 numerically from (2.4.127, 2.4.128) by using (2.4.129, 2.4.130)

where P̃φ(z) is replaced with (2.4.125) and the amplitude m is determined from

(2.4.123). In fig. 2.9 we plot the eigenvalue λ1 as a function of T̂ at a fixed value

of ψ̂, as well as the predicted limits for T̂ → 0 and T̂ → 1 given in (2.4.133)

and (2.4.137) respectively. We check numerically that λ2 stays positive for any

temperature below criticality. A contour plot of the critical line where λ1 = 0 in

the (T̂ , ψ̂) plane is shown in fig. 2.10. In particular, we highlight the region (S)

where symmetric mixtures are stable and the (H) region where they destabilise.

In general, we expect that in presence of strong interference or at low temper-

ature the symmetry among patterns should be broken. However, in this regime,

it is more difficult to predict what the shape of the bifurcating solutions is, even

at low temperature, due to the presence of strong interference between patterns.

In particular, it is not a priori clear whether a hierarchical retrieval would involve

all patterns or just a fraction of them. Nonetheless, we can inspect the behaviour
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Figure 2.10: Phase diagram in the parameter space (T̂ , ψ̂) for the case δ > γ. The

(S) area represents the region where the symmetric mixtures are stable, while the

(H) region is characterised by hierarchical states. The (S) region is obtained as

the contour plot of the equation λ1 = 0 solved numerically together with equation

(2.4.123).
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Figure 2.11: Monte Carlo simulations with N = 104 spins. We plot the overlaps

mµ with different patterns ξµ, as a function of time t, for T̂ = 0.015, c = 0.8,

δ = 0.25, γ = 0.2 and α = 1.
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of the system by looking at the activation dynamics, described by

dmµ

dt
=

〈
tanh

(
β̂

(
mµ +

P∑

ν 6=µ

ξνmν

))〉

ξ

−mµ . (2.4.138)

Introducing the noise density P (z|{mν}) =
〈
δ
(
z −∑P

ν 6=µ ξ
νmν

)〉
ξ

we have (as

in sec. 2.2.3)

dmµ

dt
=

∫ ∞

−∞
dzP (z|{mν}) tanh

(
β̂ (mµ + z)

)
−mµ . (2.4.139)

The distribution can be written, using the standard manipulations introduced so

far, as

P (z|{mν}) =

∫ +∞

−∞

dω

2π
eizω+ c

Nγ
∑P
ν 6=µ(cos(ωmν)−1) . (2.4.140)

At zero temperature, one may expect that the system shows an overlap O(1) with

a non-zero number of patterns. Assuming that the number of these condensed

patterns is O(Nγ) and the remaining (non-condensed) O(N δ) patterns have an

overlap with the system configuration O(N
γ−1
2 ), we can write the noise distri-

bution by splitting the contribution from the condensed (labelled by λ) and the

non-condensed (labelled by ρ) patterns

P (z|{mν}) =
∫ +∞
−∞

dω
2π

eizω+ c
Nγ

∑ψNγ

λ=1 (cos(ωmλ)−1)e
c
Nγ

∑αNδ

ρ=1 (cos(ωmρ)−1)

=
∫ +∞
−∞

dω
2π

eizω+ c
Nγ

∑ψNγ

λ=1 (cos(ωmλ)−1)e−
c

2Nγ
∑αNδ

ρ=1 m2
ρω

2

. (2.4.141)

In the last step, we also Taylor-expanded the mρ-dependent terms for mρ small.

For large N we obtain

P (z|{mν}) ' P (z|{mλ}) +O(N δ−1) . (2.4.142)
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Hence, the evolution of the non-condensed patterns is given, to leading order, by

dmρ

dt
'
∫ +∞

−∞
dzP (z|{mλ}) tanh

(
β̂(mρ + z)

)
−mρ +O(N δ−1) , (2.4.143)

which depends on the noise distribution of condensed patterns {mλ} only. Taylor-

expanding for small mρ we obtain

dmρ

dt
' mρ

[
β̂

∫ +∞

−∞
dzP (z|{mλ})

(
1− tanh2

(
β̂z
))
− 1

]
+O(N δ−1) (2.4.144)

and for T → 0 we get

dmρ

dt
' mρ

[
β̂P (0|{mλ})− 1

]
. (2.4.145)

As explained in 2.4.1.1, P (0|{mλ}) ≥ e−ψc. This suggests that the non-condensed

solutions are unstable and the system will attempt to recall hierarchically all

patterns, as supported by Monte Carlo simulations shown in fig. 2.11. However,

the retrieval degrades with respect to that described in (2.4.121), valid at the

onset of pattern cross-talk, where the first pattern in the hierarchy was retrieved

without errors.

2.5 Summary

In this chapter, we analysed the dynamics of associative memories with diluted

patterns, in different regimes of pattern dilution and storage load (away from

saturation). Our aim was to understand the behaviour of the system in terms of

signals exchange between clones and cytokine patterns recall.

In particular, we have identified three regimes as highlighted in fig. 2.12: (I)

δ < γ, (II) δ = γ and (III) δ > γ. In (I) there is no interference between cytokine

patterns, as these are relatively low in number and sufficiently diluted, so the

network behaves as a set of P independent ferromagnets each evolving according

to the Curie-Weiss equation. As a result, the parallel retrieval accomplished by
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Figure 2.12: Schematic phase space (γ, δ). In region I (δ < γ), we have a set

of P independent ferromagnets and parallel retrieval is accomplished in a sym-

metric fashion. In region II cross-talk between patterns appears; the intensity of

symmetric recall is decreased due to the presence of a noise, whose distribution

is identical to the one of a lazy, unbiased random walker, and the region of sta-

bility of the symmetric retrieval is provided in the phase diagram (fig. 2.7). A

similar behaviour is found for δ = γ = 0, but the region of stability of the sym-

metric region shrinks (fig. 2.3), due to the noise distribution retaining a pattern

dependence (sec. 2.2.3). Finally, in region III, cross-talk effects are strong and

increase the larger δ and the smaller γ. These decrease the strength of symmetric

retrieval via a Gaussian interference noise, and are seen to degrade gradually the

hierarchical retrieval of the network, which thus retains its parallel processing

capabilities.
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the system in this regime is symmetric for any temperature below criticality.

In (II) a pattern cross-talk appears and symmetric mixtures are no longer sta-

ble for all temperatures below criticality. We derived the phase diagram showing

their region of stability in the parameter space. The cross-talk between patterns

materialises on symmetric mixtures as a noise term affecting the distribution of

a lazy random walker, taking discrete steps at discrete time (for γ = 0) and in

continuous time (for γ > 0). The laziness of the random walker is due to pattern

dilution and removes the periodicity in the return times, which is responsible for

the different role played by even and odd mixtures, in the traditional (i.e. undi-

luted) Hopfield model, at zero temperature [29]. The region where symmetric

mixtures are stable is broad for γ > 0, where the noise distribution is pattern-

independent, whereas the retrieval is mostly hierarchical for γ = 0, where the

symmetry of patterns is mostly a close-to-criticality effect.

Finally, in (III), the effect of cross-talk on symmetric mixtures turns out to

be Gaussian noise, whose variance is directly related to the level of pattern inter-

ference, which decreases the quality of parallel retrieval. We derived the region

of stability of symmetric mixtures and showed that for large interference or low

temperature, symmetric mixtures are unstable. In particular, at zero tempera-

ture the system is able to retrieve all patterns in a hierarchical fashion, despite

the presence of strong interference may suggest that no retrieval is accomplished

in this regime [26].



There is a growing community of theorists who want, as

it were, more out of life. [..] We want to reconcile the

physicists desire for concise, unifying theoretical principles

with the obvious complexity and diversity of life.

W. Bialek, Perspectives on theory at the interface of

physics and biology 3
Towards a more realistic immune

system model

The immune system is, indeed, a beautiful and powerful machinery, able to per-

form multiple tasks simultaneously by coordinating the sub-parts that it is com-

posed of. In the previous chapters we described, for example, a simple model

that captures the ability of T clones to orchestrate the same-time activation of

B clones in the adaptive immune system. Yet, there is more to this description

that Nature has been able to create: from ingenious mechanisms to modulate the

immune response to smart and efficient ways to discern self-cells from external

pathogens and prevent unwanted activations. To this end, we propose here an

extended model of the adaptive immune system to incorporate some important

biological features of real immune systems. In particular, we will include the

features listed below.

(a) Receptor promiscuity: we introduce the effect of having B clones with a

variable number of receptors expressed on their surfaces, one of the most

82
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important mechanisms preventing autoimmune reactions and diseases. A

receptor editing process is, indeed, very commonly observed during the B

clones maturation, where self-reactive cells, which may be responsible for

the onset of autoimmune responses, are suppressed at an early stage of the

development by reducing their number of receptors [47].

(b) Idiotypic interactions: we consider interactions between B clones, which

are not only able to recognise antigens, but also other B cells with com-

plementary receptors. In healthy situations, B-B interactions generate a

suppressive ”force” that must be overcome in order to induce an immune

response and may prevent unwanted activations [48]. According to recent

experimental studies [49–52] this so-called idiotypic network of interactions

seems also to play a central role in autoimmune diseases. In this case, it

supports a cascade of unwanted events such as autoantibodies production,

which recognise each other and modulate the immune response.

(c) Antigens: we incorporate the effect of an external antigenic field acting on

the B-T system. In particular, we investigate the immunological memory [2],

i.e. the ability of the immune system to produce a more effective and faster

response at a second encounter with an antigen [1]. We also discuss how

the presence of infections may affect the immune system basal activity [53],

i.e. B clones activation due to the interactions with T clones in the absence

of external antigens, and surveillance.

In terms of modelling, we will use the techniques and the setting introduced

in chapter 2. In the next sections, we will discuss how we actually integrate

the new ingredients in the previous framework and the main results obtained.

We will analyse the system’s behaviour in different regions of the parameters

space, i.e. varying the number of clones and triggered receptors, noise level

or B-B interaction strength, through linear stability analysis and Monte Carlo

simulations.
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3.1 Adding new ingredients

The players involved in this model are, as before, T clones σi = ±1, i =

1, . . . , N and B clones bµ ∈ R, µ = 1, . . . , P with the addition of antigens with

concentrations ψa ∈ R, a = 1, . . . , NA (with respect to a reference level). Both the

number of B clones and the number of antigens are sub-linear in the system sizeN ,

with P = N δ, δ ∈ [0, 1) and NA = Nλ, λ ∈ [0, 1). In the absence of antigens and

interactions with T clones, the B clones’ log-concentrations bµ can be regarded

as Gaussian variables (N (0, T ) in absence of idiotypic interactions as shown in

chapter 2). The interactions between the i-th T clone and the µ-th B clone,

mediated via the cytokines, are represented by the variables ξµi ∈ {+1,−1, 0},
respectively corresponding to receptor promiscuityexcitatory, inhibitory or absent

signals. We will regard those as random variables drawn from P({ξ}|q), which will

depend on the set of parameter q = (q1, . . . , qP ) tuning the receptor promiscuity

per B clone. Note that by setting q = c(1, . . . , 1) we would recover the case with

fixed receptor promiscuity analysed in chapter 2.

The combined interacting system of B, T clones and antigens can be phe-

nomenologically described by the following Hamiltonian:

H(σ,b|ξ) = −
P∑

µ=1

bµ

(
NA∑

a=1

ψaη
µ
a +N1−γ

N∑

i=1

ξµi σi

)
+

1

2

P∑

µ,ν=1

bµAµνbν . (3.1.1)

The first term takes into account the interactions between antigens and B clones

via the matrix ηµa , the second term is related to B - T interactions mediated by

cytokines, while the third one accounts for the effect of the idiotypic network,

i.e. B-B interactions via the matrix Aµν . These interactions are schematically

summarised in fig. 3.1, 3.2. Assuming that the B clones log-concentrations evolve
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according to a gradient descent on the Hamiltonian (3.1.1), we have

dbµ
dt

= −∂H
∂bµ

+ χµ(t) =

NA∑

a=1

ψaη
µ
a +Nγ−1

N∑

i=1

ξµi σi −
1

2

P∑

ν=1

Aµνbν + χµ(t) ,

(3.1.2)

where χµ(t) is a Gaussian white noise with 〈χµ(t)〉 = 0, 〈χµ(t)χν(t
′)〉 = 2Tδµ,νδ(t−

t′) and strength T = 1/β. Hence, the log-concentration of the µ-th B-clone is

directly affected by this new interaction mechanisms, i.e. B clone-antigen and B-

B, decreasing or increasing depending on the processes and type of interactions

(excitatory or inhibitory).

TB

B

Y
Y

T cellsB cells

AAntigen

T

η ξΨ

Figure 3.1: Schematic interactions between B, T clones and the antigen A. In

the presence of an antigen with concentration ψ, the complementary B clone

will detect it (B-A interactions mediated via the matrix η) and will receive a

confirmatory signal from the active T clones (represented by up arrows) via the

cytokines ξµi .

Assuming as in chapter 2 that B clones are faster than T clones and that T

clones minimise the same energy function (3.1.1), we can introduce a Glauber

sequential dynamics with transition rates

wi(σ) =
1

2

[
1− σi tanh

(
βheff

i (σ)
)]

(3.1.3)

and effective fields

heff
i (σ) = Nγ−1

(
MTA−1ξi +ψTηA−1ξi

)
. (3.1.4)
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Figure 3.2: Scheme of B-B and B-A interactions. Antigens and B clones are

denoted by variables 0, 1 representing the shape of their receptors. Different B

clones excite each other and each of them represses itself, while the antigen will

excite complementary B repressing the identical one (0-0).

The dependence on σ is through the vector of magnetisations MT = (M1, . . . ,MP ),

where

Mµ(σ) =
1

N1−γ

N∑

i=1

σiξ
µ
i . (3.1.5)

Here ψT = (ψ1, . . . , ψa) represents the set of antigenic fields and we denote MT

and ψT the transpose of M and ψ respectively. The matrix η encodes the

interaction between antigens and B clones, while A refers to the B-B interactions.

As shown in sec. 2.2.1.1, from the microscopic probabilities pt(σ) of finding the

system in state σ = (σ1, . . . , σN) we can write the dynamics for the B clones

activation (magnetisations), described by the probability of finding the system in

a macroscopic state M1 at time t, namely

Pt(M) =
∑

σ
pt(σ)δ(M−M(σ)) . (3.1.6)

Finally, via a Kramers-Moyal expansion for large system size and away from

saturation, it is possible to show that Pt(M) evolves according to a Liouville

equation, as shown in ch. 2 for the corresponding Pt(m) . Hence, it follows that

1The attentive reader will have noticed the different normalisation of the overlaps in (3.1.5),
compared to ch. 2. For convenience we work here with dilution-dependent overlaps and we will
normalise them later, depending on the choice of dilution.
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M evolve deterministically with a dynamics described by

dM

dt
=

〈
ξT tanh

[
β
(
MTA−1ξ +ψTCξ

)]〉

ξ
−M , (3.1.7)

where C = ηA−1 and 〈 · 〉ξ denotes the average over the distribution P(ξ|q). The

choice of the distribution will be specified in the following.

In the next sections, we will consider the following cases:

• in sec. 3.2 we study only the effect of receptor promiscuity, in the absence

of antigens (ψ = 0) and idiotypic interactions (A = 1);

• in sec. 3.3 we consider the effects of idiotypic interactions in the absence of

antigens (ψ = 0) and with homogeneous promiscuities, i.e. q = c(1, . . . , 1);

• in sec. 3.4 we analyse the effects of antigens (ψ 6= 0) in the absence of

idiotypic interactions (A = 1) and with homogeneous promiscuities, i.e.

q = c(1, . . . , 1).

In each of the sections mentioned above, we will consider the low storage

regime and finite dilution, i.e. P = 2 patterns and γ = 0, and the medium load

with extreme dilution, i.e. P = αN δ patterns and δ, γ > 0.

3.2 Effects of receptor promiscuity

We first consider the case where there is no antigen ψa = 0 ∀ a, and no B-B

interactions i.e. A = 1, and we focus on the effect of having a variable number

of triggered receptors on different B clones, i.e. heterogeneous qµ. The receptor

promiscuity is introduced in the model via the cytokines or patterns distribution.
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We will regard the cytokines as P random variables drawn from

P(ξ|q) =
∏

µ

[
qµ

2Nγ

(
δξµ,1 + δξµ,−1

)
+

(
1− qµ

Nγ

)
δξµ,0

]
, qµ = O(N0) ∀µ ,

(3.2.8)

where the qµ’s are drawn from a given distribution. The expected number of

triggered receptors of the µ-th B-clone is given by nµr = qµ
NγN . All clones have a

sub-extensive number of receptors O(N1−γ), while qµ finely tunes the interactions

promiscuity. Experiments [54] suggest that the number of receptors in T cells have

to be at least ∼ 8000 in order to be activated, whereas N = O(108). The fraction

of non-zero B-T links determines the degree of dilution of the system: for γ = 0

the system is finitely diluted, whereas for γ > 0 the system is extremely diluted.

3.2.1 Dynamical equations for B clones activation

In order to compare the activation of B clones with different numbers of

receptors, it is convenient to look at the activation per receptor, given by the

normalised order parameters mµ = Mµ/qµ, µ = 1, . . . , P , which take values in

the range [−1, 1] for all clones µ. The dynamical equations (3.1.7) then read

dmµ

dt
=
Nγ

qµ

〈
ξµ tanh

(
β

P∑

ν=1

qνξ
νmν

)〉

ξ
−mµ , (3.2.9)

where the average is taken over 3.2.8. At the critical temperature Tc = qmax, where

qmax = maxµ[qµ], the system undergoes a phase transition, with the equilibrium

phase at T > Tc characterised by m = 0, and B clones activation (m 6= 0)

occurring for T < Tc. At the steady state (dm/dt = 0), we have

mµ =
Nγ

qµ

〈
ξµ tanh

(
β

P∑

ν=1

qνξ
νmν

)〉

ξ

. (3.2.10)
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Taking the scalar product with m and using the inequality | tanhx| ≤ |x|, yields

m2 ≤ Nγ

qµ
β

P∑

µ=1

mµ

P∑

ν=1

qνmν〈ξνξµ〉ξ = β
P∑

µ=1

qµm
2
µ ≤ βqmaxm

2 . (3.2.11)

This implies m2 = 0, hence m = 0, for βqmax < 1, meaning that none of the B

clones get activated for noise levels above the critical value T > qmax. Although

m = 0 is a steady state solution of (3.2.9) for any value of T , a linear stability

analysis shows that it becomes unstable for T < qmax. To this end, we compute

the Jacobian of the linearised dynamics about the steady state m? = 0

Jµν =
∂F

(1)
µ (m)

∂mν

∣∣∣∣
m=m?

, F (1)
µ (m) =

Nγ

qµ

〈
ξµ tanh

(
β

P∑

ν=1

ξνqνmν

)〉

ξ

−mµ ,

(3.2.12)

which gives

Jµν =
Nγβqν
qµ

〈
ξνξµ

[
1− tanh2

(
β

P∑

ν=1

ξνqνm
?
ν

)]〉

ξ

− δµν . (3.2.13)

Substituting m? = 0 we get Jµν = (βqµ − 1)δµν . The largest eigenvalue, which

gives the stability of m? = 0, is λmax = βqmax − 1. This becomes positive for

βqmax > 1, showing that non-zero solutions m 6= 0 will bifurcate away from

m = 0 at T = qmax.

In the next sections, we will inspect the structure and the stability of the

bifurcating solutions first for the case with two B clones (sec. 3.2.2) and then for

the general one with P B clones (sec. 3.2.3). Results in sec. 3.2 will show that cells

with few receptors may be transiently activated but fail to sustain the signal even

if strongly excitatory (fig. 3.3). The receptor promiscuity affects both the immune

response strength and the critical temperature at which they get activated: both

decrease with the number of triggered receptors. In addition, competition emerges

between B clones to be activated. As the number of activated B clones increases,
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signalling pathways to inactive clones get more noisy due to the interference of

active clones. Therefore, the critical temperature for the activation of inactive

clones is a decreasing function of the fraction of active clones (see eq.(3.2.67)).

3.2.2 A toy model with two B clones

Here we study a toy model with P = 2 B clones, and assume q1 > q2. For γ >

0, this model reduces to two independent Curie-Weiss ferromagnets, with critical

temperatures q1 and q2 respectively (see discussion in sec. 3.2.3). Hence, the most

interesting case is obtained for γ = 0. The state m? = (0, 0) is the only steady

state of the system for T > q1, but it destabilises for T < q1. To investigate the

system’s behaviour below criticality, we numerically solve its dynamical equations

dm1

dt
= (1− q2) tanh(βq1m1) +

q2

2
[tanh(β(q1m1 + q2m2))+

+ tanh(β(q1m1 − q2m2))]−m1 , (3.2.14)

dm2

dt
= (1− q1) tanh(βq2m2) +

q1

2
[tanh(β(q1m1 + q2m2))+

− tanh(β(q1m1 − q2m2))]−m2 . (3.2.15)

In fig. 3.3 we show the flow diagram and the stable fixed points of the dynamical

system at different temperatures: first, we notice that B clones with a higher

promiscuity produce a higher immune response (m1), whereas a lower promiscuity

qµ results in a lower or null activation (m2), depending on the temperature.

Hence, the number of receptors on B clones surface affects their responsiveness.

In particular, if T is high, only clones with the highest number of receptors are

activated and the system’s fixed point corresponds to the pure state m1 6= 0,m2 =

0. Lowering T induces the activation of clones with fewer receptors but with a

lower intensity (m1 > m2).

Theoretical results are consistent with Monte Carlo simulations, shown in

fig. 3.4. In addition, Monte Carlo simulations are in qualitative agreement with

experimental results [54] showing that clones with very few receptors are triggered
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transiently but fail to remain active in the long run. Fig. 3.5 shows that our model

can qualitatively reproduce this effect: clones with few receptors (green) have a

lower activation even if triggered by a strong signal (initial condition) and tend

to be switched off after a short transient, conversely cells with a higher number of

receptors (blue) produce a strong immune response, even if triggered by a weak

signal (initial condition).
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Figure 3.3: Phase portrait of the dynamical system (3.2.14, 3.2.15) for q1 = 0.6,

q2 = 0.4 at low temperature T = 0.01 (left) and high temperature T = 0.2 (right).

Blue lines represent null-clines and stationary states are at the intersection of

null-clines.
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Figure 3.4: Monte Carlo simulations with 104 spins for q1 = 0.6, q2 = 0.4 at low

temperature T = 0.01 (left) and at high temperature T = 0.2 (right). Markers

represent the numerical solutions of (3.2.14, 3.2.15) .

Analytically, we can investigate the structure of the first states to bifurcate

below Tc by expanding the steady state equations, obtained setting dm1,2/dt = 0
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Figure 3.5: Monte Carlo simulations with N = 104 spins, with q1 = 0.6, q2 = 0.4

at T = 0.2. Clone activations m1, m2 as a function of time for different initial

conditions. Clones with few receptors [q2 (green)] fail to get activated even if

triggered by a strong signal.

in (3.2.14, 3.2.15), for small m1,m2, close to criticality, i.e. at βq1 = 1 + ε. We

get as possible solutions

m2
1 = 3ε− 3

q3
2

q2
1

m2
2 , (3.2.16)

m2
2 = 3

q2
1

q2
2

(1 + ε)− 3
q3

1

q3
2

− 3
q3

1

q2
2

m2
1 , (3.2.17)

as well as m1 = 0,m2 = 0. Solution (3.2.17) is not physical as it remains O(1)

at ε = 0 for q1 6= q2, hence m2 = 0. Inserting m2 = 0 in (3.2.16), we get

m2
1 = 3ε. Hence, the first state bifurcating away from m = (0, 0) is in the form

m = (
√

3ε, 0). At high temperature (below criticality) only the clone with the

highest promiscuity is switched on. For q1 = q2 we clearly retrieve the results

presented in chapter 2 and both B clones are activated with the same intensity

below criticality.

It is, then, interesting to understand in which region of the phase space clones

with lower promiscuities become responsive. Naively one might expect that m2

becomes active at T ' q2. In reality, heterogeneities in the clone promiscuities

deeply affect cell responsiveness and cells with fewer receptors will remain quies-
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cent even at very low T . By Taylor-expanding (3.2.9) for small m2 in powers of

ε = q2β − 1, we obtain

m1 = tanh(βq1m1) ' tanh

(
q1

q2

m1

)
, (3.2.18)

m2
2 = 3ε− 3

q3
1

q2
2

m2
1 . (3.2.19)

Since m1 is O(1), the non-zero solution for m2 is impossible close to T = q2.

The pure state m = (m1, 0) will then have a wider stability region, which can be

found by analysing the eigenvalues of the Jacobian (3.2.13) at m? = (m1, 0),

λ1 = βq1 − βq1 tanh2(βq1m1)− 1 , (3.2.20)

λ2 = βq2 − βq1q2 tanh2(βq1m1)− 1 . (3.2.21)

Analytically we can calculate λ1,2 near T ' 0

λ1 ' −1 , (3.2.22)

λ2 ' βq2 − βq1q2 − 1 , (3.2.23)

and near Tc, i.e. at βq1 = 1 + ε

λ1 ' −2ε , (3.2.24)

λ2 '
q2ε+ q2 − 3εq1q2 − q1

q1

+O(ε2) . (3.2.25)

For intermediate T we compute λ1,2 numerically. Plots of the eigenvalues as a

function of the temperature are shown in fig. 3.6, where the theoretical predictions

for T ' 0 (3.2.23) and T ' Tc (3.2.25) are highlighted. We note that λ1 < 0,∀ T ,

hence the stability of the pure state is determined by the sign of λ2. In fig. 3.7 we

show a contour plot of λ2 = 0 in the T − q2 plane fixing q1. The linear behaviour

can be understood as follows. In the pure state region we have, using the steady
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Figure 3.6: Eigenvalues (3.2.20),(3.2.21) as a function of T for q1 = 0.8 and

q2 = 0.7. Left: λ1, the red dashed line represents the behaviour near T ' Tc

(3.2.25). Right: λ2T , the red marker represents the limit at T ' 0 (3.2.23).
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Figure 3.7: Phase diagram in the space (T, q2) fixing q1 = 0.8 obtained from

the condition λ2 < 0 (3.2.21). The dotted line represents the theoretical critical

temperature (3.2.28). In the (PS) region the pure state is stable (m1 6= 0,m2 =

0). At low T , B clones are hierarchically activated (H).

state equation m1 = tanh(βq1m1),

λ1 = βq1(1−m2
1)− 1 , (3.2.26)

λ2 = βq2(1− q1m
2
1)− 1 . (3.2.27)

As T decreases (below q2) m1 increases, so that the eigenvalues stay negative and

the stability is ensured, until m1 reaches its maximum value m1 = 1. At this

point, a further decrease of the temperature will make λ2 positive, destabilising
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the pure state, and a new state (m1,m2) will take over. The temperature at which

bifurcations from the pure state are expected is thus found from the condition

λ2(T,m1 = 1) = 0, as

T = q2(1− q1) , (3.2.28)

which is in agreement with the critical temperature computed numerically (fig.

3.7). Deviations from the linear behaviour are expected in the regime q1 ' q2,

where a symmetric activation occurs for q1 ≤ 1/3, as shown in ch. 2. In fig.

3.8 we plot m1,m2 as a function of q2 in the (PS) region (left) and crossing the

critical line where m2 becomes non-zero (right). In the latter region, i.e. for

q2 > T/(1 − q1), the stable state is m = (1,m2) where m2 is the T -dependent

stationary solution of (3.2.15) at m1 = 1. In particular, for T = 0 the stable state

is

m1 = 1 , (3.2.29)

m2 = 1− q1 , (3.2.30)

in agreement with simulations and flow diagrams (fig. 3.3, 3.4). In conclusion,

the system can activate clones with different numbers of receptors simultaneously

for T < q2(1 − q1). The activation is hierarchical (H), with clones with higher

promiscuity being prioritised with respect to the others. In particular, clones

with the highest number of receptors are activated with the strongest possible

signal in a wide region of the phase diagram.

3.2.3 The case of P B clones with a variable promiscuity

In this section, we study the case where the number of B clones is P = N δ

with δ ∈ [0, 1), and N is the number of T-clones. The dynamical equations are

dmµ

dt
=
Nγ

qµ

〈
ξµ tanh

(
β

P∑

ν=1

qνξ
νmν

)〉

ξ
−mµ , (3.2.31)
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Figure 3.8: Plot of m1,m2 as a function of q2. Left : We consider q1 = 0.8 at

T = q2, following the magnetisations in the (PS) region with m = (m1, 0). Right:

For q1 = 0.8, and T = 0.01, 0.05, 0.1, 0.3 we show the bifurcation of m2, while m1

has already reached its maximum m1 = 1.

which can be rewritten, averaging over non-zero values of ξµ, as

dmµ

dt
=

〈
tanh

(
β

(
qµmµ +

P∑

ν 6=µ

qνξ
νmν

))〉

ξ
−mµ . (3.2.32)

Introducing, as done in sec. 2.2.3, the noise distribution Pµ(z|{mν , qν}) =
〈
δ
(
z −∑P

ν 6=µ ξ
νqνmν

)〉
ξ

on clone µ, we have

dmµ

dt
=

∫ +∞

−∞
dzPµ(z|{mν , qν}) tanh (β(qµmµ + z))−mµ , (3.2.33)

where Pµ(z|{mν , qν}) can be written, using the Fourier representation of the Dirac

delta and carrying out the average over ξ, as

Pµ(z|{mν , qν}) =

∫ +∞

−∞

dω

2π
eizω

〈
P∏

ν 6=µ

e−iωξνqνmν

〉

ξ

=

∫ +∞

−∞

dω

2π
eizωe

∑P
ν 6=µ

qν
Nγ

[cos(ωqνmν)−1] . (3.2.34)

If γ > 0, extending the sum in the exponent to all patterns will add a negligible

contribution O(N−γ) in the thermodynamic limit, hence, as N → ∞ all clones

will have the same noise distribution

Pµ(z|{mν , qν})→ PP (z|m,q) =

〈
δ

(
z −

P∑

ν=1

qνξ
νmν

)〉

ξ

. (3.2.35)
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We note that the sum on the rhs of (3.2.35) is at most ∼ O(N δ−γ), hence for

δ < γ it is negligible in the thermodynamic limit. This yields PP (z|m,q)→ δ(z)

as N →∞, so that equations (3.2.33) decouple and the system reduces, for δ < γ,

to a set of indipendent Curie-Weiss ferromagnets, each evolving according to

dmµ

dt
= tanh(βqµmµ)−mµ . (3.2.36)

At the steady state, each B clone µ becomes active at its own critical temperature

Tc = qµ, independently of the other clones (fig. 3.9, left). In contrast, for δ ≥ γ

the noise distribution PP (z|m,q) has a finite width, due to clonal interference,

and the equations for the evolution of clonal activations are coupled. In this

regime, clones compete to be activated and the ones with fewer triggered receptors

will fail to get switched on (fig. 3.9, right).

In the following section, we will analyse the effect of receptor promiscuity in

the regime of competing clones. In particular, we will show that clonal inter-

ference affects both critical temperature and intensity of B clones activations.

t
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Figure 3.9: Monte Carlo simulations with N = 104 spins, qµ = (0.7)µq. T = 0.01,

q = 6. Left: δ = 0.2, γ = 0.25. In the non-competing regime (δ < γ) all clones

are activated. Right: δ = γ = 0.25. In this case only few clones with the highest

promiscuity are active.



3.2. Effects of receptor promiscuity 98

3.2.3.1 Bifurcations near the critical temperature and stability region

in the regime of competing clones.

In this section we study the bifurcations away from m = (0, . . . , 0) below the

critical temperature Tc = qmax. Without loss of generality, we assume qmax = q1.

We Taylor expand the steady state equations obtained by setting dmµ/dt = 0 in

(3.2.31), for small mµ at βq1 = 1 + ε

mµ '
Nγ

qµ
β

P∑

ν=1

qν〈ξµξν〉ξmν −
Nγ

qµ

β3

3

P∑

ν,ρ,λ=1

qνqρqλ〈ξµξνξρξλ〉ξmνmρmλ

= βqµmµ −
β3q3

µ

3
m3
µ − β3 qµ

Nγ
mµ

P∑

ρ 6=µ

m2
ρq

3
ρ . (3.2.37)

For any µ, mµ = 0 is always a solution. Non-zero solutions are given, for µ = 1,

by

βq1 − 1− β3q3
1

3
m2

1 −
β3

Nγ
q1

P∑

ρ>1

m2
ρq

3
ρ = 0 , (3.2.38)

which at βq1 = 1 + ε and for large N yields

m2
1 = 3ε− 3

q2
1N

γ

P∑

ρ>1

m2
ρq

3
ρ . (3.2.39)

For µ 6= 1, we have

βqµ − 1− β3q3
µ

3
m2
µ +

βq4
µ

Nγ
m2
µ −

β3

Nγ
qµ

P∑

ρ>1

m2
ρq

3
ρ = 0 , (3.2.40)

which gives, for N →∞ and to O(ε0),

m2
µ =

3

q3
µ

(q2
1qµ − q3

1)− 3

Nγq2
µ

P∑

ρ>1

m2
ρq

3
ρ +O(N−γ) . (3.2.41)
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Summing over µ > 1 we get

P∑

µ>1

m2
µq

3
µ

(
1 +

3

Nγ

P∑

ρ>1

qρ

)
= 3

( P∑

µ>1

(qµ − q1)

)
. (3.2.42)

Since qµ < q1, ∀µ > 1, this equality can never be satisfied, showing that mµ =

0,∀µ > 1. Substituting this result into (3.2.39), we find m2
1 = 3ε, hence the first

state to bifurcate away from m = (0, . . . , 0) is m = (
√

3ε, 0, . . . , 0).

The stability region of the pure state m = (m1, 0, . . . , 0) can be found by

inspecting the sign of the eigenvalues of the Jacobian of the linearised equations

of motion about the steady state. For a steady state with the general structure

m = (m1,m2, . . . ,mn, 0, . . . , 0), where n is the fraction of activated clones, the

Jacobian (3.2.13) has a block structure, where diagonal terms are, for µ ≤ n

Jµµ = βqµ


1−

〈
tanh2

(
β

(
qµmµ +

n∑

ν 6=µ

ξνqνmν

))〉

ξ


− 1 (3.2.43)

and for µ > n

Jµµ = βqµ


1−

〈
tanh2

(
β

n∑

ν=1

ξνqνmν

)〉

ξ


− 1 . (3.2.44)

Off-diagonal elements are, for µ, ν ≤ n

Jµν = −βqµ
Nγ

〈
tanh2

(
β

n∑

ν=1

ξνqνmν

)〉

ξ

− 1 (3.2.45)

and Jµν = 0 otherwise. For N → ∞ the matrix becomes diagonal with eigen-

values λµ = Jµµ given by (3.2.43) for µ ≤ n and (3.2.44) for µ > n. In the pure

state m? = (m1, 0, . . . , 0), where only one clone is activated, we have

λ1 = βq1

(
1− tanh2(βq1m1)

)
− 1 , (3.2.46)

λµ = βqµ

(
1− 〈tanh2(βξ1q1m1)〉ξ

)
− 1 , µ > 1 . (3.2.47)
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Near the critical temperature Tc = q1, setting βq1 = 1 + ε and using m2
1 ' 3ε

gives

λ1 = βq1 − 1− β3m2
1q

3
1 = −2ε < 0 , (3.2.48)

λµ = βqµ − 1− β3q2
1qµ〈(ξ1)2m2

1〉ξ = (1 + ε)
qµ
q1

− 1 , µ > 1 , (3.2.49)

showing that for qµ < q1 the pure state is stable near criticality, as opposed to

the case qµ = q1 = c,∀µ studied in ch. 2, where all clones are activated with

the same intensity below Tc. In the opposite limit T → 0, we get from (3.2.46,

3.2.47)

λ1 ' −1 , (3.2.50)

λµ ' βqµ

(
1− q1

Nγ

)
− 1 ' βqµ − 1 , µ > 1 , (3.2.51)

showing that the pure state is unstable at low temperature.

Indeed, decreasing the temperature below q1, we expect clones with fewer

receptors to get active. In particular, at T = 0 we expect all clones to be activated,

in a hierarchical fashion. Similarly to the case with no promiscuity analysed in sec.

2.4.1.1, the system sends the strongest possible signal to the clone with maximum

promiscuity, while the clone with the second highest promiscuity receives signals

from the remainingN−q1N
1−γ spare T clones and so on. Considering the overlaps

Mµ = qµN
1−γmµ we have that

M1 = q1N
1−γ

M2 = q2N
1−γ
(

1− q1

Nγ

)

M3 = q3N
1−γ
(

1− q1

Nγ

)(
1− q2

Nγ

)

. . .

Mn = qnN
1−γ
(

1− q1

Nγ

)(
1− q2

Nγ

)
. . .

(
1− qn−1

Nγ

)
.

(3.2.52)
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Figure 3.10: Monte Carlo simulations with N = 104 spins, qµ = (0.7)µq. T =

0.001, q = 6, δ = γ = 0.25. The markers represent the theoretical predictions at

T = 0 in eq.(3.2.53).

This leads to the following heuristic rule for noiseless clone activations

mµ =

µ−1∏

j=1

(
1− qj

Nγ

)
, µ = 1, . . . , P, (3.2.53)

in agreement, up to finite size effects, with Monte Carlo simulations shown in fig.

3.10.

3.2.3.2 Sequential B clones activation: critical temperature and in-

terference effects.

In this section, we calculate the critical temperature at which clones µ ≥ 2

with fewer receptors get activated. We focus on the regime of clonal interference

δ ≥ γ, as for δ < γ each clone µ gets active at its own critical temperature Tµ = qµ.

Without loss of generality we can set P = αNγ for δ ≥ γ, where α = 1 for δ = γ

and α → ∞ for δ > γ. In the following we will consider q1 > q2 > · · · > qP .

Assuming that m bifurcates continuously from the pure state, we can Taylor

expand (3.2.31) at the steady state for small mν , with ν 6= 1, while m1 = O(1).
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For µ 6= 1 we have

mµ =
Nγ

qµ

〈
ξµ tanh

(
β(ξ1q1m1 +

P∑

ν=2

qνξ
νmν)

)〉

ξ
(3.2.54)

=

〈
tanh

(
β

(
ξ1q1m1 +

P∑

ν=2

qνξ
νmν

))〉

ξ
, (3.2.55)

where in (3.2.55) we averaged over ξµ 6= 0. Taking the average over ξ1 6= 0 we

have

mµ =
(

1− q1

Nγ

)〈
tanh

(
β

P∑

ν=2

qνξ
νmν

)〉

ξ
+

+
q1

2Nγ

(〈
tanh

(
β

(
q1m1 +

P∑

ν=2

qνξ
νmν

))〉

ξ
+

+

〈
tanh

(
β

(
−q1m1 +

P∑

ν=2

qνξ
νmν

))〉

ξ

)
. (3.2.56)

Indeed, Taylor-expanding in (3.2.56) for small {mν} we have

q1

2Nγ

(〈
ξµ tanh

(
β

(
q1m1 +

P∑

ν=2

qνξ
νmν

))〉

ξ
+

+

〈
ξµ tanh

(
β

(
−q1m1 +

P∑

ν=2

qνξ
νmν

))〉

ξ

)
'

' q1

Nγ
(tanh(βq1m1) + β(1− tanh2(βq1m1))

〈
P∑

ν=2

qνξ
νmν

〉

ξ

+

+ β2(tanh3(βq1m1)− tanh(βq1m1))

〈
P∑

ν,ρ=2

qνqρξ
νξρmνmρ

〉

ξ

, (3.2.57)

with
〈∑P

ν,ρ=2 qνqρξ
νξρmνmρ

〉
ξ

= O(N−γ) and
〈∑P

ν=2 qνξ
νmν

〉
ξ

= 0. Hence, the

leading term is given by

mµ '
〈

tanh

(
β

P∑

ν=2

qνξ
νmν

)〉

ξ
+O(N−γ) . (3.2.58)
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Expanding for small {mν}, the leading term one obtains

mµ ' β
P∑

ν=2

qν〈ξµξν〉ξmν −
β3

3

P∑

ρ,ν,λ

〈ξµξνξρξλ〉ξmνmρmλqνqρqλ

' βqµmµ −
β3q3

µ

3
m3
µ −

β3qµmµ

Nγ

P∑

ρ 6=µ

q3
ρm

2
ρ . (3.2.59)

The solutions are mµ = 0, or

1 = βqµ −
β3q3

µ

3
m2
µ −

β3qµ
Nγ

P∑

ρ6=µ

q3
ρm

2
ρ . (3.2.60)

Hence, for 1 − βqµ > 0, mµ = 0 while for 1 − βqµ < 0 the µ-th clone may

be activated. Hence, the first state to bifurcate away from the pure state is

m = (m1,m2, 0, . . . , 0) at T = q2. Its amplitude at βq2 = 1− ε is

m2
2 ' 3ε− 3q3

1

q2
2N

γ
m2

1 , (3.2.61)

i.e. m2
2 = 3ε + O(N−γ). Lowering T below q2 we expect that the clones will

activate sequentially one after another, each at its own temperature. In particular,

assuming m1,2 = O(1) and repeating the reasoning shown above, we have for

µ > 2

mµ =

〈
tanh

(
β

P∑

ν>2

qνξ
νmν

)〉

ξ
+O(N−γ) , (3.2.62)

and expanding for mν>2 small at T < q2 shows that m3 becomes non-zero at

T = q3 +O(N−γ).

Generalizing to n � Nγ activated clones m1, . . . ,mn = O(1), we have for

µ > n

mµ =

〈
tanh

(
β

P∑

ν>n

qνξ
νmν

)〉

ξ
+O(nN−γ) , (3.2.63)
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giving as bifurcation temperature Tn = qn+O(nN−γ). As the number of activated

clones increases, their cumulative effect on the activation temperature of the

remaining clones increases and can no longer be neglected for n = O(Nγ). The

activation temperature of pattern n+1, when n ∼ Nγ clones have been activated,

can be computed from

mn+1 =

〈
tanh

(
β

(
qn+1mn+1 +

n∑

ν=1

qνξ
νmν

))〉

ξ
. (3.2.64)

Inserting
∫∞
−∞ dzδ (z −∑n

ν=1 qνξ
νmν) = 1, we obtain

mn+1 =

∫
dzPn(z|m,q) tanh(β(qn+1mn+1 + z)) , (3.2.65)

with Pn(z|m,q) defined in (3.2.35). Taylor expanding for small mn+1 we have,

to leading order

mn+1 =

∫
dzPn(z|m,q)

[
(1− tanh2(βz))βqn+1mn+1 +O(m2

n+1)

]
, (3.2.66)

where we have used Pn(z|m,q) = Pn(−z|m,q). One solution is mn+1 = 0 and a

non-zero solution is possible when

βqn+1 =
1

1−
∫

dzPn(z|m,q) tanh2(βz)
. (3.2.67)

For n � Nγ, Pn(z|m,q) = δ(z), and we retrieve βqn+1 = 1 for the temperature

at which mn+1 becomes non-zero. For Pn(z|m,q) having a small but finite width

we can use tanh(βz) ' βz

βqn+1 ' 1 +
〈z2〉
q2
n+1

' 1 +

∑n
µ=1 q

3
µm

2
µ

q2
n+1N

γ
, (3.2.68)

showing that Tn+1 < qn+1 and deviations from qn+1 depend on the promiscuity

distribution of the activated clones. Equation (3.2.67) shows that as more clones

are activated, these create an interference, encoded in Pn(z|m,q), which decreases
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the activation temperature of the inactive ones. Furthermore, it suggests that the

number n of clones that the system can activate (i.e. the number of O(1) order

parameters mµ) at small but finite temperature is O(Nγ).

3.2.3.3 Numerical examples.

In this section we test (3.2.67) and look at the effect of receptor promiscuity

on the intensity of B clones activation, for three simple cases that can be treated

analytically, with q1 > q2 and P = αNγ:

(i) q = (q1, q2, . . . , q2): only one clone has a higher promiscuity;

(ii) q = (q1, . . . , q1, q2, . . . , q2): half of the clones have promiscuity q1, and half

have promiscuity q2;

(iii) q = (q1, . . . , q1, q2): only one clone has a smaller promiscuity.

Our goal is to analyse the increasing interference effect due to the activated

clones with more receptors on the quiescent ones with less receptors. According

to (3.2.67) active clones should play the role of interference terms that lower the

critical temperature of the quiescent clones.

(i) Near Tc clones with the same promiscuity will be activated with the same

intensity, as discussed in chapter 2. In this case the activation vector bifur-

cating away from the pure state will have the form m = (m1,m2, . . . ,m2),

where m1,m2 are the amplitudes associated to clones with promiscuity q1

and q2 respectively. The amplitudes m1 and m2 , computed from the steady
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state in (3.2.10), are

m1 =
Nγ

q1

〈
ξ1 tanh

(
β

(
ξ1q1m1 + q2

P∑

ν=2

ξνmν

))〉

ξ

=

〈
tanh

(
β

(
q1m1 + q2m2

P∑

ν=2

ξν

))〉

ξ

=
∑

z

P̃P−1(z|q) tanh(β(q1m1 + q2m2z)) . (3.2.69)

For m2 we obtain

m2 =
∑

z

P̃P−2(z|q)〈tanh(β(q1ξ
1m1 + q2m2(1 + z)))〉ξ1

=
∑

z

P̃P−2(z|q) tanh(βq2m2(1 + z)) +O(N−γ) . (3.2.70)

Analogously to sec. 2.3.2.1 (eq. (2.3.77)), we have introduced here a discrete

noise distribution of the form

P̃P (z|q) =
〈
δz,

∑P
ν=1 ξ

ν

〉
ξ
. (3.2.71)

Using (3.2.34) and P = αNγ, we can write P̃P (z|q) = e−q2αIz(q2α) where

Iz(x) is a modified Bessel function of the first kind [45] and P̃P−1(z|q) '
P̃P−2(z|q) ' P̃P (z|q). The activation temperature of the clones with smaller

promiscuity follows from Taylor expansion of (3.2.70) for small m2 giving

m2 =
∑

z

P̃P−2(z|q)

[
βq2m2(1 + z)− 1

3
(βq2m2)3(1 + z)3

]
+O(N−γ)

= βq2m2 −
1

3
(βq2m2)3(1 + 3〈z2〉) +O(N−γ)

= βq2m2 −
1

3
(βq2m2)3(1 + 3αq2) +O(N−γ) , (3.2.72)

where we used the parity of P̃P (z|q) = P̃P (−z|q) ∀ n and 〈z2〉 ≡∑z P̃P (z|q)z2 =

αq2. For P = 1 we retrieve βq2 = 1+O(N−γ) for the activation temperature

of m2, consistently with (3.2.67). The activation intensity at βq2 = 1 + ε
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follows from (3.2.72) as

m2 =
3ε

1 + 3q2α
, (3.2.73)

as one expects for clones with homogeneous promiscuity q2 as derived in

chapter 3 in eq. (2.4.101). In fig. 3.11 we plot the amplitudes m1,m2

resulting from (3.2.69, 3.2.70), as a function of the temperature (right) and

those resulting from Monte Carlo simulations, as a function of time (left).

The simulations are in agreement with the theoretically predicted steady

state in (3.2.69), (3.2.70). A contour plot of m2 = 0 in the T − q2 plane,
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Figure 3.11: Left: Monte Carlo simulations with N = 104 spins, δ = γ = 0.25,

T = 0.3, q1 = 0.8, q2 = 0.4. We plot the magnetisations as a function of

time at fixed temperature; the markers are the theoretically predicted symmetric

steady state activations for m1,m2 from the dynamical system (3.2.69, 3.2.70).

Right: Full temperature dependence of the steady state solutions m1,m2 of the

dynamical system (3.2.69, 3.2.70) for q1 = 0.8, q2 = 0.4.

computed numerically from (3.2.70), is shown in fig. 3.12. Deviations from

the line T = q2 are consistent with finite size effects N−γ.

In conclusion, the presence of one clone with a higher number of receptors,

does not affect, in the thermodynamic limit, the activation temperature nor

the activation intensity of clones with fewer receptors.

(ii) In this case we expect a transition from the state m = (m1, . . . ,m1, 0, . . . , 0)
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Figure 3.12: Contours of constant m2 with q = (q1, q2, . . . , q2), q1 = 0.8. The

contour indicating the onset of a non-zero value of m2 is in agreement with the

theoretically predicted blue dotted line T = q2.

to m = (m1, . . . ,m1,m2, . . . ,m2), with

m1 =
∑

z1,z2

P̃P/2(z1|q)P̃P/2(z2|q) tanh(β(q1m1(1 + z1) + q2m2z2)) ,

m2 =
∑

z1,z2

P̃P/2(z1|q)P̃P/2(z2|q) tanh(β(q2m2(1 + z2) + q1m1z1)) . (3.2.74)

The temperature at which the onset of non-zero m2 occurs can be found by

Taylor expanding (3.2.74) for small m2 with m1 = O(1)

m2 =
∑

z1,z2

P̃P/2(z1|q)P̃P/2(z2|q)

[
tanh(βq1m1z1)+

+ (1− tanh2(βq1m1z1))βq2m2(1 + z2) +O(m2
2)

]
=

= βq2m2

∑

z1

P̃P/2(z1|q)(1− tanh2(βq1m1z1)) (3.2.75)

giving m2 6= 0 for

βq2 =
1

1−∑z P̃P/2(z|q) tanh2(βq1m1z)
. (3.2.76)

The theoretically predicted critical line (3.2.76) is in good agreement with

the contour plot of m2 6= 0 in the T − q2 plane, shown in fig. 3.13 (left),
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Figure 3.13: Contour plot of m2 in the (T, q2) plane for q = (q1, . . . , q1, q2, . . . , q2)

(left) and q = (q1, . . . , q1, q2) (right) with q1 = 0.8. The blue dotted line rep-

resents the theoretical critical temperature line computed using respectively the

self-consistent equations (3.2.74) (left) and (3.2.78)(right) together with the the-

oretical predictions for the critical temperature (3.2.76)(left) and (3.2.81)(right).

Deviations from the numerical results when q2 ' q1 are due to the fact that

(3.2.67) is obtained assuming m2 � m1, condition which is not satisfied when

q2 ' q1.

computed numerically from (3.2.74). The plot shows that in the presence of

O(Nγ) clones with higher numbers of receptors, the activation temperature

of those with smaller promiscuity q2 will deviate from the line T = q2.

(iii) This is the case where deviations from the line T = q2 are expected to be

the largest. The steady state equations for the magnetisation read

m1 =
Nγ

q1

〈
ξ1 tanh

(
β

(
ξ1q1m1 +

P∑

ν=2

qνξ
νmν

))〉

ξ

=

〈
tanh

(
β

(
q1m1 +

P∑

ν=2

qνξ
νmν

))〉

ξ
,

(3.2.77)

where in the last line we are averaging over ξ1 6= 0. Separating the con-

tribution of the only clone with promiscuity q2 and introducing the usual
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discrete noise distribution, yields

m1 =
∑

z

P̃P−2(z|q)〈tanh(β(q1m1(1 + z) + q2m2ξ
2))〉ξ2

=
∑

z

P̃P−2(z|q) tanh(βq1m1(1 + z)) +O(N−γ) . (3.2.78)

Equivalently for m2 we have

m2 =

〈
tanh

(
β

(
q2m2 +

P∑

ν 6=2

qνξ
νmν

))〉

ξ

=
∑

z

P̃P−1(z|q) tanh (β(q2m2 + q1m1z)) . (3.2.79)

When clones with lower promiscuity become active, we expect m1 = O(1)

and m2 small. Taylor expanding for m2 small and using the parity of

P̃P (z|q) = P̃P (−z|q) ∀ n

m2 =
∑

z

P̃P−1(z|q)[tanh(βq1m1z) + (1− tanh2(βq1m1z)βq2m2)] +O(m2
2)

= βq2m2

[
1−

∑

z

P̃P−1(z|q) tanh2(βq1m1z)

]
+O(m2

2) , (3.2.80)

we obtain for the activation temperature of the only clone with promiscuity

q2

βq2 =
1

1−∑z P̃P−1(z|q) tanh2(βq1m1z)
. (3.2.81)

This result is in agreement with the zero contour plot of m2 in the T −
q2, obtained by numerically solving (3.2.80), shown in fig. 3.13 (right).

Deviations are compatible with finite size effects and are more evident for

q2 ' q1 where the assumption m2 � m1 is no longer valid. Monte Carlo

simulations with 10 B clones, one of which has a lower promiscuity q2 = 0.6,

are shown in fig. 3.14: at T = q2 the pattern with the lowest promiscuity

is inactive and is activated only at a much lower temperature T ' 0.2.
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Figure 3.14: Time evolution of B clones activation in Monte Carlo simulations

with 104 spins and q = (q1, . . . , q1, q2) (case (iii)) with q1 = 0.8 (blue) and q2 = 0.6

(violet). The activation for the clone with fewer receptors (violet) decays to 0

for T = 0.5 (left) and stays non-zero for T = 0.2 (right), i.e. at temperatures

considerably lower than in the absence of clonal interference T = q2.

Finally in fig. 3.15 we plot m2 as a function of the temperature in the

three different cases with promiscuity (i) q = (q1, q2, . . . , q2), (ii) q =

(q1, . . . , q1, q2, . . . , q2), (iii) q = (q1, . . . , q1, q2). The presence of clones with

higher promiscuity q1 and activation intensity m1, does not only affect the

activation temperature of clones with lower promiscuity q2, but also the

intensity m2 of their immune responses. In conclusion, clones with fewer

triggered receptors are activated at a lower temperature and will produce

a weaker response than clones with a higher number of active receptors.

3.3 Idiotypic interactions

Cells and molecules of the adaptive immune system can recognise, react to

and regulate each other forming an interacting network. In particular, B cells

can bind, recognise and suppress or excite each other forming the so-called id-

iotypic network of interactions. Different B-B interaction mechanisms have been

proposed, e. g. via cell receptors or antibodies, but in this model we are not con-

cerned with the microscopic details of such interactions and we will rather focus

on their mere existence. The first formulation of an immune network theory by
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Figure 3.15: Plot of m2 as a function of T in the different cases: (1) q =

(q1, q2, . . . , q2), (2) q = (q1, . . . , q1, q2, . . . , q2), (3) q = (q1, . . . , q1, q2). Increasing

the interference due to clones activated at a higher temperature, the m2 intensity

decreases.

N. K. Jerne [4] dates back to the early 1970s and was soon after followed by pre-

liminary experimental confirmations [55–57] and various mathematical models to

capture this interaction mechanism [14]. In particular, linear idiotypic network

models [58], where antibodies belonging to the i-th group could interact with

antibodies of the i − 1 and i + 1-th group, or a cyclic version of it [59] have

been proposed, together with models with random connections between antibod-

ies [18]. In these models, the dynamics of the B clones concentration is modelled

via large systems of coupled ODEs, mostly solved via numerical simulations.

More recently, experiments also showed a new connection between the existence

of an ”idiotypic network” and the onset of autoimmune diseases, spotlighting the

importance of such interactions and the need for a more careful analysis of their

effects [49–52].

To investigate B-B interactions, we choose the simplest configuration of the

receptor space which retains the key biological features. We represent B clones re-

ceptors as binary strings and assume that complementary strings, like e.g. 010 . . .

and 101 . . ., excite each other. Noting that one can always label each of P = 2d

binary strings of length d by an index µ, so that the string complementary to µ is

labeled by µ+P/2, we order the strings on a ring in such a way that each string
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sits close to similar strings and opposite to complementary ones. The reason for

this choice is that B-B interactions are believed to be very specific [4, 60], with

each B clone interacting with a number O(1) of other clones. For simplicity, we

assume that each B clone interacts only with another clone, but this assumption

can be easily relaxed; for example, one may assume that each B clone does not

only interact with the cell strictly complementary to it (with Hamming distance

d), but also with the d clones which are nearly complementary (with a Ham-

ming distance d − 1). We expect that as long as the connectivity of B clones is

∼ d � N the effect should be qualitatively very similar. We suppose that the

µ-th B clone expansion is triggered by the (µ+ P/2)-th B clone [mod P ], which

is precisely complementary to that B clone. Each B clone will die at a certain

rate, while complementary B clones will excite each other. Therefore, for the B-B

interactions we use the following matrix

Aµν = δµν − kδµ,(ν+P/2) mod P , (3.3.82)

with k ∈ [0, 1) representing the strength of idiotypic interactions. The non-

zero diagonal terms Aµµ account for a decay term in the population dynamics

(taken as a gradient descent on H(σ,b) [61]) of each clone µ, proportional to

the population size bµ itself. For simplicity we assumed a unit death rate for

all clones. Intra-clonal competition can be introduced by allowing non-zero off-

diagonal entries in A. These elements would need to scale as 1/P to ensure that

the decay term is overall O(1). Assuming that off-diagonal terms are all equal i.e.

Aµν = 1/P ∀ µ 6= ν and the overall log-concentration of clones
∑P

µ=1 bµ = B is

constant, the loss term in the population dynamics gains a constant term −B/P ,

which can be absorbed in the definition of bµ. This choice of the matrix also allows

for a straightforward matrix inversion, useful for the analytical treatment, while

retaining the two key biological ingredients of (i) suppression effects preventing

abnormal clonal expansion and (ii) excitatory signalling between complementary
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clones. Its inverse is

(A−1)µν =
1

1− k2
δµν +

k

1− k2
δµ,(ν+P/2) mod P . (3.3.83)

We note that A is positive definite and symmetric and the following relations hold:

Aµν = A(µ − ν) with A(n + P ) = A(n) and A(n) = A(−n). The eigenvalue

spectrum ρ(µ) of A has a finite limit as N →∞, ensuring the correct scaling of

the Hamiltonian.

B
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Figure 3.16: Left: B-B interaction via Aµν . The expansion of the µ-th clone

is triggered by its complementary clone, µ + P/2, where P is the number of B

clones. Right: We represent the epitopes as binary strings, organising them on a

ring and assuming that the complementary strings interact.

In the following, we will show that the idiotypic interactions contribute to the

overall stability of the network, sustaining the propagation of a suppressive/exci-

tatory signal for the immune response through the system. In healthy situations,

this may prevent unwanted activations and increase the region where all clones

are equally activated and ready to start an immune response upon arrival of new

infections. In particular, including B-B interactions in the model affects the crit-

ical temperature, in this case widening the region where a symmetric immune

response is stable, as the interactions strength k is increased (fig. 3.19). This

increased network stability may not always have positive effects on the immune

system performances: in presence of autoimmune diseases, for example, this may

encourage the transmission of a wrong signal, e.g. producing autoantibodies,
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which would attack self-cells [49].

3.3.1 Dynamical equations

In this section, we study the effect of the idiotypic interactions on the ability

of the system to activate multiple clones in parallel. For simplicity, here we

will assume homogeneous receptor promiscuities i.e. qµ = c, ∀µ, so that the

dynamical equations (3.1.7) read

dmµ

dt
=
Nγ

c

〈
ξµ tanh

(
βc

P∑

ρ,ν=1

ξν(A−1)ρνmρ

)〉

ξ

−mµ . (3.3.84)

The matrix A is positive definite for k ∈ (0, 1) and symmetric, hence the free

energy of the system is a Lyapunov function for the dynamics [62] and the system

will converge to a steady state. Next, we compute the critical temperature at

which clonal activation emerges. Starting from the steady state

mµ =
Nγ

c

〈
ξµ tanh

(
βc

P∑

ρ,ν=1

ξν(A−1)ρνmρ

)〉

ξ

, (3.3.85)

and summing over
∑P

µ,λ=1mλ(A
−1)λµ, yields

P∑

µ,λ=1

mλ(A
−1)λµmµ =

Nγ

c

〈
P∑

µ,λ=1

mλ(A
−1)λµξ

µ tanh

(
βc

P∑

ρ,ν=1

ξν(A−1)ρνmρ

)〉

ξ

.

(3.3.86)

Using the inequality | tanh(x)| ≤ |x| and averaging over the disorder we obtain

P∑

µ,λ=1

mλ(A
−1)λµmµ ≤ βc

P∑

ρ,λ=1

mλ(A
−2)λρmρ . (3.3.87)

Next we diagonalise the matrix A by means of the similarity transformation

D = P−1AP, where D is the diagonal matrix constructed from the eigenvalues

{µρ}Pρ=1 of A and P is the orthogonal matrix of eigenvectors, i.e. P−1 = PT .
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Hence, we can rewrite the equation above for the transformed vector v = P−1m

as

vTD−1v − βcvTD−2v ≤ 0 , (3.3.88)

which gives

P∑

ν=1

(
vν
µν

)2

(βc− µν) ≥ 0 . (3.3.89)

This yields v = 0 for βc < µmin, where µmin = minν µν . The eigenvalues of A are

µ1 = 1− k, deg(µ1) = P/2 , (3.3.90)

µ2 = 1 + k, deg(µ2) = P/2 , (3.3.91)

hence, above the critical temperature Tc = c(µmin)−1 = c/(1−k) we have m = 0,

whereas below criticality m 6= 0 is possible (and expected). Remarkably, the

critical temperature increases with k, meaning that idiotypic interactions enhance

the immune system’s activation. Next, we investigate the structure of the states

bifurcating away from m = 0 below Tc and their stability.

3.3.2 Dynamical equations for two B clones

As before, it is useful to consider first the toy model with P = 2 clones. For

k 6= 0, the dynamics of different clones is always coupled, for all γ ≥ 0. We first
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Figure 3.17: Flow diagram in the plane (m1,m2) (left) and Monte Carlo simula-

tions with 104 spins (right) for the dynamical system (3.3.92) with T = 1.7, c =

0.55, k = 0.7 (Tc = 1.83).

look at the case γ = 0, where the system evolves according to the equations

dm1

dt
= (1− c) tanh

(
βc

1− k2
(m1 + km2)

)
+
c

2

[
tanh

(
βc

1− k (m1 +m2)

)

+ tanh

(
βc

1− k (m1 −m2)

)]
−m1 ,

dm2

dt
= (1− c) tanh

(
βc

1− k2
(km1 +m2)

)
+
c

2

[
tanh

(
βc

1− k (m1 +m2)

)

− tanh

(
βc

1− k (m1 −m2)

)]
−m2 .

(3.3.92)

The state m = (0, 0) is a fixed point of the dynamics at all temperatures, but

we expect it to become unstable below Tc = c/(1 − k). In order to inspect the

structure of the bifurcating state, it is convenient to analyse the steady state

equations in terms of the variables x = m1 +m2 and y = m1 −m2

x = c tanh

(
βcx

1− k

)
+ (1− c)

[
tanh

(
βc

1− k2
(x+ (k − 1)m2)

)

+ tanh

(
βc

1− k2
(x+ (k − 1)m1)

)]
, (3.3.93)

y = c tanh

(
βcy

1− k

)
+ (1− c)

[
tanh

(
βc

1− k2
(x+ (k − 1)m2)

)

− tanh

(
βc

1− k2
(x+ (k − 1)m1)

)]
. (3.3.94)
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Figure 3.18: Flow diagram in the plane (m1,m2) (left) and Monte Carlo simula-

tions with 104 spins (right) for the dynamical system (3.3.92), for T = 0.65, c =

0.55, k = 0.7 (Tc = 1.83).

Assuming continuous bifurcations, we Taylor expand for small m near βc = 1−k
i.e. at β̃ ≡ βc

1−k = 1 + ε, obtaining, to leading orders

x = cβ̃x− 1

3
cβ̃3x3 + (1− c)β̃x− 1− c

3(1 + k)2
β̃3x

[
(x+ (k − 1)m2)2 ,

+(x+ (k − 1)m1)2 − (x+ (k − 1)m1)(x+ (k − 1)m2)

]
, (3.3.95)

y = cβ̃y − 1

3
cβ̃3y3 +

(1− c)(1− k)

(1 + k)
β̃y − (1− c)(1− k)

3(1 + k)3
β̃3y

[
(x+ (k − 1)m2)2

+(x+ (k − 1)m1)2 − (x+ (k − 1)m1)(x+ (k − 1)m2)

]
. (3.3.96)

We note that x = y = 0 is always a solution (corresponding to m = (0, 0)). A

solution y 6= 0 is not possible as in (3.3.96) terms O(ε0) do not simplify. Hence,

y = 0 is the only solution, implying m1 = m2. In contrast, in (3.3.95) first

order terms simplify, hence we can have x 6= 0. We can conclude that mixtures

bifurcate from m = (0, 0) in a symmetric fashion m = m(1, 1). We can compute

the amplitude m, Taylor expanding (3.3.92) at the steady state near Tc, for small

m,

m = β̃m− 1

3
β̃3m3 − cβ̃3m3 , (3.3.97)
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yielding, at β̃ = 1 + ε,

m2 =
3ε

1 + 3c
, (3.3.98)

or the trivial solution m = 0. Flow diagrams and Monte Carlo simulations are in

agreement with theoretical predictions, showing that close to criticality both B

clones are activated with the same intensity (fig. 3.17). The stability of symmetric

solutions can be analysed by computing the eigenvalues of the Jacobian

Jµν = βc(A−1)µν


1−

〈
tanh2

(
βc

P∑

ρ,λ=1

ξλ(A−1)ρλm
?
ρ

)〉

ξ


− δµν +O(N−γ)

(3.3.99)

and substituting m∗ = m(1, 1) we find for the eigenvalues

λ1 =
βc

1− k − 1− βc(1− c)
1− k tanh2

(
mβc

1− k

)
− β c2

1− k tanh2

(
2mβc

1− k

)
,

(3.3.100)

λ2 =
βc(1− c)

1 + k

(
1− tanh2

(
mβc

1− k

))
+

βc2

1− k − 1 . (3.3.101)

These can be calculated analytically near criticality i.e. at βc/1−k = 1+ε where

λ1 ' −2ε , (3.3.102)

λ2 '
−2ε+ 6εc− 2k + 2kε− 4kc− 4kcε

(1 + 3c)(1 + k)
, (3.3.103)

and for T → 0, where

λ1 ' −1 , (3.3.104)

λ2 '
βc2

1− k − 1 . (3.3.105)

We deduce that λ1 is always negative, hence the stability of symmetric solutions

is determined by λ2. A plot of λ2 (rescaled by T ) as a function of T is shown
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Figure 3.19: Left: λ2T as a function of T for c = 0.3 and k = 0.2. The value

at T = 0 matches the analytical prediction λ2T = c2/1− k (red marker). Right:

Contour plot of λ2 = 0 with different interaction strengths k = 0.8, k = 0.5, k =

0.2 in the parameter space (T, c). The region where clones are activated in parallel

with the same intensity (S) becomes wider as k increases.

in fig. 3.19 (left) for fixed dilution and B-B interaction strength k. The critical

line where λ2 = 0 in the T − c plane for different values of k is shown in fig.

3.19 (right). Remarkably, the region (S) where the activation of parallel immune

responses is accomplished with the same intensity becomes wider as k increases.

For γ > 0, the system evolves according to the equations

dm1

dt
' tanh

(
βc

1− k2
(m1 + km2)

)
−m1 +O(N−γ) ,

dm2

dt
' tanh

(
βc

1− k2
(km1 +m2)

)
−m2 +O(N−γ) .

(3.3.106)

One can show again that m = (0, 0) is the only fixed point above Tc = c/(1− k),

and symmetric mixtures m = m(1, 1) bifurcate away from m = (0, 0) at Tc. Now,

however, symmetric mixtures remain stable for any T < Tc (see sec. 3.3.3.1), with

the intensity m of the symmetric activation found from

m = tanh

(
βcm

1− k

)
. (3.3.107)

Hence for γ > 0 the system reduces to independent Curie-Weiss ferromagnets,

even in the presence of idiotypic interactions, with the critical temperature Tc =

c/(1− k) increasing with the strength of interactions.
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3.3.3 Generalisation to P clones

In this section we consider the case of P = N δ, 0 < δ < 1 B clones. At

Tc = c/(1−k), we expect clones to be activated in a symmetric fashion. For δ < γ

we expect symmetric solutions to be stable for all T < Tc, whereas for δ ≥ γ we

expect them to destabilise at low temperature. Without loss of generality, we can

set P = αNγ with α = 1 for δ = γ and the cases δ < γ and δ > γ retrieved in

the limits α→ 0 and α→∞ respectively.

To inspect the behaviour of the system near criticality, it is convenient to

write the steady state equations in terms of the rescaled matrix Â = A/(1− k),

with eigenvalues

µ1 = 1 , deg(µ1) = P/2 , (3.3.108)

µ2 =
1 + k

1− k , deg(µ2) = P/2 . (3.3.109)

Taylor-expanding the steady state equations (3.3.85) for small m near Tc, intro-

ducing for convenience β̃ = βc
1−k , we have

mµ '
Nγ

c
β̃

P∑

ρ,ν=1

(Â−1)ρνmρ〈ξµξν〉ξ+

− β̃3

3

Nγ

c

[ P∑

ρ1,ν1,ρ2,ν2,ρ3,ν3=1

〈ξµξν1ξν2ξν3〉ξmρ1(Â
−1)ρ1ν1mρ2(Â

−1)ρ2ν2mρ3(Â
−1)ρ3ν3

]

(3.3.110)

and averaging over the disorder gives

mµ = β̃

P∑

ρ=1

(Â−1)ρµmρ −
β̃3

3

∑

ρ

(Â−3)ρµm
3
ρ − β̃3 c

Nγ

P∑

ρ=1

(Â−1)ρµmρ

P∑

τ,π=1

(Â−2)τπm
2
π .

(3.3.111)

To make progress, we write m =
∑P

j=1 ajv
(j) as a linear combination of the
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eigenvectors of Â−1, defined by Â−1v(j) = µjv
(j), hence we get

P∑

j=1

ajv
(j)
µ = β̃

P∑

j=1

ajµjv
(j)
µ −

β̃3

3

P∑

i,j,k=1

aiajakµiµjµkv
(i)
µ v

(j)
µ v(k)

µ

−β̃3 c

Nγ

P∑

i=1

aiµiv
(i)
µ

P∑

ρ 6=µ

P∑

j,k=1

ajakµjµkv
(j)
ρ v(k)

ρ . (3.3.112)

We then split the sum into j = 1, . . . , P/2 and j = P/2 + 1, . . . , P , substitute the

eigenvalues (3.3.108, 3.3.109), and equating linear terms we get

P/2∑

j=1

ajv
(j)
µ (1− β̃) +

P∑

j=P/2+1

ajv
(j)
µ

(
1− β̃ 1− k

1 + k

)
= 0, ∀ µ . (3.3.113)

At β̃ = 1 linear terms cancel only if
∑P

j=P/2+1 ajv
(j)
µ = 0 ∀ µ. Since the eigenvec-

tors of Â−1 are in the form

v(j)
µ =

1√
2

(
δµ,j + δµ,j+P/2

)
, j = 1, .., P/2 , (3.3.114)

v(j)
µ =

1√
2

(
δµ,j − δµ,j+P/2

)
, j = P/2 + 1, .., P , (3.3.115)

this implies aj = 0 ∀ j = P
2

+ 1, . . . , P . Substituting in (3.3.112) and using

mµ =
∑P

j=1 ajv
(j)
µ =

∑P/2
j=1 ajv

(j)
µ , we obtain

mµ(−1 + β̃)− β̃3

3
m3
µ − β̃3 c

Nγ
mµ

P∑

ρ 6=µ

m2
ρ = 0 . (3.3.116)

This gives at β̃ = 1 + ε,

mµε−
1

3
m3
µ −

c

Nγ
mµ|m|2 = 0 , (3.3.117)

where |m|2 =
∑P

ρ=1m
2
ρ, yielding mµ = 0 or

m2
µ = 3ε− 3c

Nγ
|m|2. (3.3.118)
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Each clone activation mµ depends on the whole vector m, hence all clones will

have the same activation strength mµ ∈ (−m,+m, 0). Assuming the non-zero

components are a fraction φ ≤ α of the total number of components P , we have

|m|2 = αφNγm2 yielding

m2 =
3ε

1 + 3cαφ
. (3.3.119)

We will see in the next section that while for k = 0 stability of symmetric mixtures

is only ensured for φ = 1, in the presence of idiotypic interactions, i.e. for k 6= 0,

values of φ 6= 1 are possible.

3.3.3.1 Linear stability analysis and phase diagram

In this section we study the stability of symmetric clonal activation, m? =

m(1, . . . , 1, 0, . . . 0) with n = αφNγ activated clones below criticality. To this

end, we study the eigenvalues of the Jacobian of the dynamical system (3.3.84),

which has a block structure with diagonal elements given for µ < n by

Jµµ = βc(A−1)µµ


1−

〈
tanh2

(
βc

(
P∑

ρ=1

(A−1)ρµmρ +
P∑

ρ,λ 6=µ

ξλ(A−1)ρλmρ

))〉

ξ


− 1,

(3.3.120)

and for µ > n by

Jµµ = βc(A−1)µµ


1−

〈
tanh2

(
βc

P∑

ρ,λ6=µ

ξλ(A−1)ρλmρ

)〉

ξ


− 1. (3.3.121)

Off-diagonal elements for µ, ν ≤ n are

Jµν = −βc(A
−1)µν

Nγ

〈
tanh2

(
βc2

P∑

ρ,λ 6=µ

ξλ(A−1)ρλmρ

)〉

ξ

− 1 (3.3.122)



3.3. Idiotypic interactions 124

and zero otherwise. Note that in the limit N →∞ the matrix becomes diagonal.

At the symmetric fixed point, using
∑

ρ(A
−1)ρλ = 1/(1 − k) ∀ λ, we get the

eigenvalues

λ1 =
β̂

1 + k

(
1−

∑

z

P̃n(z) tanh2
(
β̂m(1 + z)

))
− 1 , deg(λ1) = n , (3.3.123)

λ2 =
β̂

1 + k

(
1−

∑

z

P̃n(z) tanh2
(
β̂mz

))
− 1 , deg(λ2) = P − n , (3.3.124)

where β̂ = βc and the discrete noise distribution P̃n(z) =
〈
δz,∑n

ν=1 ξ
ν

〉
ξ. P̃n(z)

can be written as a modified Bessel function of the first kind Iz(x)

P̃n(z) =

∫ +π

−π

dω

2π
eiωz

n∏

ν=1

〈
e−iωξν

〉
ξ '

∫ +π

−π

dω

2π
eiωze−αφc(1−cos(ω)) = e−αφcIz(αφc) ,

(3.3.125)

where we used n = φP = φαNγ fraction of the total number of B clones. Close

to criticality, by Taylor-expanding in powers of ε = β̂ − 1 we obtain

λ1 =
−2ε− k(1 + 3cαφ)

(1 + k)(1 + 3cαφ)
, (3.3.126)

λ2 =
ε− k(1 + 3cαφ)

(1 + k)(1 + 3cαφ)
. (3.3.127)

In contrast to the case k = 0 analysed in sec. 2.4, where near Tc λ2 > 0 and the

symmetric activation was stable only when involving all clones, in the presence

of idiotypic interactions, i.e. for k 6= 0, both eigenvalues are negative, showing

the possibility of a partial clonal activation.

In the opposite limit, i.e. T → 0 we get

λ1 =
β̂

1 + k
e−αφcI1(αφc)− 1 , (3.3.128)

λ2 =
β̂

1 + k
e−αφcI0(αφc)− 1 . (3.3.129)
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For δ < γ, α = 0, hence using the properties of Bessel functions I1(0) = 0 and

I0(0) = 1, we get λ1 < 0 and λ2 > 0. Since λ2 has degeneracy P − n, symmetric

mixtures m = m(1, . . . , 1) i.e. with n = P will be stable for all T < Tc. In

contrast, for δ = γ i.e. α 6= 0, λ1 > 0 as I1(x) > 0 for any x > 0, meaning that

symmetric mixtures are unstable at low temperature for any n. Finally, for δ > γ

one has α→∞ in the thermodynamic limit, so e−αφcIz(αφc) ' (2παφc)−1/2 ∀ z,

and symmetric mixtures will gain stability at low temperature as N →∞.

Let us now compute the critical line in the phase diagram where symmetric

mixtures become unstable. We note that λ2 > λ1 for T → 0 and for T → Tc,

and deduce that λ2 > λ1 for all T < Tc. Hence, stability of n-mixtures m =

m(1, . . . , 1, 0, . . . , 0) is given by the region where λ2 < 0. In fig. 3.20 (left) we

show the critical lines where λ2 becomes zero in the space of scaled parameters

T̂ = T/c, φ̂ = φc for different values of k and α = 1. As k increases, the region

where clones are activated with the same intensity widens. When λ2 destabilises,

symmetric mixtures can only be stable for n = P , i.e. for φ = 1, in the region

where λ1 < 0. A contour plot of λ1 = 0 for φ = 1 in the T − k plane is shown in

fig. 3.20 (right).
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Figure 3.20: Left: Contour plot of λ2 = 0 (obtained from (3.3.124)) for α = 1,

as a function of the scaled parameters (T̂ = T/c, φ̂ = φc), for different value of

B-B interaction strength k. Increasing k the region where symmetric mixtures

are stable (to the right of the critical line) becomes wider. Right: Contour plot

of λ1 = 0 (obtained from (3.3.123)) for α = φ = 1, as a function of the scaled

temperature T̂ = T/c and strength k of the idiotypic interactions.
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3.4 Antigen effect

In this section, we investigate the effect of the antigens on the basal activity

of the immune system. We will mainly focus on how the response of non-infected

B clones decreases with the fraction of infected 2 ones, due to the interference of

strongly activated B clones; non-infected clones will also be activated at a lower

noise level, making the whole system unresponsive to new incoming pathogens

(see fig. 3.23). In our model, antigens involved in B clones activation are modelled

as external fields acting on coupled ferromagnetic systems. The introduction of

antigens also induces hysteresis phenomena [63], which could explain short-term

memory effect in the immune response [2, 64], even in the absence of memory

cells.

We can further investigate the B-Antigen interactions analysing the stochastic

process in (3.1.2)

dbµ
dt

= −∂H
∂bµ

+ χµ(t) =

NA∑

a=1

ψaη
µ
a +Nγ−1

N∑

i=1

ξµi σi −
1

2

P∑

ν=1

Aµνbν + χµ(t) ,

(3.4.130)

which governs the dynamics of B clones concentration. Denoting by ψµ the con-

centration of the antigen complementary to the bµ clone, we need the bµ concentra-

tion to increase when ψµ 6= 0. Also, we assume that clone bµ+P/2, complementary

to bµ and thus carrying the same epitope as antigen ψµ, is inhibited by the pres-

ence of antigen ψµ, and we denote by k1 the strength of this inhibition. This

leads to a matrix for the B-Antigen interaction of the form

ηµa = δµa − k1δµ,(a+P/2) mod P . (3.4.131)

According to (3.4.130), the concentration of the µ-th clone also increases in the

2By infected clones we mean B clones µ with complementary receptors to antigen A.
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presence of excitatory signals received by T clones (second term), while the third

suppressive term represents a B-B interactions acting as a threshold to be over-

come to start the immune response. Assuming that the total B clones concentra-

tion is conserved on average leads to a relation between k and k1

d

dt

∑

µ

〈bµ〉 = 0→ 1− k1

1− k =
1

2

∑
ν〈bν〉∑
a〈ψa〉

, (3.4.132)

which depends on the steady state concentrations of B cells and antigens. For

simplicity we will set k = k1, which leads to η = A. Different choices of the matrix

B

B

B cells

AAntigenΨ1
T

T cells

+

A
Ψ2 +

Ψ1>Ψ2

B

B

B cells

AAntigen Ψ
T

T cells

+

Figure 3.21: Top: effect of having C = ηA−1 = 1, in the presence of two antigens

whose complementary B clones are signalled by different cytokines from the same

T clone: the field acting on the T clone is ψ1 − ψ2 and T gets activated only if

ψ1 > ψ2. Bottom: an illustration of the effect of having C = A−1, which may

result in an inhibitory signal on T clones from inactive B clones.

η or of the constants k, k1 will lead to different forms of the matrix C = ηA−1,

however the choice C = 1 seems to ensure the strongest excitatory signal to

antigen-activated B clones. As an illustration, let us consider the simple case

where we have just one antigen i.e. ψ1: for the choice C = 1 the field acting

on the i-th T cell exciting the complementary clone b1 is ψ1, hence i receives

an activation signal only from the clone B activated by the antigen. With two

antigens present, whose complementary B cells are signalled by different cytokines
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from the same T cell, the field acting on the latter is ψ1 − ψ2 and the T cell will

get activated only if ψ1 > ψ2, as biologically desired (fig. 3.21, top). For C 6= 1

there might be a negative interference on the desired signal. For example, for

the alternative choice η = 1, leading to C = A−1, the field acting on T in the

presence of a single virus ψ1 6= 0 would be ψ1

1−k2 [ξ1
i + kξ1+P

2 ], meaning that for

ξ1 = +1, ξ1+P
2 = −1 the T clone would receive, in addition to the excitatory

signal from the B clone activated by the antigen, an inhibitory signal from a non-

activated B clone (fig. 3.21, bottom). As a result the overall field and immune

response will decrease. Similar arguments can be given for η defined in (3.4.131)

with k1 6= k.

Therefore, for η defined in (3.4.131) with k = k1, we have C = ηA−1 = 1,

and each order parameter mµ = Mµ/c evolves according to

dmµ

dt
=
Nγ

c

〈
ξµ tanh

(
β̂

P∑

ν=1

ξν (mν + ψν)

)〉

ξ

−mµ , (3.4.133)

where we considered homogeneous promiscuities, q = c(1, . . . , 1) and absent id-

iotypic interactions , i.e. Aµν = δµν . Considering the steady state of (3.4.133),

we can derive two sets of equations, for the activation mµ, µ = 1, . . . , NA of B

clones complementary to the incoming viruses and those for the activation mν ,

ν = NA + 1, . . . , P , for non-infected clones performing basal activity:

mµ =

〈
tanh

(
β̂

(
mµ + ψµ +

NA∑

ρ 6=µ

ψρξ
ρ +

P∑

λ 6=µ

mλξ
λ

))〉

ξ

, µ = 1, . . . , NA ,

(3.4.134)

mν =

〈
tanh

(
β̂

(
mν +

NA∑

ρ 6=ν

ψρξ
ρ +

P∑

λ 6=ν

mλξ
λ

))〉

ξ

, ν = NA + 1, . . . , P .

(3.4.135)
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3.4.1 No interference case, A� Nγ

In this section, we will consider the case with a number NA � Nγ of antigens.

This means that we have few infected B clones in the system. We will show that

the infected clones, which will be strongly activated, will not interfere with non-

infected clones nor compromise the basal activity of the immune system in this

regime. In this case, the equations (3.4.134, 3.4.135) can be written as

mµ =

∫
dzP (z|m) tanh

(
β̂ (mµ + ψµ + z)

)
, µ = 1, . . . , NA , (3.4.136)

mν =

∫
dzP (z|m) tanh

(
β̂ (mν + z)

)
, ν = NA + 1, . . . , P . (3.4.137)

Here we introduced the noise distribution P (z|m), which is the large N limit

of Pµ(z|{mρ, c}) defined in (3.2.34), and only depends on the vector m of basal

activation (non-infected clones) 3. The large N limit depends on the scaling of P

with the system size N , as we will discuss in the following.

For P � Nγ, we have P (z|m) ≡
〈
δ
(
z −∑P

ν=1 ξ
νmν

)〉
ξ
' δ(z) and the

equations decouple, hence there is no interference between infected and non-

infected clones

mµ = tanh
(
β̂ (mµ + ψµ)

)
, µ = 1, . . . , NA , (3.4.138)

mν = tanh
(
β̂mν

)
, ν = NA + 1, . . . , P . (3.4.139)

Introducing a field induces a discontinuous transition from zero to non-zero

magnetisations and a hysteresis effect in the clonal activation of the infected

clones [63]. In particular, considering the simple case with one antigenic field, i.e.

ψ = ψ(1, 0, . . . , 0) we can compute the amplitude of the coercive field ψ∗ [65].

3In principle, we should have introduced another noise distribution of the form

Qµ(zψ|{ψν}) =
〈
δ
(
zψ −

∑NA
ρ6=µ(mρ + ψρ)ξ

ρ
)〉
ξ

=
∫

dω
2π eiωzψe

∑NA
ρ6=µ

c
Nγ cos(ω(mρ+ψρ)), but as

NA � Nγ in the large N -limit it converges to δ(zψ).



3.4. Antigen effect 130

For ψ < ψ∗ the systems shows bi-stability with two possible solutions for the

magnetisation ±m∗. This means that it could be trapped in a metastable state,

e. g. with a positive field and a negative magnetisation. For ψ > ψ∗, the system

has only one possible solution with the magnetisation concordant with the field.

This may explain immunological memory effects [2, 64], without the require-

ment of dedicated memory cells: after an infection, the responsive B clones retain

a non-zero activation as the antigenic field decreases and the antigens’ concentra-

tion goes to zero, and on a successive encounter with the same antigen they will

provide a stronger and faster response. In addition, the fact that for antigenic

fields smaller than ψ∗ the system is not properly activated as discussed, may be

interpreted as a low-dose tolerance effect [1, 66]: if the antigen is presented with

a concentration below a certain threshold, the immune system does not produce

a response. This mechanism is also exploited to prevent immune activations to

self-cells.

The threshold ψ∗ for the case with no interference and one antigenic field ψ,

is easily found by combining the equation for the activation of infected clones

m = tanh
(
β̂(m+ ψ)

)
, (3.4.140)

with the condition on the slope of the curve F (m) = tanh
(
β̂(m+ ψ)

)
in (±m∗,±ψ∗)

1 = β̂
[
1− tanh2

(
β̂(m+ ψ)

)]
. (3.4.141)

Combining (3.4.140) and (3.4.141) we obtain

m∗ = ±
√

1− 1/β̂ , (3.4.142)

ψ∗ =
1

β̂
atanh(m∗)−m∗ , (3.4.143)

with β̂ = βc, similarly to what is obtained for the standard Curie-Weiss [65]

(note the dependence on the dilution c in T̂ ). The bifurcation diagram for ψ∗ as
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a function of T̂ is shown fig. 3.22 : below β̂c = 1 the system is in the low-dose

tolerance phase, while above it the B clone is correctly activated.
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Figure 3.22: Plot of the coercive field ψ∗ as a function of β̂. The coercive field

materialises above the value β̂ = βc = 1 of the inverse temperature.

For P = O(Nγ), P (z|m) =
∫ +∞
−∞

dω
2π

eizωe
∑P
ν=1

c
Nγ

[cos(ωcmν)−1] in (3.4.136, 3.4.137),

has a finite width, and both the antigen-induced and basal activities reduce, due

to clonal interference. Also, the hysteresis cycles become smaller. However,

the presence of antigens does not affect the basal activity of non-infected clones

ν = NA + 1, . . . , P , as long as NA � Nγ.

3.4.2 Increasing the number of infections

To investigate the interplay between infected and non-infected clones increas-

ing the number of antigens, it is convenient to consider small fields ψ that allow

us to work with continuous transitions. In particular, we are interested in under-

standing whether the system is able or not to fight NA = O(Nγ) antigens in par-

allel, and how this compromises the basal activity. For simplicity, we set P = Nγ

and NA = φ1N
γ, with φ1 denoting the fraction of infected clones, and we assume

that all viruses have the same concentrations i.e. ψ = ψ(1, . . . , 1, 0, . . . , 0). This
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leads to the steady state equations

mµ =

〈
tanh

(
β̂

(
mµ + ψ +

NA∑

ρ6=µ

(mρ + ψ)ξρ +
P∑

λ=NA+1

mλξ
λ

))〉

ξ

, µ = 1, . . . , NA ,

mν =

〈
tanh

(
β̂

(
mν +

NA∑

ρ=1

(mρ + ψ)ξρ +
P∑

λ6=ν

mλξ
λ

))〉

ξ

, ν = NA + 1, . . . , P .

(3.4.144)

In the small field limit, we can Taylor-expand (3.4.144) near β̂ = 1 + ε and small

(non-infected) mν , obtaining

mµ ' (1 + ε)mµ + ψ(1 + ε)− 1

3

(
(mµ + ψ)3 +

3c

Nγ
(mµ + ψ)

∑

ρ 6=µ

(mρ + ψ)

)
.

(3.4.145)

For µ < NA (infected clones) we have for ψ � ε

mµ '
−ψ(1 + ε)

ε
≡ m1 , µ = 1, . . . , NA . (3.4.146)

Note that for fields ψ � ε, mµ = O(1) and the transition is discontinuous. For

ν > NA (ψν = 0) we have

mν ' (1 + ε)mν −
1

3

(
m3
ν +

3c

Nγ
mν

∑

ρ6=ν

(mρ + ψ)2

)
. (3.4.147)

Hence, mν = 0 is always a solution (non-infected clones may not be activated)

together with

m2
ν ' 3ε− 3c

Nγ

P∑

ρ=1

(mρ + ψ)2 =

= 3ε− 3c

Nγ

(
P∑

ρ=1

m2
ρ +

NA∑

ρ=1

(
2m1ψ + ψ2

)
)

, ν = NA + 1, . . . , P .

(3.4.148)
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This shows that non-infected clones are symmetrically activated, each with in-

tensity

m2
2 =

3ε− 3cφ1ψ
2(2(1 + ε)/ε+ 1)

1 + 3cφ2

=
3ε
(

1− 2cφ1

(
ψ
ε

)2
)

1 + 3cφ2

, (3.4.149)

where φ2 ≤ 1−φ1 is the fraction of active non-infected clones and m1 is computed

in (3.4.146).

For ψ � ε, clonal activation close to criticality will have the form

m∗ = (m1, . . . ,m1,m2, . . . ,m2, 0, . . . , 0). However, upon increasing the fraction

φ1 of infected clones or the antigenic field ψ, (3.4.149) shows that non-zero values

ofm2 may become impossible and non-infected clones may get activated at a lower

temperature (similarly to clones with smaller receptor promiscuity we dealt with

in sec. 3.2). This is confirmed by numerical results in fig. 3.23, where the response

0
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Figure 3.23: 3D plot of the activation m2 of non-infected clones versus the fraction

of infected clones φ̂1 = φ1c and the scaled temperature T̂ = T/c, for fixed ψ = 0.1.

Increasing φ̂1 both the intensity and the critical activation temperature decrease,

due to antigenic interference.

of non-infected B clones and their activation temperature decrease for increasing

fractions of infected clones. This results in a reduced basal activity of the immune

system, which is important to accomplish the homeostatic control of cell numbers

[27,53]. In fig. 3.24 we study the impact of antigen concentration on the critical
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Figure 3.24: Critical line for the activation of non-infected clones in the space

of scaled parameters T̂ = T/c, φ̂1 = φ1c, obtained from the condition m2 6= 0

(3.4.144), for different values of the antigenic field ψ. Increasing ψ, the region

where non-infected clones receive signals shrinks.

temperature at which non-infected B clones become responsive, by plotting the

critical temperature against the fraction of infected clones, for different values of

antigen concentration. This shows that as the fraction of infected clones and the

field increase, the basal activity is more and more compromised.

Subsequently, we inspect the stability region of the steady state

m∗ = (m1, . . . ,m1,m2, . . . ,m2, 0, . . . , 0) by looking at the eigenvalues of the

Jacobian of the dynamical system (3.4.133). In the thermodynamic limit off-

diagonal elements become negligible. We define by n1 = φ1N
γ and n2 = φ2N

γ

the number of infected and non-infected clones respectively. Diagonal terms for

µ < n1 = φ1N
γ are

Jµµ = β̂


1−

〈
tanh2

(
β̂

(
mµ + ψ +

n2∑

ρ=n1+1

mρξ
ρ +

n1∑

λ=1

(mλ + ψ)ξλ

))〉

ξ


 .

(3.4.150)
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For n1 < µ < n2 = φ2N
γ we have

Jµµ = β̂


1−

〈
tanh2

(
β̂

(
mµ +

n2∑

ρ=n1+1

mρξ
ρ +

n1∑

λ=1

(mλ + ψ)ξλ

))〉

ξ


 ,

(3.4.151)

while for µ > n2

Jµµ = β̂


1−

〈
tanh2

(
β̂

(
n2∑

ρ=n1+1

mρξ
ρ +

n1∑

λ=1

(mλ + ψ)ξλ

))〉

ξ


 . (3.4.152)

Evaluating the Jacobian at the symmetric fixed point m? and introducing the

discrete noise distribution P̃n(z) =
〈
δz,

∑n
ν=1 ξ

ν

〉
ξ , supported over z ∈ (−n, . . . , n)

gives

λ1 = β̂

(
1−
∑

z1,z2

P̃n1(z1)P̃n2(z2) tanh2
(
β̂((ψ +m1)(1 + z1) +m2z2)

))
−1 , deg(λ1)=n1 ,

(3.4.153)

λ2 = β̂

(
1−
∑

z1,z2

P̃n1(z1)P̃n2(z2) tanh2
(
β̂((ψ +m1)z1 +m2(1 + z2))

))
−1 , deg(λ2)=n2 ,

(3.4.154)

λ3 = β̂

(
1−
∑

z1,z2

P̃n1(z1)P̃n2(z2) tanh2
(
β̂((ψ +m1)z1 +m2z2)

))
−1 , deg(λ3)=P−n1−n2 .

(3.4.155)

The amplitudes m1,m2 follow from (3.4.146), (3.4.147)

m1 =
∑

z1,z2

P̃n1(z1)P̃n2(z2) tanh
(
β̂((ψ +m1)(1 + z1) +m2z2)

)
, (3.4.156)

m2 =
∑

z1,z2

P̃n1(z1)P̃n2(z2) tanh
(
β̂((ψ +m1)z1 +m2(1 + z2))

)
. (3.4.157)

In fig. 3.25 (left) we show the critical lines λ1 = 0, λ2 = 0 and λ3 = 0 in the

space of scaled parameters T̂ = T/c, φ̂2 = φ2c. Lowering the temperature, λ3
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Figure 3.25: Left: Phase diagram in the space of scaled parameters T̂ = T/c, φ̂2 =

φ2c with φ1 = 0.4. Lines represent contours of λ1 = 0 (circles), λ2 = 0 (triangles)

and λ3 = 0 (squares). To the right of the line λ3 = 0, solutions where non-infected

clones are partially activated are stable. Lowering the temperature and crossing

the line λ1 = 0, the m1 symmetric mixtures destabilise, implying that infected

clones are hierarchically activated. Crossing the line λ2 = 0, the m2 symmetric

mixtures destabilise, and non-infected clones are hierarchically activated. Right:

Plots of λ1 = 0 (circles), λ2 = 0 (triangles) in the space T̂ = T/c, φ̂2 = φ2c for

φ2 = 1− φ1.

is the first eigenvalue to destabilise, meaning that clonal activation will get in

the form m = (m1, . . . ,m1,m2, . . . ,m2). Decreasing the temperature further, the

system will first prioritise activation of infected clones, while keeping activation of

non-infected clones symmetric, and later, at low temperature, will activate non-

infected clones in a hierarchical fashion (see fig. 3.25, right). Near the critical

temperature, symmetric mixtures with φ2 ≤ 1−φ1 are stable. To investigate the

optimal value of φ2, we calculate the free-energy as a function of φ2 for fixed T, φ1

F (φ1, φ2) = − 1

β

∑

z1,z2

P̃n1(z1)P̃n2(z2) log(2 cosh(βc(m1 + ψ)z1 +m2z2))+

+
c

2
(φ1m

2
1 + φ2m

2
2) , (3.4.158)

which is minimal (fig. 3.26) at φ2 = 1− φ1, implying that all non-infected clones

will keep receiving signals.
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Figure 3.26: Free energy f(φ2) = F (φ1 = 0.5, φ2) as a function of the fraction of

active non-infected clones (φ2) for φ1 = 0.5, T = 0.7, c = 0.2, ψ = 0.05.

3.5 Summary

In this chapter, we introduced new interesting mechanisms in the model, which

the adaptive immune system exploits to control, sustain and manage immune

responses. In table 3.1 we summarise them, highlighting their main effects on the

system’s behaviour. Our model is able to capture important collective features of

the real immune system, such as the ability of simultaneously handling multiple

infections, the dependence of B clones’ activation on the number of receptors on

clonal surface and the role of idiotypic interactions in enhancing parallel response

to multiple infections.

One of the limitations of this model is that it works well only for some dilu-

tion regimes, in particular γ < 1. In the next chapter, we will analyse the regime

γ = 1 (finitely connected) focusing on one particular effect introduced here, the

idiotypic interactions. In addition, we will give formulae to compute the distri-

butions of B clone sizes, which were integrated out from the beginning in the

present approach, from the distribution of the overlaps. Being able to compute

clonal distributions, indeed, constitutes a substantial step forward towards the

comparisons with available data: nowadays these distributions can be directly

measured exploiting new experimental techniques, such as high-throughput se-

quencing [67].
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Mathematical
modelling

Summary of
results

Receptor
promiscuity

qµ tuning patterns
dilution in
P(ξ|q)

- B clones activation strength and
Tc of activation increase
with promiscuity.

- Emergence of competition between
activated clones.

B-B interactions
Interaction
matrix Aµν

- Contribute to the overall network
stability sustaining the signal
propagation.

- Widens the region where
symmetric retrieval
is stable (Tc increases with
the B-B interaction strength k).

Antigen effect External field ψµ

- Memory effect and hysteresis
phenomena.

- Increasing the number of
infected clones the basal
activity becomes more and more
compromised.

Table 3.1: Summary of the main mechanisms introduced in the model, their

mathematical implementation and the most interesting effects on the system’s

behaviour.



If I have seen further it is by standing on the shoulders of

Giants.

Isaac Newton, Letter to Robert Hooke (15 February 1676)

4
Belief-propagation approach to

the idiotypic network

Recently, following the development of experimental techniques such as high-

throughput sequencing data [68] new interesting observables have become avail-

able, among which the clone size distribution. These techniques together with a

complex computational analysis of the clonal genetic profile allow for the recon-

struction of the clonal repertoire and the analysis of its properties in healthy and

pathological conditions [67].

The clone size distribution encodes important information about the clones

proliferation and activation. As already discussed, all clones in the immune sys-

tem undergo a birth-death process, depending on the tasks to be performed: for

example, in the presence of an antigen, complementary B clones start proliferat-

ing increasing the clone size, i.e. the number of clones sharing the same antigenic

receptor. Monitoring the clone size distribution, thus, gives important informa-

tion about the state of the immune system: for instance, it could help understand

139



Chapter 4. Belief-propagation approach to the idiotypic network 140

how the organism reacts to antigens and vaccinations [12]. Experiments and an-

alytical work are currently available for different cell types, both for humans and

other species [12,69,70].

In this chapter, we will focus on the interacting system of B-T cells with id-

iotypic interactions in the high storage (P = αN) and finite connectivity (γ = 1)

regime. Using belief-propagation techniques [71] and tools imported from neural

networks models [31,72] and spin glasses [25,32], we will be able to derive predic-

tions for the B clone size distribution. The aim of this chapter is to understand

the behaviour of the finitely connected system of B-T clones in the parameter

space.

In particular, we want to study the effect of the idiotypic interactions on

the activation properties of the system. We will show that they increase the

stability of single B clones activation against biological noise while increasing

the interference between different clones. We will derive analytically and via

population dynamics simulations the critical line in the space of model parameters

separating the region where each B clone would act independently from the others

from the one where they feel a strong interference due to the presence of other

active clones in the system.

The chapter is organised as follows. In sec. 4.1 we introduce the mathematical

model, its players and assumptions. In sec. 4.2 we derive the recursive equations

for the marginal distributions of T clones activation and we provide formulae for

the overlap distributions of B clones activation and the B clone sizes distribution.

We compute these distributions and inspect their transition from a single peaked

to a bimodal distribution as the noise level is increased in the paramagnetic

phase (sec. 4.4) and for ferromagnetic interactions (sec. 4.5), where one can

proceed analytically. In sec. 4.6 we consider the most general case with disordered

interactions.
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4.1 The set-up

In this chapter, we study the system of interacting B-T clones via cytokines

and subjected to idiotypic interactions. Here we will focus on the high storage

regime where P = αN (δ = 1) with a high degree of dilution γ = 1. The

setting is similar to what has been introduced so far: T clones are binary variables

σi = ±1, i = 1, . . . , N , where (±1) depends on whether they are/are not secreting

cytokines, while B clones are described by bµ ∈ R, µ = 1, . . . , P , characterising

their log-concentrations. Moreover, they interact via cytokines ξµi , which are

quenched i.i.d. random variables drawn from

P(ξµi = 1) = P(ξµi = −1) =
c

2N
, P(ξµi = 0) = 1− c

N
, (4.1.1)

with c = O(N0), as required in the finitely connected regime. Both σ’s and b’s

are random variable described at equilibrium at inverse noise level β [24], by the

joint distribution P (σ,b|ξ)

P (σ,b|ξ) =
e−βH(σ,b|ξ)

Z
, (4.1.2)

with Hamiltonian

H(σ,b|ξ) = −
N,P∑

i,µ=1

ξµi σibµ +
1

2

P∑

µ,ν=1

bµAµνbν , (4.1.3)

where ξµi ∈ {+1,−1, 0} represent the interaction between T clone i and B clone

µ, mediated by cytokines, which can be excitatory (+1), inhibitory (−1) or ab-

sent (0). The matrix A = {Aµν}, introduced in sec. 3.3, models the idiotypic

interactions. As before, for the B-B interactions we use the following matrix

Aµν = δµν − kδµ,(ν+P/2) mod P , (4.1.4)
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with k ∈ [0, 1) representing the strength of idiotypic interactions. In the fol-

lowing, we will simplify the notation, dropping the explicit dependence on the

ξ-interactions, in the Hamiltonian, which will be denoted by H(σ,b), and the

Boltzmann distribution, P (σ,b) (analogously for marginals).

Marginalising over the variables bµ, as shown in sec. 3.3, the system can be

described in terms of the distribution

P (σ) =
1

Z ′
e−βH(σ) , (4.1.5)

with effective Hamiltonian

H(σ) = −1

2

N∑

i,j=1

σiσj

P∑

µ,ν=1

ξµi (A−1)µνξ
ν
j (4.1.6)

and normalisation

Z ′ =
∑

σ
e−βH(σ) . (4.1.7)

This involves only interactions between T clones in the separable form Jij =

ξTi A−1ξj, where ξi = (ξ1
i , . . . , ξ

P
i )T , and thus describes an associative network

with diluted patterns {ξµ}. We can rewrite the Hamiltonian (4.1.6) as

H(σ) = −1

2
mT (σ)A−1m(σ) (4.1.8)

in terms of the αN (non-normalised) order parameters m = (m1, . . . ,mP )T , where

mµ(σ) =
N∑

i=1

σiξ
µ
i (4.1.9)

quantifies the strength of the excitatory signal on B clone µ and thus its activation,

and mT denotes the transpose of m. In the following we will show that important

properties of the system are encoded in the system of interacting T clones only.
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Experimentally, one has access to the B clone size distribution, rather than

P (σ). Hence, the relevant quantity to probe to compare the model behaviour

with experimental data is

P (b) =

∫
db
∑

σ
P (σ,b)

1

P

P∑

µ=1

δ(b− bµ) . (4.1.10)

To this end, we rewrite (4.1.2) as

P (σ,b) =
1

Z
e−

1
2
βbTAb+βbTm(σ) (4.1.11)

=
1

Z ′
P (σ)P (b|A−1m(σ)) , (4.1.12)

where we have completed the square in (4.1.11) and introduced the joint distri-

bution of the B clone sizes

P (b|A−1m(σ)) =

√
det A

(2π)P
e−

β
2

(b−A−1m(σ))TA(b−A−1m(σ)) , (4.1.13)

a multivariate Gaussian distribution. The marginal distribution for the µ-th B

clone, obtained by integrating the above over all bν other than bµ, will be Gaussian

as well with average (A−1m(σ))µ and variance (A−1)µµ i.e.

P (bµ|(A−1m(σ))µ) =
1√

2π/β(1− k2)
e−

β(1−k2)
2

(bµ−(A−1m(σ))µ)2 , (4.1.14)

where we used (A−1)µµ = 1/(1− k2) ∀ µ. Hence, from (4.1.10) we get

P (b) =
1

Z ′

∑

σ
P (σ)

1

P

P∑

µ=1

P (b|(A−1m(σ))µ) . (4.1.15)
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Upon defining m̃(σ) = A−1m(σ) we get

P (b) =
1

Z ′

∑

m̃

∑

σ
P (σ)

1

P

P∑

µ=1

δ(m̃− m̃µ(σ))P (b|m̃)

=
1

Z ′

∫
dm̃P (m̃)P (b|m̃) , (4.1.16)

where

P (m̃) =
∑

σ
P (σ)

1

P

P∑

µ=1

δ(m̃− m̃µ(σ)) (4.1.17)

and

P (b|m̃) =
1√

2π/β(1− k2)
e−

β(1−k2)
2

(b−m̃)2 . (4.1.18)

This shows that the distribution of B clone sizes P (b) is readily determined once

we know P (m̃), distribution of “rotated” overlaps m̃(σ) in the “marginalised”

system involving only σ described by (4.1.8), where the b have been integrated

out. Hence, the problem of computing B clone distributions, which are experi-

mentally accessible in immunology, amounts to finding the overlap distribution

in an associative memory with diluted and coupled patterns.

In the absence of idiotypic interactions, i.e. for uncoupled patterns, it is

known that for ratios α = P/N not too large and below a critical value of the

noise level T , non-zero values of the overlaps m emerge in the system, meaning

that B clones are spontaneously activated [39]. The overlap distribution crosses-

over from a unimodal distribution peaked at zero to a bimodal peaked at large

values of the overlap [27]. In section 4.4.1 we will derive a tight bound on the

noise level T at which this cross-over takes place. Interestingly, we will show

that this coincides with the critical temperature at which the system undergoes a

phase transition, from m = 0 to m 6= 0, in the regime of extremely diluted B-T

interactions and sub-extensive number of B clones, analysed in sec. 3.3.
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Since the B clones size distribution is a convolution of Gaussian distributions

centred on the emerging values of the (rotated) overlaps, the phase where m 6= 0

can be regarded as the healthy phase of the immune system, where cells numbers

are sustained. This may provide a theoretical explanation for the need of a basal

activity of the immune system, by which T clones send signals to B clones. This

is experimentally observed, even in the absence of external pathogens, and is

believed to be one of the mechanisms to accomplish a homeostatic control of cell

numbers [53].

In a similar fashion, we can calculate the equilibrium concentration of any B

clone µ and the activation of any T cell i via

Piµ(σ, b) =

∫
db
∑

σ
P (σ,b)δ(b− bµ)δσ,σi

=
1

Z

∑

σ
P (σ)δσ,σiP (b|(A−1m(σ))µ)

=
1

Z ′

∫
dm̃P (b|m̃)

∑

σ
P (σ)δσ,σiδ(m̃− m̃µ(σ)) , (4.1.19)

showing again that all the information about the physics of the system is encoded

in the marginalised distribution P (σ).

4.2 Factor graph representation

We can visualize our system of N T clones and P B clones as a bipartite

graph, G = (T ,B), where T clones constitute the T party and B clones represent

the B party, with N = |T | and P = |B|. We indicate with ∂µ = {i : ξµi 6= 0} the

set of T clones connected to the B clone µ, and with ∂i = {µ : ξµi 6= 0} the set of

B clones connected to a particular clone i, i.e. |∂µ| is the degree of a B clone µ

and |∂i| is the degree of a T clone i in the bipartite graph G [73]. The bipartite

graph is schematically represented in fig. 4.1.

In our analysis, we will consider random bipartite graph ensembles where
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!i b!

N P

di = |@i|

qµ = |@µ|

Figure 4.1: Schematic representation of the bipartite graph G = (T ,B) composed

of P B clones and N T clones. |∂i| = di and |∂µ| = qµ represent the degree of

party T and B respectively.

the degrees di = |∂i| and qµ = |∂µ| of the nodes in the two parties are drawn

respectively from the distributions Pd(d) = 1
N

∑N
i=1 δd,|∂i|, Pq(q) = 1

P

∑P
µ=1 δq,|∂µ|,

and links are i.i.d variables which take values ξµi ∈ {+1,−1}. Conservation of

links demands
∑N

i=1 di =
∑P

µ=1 qµ, which gives, for large N , N〈d〉 = P 〈q〉, where

averages are taken over Pd(d) and Pq(q). Different graph topologies have been

considered, in the absence of idiotypic interactions, in [39], while here we mostly

focus on regular graph topologies and on the role of B-B interactions.

In this section, we introduce a factor graph representation of the Boltzmann

distribution for the marginalised system described by (4.1.8). In general, a factor

graph is useful to represent multivariate distributions of n variables σi factorising

into the product of local functions or factors, each dependent only on a subset

of the n variables, as bipartite graphs. Hence, in the bipartite graph we can

distinguish variable nodes, representing the σi’s, and factor nodes, representing

the local functions fa, connected via an edge only if the variable σi is an argument

of fa. Let us consider, as an example, a simple factorising distribution over the
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�1 �2 �3 �4 �5 �6

fa fb fc fd fe ff

�1

�2 �3 �4 �5

�6

fa

fb

fc

fd

fe

ff

Figure 4.2: Factor graph representation of the distribution in (4.2.20). Black

circles represent variable nodes and square represent factor nodes, edges are drawn

if the variable σi is an argument of the factor fa. We represent the distribution

as a bipartite graph (left) and as a tree (right).

variables σ1, . . . , σ6 of the form

P (σ1, . . . , σ6) = fa(σ1)fb(σ2)fc(σ1, σ2, σ3)fd(σ4)fe(σ1, σ4, σ5)ff (σ5, σ6) . (4.2.20)

Using the above-given prescriptions, we can easily represent this distribution as

a bipartite graph and, equivalently, as a tree, as shown in fig. 4.2.

For the general theory of factor representation we refer to [71, 75]. This rep-

resentation will allow us to easily derive a set of recursive equations for marginal

distributions of T clones activation and expressions for the distributions of local

observables, which quantify B clones activation.

It is convenient to manipulate the P (σ) in (4.1.5) to provide a suitable factor

graph representation. First, we diagonalise the matrix A−1 transforming it via

D = P−1A−1P, where D is the diagonal matrix constructed from the eigenvalues

{λµ}Pµ=1 of A−1 and P is the orthogonal matrix of eigenvectors. We can rewrite

the Hamiltonian in terms of the transformed vector v(σ) = P−1m(σ)

H(σ) = −1

2
vT (σ)D−1v(σ) = −1

2

∑

µ

v2
µ(σ)

1

λµ
. (4.2.21)
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Hence, the P (σ) defined in (4.1.5) clearly factorizes over µ

P (σ) =
1

Z ′

P∏

µ=1

Fµ(σ) , (4.2.22)

with normalisation Z ′ defined in (4.1.7) and factors

Fµ(σ) = eβv
2
µ(σ)/(2λµ) =

〈
evµ(σ)z

√
β/λµ

〉
z
, (4.2.23)

where

〈f(z)〉z =

∫ +∞

−∞

dz√
2π

e−
1
2
z2f(z) . (4.2.24)

We recall that v(σ) = P−1m(σ) and P is the orthogonal matrix whose columns

are the eigenvectors {nµ}Pµ=1 of the matrix A defined in (4.1.4). We can write

vµ(σ) =
P∑

ν=1

(PT )µνmν(σ) =
P∑

ν=1

nµνmν(σ) =
P∑

ν=1

nµν
∑

i∈∂ν

ξνi σi , (4.2.25)

where ∂ν = {i : ξνi 6= 0} and nµν is the ν-component of the eigenvector nµ of A,

associated to the eigenvalue λµ. The eigenvalues of A, each with degeneracy P/2,

are

λ1 = 1− k and λ2 = 1 + k . (4.2.26)

The P/2 eigenvectors nµ, µ = 1, . . . , P/2, associated to λ1, have components

nµν =
1√
2

(
δν,µ + δν,µ+P/2

)
, µ = 1, . . . , P/2 , (4.2.27)

whereas the P/2 eigenvectors nµ, µ = P/2 + 1, . . . , P , associated to λ2, have

components

nµν =
1√
2

(
δν,µ − δν,µ+P/2

)
, µ = P/2 + 1, . . . , P . (4.2.28)
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Hence, there are only two contributions to the sum over ν in (4.2.25)

vµ(σ) =
1√
2


nµµ

∑

k∈∂µ

ξµkσk + nµµ+P/2

∑

`∈∂(µ+P/2)

ξ
µ+P/2
` σ`


 . (4.2.29)

Defining the scaled eigenvector xµ = nµ√
2λµ

, we obtain

Fµ(σ) =

〈
exp


√βzxµµ

∑

k∈∂µ

ξµkσk +
√
βzxµµ+P/2

∑

`∈∂(µ+P/2)

ξ
µ+P/2
` σ`



〉

z

.

(4.2.30)

We can proceed by splitting the product over µ in (4.2.22), to separate the con-

tributions from µ ≤ P/2 and µ > P/2

P (σ) =
1

Z ′

P/2∏

µ=1

〈evµ(σ)z
√
β/λµ〉z

P∏

ν=P/2+1

〈evν(σ)z
√
β/λν 〉z

=
1

Z ′

P/2∏

µ=1

〈
exp


√βz


xµµ

∑

k∈∂µ

ξµkσk + xµµ+P/2

∑

`∈∂(µ+P/2)

ξ
µ+P/2
` σ`





〉

×
P∏

ν=P/2+1

〈
exp


√βz


xνν

∑

k∈∂ν

ξνkσk + xνν+P/2

∑

`∈∂(ν+P/2)

ξ
ν+P/2
` σ`





〉

.

(4.2.31)

Setting ν = (µ+ P/2) modP we have

P (σ) =
1

Z ′

P/2∏

µ=1

〈
exp


√βz


xµµ

∑

k∈∂µ

ξµkσk + xµµ+P/2

∑

`∈∂(µ+P/2)

ξ
µ+P/2
` σ`





〉
×

×
P/2∏

µ=1

〈
exp


√βz


xµ+P/2

µ

∑

k∈∂µ

ξµkσk + x
µ+P/2
µ+P/2

∑

`∈∂(µ+P/2)

ξ
µ+P/2
` σ`





〉

.

(4.2.32)
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and combining the averages yields

P (σ) =
1

Z ′

P/2∏

µ=1

〈
exp

[
√
β
(
z1x

µ
µ + z2x

µ̂
µ

) ∑

k∈∂µ

ξµkσk +
√
β
(
z1x

µ
µ̂ + z2x

µ̂
µ̂

)∑

`∈∂µ̂

ξµ̂` σ`

]〉

z1,z2

,

(4.2.33)

where µ̂ = (µ+P/2) mod P and 〈 ·〉z1,z2 denotes the average over the distribution

f(z1) · f(z2) where f is a Gaussian distribution with zero mean and unit variance

as in (4.2.24). For all µ = 1, . . . , P/2 we have

z1x
µ
µ + z2x

µ̂
µ =

1√
2(1− k)

z1 −
1√

2(1 + k)
z2 , (4.2.34)

z1x
µ
µ̂ + z2x

µ̂
µ̂ =

1√
2(1− k)

z1 +
1√

2(1 + k)
z2 . (4.2.35)

Applying to the variables z1, z2 the transformation y = Xz with

X =




1√
2(1−k)

− 1√
2(1+k)

1√
2(1−k)

1√
2(1+k)


 y =


 y1

y2


 z =


 z1

z2


 , (4.2.36)

we can rewrite (4.2.33) in terms of (y1, y2)

P (σ) =
1

Z ′

P/2∏

µ=1

〈
exp

[
√
βy1

∑

k∈∂µ

ξµkσk +
√
βy2

∑

`∈∂µ̂

ξµ̂` σ`

]〉

y

. (4.2.37)

In the above expression we used

〈(· · · )〉y =
√

1− k2

∫
dy1dy2

2π
(· · · )e− 1

2
yTC−1y (4.2.38)

and

C−1 = (X−1)TX−1 =


 1 −k
−k 1


 . (4.2.39)
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We can finally write P (σ) as a product of P/2 factors

P (σ) =
1

Z ′

P/2∏

µ=1

fµµ̂({σk, k ∈ ∂µ}, {σ`, ` ∈ ∂µ̂}) , (4.2.40)

each involving a pair of (complementary) clones µ, µ̂

fµµ̂({σk, k ∈ ∂µ}, {σ`, ` ∈ ∂µ̂}) =

〈
exp

[
√
β

(
y1

∑

k∈∂µ

ξµkσk + y2

∑

`∈∂µ̂

ξµ̂` σ`

)]〉

y

.

(4.2.41)

Each factor fµµ̂ is a function of spins (T clones) {σk} connected to the µ-

th B clone and {σ`} connected to µ̂ = (µ + P/2) modP , which is the B clone

complementary to µ. Via this representation, we note that the effect of the B-B

interactions is equivalent to connecting together T clones signalling to comple-

mentary B clones.

4.3 Derivation of the cavity equations

The cavity equations and the belief-propagation approach are useful to recur-

sively compute marginals of joint distributions of N variables σ = (σ1, . . . , σN)

of the form (4.2.40) and the associated observables of the system, such as the

overlap distribution quantifying B clones activation, as shown in sec. 4.3.1.

These types of factorised distributions can be graphically represented on bi-

partite graphs (as the graph shown in fig. 4.1) or factor graphs containing N

variable nodes, representing the variables σi’s, and P
2

factor nodes associated to

the factors fµµ̂ in (4.2.41). For sparse interactions {ξµi }, our factor graph will be

locally tree-like in the thermodynamic limit, with typical loop lengths diverging

(logarithmically) with N . This will allow us to use the Bethe-Peierls approxi-

mation [71, 74] to find the cavity distributions in a recursive fashion. Compared

to the naive algorithm to compute marginals of joint distributions, which would
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sum over all the possible configurations for a total of order 2N operations, com-

putations on trees can reduce the complexity of the operations to just a linear

growth in N .

To better understand this point, it is instructive to consider a simple example

with P (σ) of the form

P (σ1, . . . , σN) = f1,2(σ1, σ2)f2,3(σ2, σ3) · · · fN−1,N(σN−1, σN) . (4.3.42)

In a factor graph representation, this distribution corresponds to a chain, as each

variable is common to at most two factors. To compute the marginal

P (σ1) =
∑

σ2,...,σN

f1,2(σ1, σ2)f2,3(σ2, σ3) · · · fN−1,N(σN−1, σN) , (4.3.43)

the naive strategy would require summing over 2N−1 configurations. A more

efficient procedure would be to write the sums as follows

P (σ1) =
∑

σ2

f1,2(σ1, σ2)

[∑

σ3

f2,3(σ2, σ3) · · ·
[∑

σN

fN−1,N(σN−1, σN)

]]
, (4.3.44)

and start computing them from the innermost sum. The latter can be represented

as a product between a 2 × 2 matrix S, whose entries are Sσσ′ = f(σ, σ′) and a

vector v = (1, 1)T . Each subsequent sum is again a matrix multiplication of

S with the resulting vector from the previous step, for a total of 22 elementary

multiplications at each step. Hence, to compute the marginal, we must perform

N − 1 matrix multiplications for a total of (N − 1)22 = O(N) operations.

This reasoning can be easily applied not only to chains, but also to more com-

plicated factor graphs as long as they are trees. For instance, we may consider

the example given in the previous section where the distribution (4.2.20) can be

represented as a tree (see fig. 4.2 (right)) and compute the marginal

P (σ1) =
∑

σ2,...,σ6
fa(σ1)fb(σ2)fc(σ1, σ2, σ3)fd(σ4)fe(σ1, σ4, σ5)ff (σ5, σ6) in the more
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efficient way

P (σ1) = fa(σ1)

[∑

σ2

fb(σ2)

[∑

σ3

fc(σ1, σ2, σ3)

]]
×

×
[∑

σ4

fd(σ4)

[∑

σ5

fe(σ1, σ4, σ5)

[∑

σ6

ff (σ5, σ6)

]]]
, (4.3.45)

exploiting the factorisation properties of the distribution, as shown for the case

of the chain.

Coming back to our distribution P (σ) in (4.2.40) we denote with Pµµ̂(σi) the

marginals of σi, when the i-th clone is coupled to the factors µµ̂, which “measure”

the dependence of the factors µµ̂ on the variable σi. The so-called cavity marginals

P\µµ̂(σi) of σi when coupled to all factors except µ and its complement µ̂ (also

called messages from node i to factors µ, µ̂), instead quantify the influence of all

the neighbouring factors except µ, µ̂ on σi.

Exploiting the tree structure of the graph, we notice that the message from

factors µ, µ̂ to node i, encoded in the marginals Pµµ̂(σi) depends on the incoming

messages from the nodes j 6= i connected to the factors µµ̂. Equivalently, the

message from node i to factors µ, µ̂ (when the edge i → µµ̂ has been removed)

can be computed from the messages sent to node i from all the neighbouring

factors ρ, ρ̂ 6= µ, µ̂, as summarised in the scheme in fig. 4.3.

Hence, messages can be updated using local computations performed at each

node of the factor graph, i.e. using the incoming messages from a previous iter-

ation to compute the new outgoing ones. For a more detailed account of main

features and limitations of the method we refer to the standard books [71, 75],

while for applications to spin glasses we point the reader to [74].

We now proceed to the formal derivation of the recursive equations considering

the tree schematically represented in fig. 4.4. We start by removing the factor

µ and its complementary factor µ̂ and we calculate the partition function of the



4.3. Derivation of the cavity equations 154

�i

�i

�j
µµ̂

µµ̂

⇢⇢̂

node → factor

factor → node

Figure 4.3: Scheme representing the incoming and outgoing node-factor and fac-

tor node messages used in local computations of marginal distributions on a tree.

tree Ti(r) rooted in i with depth r, in the absence of the pair µ, µ̂

Z
(0)
iµµ̂ =

∑

{σn∈Ti(r)}

∏

ν∈Ti(r)\µ,µ̂

fνν̂({σk∈∂ν}, {σ`∈∂ν̂}) , (4.3.46)

where the 0-index highlights that the root is the 0-th layer of the tree. We can

rewrite the above in a more compact way as

Z
(0)
iµµ̂ =

∑

{σn∈Ti(r)}

∏

ν∈Ti(r)\µ,µ̂

fνν̂({σk∈∂νν̂}) , (4.3.47)

where we introduced the notation ∂νν̂ = ∂ν ∪ ∂ν̂ and σk denotes any spin inter-

acting with either ν or ν̂. We proceed by computing the same quantity as above

but fixing the spin σi. This gives the constrained partition function Z
(0)
iµµ̂(σi)

Z
(0)
iµµ̂(σi) =

∑

{σn\i∈Ti(r)}

∏

ν∈∂i\µ,µ̂


fνν̂(σi, {σk∈∂νν̂\i})

∏

k∈∂νν̂\i

∏

ρ∈Tk(r−1)

fρρ̂({σs∈∂ρρ̂\k})


 ,

(4.3.48)

which represents the un-normalised marginal distribution of σi in the absence

of factors µ, µ̂. Its normalised version gives the cavity distribution P\µµ̂(σi), also

defined as the “message” that site i sends to factors µ, µ̂. In (4.3.48) we separated
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r=0i

µ

�k�l r=1

µ̂

⌫̂⌫

⇢̂⇢

Figure 4.4: Schematic representation of the factor tree Ti(r), i.e. the tree rooted

in the spin σi with radius r. Rectangles represent factors fµµ̂ defined in (4.2.41)

and filled circle the spin variables the factors depend on.

the contributions of the factors directly attached to i from those in the rest of the

tree, which are independent of σi. Rearranging the sums in the expression above

we obtain

Z
(0)
iµµ̂(σi) =

∏

ν∈∂i\µµ̂


 ∑

{σk∈∂νν̂\i}

fνν̂(σi, {σk∈∂νν̂\i})
∏

k∈∂νν̂\i

∑

{σn∈Tk(r−1)\k}

∏

ρ∈Tk(r−1)\ν,ν̂

fρρ̂({σs∈∂ρρ̂})


 .

(4.3.49)

The last sum in the expression represents exactly the partition function Z
(1)
kνν̂(σk)

of the sub-tree rooted in k of depth r− 1, where the spin σk has been fixed. This

leads to the following recursive relation

Z
(0)
iµµ̂(σi) =

∏

ν∈∂i\µµ̂


 ∑

{σk∈∂νν̂\i}

fνν̂(σi, {σk∈∂νν̂\i})
∏

k∈∂νν̂\i

Z
(1)
kνν̂(σk)


 , (4.3.50)

and more generally to the recursion for the (un-normalised) cavity distribution
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at layer r in terms of those at layer r + 1

Z
(r)
iµµ̂(σi) =

∏

ν∈∂i\µµ̂


 ∑

{σk∈∂νν̂\i}

fνν̂(σi, {σk∈∂νν̂\i})
∏

k∈∂νν̂\i

Z
(r+1)
kνν̂ (σk)


 .

(4.3.51)

The stationary solutions of the recursion equations then satisfy

Ziµµ̂(σi) =
∏

ν∈∂i\µµ̂


 ∑

{σk∈∂νν̂\i}

fνν̂(σi, {σk∈∂νν̂\i})
∏

k∈∂νν̂\i

Zkνν̂(σk)


 .

(4.3.52)

Recalling the meaning of Ziµµ̂(σi) as the un-normalised marginal distribution of σi

where factors µ, µ̂ have been removed, one finally obtains the recursive equations

for the cavity marginals

P\µµ̂(σi) =
∏

ν∈∂i\µµ̂

Pνν̂(σi) , (4.3.53)

Pνν̂(σi) =
1

Zνν̂
∑

{σk∈∂νν̂\i}

fνν̂(σi, {σk∈∂νν̂\i})
∏

k∈∂νν̂\i

P\νν̂(σk) , (4.3.54)

where Zνν̂ ensures the normalisation of Pνν̂(σi). Iterating these equations until

convergence, we obtain exact solutions on trees and approximately exact solutions

on locally tree-like graph [71].

4.3.1 Distribution of overlaps

To study the activation properties of the system, i.e. its ability to retrieve

stored patterns of clonal activation, encoded in the pattern overlapsmµ =
∑

k∈∂µ ξ
µ
kσk,

we look at the joint distribution of complementary clones activation

Pµµ̂(m, m̂) = 〈δm,mµ(σ)δm̂,mµ̂(σ)〉 =
∑

σ
P (σ)δm,mµ(σ)δm̂,mµ̂(σ) . (4.3.55)
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Inserting (4.2.40) in (4.3.55) and splitting the sums over spins attached to factors

µ, µ̂ from the sums over spins in the rest of the (tree-like) graph (which give the

cavity marginals in the absence of the factors µ, µ̂) we obtain

Pµµ̂(m, m̂) =

∑
{σk∈∂µµ̂}

∫
Dye

√
β(y1mµ(σ)+y2mµ̂(σ))δm,mµ(σ)δm̂,mµ̂(σ)

∏
k∈∂µµ̂ P\µµ̂(σk)∑

{σ̃k∈∂µµ̂}
∫
Dye

√
β(y1mµ(σ̃)+y2mµ̂(σ̃)

∏
k∈∂µµ̂ P\µµ̂(σ̃k)

,

(4.3.56)

where Dy =
√

1− k2 dy1dy2
2π

e−
1
2
yTC−1y and the cavity marginals P\µµ̂(σk) must

be computed recursively from equations (4.3.53, 4.3.54). Summing over m or

m̂, we obtain the marginalised distributions Pµµ̂(m) and Pµµ̂(m̂) respectively.

Marginalised distributions are particularly useful to monitor the single-cluster

behaviour varying the parameters T, k.

Finally, to compute the B clone size distribution P (b) given in (4.1.16), we

need the distribution of the rotated overlaps m̃µ = mµ
1−k2 +

kmµ̂
1−k2

Pµµ̂(m̃) =
∑

m,m̂

Pµµ̂(m, m̂)δ

(
m̃− m

1− k2
− km̂

1− k2

)
. (4.3.57)

In the following sections, we will solve the recursive equations (4.3.53, 4.3.54) in

two cases that can be treated analytically, namely the paramagnetic phase (sec.

4.4) and the case with ferromagnetic interactions (sec. 4.5) and we will com-

pute the overlaps and clone sizes distributions in different regimes of the model

parameters. We will also specialise them for a particular graph distribution, fo-

cusing mainly on the regular graph topology. In sec. 4.6 we numerically solve

the recursive equations for the general case with disordered interactions using a

population dynamics algorithm, described in appendix A.2.
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4.4 Paramagnetic phase

One can easily see that P\µµ̂(σk) = 1/2 ∀ µ, µ̂, k is always a solution of the

recursive equations (4.3.53, 4.3.54). We refer to this solution as the paramagnetic

phase, where spins have probability 1/2 to be ±1. In this phase, the distribution

of overlaps (4.3.56) for the clusters µ, µ̂ simplifies to

Pµµ̂(m, m̂) =

∑
{σk∈∂µµ̂}

∫
Dye

√
β(y1mµ(σ)+y2mµ̂(σ))δm,mµ(σ)δm̂,mµ̂(σ)∑

{σ̃k∈∂µµ̂}
∫
Dye

√
β(y1mµ(σ̃)+y2mµ̂(σ̃))

, (4.4.58)

thus losing the dependence on the interaction with the other clusters in the graph

through the cavity marginals P\µµ̂(σk). This means that in the paramagnetic

phase each cluster in the graph behaves as if it were in isolation. Hence, analysing

(4.4.58) and the other related overlap distribution in this phase, we can obtain

information about single clusters activation.

We use the delta constraints to remove the spin dependence from the expo-

nential in the numerator, then we perform the integration over y1, y2 and the sum

over the spins

∑

{σk∈∂µ,σ`∈∂µ̂}

δm,mµ(σ)δm̂,mµ̂(σ) =

=
1

4π2

∫
dx1dx2eix1m+ix2m̂

∑

{σk∈∂µ}

e−ix1
∑
k∈∂µ ξ

µ
kσk

∑

{σ`∈∂µ̂}

e−ix2
∑
`∈∂µ̂ ξ

µ̂
` σ`

=
1

4π2

∫
dx1dx2eix1m+ix2m̂(2 cosx1)|∂µ|(2 cosx2)|∂µ̂|

=

|∂µ|∑

r=0

(|∂µ|
r

)
δm,2r−|∂µ|

|∂µ̂|∑

j=0

(|∂µ̂|
j

)
δm̂,2j−|∂µ̂| , (4.4.59)

where we used the Fourier representation of the Kronecker δ’s, the parity of the

cosine function to drop the ξ’s from its argument, the binomial expansion of the

powers of cosine and finally carried out the integrations. This leads us to the
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discrete distribution

Pµµ̂(m, m̂) =
1

Zµµ̂
e

β

2(1−k2)
(m2+2kmm̂+m̂2)

|∂µ|∑

`=0

(|∂µ|
`

)
δm,2`−|∂µ|

|∂µ̂|∑

j=0

(|∂µ̂|
j

)
δm̂,2j−|∂µ̂| ,

(4.4.60)

where

Zµµ̂ =

|∂µ|∑

`=0

(|∂µ|
`

) |∂µ̂|∑

j=0

(|∂µ̂|
j

)
e

β

2(1−k2)
[(2`−|∂µ|)2+2k(2`−|∂µ|)(2j−|∂µ̂|)+(2j−∂µ̂)2]

(4.4.61)

ensures normalization of (4.4.60) over the support m ∈ {−|∂µ|, |∂µ|+2, . . . , |∂µ|−
2, |∂µ|} and similarly for m̂.
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Figure 4.5: 3D plot of the joint distribution of complementary B-clones overlaps

P (m, m̂|K) (4.4.65) for T = 5 (left) and T = 10 (right) and k = 0.5. The

distribution is computed for a regular graph with degree K = K̂ = 4 in the

paramagnetic phase. Note that here and elsewhere the support of the distribution

is discrete, m, m̂ ∈ {−4,−2, 0, 2, 4}, and a continuous interpolating function has

been used to guide the eye.

It is worth stressing that in the paramagnetic phase the overlap distribution,

from which our observables of interest can be derived, does not depend on the

nature of the interactions {ξµi }, and Zµµ̂ depends on µ, µ̂ only through |∂µ|, |∂µ̂|.
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The distribution of rotated overlap follows as

Pµµ̂(m̃) =
∑

m,m̂

e
β

2(1−k2)
(m2+2kmm̂+m̂2)

Z ′µµ̂

|∂µ|∑

`=0

(|∂µ|
`

)
δm,2`−|∂µ|×

×
|∂µ̂|∑

j=0

(|∂µ̂|
j

)
δm̂,2j−|∂µ̂|δ

(
m̃− m

1− k2
− km̂

1− k2

)
. (4.4.62)

Averaging eq. (4.4.60) and (4.4.62) over graphs with factor degree distribution

Pq(κ) we obtain respectively

P (m, m̂|Pq) =
∑

κ,κ̃≥1

Pq(κ)Pq(κ̃)
1

Zκ,κ̃
e

β

2(1−k2)
(m2+2kmm̂+m̂2)

κ∑

`=0

(
κ

`

)
δm,2l−κ

κ̃∑

j=0

(
κ̃

j

)
δm̂,2j−κ̃

(4.4.63)

and

P (m̃|Pq) =
∑

κ,κ̃≥1

Pq(κ)Pq(κ̃)
∑

m,m̂

e
β

2(1−k2)
(m2+2kmm̂+m̂2)

Z ′κ,κ̃

κ∑

`=0

(
κ

`

)
δm,2`−κ×

×
κ̃∑

j=0

(
κ̃

j

)
δm̂,2j−κ̃δ

(
m̃− m

1− k2
− km̂

1− k2

)
. (4.4.64)

In addition, we can obtain the marginalised distributions P (m|Pq) =
∑

m̂ P (m, m̂|Pq)
and P (m̂|Pq) =

∑
m P (m, m̂|Pq). In the following we consider the regular graph

case, i.e. Pq(κ) = δκ,K for which the distributions reduce to

P (m, m̂|K) =
e

β

2(1−k2)
(m2+2kmm̂+m̂2)

Z
K∑

`=0

(
K

`

)
δm,2`−K

K∑

j=0

(
K

j

)
δm̂,2j−K (4.4.65)

and

P (m̃|K) =
∑

m,m̂

e
β

2(1−k2)
(m2+2kmm̂+m̂2)

Z ′
K∑

`=0

(
K

`

)
δm,2`−K×

×
K∑

j=0

(
K

j

)
δm̂,2j−Kδ

(
m̃− m

1− k2
− km̂

1− k2

)
, (4.4.66)
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where Z,Z ′ are the normalising constants. Analogously, we can define the

marginalised distribution for a regular graph topology, which we will indicate

with P (m|K), P (m̂|K).
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Figure 4.6: Plot of P (m|K) in the paramagnetic phase for a regular graph with

degree K = 4. Left panel: P (m|K) for different temperatures T = 1, 5, 10 at

fixed k = 0.5. Right panel: P (m|K) for different B-B interaction strengths

k = 0.1, 0.5, 0.9 at fixed T = 5. Note that the support of the distribution is

discrete (markers), m ∈ {−4,−2, 0, 2, 4}.

Our aim is now to investigate the system’s behaviour varying the parameters

T and k. To this end, we first we plot P (m, m̂|K) in figure 4.5 for different values

of the noise level T . At high temperature, the distribution is peaked around zero,

suggesting that in the absence of an antigenic field there is no clonal expansion.

Decreasing the temperature, the overlap distribution becomes peaked at equal

values of m = m̂ = ±K: this means that pairs of complementary clones are likely

to receive the same signals, either both excitatory or both inhibitory. The system

will fluctuate from one peak to the other with a timescale τ proportional to

the exponential of the free-energy barrier between (m, m̂) = ±(K,K) and (0, 0),

hence exponentially large in the finite size K of the two clones τ ∼ eβK
2/(1−k).

It follows that any clone that is initially expanded, will eventually undergo a

contraction in the absence of an antigen, over a typical timescale that increases

with the size K and the strength k of the idiotypic interactions. Hence, one of

the roles of idiotypic interactions is to prolong the short-term memory of the

encountered antigen in the system.

To better understand the dependence of the activation on the system’s pa-

rameters, we plot P (m|K) in fig. 4.6 for different values of the temperature T
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and of the B-B interaction strength k. The effect of increasing the B-B inter-

actions strength k is qualitatively similar to what we observe when decreasing

the temperature. In the next section (4.4.1), we will discuss in more detail the

dependence of the transition from bimodal to unimodal overlap distribution on

the parameters T and k .
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Figure 4.7: Plot of P (m̃|K) (left) and the associated B clone sizes distribution

P (b) (right) for different temperatures T = 1, 5, 10, and fixed k = 0.5 for a regular

graph with degree K = 4 in the paramagnetic phase.
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Figure 4.8: Plot of P (m̃|K) (left) and the associated B clone sizes distribution

P (b) (right) for different strengths of idiotypic interactions k = 0.1, 0.5, 0.9, and

temperature T = 5 for a regular graph with degree K = 4 in the paramagnetic

phase.

Finally, we plot the distribution of rotated overlaps that is needed to derive

the B clone size distribution. In fig. 4.7 (left panel) we show the behaviour of

P (m̃|K) when varying the temperature, while in fig. 4.8 (left panel) we plot it for

different values of k. The behaviour is qualitatively similar to what we discussed

for P (m|K) and directly affects the B clones size distribution. The latter can

be computed from P (m̃|K) by using (4.1.16, 4.1.17, 4.1.18), and is shown in

the right panels of the same figures. Fig. 4.7 (right panel) shows that at high
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temperature the B clone size distribution is peaked at zero, meaning that no clonal

expansion or contraction take place in the system. Lowering the temperature, the

distribution develops two peaks leading the system to alternate, in the absence of

an antigenic field, between “memorised” (expanded or contracted) states, where

B clones are boosted or suppressed, respectively. An antigenic field will force the

system to remain in the expanded state.

In fig. 4.8 (right panel) one notices that the peaks shift to larger clonal

sizes when k is increased, showing that idiotypic interactions may help boost the

proliferation of B clones. Furthermore, decreasing k at fixed T the distribution

crosses over from a bimodal to a unimodal distribution peaked at zero, meaning

that clonal expansions and contractions are more resilient to noise in the presence

of idiotypic interactions.

4.4.1 Crossover transition

In this section, we study the dependence of the crossover transition of the

overlap distribution from unimodal to bimodal (as shown in fig. 4.5 and 4.6) on

the noise level T and the idiotypic interaction strength k .

We note that this crossover transition is not a true phase transition, due to

the effective finite size K of the system. In contrast with the case K ∼ N1−γ,

with γ < 1 (and P ∼ Nγ) analysed in chapter 3, there is no order parameter

that becomes non-zero at the crossover. Before the crossover, one has a broad

distribution of the order parameter, peaked at zero, while after the crossover one

has a typical timescale for the system to make a transition between one peak and

the other, rather than a full ergodicity breaking. We will refer to the line in the

(T, k) plane where the crossover takes place as the single cluster activation line,

since it represents the onset of B clonal activation in the paramagnetic phase.

In order to derive the activation line, we consider the distribution of the

magnetisations m ∈ {−K, . . . ,K} and m̂ ∈ {−K̂, . . . , K̂} in the cluster of size
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K + K̂ defined in (4.4.65) for the case K = K̂. This distribution is of the form

P (m, m̂|K, K̂) =
1

Z e
β

2(1−k2)(m
2+2kmm̂+m̂2)

(
K
K+m

2

)(
K̂
K̂+m̂

2

)
, (4.4.67)

where we introduced the binomial coefficients, which are meant to be zero for

non-integer arguments. The normalising constant, which reads

Z =
∑

m,m̂

e
β

2(1−k2)(m
2+2kmm̂+m̂2)

(
K
K+m

2

)(
K̂
K̂+m̂

2

)
, (4.4.68)

gives the system’s partition function. Hence, we can derive the free energy F =

− 1
β

logZ, which is expected to give information on the “critical behaviour” of the

cluster. We note that F cannot be directly computed but we can obtain bounds

on this function by considering bounds for Z. In particular, we can exploit the

inequalities
1

K + 1
eKS(

r
K ) ≤

(
K

r

)
≤ eKS(

r
K ) , (4.4.69)

where S(p) = −p log p−(1−p) log(1−p). The second inequality, after the change

of variables m = m
K

and m̂ = m̂

K̂
, gives us the upper bound

Z ≤
∑

m,m̂

e
β

2(1−k2)(K
2m2+2KK̂kmm̂K̂2+m̂2)+KS( 1+m

2 )+K̂S( 1+m̂
2 )

≤ (2K+1)(2K̂+1)esupm,m̂∈[−1,1]φ1(m,m̂) , (4.4.70)

where we have defined the function

φ1(m, m̂) =
β
(
K2m2 + 2kKK̂mm̂+ K̂2m̂2

)

2(1− k2)
+KS

(
1 +m

2

)
+ K̂S

(
1 + m̂

2

)
.

(4.4.71)

The lower bound on the free energy follows from (4.4.71) and reads

F ≥ 1

β

[
− sup

m,m̂∈[−1,1]

φ1(m, m̂)− log
(

(2K+1)(2K̂+1)
)]

. (4.4.72)
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Let us now consider the function φ1(m, m̂). The stationary points of this function

satisfy the “mean-field” equations

m = tanh

(
β

1− k2

(
Km+ K̂km̂

))
, (4.4.73)

m̂ = tanh

(
β

1− k2

(
K̂m̂+Kkm

))
. (4.4.74)

In this approximation, eq. (4.4.73, 4.4.74) qualitatively correspond to the steady

state of the equations (3.3.106) derived in sec. 3.3. We note that the “paramag-

netic” point (m, m̂) = (0, 0) is always a solution to the above equations. However,

the point (0, 0) becomes unstable when the largest eigenvalue of the Jacobian J

of the system (4.4.73, 4.4.74) evaluated in (0, 0)

J =
β

1− k2


 K K̂k

Kk K̂


 (4.4.75)

becomes greater than one. This happens for

β ≥ 2(1− k2)

K + K̂ +

√
K2 + 2KK̂ (2k2 − 1) + K̂2

, (4.4.76)

which for K = K̂ reduces to β ≥ 1−k
K

. In this regime, the point (0, 0) ceases to be

a maximum and becomes a saddle-point of the function φ1(m, m̂). Interestingly,

the line T = K/(1−k) coincides with the critical line of the real phase transition

occurring in the system with a sub-extensive number P ∼ Nγ of extremely diluted

patterns, with γ < 1, analysed in chapter 3, where the typical size of a cluster is

K ∼ N1−γ.

This connection is best understood by looking also at the first inequality in

(4.4.69), which gives an upper bound on F . Let us define α such that K̂ = αK
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and set β = β̃
K

then

Z ≥ 1

(K+1)(K̂+1)

∑

m,m̂

e
β

2(1−k2)(K
2m2+2kKK̂mm̂+K̂2m̂2)+KS( 1+m

2 )+K̂S( 1+m̂
2 )

=
1

(K+1)(K̂+1)

∑

m,m̂

eKφ2(m,m̂)

=
eK supm1,m2∈[−1,1] φ2(m1,m2)

(K+1)(K̂+1)

∑

m,m̂

e−K(supm1,m2∈[−1,1] φ2(m1,m2)−φ2(m,m̂)) ,

(4.4.77)

where we have defined the function

φ2(m, m̂) =
β̃

2(1− k2)

(
m2 + 2kαmm̂+ α2m̂2

)
+ S

(
1 +m

2

)
+ αS

(
1 + m̂

2

)
.

(4.4.78)

From the above lower bound on Z we get the upper bound

F ≤ 1

β

[
−K sup

m,m̂∈[−1,1]

φ2(m, m̂)− log

(∑

m,m̂

e−K(supm1,m2∈[−1,1] φ2(m1,m2)−φ2(m,m̂))

)

+ log ((K+1)(αK+1))

]
. (4.4.79)

The stationary points of the function φ2(m, m̂) satisfy the equations

m = tanh

(
β̃

1− k2
(m+ αkm̂)

)
, (4.4.80)

m̂ = tanh

(
β̃

1− k2
(αm̂+ km)

)
, (4.4.81)

which, if we reverse the transformations K̂ = αK and β = β̃
K

, give us again

the mean-field equations (4.4.73, 4.4.74). We note that φ1(m, m̂) = Kφ2(m, m̂)

when K̂ = αK and β = β̃
K

, hence in the limit of large K and assuming α < ∞,

the upper bound (4.4.79) and the lower bound (4.4.72) give for the free energy

density F
K
→ − 1

β
supm,m̂∈[−1,1] φ2(m, m̂) as K →∞. This suggests that the result
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(4.4.73, 4.4.74) can be interpreted as the infinite size approximation of the finite

size system (4.4.67), which gives the connection with results derived in ch. 3 [61].

This system becomes “critical”, i.e. develops bi-stability, when the equality in

(4.4.76) is satisfied.

Numerically, it is possible to identify a crossover temperature by looking at

the height difference between the peaks in 0 and K. This method is exact in

the case K = 2, where the support consists of three points, and will provide a

lower bound for the crossover temperature for K > 2 (an exact numerical method

would consist in locating the temperature at which the peak in 0 stops being the

maximum over the support of the distribution).

We consider P (m|K,Pq) =
∑

K̂≥0 Pq(K̂)
∑

m̂ P (m, m̂|K,Pq), which can be

written as

P (m|K,Pq) =
∑

K̂≥0

Pq(K̂)




∑K̂
j=0

(
K̂
j

)
e

β

2(1−k2)
[m2+(2j−K̂)2+2km(2j−K̂)]( K

m+K
2

)

∑K
r=0

(
K
r

)∑K̂
s=0

(
K̂
s

)
e

β

2(1−k2)
[(2r−K)2+2k(2r−K)(2s−K̂)+(2s−K̂)]


 ,

(4.4.82)

where we have fixed the size of one clone to K and marginalised over the overlap

m̂ of the other clone. Its size K̂ is assumed, in what follows, to be drawn from a

Poisson distribution πK with average K. We plot in fig. 4.9 the peak difference

∆ = P (K|K, πK)−P (0|K, πK) as a function of T and k and we show in fig. 4.10

(left panel) the line, in the plane (T, k), where ∆ first becomes positive. For low

values of K, this is expected to give a good approximation for the activation line

where the crossover transition occurs, and is in good agreement with the critical

line Tclust = K/(1 − k), theoretically predicted for regular graph topology and

large size K (dashed line).

Alternatively, for a regular topology with degree K one can monitor the total

cluster magnetisation mt = m + m̂ via P (mt|K) =
∑

m,m̂ P (m, m̂|K)δmt,m+m̂,

although we expect here the peak difference P (2K|K)− P (0|K) to give a worse

estimate of the transition line, given the broader support of the distribution. The
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distribution defined in (4.4.82) as a function of the temperature (left) and 3D

plot (right) with K = 3.

latter can be written as

P (mt|K) =
∑

m,m̂

e
β

2(1−k2)
(m2+2kmm̂+m̂2)( K

m+K
2

)(
K

m̂+K
2

)

∑K
`=0

(
K
`

)∑K
j=0

(
K
j

)
e

β

2(1−k2)
((2`−K)2+2k(2`−K)(2j−K)+(2j−K)2

δmtot,m+m̂

(4.4.83)

and the line where the peak difference first becomes positive is plotted in fig. 4.10

(right panel). This indeed provides a lower bound on the activation temperature

Tclust = K/(1− k) shown in the same plot, for guidance, as a dashed line.

4.5 Ferromagnetic interactions

Cross-talks effects between clusters can be studied in the case of ferromagnetic

interactions ξµi = ξµ̂i = 1, ∀ i, µ, µ̂, where we can progress analytically even

away from the paramagnetic phase. To this end, we consider spins interacting

on a random regular factor-graph with |∂i| = L and |∂µ| = |∂µ̂| = K. In the

thermodynamic limit N →∞, the graph is tree-like and due to the ferromagnetic

nature of the interactions all factors (4.2.41) are equivalent. It follows that all the

cavity distributions are equivalent P\µµ̂(σ) = P c(σ), ∀ µ, µ̂. Parametrizing them

as P c(σi) ∝ eβφσi and denoting Dy =
√

1− k2 dy1dy2
2π

e
−1
2
yTC−1y, we can write the
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Figure 4.10: Transition line in the plane (T, k) from unimodal to bimodal dis-

tribution. Left: Zero-contour plot of the peak difference ∆ in the plane (T, k)

monitoring P (m|K,Pq) for a regular graph with degree K = 3 when coupled to

a factor with Poisson distribution (average degree K = 3). Right: Zero-contour

plot of the peak difference monitoring P (mtot|K) with K = 3. The dashed lines

represent the activation line Tclust = K
1−k predicted for large K, consistently with

results in [61].

recursive equation (4.3.53) as

P c(σ) =
1

Z



∫ +∞

−∞
Dy

∑

{σk},{τk}

e
√
βσy1+y1(

√
β
∑K−1
k=1 σk)+y2(

√
β
∑K
k=1 τk)+βφ(

∑K−1
k=1 σk+

∑K
k=1 τk)



L−1

,

(4.5.84)

where we denoted by σ the spins attached to factor µ and by τ those attached

to µ̂. We also assumed that, due to sparsity of interactions, σ (where the tree is

rooted) is attached to factor µ only.

Considering φ = 0 in (4.5.84) we retrieve the paramagnetic phase analysed in

sec. 4.4 with P c(σi) = 1/2 ∀ σi = ±1, while for φ 6= 0 each cluster will receive a

signal from the others, acting as a field. We can manipulate (4.5.84) by summing
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over {σk}, {τk} to obtain

P c(σ) =

[∫ +∞
−∞

dy
2π

e
−yTC−1y

2 e
√
βσy1

[
cosh(

√
βy1 + βφ)

]K−1 [
cosh(

√
βy2 + βφ)

]K]L−1

∑
σ̃

[∫ +∞
−∞

dy
2π

e
−yTC−1y

2 e
√
βσ̃y1

[
cosh(

√
βy1 + βφ)

]K−1 [
cosh(

√
βy2 + βφ)

]K]L−1

(4.5.85)

and using P c(1) ∝ eβφ and P c(−1) ∝ e−βφ, we get

φ =
1

2β
log

P c(1)

P c(−1)
. (4.5.86)

This leads to the following self-consistency equation for φ

φ =
L− 1

2β
log



∫ +∞
−∞

dy
2π

e
−yTC−1y

2 e
√
βy1
[
cosh(

√
βy1 + βφ)

]K−1 [
cosh(

√
βy2 + βφ)

]K
∫ +∞
−∞

dy
2π

e
−yTC−1y

2 e−
√
βy1
[
cosh(

√
βy1 + βφ)

]K−1 [
cosh(

√
βy2 + βφ)

]K


 .

(4.5.87)

Clearly φ = 0 is always a solution, but we expect it to become unstable at low

temperature. With simple manipulations we can rewrite (4.5.87) in the following

form

φ =
L− 1

2
log



∑K−1

`=0

(
K−1
`

)∑K
p=0

(
K
p

) ∫ +∞
−∞

dy
2π

e
−yTC−1y

2 eJ
Ty+βφ(2`+2p−2K+1)

∑K−1
˜̀=0

(
K−1

˜̀

)∑K
p̃=0

(
K
p̃

) ∫ +∞
−∞

dỹ
2π

e
−ỹTC−1ỹ

2 eMT ỹ+βφ(2˜̀+2p̃−2K+1)


 ,

(4.5.88)

where JT = (
√
β(2+2`−K),

√
β(2p−K)) and MT = (

√
β(2˜̀−K),

√
β(2p̃−K)).

Integrating over y, we obtain

φ =
L− 1

2
log



∑K−1

`=0

(
K−1
`

)∑K
p=0

(
K
p

)
e
β((2`−K+2)2+(2p−K)2+2k(2`−K+2)(2p−K))

1−k2
+βφ(2`+2p−2K+1)

∑K−1
˜̀=0

(
K−1

˜̀

)∑K
p̃=0

(
K
p̃

)
e
β((2˜̀−K)2+(2p̃−K)2+2k(2˜̀−K)(2p̃−K))

1−k2
+βφ(2˜̀+2p̃−2K+1)


 .

(4.5.89)

Via bifurcation analysis we can determine the critical temperature Tc at which
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cavity fields bifurcate to a non-zero value (we will provide full details for general

types of interactions in sec. 4.6). In fig. 4.11 (left), we plot the critical temper-

ature Tc as a function of the vertex and factor degree for two different values of

the B-B interaction strength k. Increasing k widens the region where the cavity

fields are non-zero, the so-called interference region. Given that in the ferromag-

netic case the cavity fields are homogeneous, the interference between cytokine

patterns is constructive and does not disrupt the system’s parallel retrieval of

information.

In addition, in the right panel of fig. 4.11 we show a comparison between the

critical temperature Tc, at which the cavity field bifurcate to non-zero values, and

the single cluster activation temperature Tclust (computed in sec. 4.4.1) for fixed

values of K = 4 and L = 2.

As in the paramagnetic case, we compute the overlap distribution, defined in

(4.3.55), for a regular factor graph with degree K (generalizations to non-regular

topologies are straightforward) from

P (m, m̂|K) =
e

β

2(1−k2)
(m2+m̂2+2kmm̂)+βφ(m+m̂)∑K

`=0

(
K
`

)∑K
p=0

(
K
p

)
δm,2`−Kδm̂,2p−K

∑K
˜̀=0

(
K
˜̀

)∑K
p̃=0

(
K
p̃

)
e
β((2˜̀−K)2+(2p̃−K)2+2k(2˜̀−K)(2p̃−K)2)

2(1−k2)
+βφ(2˜̀+2p̃−2K+1)

,

(4.5.90)

where φ is self-consistently obtained from eq. (4.5.89). In fig. 4.12 we plot

the distribution (4.5.90) for different values of the temperature and fixed degrees

K = 4, L = 2. For T > Tc where φ = 0 (see fig. 4.11, right), the overlap

distribution (4.5.90) reduces to (4.4.65), which describes the behaviour of a sin-

gle cluster in the paramagnetic phase and does not depend on the nature (e.g.

ferromagnetic or disordered) of the interactions. Since Tc in this case is larger

than the single cluster activation temperature (see fig. 4.11, right), the system is

found in the high-temperature regime of the paramagnetic phase and displays an

overlap distribution peaked at zero.
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Lowering the temperature, φ becomes non-zero: hence, we expect that the

predictions obtained in the paramagnetic phase become inaccurate in this regime.

Numerical evaluation of (4.5.90) shows that at low temperature one has again a

crossover of the overlap distribution to an activated regime, where it displays a

single peak at either positive or negative values of the magnetisation, depending

on the initial conditions (see fig. 4.12, left). Indeed, clonal cross-talk arises, in this

regime, as a field that pins the system at one peak or the other, and the system

develops a non-zero global magnetisation (as for ferromagnetic interactions the

field is homogeneous).
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Figure 4.11: Left: Critical temperature Tc for the transition φ = 0 → φ 6= 0 for

a regular graph with degrees K,L for the values of the B-B interaction strength

k = 0.5 (orange) and k = 0 (blue). Right: Plot of φ as a function of the

temperature T for K = 4 and L = 2. Dashed lines represent the single cluster

activation temperature (sec. 4.4).

Marginalising over m̂, we can get information about the overlap distribution

of the µ-th B clone given that it interacts with its complement µ̂: in fig. 4.13 we

plot it for different values of the temperature and the B-B interaction strength,

and observe qualitatively the same transition described above. From the joint

distribution P (m, m̂|K), we can compute the distribution P (m̃|K) of rotated

overlaps m̃µ = mµ
1−k2 +

kmµ̂
1−k2 , which is plotted in fig. 4.14 (left panel) for different

temperatures and in fig. 4.15 (left panel) for different values of k.

We can finally use the rotated overlap distribution P (m̃) to derive the B clones

size distribution, as shown in sec. 4.1. In fig. 4.14 and 4.15 (right panels) we
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Figure 4.12: Plot of P (m, m̂|K) defined in (4.5.90) for T = 5 (left panel) and

T = 15 (right panel) fixing k = 0.5, for a regular graph with K = 4, L = 2 with

ferromagnetic interactions.
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Figure 4.13: Plot of P (m|K) for a regular graph with K = 4, L = 2 with fer-

romagnetic interactions. Left: P (m|K) varying the temperature T = 1, 10, 15
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T = 10.
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Figure 4.14: Plot of P (m̃|K) (left) and the corresponding B clones distribution

P (b) (right) for different temperatures T = 1, 5, 10 for a regular graph with

K = 4, L = 2 and k = 0.5 with ferromagnetic interactions.
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Figure 4.15: Plot of P (m̃|K) (left) and the corresponding B clones distribution

P (b) (right) for different B-B interaction strength k = 0.1, 0.5, 0.9 for a regular

graph with K = 4, L = 2 and T = 5 with ferromagnetic interactions.

show its behaviour in temperature and in k respectively. At low temperature, the

B clone size distribution is peaked around non-zero values, meaning that B clones

are expanding. Increasing k, the probability of having strong clonal expansions

(even at high noise levels) increases.

B clone sizes, as anticipated, are often experimentally measured as concen-

trations and in some cases are thought to follow a Zipf’s law [12]. Using our

definition of clonal sizes as (relative) log-concentrations b = log c/c0 we can get

concentration distributions as P(c) =
∫
P (b)δ(c−eb)db = 1

c
P (log(c)). In fig. 4.16

we show the log-log plot of P(c) for different values of T (left) and k (right). In

particular, we see that increasing k and decreasing T , increases the probability

of having clones in high concentrations. More generally, our model enables us

to determine the single most important parameters that affect the tail behaviour

of these distributions and might be useful to infer the network connectivity and

operational noise in health and disease situations.

4.6 Disordered interactions

In order to discuss more general cases of interactions, it is useful to parametrise

Pµµ̂(σj), the message from factor µ and µ̂ to node i, by an effective field ψµµ̂→j

and P\νν̂(σj), the message from node j to factors µ, µ̂, by the effective field φj→νν̂
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as

Pµµ̂(σj) ∝ eβσjψµµ̂→j , (4.6.91)

P\νν̂(σj) ∝ eβσjφj→νν̂ . (4.6.92)

A schematic representation of these messages in a factor graph can be seen in fig.

4.17. Using the relation 〈σj〉 =

∑
σj
Pµµ̂(σj)σj∑

σj
Pµµ̂(σj)

= tanh(βψµµ̂→j) we can derive an

expression for ψµµ̂→j. From (4.3.53) and the definition of fµµ̂({σk∈∂µ}, {σ`∈∂µ̂})
in (4.2.41), we have

Pµµ̂(σj) =
1

Zµµ̂
∑

{σk∈∂µ},{σ`∈∂µ̂}

∫
Dye

√
β(y1

∑
k∈∂µ ξ

µ
kσk+y2

∑
`∈∂µ̂ ξ

µ̂
` σ`)


 ∏

k∈∂µµ̂\j

P\µµ̂(σk)


 ,

(4.6.93)
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where Zµµ̂ is the normalization. Manipulating (4.6.93) by using the parametri-

sation (4.6.92), yields

Pµµ̂(σj) =
1

Zµµ̂
∑

{σk∈∂µ},{σ`∈∂µ̂}

∫
Dye

√
βy1ξ

µ
j σj


 ∏

k∈∂µ\j

e(
√
βy1ξ

µ
k+βφk→µµ̂)σk


×

×
[∏

`∈∂µ̂

e(
√
βy2ξ

µ̂
` +βφ`→µµ̂)σ`

]
. (4.6.94)

Note that due to the sparsity of the links, we assume that each spin is connected

to either µ or its complementary µ̂ factor. Summing over {σk}, {σ`}, we obtain

Pµµ̂(σj) =
1

Zµµ̂

∫
Dye

√
βy1ξ

µ
j σj


 ∏

k∈∂µ\j

2 cosh (
√
βy1ξ

µ
k + βφk→µµ̂)


×

×
[∏

`∈∂µ̂

2 cosh (
√
βy2ξ

µ̂
` + βφ`→µµ̂)

]
. (4.6.95)

Hence, the cavity fields in (4.6.91) are ψµµ̂→j =

atanh

(
〈sinh

√
β(y1ξ

µ
j )
∏

k∈∂µ\j cosh (
√
βy1ξ

µ
k + βφk→µµ̂)

∏
`∈∂µ̂ cosh (

√
βy2ξ

µ̂
` + βφ`→µµ̂))〉y

〈cosh
√
β(y1ξ

µ
j )
∏

k∈∂µ\j cosh (
√
βy1ξ

µ
k + βφk→µµ̂)

∏
`∈∂µ̂ cosh (

√
βy2ξ

µ̂
` + βφ`→µµ̂)〉y

)
.

(4.6.96)

Finally, using the recursive equation (4.3.54) and the parametrisation (4.6.91,

4.6.92) it follows also that

φj→νν̂ =
∑

µµ̂

ψµµ̂→j . (4.6.97)

The cavity fields equations (4.6.96, 4.6.97) can be iterated until convergence [71].

We can show analytically and check numerically that ψµµ̂→j = 0,∀µ, µ̂, j is a fixed

point of (4.6.96) for any value of k, simply using symmetries of the integral. In

the following we will study the transition from zero to non-zero cavity fields and

we will discuss how it affects the retrieval properties and the functioning of the

system.
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Figure 4.17: Schematic representation of the messages φj→νν̂ from node j to

factors νν̂, and ψµµ̂→j, from the factors µµ̂ to node j in the factor tree used to

derive equations (4.6.96) and (4.6.97).

4.6.1 Distributions of cavity fields

In the large N limit, the solution of the cavity equations (4.6.97, 4.6.96) can

be characterised via the distribution of messages or fields, Wψ(ψ) and Wφ(φ). The

field distributions can be computed as follows, denoting by Ψ({ξµi }, {ξµ̂i }, {φk→µµ̂}, {φ`→µµ̂})
the rhs of (4.6.96),

Wψ(ψ) =
∑

e

Q(e)e

〈e〉 〈〈δ(ψ −Ψ(φ1, ..., φe−1, {ξ1, . . . , ξe})〉〉ξ,φ , (4.6.98)

and taking the average over i.i.d. values of the (non-zero) {ξe} and over i.i.d.

fields φ1, ..., φe−1 drawn from Wφ(φ). In the above expression, Q(e)e/〈e〉 is the

probability of picking an edge connected to a cluster of degree e [73]. Since

the cluster is composed by the union of the nodes signalling to factor µ and µ̂,

its degree distribution Q(e) follows from the degree distribution of the disjoint

factors µ, µ̂ as

Q(e) =
∑

q,q̂

Pq(q)Pq(q̂)δ(e− q − q̂) , (4.6.99)
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and

〈e〉 =
∑

e

Q(e)e =
∑

e

∑

q,q̂

ePq(q)Pq(q̂)δ(e− q − q̂) =
∑

q,q̂

Pq(q)Pq(q̂)(q + q̂) = 2〈q〉 .

(4.6.100)

Similarly we have

Wφ(φ) =
∑

d

dPd(d)

〈d〉

〈〈
δ

(
φ−

d−1∑

µ=1

ψµ

)〉〉

ξ,ψ
, (4.6.101)

where the average is over i.i.d. values of the (non-zero) {ξe} and i.i.d. fields

ψ1, ..., ψd−1 drawn from Wψ(ψ). Pd(d) represents the probability of picking a node

of degree d. Field distributions can then be obtained numerically by a population

dynamics (PD) algorithm [74], details of which are provided in chapter A.2.

4.6.2 Small fields expansion and bifurcation lines

Transitions from zero to non-zero cavity fields can be located by monitoring

bifurcations away from zero of the moments of the field distribution. Depending

on the model’s parameters, either the first or the second moment will first bifur-

cate away from zero [39]. To this end, we Taylor expand for small fields the rhs
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of equation (4.6.96) to first order around φ = 0, which gives

Ψ(ξµj , {ξµk}, {ξµ̂` }, {φk→µµ̂}, {φ`→µµ̂}) '

'
∑

k∈∂µ\j

φk→µµ̂

〈
sinh(

√
βy1ξ

µ
j ) sinh(

√
βy1ξ

µ
k )

∏

r∈∂µ\{k,j}

cosh(
√
βy1ξ

µ
r )
∏

`∈∂µ̂

cosh(
√
βy2ξ

µ̂
` )

〉

y〈∏

k∈∂µ

cosh(
√
βy1ξ

µ
k )
∏

`∈∂µ̂

cosh(
√
βy2ξ

µ̂
` )

〉

y

+

+
∑

`∈∂µ̂

φ`→µµ̂

〈
sinh(

√
βy1ξ

µ
j ) sinh(

√
βy2ξ

µ̂
` )

∏

r∈∂µ\j

cosh(
√
βy1ξ

µ
r )
∏

p∈∂µ̂\`

cosh(
√
βy2ξ

µ̂
p )

〉

y〈∏

k∈∂µ

cosh(
√
βy1ξ

µ
k )
∏

`∈∂µ̂

cosh(
√
βy2ξ

µ̂
` )

〉

y

=

=
∑

k∈∂µ\j

φk→µµ̂Ωa(ξµj , ξ
µ
k , {ξµr }, {ξµ̂` }) +

∑

`∈∂µ̂

φ`→µµ̂Ωb(ξµj , ξ
µ̂
` , {ξµr }, {ξµ̂p }) ,

(4.6.102)

where

Ωa(ξ1, . . . , ξe) =
〈sinh(

√
βy1ξ

1) sinh(
√
βy1ξ

2)
∏q−1

r=3 cosh (
√
βy1ξ

r)
∏e

`=q cosh(
√
βy2ξ

`)〉y
〈∏q−1

r=1 cosh(
√
βy1ξr)

∏e
`=q cosh(

√
βy2ξ`)〉y

,

(4.6.103)

Ωb(ξ1, . . . , ξe) =
〈sinh(

√
βy1ξ

1) sinh(
√
βy2ξ

2)
∏q

r=3 cosh (
√
βy1ξ

r)
∏e

`=q+1 cosh(
√
βy2ξ

`)〉y
〈∏q−1

r=1 cosh(
√
βy1ξr)

∏e
`=q cosh(

√
βy2ξ`)〉y

.

(4.6.104)

Moments can be obtained using the fields distribution (4.6.98, 4.6.101) and aver-

aging the small field expansion (4.6.102) over φ, ψ, ξ . For the mean bifurcation

we get

〈ψ〉ψ = 〈φ〉φ
∑

e,q

Pq(q)Pq(e− q)e
2〈q〉

[
(q − 1)〈Ωa(ξ1, . . . , ξe)〉ξ + (e− q)〈Ωb(ξ1, . . . , ξe)〉ξ

]
,

(4.6.105)

〈φ〉φ = 〈ψ〉ψ
∑

d

Pd(d)d(d− 1)

〈d〉 . (4.6.106)
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Combining them we obtain

〈ψ〉ψ =〈ψ〉ψ
∑

d,e,q

Pd(d)d(d− 1)

〈d〉
Pq(q)Pq(e− q)e

2〈q〉 ×

×
[
(q − 1)〈Ωa(ξ1, . . . , ξe)〉ξ + (e− q)〈Ωb(ξ1, . . . , ξe)〉ξ

]
, (4.6.107)

with solutions 〈ψ〉ψ = 0 or

1 =
∑

d

Pd(d)d(d− 1)

〈d〉
∑

e,q

Pq(q)Pq(e− q)e
2〈q〉 ×

×
[
(q − 1)〈Ωa(ξ1, . . . , ξe)〉ξ + (e− q)〈Ωb(ξ1, . . . , ξe)〉ξ

]
. (4.6.108)

If the means are zero, the transition can be detected monitoring the variances.

The equation for the variances read

〈ψ2〉ψ = 〈φ2〉φ
∑

e,q

Pq(q)Pq(e− q)e
2〈q〉

[
(q − 1)〈(Ωa(ξ1, . . . , ξe)2〉ξ + (e− q)〈(Ωb(ξ1, . . . , ξe))2〉ξ

]
,

(4.6.109)

〈φ2〉φ = 〈ψ2〉ψ
∑

d

Pd(d)d(d− 1)

〈d〉 . (4.6.110)

Combining equations (4.6.109) and (4.6.110) we have

〈ψ2〉ψ =〈ψ2〉ψ
∑

d,e,q

Pd(d)d(d− 1)

〈d〉
Pq(q)Pq(e− q)e

2〈q〉 ×

×
[
(q − 1)〈(Ωa(ξ1, . . . , ξe))2〉ξ + (e− q)〈(Ωb(ξ1, . . . , ξe))2〉ξ

]
,

(4.6.111)

with solutions 〈ψ2〉ψ = 0 or

1 =
∑

d

Pd(d)d(d− 1)

〈d〉
∑

e,q

Pq(q)Pq(e− q)e
2〈q〉 ×

×
[
(q − 1)〈(Ωa(ξ1, . . . , ξe))2〉ξ + (e− q)〈(Ωb(ξ1, . . . , ξe))2〉ξ

]
. (4.6.112)



4.6. Disordered interactions 181

Both eq. (4.6.107) and (4.6.111) have a trivial solution with zero moments or a

more complicated one, which gives us the line where moments become different

from zero. This will depend on the system’s temperature, the B-B interaction

strength, the graph topology encoded in the distributions Pd(d), Q(e) and the

distribution of the disordered interactions ξ’s. In the next subsection, we will

study the bifurcations for different choices of the disorder. We will focus on the

regular graph topology with vertex degree L and factor degree K; hence, we

choose Pd(d) = δd,L and Pq(q) = δq,K . We will obtain the critical line numerically

via population dynamics simulations and analytically from (4.6.107, 4.6.111).

4.6.2.1 Symmetric pattern distributions

We first consider the case of symmetrically distributed ξ’s, i.e. P(ξ) = 1
2
δξ,+1+

1
2
δξ,−1. In this case there is no instability from growing means as the field dis-

tribution is always symmetric and, indeed, the rhs of (4.6.107) averages to zero.

The bifurcation is, therefore, detectable from the instability of growing variances,

while the mean remains zero. Specialising (4.6.108) to the regular graph case

with Pd(d) = δd,L and Pq(q) = δq,K we get

1 = (L− 1)

[
(K − 1)

(〈sinh2(
√
βy1) coshK−2 (

√
βy1) coshK(

√
βy2)〉y

〈coshK(
√
βy1) coshK(

√
βy2)〉y

)2

+K

(〈sinh(
√
βy1) sinh(

√
βy2) coshK−1 (

√
βy1) coshK−1(

√
βy2)〉y

〈coshK(
√
βy1) coshK(

√
βy2)〉y

)2 ]
.

(4.6.113)

We can easily compute the large T -limit (β → 0) in (4.6.113): the rhs clearly tends

to zero, hence no solutions with non-zero fields exist at high temperature. For

β → ∞ averages are dominated by large values of y1, y2 yielding sinh2(
√
βy1) ∼

cosh2(
√
βy1) and 1 = (L − 1)(2K − 1). Hence, for a regular graph there is no

bifurcation as long as L < 2K
2K−1

. For the general β-dependence, we compute the
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Gaussian averages over y explicitly, obtaining

1 =
L− 1

(ω(β, k,K))2

[
(K − 1) (θ1(β, k,K))2 +K(θ2(β, k,K))2

]
, (4.6.114)

where

ω(β, k,K) =
K∑

`,f=0

(
K

`

)(
K

f

)
e

β

2(1−k2)
((K−2`)2+(K−2f)2+2k(K−2`)(K−2f))

,

θ1(β, k,K) =
2∑

p=0

K−2∑

r=0

K∑

s=0

(−1)p
(

2

p

)(
K − 2

r

)(
K

s

)
e

β

2(1−k2)
((K−2r−2p)2+(K−2s)2+2k(K−2r−2p)(K−2s))

,

θ2(β, k,K) =
1∑

n,h=0

K−1∑

j,v=0

(−1)n+h

(
1

n

)(
K − 1

j

)(
K − 1

v

)(
1

h

)
e

β

2(1−k2)
((K−2j−2h)2+(K−2n−2v)2+2k(K−2j−2h)(K−2n−2v))

.

(4.6.115)

The latter condition gives the critical line for the variances bifurcation in

T = 1/β as a function of L. We plot this line in fig. 4.18, in the presence and in

the absence of idiotypic interactions. We also compare the theoretical bifurcation

line in (4.6.114) with the data obtained from population dynamics simulations

(markers). For k = 0 the line is in agreement with results obtained in [39].

Increasing the B-B interactions strength widens the interference region as one of

the effects is to merge clusters (in this case of equal sizes) together.

As in the case with ferromagnetic interactions, the role of the critical line con-

sists in separating the region of clonal cross-talk from the region with no interfer-

ence. However, with disordered interactions the interference acts on the system in

the form of inhomogeneous fields and will therefore represent an additional source

of noise in the system (besides the thermal noise). For T > Tc(K,L), the cavity

fields are zero and each clique is signalling to a particular B clone, without feeling

the interference of the others. In the neural networks jargon, the system works,

in this region, as a parallel processor able to retrieve multiple cytokine patterns

ξµ simultaneously. For T < Tc(K,L) the system is in the clonal cross-talk region

or so-called spin glass phase (SG) [39], where random fields act on each clique,

reducing the parallel processing capabilities and making the signalling process to

B clones less effective.
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Figure 4.18: Critical line for symmetric patterns distribution (bifurcation in vari-

ance) in the plane (T, L) for different values of B-B interaction strength k = 0, 0.5.

We consider a regular graph with factor degree K = 2. At high temperature the

system is in the paramagnetic phase, where clusters are independent of each other.

Crossing the (solid) lines, cavity fields become non-zero and the clonal interfer-

ence increases entering the cross-talk or spin glass (SG) region [74]. Markers

(PD) represent numerical results obtained via population dynamics simulations

(population size M = 104, see A.2 for details). Dashed lines represent the single

cluster (SC) activation temperatures, derived in sec. 4.4.1.

In addition, the dashed lines highlight the temperature Tclust at which single

clusters become active (see sec. 4.4.1) for different k. Hence, lowering the tem-

perature the system is subjected to both an increased clonal interference (crossing

the solid lines) and to a unimodal-bimodal transition in the overlap distributions

for single clusters. Increasing k, the temperature at which the cross-over transi-

tion happens increases, meaning that the system increases its tolerance to high

noise levels.

4.6.2.2 Non-Symmetric pattern distributions

In this section, we add a degree of asymmetry a ∈ [−1,+1] in the system,

to study the bifurcations in the first moment. Hence, we consider the ξ’s entries

to be distributed according to P(ξ) = 1+a
2
δξ,+1 + 1−a

2
δξ,−1. Computing the ξ-

averages in (4.6.106) and specialising the equations for the regular graph case
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with Pd(d) = δd,L and Pq(q) = δq,K we get

a−2 = (L− 1)

[
(K − 1)

〈sinh2(
√
βy1) coshK−2 (

√
βy1) coshK(

√
βy2)〉y

〈coshK(
√
βy1) coshK(

√
βy2)〉y

+K
〈sinh(

√
βy1) sinh(

√
βy2) coshK−1 (

√
βy1) coshK−1(

√
βy2)〉y

〈coshK(
√
βy1) coshK(

√
βy2)〉y

]
. (4.6.116)

Note that when a→ 0 the transition point diverges and we recover the symmetric

case. First, we analyse the limits for high and zero temperature: for β → 0 eq.

(4.6.116) does not admit any solution, hence the first moment is zero. At zero

temperature, i.e. β → ∞, we have a transition to non-zero mean for a−2 =

(L− 1)(2K − 1). For a regular graph with vertex degree L and factor degree K,

the general β-dependence can be obtained from

a−2 =
L− 1

ω(β, k,K)
[(K − 1)θ1(β, k,K) +Kθ2(β, k,K)] , (4.6.117)

with

ω(β, k,K) =
K∑

`,f=0

(
K

`

)(
K

f

)
e

β

2(1−k2)
((K−2`)2+(K−2f)2+2k(K−2`)(K−2f))

,

θ1(β, k,K) =
2∑

p=0

K−2∑

r=0

K∑

s=0

(−1)p
(

2

p

)(
K − 2

r

)(
K

s

)
e

β

2(1−k2)
((K−2r−2p)2+(K−2s)2+2k(K−2r−2p)(K−2s))

,

θ2(β, k,K) =
1∑

n,h=0

K−1∑

j,v=0

(−1)n+h

(
1

n

)(
K − 1

j

)(
K − 1

v

)(
1

h

)
e

β

2(1−k2)
((K−2j−2h)2+(K−2n−2v)2+2k(K−2j−2h)(K−2n−2v))

.

(4.6.118)

It is worth stressing that, even in presence of a non-symmetric patterns distri-

bution, there may be a bifurcation in the field variances at zero means, whose

critical line will still be given by eq. (4.6.114). In this situation, the physical

bifurcation is the first one taking place when lowering the temperature.

In fig. 4.19 we plot the critical line with k = 0.5 and k = 0 for a = 1, which

retrieves the case of ferromagnetic interactions ξµi = +1 ∀ i, µ analysed in sec. 4.5.

Here the critical line is given by bifurcation of the means. The cross-talk region is

enlarged by the presence of B-B interactions. In this case, however, interference

is constructive, due to the ferromagnetic nature of interactions. Finally, we also

checked numerically that in the ferromagnetic case (a = 1) with no idiotypic
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Figure 4.19: Critical line for the bifurcation of means for a regular graph with

ferromagnetic interactions, i.e. a = 1. and factor degree K = 2. At high

temperature the system is in the paramagnetic phase, where each cluster within

the graph acts independently from the others. Crossing the (solid) lines for

different k’s, cavity fields become non-zero and the clonal interference increases

entering the cross-talk or ferromagnetic (FM) region. Markers (PD) represent

numerical results obtained via population dynamics simulations (population size

M = 104, see A.2 for details). Dashed lines represent the single cluster (SC)

activation temperatures, derived in sec. 4.4.1.

interactions, k = 0, for the regular graph topology, we recover the critical line for

the ferromagnetic transition for the Bethe lattice [71,76].

4.7 Summary

In this chapter, we analysed the interacting system of B and T clones, main

constituents of the adaptive immune system. In particular, we investigated the

effect of idiotypic interactions among B clones, using belief propagation tech-

niques and extending a previous model studied in the sub-extensive regime [61].

We derived cavity equations for the factor graph associated to the system and we

discussed preliminary simple cases, which can be solved analytically. In partic-

ular, we considered the paramagnetic phase and ferromagnetic interactions and

monitored the behaviour of the overlap distributions. The latter is useful to cal-
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culate the B clone size distributions varying the temperature and the strength of

the idiotypic interactions. We also derived the activation line where the overlap

distribution shows a crossover behaviour from a phase of inactive to a phase of

active B clones. We find, in particular, that B-B interactions increase the ac-

tivation temperature making the system more resilient to noise. Indeed, one of

the effects of the idiotypic network is to merge groups of T clones signalling to

complementary B clones together, producing more stable signals and prolonging

memory in the system. Having a model that predicts the most important param-

eters affecting the B clonal distribution is particularly welcome as this observable

has recently become available.



She said that there was comfort to be found in the perma-

nence of mathematical truths, in the lack of arbitrariness

and the absence of ambiguity. In knowing that the answers

may be elusive, but they could be found. They were there,

waiting, chalk scribbles away. “Nothing like life, in other

words,” he said. “There, its questions with either no an-

swers or messy ones.”

K. Hosseini, And the mountains echoed. 5
Conclusions and Outlooks

In this thesis we have considered a statistical mechanics approach to modelling

B-T lymphocytes interactions in the adaptive immune system. The motivation

behind this research project is twofold. On one hand, the ever-growing data in

experimental immunology that have been made lately available calls for a unifying

and predictive framework to interpret and understand the results and suggest new

possible experiments [77]. On the other hand, the analysis of the properties of

associative memories with diluted patterns is interesting for possible applications

in artificial intelligence.

In chapter 2, 3 we focused on the dynamical analysis of the retrieval capa-

bilities of the diluted associative memories. While lacking so far for this type

of memories, the dynamical approach generally provides richer information than

the static analysis, which can only describe the behaviour of the system at the

steady state, and does not require that the system is in equilibrium. Moreover,

it may facilitate the comparison between theoretical predictions and experiments

in potential applications, such as immunology, where data are normally available

187
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for time-dependent quantities, e.g. responses in time to vaccination or infections.

In particular, in chapter 2 we show that the sparsity of the B-T interactions

makes the system able to activate multiple B clones in parallel. This multitasking

capability is one of the core features of the immune system, which in normal

conditions, can control and block several simultaneous antigenic invasions. In

addition, we find that the parallel activation of B clones may occur in a symmetric

fashion, where all infections are fought with the same strength, or in a hierarchical

way, where the system prioritises immune responses against specific pathogens.

We are able to identify the system’s parameters, such as noise, number of links,

number of different infections, which induce the switch from the symmetric to the

hierarchical operational mode. This might be potentially useful to investigate the

causes of dramatic failures in the functioning of the immune system. The switch to

a hierarchical immune response is in fact mostly related to the presence of strong

infections, such as hepatitis and autoimmune disorders: while the immune system

invests the highest amount of resources tackling the main disease, the progression

of minor infections may become lethal [78, 79]. Hence, one of the open question

in theoretical immunology is understanding how the immune system prioritises

immune responses against different pathogens, executed in parallel.

In chapter 3 we extended our model to incorporate important biological mech-

anisms and features of real immune systems. We introduced the effect of cell

receptor promiscuity, idiotypic interactions as well as new players, the antigens.

Our aim was to investigate their effects on the clonal activation, in terms of

critical temperature of activation and response strength. We showed that clones

with smaller promiscuity are less likely to be activated (sec. 3.2) and idiotypic

interactions contribute to the overall stability of the network, in terms of signals

propagation (sec. 3.3). Furthermore, we investigated how the immune system

responds to antigens, showing that multiple antigens create an interference that

leads to less effective response to individual antigens and a reduction in the basal

activity of the non-infected B clones (sec. 3.4). For higher noise level, the system
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tends to simultaneously fight all the antigens, at the price of a weaker response

strength, whereas for lower noise level it will prioritise some infections over oth-

ers. Finally, we discussed the immune system short-term memory, which emerges

as a hysteresis effect to the antigenic field.

Finally, in chapter 4 we focused on the study of the statics of finitely con-

nected systems of interacting B and T lymphocytes in the presence of idiotypic

interactions. Using belief-propagation techniques [71], we analysed the activation

properties of single B clones and the clonal interference between many of them

within the network. On the experimental side, our study suggests that oscil-

lations of single clone populations may be observed on typical timescales. The

availability of experimental data on clonal expansion and contraction patterns in

time, in the absence of antigens, may thus feed important information into the

model.

Moreover, we could monitor the B clone size distribution, which is attracting

interest lately, thanks to the development of experimental techniques needed to

extract it [67]. In particular, we were able to study the B clone size distribu-

tion behaviour in different regions of the parameters, e.g. noise, B-B interaction

strength and graph topology. The so-called high-throughput sequencing of B-

cell repertoires and large-scale genetic profiling studies are, indeed, increasingly

used to extract information on the immune response in different pathological or

healthy situations. So far, these techniques have been exploited to gain a better

understanding of autoimmune diseases, cancer and of the ageing of the immune

systems [80–82].

Pathways for future research may include the modelling of T-T interactions,

which are known to play an important role in the self/non-self discrimination

process [5, 16], and T clones receptor promiscuity effects [54]. Moreover, the

assumption that each T clone is able to secrete both excitatory and inhibitory

cytokines may be replaced with the more realistic scenario of two populations
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of T clones, each responsible for sending one type of signal only. Indeed, there

are lymphocytes sub-families and other cells, e.g. as naive B-cells, plasma cells,

cytotoxic T-cells, helper T-cells, etc., or other cells, e.g. dendritic cells [1], which

have not been included in our model so far and whose role is fundamental in

specific processes in healthy/unhealthy organisms [1]. The assumption that B

clones and T clones evolve in the same thermal noise is also quite strong and

biologically debated. This could shed light on the effect of cellular environment

on the immune response as shown recently in [83].

The ultimate goal of the research in this interdisciplinary field is to create

valid theoretical immune system models, which might be used in the future to

design quantitative immunotherapies, tailored to specific diseases and individual

patients. Indeed, this challenge is still far from a concrete realisation but at

least important efforts are put in place from both sides (the theoretical and

experimental ones), to meet halfway. It will not be an easy task, however quoting

the ancients, per aspera ad astra.



A
Simulation codes

In this chapter we list the codes and pseudo-codes for the simulations used in

chapters 2, 3, 4. In particular, in sec. A.1 we will discuss the general steps for

the Monte Carlo simulations with Glauber dynamics and the algorithm for the

case with two patterns and fixed dilution (analysed in ch. 3). All other cases

discussed in chapters 2, 3 follow from simple modifications of the codes presented.

In sec. A.2 we will present the population dynamics code to compute the critical

line for the field bifurcations (see sec. 4.6.2) and the calculation of the update

equation for the cavity field.

A.1 Monte Carlo simulations

Here we list the pseudo-code to simulate spins Glauber dynamics.

(a) Define the parameters of the system: the temperature β, the dilution by

tuning c, γ, the number of patterns P and the size of the system N . In our

simulations we work with N = O(104) spins.

191
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(b) Generate the patterns ξµi according to their distribution P({ξ}) and create

the interaction matrix Jij.

(c) Select possible initial states of the system σ0 and calculate their overlap

with the patterns.

(d) Start the dynamics, updating the spins with probability given by the Glauber

rates ωi = 1
2
[1 + σi tanh(βhi(σ))] (defined in (2.2.7)).

(e) Monitor and store the magnetisations at each time step.

1 #inc lude ” i n c l u d e l i b / gene ra l . h”

2 #inc lude ” s t r i n g . h”

3

4 void parameters ( i n t ∗ , int , i n t ∗∗ , f l o a t ∗) ;

5 i n t main ( )

6 {
7 FILE ∗ fopen ( ) ,∗ fp ;

8 char name [ 3 0 ] , f i l ename [ 3 0 ] , l a b e l [ 3 0 ] ;

9 i n t i , j , k , l , s i t e ,mu,N, f l i p s , h ;

10 i n t ∗∗J , temp ;

11 i n t ∗ s ,∗ i v e c t o r ( ) , ∗∗pat , ∗∗ imatr ix ( ) ;

12 f l o a t ∗m,∗∗ data ,∗∗matrix ( ) ,∗ vec to r ( ) ,T, glauber , d , gamma, c ;

13 double RANDOM( ) ,pow ( ) , tanh ( ) ;

14

15 SETRANDOM( ) ;

16 // input f i l e //

17

18 fp=fopen ( ” c y c l e . in ” , ” r ” ) ;

19 f s c a n f ( fp , ”%d”,&N) ; // number o f sp in s //

20 f s c a n f ( fp , ”%f ” ,&T) ; // temperature //

21 f s c a n f ( fp , ”%f ” ,&gamma) ; // l e s s then 1//

22 f s c a n f ( fp , ”%f ” ,&c ) ; // d i l u t i o n //

23 f s c a n f ( fp , ”%s ” ,name) ; // f i l e name//

24 f c l o s e ( fp ) ;

25

26 fp=fopen ( ” s t a t u s ” , ”w” ) ;
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27 f p r i n t f ( fp , ”N= %d\n” ,N) ;

28 f p r i n t f ( fp , ” f i l e= %s \n” ,name) ;

29

30 f p r i n t f ( fp , ” a l l o c a t i o n s . . . \ n” ) ; f c l o s e ( fp ) ;

31 data=matrix (0 , 200 ,1 , 2 ) ; s=i v e c t o r (1 ,N) ;

32 J=imatr ix (1 ,N, 1 ,N) ; pat=imatr ix (1 , 2 , 1 ,N) ;

33 m=vector (1 , 2 ) ;

34 fp=fopen ( ” s t a t u s ” , ”a” ) ; f p r i n t f ( fp , ” pat t e rns and i n t e r a c t i o n s . . . \
n” ) ;

35 f c l o s e ( fp ) ;

36

37 d= c /(pow(N,gamma) ) ; // d i l u t i o n parameter //

38 fp=fopen ( ” s t a t u s ” , ”a” ) ; f p r i n t f ( fp , ” d i l u t i o n= %f \n” , d) ;

39 f c l o s e ( fp ) ;

40

41 // Patterns \ x i= +1,−1,0 //

42

43 f o r (mu=1;mu<=2;mu++) f o r ( i =1; i<=N; i++) {
44 i f (RANDOM( )> d) pat [mu ] [ i ]= 0 ;

45 e l s e { i f (RANDOM( ) >0.5) pat [mu ] [ i ]= 1 ;

46 e l s e pat [mu ] [ i ]= −1;

47 }
48

49 }
50 fp=fopen ( ” s t a t u s ” , ”a” ) ; f o r ( i =1; i<=N; i++){
51 f o r (mu=1;mu<=2;mu++){
52 f p r i n t f ( fp , ”%d\n” , pat [mu ] [ i ] ) ;}} f c l o s e ( fp ) ;

53

54 // I n t e r a c t i o n s J i j //

55

56 f o r ( i =1; i<=N; i++){
57 f o r ( j =1; j<=i ; j++){
58 temp=0;

59 f o r (mu=1;mu<=2;mu++){
60 temp += ( ( pat [mu ] [ i ] ) ∗( pat [mu ] [ j ] ) ) ;

61 }
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62 J [ i ] [ j ]=J [ j ] [ i ]=temp ;

63 }
64 J [ i ] [ i ]=0;

65 }
66 fp=fopen ( ” s t a t u s ” , ”a” ) ;

67 f o r ( i =1; i<=N; i++){
68 f o r ( j =1; j<=N; j++) f p r i n t f ( fp , ”%d” , J [ i ] [ j ] ) ;

69 f p r i n t f ( fp , ”\n” ) ;

70 }
71 f c l o s e ( fp ) ;

72

73 // I t e r a t i o n s−choose d i f f e r e n t i n i t i a l s t a t e s //

74

75 fp=fopen ( ” s t a t u s ” , ”a” ) ; f p r i n t f ( fp , ”\ n i t e r a t i o n s :\n” ) ; f c l o s e ( fp ) ;

76 f o r ( i =1; i <=25; i++) {
77 switch ( i ) {
78 case 1 : f o r ( j =1; j<=N; j++) {
79 i f ( pat [ 1 ] [ j ]==pat [ 2 ] [ j ] ) {
80 i f ( pat [ 1 ] [ j ]==0){
81 i f (RANDOM( ) >0.5) s [ j ]=1;

82 e l s e s [ j ]=−1;}
83 e l s e { s [ j ]=pat [ 1 ] [ j ] ; } }
84 e l s e { i f (RANDOM( ) >0.5) s [ j ]=1;

85 e l s e s [ j ]=−1;}
86 }
87 break ;

88

89 case 2 : f o r ( j =1; j<=N; j++) {
90 i f ( pat [ 1 ] [ j ]==pat [ 2 ] [ j ] ) {
91 i f ( pat [ 1 ] [ j ]==0){
92 i f (RANDOM( ) >0.5) s [ j ]=1;

93 e l s e s [ j ]=−1;}
94 e l s e { s [ j ]= −(pat [ 1 ] [ j ] ) ;}}
95 e l s e { i f (RANDOM( ) >0.5) s [ j ]=1;

96 e l s e s [ j ]=−1;}
97 }



A.1. Monte Carlo simulations 195

98 break ;

99

100 case 3 : f o r ( j =1; j<=N; j++) {
101 i f ( pat [ 1 ] [ j ]==pat [ 2 ] [ j ] ) {
102 i f ( pat [ 1 ] [ j ]==0){
103 i f (RANDOM( ) >0.5) s [ j ]=−1;

104 e l s e s [ j ]=1;}
105 e l s e { s [ j ]= −(pat [ 1 ] [ j ] ) ;}}
106 e l s e { i f (RANDOM( ) >0.5) s [ j ]=1;

107 e l s e s [ j ]=−1;}
108 }
109 break ;

110

111 case 4 : f o r ( j =1; j<=N; j++) {
112 i f ( pat [ 1 ] [ j ]==pat [ 2 ] [ j ] ) {
113 i f ( pat [ 1 ] [ j ]==0){
114 i f (RANDOM( ) >0.5) s [ j ]=−1;

115 e l s e s [ j ]=1;}
116 e l s e { s [ j ]= pat [ 1 ] [ j ] ; } }
117 e l s e { i f (RANDOM( ) >0.5) s [ j ]=−1;

118 e l s e s [ j ]= 1 ;}
119 }
120 break ;

121

122 d e f a u l t : f o r ( j =1; j<=N; j++) {
123 i f (RANDOM( ) <0.5) s [ j ]=1;

124 e l s e s [ j ]=−1;

125 }
126 }
127

128 parameters ( s ,N, pat ,m) ;

129 fp=fopen ( ” s t a t u s ” , ”a” ) ;

130 f o r (mu=1;mu<=2;mu++) data [ 0 ] [ mu]=m[mu ] ;

131 f p r i n t f ( fp , ” (m1,m2)=(%f ,% f ) \n” ,m[ 1 ] ,m[ 2 ] ) ;

132 f c l o s e ( fp ) ;

133
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134 i f ( i <26) s p r i n t f ( l abe l , ”%1d” , i ) ;

135 e l s e s p r i n t f ( l abe l , ”26” ) ;

136 s t r cpy ( f i l ename , name) ; s t r c a t ( f i l ename , l a b e l ) ;

137

138 f l i p s =( i n t ) ( 0 . 5 + 0.1∗N) ;

139

140 f o r ( j =1; j <=200; j++) {
141 f o r ( k=1;k<=f l i p s ; k++) {
142 s i t e =( i n t ) (RANDOM( ) ∗N) +1;

143

144 h= 0 ;

145 f o r ( l =1; l<=N; l++) {
146 i f ( s [ l ]>0) {h+=J [ s i t e ] [ l ] ; }
147 e l s e {h−=J [ s i t e ] [ l ] ; }
148 }
149

150 g lauber = 0 .5 ∗ ( 1 . 0 + tanh ( ( f l o a t )h/(N∗T) ) ) ;

151 i f (RANDOM( )<g lauber ) s [ s i t e ]=1;

152 e l s e s [ s i t e ]=−1;

153 }
154 parameters ( s ,N, pat ,m) ;

155 data [ j ] [ 1 ] = m[ 1 ] ;

156 data [ j ] [ 2 ] = m[ 2 ] ;

157 }
158

159 // wr i t e on f i l e ’ s t a t u s ’ time step , m1, m2

160 fp=fopen ( f i l ename , ”w” ) ;

161 f o r ( j =0; j <=200; j++) f p r i n t f ( fp , ”%f %f %f \n” , ( f l o a t ) ( 0 . 1∗ j ) ,

data [ j ] [ 1 ] , data [ j ] [ 2 ] ) ;

162 f c l o s e ( fp ) ;

163 }
164 f r e e m a t r i x ( data , 0 , 2 0 0 , 1 , 2 ) ;

165 f r e e v e c t o r (m, 1 , 2 ) ;

166 f r e e i m a t r i x (J , 1 ,N, 1 ,N) ;

167 f r e e i m a t r i x ( pat , 1 , 2 , 1 ,N) ;

168 f r e e i v e c t o r ( s , 1 ,N) ;
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169 re turn (0 ) ;

170 }
171

172 // Function−parameters compute magnet i sa t ions //

173

174 void parameters ( i n t ∗ s , i n t N, i n t ∗∗pat , f l o a t ∗m) {
175 i n t i ,mu, temp ;

176 f o r (mu=1;mu<=2;mu++){
177 temp=0;

178 f o r ( i =1; i<=N; i++){temp += ( ( s [ i ] ) ∗( pat [mu ] [ i ] ) ) ;}
179 m[mu]=( f l o a t ) temp /( ( f l o a t )N) ;

180 }
181 }

Listing A.1: Monte Carlo simulations

A.2 Population dynamics algorithm

In this section we provide fomulae to compute the cavity fields for the popu-

lation dynamics algorithm. Starting form the parametrisation of P\µµ̂(σi) intro-

duced in sec. 4.6

P\µµ̂(σi) ∝ eβφi→µµ̂σi , (1.2.1)

we can express the cavity field φi→µµ̂ in terms of the cavity marginals

φi→µµ̂ =
1

2β
log

[
P\µµ̂(+1)

P\µµ̂(−1)

]
, (1.2.2)

which satisfy the recursion

P\µµ̂(σi) =
∏

ν∈∂i\µµ̂

∑

{σk∈∂ν\i},{σ`∈∂ν̂}

fνν̂(σi, {σk∈∂ν\i}, {σ`∈∂ν̂})
∏

k∈∂νν̂\i

P\νν̂(σk) .

(1.2.3)
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obtained by combining (4.3.53) and (4.3.54). Inserting the explicit expression for

the factors

fνν̂(σi, {σk∈∂ν\i}, {σ`∈∂ν̂}) =

〈
exp


√β


y1ξ

ν
i σi + y1

∑

k∈∂ν\i

ξνkσk + y2

∑

`∈∂ν̂

ξν̂` σ`





〉

y

,

(1.2.4)

we obtain

P\µµ̂(σi) =
∏

ν∈∂i\µµ̂

∑

{σk∈∂ν\i},{σ`∈ν̂}

∫
Dy exp


√β


y1ξ

ν
i σi + y1

∑

k∈∂ν\i

ξνkσk + y2

∑

`∈∂ν̂

ξν̂` σ`






×
∏

k∈∂νν̂\i

P\νν̂(σk) , (1.2.5)

with Dy =
√

1− k2 dy1dy2
2π

e−
1
2
yTC−1y. Expressing everything in terms of the fields

φk→νν̂ and introducing the variables Xν =
∑

k∈∂ν\i ξ
ν
kσk and X̂ν =

∑
`∈∂ν̂ ξ

ν̂
` σ`,

yields

P\µµ̂(σi) =
∏

νν̂∈∂i\µµ̂

∑

Xν ,X̂ν

∫
Dye

√
β(y1ξνi σi+y1Xν+y2X̂ν)

∑

{σk}

∏

k∈∂ν\i

eβφk→νν̂σkδXν ,
∑
k∈∂ν\i ξ

ν
kσk

×
∑

{σ`}

∏

`∈∂ν̂

eβφ`→νν̂σ`δX̂ν ,
∑
`∈∂ν̂ ξ

ν̂
` σ`

. (1.2.6)

Finally, we can integrate over y. The integral in (1.2.6) can be written in the

form

√
1− k2

∫
dy1dy2

2π
e−

1
2
yTC−1y+JTy , (1.2.7)

with JT = (
√
β(ξνi σi +Xν),

√
βX̂ν) and yT = (y1, y2) and considering

C−1 =


 1 −k
−k 1


 . (1.2.8)
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Solving it by Gaussian integration gives

√
1− k2

∫
dy1dy2

2π
e−

1
2
yTC−1y+JTy = e

1
2
JTCJ , (1.2.9)

with

C =




1
1−k2

k
1−k2

k
1−k2

1
1−k2


 . (1.2.10)

Hence, we get

e
1
2
JTCJ = exp

(
β

2(1− k2)

(
(ξνi σi +Xν)

2 + 2kX̂ν(ξ
ν
i σi +Xν) + X̂2

ν

))
. (1.2.11)

We insert this result in (1.2.6), obtaining

P\µµ̂(σi) =
∏

νν̂∈∂i\µµ̂

∑

Xν ,X̂ν

exp

(
β

2(1− k2)

(
(ξνi σi +Xν)

2 + 2kX̂ν(ξ
ν
i σi +Xν) + X̂2

ν

))
×

×
∑

{σk}

∏

k∈∂ν\i

eβφk→νν̂σkδXν ,
∑
k∈∂ν\i ξ

ν
kσk

∑

{σ`}

∏

`∈∂ν̂

eβφ`→νν̂σ`δX̂ν ,
∑
`∈∂ν̂ ξ

ν̂
` σ`

.

(1.2.12)

Lastly, we plug (1.2.12) in (1.2.2) in order to get the expression for the update
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Figure A.1: Plot of W (φ) fields distribution for a regular random graph with

L = 2 = K, k = 0.5 and bias a = 0 (symmetric entries) for T = 1, 2.4, 3.

Crossing the critical line of interference (4.6.114) the variance of the distribution

increases.
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of the cavity field

φi→µµ̂ =
1

2β

∑

νν̂∈∂i\µµ̂

log

{[ ∑

Xν ,X̂ν

e

(
β

2(1−k2)((ξνi +Xν)2+2kX̂ν(ξνi +Xν)+X̂2
ν)

)

×

×
∑

{σk}

∏

k∈∂ν\i

eβφk→νν̂σkδXν ,
∑
k∈∂ν\i ξ

ν
kσk

∑

{σ`}

∏

`∈∂ν̂

eβφ`→νν̂σ`δX̂ν ,
∑
`∈∂ν̂ ξ

ν̂
` σ`

]/

[ ∑

Xν ,X̂ν

exp

(
β

2(1− k2)

(
(−ξνi +Xν)

2 + 2kX̂ν(−ξνi +Xν) + X̂2
ν

))
×

×
∑

{σk}

∏

k∈∂ν\i

eβφk→νν̂σkδXν ,
∑
k∈∂ν\i ξ

ν
kσk

∑

{σ`}

∏

`∈∂ν̂

eβφ`→νν̂σ`δX̂ν ,
∑
`∈∂ν̂ ξ

ν̂
` σ`

]}
.

(1.2.13)

This expression for the fields update will be used in the population dynamics

algorithm. We summarise here the main steps of the algorithm:

(a) Define the degree distributions Q(e) and Pd(d) - in our algorithm we used

a regular graph with vertex degree L and factor degree K.

(b) Generate the links ξ = (ξ1, . . . , ξe) as e i.i.d. random variables with prob-

ability distribution P (ξ) = 1+a
2
δξ,1 + 1−a

2
δξ,−1, dependent on the parameter

a.

(c) Extract a population composed of M fields φi, i = 1, . . .M uniformly in the

interval [−fmax, fmax]: their histogram defines the zero-step approximation

of the field distribution W 0
ψ(Ψ).

(d) Start the iteration: choose e, d and generate ξ’s.

(e) Choose e−1 fields randomly: compute the updated field φnew using (1.2.13).

(f) Choose randomly one field φi and replace it with the field just computed.

In figure A.1 we plot the field distribution W (φ) in different regions of the phase

diagram fixing k = 0.5 and varying the temperature. Patterns are drawn from a
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Figure A.2: Ferromagnetic case (a = 1) on a regular graph L = 2, K = 2 with

k = 0.5 for β = 1 (blue), 0.05 (green). When β = 1 the distribution is peaked

around φ = 2.66 as predicted analytically from (4.5.89). Crossing the critical line

of interference (4.6.117) the distribution is peaked around a non-zero value of the

field φ.

symmetric distribution, i.e. a = 0. Starting from the high temperature regime,

where the distribution is delta-peaked in φ = 0, the variance increases decreasing

the temperature, when crossing the critical line. For ordered interactions, i.e.

a = 1, the distribution, plotted in figure A.2, shows a transition from a delta

peak in φ = 0 at high temperature, to a peak at non-zero values, when the

critical line is crossed.

1 #inc lude <s t d i o . h>

2 #inc lude <math . h>

3 #inc lude <s t d l i b . h>

4 #inc lude ” i n c l u d e l i b / gene ra l . h”

5 #inc lude ” s t r i n g . h”

6 #d e f i n e M 10000 /∗ f i e l d s populat ion s i z e ∗/
7 #d e f i n e SUPPH 0.05 /∗ support o f W( p s i ) − i n i t i a l ∗/
8 #d e f i n e SUPPHMAX 5.0 /∗max support f o r the f i n a l histogram of p s i

∗/
9 #d e f i n e DH 0.05 /∗ W( p s i ) bin ∗/

10 #d e f i n e CAMPO ”campo . dat ”

11 #d e f i n e MOMENT ”moments . dat ”

12 #d e f i n e PM ”pm. dat ”

13 #d e f i n e MOMENTIT ”momentstime . dat ”

14 #d e f i n e Q 2 /∗ ver tex degree ∗/
15 #d e f i n e R 0 .0 /∗ x i ’ s b i a s ∗/
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16 #d e f i n e K 0 .0 /∗ BB i n t e r a c t i o n s t r ength ∗/
17

18 /∗FUNCTIONS∗/
19 i n t UniformRandomNumber ( i n t ) ; /∗ Generate Uniform Random Number ∗/
20 i n t PoissonRandomNumber ( double ) ; /∗ Generate Uniform Random Number

∗/
21 void MakeIsto ( double ∗ , double ∗) ; /∗ Produce histogram ∗/
22 i n t Delta ( int , i n t ) ; /∗ d e l t a func t i on ∗/
23 void f a s t d2b ( unsigned long int , i n t ∗ , i n t ) ; /∗ f unc t i on needed to

c r e a t e the s t r i n g sigma∗/
24 double Compute Var ( double ∗ps i , i n t m) ; /∗Compute the var iance o f the

f i e l d d i s t r i b u t i o n ∗/
25 double Compute Mean( double ∗ps i , i n t m) ; /∗Compute the mean o f the

f i e l d d i s t r i b u t i o n ∗/
26 double Compute Mom2( double ∗ , i n t ) ; /∗compute second moment∗/
27 void product ( i n t ∗∗ , double ∗ , i n t , i n t , i n t , double ∗ , double ) ; /∗

compute the product over k/ l o f eˆ sigma∗ p s i t e s t ∗/
28 void magnet izat ion ( i n t ∗∗ , i n t ∗∗ , i n t ∗∗ , i n t , i n t , i n t , i n t ) ; /∗

Compute magnet izat ion to i n s e r t in the de l t a func t i on ∗/
29 void vectorxxh ( i n t ∗∗ , i n t , i n t ) ; /∗ c r e a t e ve c to r s x [ a ] [ i ] and xh [

a ] [ i ] ∗/
30

31 s t a t i c double ∗ p s i t e s t ;

32 i n t main ( void ) {
33 double newpsi , ∗prodk , ∗prodl , ∗ f i e l d p a r t ;

34 i n t Nbit , j , s i z e , e , d , q , qh , i , r , l , ∗∗pat , t , ∗bink , ∗ b i n l ;

35 i n t ∗∗ sigmak , ∗∗ s igmal , ∗∗mk,∗∗ml ,∗∗x ,∗∗ xh , ∗∗ imatr ix ( ) , ∗ i v e c t o r

( ) ;

36 double ∗∗dmatrix ( ) , ∗ dvector ( ) , p s i [M] , mean , var ;

37

38 Nbit =2∗(( i n t ) (SUPPHMAX/DH) ) +2;

39 double i s topop [ Nbit ] ;

40

41 FILE ∗Campofi le ;

42 Campofi le=fopen (CAMPO, ”w” ) ; // s t o r e cav i ty f i e l d d i s t r i b u t i o n

43 FILE ∗moments ;



A.2. Population dynamics algorithm 203

44 moments=fopen (MOMENT, ”w” ) ; // s t o r e moments o f the cav i ty f i e l d

d i s t r i b u t i o n

45 FILE ∗momentstime ;

46 momentstime=fopen (MOMENTIT, ”w” ) ; // s t o r e moments at each step o f

the pop dyn to check convergence

47 q=Q; // f a c t o r degree f a c t o r /mu − r e g u l a r topo logy

48 qh=Q; // degree o f f a c t o r / hat /mu − r e g u l a r topo logy

49 double B; // beta

50

51 /∗ s t a r t c y c l e in temperature and in f a c t o r degree d ∗/
52

53 f o r (d=1;d<=7;d++){
54 f o r (B=0.7;B<=2;B+=0.02){
55 /∗ f i e l d i n i t i a l i z a t i o n ∗/
56 { i n t i ;

57 f o r ( i =0; i<M; i++){
58 // p s i [ i ]=0; ( check that p s i=0 i s a Fixed Point )

59 p s i [ i ] = (2∗SUPPH∗ rand ( ) /(RAND MAX + 1 . 0 ) )−SUPPH;

60 }
61 }
62

63 /∗ POPULATION DYNAMICS ∗/
64 { f o r ( t =0; t<100; t++){
65 mean=0.0;

66 var =0.0 ;

67 f o r ( r =0; r<1000; r++){
68 e=q+qh ; /∗ neighbourhood o f mu,muh f a c t o r ∗/
69 i f ( e>2){ p s i t e s t =(double ∗) mal loc ( e∗ s i z e o f ( double ) ) ;}
70 { i n t s ; f o r ( s =0; s<(e−1) ; s++){ p s i t e s t [ s ]= p s i [ UniformRandomNumber (M)

] ; } }
71 // choose e−1 f i e l d from the populat ion at random

72

73

74 pat=imatr ix (1 , d−1 ,1 , e ) ;

75 // Generate x i ’ s

76 i n t k ;
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77 i f (d>1){ f o r ( k=1; k<=d−1;k++) {
78 f o r ( i =1; i<=e ; i++){
79 i f (RANDOM( )> (1+R) /2) {pat [ k ] [ i ]= +1;}
80 e l s e {pat [ k ] [ i ]= −1;}
81 }
82 }}
83

84 // Generate matrix sigmak

85 i n t m; m=( i n t )pow(2 , q−1) ; // s i z e o f sigmak

86 i n t bink [ q ] ;

87 sigmak=imatr ix (0 ,m−1 ,1 ,q−1) ;

88 f o r ( i =0; i<=m−1; i++)

89 { f a s t d2b ( i , bink , q ) ;

90 f o r ( j =1; j<=q−1; j++)

91 { i f ( bink [ j−1]==1) sigmak [ i ] [ j ]=1;

92 e l s e i f ( bink [ j−1]==0) sigmak [ i ] [ j ]=−1;

93 }
94 }
95

96 // Generate matrix s igmal

97 i n t n ; n=( i n t )pow(2 , qh ) ; // s i z e o f s igmal

98 i n t b i n l [ qh ] ;

99 s igmal=imatr ix (0 , n−1 ,1 ,qh ) ;

100 f o r ( i =0; i<=(n−1) ; i++)

101 { f a s t d2b ( i , b in l , qh ) ;

102 f o r ( j =1; j<=(qh ) ; j++)

103 { i f ( b i n l [ j−1]==1) s igmal [ i ] [ j ]=1;

104 e l s e i f ( b i n l [ j−1]==0) s igmal [ i ] [ j ]=−1;

105 }}
106

107 // Product func t i on prodk

108 { i n t gg=−1;

109 prodk=dvector (0 ,m−1) ;

110 product ( sigmak , p s i t e s t , q−1,gg ,m, prodk ,B) ;

111 }
112



A.2. Population dynamics algorithm 205

113 // Product func t i on prod l

114 { i n t l l =0;

115 prod l=dvector (0 , n−1) ;

116 product ( s igmal , p s i t e s t , qh , q−2,n , prodl ,B) ;

117 }
118

119 //Compute magnet izat ion o f c l u s t e r

120 mk=imatr ix (1 , d−1 ,0 ,m−1) ;

121 ml=imatr ix (1 , d−1 ,0 ,n−1) ;

122 magnet izat ion ( sigmak , pat , mk, d−1,m, q−1 ,0) ;

123 magnet izat ion ( sigmal , pat , ml , d−1,n , qh , q−1) ;

124

125

126 // Creat x [ a ] , xh [ a ] v e c t o r s ( to sum over them )

127 x=imatr ix (1 , d−1,−(q−1) ,q−1) ;

128 xh=imatr ix (1 , d−1,−(qh ) , qh ) ;

129 vectorxxh (x , q−1, d−1) ;

130 vectorxxh (xh , qh , d−1) ;

131

132 //Compute new f i e l d

133 f i e l d p a r t=dvector (1 , d−1) ;

134 double kk ;

135 kk=pow(K, 2 ) ;

136 { i n t r , s , a ;

137 double temp , norm ;

138 temp=0;

139 norm=0;

140 f o r ( a=1; a<=d−1; a++) { f o r ( r=−(q−1) ; r<= q−1; r+=2){ f o r ( s=−qh ; s<=

qh ; s+=2){
141 f o r ( i =0; i<=m−1; i++) {
142 f o r ( j =0; j<=n−1; j++){
143 temp +=((exp ( ( ( (B∗( pat [ a ] [ e ]+x [ a ] [ r ]+xh [ a ] [ s ] ) ∗( pat [ a ] [ e ]+x [

a ] [ r ]+xh [ a ] [ s ] ) ) ) /(2∗(1−kk ) )−B∗ ( ( pat [ a ] [ e ]+x [ a ] [ r ] ) ∗xh [ a ] [ s ] ) /(1+

K) ) ) ∗prodk [ i ]∗ Delta ( x [ a ] [ r ] ,mk[ a ] [ i ] ) ∗ prod l [ j ]∗ Delta ( xh [ a ] [ s ] , ml [

a ] [ j ] ) ) ) ;
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144 norm +=((exp ( ( ( (B∗(−( pat [ a ] [ e ] )+x [ a ] [ r ]+xh [ a ] [ s ] ) ∗(−( pat [ a ] [

e ] )+x [ a ] [ r ]+xh [ a ] [ s ] ) ) ) /(2∗(1−kk ) )−B∗((−( pat [ a ] [ e ] )+x [ a ] [ r ] ) ∗xh [ a

] [ s ] ) /(1+K) ) ) ∗prodk [ i ]∗ Delta ( x [ a ] [ r ] ,mk[ a ] [ i ] ) ∗ prod l [ j ]∗ Delta ( xh [

a ] [ s ] , ml [ a ] [ j ] ) ) ) ;}}}}
145 f i e l d p a r t [ a ]=( double ) temp /( double )norm ;

146 }}
147

148 // Compute Sum a o f l og ( f i e l d p a r t [ a ] )

149 double psitemp ; psitemp =0;

150 i n t a ;

151 f o r ( a=1; a<=d−1; a++){
152 psitemp+=(log ( f i e l d p a r t [ a ] ) ) ;}
153

154 // New f i e l d p s i − random update

155 newpsi =(( double ) psitemp ) /( double ) (2∗B) ;

156

157 /∗Update a f i e l d at random among the a v a i l a b l e ones ∗/
158 p s i [ UniformRandomNumber (M) ]= newpsi ;

159

160 /∗COMPUTE MEAN & VARIANCE ∗/
161 double mm, vv ; // mean and var iance v a r i a b l e s

162

163 mm=Compute Mean( ps i ,M) ;

164 vv=Compute Var ( ps i ,M) ;

165 mean+=mm;

166 var+=vv ;

167

168 f r e e d v e c t o r ( prodk , 0 ,m−1) ;

169 f r e e d v e c t o r ( prodl , 0 , n−1) ;

170 f r e e i m a t r i x ( sigmak , 0 ,m−1 ,1 ,q−1) ;

171 f r e e i m a t r i x ( pat , 1 , d−1 ,1 , e ) ;

172 f r e e i m a t r i x ( sigmal , 0 , n−1 ,1 ,qh ) ;

173 f r e e i m a t r i x (mk, 1 , d−1 ,0 ,m−1) ;

174 f r e e i m a t r i x (ml , 1 , d−1 ,0 ,n−1) ;

175 f r e e i m a t r i x (x , 1 , d−1,−(q−1) ,q−1) ;

176 f r e e i m a t r i x (xh , 1 , d−1,−qh , qh ) ;
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177 f r e e d v e c t o r ( f i e l d p a r t , 1 , d−1) ;

178

179 i f ( e>2){ f r e e ( p s i t e s t ) ;}
180 }// c l o s e r loop

181 mean=mean/M;

182 var=var /M;

183 f p r i n t f ( momentstime , ”%d %f %f \n” , t , mean , var ) ; // u s e f u l to

monitor convergence in time

184 }
185 }// c l o s e t loop

186

187 double v f in , mfin , m2fin ;

188 mfin=Compute Mean( ps i ,M) ;

189 v f i n=Compute Var ( ps i ,M) ;

190 m2fin=Compute Mom2( ps i ,M) ;

191

192 f o r ( i =1; i<=M; i++){ f p r i n t f ( Campofile , ”%f \n” , p s i [ i ] ) ;}
193 f p r i n t f (moments , ”%d %f %f %f %f \n” ,d , ( 1 /B) , mfin , v f in , m2fin ) ;

194

195 }}
196 f c l o s e (moments ) ;

197 f c l o s e ( Campofi le ) ;

198 f c l o s e ( momentstime ) ;

199 re turn 0 ;

200 }
201

202 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗FUNCTIONS∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
203

204 /∗ Compute mean o f W( p s i ) ∗/
205

206 double Compute Mean( double ∗ps i , i n t m) {
207 double mean=0.0;

208 i n t i ;

209 f o r ( i =0; i<m; i++){mean+=p s i [ i ] ; }
210 re turn mean/m;

211 }
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212

213 /∗Compute var iance o f W( p s i ) ∗/
214

215 double Compute Var ( double ∗ps i , i n t m) {
216 double var =0.0 ;

217 double mean ;

218 i n t i ;

219 mean=Compute Mean( ps i ,m) ;

220 f o r ( i =0; i<m; i++){var+=(( p s i [ i ]−mean) ∗( p s i [ i ]−mean) ) ;}
221 re turn var /(m−1) ;

222 }
223

224 double Compute Mom2( double ∗ps i , i n t m) {
225 double var =0.0 ;

226 double mean ;

227 i n t i ;

228 f o r ( i =0; i<m; i++){var+=(( p s i [ i ] ) ∗( p s i [ i ] ) ) ;}
229 re turn var /(m) ;

230 }
231

232 /∗ histogram of the populat ion ∗/
233

234 void MakeIsto ( double ∗ps i , double ∗ i s topop ) {
235 i n t i ;

236 i n t n ;

237 f o r ( i =0; i<M; i++){
238 i f ( p s i [ i ]>=0){
239 i f ( p s i [ i ]>SUPPHMAX) { i s topop [−2]= i s topop [−2]+1.0/M;}
240 e l s e {
241 n=( i n t ) ( p s i [ i ] /DH) ;

242 i s topop [2∗n]= i s topop [2∗n ]+1.0/(M∗DH) ;

243 }
244 }
245 e l s e {
246 i f ( p s i [ i ]<−SUPPHMAX) { i s topop [−1]= i s topop [−1]+1.0/M;}
247 e l s e {
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248 n=( i n t )(−p s i [ i ] /DH) ;

249 i s topop [2∗n+1]= i s topop [2∗n+1]+1.0/(M∗DH) ;

250 }
251 }
252 }
253 re turn ;

254 }
255

256 /∗ i n t between 0−m with uniform p r o b a b i l i t y ∗/
257

258 i n t UniformRandomNumber ( i n t m) {
259 re turn ( i n t ) ( ( double )m∗ rand ( ) /(RAND MAX+1.0) ) ;

260 }
261

262 /∗Delta Function ∗/
263

264 i n t Delta ( i n t n , i n t m) {
265 i f (n==m) { re turn 1 ;} e l s e { re turn 0 ;}
266 }
267

268 /∗ Create a l l p o s s i b l e combinat ions o f sigmas ∗/
269

270 void f a s t d2b ( unsigned long i n t x , i n t ∗bin , i n t s i z e ) {
271 i n t i ;

272 /∗
273 Fast decimal−to−binary conve r s i on s

274 Author : Giovanni Motta ( gim@ieee . org )

275 ∗/
276 f o r ( i =0; i<s i z e ; i++)∗( bin++) = ( x >> i ) & 0x1 ;

277 }
278

279 /∗ Compute products over k/ l o f e ˆ( p s i ∗ sigma ) magnet izat ion ∗/
280

281 void product ( i n t ∗∗ s , double ∗ps i , i n t v , i n t l , i n t s i zes igma ,

double ∗prod , double b) {
282 i n t i , k ;
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283 double temp , pp ;

284 f o r ( i =0; i<=sizes igma −1; i++){
285 temp=0;

286 pp=1;

287 f o r ( k=1;k<=v ; k++){temp=(( s [ i ] [ k ] ) ∗( p s i [ k+l ] ) ) ;

288 pp ∗=exp (b∗temp ) ;}
289 prod [ i ]=( double )pp ;

290 }
291 }
292

293 /∗Compute magnet izat ion mk[ a ] [ i ] & ml [ a ] [ i ] ∗/
294

295 void magnet izat ion ( i n t ∗∗ s , i n t ∗∗pat , i n t ∗∗m, i n t a , i n t

s i zes igma , i n t v , i n t l ) {
296 i n t i ,mu, k , temp ;

297 f o r (mu=1;mu<=a ;mu++){
298 f o r ( i =0; i<=sizes igma −1; i++) {
299 temp=0;

300 f o r ( k=1;k<=v ; k++){temp += ( ( s [ i ] [ k ] ) ∗( pat [mu ] [ k+l ] ) ) ;}
301 m[mu ] [ i ]=( i n t ) temp ;

302 }
303 }}
304

305 /∗Create matrix x [ a ] [ i ] , xh [ a ] [ j ] ∗/
306

307 void vectorxxh ( i n t ∗∗x , i n t s i z e , i n t s i z e p a t t ) {
308 i n t i , a ;

309 f o r ( a=1; a<=s i z e p a t t ; a++) {
310 f o r ( i=−( s i z e ) ; i<=s i z e ; i +=2){
311 x [ a ] [ i ]= i ;

312 }
313 }}

Listing A.2: Population dynamics code
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[25] Parisi, G., Mézard, M. and Virasoro, M. A. (1987). Spin glass theory and

beyond. World Scientific, Singapore.

[26] Agliari, E., Annibale, A., Barra, A., Coolen, A. C. C. and Tantari, D.

(2013). Immune networks: multi-tasking capabilities at medium load. Jour-

nal of Physics A: Mathematical and Theoretical, 46(33), 335101.

[27] Agliari, E., Annibale, A., Barra, A., Coolen, A. C. C. and Tantari, D.

(2013). Immune networks: multitasking capabilities near saturation. Jour-

nal of Physics A: Mathematical and Theoretical, 46(41), 415003.

[28] Amit, D. J. (1992). Modeling brain function: The world of attractor neural

networks. Cambridge University Press.

213



[29] Amit, D. J., Gutfreund, H. and Sompolinsky, H. (1985). Spin-glass models

of neural networks. Physical Review A, 32(2), 1007.

[30] Hopfield, J. J. (1982). Neural networks and physical systems with emergent

collective computational abilities. Proceedings of the National Academy of

Sciences, 79(8), 2554-2558.
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