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ABSTRACT 

Epigenetics and metabolomics are rapidly growing areas of research, in part due to recent 

advances in technology that have allowed for a wide coverage of the human genome.  

Metabolites are small compounds present in cell and body fluids, and are involved in 

biochemical processes of the cell. Quantitative trait loci associated with levels of individual 

metabolites (mQTLs) have been identified from numerous metabolome GWAS. Here, I 

analysed metabolite levels in twins with the aim of identifying genetic variants that influence 

metabolomic traits (mQTLs) using two different metabolomics platforms, and consequently 

compared the results to report stable metabolites on both technologies to ultimately enable 

combining metabolite profiles across these two platforms. 

DNA methylation is a biochemical process that is vital for mammalian development. It is 

present throughout the genome and is the most extensively studied epigenetic mark. Previous 

studies have explored the heritability of DNA methylation and have identified methylation 

QTLs (meQTL). Here, I identified meQTLs with the goal of assesing the evidence of genetic 

effects influence not only DNA methylation levels, but also variability by using MZ-twin 

discordance as a measure of variance.  

Epigenetic mechanisms and metabolomic profiles have both been shown to play a role in gene 

expression and susceptibility for complex human disease. Here, I analysed the association 

between type 2 diabetes and metabolomic and epigenetic datasets and combined the data to 

identify connections between these levels of biological data at genetic variants linked to type 2 

diabetes to gain more insight into the disease susceptibility and progression. 

Overall, the results confirmed previous findings of strong genetic influences on metabolites and 

extend current knowledge about genetic effects underlying several biochemical pathways. 

Additionally, the results also showed genetic influences on DNA methylation, and give insights 

into mechanisms by which genetic impacts epigenetic processes. Lastly, the findings show that 

specific genetic susceptibility variants for type 2 diabetes can also impact epigenetic and 

metabolomics profiles, and can help improve our understanding of the disease etiology. 
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CHAPTER 1  

 

Introduction 

______________________________________________________________________ 

Recent studies have explored the molecular links between metabolism and epigenetic 

modifications implicated in a variety of diseases (Lu and Thompson 2012). Metabolism 

is one of the major sources of methyl groups that are used to methylate DNA, a key 

epigenetic process that influences chromatin structure and gene expression, and 

ultimately normal development and diseases. Epigenetic mechanisms and metabolomic 

profiles have both been shown to play a role in gene expression and have been 

associated with several complex traits, including type 2 diabetes (T2D) (Katada et al. 

2012). Here I describe both types of “-omic” profiles, that is, human metabolomics and 

epigenomics data, giving a brief overview of relevant literature and recent findings in 

each area, and lastly I summarise the aim of this thesis. 

 Exploring the genetic basis of complex phenotypes and disease 1.1

Complex diseases such as cardiovascular disease and T2D are an increasing global 

health concern. According to the World Health Organisation, cardiovascular diseases 

are the number one cause of death globally and almost 420 million people worldwide 

suffer from T2D. A better understanding of the causes of complex diseases in 

conjunction with an improvement of preventive medicine is one of the main aims of 

epidemiological studies of the disease itself as well as related risk factors. Because a 

genetic predisposition exists for most complex diseases, the identification of genes 

involved in the disease etiology has been essential. To date, genome-wide association 

studies (GWAS) have been one of the main approaches used to serve this purpose. In 
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order to gain further insight into genetic and biochemical mechanisms underlying a 

disease, part of this thesis expands the GWAS approach by considering metabolites and 

methylation as intermediate phenotypes between genes and disease.  

 Twin Studies and heritability  1.2

The classic twin study aims to separate the phenotypic variance into genetic and 

environmental components. One of the main aims of the twin design is to estimate how 

much of the phenotypic variance is due to genetic effects (heritability), and how much 

appears to be due to shared or unique environmental effects. Heritability of a trait within 

a population is the proportion of observed variance in the trait between individuals 

within a population that is due to genetic differences. Thus, the total variance of 

phenotype (Equation 1-1) can be calculated as sum of the variances of individual 

genetic and environmental effects, under the assumption that these variances can be 

additive and are due to independent causes (Strachan et al. 2011). 

!!"#$%&'(# = !!"#"$%& + !!"#$%&"'(")                (Equation 1-1) 

 

The genetic variation can be due to additive genetic variance (VA) as well as non-

additive genetic variance that can be related to interactions between alleles at the same 

locus (dominance, VD) and/or at different loci (epistasis, VI): VG= VA + VD + VI. Broad-

sense heritability (H!) takes into account the total genetic variation (VG); Thus, H! can 

be calculated as (Equation 1-2); 

!! = !!"#"$%&
!!"#$%&'(#

                 (Equation 1-2) 

The narrow-sense heritability heritability (h!) takes into account only additive genetic 

variance (VA) and can be calculated as (Equation 1-3); 

!! = !!""#$#%&
!!"#$%&'(#

                (Equation 1-3) 
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and can be estimated by comparing correlations (r) between monozygotic  (MZ) and 

dizygotic (DZ) twins (Equation 1-4); 

!! = !(!!" − !!")               (Equation 1-4) 

The ACE model was proposed for calculating narrow-sense heritability (Neale et al. 

1992). Three elements of the phenotypic variance (VP) are estimated in the classical 

twins study (Neale et al. 1992): the additive genetic component (A), common 

environment (C) and unique environment (E); which constitute the ACE components. In 

this framework it is also possible to study non-additive genetic effects, for example, 

evidence for dominant genetic effects (D) can be assessed in the ADE model.  

 Genome-wide association studies 1.3

Statistical tests for associations between a phenotype and genetic variants across the 

genome, typically single nucleotide polymorphisms (SNPs) is referred to as Genome-

Wide Association Studies (GWAS). The idea underlying the GWAS approach is that a 

number of common SNPs are causal for a complex disease and also that these causal 

variants are in linkage disequilibrium (LD) with other common genetic variants, which 

can serve as tags of the signal. These tags can help identify causal variants, which may 

not even be profiled. The first GWAS was conducted in 2005 for investigating patients 

with age-related macular degeneration and reported two SNPs with significantly 

altered allele frequency compared to healthy controls (Klein et al. 2005). By 2016, a 

total of 2,423 GWAS for more than 5,000 different traits were published (Hindorff et al. 

2009; Welter et al. 2014). The significant results of these GWAS and their location in 

the genome are displayed in Figure 1-1. Although GWAS are a very popular method to 

reveal novel risk variants, one drawback is the small effect size of SNPs detected to date 

(de Bakker et al. 2008).  
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Figure 1-1 Published GWAS by April 2016. The GWAS Catalog contains 2,423 studies 
and 16,617 unique SNP-trait associations (P < 5x10-8). All traits are color-coded. Resource: The 
NHGRI-EBI GWAS Catalog (Welter et al. 2014).  

 

For many traits and diseases of interest, larger sample sizes are needed to detect 

significant associations using the GWAS approach and this is typically achieved 

through meta-analysis where multiple analysts carry out the same analysis in separate 

cohorts and combine the results afterwards (Thompson et al. 2011; Zeggini and 

Ioannidis 2009). For example, a recent genome-wide association meta-analysis of waist 

and hip circumference-related traits in more than 200,000 individuals identified variants 

in 49 loci (33 of them novel) associated with waist to hip ratio adjusted for body mass 

index (BMI) and an additional 19 loci associated with related waist and hip 

circumference measures (Shungin et al. 2015).  

Associations between genetic variations and various phenotypes have been reported in 

numerous studies, but these variants typically can only explain a limited fragment of the 

phenotypic diversity, leading many geneticists to raise the question of “where is the 

missing heritability?”. The problem of the missing heritability is a widely discussed 

topic, for example as discussed in a recent review by Eichler. et al. (Eichler et al. 2010). 

Some suspected reasons for missing heritability are undetected rare mutations which are 
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not tagged well by common SNPs, common variants with a low penetrance, other 

genomic variations such as copy number variants, gene and gene-environment 

interactions as well as incorrect heritability estimates (Maher 2008). It has been 

suggested that some of the unexplained heritability might be explained by incomplete 

LD between the analysed SNPs and the causal variants (Yang et al. 2010). Moreover, 

larger samples, more precisely measured phenotypes, more densely genotyped SNPs as 

well as advanced statistical methods might help to find the missing heritability. Finally, 

epigenetic variation has also been proposed as an explanation for the large amount 

of missing heritability in complex traits (Eichler et al. 2010; Manolio et al. 

2009). Despite these drawbacks GWAS have successfully identified many genetic risk 

variants to date for a number of complex traits and diseases.  

 Metabolomics 1.4

Metabolomics is the developing field of study for measuring compounds of a cell or 

body fluid. It is assessed that the human metabolome, which is defined as the complete 

set of small molecular weight molecules, covers more than 3,000 different metabolites 

of various biochemical classes such as sugars, amino acids, lipids or carnitines (Koal 

and Deigner 2010). Metabolites are the small molecular weight substances present in 

cells within tissues and body fluids and are involved in biochemical processes of the 

cell (Nicholson et al. 1999). Metabolomics analyses are predominantly performed on 

blood and urine samples, as these are easy to obtain. The measurement of metabolites 

reveals a view of the current state of cells. In addition to measuring levels of single 

metabolites, ratios between metabolite concentrations can also be used to inform on 

metabolic processes as well as in the search for biomarkers, for example, in a systematic 

screens for genetic deficiencies in newborns (Maier et al. 2005). Analysis of 

metabolites can reveal insight on functional variation in the cell and help to detect 

connections between different diseases (Holmes et al. 2008a).  
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Changes in the organism are magnified in the metabolome compared to the genome. 

Metabolomics is a promising tool in the search for biomarkers which help to detect 

environmental exposures, diseases, to improve the disease prognosis, to develop 

therapeutics or to evaluate drug toxicity (Nicholson and Lindon 2008). For example, 

metabolomics plays a key role in the field of cancer diagnostics, especially when early 

detection is difficult, such as for kidney cancer (Nagrath et al. 2011). The search for 

metabolomics biomarkers is also underway in many diseases, with moderate success so 

far (Barderas et al. 2011).  

 Metabolomics Platforms  1.4.1

There are two main strategies to measure metabolites, a non-targeted and a targeted 

approach. Whilst the non-targeted approach aims to measure all metabolites in a sample, 

the targeted approach focuses specifically on the quantification of selected metabolites. 

The most often used high-throughput methods to measure metabolites are mass 

spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy (Malet-

Martino and Holzgrabe 2011).  

MS has to be coupled to separation techniques, such as gas chromatography (GC) or 

liquid chromatography (LC) and is more sensitive than NMR (Nicholson and Lindon 

(2008). When using GC/MS, the analyte has to be stable and sometimes requires a 

derivatisation step; transforming the chemical compound into a product. If a 

derivatisation is not possible or if the metabolites are not stable, LC/MS can be applied 

(Barderas et al. 2011). GC/MS can capture fatty acids, amino acids and sugars very 

well. In some cases, tandem MS (MS/MS) is applied which consists of multiple MS 

steps with a fragmentation step in between. The use of MS/MS facilitates the 

identification of the measured molecules. In NMR, the analyte does not require any 

treatment prior to analysis. On the other hand, MS is fast, accurate and cost- effective. 

Altogether, the metabolomics methods developed to date have different strengths and 
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weaknesses, and a single approach cannot capture the entire human metabolome - 

instead, a combination of different measurement techniques is essential to gain the most 

comprehensive insight into the metabolome. 

 Metabolome wide association studies  1.4.2

To date, GWAS have found associations between genotype variation and disease 

phenotypes, and as extension to this approach, the metabolome wide association study 

(MWAS) tests for systematic associations of metabolites with phenotypes and diseases 

(Bictash et al. 2010; Holmes et al. 2008b). Examples of MWAS include analyses of 

nutrition (Altmaier et al. 2011; Menni et al. 2013a), coffee consumption (Altmaier et al. 

2009), type 2 diabetes (T2D) (Menni et al. 2013c), and aging and aging traits (Menni et 

al. 2013b; Yu et al. 2012). MWAS results can give insights into the biochemical 

mechanisms involved in disease susceptibility and progression, and can also be used as 

biomarkers of environmental exposures, phenotypes, and diseases, as previously 

discussed. 

 Genome-wide association studies with metabolomics  1.4.3

As metabolites are products of genetic as well as proteomic processes, metabolites are 

very closely linked to genetics in contrast to most of the other phenotypes. The 

examination of the genetic basis of metabolites can be conducted with metabolome 

GWAS (mGWAS). Numerous mGWAS have also been conducted to date (Chasman et 

al. 2009; Demirkan et al. 2012; Demirkan et al. 2015; Hicks et al. 2009; Illig et al. 

2010; Kettunen et al. 2012; Krumsiek et al. 2012; Lemaitre et al. 2011; Nicholson et al. 

2011; Raffler et al. 2013; Rhee et al. 2013; Ried et al. 2014; Rueedi et al. 2014; Suhre 

et al. 2011a; Suhre et al. 2011b; Tanaka et al. 2009). The results are discussed in greater 

detail in the introductory section to Chapter 3. There are several common themes that 

arise from these multiple mGWAS. The first mGWAS showed the power of considering 

not only single metabolites but also metabolite ratios in the analysis (Gieger et al. 
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2008). Whilst in some mGWAS all possible pair-wise metabolite ratios were analysed 

in a hypothesis-free approach, others focused on biologically relevant metabolite ratios. 

Targeted and non-targeted metabolomics are complementary in giving an improved 

picture of the human metabolome and mGWAS of targeted and non-targeted platforms 

given overlapping signals (Suhre et al. 2010). Moreover, as metabolomics technologies 

are constantly improving and are currently (in 2016) able to measure even more 

metabolites than previous panels, analyses of these metabolites will bring further 

insights into the human metabolism and disease causing mechanisms (Kastenmuller et 

al. 2015).  

  Epigenetics  1.5

The term “epigenetics” was first introduced by Waddington (1957) proposing a new 

field that combined developmental biology and genetics comprising all processes in 

unfolding of the genetic program for development. During the last decade, epigenetics 

was redefined as heritable cellular modifications that are not caused by changes in the 

DNA sequence (Holliday 1994; Richards 2006). This comprises a diverse range of 

mechanisms of which DNA methylation and histone modifications are studied the most 

at present. Epigenetic mechanisms can regulate gene expression and have impact on 

phenotypes, linking epigenetic mechanisms to development and disease susceptibility 

(Holliday and Pugh 1975).  

 DNA methylation 1.5.1

Compared to other epigenetic mechanism, DNA methylation has been the most widely 

studied to date due to the availability of various techniques. It is considered as one of 

the most stable epigenetic mechanism.  Several factors are thought to influence DNA 

methylation profiles: genetic variation, other epigenetic modifications, stochastic 

changes, and environmental factors that arise during life (Lander et al. 2001). In 

mammals, DNA methylation occurs mainly at cytosine-phosphate-guanine (CpG) 
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dinucleotides throughout the genome (Cosgrove and Wolberger 2005). A large 

proportion of CpGs typically fall into short regions of roughly 1 kb with a high CpG 

frequency, referred to as CpG islands (CGIs).  CGI shores are regions that have lower 

CpG density located at CGI borders (Lander et al. 2001; Venter et al. 2001). In 

particular during early stages of development, most of the human genes related to 

development were found to have a CGI in their promoter that tended to be unmethylated 

across different tissue types (Antequera and Bird 1993; Larsen et al. 1992). DNA 

methylation at CGI shores was observed to be up to 13 fold higher than levels at CGIs 

across different cells and tissues, and highly variable (Doi et al. 2009). CGI shores are 

enriched for functional signals, such as tissue-specificity in DNA methylation profiles 

(Doi et al. 2009; Irizarry et al. 2009), methylation changes during reprogramming (Doi 

et al. 2009), and gene expression changes linked to disease (Irizarry et al. 2009).  

DNA methylation is an essential epigenetic mechanism that plays important roles 

during development, in the regulation of transcription, genomic imprinting, X-

chromosome inactivation, and maintenance of chromosomal and genome stability (Bird 

2002; Li et al. 1992; Reik 2007). DNA methylation also plays a regulatory role in gene 

expression, where methylation in the gene promoter is typically linked with absence or 

low levels of expression of the gene (Ball et al. 2009; Gutierrez-Arcelus et al. 2013; 

Holliday and Pugh 1975). However, DNA methylation can be both positively and 

negatively correlated with gene expression, depending on the position of the CpG site 

(Gutierrez-Arcelus et al. 2013) within the gene promoter and body. 

 Platforms for detecting DNA methylation  1.5.2

DNA methylation is one of the widely studied epigenetic mechanisms and numerous 

techniques have been developed for its detection. Presently, the most widely methods 

are based on bisulfite conversion followed by array hybridization or sequencing (Laird 

2010). One such example is the Illumina Infinium HumanMethylation27k BeadChip  
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(Illumina 27k) (Bibikova et al. 2009; Steemers and Gunderson 2007), which assays 

DNA methylation levels at approximately 27,000 CpG sites in prometer-specific 

regions. A newer version of this array is the Illumina Infinium HumanMethylation450 

BeadChip (Illumina 450k), which covers a wider range of approximately 450,000 CpG 

sites across the genome. Recently, Infinium MethylationEPIC BeadChip (Illumina 

EPIC) is launched as an updated version of the Illumina Infinium 

HumanMethylation450 BeadChip, featuring 850,000 CpGs in enhancer regions, gene 

bodies, promoters and CpG islands (Moran et al. 2016). Additionally, bisulfite 

conversion approaches followed by sequencing are an alternative to array-based 

methods. These include Whole Genome Bisulfite Sequencing (WGBS) (Cokus et al. 

2008; Lister et al. 2008; Lister et al. 2009) and Reduced Representation Bisulfite 

sequencing (RRBS) (Meissner et al. 2008). WGBS is currently seen as the gold 

standard, however, it is relatively costly for large-scale experimental analysis and 

specific regions of the genome can be difficult to sequence with WGBS. Targeted 

enrichment bisulfite sequencing methods are also currently being developed where only 

selected genomic regions undergo bisulfite sequencing, and these typically span 2-5 

million CpG sites. Another approach to detecting DNA methylation can be based on 

pull-down approaches, such as methylated DNA immuno-precipitation (MeDIP) 

(Weber et al. 2005; Weber et al. 2007). MeDIP-sequencing enables a genome-wide 

DNA methylome characterization and provides access to dense CpG regions of the 

genome and repetitive elements with potential regulatory effects (Ward et al. 2013). 

Sequencing-based methods eliminate some of the limitations of the array compositions 

on the other hand, selecting fragment-size, sequencing bias and performance can all 

impact coverage limitations and errors in measurement (Laird 2010). 
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 DNA methylation heritability 1.5.3

There is evidence that genetics can impact DNA methylation profiles at a proportion of 

CpG-sites across the genome, despite developmental reprogramming of DNA 

methylation profiles.  Reprogramming of the methylome occurs during the germ cell 

stage and pre-implantation during development (Reik et al. 2001; Reik and Walter 

2001a). In the first stage, highly methylated germ cells lose much of their methylation 

memory in a first major wave of de-methylation, and in the fertilization stage, the germ 

cells undergo a second de-methylation phase when most of the methylation is erased 

and followed by de novo methylation (Reik et al. 2001; Reik and Walter 2001b). 

Primary reports in support of genetic effects on DNA methylation come from familial 

clustering of epigenetic variation reported at numerous loci (Bird 2002; Reik et al. 

2001). One longitudinal study reported familial clustering of DNA methylation patterns 

over time in more than 200 individuals from two separate cohorts (Bjornsson et al. 

2008). They observed that DNA methylation changes in individuals of older age were 

more similar within families, suggesting an effect of genotype on methylation patterns. 

The majority of studies that have explored DNA methylation heritability to date have 

been based on the twin design (Bell and Spector 2011), with some exceptions (McRae 

et al. 2014). Numerous twin studies have been conducted to understand the regulation 

of DNA methylation (Bell et al. 2012; Bell and Saffery 2012; Gervin et al. 2011; 

Gordon et al. 2012; Grundberg et al. 2013; Heijmans et al. 2007; Javierre et al. 2010; 

Kaminsky et al. 2009; Kuratomi et al. 2008; Wong et al. 2010) and these studies have 

observed the effect of genetic and environmental factors on DNA methylation at 

particular genes (Heijmans et al. 2007; Wong et al. 2010) or throughout the genome 

(Javierre et al. 2010; Kaminsky et al. 2009; Kuratomi et al. 2008). The results are 

discussed in greater detail in the introductory section to Chapter 4. Overall, many 

studies have studied DNA methylation profiles in MZ and DZ twins, reporting 
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similarity between MZ twins compared to DZ twins, and implying that genetic effects 

contribute to DNA methylation levels in particular regions of genome. Although the 

heritability of individual CpGs can range between 0% and 100%, the average reported 

methylation heritability at all profiled CpGs across the genome is low to moderate. 

 Genetics of DNA methylation: Methylation Quantitative Trait Loci  1.5.4

To explore genetic impacts on DNA methylation levels further, a number of studies 

have examined the association between genetic variation at particular loci and DNA 

methylation patterns across the genome. Genetic loci, at which such associations are 

identified, are referred to as methylation quantitative trait loci (meQTLs). Evidence for 

meQTLs has been explored on a genome-wide scale using high-throughput DNA 

methylation analyses, identifying local (cis) and distal (trans) associations of genetic 

variants with methylation levels in multiple samples, across a number of cells, tissues, 

and ages (Banovich et al. 2014; Bell et al. 2011; Bell et al. 2012; Drong et al. 2013; 

Fraser et al. 2012; Gamazon et al. 2013; Gibbs et al. 2010; Grundberg et al. 2013; 

Gutierrez-Arcelus et al. 2013; Shi et al. 2014; Smith et al. 2014; van Eijk et al. 2012; 

Wagner et al. 2014; Zhang et al. 2010). The results are discussed in greater detail in the 

introductory section to Chapter 4. Additionally, a number of meQTL studies have also 

explored the overlap and direction of association of meQTLs and expression QTLs 

(eQTLs), reporting variability in the extent of overlap ranging between 4.8-25% 

(Banovich et al. 2014; Gibbs et al. 2010). Most recently, Banovich et al. reported 

almost 14,000 meQTLs in lymphoblastoid cell lines (LCLs). Interestingly, almost half 

of the overlapping meQTLs and eQTLs in LCLs showed positive correlation between 

methylation and gene expression levels. As discussed in section 1.5.1 both positive and 

negative correlations between methylation and gene expression levels have been 

reported and the relationship between methylation and gene expression depends in part 

on the genomic context of the CpG-site. The Banovich et al. meQTLs and eQTLs in 
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LCLs that showed positive correlation between methylation and gene expression levels 

were located at CpG-sites that were more distant from TSS of genes, suggesting that 

DNA methylation in more distal regulatory elements may be more likely to have an 

activating effect on expression (Banovich et al. 2014). 

Overall, meQTLs were identified in numerous tissues and cell types and might increase 

our knowledge of the genetic component of gene regulation (Bell et al. 2011). The 

meQTL results identified to date suggests that genetic variation can have an effect on 

the methylome with implications for tissue specificity, tissue shared effects, and shared 

impacts across multiple gene regulatory processes. 

 Epigenome-wide association studies   1.5.5

To date most studies of human diseases have focused on genetic and environmental risk 

factors. More recent work has also underlined a role for epigenetic processes underlying 

disease susceptibility, where epigenetic mechanisms may mediate some of the effect of 

genetic and environmental risk factors towards disease. Epigenome-wide association 

studies (EWAS) aim to systematically investigate the association of epigenetic changes 

with disease, where changes may either occur prior to disease or as a consequence of the 

phenotype (Rakyan et al. 2011a).  Two of the most common EWAS study designs are 

the case-control and disease-discordant twin design. The aim of disease-discordant twin 

analyses is to identify non-genetic, that is potential environmentally driven or 

stochastic, epigenetic changes present in the case but not the control twin. These have 

been applied to a large number of traits, with some interesting findings. The case-

control design identified thousands of differently methylated regions (DMR) in 

rheumatoid arthritis (Liu et al. 2013) and schizophrenia (Kinoshita et al. 2013). Recent 

EWAS in disease-discordant twins have been presented for bipolar disorder (Dempster 

et al. 2011), systemic lupus erythematosus (Javierre et al. 2010), T1D (Rakyan et al. 

2011b), and T2D (Nitert et al. 2012).  Overall, their findings not only identify disease-
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associated DNA methylation markers, but also suggest that epigenetic changes may be 

important clinical indicators of disease.  

 Environmental Epigenetics 1.5.6

Environmental epigenetics is a rapidly growing area of research, focusing mainly on the 

association between DNA methylation changes and environmental exposures. It is now 

becoming clear that the dynamic changes in DNA methylation patterns are partway due 

to environmental exposures (Szyf 2013). To date, numerous environmental factors have 

been discovered that influence DNA methylation. For example, direct tobacco smoking 

and maternal smoking have strong effects on methylation changes and smoking-related 

differential methylation sites have been replicated in multiple populations and across 

tissues (Besingi and Johansson 2014; Breitling et al. 2011; Buro-Auriemma et al. 2013; 

Dogan et al. 2014; Elliott et al. 2014; Guida et al. 2015; Harlid et al. 2014; Joubert et 

al. 2012; Markunas et al. 2014; Monick et al. 2012; Philibert et al. 2013; Shenker et al. 

2013; Sun et al. 2013; Suter et al. 2011; Szyf 2013; Wan et al. 2012; Zeilinger et al. 

2013; Zhang et al. 2014) . Together these studies have associated DNA methylation 

changes to exposure to smoking, whether during early development or during adult life.  

Additionally, other environmental exposures, such as sun exposure, dietary and 

nutrition intake, season of birth, alcohol consumption, and physical activities have also 

been connected to methylation levels using genome-wide approaches (Amarasekera et 

al. 2014; Breton et al. 2014; Dominguez-Salas et al. 2014; Ivorra et al. 2015; Lee et al. 

2015; Philibert et al. 2012; Richmond et al. 2015; Rönn et al. 2013; Thapar et al. 2012; 

Voisin et al. 2015; Zhang et al. 2013; Zhao et al. 2013).   

 Aims of the thesis 1.6

In the first part of my study, my research question was to assess if GWAS of blood 

metabolites as functional intermediate phenotypes can give results that help to 

understand the role of genetic variants in dissecting human metabolic and disease 
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pathways. I explored human metabolomic profiles and evaluated the human genetic 

component of metabolite levels. I analysed metabolite levels in twins and identified 

many genetic variants that influence metabolomic traits. I also compared findings across 

metabolomics platforms to find stable and robust metabolites that may be combined or 

used for replication in future studies.  

In the second part of my study, my research question was to test if genetic effects can 

influence both DNA methylation levels and DNA methylation variability. I investigated 

DNA methylation profiles in twin using whole blood and adipose tissue, and tested 

genetic influences on DNA methylation profiles.  

The third part of my study aimed to link metabolomic and epigenetic datasets to T2D. I 

aimed to address four specific hypotheses in this section: (1) Metabolomic profiles that 

are characteristic of T2D associate with epigenetic variants. I performed an association 

study of metabolic profiles in T2D and tested whether the T2D-associated metabolites 

also associate with DNA methylation changes genome-wide. (2) Epigenetic variants are 

associated with T2D, and these may also be associated with metabolic profiles. I 

performed an EWAS of DNA methylation changes in T2D, comparing DNA 

methylation levels to T2D, to identify differentially methylated positions in T2D (T2D-

DMPs). I then tested whether the T2D-DMPs also associate with metabolic profiles. (3) 

T2D genetic susceptibility effects are mediated via intermediate phenotypes, such as 

epigenetic changes or metabolic profiles. I compared the list of 81 T2D GWAS signals 

that have been published to date against the genetic variants that contribute to 

metabolomic and epigenetic profiles identified from the first two parts of my thesis. (4) 

Integrating genetic, epigenetic, and metabolic profiles associated with T2D can help to 

understand biological mechanisms underlying T2D. I fit Bayesian networks to the peak 

T2D-GWAS, T2D-metabolite, and T2D-DMPs results and pair-wise associations, to 

gain more insight into T2D susceptibility and progression.  
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In Summary, I initially explored the genetic basis of metabolomic and epigenetic 

datasets on their own (Chapter 3 and Chapter 4). I subsequently combined these results 

to better understand the relationship between the genetic basis of epigenomics and 

metabolomics in the context of genetic variants associated with T2D (Chapter 5).   
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CHAPTER 2  

 

Materials and Methods 

______________________________________________________________________ 

This chapter provides an overview of the data used in this thesis, starting with an 

overview of the cohort and genetic data, and then focusing on the metabolomics and 

methylation datasets that I have analysed. I provide a brief description of Metabolomics 

platforms and Illumina methylation arrays, and quality control procedures that I adopted 

through the thesis.  

 TwinsUK cohort 2.1

TwinsUK is the UK's largest cohort of adult twins. The registry started in 1992 and 

contains about 13,000 same-sex twin volunteers from all over the United Kingdom 

(Moayyeri et al. 2012). Twins from this cohort were shown to be comparable to 

singletons in terms of disease-related and lifestyle characteristics (Andrew et al. 2001). 

Twins participate in regular clinical visits, during which questionnaire data are 

collected, a series of phenotypic tests are performed, and biological samples are also 

collected. Phenotype test examples include body mass index (BMI), Dual-energy X-ray 

absorptiometry (DEXA) scans, hearing tests, and vision tests. Biological samples 

examples include blood, urine, and tissue biopsies. Participation in the registry is 

voluntary and informed consent is obtained for all research projects. 

 Genotype data in TwinsUK 2.2

The genotyping and imputation steps for the TwinsUK cohort have been described in 

detail previously (Illig et al. 2010; Suhre et al. 2011b). Briefly, genoyping of the 

TwinsUK cohort was performed using a combination of Illumina arrays 



 32 

(HumanHap300, HumanHap610Q, 1M-Duo and 1.2MDuo).  Normalized intensity data 

and genotype calling on the basis of the Illluminus algorithm was pooled. No calls were 

assigned if the most likely call had a posterior probability less than 0.95.  SNPs with 

Hardy–Weinberg (P<1x10−6) and with minor allele frequencies (MAF) <1% were 

excluded.  First, the sparser HumanHap300 dataset was imputed to the HumanHap610Q 

using phased TwinsUK HumanHap610Q haplotypes as a reference. Next, for genotype 

imputation to HapMap - the combined panel was imputed using reference haplotypes 

from the HapMap2 project (rel 22, combined CEU+YRI+ASN panels). These analyses 

were performed previously by other researchers in the department for all twins with 

available genotype data in the cohort.  

Imputation was also performed to 1000 genomes. Here, imputation was done using the 

denser haplotype maps from the 1000 Genomes Project (Abecasis et al. 2010) using the 

1000 Genomes Project multi-population panel (March 2012 release for TwinsUK). 

"Pre-phasing" of the GWAS data was performed using IMPUTE2 without a reference 

panel and then fast imputation from 1000 Genome phase1 dataset was performed on the 

resulting haplotypes. These analyses were performed previously by other researchers in 

the department for all twins with available genotypes in the cohort. In this thesis, I used 

7 genotype datasets (Table 2-1). 

Table 2-1 Summary of the Genotype datasets 

Dataset Platform Subjects Chapters 
1,2,3 HapMap  6055,1235,1001 3 

3,4,5,6 1000G 330,83,789,459 4 
7 1000G 807 5 

 

 Heritability  2.3

Heritability was calculated using the ACE model as described in the Introduction 

(Chapter 1). OpenMX  (Boker et al. 2011) was used for all heritability calculations. 
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Heritability calculations were performed on several datasets throughout this thesis 

(Table 2-2). I performed the majority of heritability calculations, with the exception of 

the heritability results in Chapter 4, which were performed by a PhD student in the 

epigenomics group, Juan Edgar Castillo-Fernandez. We used the ACE model for twins 

assuming that the environment has a similar effect on both MZ twins and DZ twins, and 

then any finding of a higher correlation within MZ pairs compared to DZ pairs with 

respect to a particular trait indicates a genetic effect (Figure 2-1). This is driven from the 

fact that MZ twins are genetically identical, while DZ twins share on average just 50% 

of their segregated genetic variation. It follows that (A) is 1.0 for MZ pairs and 0.5 for 

DZ pairs. Since by assumption, MZ and DZ twins share the same common environment 

(C), the correlation between their latent shared environmental factors is 1 for both MZ 

and DZ twins.  

 
Figure 2-1 ACE models for twins 

 

Table 2-2 Summary of the datasets used for heritability analysis in this thesis 

Dataset Data Subjects Chapters 
1,2 Metabolon, 

Biocrates 
1001,1001 3 

3,4 Illumina 450k 660,166 4 
5 Metabolon 2204 5 
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 GWAS methods 2.4

Genome-wide association scans (GWAS) were carried out using directly genotyped and 

imputed SNPs using an additive linear regression model for all traits considered in this 

thesis. Importantly, the p-value threshold for significance is corrected for multiple 

testing issues. One of the simplest approaches to correct for multiple testing is the 

Bonferroni correction. The Bonferroni correction adjusts the alpha value from α = 0.05 

to α = (0.05/k) where k is the number of statistical tests conducted. For a typical GWAS 

using 1 million SNPs, statistical significance of a SNP association would be set at 

5×10−8. The R packages or software programs that I used in this thesis included 

MERLIN (Abecasis et al. 2002), GEMMA (Zhou and Stephens 2012), 

GenABEL/ProbABEL (Aulchenko et al. 2007), lme4 (Bates et al. 2015), PLINK 

(Purcell et al. 2007), and Matrix eQTL (Shabalin 2012). Detailed information is given 

in each Chapter on these methods.  

 Metabolomics  2.5

 Metabolomics Data Platforms 2.5.1

I had access to TwinsUK metabolomics data generated by MS from Metabolon Inc. 

(http://www.metabolon.com/) and Biocrates AG (http://www.biocrates.com/) in the 

TwinsUK cohort. Metabolon uses a non-targeted approach for identifying metabolites, 

while Biocrates uses a targeted approach. In this thesis, I used 7 metabolomics datasets 

(Table 2-3). 

Table 2-3 Summary of the metabolomics datasets 

Dataset Platform Subjects Chapters 
1,2 Metabolon  6055,1001 3 
3,4 Biocrates 1235,1001 3 

5,6,7 Metabolon 2204,36,807 5 
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In the following sections I review the methods used by the two metabolomics platforms, 

the non-targeted Metabolon (2.4.1.1) and the targeted Biocrates (2.4.1.2) platforms to 

detect metabolites. Both of these platforms are MS-based approaches, but they 

incorporate different methods to detect and quantify metabolites. A summary of the 

workflow in the two platforms is shown in Figure 2-2. 

 

Figure 2-2 Targeted and non-targeted metabolomics workflow.Figure adapted from (Heuberger et al. 
2014). Left panel shows the Biocrates workflow, which is efficient at identifying metabolites of interest.  
Right panel shows the Metabolon approach, aiming to identify a wider range of metabolites, not 
limited to a preselected library. 

 

2.5.1.1 Metabolon 

In the Metabolon data platform, chromatography is coupled with MS (Evans et al. 2009; 

Raffler et al. 2013; Suhre et al. 2011b). The Metabolon platform incorporates 

UPLC/MS and GC/MS. The generated spectral data are compared against an in-house 

library, which includes retention time and reference spectra from mass scan and 

fragmentation of molecules. Chromatography separates the metabolites beforehand by 

collision and internal standards are added only for quality control. Samples then go 

through Electro Spray Ionization (ESI), and charged samples go through spectrometry. 

Masses of fragments and ions are checked at each peak (using the area under the peak) 

without relating them to any standards. 
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One of the challenges of complex samples is the need for separation techniques like 

chromatography. In the Metabolon platform both GC-MS and UPLC-MS integrate 

chromatographic separation with MS to identify relative concentrations of a large 

number of small molecules in metabolomics (Lawton et al. 2008). GC-MS is a method 

that combines the features of gas chromatography and mass spectrometry to identify 

different substances within a test sample. GC-MS has previously been applied to 

identify unknown samples and drugs (Lindon et al. 2007) and has also been used to 

measure compounds in urine and tissue samples (Wilson et al., 2005). GC-MS involves 

two modes of ionization using electro ESI-MS/MS. This enables detection of the 

molecular mass by (1) electron impact ionization and (2) chemical ionization. Electron 

ionization is successful at picking diagnostic fragments that provide structural 

information for identifying metabolites (Fiehn et al. 2000). Chemical ionization is much 

more effective for providing ion information especially when identifying the molecular 

mass of unknowns.  

UPLC-MS is an analytical chemistry technique that extends the physical separation 

capabilities of liquid chromatography with mass spectrometry. It is a powerful 

technique used for many applications and has very high sensitivity and selectivity 

(Ardrey, & Robert, 2003). If the GC and UPLC platforms are compared, then GC is a 

high-resolution separation technique for metabolite profiling that requires extensive 

sample pre-treatment. On the other hand, UPLC requires minimal sample preparation 

(Wilson et al. 2005). Both of the separation techniques are necessary for separating 

different classes of substances.   

The set of 503 Metabolon metabolites profiled in the datasets used in this thesis consists 

of several classes of molecules: amino acids, acylcarnitines, sphingomyelins, 

glycerophospholipids, carbohydrates, vitamins, lipids, nucleotides, peptides, xenobiotics 

and steroids. Additionally, the Metabolon platform also reports unknown metabolites . 
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Metabolite Measurements 

Serum and plasma samples were treated with methanol, shaken for 2 minutes, followed 

by centrifugation. The resulting extract was divided into three parts: one for analysis by 

UPLC-MS/MS (positive model, where the MS analysis based on positive ions), one for 

analysis by UPLC-MS/MS (negative model, where the MS analysis based on negative 

ions), and one for analysis by GC-MS. Three types of controls were analysed together 

with the experimental samples: samples generated from a pool of human plasma 

(Metabolon, Inc.) served as technical replicates throughout the data set; extracted water 

samples served as process blanks; and a cocktail of standards spiked into every analysed 

sample allowed instrument performance monitoring. Experimental samples and controls 

were randomized across the platform run.   

The UPLC-MS/MS platform utilized a mass spectrometer, which included ESI. The 

instrumentation was set to monitor for positive ions in acidic extracts or negative ions in 

basic extracts through independent injections. Extracts were loaded onto columns with 

water and 95% methanol containing 0.1% formic acid or 6.5mM ammonium 

bicarbonate.  

Samples analysed by GC-MS were dried under vacuum desiccation for a minimum of 

18h prior to being derivatized (that is, transforming a chemical compound into 

a product) under dried nitrogen. Derivatized samples were separated on a 5% 

phenyldimethyl silicone column with helium as carrier gas and a temperature ramp from 

60° to 340° C within a 17-min period. All samples were analysed resolving power with 

electron impact ionization and a 50-750 atomic mass unit scan range (Metabolon Inc.). 

Metabolites were identified by automated comparison of the ion features in the 

experimental samples to a reference library of chemical standard entries that included 

retention time, molecular weight, and in-source fragments (Suhre et al. 2011b). 

Identification of structurally named chemical entities was based on comparison to a 
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mass spectroscopy library of >2,400 purified standards, and this procedure is part of the 

Metabolon profiling process. An additional 5,300 mass spectral entries have been 

created for structurally unnamed biochemicals. These compounds have the potential to 

be identified by future acquisition and further analysis. Concentrations of all analysed 

metabolites are reported as relative concentrations (Metabolon Inc.).  

2.5.1.2 Biocrates 

Targeted metabolomics was designed in the 1990s by one of the founders of Biocrates, 

Dr. Roscher (Biocrates Inc.). Targeted metabolomics aims to identify and quantify 

known and biochemically annotated metabolites. The Biocrates method is a quantitative 

screen of known small molecule metabolites detected with multiple reaction monitoring, 

which is a highly sensitive and selective method for the targeted quantitation of 

protein/peptide abundances in complex biological samples. Additionally, neutral loss 

and precursor ion scans are used for screening. In a neutral loss scan, the first mass 

analyzer scans all the masses. On the other hand, in precursor ion scans the product ion 

is selected in the second mass analyzer, and the precursor masses are scanned in the first 

mass analyzer. All of these processes are part of main scan experiments in MS (Lindon 

et al. 2007). Metabolites are then quantified by comparison to structurally similar 

molecules labelled with stable isotopes added to the samples in defined concentrations 

as internal standards. In the Biocrates targeted platform metabolites are measured using 

targeted LC-MS, which also uses ESI-MS/MS for the ionization source at the pre-

separation stage. The interpretation of targeted metabolomics data are typically much 

more straightforward, the obtained metabolite concentrations are provided as absolute 

levels, and this platform is well suited for high-throughput and routine applications for 

cohort investigations (Sonntag et al. 2011). 
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Measurements 

Serum samples (100 µl) were prepared for quantification using the AbsoluteIDQ kit 

(BIOCRATES AG). Sample analyses were performed on the API 4000 Q TRAP 

LC/MS System with an autosampler (Illig et al. 2010). Briefly, Biocrates uses Flow 

Injection Analysis (FIA) tandem MS (Illig et al. 2010). Platform internal standards, 

which are molecules with heavy isotopes, were added to the samples. These standards 

serve as references for calculating all metabolite concentrations. This dissolvent is used 

directly in tandem MS. The first step in the mass spectrometry is ionization. Ionization 

charges the dissolvent so that metabolites can be measured during MS more effectively.  

Here, spectrometry searches for the loss of specific masses when metabolites are 

fragmented, and these are compared to the known masses of the internal standards. The 

resulting peaks are analysed for whether they match specific targeted metabolites and 

atomized algorithms calculate absolute concentration values (in micromolar units 

(µuM)). Atomization of the analysed sample refers to the transformation of solid matter 

into atomic vapour and ionization of the atoms. These atoms are then sorted and 

counted with the help of mass spectrometry and used as a reference when identifying 

new outputs (Lindon et al. 2007). One issue of consideration for both targeted and non-

targeted MS platforms is ion suppression. In a complex mixture, metabolites can 

influence each other’s ionising ability. Ion count is taken to directly reflect the amount 

of the metabolite, therefore ionisation can impact quantification. This issue impacts both 

platforms, but in the targeted version quantification is improved by the use of standards.  

The Biocrates metabolomics datasets used in this thesis contained 163 targeted 

metabolites: 41 acylcarnitines (Cx:y), hydroxylacylcarnitines [C(OH)x:y] and 

dicarboxylacylcarnitines (Cx:y-DC); 14 amino acids; 1 sugar; 15 sphingomyelins 

(SMx:y) and sphingomyelin-derivatives [SM(OH)x:y]; and 92 glycerophospholipids 

(PC). Glycerophospholipids are differentiated with respect to the presence of ester (a) 



 40 

and ether (e) bonds in the glycerol moiety, where two letters (aa = diacyl, ae = acyl-

alkyl) denote that two glycerol positions are bound to a fatty acid residue, while a single 

letter (a = acyl) indicates the presence of a single fatty acid residue. Lipid side chain 

composition is abbreviated as Cx:y, where x denotes the number of carbons in the side 

chain and y the number of double bonds. Further descriptions of the 163 Biocrates 

metabolites have previously been published (Menni et al. 2013a; Mittelstrass et al. 

2011; Römisch-Margl et al. 2012).  

In summary, Metabolon and Biocrates are two of the most commonly used 

metabolomics high-throughput techniques that are currently used in large cohort studies. 

Both are based on MS, applying either a targeted approach in the Biocrates platform or 

a non-targeted approach in the Metabolon platform. MS diagnostics of targeted 

chemical compounds are more cost effective than other current approaches, such as 

NMR.  MS also offers a wider analytical panel and improved diagnostic quality of 

compounds (Biocrates Inc.). Unfortunately, targeted MS can only identify known 

metabolites and that causes a drastically small amount of metabolites than non-targeted 

MS methods. 

 DNA methylation 2.6

 DNA Methylation Data Platforms 2.6.1

DNA methylation profiles from whole blood and adipose samples from individuals in 

the TwinsUK cohort were generated using Illumina Infinium HumanMethylation 

BeadChip arrays. In this thesis I used 8 methylation datasets (Table 2-4).  

Table 2-4 Summary of the methylation datasets 

Dataset Illumina 
Platform 

Tissue Subjects Chapters 

1,2 450k, 27k  Blood, Blood 57,57 2 
3,4,5,6 450k Blood, Blood, Blood, 

Adipose 
660,789,459,166 4 

7,8 450k Blood 864,807 5 
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 Comparison of the Illumina 27k and Illumina 450k technology 2.6.2

DNA samples were interrogated utilising the Illumina 27k and Illumina 450k arrays. 

These platforms detect the methylation status of 27,578 CpG sites vs. 485,000 sites, 

respectively by microarray genotyping of bisulfite treated DNA, respectively.  

2.6.2.1 Illumina Infinium Human Methylation27 BeadChip 

In Illumina 27k, two beads, each containing probes of length of 50 base pairs (bp), are 

used to assess DNA methylation levels at each CpG site. The two bead types are the 

unmethylated bead type, designed to match the unmethylated version of the CpG site, 

and methylated bead type, which matches the methylated CpG site. The bisulfite 

converted DNA sample is first separated into single strands and then hybridized to the 

Illumina 27k array, which contains the bead probes. Following hybridization of the 

DNA to the bead probes, fluorescently labelled dideoxynucleotides (ddNTPs) will be 

incorporated at each bead probe, if the probe sequence matches the DNA, and the array 

is then scanned for bead intensities, the design of the type I probe and detection process 

is shown in the Figure 2-3. 

 
Figure 2-3 Design of the type I probes in Illumina 27k.Figure adapted from (Maksimovic et al. 2012) 
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Briefly, Figure 2-3 shows the type I probe design, which uses fluorescence from two 

different probes, unmethylated probes and methylated probes, to assess the level of 

methylation at a CpG-site (Maksimovic et al. 2012). If a CpG is methylated in the 

sample, the cytosine (C) base will remain unconverted after bisulfite conversion, and 

the genomic DNA will bind to the ‘methylated’ probe, which at the 3’ end can bind a C. 

On the other hand, if the CpG is unmethylated in the sample, the C base will be 

converted to a thymine (T) following bisulfite conversion, and then the genomic DNA 

will bind to the ‘unmethylated’ probe, which at the 3’ end can bind a T. Binding at 

either probe is followed by single base extension that results in the addition of a 

fluorescently labeled nucleotide, which is then read by the scanner to detect and 

quantify binding.   

The degree of methylation is measured as a quantitative trait called beta values. Illumina 

27k use betas to quantify methylation levels, and the beta value is calculated as the ratio 

of the intensity of methylated beads over intensity of the sum of the intensity of both 

methylated and unmethylated beads (Equation 2-1). At a single CpG-site the range of 

beta values is between 0 (unmethylated) and 1 (methylated). 

!"#$ = !"#$%&'#"(!!"#$%&
!"#$%&'#"(!!"#!"#!!"#$%&'()%$*!!"#$%&!!""               (Equation 2-1) 

 

A BeadChip includes 12 samples and covers 27,578 CpG dinucleotides in the promoter 

of almost 15,000 genes.  

2.6.2.2 Illumina Infinium Human Methylation450 BeadChip  

In Illumina 450k, in addition to type I probes from Illumina 27k (28% of the Illumina 

450k probes), there are also type II probes (72% of the Illumina 450k probes). In type II 

probes there is only one bead to detect the methylation levels, which is different than 

the two bead design for type 1 probes.  In type II probes the colour of the incorporated 
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fluorescently labelled ddNTP (green or red) determines the methylation status of the 

CpG site. The design of the type II probe and detection process is shown in Figure 2-4. 

 

Figure 2-4 Design of the type II probes in Illumina 450k. Figure adapted from (Maksimovic et al. 
2012) 
 

Briefly, Figure 2-4 shows the type II probe design that uses only a single probe per 

CpG. The 3' end of each type II probe is linked to the base directly upstream of the C of 

the CpG (Maksimovic et al. 2012). Methylation state is detected by single base 

extension at the position of the C of the CpG, which results in the addition of a labeled 

G or A nucleotide, matching the 'methylated' C or 'unmethylated' T, respectively.  

An Illumina 450k BeadChip includes 12 samples and covers 485,836 CpG 

dinucleotides. Illumina 450k uses the same beta quantification as Illumina 27k. On the 

other hand, the density distribution of the methylation beta values differs according to 

probe type, as can be seen in Figure 2-5, which represents the density plot of all 

methylation values from a single female individual in the cohort.  
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A      B 

 
Figure 2-5 Methylation beta distribution of one subject Figure depicts A) Overall Illumina 450k and 
B) Signals according to probe type, with type I (red) and type II (blue) probes. 
 

It has been suggested that the two probe types distributions should be made comparable, 

prior to between subject normalization, because without such adjustment, there would 

be a bias on type 1 probes to have higher rankings than type II probes (Teschendorff et 

al. 2013). Quantile normalization is a typically used normalization approach in gene 

expression datasets (Bolstad et al. 2003) and can be applied in other “-omics” data.  

Additionally, for Illumina 450k array data several other recent methods have also been 

developed and these are available in R packages, such as Subset-quantile Within Array 

Normalization method (SWAN) (Maksimovic et al. 2012), wateRmelon (Pidsley et al. 

2013) and Beta Mixture Quantile Dilation (BMIQ) (Teschendorff et al. 2013).  I used 

BMIQ for the normalization of the raw betas since this method transforms type II 

probes to fit the distribution of type I probes. After categorizing both types of probes 

into methylated, hemi-methylated and unmethylated, type I probes are used as a base for 

fitting type II probes into quantiles using the inverse of the cumulative beta distributions 

in each category. 

 Quality control data procedures for methylation and metabolomics 2.7

Many approaches have been proposed in quality control analysis of metabolomics 

platform data and DNA methylation data from Illumina arrays (Bock 2012; Morris et al. 

2014; Suhre et al. 2011b). The approach used in this thesis for both datasets included 
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the following steps: 1) identification of outliers, 2) identification of batch effects, 

missing values and covariates that affect methylation or metabolite levels in the sample, 

and 3) application of data normalization and adjustment for covariates to reduce these 

effects. In this section I explain the steps that I undertake in quality control procedures 

for both the metabolomics and methylation data in the thesis, using an example dataset 

of 57 individuals with available Illumina 27k and Illumina 450k data. In these data I 

aimed to compare methylation data from the two platforms. From both platforms I 

selected the overlapping probes (23,678) present in both arrays for 57 individuals 

(Figure 2-6). 

A      B 

 
Figure 2-6 DNA methylation distribution in 57 individuals Figure depicts A) Illumina 27k and B) 
Illumina 450k array. Each line represents the density distribution in one individual. 

 

 Identification of outliers 2.7.1

I first tried to identify outliers visually both at the level of the methylation probe (or 

metabolite if using a metabolomics dataset) and at the level of the individual. 

Additionally, high missing rates were also considered as exclusion criteria for both 

individual and probe level data. Boxplots and density plots were used to explore these 

different patterns.  

In the metabolomics data, the effect of experimental batches (i.e. run-days (1-27 (batch 

1)), (28-49, 50-71 (batch 2)), (72-97, 98-122 and 123-147 (batch 3)) was explored and 

before this a data normalization step was also applied to adjust for variation due to run-
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day tuning differences (procedure applied by Metabolon directly). Additionally, data 

points that were more than 4 standard deviations from the mean of each metabolite 

concentration were excluded.  

Initial quality control of the methylation data was performed by a member of our group 

(Dr. Pei-Chien Tsai). She identified several outliers (subjects) in the larger Illumina 

450k dataset. To explore these impacts in the dataset of 57 individuals with both 

Illumina 27k and Illumina 450k I assessed the distribution and missing value rates for 

each individual using a number of plots and summary statistics as described above, and 

did not exclude any individuals based on these profiles. First, I calculated the overall 

correlation between the 57 individuals from both arrays, which shows strong positive 

correlation r= 0.97 (Figure 2-7). For each individual I compared the DNA methylation 

levels obtained from the Illumina 27k to the methylation levels from the Illumina 450k, 

across altogether 23,678 probes that were present on both arrays. 

 
Figure 2-7 Pearson pairwise correlation in DNA methylation profiles across 57 individuals using 
23,678 probes generated between Illumina 27k and Illumina 450k arrays.  

 

Another approach to look for outliers at the individual-level was to visualize the 

correlation in methylation patterns between the individuals in a two-dimensional plot 

using gradient colours in a heatmap (Figure 2-8). In general, the 57 individuals in this 

dataset were moderately correlated (r= 0.89) with each other in both arrays, with 

slightly lower correlations (r=0.73) on the Illumina 27k data (Figure 2-8A) when 

compared to the Illumina 450k correlations (Figure 2-8B). Heatmaps can also be used to 

identify any patterns of substructure in the sample as some structures can be seen in 
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Figure 2-8B and these can also be used to visually identify outliers for potential 

exclusion in downstream analysis. 

A      B 

 
Figure 2-8 Heatmap of the Pearson pairwise correlation in DNA methylation profiles across 57 
individualsindividuals using 23,678 probes generated on the A) Illumina 27k and B) Illumina 450k 
arrays. Greater correlation between individuals was represented as a light colour (yellow), and lower 
correlation between arrays was represented in red.  

 

In summary, I used a number of approaches to detect outliers in both the methylation 

and metabolomics datasets on the level of the subject and probe/metabolite. I excluded 

altogether a small number of datapoints based on the outlier identification approaches 

described above, because outliers may represent potential experimental error and I 

wanted to minimize these effects in the datasets for downstream analyses. 

 Principal Component Analysis  2.7.2

I used Principal component analysis (PCA) to identify potential batch effects (i.e age, 

sex and plate). PCA refers to a transformation of a number of variables into a smaller 

number of uncorrelated variables or Principal Components (PCs). PCA allows us to 

identify overall patterns in the data by exploring PCs. The two main purposes of using 

this analysis was to first, reduce the dimensionality of the dataset and second, use the 

summary variables (PCs) to identify possible confounders by comparing the PCs to 

potential variables that may introduce patterns or noise in the data, for example, batch 
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effects. By definition, the first PC will always be the one that captures most of the 

variation in the data. In this dataset PC1 of the Illumina 27k can explain 24% of the 

variance of the data and the first three PCs explained in total 44% of the variance 

(Figure 2-9A) PC1 of the Illumina 450k can explain 30% of the variance of the data and 

the first three PCs explained in total 46% of the variance (Figure 2-9B). 

A      B 

 
Figure 2-9 Variance distributed by the first 3 principal components on DNA methylation profiles 
across 57 individuals in A) Illumina 27k showing cumulative variance of 44% B) 3 Illumina 450k 
cumulative variance of 46% 
 

Previous comparison of PCs in the larger Illumina 27k dataset (dataset 1) has identified 

significant association of the first 3 PCs with the following covariates: batch, age, plate, 

order of plate (Bell et al. 2012). For the 57 individuals, I compared the PC loadings for 

the first 3 PCs against known covariates in the Illumina 27k dataset of 57 individuals, 

and I observed significant associations between the PC and these known covariates, 

suggesting that these covariates are major sources of variability in the Illumina 27k data 

(Table 2-5).  

Table 2-5 Illumina 27k PCs nominally associated (P = 0.05) with known covariates 

 PC1 PC2 PC3 
Proportion of 

variance 
0.24 0.15 0.05 

Cumulative 
Proportion 

0.24 0.39 0.44 

 Age Age Plate 
 Plate Plate BMI 
             Order of plate Order of Plate  
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Similarly, I compared the PC loadings for the first 3 PCs in the Illumina 450k dataset of 

57 individuals against known covariates, and I observed significant association between 

the PC and the known covariates (Table 2-6). 

Table 2-6 Illumina 450k PCs nominally associated (P = 0.05) with known covariates 

 PC1 PC2 PC3 
Proportion of 

variance 
0.31 0.10 0.05 

Cumulative 
Proportion 

0.31 0.41 0.46 

 Age Plate Plate 
 Plate BMI  
 Order of plate   

 

I compared the first 2 PCs from both Illumina 27k and Illumina 450k but found low 

correlation (Figure 2-10), suggesting that the PCs capture technical variation specific to 

each array rather than shared technical or not biological variation. However, it is also 

possible that different PCs in each dataset capture different covariate effects (for 

example, BMI is associated with PC3 in Illumina 27k and with PC2 in Illumina 450k), 

but I did not investigate this further as the main aim here was give an example of a 

quality control procedure that I used to identify batch effects in large scale datasets. 

A      B 

 
Figure 2-10 Comparison of PCs from both datasets for A) PC1 (r=0.34) B) PC2 (r=0.19) 

 

 Correlation between Illumina 27k and Illumina 450k  2.7.3

These identified covariates were then corrected for using a linear mixed effects 

regression (LMER) in lme4 package in R (Bates et al. 2015). Residuals were calculated 
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from the full regression model, where normalized methylation levels were fitted as the 

outcome and the predictors consisted of age, BMI, plate and blood cell count 

estimations as fixed effect terms and random effect terms family and zygosity. 

I next calculated the correlation between overlapping probes, where one probe was from 

the Illumina 27k and the other from the Illumina 450k. Out of 23,678 overlapping 

probes only 2,132 (11%) on the Illumina 27k array remain as type I probe on the 

Illumina 450k array. The rest of the overlapping 21,546 probes have switched from type 

I probes on the Illumina 27k array to type II probes on the Illumina 450k array, which 

may introduce technical variation in the methylation signal.  

Looking at correlations at the level of each probe, only positive correlations were 

observed (Figure 2-11), both for type I probes in both arrays (r=0.42) (Figure 2-11A) 

and for probes that switch type (type I from Illumina 27k and type II from Illumina 

450k) (r=0.45) (Figure 2-11B). The correlations observed at the probe level are overall 

positive (r=0.44), but great variability in the level of correlation is observed (from 0.1 to 

1), and overall the mean correlation per probe is relatively moderate. 

On the other hand, across-array correlation on the level of the individual was much 

higher. As shown in Figure 2-11 performing pairwise correlations per individual over 

23,678 probes that are measured on both arrays, results in very high positive pair-wise 

correlation coefficients (r=0.97), as expected because these data are generated in the 

same samples (same time point). In conclusion using the Illumina 27k as a replication in 

Illumina 450k studies, or vice versa, should be handled carefully considering the wide 

range of correlation coefficients detected over the 23,678 overlapping probes. In cases 

where across-probe correlations are modest or relatively low (r<0.3), conclusions will 

be difficult to interpret. 
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A      B   

 
Figure 2-11 Correlation between probes that are present in both Illumina 27k and Illumina 450k in the 
dataset of 57 individuals for A) 2,132 probes in type I B) 21,546 probes in type II 

 

 Further DNA methylation probe quality control  2.7.4

To assess the potential of cross hybridization of the Illumina array 50bp probe 

sequences to multiple locations in the genome, I double checked the alignment of the 

Illumina 450k probes against the human genome using MAQ (v0.7.1) (Li et al. 2008). I 

allowed for probes mapping to multiple locations within 2 mismatches, and found 

17,764 probes out of 485,836 probes in Illumina 450k that mapped to multiple locations 

within 2 mismatches (the same number of probes we identified using both hg18 and 

hg19). I therefore excluded these probes in all subsequent analyses. 

Additionally, another factor that may impact hybridization is the presence of genetic 

variants in the probe sequence. Several previous studies have explored these effects and 

in this thesis I considered the results of one of these. Naeem et al. categorized both all 

probes with SNPs in the 50bp probe sequences and probes with SNPs located on the 

actual CpG-site, small insertions and deletions (INDELs), repetitive DNA, and regions 

with reduced genomic complexity (Naeem et al. 2014). The authors found that the 

second type of probes impact methylation levels. Since Chapter 4 in my thesis explicitly 

considers genetic impacts on DNA methylation level, I excluded probes previously 

identified by Naeem et al. to contain genetic variants on CpG sites. However, I included 

such probes in the context of MZ twin analyses in Type 2 diabetes in Chapter 5. This is 

because a postdoctoral fellow in the group (Dr.Pei-Chien Tsai) compared whether 
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methylation levels seem to be influenced by the SNP on the probe, by comparing 

methylation levels at probes without SNPs and probes with SNPs (and different number 

and location of SNPs), but did not see much difference, suggesting that the 

hybridization is not strongly influenced by the SNPs in the probe in the majority of 

cases. Therefore, although I included these probes containing SNPs in Chapter 5, I 

report results both including and removing these probes. 
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CHAPTER 3  

 

Metabolites 

______________________________________________________________________ 

 Introduction 3.1

The aim of this chapter is to identify metabolite QTLs (mQTLs) from mGWAS. GWAS 

of blood metabolites, as functional intermediate phenotypes, give greater power to 

understand the role of genetic variants in dissecting human metabolic and disease 

pathways.  

This chapter is divided into 3 sections based on the separate projects. The first two 

sections (3.3 and 3.4) report multi-cohort collaborative mGWAS that I contributed 

towards. These were each performed on large-scale datasets profiled on one of two 

separate metabolite platforms, Metabolon and Biocrates, and descriptive statistics for 

these are reported in Table 3-1. In the final section (3.5), I then extend this work to my 

own research focus aiming to perform and compare mGWAS results from the two 

metabolite platforms, where data were obtained in the same subset of samples.  

Part of this work, specifically the large-scale collaborative mGWAS analyses in 

sections one and two, has been published (Draisma et al. 2015; Shin et al. 2014) and a 

manuscript based on the third section is recently published (Yet et al., 2016). 

Table 3-1 Descriptive statistics for Metabolon and Biocrates TwinsUK datasets 

Data Biocrates Metabolon  
Individuals 1235 6056 

Sex (F/M) 813 / 422 5622 / 434 
Mean age (SD) 57.95 (11.13) 53.43 (13.99) 
MZ/DZ 764/471 3040/3025 
Metabolite sensitivity Targeted Non-targeted 

Sample source Serum Serum and plasma 
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 Metabolite GWAS 3.2

Metabolomic profiling is a powerful approach to characterize human metabolism and 

help understand common disease risk. mGWAS results have been reported for 

metabolomics datasets profiled using multiple platforms in different tissues and samples 

(Chasman et al. 2009; Demirkan et al. 2012; Demirkan et al. 2015; Hicks et al. 2009; 

Illig et al. 2010; Kettunen et al. 2012; Krumsiek et al. 2012; Lemaitre et al. 2011; 

Nicholson et al. 2011; Raffler et al. 2013; Rhee et al. 2013; Ried et al. 2014; Rueedi et 

al. 2014; Suhre et al. 2011a; Suhre et al. 2011b; Tanaka et al. 2009).The first mGWAS 

was performed by Gieger et al. using the MS platform (Gieger et al. 2008). The authors 

analysed more than 350 metabolites measured in almost in 300 serum samples. The 

metabolite data set covered lipids, amino acids, acylcarnitines and sugars. As an initial 

analysis, a mGWAS was conducted for each of the single metabolites, then following 

up with mGWAS of metabolite ratios. It has been suggested that ratios increase 

statistical power due to cancelling the common experimental error for a metabolite pair 

in the ratio. Metabolite ratios can also serve as substitutions for enzymatic reaction rates 

for closely biologically connected metabolites; consequently associations at genes 

encoding enzymes are typically stronger for metabolite ratios than for single metabolite 

concentrations. Gieger et al reported several associations and two of the main results, 

associations in the FADS gene cluster (fatty acid desaturase) and the LIPC locus 

(hepatic lipase) were discovered from ratio mGWAS analysis. After this initial study, 

multiple mGWAS have been performed on metabolite data profiled using the MS 

approach. Lipid based mGWAS have been conducted in targeted MS, and these have 

focused on phospholipids and sphingolipids (Demirkan et al. 2012; Hicks et al. 2009; 

Illig et al. 2010), or different polyunsaturated fatty acids (Lemaitre et al. 2011; Tanaka 

et al. 2009) and lipoprotein subfractions (Chasman et al. 2009). Altogether these studies 

have identified genetic variants at more than 50 loci associated with 200 metabolites 
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and 25,000 ratios. Suhre et al. focused on detecting known metabolites using MS and 

reported associations at 37 novel loci in 1,768 serum samples with replication in 1,052 

twins (Suhre et al. 2011b). Krumsiek et al. (Krumsiek et al. 2012) focused on detecting 

unknown metabolites with non-targeted MS in the same sample of 1,768 serums used 

by Suhre et al. and identified association at 34 genetic loci. A recent study by Rhee et 

al. reported associations at 31 loci in 2,076 plasma samples using targeted MS (Rhee et 

al. 2013). Another recent study focused on both targeted and non-targeted MS and 

identified variants at 12 new loci from 2,652 serum samples assaying 344 metabolites 

(Ried et al. 2014). Overall, MS studies identified associations at more than 100 loci in 

almost 10,000 individuals assaying more than 500 metabolites.  

There have also been a number mGWAS performed on metabolite datasets profiled 

using the NMR approach. Kettunen et al. identified mGWAS variants at 31 loci in 

8,330 serum samples profiled using NMR (Kettunen et al. 2012). Another two NMR 

studies explored mQTLs in 1,757 and 2,893 urine samples and reported associations at 

7 and 5 loci, respectively (Raffler et al. 2013; Suhre et al. 2011a). Additionally, an 

NMR study in 142 samples identified genetic associations at 3 loci in urine and 1 locus 

in plasma (Nicholson et al. 2011). A subsequent NMR study reported genetic 

associations at 11 loci in 1,436 urine samples (Rueedi et al. 2014). Most recently, 

associations at 8 loci were identified in 2,118 serum samples using NMR (Demirkan et 

al. 2015). Overall, NMR studies identified more than 60 loci in almost 10,000 

individuals assaying more than 1,000 metabolites.  

To date mQTLs have been identified in several tissues and samples using numerous 

metabolite detection platforms. In this chapter I present results from three additional 

mQTL studies. The findings can help improve our knowledge of inherited part of 

human metabolic individuality, and also give some potential insight into biological 

mechanisms involved disease. 
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 Metabolon 3.3

This was a bi-cohort mGWAS collaboration with TwinsUK and KORA samples (Shin 

et al. 2014).  The analysis was led by Dr. Shin, a postdoctoral fellow in Dr Soranzo’s 

research group at the Wellcome Trust Sanger Institute. Based on altogether 7,824 adult 

individuals, this is the most comprehensive assessment of genetic loci in human 

metabolism to date. I worked on the quality control of metabolites from the TwinsUK 

dataset for 6,055 individuals, which I will report briefly below. I also then describe the 

key findings from the collaborative Metabolon mGWAS study, which led me to pursue 

section 3.5. A subset of the data in this section (1,052 individuals and 280 known 

metabolites) were previously reported (Suhre et al. 2011b) as a meta-analysis dataset for 

metabolite analyses within the KORA cohort for mGWAS. 

 Methods 3.3.1

3.3.1.1 Metabolomics Measurements 

The TwinsUK dataset generated on the non-targeted MS platform Metabolon has also 

previously been described (Illig et al. 2010; Suhre et al. 2011b). The methodology 

describing the Metabolon procedure for measuring relative metabolite concentrations is 

described in detail in Chapter 2, section 2.4.1.1.  

3.3.1.2 Quality Control and Statistical Analysis 

The Metabolon metabolomics dataset first underwent several quality control checks as 

described in Chapter 2, sections 2.4.1.1 and 2.6. The merged final dataset consisted of 

503 metabolites in 6,056 TwinsUK plasma and serum samples. Altogether 486 

metabolites overlapped between the two cohorts. First, missing data for each sample 

and for each metabolite were investigated, and one TwinsUK sample with high missing 

rate (83%) was excluded but no metabolite was excluded because of data missingness. 

(Figure 3-1) shows the correlation between missingness numbers within metabolites in 
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three batches. Pearson correlation coefficients between missingness rates for 

metabolites in different batches show that batch2 and batch3 had higher correlation 

(r=0.87) than the correlation with batch1 (r=0.54, r=0.53). This may be due to the fact 

that batch1 samples are serum, and batch2 and batch3 are measured in plasma. 

 

  

Figure 3-1 Correlation of missingness of metabolites between batches of the TwinsUK Metabolon data.  

 

For the remaining 6,055 TwinsUK samples, the correlation between metabolite 

missingness rates and experimental batches was assessed. The missingness rate was 

shown to be correlated with experimental batches, which is likely due to different 

calibration of the machines on different days. Therefore, experimental batch effect was 

added as a covariate in the association analysis after PCA analysis. After adjustment for 

covariates such as age, sex and batch results in a linear model, the distribution of 

metabolites appeared to be in general normally distributed (Figure 3-2).  

A log transformation with base 10 was applied to all the metabolites, following previous 

work (Suhre et al. 2011b). Finally, data points that were more than 4 standard 

deviations from the mean of each metabolite concentration were excluded (10 

metabolite). 

 

Serum&vs.!Plasma 

batch3 

batch2 

batch1 
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A      B  

 
Figure 3-2 Adjustment for covariates. A) Distributions of 4 random selected different metabolites with 
different colour per metabolite B) Distributions of residuals of 4 random selected different metabolites 
after adjusting for batch effects 

 

3.3.1.3 GWAS for metabolites 

Primary association testing was carried out at each SNP (in the HapMap2–based 

imputed genotype data set (see Chapter 2)) for all 503 metabolite concentrations present 

in the TwinsUK data set after quality control steps. Linear regression models were used, 

assuming an additive genetic model. Age, sex and batch effect were included as 

covariates in the model. Associations were carried out using the Merlin software by Dr. 

Shin (Abecasis et al. 2002). Briefly, Merlin is based on the variance-component 

regression model and provides two family-based association tests. Merlin takes pedigree 

information from direct input of family pedigrees and reported twin status (monozygotic 

or dizygotic). The TwinsUK mGWAS results were then meta-analyzed with mGWAS 

results from KORA by Dr.Shin using METAL (Willer et al. 2010)   

 Results 3.3.2

We reported genome-wide significant associations at 145 metabolic loci and their 

connection with more than 400 metabolites in human blood from meta-analysis of 

TwinsUK and KORA. These results are presented at Bonferroni-corrected thresholds of 

P = 1.03 × 10−10 (5 × 10−8/486) and P = 5.08 × 10−13 (5 × 10−8/98,346) for metabolites 



 59 

or metabolite ratios, respectively. The observed effect sizes ranged from -0.07 to 0.3 

and nominal P-values ranged from 10-10 to 10-860 (Figure 3-3).  

 
Figure 3-3 Chromosomal locations of the 145 loci identified in this study. Locus label colours (amino 
acid: green, carbohydrate: orange, vitamin: pink, energy: purple, lipid: red, nucleotide; cyan, peptide: 
light green, xenobiotic: dark blue and unknown: black) are indicative of the metabolite pathway class 
of the most strongly associated metabolite at each locus (adapted from (Shin et al. 2014))  

 

 Biocrates 3.4

This was a multi-cohort collaboration between TwinsUK and 6 other cohorts 

(TwinsUK, KORA, EGCUT, LLS, QIMR, ERF and NTR) for the ENGAGE 
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consortium on the Biocrates platform lead by Dr. Harmen Draisma and Dr. René Pool 

(Draisma et al. 2015). I worked on the quality control, normalization, and GWAS of 

Biocrates metabolites from TwinsUK for 1,235 individuals. I will report briefly the key 

findings, which lead me towards Chapter 3.5. A subset of these data (422 individuals 

and 163 metabolites) was previously described (Illig et al. 2010) as a replication dataset 

for metabolite analyses within the KORA cohort for GWAS.  

 Methods 3.4.1

3.4.1.1 Metabolomics Measurements 

The TwinsUK dataset generated on the targeted MS platform Biocrates has previously 

been described (Illig et al. 2010; Mittelstrass et al. 2011; Römisch-Margl et al. 2012). 

The methodology describing the Biocrates procedure for measuring relative metabolite 

concentrations is described in detail in Chapter 2, section 2.4.2.1. Further descriptions 

of the 163 Biocrates metabolites have previously been published (Menni et al. 2013a; 

Mittelstrass et al. 2011; Römisch-Margl et al. 2012).  

3.4.1.2 Quality Control and Statistical Analysis 

The Biocrates metabolomics dataset for 163 metabolites first underwent several quality 

control checks as described in Chapter 2.  

After much discussion, a unified analysis plan was agreed on and followed by all 

cohorts in the collaboration (Figure 3-4). First, I calculated the coefficient of variance 

(CV) as a measure of the precision and repeatability of the data as: 

!" = !"
!"#$                   (Equation 3-1) 

for all metabolites and plates. For the CV calculation and thresholds, one reference 

blood sample was measured five times on each plate across all plates. I excluded all 

metabolites with a mean CV (of all plates) higher than 25%, as at this threshold the data 

were considered unreliable and were flagged as outliers because higher values of CV 
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are generally observed for metabolites that are closer to the detection limit at very low 

concentrations. 

In addition to this criterion, I also excluded all metabolites with a missing value rate 

larger than 5%. This resulted in the removal of 8 metabolites from the 163 reported 

metabolites. I then checked for outlier samples and data points having a value greater 

than mean ± 5sd of all measurements per metabolite and excluded 4 of these. Then, I 

performed imputation for all missing values using the R-package mice (van Buuren and 

Groothuis-Oudshoorn 2011), which applies a linear regression approach. I recorded the 

mean over all imputation iterations. Finally, I performed a transformation of metabolite 

concentrations (using natural logarithm). I performed the PCA on the level of the 

individuals using all metabolites and visually checked the first 5 PCs. PC1 by itself can 

explain 15.4% variance of the data. In total 45.1% of the variance can be explained with 

the cumulative sum of the 5 PCs. I compared the PC loadings for the first 5 PCs against 

known covariates (age, sex, and BMI), and observed significant association between the 

first 2 PC loadings and both age and BMI. In the downstream analyses, according to the 

consortium agreements the followings covariates were included: age, sex and BMI. 

 

Figure 3-4 Quality Control stages for Biocrates for TwinsUK 

Excluison 
Criteria 

CV > 25% 
missing >5% 
>5 sd 

Imputed 
missing values 

using mean 

Natural-log 
transformed 

(ln) 
BMI, age, sex 

adjusted 
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3.4.1.3 GWAS for metabolites 

I carried out primary association testing at each SNP (in the HapMap 2–based imputed 

genotype data set (see Chapter 2.2)) for all 151 metabolite concentrations present in the 

TwinsUK data set after quality control steps. Linear regression models (assuming an 

additive genetic model) were used. Age, sex and BMI were included as covariates. I 

performed genetic association tests using GenABEL/ProbABEL (Aulchenko et al. 

2007; Aulchenko et al. 2010). Briefly, GenABEL/ProbABEL allow for genetic 

association analysis using regression modelling in correlated data, such as twin pairs 

and involve a two-step design. First, GenABEL fits a polygenic model of the trait 

incorporating the kinship matrix, and second, ProbABEL performs the genetic 

association (using the mmscore option). I then selected only the top results from the 

GenABEL/ProbABEL GWAS, and repeated the association analyses at these using an 

alternative approach, LMER with lme4 package in R for validation (Bates et al. 2015). 

The selection was applied due to the computational burden of the LMER approach. In 

the full linear mixed effects model, I regressed metabolite levels on genotype, age, sex 

and BMI as fixed effects, and zygosity and family structure as random effects. As these 

data only included batch 1 (serum) samples, batch was not included as a covariate in 

these analyses, and plate order was also not included as it was not significantly 

associated with the metabolite principal components as described in section 3.5.1.4 

below. This full model was compared to the null model (without genotype) using an 

ANOVA F-statistic to assess model fit and significance of the genetic association. 

 Results 3.4.2

I performed mGWAS analysis of 2.5 million SNPs with 151 Biocrates metabolites in 

1,235 TwinsUK individuals. I observed 436 genome-wide significant associations at a 

genome-wide threshold of P = 3.3x10-10 (Bonferroni corrected P = 5x10-8/151).  
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Linear mixed effects models were used for verification of the 6 most associated mQTLs 

(Table 3-2), showing consistent results in the same direction of association. 

Table 3-2 Top results from mGWAS analysis for TwinsUK 

SNP LOCUS CH
R 

TWINSUK 
GenABEL P 

TWINSUK 
lme4 P 

METABOLITE 

rs7094971 SLC16A9  10 3.5x10-10 3.6x10-10 CO 

rs2014355 ACADS  12 4.7x10-40 2 x10-46 C4 

rs211718 ACADM 1 4.x10-11 2.6x10-12 C6(C4:1-DC) 

rs2286963 ACADL  2 1.2x10-35 3.3 x10-38 C9 

rs2216405 CPS1 2 1.2x10-18 9.1x10-20 Glycine 

rs174547 FADS1 11 1.2x10-16 1.2x10-16 PC:aa:C36:4 

 

The TwinsUK mGWAS results were then meta-analyzed with mGWAS results from the 

other 6 cohorts by two independent analysts from ERF and NTR cohorts using two 

different software packages (METAL (Willer et al. 2010) and GWAMA ((Magi and 

Morris 2010))). The final GWAS meta-analysis across 7 cohorts, consisting of 7,478 

individuals of European descent, was performed for 129 serum metabolites (Draisma et 

al. 2015). The meta-analysis results identified altogether 4,086 significant associations 

(P =1.09×10−9), and these involved 54 independent SNPs and 85 metabolites (Figure 

3-5). 
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Figure 3-5 Biocrates mGWAS meta-analysis results across 7 cohorts of European descent. Grey 
circles are loci associated with at least one metabolite. Biochemical classes of the metabolites are 
indicated by colours: green, acylcarnitines; blue, amino acids; purple, glycerophospholipids; yellow, 
sphingolipids. Arrows point from each locus to the associated metabolite(s); arrow widths scale linearly 
with -log10(association P). Grey arrows denote known associations; red arrows denote newly 
discovered associations on meta-analysis. (figure adapted from (Draisma et al. 2015)). 

 

 Comparison between Metabolon and Biocrates 3.5

Together, the two mGWAS studies in the TwinsUK cohort described in the above 

sections (Chapter 3.1, Chapter 3.2) identified multiple human genetic variants that 

influence metabolic profiles, and many of these results replicated in additional 

independent cohorts and appeared as significant findings from mGWAS meta-analysis 

results. On the other hand, high-throughput metabolomics is typically performed using 
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either targeted or non-targeted mass-spectrometry platforms, neither of which captures 

the entire human metabolism. Here, I compared TwinsUK genetic analyses across the 

two frequently used metabolomic platforms, Biocrates and Metabolon, with the aim of 

identifying stable metabolites on both technologies to ultimately enable combining 

metabolite profiles across these two platforms. 

Several previous studies have explored metabolomics datasets across multiple platforms 

(Adamski and Suhre 2013; Büscher et al. 2009; Mandal et al. 2012; Nicholson et al. 

2011; Psychogios et al. 2011; Suhre et al. 2010). For example, (Suhre et al. 2010) used 

multiple metabolomics platforms in a case-control study of T2D. They profiled 100 

individuals using three different metabolomics platforms to assess the potential of using 

metabolomic data in diabetes research by identifying metabolites that associate with 

diabetes. The study showed good agreement between known biomarkers of diabetes, 

especially sugar metabolites that could be replicated by multiple metabolomic 

platforms. Another study (Psychogios et al. 2011) aimed to characterize the human 

serum metabolome by combining targeted and non-targeted NMR, GC-MS and LC-MS 

methods to identify a comprehensive set of metabolites commonly detected and 

quantified in human serum samples. They reported good agreement between the 

measurement concentrations of NMR and GC-MS. However, these studies did not 

extensively compare genetic association findings for metabolite profiles from the same 

individuals to assess whether associations from datasets across mass spectrometry 

platforms overlap. 

In this study I analysed serum samples from 1,001 twins who were profiled both using 

targeted (Biocrates, n=163 metabolites) and non-targeted (Metabolon, n=499 

metabolites) mass spectrometry platforms.  These 1,001 individuals were also included 

in the analyses described in sections 3.3 and 3.4. Genome-wide association scans with 

the high-throughput metabolic profiles (mGWAS) and their ratios (only for 43 
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overlapping metabolites) were performed for each dataset and the mGWAS results were 

compared. Although the methods for quantifying metabolites are distinct, I observed 

overlapping results for several metabolites measured by both platforms suggesting that 

these are stable and robust metabolites that may be combined or used for replication in 

future studies. 

 Methods 3.5.1

3.5.1.1 Study Population and Sample Collection 

The 1,001 participants in this study were selected from the TwinsUK cohort (Moayyeri 

et al. 2013a). The sample consisted of 79 MZ twin pairs, 215 DZ twin pairs, and 413 

unrelated individuals. TwinsUK blood serum samples for Metabolon and Biocrates 

platform were obtained after at least 6 hour of fasting and were inverted three times, 

followed by 40 min resting at 4 °C to obtain complete coagulation. The samples were 

then centrifuged for 10 min at 2,000g. Serum was removed from the centrifuged tubes 

as the top yellow translucent layer of liquid. Four aliquots of 1.5 ml were placed into 

skirted micro-centrifuge tubes and then stored in a −45 °C until sampling.  

3.5.1.2 Metabolomics Measurements 

The same serum samples from 1,001 individuals in this study were profiled on two 

separate MS platforms, Biocrates and Metabolon. Biocrates kits were applied to 

quantify a targeted set of 163 stable metabolites, while Metabolon uses a non-targeted 

approach for measuring 499 metabolites, as previously described in Chapter 2 and 

sections 3.3 and 3.4 above. 

3.5.1.3 Genotyping and Imputation 

Genotyping and quality control assessment of the TwinsUK dataset was previously 

described in Chapter 2. Here, I used genotype data in 1,001 individuals 2.5 million 
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directly genotyped and imputed SNPs, with imputation to HapMap2 project (rel 22, 

combined CEU+YRI+ASN panels) (see Chapter 2 for further details). 

3.5.1.4 Quality Control and Statistical Analysis 

The Biocrates and Metabolon metabolomics datasets in the subset of 1,001 individuals 

first underwent several quality control checks as described in Chapter 2. Both datasets 

were investigated for missingness. Metabolites or individuals with missing values 

greater than 15% were excluded from further analysis. Additionally, outliers at more 

than 4 standard deviations from the mean of each metabolite were excluded. In total, 11 

metabolites were removed from the Metabolon dataset (out of 499 total) and 3 

metabolites were removed from Biocrates dataset (out of 163 total). PCA was 

performed on the metabolomics profiles in both datasets. I compared the first five PCs 

with covariates (sex, age, BMI, day) to assess which variables should be included in 

mGWAS analyses. Sex, age and BMI were nominally associated with at least one PC 

and as a result included as covariates in the downstream mGWAS analyses. 

Altogether, there were 488 (Metabolon) and 160 (Biocrates) metabolites that passed 

quality control checks, and of these 43 metabolites overlapped (Figure 3-6), that is, 

were assigned to be the same molecule by both platforms. In 8 cases, specifically for the 

lyso-phosphatidylcholines, the two platforms actually measure not the same but similar 

molecules, which differ by having a different position of the chain in the two detection 

technologies. In my analysis, first, Pearson correlation was computed between the 43 

metabolite profiles across platforms to assess the similarities in metabolite 

measurements. These correlation analyses were extended to compare all metabolites 

across the two platforms. Additionally, ratios for the matching metabolite pairs (43) 

within each platform were also included in downstream mGWAS analysis.  Both 

Biocrates and Metabolon datasets used here were log transformed (base 10).  
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Figure 3-6 Forty-three overlapping metabolites from both platforms separated into 3 pathways (amino 
acid: green, lipid: orange, carbohydrate: red). 

 

Since the 1,001 individuals included twins, I was able to calculate estimates of twin-

based heritability in the metabolite profiles. Heritability was computed for the 43 

overlapping metabolites by comparing metabolite profiles in MZ and DZ twin pairs 

using the ACE model in OpenMx software (Boker et al. 2011), as described in Chapter 

2. The goal of these analyses was to establish the influence of genetic effects on 

metabolite profiles, and relate the results to mQTL findings. 

To assess evidence for mQTLs, I performed a mGWAS in GEMMA (Zhou and 

Stephens 2012), which implements a genome-wide efficient mixed model association 

algorithm specifically suitable for the analysis of  related individuals, and provides 

exact P values from linear mixed models. GEMMA tests for association between each 

metabolite and each SNP, using one of three commonly used test statistics (the Wald 

test, the likelihood ratio or score). Here I reported all three but considered the Wald test 
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when setting the significance threshold. I used Bonferroni correction to account for 

multiple testing, resulting in genome-wide significance thresholds of P = 3x10-10 for 

Biocrates and P = 1x10-10 for Metabolon. Finally, metabolite ratios were also included 

in the mGWAS analysis, because of the success in mGWAS results for metabolite ratios 

from previous studies (Gieger et al. 2008; Raffler et al. 2013; Suhre et al. 2010). Ratios 

were only calculated for the 43 metabolites (Figure 3-6) within each platform. The p-

gain statistic (Petersen et al. 2012) was used for quantifying the decrease in p-value for 

the association with the ratio, compared to the p-values of the two corresponding 

independent metabolite concentrations (Gieger et al. 2008). P-gain is calculated as the 

minimum p-value of the metabolite, which is one of the pair in the ratio (Ma, Mb) and 

divided by the p-value of the ratio: 

p-gain = (minimum (Ma, Mb)/ratio(Ma/Mb))              (Equation 3-2) 

 

The critical value for p-gain is X/(2xα) for type I error rate of α and applying a 

correction for X tests. When previous studies have analyzed ratios (Illig et al. 2010; 

Suhre et al. 2011b), they suggested multiple testing correction should be applied 

assuming a type I error rate of α%=%0.05, this leads to a critical p-gain threshold of 

903/(2x0.05)=9,030, which implies a Bonferroni correction for 903 tests in this study. 

 Results 3.5.2

3.5.2.1 Platform comparison: Metabolites profiles 

After quality control assessment, there were 488 (Metabolon) and 160 (Biocrates) 

metabolites available for analysis in serum samples from 1,001 individuals. Of these, 43 

were designated as overlapping molecules or very similar molecules by both platforms 

(APPENDIX A Table S3-1). Comparisons of the 43 metabolites showed a mean 

correlation coefficient (r) of 0.44 with a maximum correlation for octanoylcarnitine 

(r=0.92), minimum correlation for 1-docosahexaenoylglycerophosphocholine (r=0), and 
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weak correlations (0<r<0.2) for 7 metabolites (APPENDIX A Table S3-1), which 

included lipids and an amino-acid. Using hierarchical clustering of the correlation 

matrix, I observed that metabolites tend to cluster first within platform, and then within 

type of the metabolite (Figure 3-7). One clear exception is hexose (Biocrates), which 

clusters with glucose in the Metabolon cluster, as expected. A second exception is C0 

(Biocrates), which clusters near proline, valine, tyrosine, and proionylcarnitine in the 

Metabolon cluster.  
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Figure 3-7 Hierarchical cluster of the correlation across 43 overlapping metabolites from both platforms. Upper colour bars represent the significant metabolites, metabolite 
pathway/type, and platform specification. The left colour bar represents the heritability of the metabolite from red (high) to white (low).
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3.5.2.2 Heritability 

I calculated twin-based heritability estimates of the metabolite profiles, focusing on the 

43 overlapping metabolites (APPENDIX A Table S3-1). Of the 43 metabolites, 37 

(Biocrates) and 34 (Metabolon) were at least moderately heritable in twins (h2>0.2). 

There were 29 metabolites with evidence for heritability on both platforms (h2 ranging 

from 0.29 to 0.72, APPENDIX A Table S3-1). Of these, the 9 most heritable profiles 

were observed for 6 lipids (h2: 0.4 to 0.72) and 3 amino acids (h2: 0.42 to 0.7), 

indicating that these are stable profiles and highly likely to be under genetic influence.  

3.5.2.3 mGWAS results: overlapping and complementary mQTLs 

In total, 488 and 160 metabolites were tested separately on the Metabolon and Biocrates 

platforms in two mGWAS analyses. All significant association results are reported at a 

stringent Bonferroni cut-off: P = 1×10-10 (5×10-8/488) for Metabolon and P = 3×10-10 

(5×10-8/160) for Biocrates (APPENDIX A Table S3-2).   

In total, 61 genome-wide significant metabolite associations were identified at 26 

independent loci: 42 metabolites were associated with 25 loci on the Metabolon 

platform, and 19 metabolites were associated with 8 loci on the Biocrates platform 

(Table 3-3, APPENDIX A Table S3-2). Of the 26 independent loci, genome-wide 

significant metabolite associations at 7 loci were identified on both platforms. There 

were 19 loci that had associations only with metabolites from one platform (18 loci in 

Metabolon and 1 locus in Biocrates). All results reported as significant with single 

metabolites or ratios here were also reported at a relaxed significance threshold (P = 

1x10-5) in the TwinsUK results from sections 3.3 and 3.4 despite the use of different 

GWAS programs (MERLIN and GENABEL). 
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Table 3-3 Significant mGWAS results 

  Locia All associated metabolites  Associated metabolites 
from set of 43 overlapping 
metabolitesb 

Metabolon (M) 25 42 6 
Biocrates (B) 8 19 7 
Overlap 7 22(13M + 9B) 6  
Total 26 

 
61 
(35M+12B+7M&B+7B&M) 

13 

aUnique loci 
bMetabolites with significant mGWAS results from the set of 43 matching metabolites only. In all cases 
the reciprocal platform mGWAS result surpassed nominal significance with the same direction of 
association. 

 

3.5.2.4 Overlapping mQTLs: genetic associations identified on both platforms 

Associations at 7 independent loci were identified in both platforms, namely with SNPs 

in the regions of the ACADS, ACADM, ACADL, FADS1, SGPP1, SLC16A9 and CPS1 

genes (Table 3-4). The 7 loci associate with 22 metabolites in total: 9 metabolites from 

Biocrates and 13 metabolites from Metabolon. 

Table 3-4 mGWAS results at 7 loci associated with metabolites in both platforms 

Gene Chr Peak SNP Biocrates  
(P = 3×10-10) 

Metabolon 
(P = 1×10-10) 

 
ACADM 

1 
1 
1 

rs211718 
rs4949874 
rs2172507 

 
C6 (4.1×10-11) 
*C8 (2.4×10-8) 

*X-11421 (3.8×10-8) 
Hexanoylcarnite (1.62×10-13) 
Octanoylcarnitine (4.8×10-11) 

ACADL 
 

2 rs7601356 
rs12612970 

C9 (9.7×10-38)  
X-13431 (3.5×10-25) 

CPS1 2 rs4673553 Glycine (5.27×10-17) Glycine (7.1×10-27) 
X-08988 (1.6×10-11) 

SLC16A9 
 

10 
10 

rs1171614 
rs1171617 

C0 (4.6x10-12)  
Carnitine (2.3×10-13) 

FADS1 
 

11 
11 
11 

rs174546 
rs174547 
rs174547 

*PC ae C42:5 
(1.9×10-8) 
lysoPC aa C20:4 
(2×10-14) 

*1-linoleoylglycerophosphoethanolamine 
(1.19×10-8) 
*1-arachidonoylglycerophosphocholine 
(2.9×10-10) 
*arachidonate (20:4n6) (5.5×10-10) 

ACADS 12 rs2066938 c4 (2.9×10-44) Butyrylcarnitine (1.75×10-114) 
SGPP1 14 rs7157785 

 
*PC aa C28:1 
(3.8×10-8) 

1-stearoylglycerol (2.77×10-14) 
*X-10510 (1.24×10-9) 

*Shown at a relaxed genome-wide cut-off (5x10-8) 

 

Of the 22 associated metabolites, 6 metabolites associated with 5 loci were named for 

the overlapping metabolite compound on both platforms. These included C6 (Biocrates, 
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P = 4.1×10-11) = Hexanoylcarnite (Metabolon, P = 1.6×10-13), C8 (Biocrates, P = 

2.4×10-8) = Octanoylcarnitine (Metabolon, P = 4.8×10-11), Glycine (Biocrates, P = 

5.27×10-17) = Glycine (Metabolon, P = 7.1×10-27), C0 (Biocrates, P = 4.6×10-12) = 

Carnitine (Metabolon, P = 2.3×10-13), C4 (Biocrates, P = 2.9×10-44) = Butyrylcarnitine 

(Metabolon, P = 1.75×10-114), and lysoPC aa c20:4 (Biocrates, P = 2×10-14) = 1-

arachidonoylglycerophosphocholine (Metabolon, P = 2.9×10-10), as designated by 

Biocrates and Metabolon, respectively. For three of the 5 loci with matching named 

metabolites, there were also associations with other metabolites, which do not 

necessarily match across platforms (Table 3-4). 

In one case genetic variants in locus ACADL were associated with both a Biocrates 

metabolite C9 (P = 9.7×10-38) and an unknown Metabolon metabolite (X-13431 (P = 

3.5×10-25)), which were recently shown to be identical molecules (Krumsiek et al. 

2012).  

In one case, metabolite associations with genetic variants at the SGPP1 locus did not 

match exactly in name for PC aa C28:1 (Biocrates) and 1-stearoylglycerol (Metabolon) 

(Table 3-4). However, both of these are lipid metabolites, which could share the C18:0 

fatty acid chain.  

3.5.2.5 Complementary mQTLs: genetic associations identified in only one 

platform 

There were 19 loci that had associations only with metabolites from one platform (18 

loci in Metabolon and 1 locus in Biocrates) and all were associated with metabolites 

that were not measured in the other platform (APPENDIX A Table S3-2).   

The 18 Metabolon-specific mGWAS results included associations with 29 metabolites. 

Of these 29 metabolites, 17 were unknowns, 4 were lipids and 3 were amino acids and 

these were not included in Biocrates, considering that Biocrates consists mostly of lipids 
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and amino acids. The 5 remaining metabolites were 2 drugs, a carbohydrate, a 

nucleotide, and a peptide.  

There was only 1 locus (DYNC1H1) where genetic variants showed significant 

mGWAS results on the Biocrates platform only with 4 metabolites, and in all 4 cases 

these were with lipids that Metabolon does not measure.  

3.5.2.6 mGWAS of metabolite ratios and p-gain 

In the second stage of the analysis I focused on mGWAS of 903 (43x42/2) ratios for the 

overlapping 43 metabolites, and results were reported at a threshold of P = 5x10-11 (5e-

8/903) (APPENDIX A Table S3-3). In the 903 mGWAS there were 104 significant 

ratios on Metabolon, and 167 significant ratios on Biocrates, and 101 of these ratios 

overlapped, that is, 101 (same) ratios had significant mGWAS results on both platforms 

(APPENDIX A Table S3-4).  

I next wanted to assess whether ratios had more evidence for mGWAS signal, compared 

to their corresponding single metabolite mGWAS results, which might indicate that 

these metabolite pairs are also linked to each other in the biological process. I calculated 

the p-gain statistic for the 101 significant overlapping ratios from both platforms 

(APPENDIX A Table S3-4). In total 25 ratios from Biocrates and 14 ratios from 

Metabolon showed a significance (p-gain>9030) when using metabolites as pairs in 

ratios, which also indicates that ratios may contain more information than the two 

corresponding metabolite concentrations alone.  These 25 and 14 metabolites fall in 4 

loci, of which 3 overlap. The 4 loci were identified; ACADM, CPS1, FADS1 and 

ACADS (APPENDIX A Table S3-3). Of these, the first locus had 1 matching mQTLs, 

the second locus (CPS1) is only identified by Biocrates, the third locus had 9 matching 

mQTLs, and the fourth locus had 2 matching mQTLs (APPENDIX A Table S3-3). All 

of the mGWAS ratio loci identified here overlapped with the previously reported 7 

overlapping mGWAS main effects loci (Figure 3-8). 
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Figure 3-8 Seven loci reported with mQTLs and four loci reported with ratio mQTLs 

 

 Discussion and Conclusion 3.6

This Chapter describes the results of two large-scale collaborative mGWAS studies and 

a bi-platform metabolite comparison using mGWAS with the objective of identifying 

metabolites measured on more than one platform where signals overlap and may be 

combined in future studies, for example for replication analysis.   

The key results in Chapter 3.3 identified genetic impacts on over a hundred individual 

metabolites in the largest mGWAS study to date, and included many novel findings. 

These findings may lead to a better understanding of inherited variation in blood 

metabolic diversity and propose potential new possibilities for drug development and 

for understanding disease. 

The key results in Chapter 3.4 also identified genetic effects on many individual 

metabolites, and included novel findings (5 novel loci associated with serum 

metabolites). Given the targeted nature of the metabolomics platform used in this 

section (Biocrates, focusing on lipids) these results may give new insights specifically 

to cardiovascular and metabolic disease. 

The key results in Chapter 3.5 identified 7 loci showing genetic associations with 

metabolites on both platforms. Moderate correlation and heritability estimates were 

obtained for these metabolites and these results were predominantly consistent with 
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recent reported mGWAS (Illig et al. 2010; Suhre et al. 2011b), some of which are based 

on results from extended cohorts that include the samples used in the current analysis. 

The findings support the hypothesis demonstrating the complementary nature of both 

MS platforms where a combination of targeted and non-targeted MS can identify a 

wider range of metabolites than applying each platform separately. 

Positive correlation was observed when comparing metabolomic profiles at the 43 

overlapping metabolites measured on both platforms (mean r=0.44). Of the 43 

metabolites that overlapped, 37 and 34 metabolites were moderately heritable in data 

from Biocrates and Metabolon respectively (h2>0.2). Overall, there is a moderate 

correlation between matching metabolites and many of these profiles showed evidence 

for heritability. These results suggested that performing mGWAS analysis might be a 

suitable approach to identify more specific metabolite overlaps and potential shared 

pathways.  

The major mGWAS finding was that 7 unique loci showed genome-wide significant 

association with metabolites on both platforms. Genetic variants at 5 of these loci were 

associated with metabolites that were named for the overlapping compound across 

platforms, and in 2 locus associations were only obtained for non-matching metabolites 

and unknown metabolites from both platforms. Of the metabolites associated with the 7 

loci, 5 metabolites (Biocrates C8, C6, C0, C4, and Glycine) had at least moderate 

heritability (h2>0.26) and correlation (r>0.38) on both platforms, showing that these 

profiles were stable and reproducible across platforms. 1 matching metabolite, lysoPC'a'

C20:4' [Biocrates]' /' 1—arachidonoylglycerophosphocholine' [Metabolon],' showed 

low heritability in one platform (0.09 in Metabolon and 0.59 in Biocrates platform) and 

showed relatively low correlation (r=.29) across platforms, but was still identified to 

associate with the same locus from both platforms at genome-wide significance. This 

observation may be due to the difference in the measured compounds between the two 
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platforms: while Metabolon specifically quantifies the lysoPC with the 20:4 fatty acid 

chain at sn1 position of the glycerol backbone (lysoPC(20:4/0:0), Biocrates does not 

distinguish between the lysoPCs with fatty acid chains at sn1 and sn2 positions and only 

quantifies the sum concentration of the two forms (lysoPC(20:4/0:0 and 

lysoPC(0:0/20:4). Moreover, the quality of measurement differs for various lipids 

between the targeted Biocrates and the non-targeted Metabolon platform, which might 

also cause lower correlation between the corresponding matching metabolites. Notably, 

despite those differences inherent in the platforms both profiles give a robust signal of 

genetic association for FADS1. 

Further comparison of the GWAS results across platforms shows that genetic variants at 

5 of the 7 loci (ACADM, CPS1, SLC16A9, FADS1, ACADS) were associated with 

metabolites that were named for the overlapping compound.  However, genetic variants 

at the ACADL and SGPP1 loci only associate with non-overlapping metabolites or 

unknown metabolites from the Metabolon platform. One potential use of these results is 

to inform the function of unknown metabolites on the Metabolon platform or identify 

metabolites that belong to the same or related biological pathways. For example, 

variants in 1 locus (ACADL) associated with the C9 Biocrates metabolite and also with 

the unknown X-13431 Metabolon metabolite, which were recently reported to be the 

same molecule (Krumsiek et al. 2012). When I explored the results for similar 

association patterns, I observed that Metabolon metabolites X-10510 and 1-

stearoylglycerol shared mQTL findings within the same locus (SGGP1) as the Biocrates 

metabolite PC aa C28:1. These results suggest a link between the molecules, where the 

more specific Metabolon lipid chain length can hint that the PC aa C28:1 association is 

possibly driven by the involvement of a 18:0 lipid chain. Alternatively, the SGGP1 

genetic variant (rs7157785) has also been associated with sphingomyelin 14:0 in a 

separate study (Zhou and Stephens 2012). Our platform does not include this 
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metabolite, but X-10510 may be also related to this sphingolipid pathway. This 

assumption is further supported by high partial correlation between X-10510 and other 

Metabolon sphingolipid molecules and genetic associations to a second sphingolipid 

related gene in Shin et al. (Shin et al. 2014).  

Additionally, I explored the results for the 43 overlapping metabolites on both platforms 

to check if inconsistencies across platform signals were observed. Expectedly, the mean 

correlation between the 43 matching metabolites (r=0.44) is higher than the mean 

correlation with all metabolites between the two platforms (r=0.17).  Exceptions include 

correlations of Biocrates metabolites with Metabolon metabolites of yet unknown 

chemical identity. In these cases, the high correlation could indicate matching 

metabolites or biochemically related metabolites and might thus again assist in the 

identification of unknown metabolites. There were 15 of the 43 metabolites that were 

highly correlated with reasonable h2 estimates on both platforms, but no matching 

mQTLs were identified.  

Eight metabolites of the 43 were very weakly correlated, but had moderate h2. Four 

lyso-phosphatidylcholines metabolites (lysoPC a C16:0, lysoPC a C18:0, lysoPC a 

C18:1, lysoPC a C18:2) from the Biocrates platforms had overlapping metabolites on 

the Metabolon platform, but neither contained matching mQTLs nor showed high 

heritability or correlation. I conclude that in this instance the two platforms are likely 

measuring distinct signals that cannot be combined or this may be due to a relatively 

lower quality of measurement for these lipids on the Metabolon platform, since it is not 

specifically aimed at targeting lipids like Biocrates. In another example, the carnitine 

(C0) Biocrates metabolite showed moderate correlation (r = 0.39) with the carnitine 

Metabolon metabolite, and both had evidence for heritability and mapped to the same 

genetic variant in SLC16A9. These findings confirm that the carnitine signal is stable 

across platforms despite the observation that the carnitine Biocrates metabolite is also 
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well correlated with other Metabolon metabolites (proline, valine, tyrosine, and 

propionylcarnitine), as observed in the hierarchical cluster analysis. 

Focusing on the mGWAS results that were only identified in one platform, then variants 

in 18 loci associated with Metabolon profiles alone, while variants in only 1 locus 

associated with Biocrates profiles. Overall, the two platforms are designed to focus on 

different metabolites, and these significant findings can enlighten on platform-specific 

metabolites. Eventually, combining metabolomics profiles across platforms is more 

informative than single-platform analysis because these platforms are complementary. 

In contrast to other “-omics”, it is not possible to assay the entire metabolome with one 

platform due to large differences in the physiochemical properties of the different 

metabolites (e.g. lipophilic and hydrophilic metabolites).  

I identified 4 loci significantly associated with metabolite ratios and these are a subset 

of the previously reported 7 loci associated with main effects of metabolites on both 

platforms (APPENDIX A Table S3-3, Figure 3-8). P-gain is a well defined measure that 

can be used to identify statistically significant metabolite ratios in association studies. 

The p-gain results for the overlapping ratios from both platforms suggest for the 25 

(Biocrates) and 14 (Metabolon) cases ratios may contain more information than the two 

corresponding metabolite concentrations alone.  (APPENDIX A Table S3-4). One 

possible interpretation of the associations with the 4 ratio loci may be that a SNP affects 

a biochemical reaction where both molecules are linked to a substrate or both are linked 

to a product, and the effect of the genetic variant is to deplete one of these molecules.  

In summary, I identified genetic associations at 7 loci with metabolite profiles from 

both the Biocrates and Metabolon platforms and 4 loci out of these 7 loci were also 

significantly associated with metabolite ratios. The results contain information about 

potential shared metabolic pathways, as well as distinct metabolite profiles, and can 

clarify unknown metabolites. They can also guide further research on the genetic 
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determination of metabolites for new studies. These findings also inform the reliability 

of both platforms and demonstrate the complementary nature of both targeted and non-

targeted MS platforms implying that future studies should combine datasets across 

platforms where possible, especially for replication of metabolite hits when datasets are 

profiled on different platforms. I identified metabolite signals that show consistent 

genetic associations and therefore appear stable and robust across multiple platforms, 

suggesting that these metabolomic profiles can be combined across platforms. These 

findings are informative for future studies of comparative and integrative metabolomics 

analyses in human samples.  
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CHAPTER 4  

 

DNA Methylation 

______________________________________________________________________ 

 Introduction 4.1

The aim of this chapter is to investigate the influence of genetic effects on DNA 

methylation. Several factors are thought to influence DNA methylation profiles: genetic 

variation, other epigenetic mechanisms, environmental factors, and stochastic changes 

that accumulate during life (Bell and Spector 2011). Previous studies have explored the 

heritability of DNA methylation across the genome and identified meQTLs in several 

tissues (Banovich et al. 2014; Bell et al. 2011; Bell et al. 2012; Drong et al. 2013; 

Fraser et al. 2012; Gamazon et al. 2013; Gibbs et al. 2010; Grundberg et al. 2013; 

Gutierrez-Arcelus et al. 2013; Shi et al. 2014; Smith et al. 2014; van Eijk et al. 2012; 

Wagner et al. 2014; Zhang et al. 2010), and here I aim to extend this work by exploring 

genetic effects on DNA methylation in twins. From part of this work, I prepared a 

review on genetic and environmental impacts on DNA methylation levels in twins (Yet 

et al. accepted for publication). 

 DNA methylation Heritability 4.1.1

Variation in DNA methylation between individuals has been shown in many studies 

(Boks et al. 2009; Flanagan et al. 2006; Kaminsky et al. 2009). Heritability studies have 

explored the degree of DNA methylation variation and the extent to which this variation 

can be explained by genetic influences. In one of the initial genome-wide DNA 

methylation studies in twins, Kaminsky et al., profiled methylation in white blood cells 

and buccal epithelial cells from 194 twins using a 12K CpG island microarray 

(Kaminsky et al. 2009). Consistent with evidence for heritability, the study reported that 
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DZ twins showed greater epigenetic differences in buccal cells compared to MZ twins. 

Gervin et al., reported low heritability in 89 twin pairs in whole blood when analysed 

bisulfite sequencing on 1760 CpG-sites within the major histocompatibility complex 

(MHC), but methylation differences within MZ pairs were lower than those observed 

for DZ pairs (Gervin et al. 2011). Another study using Illumina 27k array in whole 

blood samples from 172 twins demonstrated a range of heritability estimates per CpG-

site with a genome wide average of 0.18 (Bell et al. 2011).  Another study using 

Illumina 27k DNA methylation profiling determined the epigenetic variation present in 

three tissues from 22 MZ and 12 DZ newborn twin pairs and estimated the contribution 

of genetic and common and unique environment to DNA methylation profiles (Gordon 

et al. 2012). Twin pairs showed low mean heritability across the genome in all tissues 

(h2= 0.12), but high heritabilities were detected for some of the individual CpG sites. 

Grundberg et al. profiled Illumina 450K adipose methylome data from 648 adult twins 

(Grundberg et al. 2013). DNA methylation heritability estimates were at a genome-wide 

average of 19%, however, the mean heritability estimate was significantly higher (h2 = 

0.34) when only including variable probes. Overall, many studies have explored DNA 

methylation profiles in twins, reporting higher similarity between MZ twins compared 

to DZ twins, and proposing that genetic effects contribute to DNA methylation levels in 

some regions of genome. The average reported methylation heritability at CpGs across 

the genome is low to moderate (12%-19%), while the heritability of one CpG can show 

a very wide range.  

 Genetics of DNA methylation: meQTLs  4.1.2

A number of studies have assessed the association between genetic variation at 

particular loci and DNA methylation patterns across the genome to discover genetic 

impacts on DNA methylation levels. The genetic loci at which associations are 

identified are referred to as methylation quantitative trait loci (meQTLs). Evidence for 
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meQTLs has been explored on a genome-wide scale using high-throughput DNA 

methylation analyses, identifying local (cis) and distal (trans) genetic variants 

associated with methylation levels in multiple samples, across a number of cells, tissues, 

and ages (Banovich et al. 2014; Bell et al. 2011; Bell et al. 2012; Drong et al. 2013; 

Fraser et al. 2012; Gamazon et al. 2013; Gibbs et al. 2010; Grundberg et al. 2013; 

Gutierrez-Arcelus et al. 2013; Shi et al. 2014; Smith et al. 2014; van Eijk et al. 2012; 

Wagner et al. 2014; Zhang et al. 2010).  

Two of the initial genome-wide studies explored evidence for meQTLs in the human 

brain tissue (Gibbs et al. 2010; Zhang et al. 2010). Gibbs et al. assessed DNA 

methylation on the Illumina 27k and reported that up to 5% of CpG-sites had a meQTL 

and the bulk of signals were observed in cis, that is, within 1 Mb window of the CpG-

site in tissue samples from four brain regions from 150 individuals (Gibbs et al. 2010). 

Additionally, SNPs that were identified as a cis meQTL were also observed to affect 

gene expression, or were expression QTLs (eQTLs) across tissues (Gibbs et al. 2010). 

Zhang et al. also used the Illumina 27k and reported 736 cis meQTLs in brain tissue 

(Zhang et al. 2010). Shared genetic control of both DNA methylation and gene 

expression is detected where 13% of the meQTLs also regulated expression of the gene 

closest to the DNA methylation site (Zhang et al. 2010). Overall, both studies observed 

over 800 cis meQTLs in human brain tissues. Additionally, Gamazon et al. (Gamazon 

et al. 2013) identified that Bipolar Disorder (BD) GWAS SNPs were cis meQTLs for 

132 CpGs from the same brain tissue samples that was reported in previous study 

(Zhang et al. 2010). 

Many studies have observed meQTL effects in other samples including, whole blood, 

blood cell subtypes, and blood-derived cells (Banovich et al. 2014; Bell et al. 2011; Bell 

et al. 2012; Fraser et al. 2012; Gutierrez-Arcelus et al. 2013; Smith et al. 2014; van Eijk 

et al. 2012). Presence of meQTLs in lymphoblastoid cell lines (LCLs) from 77 HapMap 
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Yoruba individuals were explored using the Illumina 27k array (Bell et al. 2011). The 

authors observed cis meQTLs affecting 180 CpG-sites in 173 genes, and only a small 

amount of trans meQTLs, and detected an enrichment of meQTL SNPs for eQTL 

effects. A following study assessed DNA methylation using Illumina 27k in 180 LCLs 

from two different populations using the HapMap Yoruba and CEPH samples (Fraser et 

al. 2012). Population specific patterns of DNA methylation were observed at almost 

half of the genes. A later study re-examined DNA methylation profiles in 64 LCLs 

derived from the HapMap Yoruba individuals using Illumina 450k array (Banovich et 

al. 2014). The authors observed many more (13,915) cis meQTLs and showed that 

QTLs underlying other regulatory genomic processes, such as gene expression, 

chromatin accessibility, and histone modifications highly overlap with meQTLs. 

Gutierrez-Arcelus et al. used Illumina 450k array in LCLs, T cells and fibroblasts 

derived from 204 umbilical cords from healthy newborns (Gutierrez-Arcelus et al. 

2013). The authors reported over 20,000 methylation QTLs and expression-methylation 

associations, with greater level of tissue differentiation at methylation sites with 

meQTLs, compared to non-meQTL CpG-sites. Another study in whole blood samples 

from 148 individuals on the Illumina 27k array reported 575 cis meQTLs, which also 

had effects on gene expression levels (van Eijk et al. 2012), and were predominantly 

located outside of CGIs. Another study in whole blood explored DNA methylation 

profiles in Illumina 27k from 172 twin samples and reported 1,537 CpG sites with cis 

meQTLs that were predominantly not related to age-related differential methylation 

signals (Bell et al. 2012).  

Methylation QTL effects have also been observed in other cell types and tissues, 

including adipose tissue (Drong et al. 2013; Grundberg et al. 2013), lung tissue (Shi et 

al. 2014) and fibroblasts (Wagner et al. 2014). In adipose tissue, Drong et al. explored 

38 unrelated individuals for DNA methylation levels using differential methylation 
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hybridization and gene expression microarray (Drong et al. 2013). Methylation levels of 

149 regions were reported having at least one SNP in cis (meQTL), but no overlap with 

eQTLs was explored (Drong et al. 2013).  Grundberg et al. reported almost 100,000 cis 

meQTLs in the adipose tissue profiling 648 twins using Illumina 450k array, and found 

that 6% of the loci played a role in regulating both DNA methylation and gene 

expression (Grundberg et al. 2013). A recent meQTL study in lung tissue observed 

34,304 cis meQTLs and 585 trans meQTLs across 210 individuals, with validation of 

the signals in breast and kidney tissues, and described genomic profiles of CpG-sites 

under cis and trans genetic control (Shi et al. 2014). In fibroblasts, Illumina 450k DNA 

methylation profiles in 62 unrelated individuals revealed evidence for association with 

genetic variants in cis at 1,676 CpG-sites (Wagner et al. 2014). Overall, meQTLs were 

identified in several tissues and cell types and can help improve our knowledge of the 

genetic component of gene regulation (Bell et al. 2011).  

Variance QTL 

Over last decade, research has concentrated on unravelling how genetic variation 

contributes to phenotypic variability in population. Many factors can influence the 

variance of a complex phenotypic trait, and these can include genetic effects, 

environmental effects, epigenetic effects, gene-environmental interaction, gene-gene 

interaction, and stochastic factors. A common approach to explore the impact of genetic 

variants on the trait is based on assessing differences in the genotypic means of the trait, 

aiming typically to identify SNPs that are associated with complex phenotypes. 

However, these methods do not consider the possibility that QTLs may contribute to the 

amount of variability of the phenotype. As a result, much interest has now concentrated 

on exploring QTLs that are associated with the variability of a phenotype (var QTLs). 

The mechanisms of var QTL action on the trait remain largely unknown, but these may 

be explained in part by interactions between QTL with other genetic or environmental 
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factors (Hill and Mulder 2010), that is, the QTLs involved in epistatic or gene-

environment interactions may manifest as var QTLs. 

So far, var QTLs have been identified across different organisms including plants 

(Ordas et al. 2008; Shen et al. 2012), chickens (Ronnegard and Valdar 2011), and 

humans. In humans, five var GWAS studies have been published so far. In 2010, Pare et 

al. identified two var QTLs impacting on BMI or smoking (Pare et al. 2010). This was 

followed by other studies identifying var QTLs for BMI (Yang et al. 2012), high-

density lipoprotein (HDL) cholesterol (Surakka et al. 2012), and expression (Brown et 

al. 2014; Hulse and Cai 2013). Hulse and Cai first reported cis and trans var eQTLs in 

the human genome (Hulse and Cai 2013) using gene expression levels in LCLs (n=210 

individuals). This study identified for the first time 218 distinct genes that were 

associated with 379 cis-acting var eQTLs and even more trans-acting var eQTLs (500 

representative genes and 13,000 SNPs) in the human genome. The majority of studies to 

date exploring var QTL effects on trait variability in humans have focused on unrelated 

individuals, and have used Bartlett’s (Yang et al. 2012) or Levene’s test (Pare et al. 

2010; Struchalin et al. 2010) of variance or have proposed a specific statistical models 

such as the double generalized linear model (DGLM) (Ronnegard and Valdar 2011) and 

squared residual value linear modelling (SVLM) (Struchalin et al. 2012) to formally test 

for association between genotype and trait variance in independent groups of 

individuals of different genotypes. 

Another study design to consider in this scenario is MZ twins, and specifically the 

discordance in MZ twins as a measure of trait variability. It has been proposed that MZ 

twins are powerful study design to explore these effects compared to population-based 

approaches (Visscher and Posthuma 2010). Surakka et al. were the first to use the MZ 

study design genome-wide in a meta-analysis of 8 twin cohorts to exploring var QTLs 

associated with lipid levels (Surakka et al. 2012).  They reported a locus associated with 
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HDL variability. One more recent study explored var eQTL using RNA-sequence data 

from 765 LCLs from the TwinsUK cohort and they identified a set of 508 variance 

associated SNPs (Brown et al. 2014) Recently, it has been proposed that var QTLs that 

change the variability of a phenotype could be mediated by DNA methylation (Feinberg 

and Irizarry 2010). This proposed model in which DNA methylation variation is a 

mediator between genetic contribution and phenotypic variability has been investigated 

in rheumatiod arthritis (Liu et al. 2013). An EWAS was performed to determine 

differentially methylated positions (DMPs) associated with rheumatoid arthritis 

followed by a GWAS for each of the DMPs. Using a causal interference test 9 unique 

DMPs were determined as mediating the genetic component to rheumatiod arthritis 

disease risk. Interestingly, an association between genotype and methylation variability 

was found in 5 out of 9 determined DMPs, although in all cases the associated var QTL 

was also a QTL for the level of DNA methylation. However, the finding of 5 QTLs that 

are associated with DNA methylation variation and consequently with increased 

rheumatiod arthritis disease risk, fits within the hypothesis that var QTLs that change 

the variability of a phenotype could be mediated by DNA methylation. 

In this chapter I investigated epigenetic profiles in monozygotic twins with aim of 

identifying QTLs and var QTLs for DNA methylation in whole blood and adipose 

tissue. I tested the evidence that genetic variants influence not only DNA methylation 

levels, but also DNA methylation variability. I assessed the evidence that genetic effects 

influence DNA methylation variability by using MZ-twin discordance as a measure of 

variance, aiming to identify meQTLs for DNA methylation variance (var meQTLs). 

This Chapter is divided into methods and 5 main results sections including blood 

meQTLs, blood variance meQTLs, validation of variance meQTLs, gene-environment 

interaction follow-up analysis, and meQTLs across tissues. 



 89 

 Methods  4.2

 Datasets & QC 4.2.1

We obtained DNA methylation Illumina 450k profiles at 485,000 CpG dinucleotides in 

whole blood samples from 330 MZ female pairs, and in adipose tissue for 83 MZ 

female pairs with an overlapping number of 49 MZ pairs. In addition, the overall 

sample of 789 individuals (these included the 330 MZ pairs) were used to follow up 

QTL results with gene-environment interaction analysis and 459 unrelated individuals 

(from the 789) were used in the validation of var meQTLs. All samples were from 

TwinsUK as previously described in Chapter 2 (Moayyeri et al. 2013b; Spector and 

Williams 2006).Methylation profiling was performed on the bisulfite-converted DNA 

samples with the Illumina 450k array and the resulting datasets first underwent several 

quality control checks as described in Chapter 2.  

 Heritability 4.2.2

A PhD student in the epigenetics group in the department, Mr Juan Castillo-Fernandez 

calculated the heritability in blood for 442,307 probes using the Open Mx software 

(Boker et al. 2011). In a sample of 330 MZ pairs and 25 DZ pairs using the ACE model, 

the heritability is moderate (h2 >40%) for 18% of the CpG sites. 

 Genotyping and Genotype imputation 4.2.3

TwinsUK imputed genotypes were obtained for the 1000 genomes reference set 

(1000G), as described in Chapter 2. For the genetic variants used in this, I excluded 

SNPs with Hardy–Weinberg P <1x10−4 and MAF <5% (in the 330 and 83 twin pairs) 

and those with IMPUTE info value <0.8.  

 Estimating genetic impacts on trait variance  4.2.4

The dispersion of a dataset is measured most commonly by the variance, standard 

deviation, and interquartile range. Measures of dispersion such as variances are difficult 

to estimate accurately, for example compared to means. Therefore the detection of var 
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QTLs, which measure genetic impacts on trait variability, will require more 

observations to attain good power to detect effects, compared to QTLs that measure 

genetic impacts on trait means (Lee and Nelder 2006; Visscher and Posthuma 2010). In 

addition, the variance is a measurement of dispersion around the mean and therefore is 

affected by the mean effects. Over the past few years, various statistical methods have 

been developed to address the challenge of identifying var QTLs (Ronnegard and 

Valdar 2012). These methods are typically models that fit variance and mean using a 

two-stage approach. Three studies evaluated var QTLs using DGLM that provide a 

framework for modelling variance and the mean simultaneously using the dglm package 

in R (Hulse and Cai 2013; Ronnegard and Valdar 2011; Wang et al. 2014). On the other 

hand, Struchalin et al. developed an R package, VariABEL, which uses squared residual 

value linear modelling (SVLM) and is a two-step process (Struchalin et al. 2012). It 

first regresses the trait for a SNP effect and other covariates and uses the squared 

residuals in a second regression with SNP as the predictor. Another widely used 

methods are Bartlett’s test and Levene’s test for assessing the equality of variance 

across independent groups (eg unrelated individuals of different genotypes). 

One approach to increase the power to detect var QTLs is to use a monozygotic (MZ) 

twin-pair design. MZ twin-pairs are considered genetically identical and a phenotypic 

discordant MZ twin-pair design thus provides a powerful natural setting to assess the 

contribution of environmental or stochastic factors to the phenotype. Using a phenotype 

discordant MZ twin-pair design one could identify QTLs that determine the extent of 

discordance. This phenotypic discordance is one measure of trait variability, and it may 

be due to environmental or stochastic differences within the MZ co-twins. Because MZ 

twins are nearly genetically identical, the phenotype discordant MZ twin-pair design 

would control for possible epistatic effects. Several studies have considered MZ twin 

discordance as a measure of trait variance, and a couple have further used this measure 
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to identify var QTL effects. Surakka et al. calculated both absolute differences and 

means for twins then transformed the values and adjusted for batch effects as well as by 

mean effect using a linear regression model (Surakka et al. 2012). The second study by 

Brown et al. identified var eQTLs across tissues using MZ twins (Brown et al. 2014). In 

their approach the maximum expression of  one of the twins in the pair was regressed 

on the minimum expression in the twin pair and genotype of the twin pair. This 

explored whether the association between maximum and minimum expression was 

conditional on genotype. 

My approach for estimating var meQTL was similar to that used by Surakka et al.. I 

fitted the absolute methylation discordance of the MZ pair on batch effects and the 

mean methylation level of the pair, and I then extracted the residuals and took the 

square of the residuals as a measure of variance. First, I calculated the methylation mean 

and absolute differences in methylation values for each MZ pair at each CpG site. Then 

I regressed the absolute difference on the mean and kept the residuals from the 

regression and squared them (Equation 4-1).  

Y = residuals(absolute difference(twin1–twin2)~mean(twin1,twin2))2             (Equation 4-1) 

 

In the next step, I used the square of the residuals (Y in Equation 4-1) as a phenotype in 

the additive genetic model in the variance meQTL analysis, described in section 4.2.3 

below. I had one measure of variance (Y) for each MZ twin pair. The var meQTL 

analysis was on the unit of the MZ pair for 330 and 83 independent MZ pairs in blood 

and adipose samples, respectively. 

 Genetic association testing  4.2.5

The primary associations between DNA methylation levels and genotype were tested in 

a sample of 330 healthy MZ female pairs. Because the aim was to identify genetic 
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effects influence on both DNA methylation levels and DNA methylation variability, I 

used a two-step approach for both.  

First, the normalized methylation betas were fitted with in lme4 package in R (Bates et 

al. 2015) as the outcome on the level of the individual, and the predictors consisted of 

smoking, BMI, age, plate and blood cell count estimations as fixed effects, and family 

and zygosity as random effects, using R. Residuals from this model were extracted and 

normalized to N(0,1), and then used in the second step. In the second step, I applied two 

different models: 

 1) I calculated the methylation mean for the MZ pair to use as a phenotype for meQTL 

analysis, and  

2) I calculated the methylation absolute discordance and mean for the MZ pair, fitted 

Equation 4.1 and took the square of the resulting residuals per MZ pair as a phenotype 

for the variance meQTL analysis.  

I then normalized the phenotype values in steps 1) and 2) above to N(0,1) before the 

QTL analysis. QTL analysis was performed using association tests in the R package, 

matrix eQTL (Shabalin 2012).  I ran an additive genetic model in matrix eQTL, that is:  

Methylation = α + γ⋅genotype_additive                 (Equation 4-2) 

 

where methylation is the normalized value from 1) or 2) above, alpha(α) is intercept and 

gamma(γ) is the additive genetic effect. I specifically tested for the significance of γ and 

reported the t-statistic from the association analysis. 

 Multiple Testing 4.2.6

To estimate the significance level taking into account multiple testing (5 million SNPs 

and 442,307 DNA methylation profiles), I used a permutation-based FDR approach for 

both cis and trans threshold, because a Bonferroni correction is very stringent as neither 
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the genetic nor epigenetic data were independent. I ran two different permutations 

separately for cis and trans results. 

In each permutation, I kept the structure of the epigenetic data and permuted the twin 

pair labels for the genetic data. I then permuted the datasets 10 times. I calculated FDR 

for each p-value threshold. That is, for a given p-value threshold I counted the number 

of observations (SNP-CpG associations) in the real results that surpassed this p-value 

threshold (No). I then also counted the number of observations (SNP-CpG associations) 

in each permutation that surpassed this p-value threshold, and took the average number 

across the 10 permutations avg (Ne). I then calculated FDR as (Ne/No). An FDR = 5% 

corresponds to a cis QTL nominal P = 4x10-5 and trans QTL nominal P = 8x10-9.  

 Results 4.3

In this chapter, I assessed evidence for genetic impacts on DNA methylation levels and 

variances in MZ twins. I first investigated whether there are any missing values in 

probes, then removed 17,764 probes in Illumina 450k that mapped to multiple locations 

within 2 mismatches (the same number of probes were identified using both hg18 and 

hg19) using MAQ ((Li et al. 2008)). Then, I investigated the genetic impacts on 

442,307 DNA methylation CpG-sites genome-wide. Finally, I investigated whether any 

of the probes have missing CpG sites contained SNPs in the probe sequence, which may 

affect cross-hybridization and created spurious meQTL signals. Based on a 

comprehensive assessment reported by Naeem et al. (Naeem et al. 2014), I later 

excluded all probes that were known to contain SNPs.  

 meQTL results in 330 MZ twins in whole blood 4.3.1

At an FDR of 5% (P = 4x10-5), I detected cis meQTLs for 53,813 autosomal CpG 

probes (11% of 442,307 autosomal probes), mapping to 11,693 genes. I defined the cis 

interval as 100 kb upstream and downstream from the targeted CpG site (200 kb total). 

A 200kb window size was chosen because previous cis meQTL studies have used this 
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window size (Shi et al. 2014), and because  results from a simulation study suggest that 

the multiple testing burden becomes too great when expanding the search window 

beyond 200kb such that the number of detected SNP-CpG pair results declines after 200 

kb (Luijk et al. 2015).  

A cis meQTL was defined as a SNP that was significantly associated with DNA 

methylation level at a CpG, and was located within the cis interval from that CpG-site. 

Figure 4-1 shows the QQplot for the cis meQTL signals at the CpG site with the most 

significant meQTL overall (probe cg23097878 with most associated rs7945565 P = 

4.90x10-112) and the boxplot presents the methylation levels by genotype at this cis 

meQTL. Table 4-1 reports the top 10 associations genome-wide. 

 

 
Figure 4-1 QQplot of the top significant cis meQTLprobe, cg23097878  (A), and barplot showing the 
mean methylation levels across three genotype categories for the most associated SNP for this probe 
(rs7945565, P = 4.90x10-112)  (B).  
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Table 4-1 The 10 top-ranked CpG-sites with cis meQTLs  

SNP Probe Beta t-stat P Chr Gene 
rs7945565 cg23097878 1.27 34.77 4.90x10-112 11 CRY2 
rs12218872 cg17191567 -1.24 -34.15 4.97x10-110 10 - 
rs2438251 cg02082929 1.24 33.98 1.79x10-109 2 GCC2 
rs4074915 cg21028142 -1.25 -33.81 6.42x10-109 17 NPLOC4 
rs690461 cg24786174 1.27 33.15 9.84x10-107 18 ZNF516 
rs4980503 cg04850017 1.25 32.62 5.48x10-105 11 RCOR2 
rs6677965 cg01427815 1.23 32.49 1.48x10-104 1 UCK2 
rs804227 cg07863524 1.25 32.34 4.65x10-104 17 OR3A4 
rs7174099 cg17847044 -1.27 -32.29 6.87x10-104 15 MAPKBP1 
rs132717 cg11420782 1.26 32.19 1.57x10-103 22 APOL4 

 

Next, at an FDR at 5% (P = 8x10-9) I detected trans meQTLs at 15,392 CpG probes (3% 

of 442,307 autosomal probes), mapping to 6,380 genes. The most significant trans 

meQTL is in probe cg02082929 with most associated rs826698, P = 1.77x10-105) in 

GCC2 gene." I next considered the characteristics of the genetic variants that were 

identified as meQTLs, focusing on the most-associated SNP per CpG-site. The genetic 

variants associated with methylation levels in cis were overrepresented in regions close 

to the methylation site (±100 kb) and specifically at regions very close to the DNA 

methylation site (1kb) (Figure 4-2).  

 
Figure 4-2 Genomic location of the most significantly associated SNP per CpG-site for cis meQTLs 

 

The MAF distribution for the meQTLs is presented in Figure 4-3, and shows no bias 

towards rare or common MAFs (0% to 50%) in this meQTL set. 
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Figure 4-3 Distribution of MAF at the most significantly associated SNP per CpG-site for A) cis 
meQTLs, and B) trans meQTLs. 

 

 Variance meQTL results in 330 MZ twins in whole blood 4.3.2

At an FDR of 5% (P = 4x10-5), I detected cis var meQTLs (2% of 442,307 autosomal 

probes) for 8,106 CpG probes, mapping to 3,539 genes. I detected 3,694 CpG probes 

with trans var meQTLs (FDR = 5%, P =8x10-9), mapping to 2,411 genes. The sequence 

variants associated with the methylation traits were overrepresented in regions close to 

the methylation site (Figure 4-4). The MAF distribution for top hits is presented in 

Figure 4-5, and most of the hits from both cis and trans results fall in between MAF of 

10% and 20% and targeting least common alleles occurring in the sample. Figure 4-6 

shows the QQplot for the most significant meQTL probe and the boxplot represents the 

methylation levels across genotype categories at the most associated cis var meQTL 

SNP. Additionally, the overlap between cis meQTL and cis var meQTL is 7,220 (89%) 

and for trans results it is 987 (27%) showing that almost all of the cis var meQTLs are 

also cis meQTLs and quarter of trans variance signals are also trans meQTL signals. 

Table 4-2 presents the top ten associations that have been identified as cis var meQTL. 

0.0 0.1 0.2 0.3 0.4 0.5

0
.0

1
.0

2
.0

 

MAF

D
e
n
s
it
y
 o

f 
c
is

 m
e
Q

T
L
s

0.0 0.1 0.2 0.3 0.4 0.5

0
.0

1
.0

2
.0

 

MAF

D
e

n
s
it
y
 o

f 
tr

a
n

s
 m

e
Q

T
L

s

A B 



 97 

  
Figure 4-4 Genomic location of most associated cis var meQTL SNPs  

 

 

 
Figure 4-5 Distribution of MAF at the most-associated SNPs for var meQTLs,in A) cis var meQTLs, 
and B) trans var meQTLs. All cis var meQTLs have a genotype count of at least 5 in each genotype 
class. 

 

  

 
Figure 4-6 QQplot of top significant cis var meQTL (rs6100252, cg08091561, P = 3.8x10-42) (A), and 
barplot showing the squared residual methylation levels across three genotype categories (B). 
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Table 4-2 Top 10  probes identified in cis var meQTL 

SNP Probe Beta t-stat P Chr Gene 
rs6100252 cg08091561 1.21 15.76 4.88x10-42 20 GNAS 
rs6100252 cg06200857 1.17 14.86 1.46x10-38 20 GNAS 
rs79171026 cg12594803 1.42 14.70 6.19x10-38 3 DLG1 
chr17:4899230:D cg19427746 1.21 14.41 8.00x10-37 17 CAMTA2 
rs61766781 cg15603964 1.29 14.26 3.22x10-36 1 UBR4 
rs62195287 cg17674726 1.36 14.17 6.64x10-36 2 ITM2C 
chr8:74716807:D cg12682382 1.26 14.05 1.91x10-35 8 UBE2W 
rs1952512 cg02988727 1.60 13.89 8.20x10-35 14 ZNF219 
rs3012041 cg12829045 -1.24 -13.82 1.45x10-34 10 - 
rs7736222 cg11100481 1.42 13.78 2.11x10-34 5 - 

 

 Do var meQTLs capture gene-environment interactions?  4.3.3

Variance meQTL may capture interaction effects due to gene-gene or gene-environment 

interactions. As MZ twins are nearly genetically identical, this design is better suited to 

try to uncover gene-environment interactions that underlie var meQTLs. Therefore, 

including environment covariates should be undertaken with caution in var meQTL 

GWAS, because these may obliterate gene-environment interactions underlying the var 

meQTL signals. Here, I explored the idea that the var meQTLs identified in the 

previous section may capture some gene-environment interactions, specifically for 

smoking. Smoking has one of the strongest impacts on whole blood DNA methylation 

levels to date, where multiple studies have identified hundreds of smoking-associated 

DNA methylation signals, and many of these have large effects that have been 

replicated by multiple studies (Besingi and Johansson 2014; Breitling et al. 2011; 

Dogan et al. 2014; Shenker et al. 2013; Zeilinger et al. 2013). To explore whether the 

identified var meQTLs may capture some smoking-genetic interactions on DNA 

methylation levels, here I repeated the var meQTL analyses, but not controlling for 

smoking. I termed these new var meQTLs as ‘no-smoking adjusted var meQTLs’. I then 

assessed if there was evidence for gene-smoking interactions at the SNPs and 

methylation probes that formed the ‘no-smoking specific var meQTLs’. ‘No-smoking 



 99 

specific var meQTLs’ were defined as ‘no-smoking adjusted var meQTLs’ that were not 

within the ‘smoking adjusted var meQTLs’ identified in section 4.3.2 above. I used the 

same 330 MZ pairs to characterize ‘no-smoking adjusted var meQTLs’ by using the 

above-mentioned methods but without adjusting for smoking. I then tested for evidence 

of gene-smoking interactions on DNA methylation levels at the CpG-sites that had ‘no-

smoking specific var meQTLs’, and these interactions tests were performed in the 

largest available sample of 789 individuals, which included the sample of 330 MZ pairs. 

No-smoking specific var meQTL results 

At an FDR at 5% (P = 4x10-5), I detected no-smoking adjusted cis var meQTLs for 

8,119 CpG probes (2% of 442,307 autosomal probes), mapping to 3,558 genes. I 

detected 3,698 CpG probes with no-smoking adjusted trans var meQTLs (FDR = 5%, P 

= 8x10-9) mapping to 2,114 genes.  For the identified cis signals, the distributions for 

distance to probe and MAF both show similar results to those observed for cis var 

meQTL (Figure 4-4, and Figure 4-5). 

I wanted to explore if correcting for smoking has a major effect on the total number of 

var meQTLs obtained, but the results show that this is not true. There were 8,119 cis 

and 3,698 trans results in the as ‘no-smoking adjusted var meQTLs’, and there were 

8,106 cis and 3,694 trans results in the as ‘smoking adjusted var meQTLs’. I then 

estimated the number of no-smoking specific var meQTLs as 581 cis var meQTLs and 

1,268 trans var meQTLs and these were the results that were only observed in the var 

meQTL analysis where I did not adjust for smoking (Table 4-3).  

Table 4-3 No-smoking specific var meQTLs: CpGs identified as var meQTLs only when not controlling 
for smoking. 

Whole blood results (442,307) cis (P = 4x10-5) trans (P = 8x10-9) 

No-smoking specific var meQTLs 581 1,268 
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Table 4-4 reports the top ten probes identified from the no-smoking specific var meQTL 

analyses. 

Table 4-4 Top 10  probes identified in no-smoking specific var meQTL 

SNP Probe Beta t-stat P Chr Gene 
rs6100252 cg08091561 1.20 15.59 2.25x10-41 20 GNAS 
rs6026560 cg06200857 1.17 14.83 1.98x10-38 20 GNAS 
rs79171026 cg12594803 1.41 14.65 9.38x10-38 3 DLG1 
chr17:4899230:D cg19427746 1.22 14.54 2.66x10-37 17 CAMTA2 
rs61766781 cg15603964 1.30 14.34 1.47x10-36 1 UBR4 
rs62195287 cg17674726 1.37 14.27 2.72x10-36 2 ITM2C 
chr8:74716807:D cg12682382 1.26 14.17 6.82x10-36 8 UBE2W 
rs1952512 cg02988727 1.60 13.89 8.32x10-35 14 ZNF219 
rs3012041 cg12829045 -1.24 -13.83 1.32x10-34 10 - 
rs6510081 cg26353507 -1.45 -13.83 1.34x10-34 19 ZNF773 

 

Gene-smoking interactions on DNA methylation  

I then focused on the 581 cis var meQTLs and 1,268 trans var meQTLs that were only 

identified as no-smoking specific var meQTL. I explored if these QTLs were also 

identified as gene-smoking interactions. For gene-smoking interaction analysis I used 

the ModelLINEAR_CROSS model within matrix eQTL (Shabalin 2012) with smoking 

as a covariate, that is,  

Methy = α + β⋅smoking+ γ⋅genotype_additive + δ⋅genotype_additive⋅smoking            (Equation 4-3) 

 

where α is intercept, β is the smoking effect, γ is the additive genetic effect and δ is the 

interaction between the additive genetic effect and smoking. I specifically tested for the 

significance of δ (sigma), reporting the t-statistics from the association analysis. 

I performed these gene-smoking interaction analyses genome-wide in the dataset of 789 

twins, which included the 330 MZ pairs. At a relaxed significance threshold of P = 

1x10-3, I detected evidence for cis gene-smoking interactions at 11,573 CpG probes (4% 

of 442,307 autosomal probes). At a relaxed significance threshold of P = 1x10-6, I 
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detected evidence for trans gene-smoking interaction sat 99,259 CpG probes (2% of 

442,307 autosomal probes). I then focused specifically on the SNP-CpG pairs that 

formed the no-smoking specific var meQTL results and assessed whether they were also 

observed as gene-smoking interactions at a relaxed significance threshold.   

Table 4-5 summarize the results of the overlap between the no-smoking specific var 

meQTL and the gene-smoking interaction results at a relaxed significance threshold. 

Altogether there were 29 no-smoking specific cis var meQTLs that also had evidence 

for gene-smoking interactions, and 20 of them mapped to genes. There were 474 no-

smoking specific trans var meQTLs that also had evidence for gene-smoking 

interactions, and 380 of these fall into genes.  

I tested the observed overlap compared with the overlap expected under the null 

hypothesis using a resampling approach. For the results in cis, I first selected 581 

probes at random out of all 442,307 probes. I then selected 11,573 probes at random out 

of all 442,307 probes. I then counted the number of overlapping probes in the two 

selected sets. I repeated this procedure 1 million times and created an empirical 

distribution of the number of overlapped items, and I observed an empirical p-value for 

29 overlapping elements of P = 0.04 for the results in cis. For the results in trans, I first 

selected 1,268 probes at random out of all 442,307 probes. I then selected 99,259 probes 

at random out of all 442,307 probes. I then counted the number of overlapping probes in 

the two selected sets.  

I repeated this selection 1 million times and created an empirical distribution of the 

number of overlapping items, and I observed an empirical p-value for 474 elements of P 

= 0.03 for the results in trans. I conclude that there are more overlapping items than 

expected by chance.  
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Table 4-5 Number of probes identified in no-smoking specific var meQTL and gene-smoking 
interactions analysis in whole blood

 

Table 4-6 shows the ten top-ranked gene-smoking interaction results that were also no-

smoking specific cis var meQTLs. 

Table 4-6 Ten top-ranked gene-smoking interaction results that were also no-smoking specific cis var 
meQTLs. 

SNP Probe Beta t-stat P CHR Gene 
rs2461266 cg07775417 -0.33 -4.40 1.26x10-05 4 AGPAT9 
rs13170638 cg18703511 0.44 4.31 1.88x10-05 5 - 
rs77326891 cg04742977 0.65 4.08 5.06x10-05 14 TTC7B 
rs11696169 cg15535174 -0.48 -4.03 6.24x10-05 20 C20orf117 
chr6:26328364:D cg00631329 -0.46 -4.00 7.06x10-05 6 - 
rs4896242 cg14553824 0.31 3.87 11.60 x10-05 6 IL22RA2 
rs34381573 cg19135247 0.41 3.87 11.91 x10-05 21 SIK1 
rs144770262 cg13849647 0.57 3.82 14.25 x10-05 9 DCAF12 
rs6836337 cg15440376 -0.59 -3.82 14.35 x10-05 4 - 
rs34365416 cg01821684 -0.42 -3.79 16.17 x10-05 7 RAC1 

 

The top cis result was obtained for a methylation CpG site in the AGPAT9 (1-

acylglycerol-3-phosphate O-acyltransferases), which is a protein coding gene associated 

with ovarian and colorectal cancer (Agarwal 2012; Currie et al. 2013; Wang et al. 

2012). For trans meQTLs, the second top result was obtained for Calcium-activated 

chloride channel ANO1 which promotes breast cancer progression by activating EGFR 

and CAMK signalling (Britschgi et al. 2013). 

Whole blood results (442,307) cis (4x10-5) trans (8x10-9) 

No-smoking specific var meQTL (a) 581 1,268 

Gene-smoking interaction (b) 11,573 (P = 1x10-3) 99,259 (P = 1 x10-6) 

Overlap between (a) and (b)  29 474 
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 Validation of var meQTLs in 459 unrelated individuals 4.3.4

Validation analysis was performed for var meQTLs in 459 unrelated individuals 

selected from the 789 individuals (these included some of the individuals in the original 

330 MZ sample). I used two different variance analyses for this var meQTL analysis. 

First, I adjusted methylation for all covariates as discussed in 4.2.3 and additionally for 

the mean of each trait (or CpG site), and then I quantile normalized the residuals to a 

standard normal distribution. I then regressed the squared transformed residuals, which 

are a measure of variance (Visscher and Posthuma 2010), on the genotype indicator 

variable of each SNP to test for association of the SNP with methylation variability. I 

only validated the reported results for the smoking-adjusted var meQTL (8,106 cis and 

3,694 trans signals).  Second, I applied the Bartlett’s test to these signals, which is a test 

for variance heterogeneity. I reported these results from Bartlett test if they reached 

nominal significance (P = 0.05).  All of the cis/trans var meQTL results were validated 

at nominal significance using either measure for testing variability. As an example, 

Table 4-7 shows the ten top-ranked var meQTL results were validated with using two 

alternative variance methods with 459 unrelated individuals. 

Table 4-7 Top 10 var meQTLs were validated with 459 unrelated individuals
SNP Probe Chr Gene P (regression) P(Bartlett) 
rs6100252 cg08091561 20 GNAS 4.58x10-12 8.26x10-05 
rs6100252 cg06200857 20 GNAS 2.49x10-03 0.037 
rs79171026 cg12594803 3 DLG1 5.19x10-04 0.049 
chr17:4899230:D cg19427746 17 CAMTA2 6.17x10-07 0.0059 
rs61766781 cg15603964 1 UBR4 3.22x10-06 0.0094 
rs62195287 cg17674726 2 ITM2C 8.37x10-05 0.049 
chr8:74716807:D cg12682382 8 UBE2W 3.19x10-03 1.96 x10-06 
rs1952512 cg02988727 14 ZNF219 9.63x10-07 0.0073 
rs3012041 cg12829045 10 - 1.47x10-09 0.0016 
rs7736222 cg11100481 5 - 6.87x10-03 1.48 x10-05 

 

 Tissue Specificity of genetic impacts on DNA methylation 4.3.5

To explore the tissue specificity of genetic effects on DNA methylation, I repeated the 

meQTL and var meQTL analysis in 83 MZ pairs profiled using Illumina 450k in 
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adipose tissue. I used a permutation based FDR approach as described above in section 

4.2.6 to establish significance thresholds accounting for multiple testing. I selected FDR 

5% to be able to make comparison between whole blood results and adipose tissue 

results at the same threshold. 

At an FDR of 5% (P = 1x10-3) I detected cis meQTLs for 40,601 CpG probes (9.5% of 

427,767 autosomal probes), and trans meQTLs at 24,091 CpG probes (FDR 5%, P = 

1x10-7). Moreover, I detected cis var meQTLs for 15,936 CpG probes (3.72% of 

427,767 autosomal probes, P = 1x10-3) and trans var meQTLs at 24,779 CpG probes (P 

= 1x10-7). The adipose tissue results are summarized in Table 4-8. Additionally, the 

overlap between cis meQTL and cis var meQTL is 4,240 (27%) and for trans meQTL 

and trans var meQTL it is 2,343 (9.7%) showing there are multiple QTLs showing both 

effects. 

Table 4-8 Number of probes identified in QTL analysis in adipose tissue with FDR 5% 

Adipose tissue  
FDR(5%) 

 cis (1x10-3) trans (1x10-7) 

meQTL  40,601 24,091 

var meQTL  15,936 24,779  

 

Comparison between adipose tissue and whole blood 

Half of the cis meQTL signals from adipose tissue are also identified in whole blood 

and almost a quarter of the trans meQTL from whole blood are also identified in 

adipose tissue (Table 4-9). The overlap between adipose tissue and whole blood is 15% 

for cis var meQTL (1,210 probes) and 9% for trans var meQTL (500 probes) when 

validated with FDR = 5% (Table 4-9).  
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Table 4-9 Overlap of probes identified in QTL analysis in adipose tissue versus whole blood results 

Adipose tissue vs.  
Whole blood * 

cis (FDR 5%) trans (FDR 5%) 

Adipose meQTL 40,601 24,091 

Whole blood meQTL 53,813 15,392 

Overlap meQTL 20,049 (49%) 2,444 (15%) 

Adipose var meQTL 15,936 24,779  

Whole blood var meQTL 8,106 3,694 

Overlap var meQTL 1,210 (15%) 343 (9%) 

*Percentage of overlap is estimated out of the smallest denominator (whole blood or adipose) 

 

Overall, I identified 53,813 cis meQTLs and 15,392 trans meQTLs in whole blood and 

40,601 cis meQTLs and 24,091 trans meQTLs in adipose tissue. The overlap of more 

than 20,000 cis meQTLs between these tissues highlights the extent of tissue shared 

effects, as well as showing the importance of genetic effects in tissue differentiation. 

Moreover, I identified 8,106 cis var meQTLs and 3,694 trans var meQTLs in whole 

blood and 15,396 cis var meQTLs and 24,779 trans var meQTLs in adipose tissue. The 

overlap of around 15% cis var-meQTLs highlights that genetic impacts on methylation 

variability tend to be tissue specific, with some tissue shared effects.  

 Discussion and Conclusion 4.4

I performed QTL analysis of methylation levels and variances at over 400,000 CpG 

sites across the genome profiled using the Illumina 450k in both whole blood and 

adipose tissue. In blood, I identified more than 50,000 cis and more than 15,000 trans 

meQTL signals. These numbers are consistent with recent meQTLs reported in different 

tissues using the Illumina 450k array (Grundberg et al. 2013; Shi et al. 2014). I then 
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identified 8,106 cis var meQTLs and almost 90% of the cis var meQTLs are also 

identified as cis meQTL. I also identified 3,694 trans var meQTLs and more than 

quarter of them were also identified as trans meQTLs. 

Additionally, 83 MZ pairs were used for exploring tissue-shared effects in adipose 

tissue, and the results showed that more than half of the probes identified had cis 

meQTLs in both blood and adipose tissues. Altogether 49 MZ pairs had both adipose 

and blood data available. Ideally, a fully overlapping sample across blood and adipose 

tissue would be the most appropriate dataset to assess tissue shared and tissue specific 

results. However, as these data were not available I used a partially overlapping adipose 

sample, as this was the largest available adipose sample with methylation data that I had 

access to. Due to the partial overlap in blood and adipose samples, ‘true’ tissue-shared 

meQTLs results should be consistent in both dataset, as the allele frequency and effect 

size distribution should be similar across these partially overlapping samples. 

In contrast, the tissue-shared effects were much attenuated for cis var meQTLs, for 

which approximately 15% of probes share var meQTLs across tissues. Additionally, 

trans meQTL and var meQTL results show a greater extent of tissue-specifity compared 

to results in cis. Overall, this indicates that numerous cis meQTLs are likely to be 

detected in multiple tissue types, but the majority of trans meQTLs are tissue-specific. 

However, the tissue-shared results were difficult to interpret due to the large difference 

in sample size for MZ twins for adipose tissue and whole blood. This is why I used 

permutation based FDR calculations at the level of 5% for comparison of both samples. 

Overall, there is evidence for some shared genetic control on DNA methylation across 

different tissues. 

The presence of var meQTL can be induced by gene–environment interactions, as well 

as epistasis or haplotype effects. Given that my sample was based on a twin cohort, 

which includes monozygotic (MZ) twin pairs, I used another measure of variability 
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within the dataset. Because MZ twins share the same genetic background, the impact of 

epistatic and haplotype effects driving var meQTL is likely to be very low in our 

sample. Therefore, var meQTL could capture gene environment interactions and MZ 

twins would be a good model in which to assess this. I tested this running two different 

var meQTL analyses, one adjusting for smoking and one without. The 581 cis and 1,268 

trans signals that were only identified as no-smoking specific var meQTL were 

explored further in gene-smoking interaction analysis. From these, 29 cis and 474 trans 

signals identified as having gene–smoking effect. The top no-smoking specific cis var 

meQTL acted on DNA methylation variance in the AGPAT9 gene, which has been 

associated with colorectal and ovarian cancer before (Agarwal 2012; Currie et al. 2013; 

Wang et al. 2012). Additionally, this gene was identified as a smoking-responsive gene 

in RNA-Seq analyses (Hackett et al. 2012) in which responsiveness to smoking was 

quantified with an index representing the % of smoking-responsive genes abnormally 

expressed, with smokers grouped into responders based on the proportion of smoking-

responsive genes up- or down-regulated in each smoker. Although, the identified 

number of no-smoking specific cis var meQTL with evidence for gene-smoking 

interaction is relatively small, the observed findings still suggest that gene environment 

interaction plays a role in driving the significant no-smoking specific var meQTLs, and 

that these no-smoking specific var meQTLs can identify gene by environment 

interaction effects on DNA methylation. 

One issue with the variance analyses above is that genotype classes with a smaller 

sample size, such as the rare genotype category, will have inflated standard deviations. 

For this reason I performed a validation test of var meQTLs with a bigger sample of 459 

unrelated individuals, using another method to assess variance meQTLs - Bartlett’s test 

for variance heterogeneity in unrelated samples. The findings showed that all of the var 

meQTLs in the MZ analyses validated as var meQTLs at nominal significance in the 
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unrelated sample. The MZ twin-pair design is a powerful approach to study genetic 

control of phenotypic variability as it requires a smaller sample size than its equivalent 

in an unrelated study and identified specifically the extent of variability due to 

environmental factors. 

I clearly see that the distribution of var meQTLs is enriched for rare SNPs, compared to 

cis meQTLs, and this is likely in part due to the statistical artefact that higher variance is 

observed in smaller genotype groups. I included two follow-up analyses to assess the 

extent to which an increase of variance in small samples is likely driving these effects. 

The first, was a validation analysis of the cis var-meQTLs in all of the available 

unrelated subjects using Bartlett’s test in section 4.3.4. The sample size of unrelated 

dataset is larger than the 330 MZ pairs and all of the cis var-meQTLs remained 

nominally significant in the unrelated dataset. The second analysis was to ensure that 

for all cis var-meQTLs every genotype group had a minimum of 5 samples. Therefore, 

although it is likely that the cis var-meQTLs capture to some extent increase variability 

of small genotype groups, the result cannot be entirely explained by this effect.  

Overall, the results from this chapter have identified thousands of genetic effects on 

DNA methylation levels and for the first time, genetic impacts on DNA methylation 

variability. These findings give insights into the biological processes regulating 

epigenetic mechanisms in humans.  
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CHAPTER 5  

 

Metabolomic and epigenetic signatures of type 2 diabetes 

______________________________________________________________________ 

 Introduction 5.1

The main aim of this chapter is to understand the biological mechanisms involved in 

T2D susceptibility and progression, by linking DNA methylation and metabolomics to 

T2D status in twins. Part of this work has been recently published (Menni et al. 2013c; 

Yuan et al. 2014).  

T2D is a chronic disease, caused by failure of beta cell function and insulin resistance. 

Multiple GWAS have been conducted to explore genetic influences on T2D, identifying 

approximately 81 susceptibility variants to date (Billings and Florez 2010; DIAGRAM 

et al. 2014; Guan et al. 2008; McCarthy 2003; Morris et al. 2012; Sanghera and 

Blackett 2012; Zeggini et al. 2008). Metabolic profiles have also been linked to this 

disease (Menni et al. 2013c; Shin et al. 2014; Suhre et al. 2010; Wang et al. 2011). In 

addition, longitudinal studies have identified a link between metabolite levels and 

insulin resistance and T2D (Suhre et al. 2010; Wang et al. 2011).  Finally, T2D-related 

differentially methylated regions (DMRs) have also been identified (Yuan et al. 2014). 

 In this chapter I explored four specific research questions. First, the aim was to assess 

whether metabolic profiles that are characteristic of T2D also associate with certain 

epigenetic variants. I performed an association study of metabolic profiles in T2D and I 

tested whether the T2D-associated metabolites also associated with DNA methylation 

changes genome-wide. This work is in line with a recent EWAS study from the KORA 

cohort, exploring the link between metabolomics and epigenetics in the first metabolite-
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EWAS (Petersen et al. 2014). The second question that I addressed was to try to 

uncover if epigenetic variants are associated with T2D, and whether these variants may 

also be associated with metabolic profiles. I performed an epigenome-wide association 

study of DNA methylation changes in T2D, that is, comparing DNA methylation levels 

to T2D, to identify differentially methylated positions in T2D (T2D-DMPs). I then 

tested whether these T2D-DMPs also associate with metabolic profiles. The third 

research question was to assess if T2D genetic susceptibility effects can be mediated via 

intermediate phenotypes, such as epigenetic changes or metabolic profiles. I compared 

the list of 81 T2D GWAS signals that have been published to date against the genetic 

variants that contribute to metabolomic and epigenetic profiles identified in Chapters 3 

and 4 of my thesis. Finally, in the fourth component I combined the results from the 

three previous analyses described here, that is, integrating genetic, epigenetic, and 

metabolic profiles associated with T2D to try to understand biological mechanisms 

underlying T2D.  The fourth research aim was to attempt to infer causality in T2D by 

fitting Bayesian networks to the peak T2D-GWAS, T2D-metabolite, and T2D-DMP 

results and their pair-wise associations, to gain more insight into T2D susceptibility and 

progression.  

 Methods and Results 5.2

 Metabolic profiles that are characteristic of T2D associate with epigenetic 5.2.1
variants.  

Collaborative study 

In my first year, I contributed towards a T2D cross-sectional case-control study of 

metabolite levels, where we identified 42 metabolites associated with T2D (Menni et al. 

2013c) (Figure 5-1).  
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Figure 5-1 Description of 42 metabolites associated with T2D case-control status (adapted from Menni 
et al. 2013). 

 

Dr Cristina Menni, a research fellow in the department, led this MWAS work and I 

contributed to the study. Briefly, the dataset consisted of 2,204 female subjects (115 

T2D, 192 impaired fasting glucose (IFG), and 1,897 controls) who had metabolomics 

profiles available for 447 Metabolon metabolites after quality control. Using 1,297 

monozygotic and 1,200 dizygotic twin pairs, I estimated heritability for each metabolite 

identified in association analysis using OpenMx (Boker et al. 2011). The calculated 

heritabilities ranged from 0% to 65%. For each T2D-control and IFG-control contrast, 

we fitted mixed effect regression adjusting for age, BMI, batch, and  included a random 

effect for family relatedness, and then ran a stepwise linear regression including all the 

significant metabolites to look for metabolites independently associated with T2D and 

IFG respectively. At a Bonferroni-corrected cut off of P = 1x10-4 (0.05/447), 42 of the 

447 metabolites showed significant differences among T2D case and control subjects,  
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and independently associated with T2D, after adjusting for all other metabolites in 

multivariate analyses. Furthermore, 117 metabolites were associated at nominal 

significance (P =0.05) and these 117 were used in downstream analyses in section 5.2.3 

below. As depicted in Figure 5-1, the 42 peak metabolites fall into three principal 

classes: 12 are lipids (primarily medium and long-chain free fatty acids), 7 are 

carbohydrates, 9 are branched-chain amino acids (BCAAs) or derivatives, and 14 are 

unknown. Additionally, 14 metabolites from the 447 metabolites tested showed 

significant differences among IFG case and control subjects with a Bonferroni-corrected 

cut off of 1x10-4 (0.05/447), and of these 8 overlap with the results from T2D case and 

control analysis. I then validated the top 48 hits using in the lme4 package in R (Bates et 

al. 2015). The model can take into account relatedness between individuals and the 

sample contained MZ and DZ twins. The MWAS covariates included fixed-effect terms 

(age and BMI at the time of sampling, metabolite batch) and random effect terms 

(family structure and zygosity i.e DZ, MZ and singleton). In the full regression model 

metabolite were fitted as the outcome, and the predictors consisted of age and BMI at 

the time of sampling, fasting glucose levels, batch and random effect terms. This full 

model compared to the null model (without fasting glucose levels) using an ANOVA F-

statistic to compare model fit. ). Diabetes is considered to be primarily a disorder of 

glucose and was the strongest predictive biomarker for T2D (P = 1.12x10-14). On the 

other hand, apart from carbohydrates, we also reported lipids and amino acids that 

associate with T2D and IFG. 

Extended work for my thesis 

For my thesis, I then extended this work by performing additional analyses. I tested 

whether the 42 T2D-associated metabolites also associated with DNA methylation 

changes genome-wide in 42 EWAS using the Illumina 450k methylation dataset in 807 

individuals, which included 32 T2D cases and 775 controls.  



 113 

The Metabolon metabolomics and DNA methylation dataset first underwent several 

quality control checks as described in Chapter 2. I visually checked plots to remove the 

outliers and subjects with missing values from both datasets. In the methylation dataset 

I removed probes mapping to multiple locations as described in Chapter 2. Raw DNA 

methylation values normalized using BMIQ (Teschendorff et al. 2013) and beta values 

on each probe were normalized to N(0,1) then fitted in linear mixed effect models. A 

log transformation with base 10 was applied to the 42 metabolites. The EWAS 

covariates included fixed-effect terms and random effect terms in LMER in lme4 

package in R (Bates et al. 2015). In the full regression model normalized methylation 

levels were fitted as the outcome, and the predictors consisted of metabolites (standard 

normalized), smoke, sex, age, BMI, plate and blood cell count estimations and random 

effect terms. This full model compared to the null model (without metabolites) using an 

ANOVA F-statistic to compare model fit. A methylation probe was defined as a T2D-

metabolite-DMP (Differentially Methylation Position) if it passed the False Discovery 

Rate (FDR) of 5%. FDR was calculated for each probe using the QVALUE R package 

(Storey 2015).  

Altogether, I performed 42 EWAS, one for each of the 42 T2D-associated metabolites 

identified in the collaborative study described above (Menni et al. 2013c). The merged 

final dataset included a total of 42 metabolites and 474,979 methylation probes in 807 

individuals. At the threshold of FDR 5% (P =1x10-6) I identified 121 (T2D-associated 

metabolite)-DMPs (APPENDIX B Table S5-1), and I present the 10 top-ranked  

metabolite-DMPs in Table 5-1.  If I’ve had removed the SNP on probes as suggested by 

Naeem et al. ((Naeem et al. 2014)) than it would be 94 (T2D-associated metabolite)-

DMPs. 
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Table 5-1 Top 10 metabolite-DMPs in blood  

Probe Ch
r 

Location Gene Beta P Metabolite Super_pathway 

cg12612277 16 74455542 CLEC18B 0.18 1.15x10-7 mannose Carbohydrate 

cg11113753 2 44065383 ABCG5 0.19 1.70 x10-7 X - 11550 NA 

cg03333776 1 52455148 RAB3B 0.17 3.79 x10-7 15-methylpalmitate  Lipid 

cg23867721 18 77631069 KCNG2 0.16 3.81 x10-7 X - 11550 NA 

cg05925577 1 121375906 - 0.22 6.07 x10-7 malate Energy 

cg21831937 15 57519802 TCF12 -0.22 6.96 x10-7 lactate Carbohydrate 

cg04483701 16 86253703 - 0.15 7.03E x10-7 X - 12442 NA 

cg21383495 17 54673193 - -0.17 7.19 x10-7 15-methylpalmitate  Lipid 

cg08526784 16 1811246 MAPK8IP3 -0.36 7.21 x10-7 lactate Carbohydrate 

cg03666973 2 27008764 CENPA -0.29 7.30 x10-7 arabinose Carbohydrate 

 

 Epigenetic variants are associated with T2D, and these also associate with 5.2.2
metabolic profiles. 

Collaborative study 

I recently contributed to an epigenetic study of T2D, led by Dr. Yuan a research fellow 

in the department. In this work, the aim was to identify differentially methylation 

regions associated with T2D (T2D-DMRs) in T2D-discordant genetically identical 

twins (Yuan et al. 2014). Whole blood samples from 27 MZ twin pair were profiled for 

DNA methylation using MeDIP-seq. MeDIP-seq data were generated at almost 30 

million paired-end reads of length 50'bp per individual, and mapped to the human 

genome. He quantified levels of DNA methylation in overlapping bins of size 500'bp 

using MEDIPS (Yuan et al. 2014). He identified 31DMRs at a FDR level of 10%, using 

a linear mixed effects model. The strongest signal is in the promoter of the MALT1 gene 

(FDR=5%), which is a signalling protein with a role in the development and function of 

B and T cells, as well as energy and insulin pathways.  

My role was to perform a metabolite analysis in this sample of T2D-discordant MZ 

twins and compare the metabolite profiles to the peak T2D-DMRs. Among the 27 MZ 

twin pairs, 18 MZ twin pairs had plasma and/or serum metabolites profiles. For the 36 

MZ individuals (18 MZ twin pairs) who had metabolite data in this sample, the mean 
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difference of metabolite levels within twin pair (affected–unaffected twin) was 

calculated. Wilcoxon signed-rank test was used to evaluate whether the mean difference 

for each metabolite was significantly (P<0.05) associated with the DNA methylation 

twin pair difference at MALT1.  The peak T2D DNA methylation signal in the MALT1 

gene was nominally significantly associated with 7 metabolites (X–06246, N-(2-furoyl) 

glycine, X–12450, glycerol 2-phosphate, 4-acetamidophenol, X–11818 and 

taurocholate) in my results. One of the metabolites, taurocholate, was of interest 

because it has been associated with increasing L cell and insulin secretion as well as a 

decrease in blood glucose and food intake in obese type 2 diabetic volunteers (Adrian et 

al. 2012). Additionally, one of the 42 metabolites associated with methylation in the 

MALT1 gene, which was identified in a T2D-EWAS below (Yuan et al. 2014). The 

probe in MALT1 gene (cg23450680) was associated with 15-methylpalmitate (isobar 

with 2-methylpalmitate) at a relaxed p-value (P<0.004). I included these results for 

further analysis in section 5.2.3. 

Extended work for my thesis 

The epigenetic study led by Dr. Yuan was based on MEDIP-seq DNA methylation 

profiles. Although this technology provides good genome-wide coverage, the resolution 

of the DNA methylation signal is only at the level of 150-300bp. Conversely, the 

Illumina 450k array provides DNA methylation at single-base-pair resolution, but only 

at ~485,000 CpG-sites genome-wide. Therefore, I extended the epigenetic analyses of 

T2D by using the Illumina 450k dataset and a case-control design in a total of 864 

individuals, which included 45 T2D cases and 819 controls. 864 include 807 individuals 

used in 5.2.1 part of extended work for my thesis. 

The DNA methylation dataset first underwent several quality control checks as 

described in Chapter 2. Briefly, I visually checked plots to remove the outliers and 

subjects with missing values from dataset, and removed probes mapping to multiple 
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locations. Raw DNA methylation values were normalized using BMIQ (Teschendorff et 

al. 2013) , and beta values at each probe were normalized to N(0,1). T2D case-control 

status was defined according to available blood fasting glucose levels.  Subjects were 

classified into two groups based on fasting glucose levels at time of initial sampling and 

at subsequent visits; T2D case subjects (fasting glucose ≥7 mmol/L or physician’s letter 

confirming diagnosis) and T2D control subjects (3.9 mmol/L< fasting glucose <5 

mmol/L). The merged final dataset included a total of 474,979 probes profiled in 45 

T2D cases and 819 controls. 

The normalized methylation betas were fitted with a linear mixed effect model as the 

outcome, and the predictors consisted of BMI, plate and blood cell count estimations, 

family and zygosity, as previously described.  Residuals from this model were extracted 

and normalized to N(0,1), and then included in the second linear model. The residuals 

were fitted as the outcome, and the predictors consisted of T2D, smoking, sex, and age. 

This full model was compared to a null model (without T2D status) using an ANOVA 

F-statistic to compare model fit. A probe was defined as a T2D-DMP if it passed FDR 

of 5%. FDR was calculated for each probe using the QVALUE R package (Storey 

2015).  

At an FDR of 5% (1x10-5), I identified 9 T2D-DMPs in the 864 individuals (Table 5-2, 

Figure 5-2). On the other hand, at nominal significance (P =0.05) there were 27,285 

CpG-sites associated with T2D and I included these 27,285 results for further analysis 

in section 5.2.3 below. If I’ve had removed the SNP on probes as suggested by Naeem 

et al. ((Naeem et al. 2014)) than it would be 22,713 (T2D-associated metabolite)-DMPs. 
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Table 5-2 9 probes found in T2D –DMPs in blood tissue 

Probe Chr Location Gene Beta t-stat P 

cg25677697 19 50912349 POLD1 0.05 5.04 5.57 x10-7 

cg26093898 17 80137377 CCDC57 0.05 4.92 1.03 x10-6 

cg21733020 17 2599052 KIAA0664 0.05 4.88 1.29 x10-6 

cg04607246 1 155720323 GON4L; 
MSTO2P 

0.05 4.72 2.70 x10-6 

cg18191664 8 37594173 ERLIN2 0.08 4.66 3.70 x10-6 

cg13573626 14 105858487 PACS2 0.04 4.59 5.01 x10-6 

cg13093042 1 207975500 MIR29C 0.04 4.52 7.16 x10-6 

cg01758022 8 141557171 EIF2C2 0.04 4.47 8.82 x10-6 

cg01678580 16 4674018 MGRN1 0.03 4.46 9.35 x10-6 

 

 

Figure 5-2 QQplot of the T2D EWAS in 45 cases and 819 controls 

*Inflation factor (�) for the QQplot calculated as 1.3 

 

 Bayesian Network Analysis 5.2.3

Bayesian Networks (BNs) are graphical probabilistic models that are able to represent 

joint probability distributions compactly in a factorized way (Koller and Friedman 

2009; Pearl 1988). A BN consists of a graphical structure and a set of parameters. The 

graphical structure of a BN is a directed acyclic graph (DAG) that consists of nodes 
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representing variables and directed edges representing the relations between those 

variables. If a directed edge connects two variables, as in A ! B, A is called the parent 

variable and B is called the child variable. The DAG structure encodes a set of 

conditional independence assumptions between the variables: a variable is independent 

of its non-descendants given its parents. The DAG structure is also suitable for 

representing causal relations of a domain as the directed edges are often used to 

represent the causal relations between the variables (Pearl 2000). The parameters of a 

BN represent the conditional probability distributions between the variables that are 

directly connected by an edge.  

A BN model can be built in several different ways. First, we can define the graphical 

structure, and estimate the parameters (i.e. conditional probability distributions) from 

the data by using maximum likelihood approach or Bayesian methods. Second, we can 

estimate both the graphical structure and the parameters from data by using score-based 

or constraint-based algorithms. Third, we can manually define both the structure and the 

parameters by using expert information. The performance of alternative BN models can 

be assessed with various scoring methods such as, log-likelihood, the Aikake 

Information Criterion (AIC) (Akaike 1976) or the Bayesian Information Criterion (BIC) 

(Schwarz 1978). In this study, I used the first approach: I build three BN structure for 

the alternative causal relations, I estimated the parameters of these structures from the 

data and finally I examined the compatibility of these structures with the data by using 

the AIC Score.  

Aim 

My aim was to attempt to infer causality in T2D by fitting BN to the peak T2D-GWAS, 

T2D-metabolite, and T2D-DMP results and their pair-wise associations. I compared the 

peak T2D-associated metabolite and methylation results from sections 5.2.1 and 5.2.2 in 

this Chapter, with the methylation and metabolome QTL results from Chapters 3 and 4 
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specifically at 81 published T2D-GWAS loci. Pair-wise associations that surpassed 

nominal significance were then used to fit in the BN and infer direction of association. 

Methods 

I first compared the list of 81 T2D GWAS signals that have been published to date 

(Billings and Florez 2010; Guan et al. 2008; McCarthy 2003; Sanghera and Blackett 

2012) against the genetic variants that contribute to metabolomic and epigenetic profiles 

identified from my thesis (Chapter 3 and Chapter 4). If T2D genetic variants are 

identified as metabolite QTLs or methylation QTLs, this may give us some insight into 

the intermediate molecular mechanisms involved in T2D susceptibility. I also compared 

metabolite QTLs to methylation QTLs, because if any metabolite QTLs are also 

methylation QTLs this may point to potential shared mechanisms of genetic control of 

both processes. I then only considered the QTLs that had impacts on the metabolites or 

epigenetic probes that were at least nominally associated (P = 0.05) with T2D, from the 

analyses shown in the earlier two sections in this chapter (Chapter 5.2.1 and Chapter 

5.2.2).  

In total there were 81 genes (T2D-GWAS signals from the literature), 117 metabolites 

(T2D-MWAS nominally significant results from 5.2.1) and 27,285 probes (T2D-EWAS 

nominally significant results from 5.2.2) that were included in the comparisons (Figure 

5-3). I performed all pairwise comparisons and only selected nominally-significant 

pairwise findings for downstream analysis. That is, I considered:  

1) 81 T2D-GWAS SNPs as metabolomics QTLs for 117 T2D-associated metabolites, 

selecting only results that surpassed P = 0.05, and 

2) 81 T2D–GWAS as methylation QTLs for 27,285 T2D-associated CpG-sites, 

selecting only results that surpassed P = 0.05, and 



 120 

3) The correlation between the 117 T2D-associated metabolites and 27,285 T2D-

associated CpG-sites, selecting only results that surpassed P = 0.05. 

Using these pair-wise selection thresholds, I found 240 overlapping three-way 

associations with a unique set of 36 genetic variants, 71 methylation probes and 41 

metabolites (Figure 5-3, APPENDIX B Table S5-2). I included these results in the BN 

analysis. If I’ve had removed the SNP on probes as suggested by Naeem et al. ((Naeem 

et al. 2014)) than I would’ve only include 56 methylation probes into BN analysis. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-3 Input for BN analysis  

 

Fitting Bayesian Networks 

To infer causality of the association at the peak T2D-GWAS, T2D-metabolite, and 

T2D-DMP results, I used the 240 overlapping three-way association and fit a BN 

network to these data to explore the shared genetic impacts on T2D-association 
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methylation and metabolomic signatures to learn more about biological processes 

involved in T2D susceptibility and progression.  

To test the networks I selected three datasets (genetic, methylation, and metabolomics – 

where all individuals had available T2D case-control status) that were normalized to 

calculate the relative frequencies of the inferred best network. Altogether, the merged 

normalized dataset for these BN analyses contained 807 TwinsUK individuals, which 

included 32 T2D cases and 775 controls with biological profiles available for the 31 

genetic variants (SNP), 71 methylation profiles (MT), and 41 metabolites (MB).   

I built three BN structures representing the alternative hypotheses of the causal relations 

between SNP, MB and MT. The first BN structure assumes that there is a causal 

relation from SNP to both MT and MB, and thus MT and MB are independent of each 

other given SNP (INDEP) (Figure 5-4a). The second BN structure assumes there is a 

causal relation from SNP to MB, and from MB to MT (SMbMt) (Figure 5-4B). The 

third BN structure assumes there is a causal relation from SNP to MT, and from MT to 

MB (SMtMb) (Figure 5-4C). The parameters of these networks were estimated by using 

the maximum likelihood approach. Afterwards, I examined the compatibility of these 

structures with the data by using the AIC score. I used the Akaike Information Criterion 

(AIC) score (AIC = 2k-2ln(L), where k is the number of parameters and L is the 

maximum likelihood to compare our networks. To compare the goodness of fit of one 

network to another, I used the relative likelihood of one network against the other 

following previous work (Bryois et al. 2014; Gutierrez-Arcelus et al. 2013). If I have 

two networks, N1 and N2 and AIC(N1)≤AIC(N2), then the relative likelihood of N2 

with respect to N1 is defined as: exp((AIC(N1)–AIC(N2))/2). I kept only networks 

where the best model was at least ten times more likely than the second best model. The 

bnlearn package in R was used to build and calculate the BN models (Scutari 2009).  
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Figure 5-4 BN structures of A) INDEP B) SMbMt C) SMtMb 

 

I used BN to test which of the three possible models best suit each set of variables. 

After fitting all the models at the 240 three-way associations, there were 10 models 

where the best model was at least ten times more likely than the second best model. Of 

these 10 models, 3 followed the SMtMb model and 7 followed SMbMt (Table 5-3). As 

an example of a SMtMb model result, I found that SNP rs9936385 in the FTO gene 

could alter DNA methylation levels locally within FTO and then impact on levels of the 

metabolite palmitoleate. 

 Table 5-3 10 models reported by Bayes Network 

Gene Probe Metabolite SNP Score1  Score2 Score3 Best Model RL 

WFS1 cg00829753 X - 11423 rs4458523 -2584.9 -2578.7 -2584.1 2 15.47 

WFS1 cg22247194 citrulline rs4458523 -2971.9 -2966.9 -2975.9 2 12.69 

ADCY5 cg14844401 X - 10506 rs11717195 -3292.3 -3286.1 -3291.9 2 18.46 

ADCY5 cg14844401 malate rs11717195 -3292.0 -3286.0 -3292.2 2 21.36 

ADCY5 cg14844401 pentadecanoate (15:0) rs11717195 -3292.9 -3287.2 -3292.4 2 13.93 

FTO cg12495954 palmitoleate (16:1n7) rs9936385 -2984.6 -2986.9 -2977.4 3 37.12 

FTO cg12495954 X - 13215 rs9936385 -2983.9 -2987.6 -2978.7 3 13.70 

KCNQ1 cg19030519 malate rs231362 -3386.4 -3381.0 -3385.7 2 10.36 

HNF4A cg08407434 X - 13496 rs4812829 -2992.7 -2998.1 -2988.0 3 10.50 

ANK1 cg26172342 heptanoate (7:0) rs516946 -3207.5 -3202.5 -3209.8 2 12.49 

Score: score from the AIC test for the 3 different models 1)INDEP 2) SMbMt 3) SMtMb 

RL: Relative likelihood 
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On the other hand, in the SMbMt model, I observed that SNP rs231362 in the KCNQ1 

gene, could affect malate, which is a carbohydrate, and then modify DNA methylation 

levels. KCNQ1 was reported for predicting and mediating impaired insulin secretion 

(Jonsson et al. 2009).  

If I’ve had removed the SNP on probes as suggested by Naeem et al. ((Naeem et al. 

2014)) than only 8 models would’ve been significant. The 2 probes in WFS1 gene 

needed to be removed (cg00829753 and cg22247194). 

There was no convincing evidence that the T2D-GWAS variants had independent 

effects on DNA methylation and metabolomics profiles at the 240 three-way 

associations. 

 Discussion and Conclusion 5.3

In this chapter I first explored the association of metabolomics and epigenetic data and 

one of the most common diseases, T2D. Multiple signals were identified to associate 

with T2D at both the metabolomics and epigenetic levels. The availability of different 

levels of “-omics” data in the TwinsUK cohort then allowed me to explore the 

relationship between T2D-associated “-omics” profiles, specifically for genetic 

variation, methylation and metabolomics.  

One of the findings from the epigenome-wide analyses was a peak T2D-associated 

signal in the MALT1 gene. The MALT1 DMR was originally identified from a MeDIP-

seq analysis (Yuan et al. 2014), but I was able to validate the T2D-associated signal 

using a different DNA methylation technology (Illumina 450k) in a case control study, 

but at a more relaxed significance threshold. My analyses comparing T2D-DMPs and 

metabolite profiles, showed significant associations of MALT1 DNA methylation 

profiles with several metabolites, of which taurocholate was of most relevance to T2D. 

The MALT1 T2D-DMP does not have a methylation QTL and the MALT1 region is not 
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within the list of 81 genome-wide significant T2D GWAS signals. The metabolites 

associated with T2D and MALT1 also do not have metabolite QTLs. Therefore, the 

MALT1- taurocholate were not further explored in the BN context.  The lack of genetic 

signal underlying the MALT1 result is not surprising because the MALT1 findings were 

obtained in a sample of T2D-discordant genetically identical twins. It is more likely that 

the MALT1-metabolite associations are either environmentally driven, or consequence 

of T2D.  

In the main section of this chapter I explored T2D-associated “-omic” profiles for 

genetic variation, methylation and metabolomics, and specifically their pair-wise and 

three-way associations. After restricting results to at least nominally significant 

associations, I obtained a list of 240 three-way associations to explore further in a BN 

context. I detected 10 cases of three-way associations where either genetically driven 

DNA methylation levels impact metabolomic profiles, or genetically driven 

metabolomics traits impact DNA methylation levels. 

One interesting finding was obtained for a SNP in the FTO gene, associated with DNA 

methylation in the FTO gene, and the metabolite palmitoleate. The fatty acid, 

palmitoleate (16:1 n − 7), which is the second most abundant monounsaturated fatty 

acid, is influenced by endogenous synthesis, which appears to be tissue and depot 

specific. It is reported as a ‘lipokine’, which is a lipid-controlling hormone (Cao et al. 

2008). From my results it appears that FTO genetic impacts on palmitoleate are 

mediated via DNA methylation in the FTO gene. Palmitoleate travels to the muscles 

and liver, where it improves cell sensitivity to insulin and blocks fat accumulation in the 

liver (Cao et al. 2008). The first report linking the FTO (fat mass and obesity-

associated) gene and obesity came from a genome-wide association study 

linking FTO variants with T2D in a European population (Frayling et al. 2007).  

However, the connection between FTO and diabetes was lost after correcting for body-
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mass index, suggesting that FTO -mediated susceptibility to T2D was driven through a 

relationship between FTO and obesity. My result complements and extends this work, 

because the SMtMb directional effect suggests that at least some of the genetic impacts 

at FTO likely act via DNA methylation (which in turn may influence the expression of 

FTO or nearby genes, such as IRX3 ((Ragvin et al. 2010). These effects impact 

palmitoleate, which is particularly relevant to metabolic disease, such as T2D. 

One potential limitation of the integrative genetic/epigenetic/metabolomics T2D study 

is that mQTLs were explored using HapMap imputations, while I used 1000G 

imputations for meQTLs. However, I also identified meQTLs using PLINK (Purcell et 

al. 2007) in HapMap imputed data in an earlier version of the analyses in Chapter 4. 

The overlap between meQTLs in the HapMap imputed and meQTLs in the 1000G 

imputed results was 52%. One difference between the meQTL analyses with HapMap 

imputation and 1000g imputation was that when I used 1000g imputations in matrix 

eQTL I separately determined cis and trans results, that is, one probe can have both cis 

and trans meQTLs. On the other hand, in PLINK I only reported the best SNP per probe 

so one probe can only have cis or trans effects, which is an underrepresentation of the 

total number of meQTLs. Given this limitation, I used the 1000G meQTLs results 

throughout Chapter 5 section 5.2.3.   

Overall, these results suggest that the effects of DNA methylation can be both active on 

metabolomic profiles, or passive, by being a consequence for metabolomic profiles.  

This study shows the potential of integrating other “-omics” data for common complex 

diseases. Nevertheless, further studies, including longitudinal studies, are needed to be 

conducted to explore the causal relationships between “-omics” data and ultimately T2D 

affection status. 
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CHAPTER 6  

 

Conclusions & Future Perspectives 

______________________________________________________________________ 

Numerous GWAS have been conducted to discover genes involved in human disease. 

The genes detected in GWAS, however, must be further investigated to better 

understand biochemical processes underlying the association. Metabolomics is the 

evolving field of measuring organic compounds of a cell or body fluid and analysis of 

metabolites offer to gain further insight into the function of genes. As metabolites are 

products of genetic processes, they are considered to enlighten biological processes and 

metabolic functions and are thus highly informative about biology. In this thesis the 

integration of metabolomics data in the GWAS approach are applied to multiple 

examples. Furthermore, genetic studies have also shown that the genetic contribution 

cannot fully explain many diseases and phenotypic traits. In order to explore the 

missing heritability, more studies now focus on epigenetic modifications. My thesis 

covered broad aspects of metabolite GWAS and methylation GWAS and below is a 

brief discussion of what I consider to be the key findings from each chapter.  

The first part of my thesis described an application of the metabolomics GWAS 

approach to three projects, two large collaborations and one novel project. In this 

section I gained knowledge about different biochemical mechanisms. The possibility to 

discover novel loci that underlie metabolomic traits is one of the aims of the 

metabolomics GWAS approach. In total, 145 loci were detected when analyzing almost 

8,000 samples in the non-targeted platform from Metabolon and 31 loci were detected 

when analyzing almost 7,500 samples in the targeted platform from Biocrates. 

Additionally, I explored the overlap in the two of the platforms in 1,001 individuals 
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with the aim of identifying stable metabolites on both technologies to ultimately enable 

combining metabolite profiles across these two platforms. Comparison of 43 

metabolites named for the same compound on both platforms indicated strong positive 

correlations, with few exceptions. Genome-wide association scans with high-throughput 

metabolic profiles (mGWAS) were performed for each dataset and identified genetic 

variants at 7 loci that are significantly associated with 16 unique metabolites on both 

platforms. The 16 metabolites showed consistent genetic associations and appear to be 

robustly measured across platforms." These included both metabolites named for the 

same compound across platforms as well as unique metabolites, of which 2 

(Biocrates_C9/ Metabolon_X-13431 and Biocrates_lysoPC a C28:1/ Metabolon_1-

stearoylglycerol) are likely to represent the same or related biological entities. The 

results thereby demonstrate the complementary nature of both platforms and can be 

informative for future studies of comparative and integrative metabolomics analyses in 

samples profiled on different platforms. 

One of the limitations of the mGWAS approach was the computational as well as data 

storage burden, especially if all pair-wise metabolite ratios were analyzed. But this 

limitation is also an advantage since introducing all possible metabolites and their ratios 

into analyses has proven to be successful even if it increases the multiple testing burden. 

Furthermore, the p-gain was used as an objective measure of the increase in information 

when considering metabolite ratios over single metabolites, and these analyses gave us 

further insights into metabolic pathways. 

Altogether, the mGWAS results from the three studies have advanced this research area 

in the following directions: understanding of human metabolism by providing new 

insight into the role of inherited variation on the metabolome, and potentially providing 

new prospects for understanding the etiology of diseases and pharmaceutical research. 
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In the second part of my thesis, I performed GWAS analyses of epigenetic data, 

identifying genetic variants that influence DNA methylation levels (meQTLs) and 

variances (var meQTLs). The meQTL results identified to date indicate that genetic 

variation can have a major effect on the methylome with implications for tissue 

specificity, tissue shared effects, and shared impacts across multiple gene regulatory 

processes. I identified 53,813 cis meQTLs and 15,392 trans meQTLs in whole blood 

and 40,601 cis meQTLs and 24,091 trans meQTLs in adipose tissue. The overlap of 

more than 20,000 cis meQTLs between these tissues highlights the extent of tissue 

shared effects, as well as showing the importance of genetic effects in tissue 

differentiation. Additionally, the results also point out that cis meQTLs are very large in 

number and tend to be very localized (±1kb). Moreover, this is one of the first studies 

that profiles trans meQTL, showing relatively strong evidence for associations in trans. 

Overall, 18% of the methylome seems to be under genetic control when focusing on the 

mostly gene-rich regions assayed by Illumina 450k in whole blood.  

I also explored the evidence that genetic effects may influence not only DNA 

methylation levels, but also variances. I explored this by using MZ-twin discordance as 

a measure of variance. Identifying var QTLs will give more insight into the genetic 

structure of complex phenotypes and gene-environment interactions. However, the 

frequency of var QTLs and their impact on phenotypic variability remains unknown, as 

a relatively unexplored area of research. I identified 8,106 cis var meQTLs and 3,694 

trans var meQTLs in whole blood and 15,396 cis var meQTLs and 24,779 trans var 

meQTLs in adipose tissue. The overlap of around 15% cis var-meQTLs highlights that 

genetic impacts on methylation variability tend to be tissue specific, with some tissue 

shared effects. Strong evidence for trans is observed as as well as strong cis signals 

located near the probe, specifically in the 2 kb immediately surrounding the probe.  
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These results also overlap with eQTL results from other studies, although such shared 

QTLs represent a small proportion of meQTLs and eQTLs overall. The presence of 

genetic variants that impact both methylation and gene expression, suggest a causal 

mechanism by which one genetic variant might affect both processes.  

One of the limitations of the methylation GWAS approach was the computational as 

well as data storage burden, especially when calculating the permutation based FDR, 

which needed to be limited to 10 permutations although it was genome-wide. In 

conclusion, the results confirm and extend previous findings of genetic influences on 

DNA methylation and give insights into mechanisms by which genetic impacts DNA 

methylation levels and variability.   

In the final part of my thesis, I explored metabolomics and epigenetic profiles in the 

context of T2D. I first analysed the association of these omic data with T2D, identifying 

both metabolomics and epigenetic signals that were significantly associated with the 

disease. Identifying metabolomic and epigenetic markers for T2D, both for potential 

prognosis and understanding pathways involved in progression is essential and further 

insight to these associations will improve value of existing predictive T2D biomarkers, 

and thus increase the possibilities to delay, or prevent, T2D in individuals at high risk 

for the disease.  

I then integrated genotype, metabolomics and methylation data to explore causal 

relationships between the identified associations. Here, I specifically focused on genetic 

variants that have previously been strongly associated with T2D. I explored three 

different models using BN, where the SNP affects metabolite and methylation 

independently from each other, the SNP affects metabolite and then methylation, and 

the SNP affects methylation then metabolite. I observed that more than half of the 

significant association follow model two. However, one of the interesting key finding 

was from model three, that involves a SNP and a methylation probe in the FTO gene 
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and a lipid-controlling hormone metabolite. This model suggests that some of the 

genetic impacts at FTO likely act via DNA methylation and these effects influence the 

levels of the metabolite palmitoleate, which is linked to T2D. This finding is interesting 

because these variants were associated with T2D before in separate “-omics” analysis 

but the integrative analysis points to a directional effect in the associations. 

My recommendation for future analyses is to incorporate multiple “-omics” 

technologies together, for example studying combined gene expression and methylation 

profiles to understand gene regulation mechanisms, as well as their connection to 

proteomics and metabolomics where available. Using omics data integration might 

address fundamental biological questions that would increase our understanding of 

systems as a whole. Moreover, longitudinal studies are also needed to explore causal or 

a consequential association between the methylation, gene expression, metabolites and 

phenotype.  

In summary, my findings show that genetic variants have major impacts on metabolite 

profiles in the human body, and this can give insight into biological processes, as well 

genetic contribution to metabolic processes. Additionally, genetic variants influence 

epigenetic profiles, and this might give information about the underlying biological 

processes that regulate human epigenetic variations. Lastly, I explored genetic variants 

linked to T2D by integrating these data with epigenetic and metabolomics profile to try 

to identify molecular processes involved in genetic susceptibility to metabolic disease. 
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APPENDICES 

APPENDIX A Supplementary Tables for Chapter 3 

Table S3-1. Metabolon and Biocrates platform comparison at 43 overlapping metabolites including correlation, heritability and peak 

mGWAS results 

BIOCRATES METABOLON A C E Top SNPs Chr p-value Gene A C E Top SNPs  Chr p-value Gene cor (r) 

C8 octanoylcarnitine 0.60 2E-13 0.40 rs2172507 1 2.45E-08 ACADM 0.45 0.01 0.54 rs4949874 1 3.37E-11 ACADM 0.91 

C10 decanoylcarnitine 0.72 3E-15 0.28 rs6810358 3 4.22E-08 NA 0.42 0.00 0.58 rs17650138 1 1.67E-06 NA 0.89 

Proline proline 0.53 2E-01 0.31 rs2011669 3 5.16E-07 NMNAT3 0.67 0.00 0.33 rs17172978 7 4.36E-06 NA 0.85 

C6 hexanoylcarnitine 0.46 1E-12 0.54 rs4949874 1 4.14022E-11 ACADM 0.49 0.00 0.51 rs4949874 1 1.62E-13 ACADM 0.85 

C4 butyrylcarnitine 0.30 4E-01 0.30 rs2066938 12 2.94439E-44 ACADS 0.26 0.50 0.24 rs2066938 12 1.77E-115 ACADS 0.74 

C3 propionylcarnitine 0.46 2E-01 0.30 rs11010004 10 6.73E-10 C10orf112 0.38 0.09 0.52 rs1791780 18 1.52E-06 TAF4B 0.71 

Glycine glycine 0.70 1E-02 0.28 rs4673553 2 5.27E-17 CPS1 0.41 0.00 0.59 rs4673553 2 7.12E-27 CPS1 0.71 

C2 acetylcarnitine 0.26 2E-01 0.53 rs4734517 8 2.14E-08 NA 0.00 0.64 0.36 rs160851 5 1.18E-06 NA 0.69 

Valine valine 0.49 2E-02 0.50 rs10508588 10 1.90E-09 LOC100128641 0.35 0.00 0.65 rs7785534 7 2.81E-06 NA 0.68 

C5 isovalerylcarnitine 0.00 4E-01 0.65 rs181028 7 3.72E-08 NA 0.27 0.08 0.65 rs181028 7 1.19E-08 NA 0.63 

Tyrosine tyrosine 0.00 5E-01 0.54 rs2227217 6 5.49E-07 NA 0.34 0.00 0.66 rs7785534 7 2.13E-06 NA 0.62 

C12 laurylcarnitine 0.63 5E-15 0.37 rs10162284 13 2.39E-06 NA 0.40 0.04 0.56 rs17100308 1 1.59E-07 AK5 0.61 

Threonine threonine 0.34 3E-01 0.37 rs7998783 13 1.21E-06 ITGBL1 0.50 0.00 0.50 rs11758855 6 7.11E-07 NA 0.6 
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Methionine methionine 0.23 2E-01 0.56 rs10516614 4 1.88E-07 NA 0.02 0.27 0.71 rs1890573 9 1.39E-06 NA 0.58 

Phenylalanine phenylalanine 0.31 4E-01 0.28 rs10516614 4 1.46E-08 NA 0.35 0.00 0.65 rs12478243 2 1.08E-07 NA 0.54 

Tryptophan tryptophan 0.09 5E-01 0.45 rs17005448 4 5.55E-09 NA 0.36 0.00 0.64 rs318982 11 4.44E-07 HNT 0.53 

H1 glucose 0.63 2E-01 0.15 rs11132844 4 1.70E-09 SPOCK3 0.30 0.00 0.70 rs11579657 1 1.16E-08 NA 0.52 

Arginine arginine 0.64 8E-11 0.36 rs17171540 7 4.86E-08 POU6F2 0.38 0.00 0.62 rs1714708 8 5.29E-08 CSMD1 0.5 

Serine serine 0.46 3E-01 0.29 rs10131545 14 3.27E-08 DYNC1H1 0.35 0.02 0.62 rs477992 1 1.42E-08 PHGDH 0.48 

C14:1 2-tetradecenoyl carnitine 0.54 1E-14 0.46 rs757423 5 5.53E-07 SPOCK1 0.40 0.04 0.56 rs535114 3 2.36E-06 NA 0.45 

C18:1 oleoylcarnitine 0.32 2E-01 0.43 rs1323570 13 3.92E-07 LMO7 0.39 0.02 0.59 rs201267 6 6.51E-07 OFCC1 0.44 

lysoPC a C16:1 1-palmitoleoylglycerophosphocholine 0.61 1E-02 0.37 rs12405027 1 3.61E-07 NA 0.27 0.09 0.64 rs970048 6 2.08E-06 NA 0.44 

C0 carnitine 0.64 5E-02 0.31 rs1171614 10 4.67E-12 SLC16A9 0.34 0.00 0.66 rs1171617 10 2.37E-13 SLC16A9 0.38 

Histidine histidine 0.21 5E-01 0.33 rs17005448 4 2.83E-08 NA 0.00 0.87 0.13 rs7439210 4 6.22E-10 SLC2A9 0.37 

C5-DC glutaroyl carnitine 0.00 4E-01 0.61 rs6734430 2 1.41E-06 NA 0.50 0.00 0.50 rs4949874 1 6.87E-13 NA 0.37 

lysoPC a C14:0 1-myristoylglycerophosphocholine 0.64 2E-13 0.36 rs6821395 4 1.31E-06 NA 0.33 0.05 0.62 rs1455659 4 2.20E-06 NA 0.37 

Glutamine glutamine 0.44 1E-01 0.46 rs2332327 14 5.13E-08 NFATC4 0.42 0.00 0.58 rs774211 12 3.43E-08 RBMS2 0.33 

lysoPC a C20:4 1-arachidonoylglycerophosphocholine 0.57 1E-01 0.33 rs174547 11 2.00E-14 FADS1 0.09 0.00 0.91 rs174547 11 2.98E-10 FADS1 0.29 

C5-OH hydroxyisovaleroyl carnitine 0.15 1E-01 0.73 rs17053040 5 1.80E-06 NA 0.42 0.32 0.26 rs10521155 17 1.78E-06 STX8 0.28 

lysoPC a C18:2© 2-linoleoylglycerophosphocholine 0.61 5E-12 0.39 rs7529794 1 9.54E-07 NA 0.14 0.03 0.83 rs6871464 5 1.33E-06 NA 0.27 

lysoPC a C18:2(D) 1-linoleoylglycerophosphocholine 0.61 5E-12 0.39 rs7529794 1 9.54E-07 NA 0.28 0.00 0.72 rs9829101 3 4.97E-06 NA 0.26 

lysoPC a C20:3 1-eicosatrienoylglycerophosphocholine 0.50 1E-01 0.36 rs12872445 13 2.90E-06 NA 0.06 0.01 0.93 rs9829101 3 3.72E-07 NA 0.26 

lysoPC a C18:1(A) 1-oleoylglycerophosphocholine 0.60 2E-12 0.40 rs10993045 9 6.62E-07 PTPDC1 0.32 0.00 0.68 rs6845407 4 7.82E-07 NA 0.26 

lysoPC a C18:1(B) 2-oleoylglycerophosphocholine 0.60 2E-12 0.40 rs10993045 9 6.62E-07 PTPDC1 0.31 0.04 0.65 rs6545474 2 2.78E-06 NA 0.26 
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C16 palmitoylcarnitine 0.66 2E-02 0.32 rs757423 5 2.54E-06 SPOCK1 0.38 0.00 0.62 rs2350581 8 1.18E-06 NA 0.24 

C18 stearoylcarnitine 0.00 5E-01 0.47 rs267573 9 4.48E-06 NA 0.00 0.52 0.48 rs4952462 2 3.21E-06 NA 0.22 

Ornithine ornithine 0.42 2E-01 0.34 rs11677129 2 1.01E-07 GALNT13 0.30 0.10 0.59 rs9924984 16 7.65E-08 NA 0.19 

lysoPC a C17:0 1-heptadecanoylglycerophosphocholine 0.51 5E-02 0.44 rs2598089 7 1.54E-07 NA 0.38 0.15 0.47 rs6580376 5 5.35E-07 NA 0.1 

lysoPC a C16:0(G) 2-palmitoylglycerophosphocholine 0.45 2E-01 0.38 rs17005448 4 3.15E-07 NA 0.16 0.09 0.75 rs11886877 2 8.71E-07 IL1R2 0.08 

lysoPC a C18:0(E) 1-stearoylglycerophosphocholine 0.45 2E-01 0.40 rs11010603 10 4.12E-06 LOC100128641 0.52 0.48 0.00 rs974916 2 7.01E-08 FLJ42562 0.08 

lysoPC a C16:0(H) 1-palmitoylglycerophosphocholine 0.45 2E-01 0.38 rs17005448 4 3.15E-07 NA 0.32 0.00 0.68 rs355829 2 1.02E-08 COBLL1 0.05 

lysoPC a C18:0(F) 2-stearoylglycerophosphocholine 0.45 2E-01 0.40 rs11010603 10 4.12E-06 LOC100128641 0.00 0.06 0.94 rs974916 2 9.75E-07 FLJ42562 0.05 

lysoPC a C26:1 1-docosahexaenoylglycerophosphocholine 0.29 3E-01 0.45 rs4798428 18 5.89E-06 L3MBTL4 0.43 0.01 0.56 rs7975402 12 5.08E-06 PRICKLE1 0 

 
Table S3-2. mGWAS results  for Biocrates and Metabolon platforms 
 
 BIOCRATES METABOLON 

GENE CHR RS PS N_MISS BETA SE p_WALD METABOLITE N_MISS BETA SE p_WALD METABOLITE 

CYP4B1 1 rs4646493 47,053,889           0 4.28E-01 6.27E-02 9.05E-12 10-undecenoate (11:1n1) 

ACADM 1 rs211718 75,879,263           42 -2.80E-01 5.08E-02 3.83E-08 X- 11421 

ACADM 1 rs4949874 75,934,477 8 -4.96E-02 7.52E-03 4.14E-11 c6 8 -3.47E-01 4.71E-02 1.62E-13 hexanoylcarnitine 

ACADM 1 rs4949874 75,934,477           8 -3.15E-01 4.74E-02 3.37E-11 octanoylcarnitine 

ACADM 1 rs2172507 76,103,908 1 -4.68E-02 8.39E-03 2.45E-08 c8           

GCKR 2 rs1260326 27,584,444           0 -3.11E-01 4.30E-02 4.59E-13 mannose 

NAT8 2 rs10169714 73,662,281           3 -8.65E-01 4.01E-02 4.18E-103 N-acetylornithine 

NAT8 2 rs7558944 73,664,417           4 -5.06E-01 5.43E-02 1.12E-20 X- 11787 

NAT8 2 rs13410232 73,725,197           27 -4.92E-01 5.72E-02 7.79E-18 X- 12510 

NAT8 2 rs13410232 73,725,197           15 4.45E-01 6.94E-02 1.44E-10 X- 12093 

CREG2 2 rs6751877 101,342,584           2 -7.86E-01 7.79E-02 5.72E-24 N-(2-furoyl)glycine 

ACADL 2 rs12612970 210,715,532           9 5.08E-01 4.90E-02 3.51E-25 X- 13431 
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ACADL 2 rs7601356 210,764,902 10 1.16E-01 9.06E-03 9.70E-38 c9           

CPS1 2 rs4673553 211,316,624 0 5.51E-02 6.58E-03 5.27E-17 gly 0 4.37E-01 4.07E-02 7.12E-27 glycine 

CPS1 2 rs4673553 211,316,624           0 3.48E-01 5.18E-02 1.68E-11 X- 08988 

UGT1A 2 rs887829 234,333,309           5 4.32E-01 5.59E-02 1.02E-14 X- 11530 

UGT1A 2 rs887829 234,333,309           6 4.32E-01 5.59E-02 1.05E-14 X- 11793 

UGT1A 2 rs4148325 234,338,048           7 4.58E-01 4.86E-02 4.84E-21 bilirubin (Z,Z) 

UGT1A 2 rs4148325 234,338,048           7 3.74E-01 5.11E-02 2.38E-13 bilirubin (E,E) 

SERPINI2 3 rs9864094 168,642,525           2 1.36E+00 1.25E-01 1.56E-27 X- 12435 

SLC2A9 4 rs737267 9,543,842           0 -4.23E-01 4.62E-02 5.67E-20 urate 

GBA3 4 rs3099557 22,433,119           0 4.66E-01 6.13E-02 2.96E-14 X- 11818 

SLC22A5 5 rs274552 131,755,245           33 -4.07E-01 6.40E-02 1.93E-10 X- 11255 

F12 5 rs2731672 176,775,080           0 -3.57E-01 4.98E-02 8.04E-13 X- 11792 

SLC22A2 6 rs316020 160,589,071           5 -1.02E+00 8.13E-02 5.82E-36 X- 12798 

CYP3A5 7 rs11974702 99,001,887           13 -7.78E-01 7.69E-02 4.53E-24 androsterone sulfate 

CYP3A5 7 rs11974702 99,001,887           13 -6.45E-01 7.89E-02 2.91E-16 epiandrosterone sulfate 

CYP3A5 7 rs1859690 99,065,108           0 -9.07E-01 1.06E-01 8.52E-18 X- 12063 

OPLAH 8 rs11780874 145,221,292           2 -4.30E-01 6.20E-02 3.88E-12 5-oxoproline 

SLC16A9 10 rs1171617 61,137,188           0 -3.78E-01 5.16E-02 2.37E-13 carnitine 

SLC16A9 10 rs1171614 61,139,544 6 -4.18E-02 6.04E-03 4.67E-12 c0           

PYROXD2 10 rs2147896 100,138,166           0 -1.04E+00 3.51E-02 4.26E-191 X- 12092 

FADS1 11 rs174546 61,326,406 0 -3.46E-02 6.17E-03 1.95E-08 pc_ae_c42_5 0 -3.13E-01 5.49E-02 1.19E-08 1-linoleoylglycerophosphoethanolamine 

FADS1 11 rs174547 61,327,359 1 -6.58E-02 8.60E-03 2.00E-14 lysopc_a_c20_4 1 -3.93E-01 6.23E-02 2.98E-10 1-arachidonoylglycerophosphocholine 

FADS1 11 rs174547 61,327,359           1 -3.24E-01 5.23E-02 5.59E-10 arachidonate (20:4n6) 

FADS1 11 rs174556 61,337,211 0 -5.15E-02 7.66E-03 1.73E-11 pc_aa_c38_5           

FADS1 11 rs1535 61,354,548 0 -5.47E-02 7.49E-03 2.83E-13 pc_ae_c36_5           

FADS1 11 rs1535 61,354,548 0 -4.46E-02 6.79E-03 5.16E-11 pc_ae_c38_5           

FADS1 11 rs174576 61,360,086 16 -6.82E-02 7.42E-03 3.62E-20 pc_aa_c38_4           

FADS1 11 rs174576 61,360,086 16 -5.37E-02 7.22E-03 1.06E-13 pc_aa_c36_4           
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FADS1 11 rs174576 61,360,086 16 -4.79E-02 6.82E-03 2.25E-12 pc_ae_c38_4           

SLCO1B1 12 rs4149056 21,222,816           8 6.99E-01 5.19E-02 2.93E-41 X- 11529 

SLCO1B1 12 rs4149081 21,269,288           3 4.98E-01 6.75E-02 1.60E-13 X- 11538 

SLCO1B1 12 rs2199680 21,306,763           14 4.76E-01 7.31E-02 7.07E-11 1-eicosadienoylglycerophosphocholine 

ACADS 12 rs2066938 119,644,998 0 1.20E-01 8.61E-03 2.94E-44 c4 0 1.01E+00 4.42E-02 1.77E-115 butyrylcarnitine 

SGPP1 14 rs7157785 63,305,309 4 4.57E-02 8.31E-03 3.81E-08 pc_aa_c28_1 4 4.51E-01 5.92E-02 2.77E-14 1-stearoylglycerol (1-monostearin) 

SGPP1 14 rs7157785 63,305,309           4 3.81E-01 6.26E-02 1.24E-09 X- 10510 

DYNC1H1 14 rs10131545 101,529,478 6 -9.89E-02 1.48E-02 2.25E-11 sm__oh__c16_1           

DYNC1H1 14 rs10131545 101,529,478 6 -9.91E-02 1.49E-02 3.30E-11 pc_ae_c36_2           

DYNC1H1 14 rs10131545 101,529,478 6 -8.87E-02 1.38E-02 1.28E-10 sm__oh__c22_1           

DYNC1H1 14 rs10131545 101,529,478 6 -9.26E-02 1.47E-02 3.16E-10 pc_ae_c34_2           

ACE 17 rs4329 58,917,190           0 -4.15E-01 5.29E-02 4.36E-15 aspartylphenylalanine 

SULT2A1 19 rs2547231 53,076,869           0 -5.88E-01 5.90E-02 2.09E-23 X- 11440 

SULT2A1 19 rs2547231 53,076,869           0 -5.14E-01 5.89E-02 2.58E-18 X- 11244 

COMT 22 rs165722 18,329,013           28 4.33E-01 3.54E-02 2.61E-34 X- 11593 

 
Table S3-3. mGWAS Ratio Results  for Biocrates and Metabolon platforms 

 BIOCRATES METABOLON 

GENE CHR RS PS N_MISS BETA SE p_WALD p_LRT p_SCORE METABOLITE RATIO N_MISS BETA SE p_WALD p_LRT p_SCORE METABOLITE RATIO 

ACADM 1 rs4949874 75934477               8 -6.95E-02 7.29E-03 1.49E-21 8.68E-21 5.94E-20 acetylcarnitine/hexanoylcarnitine 

ACADM 1 rs7534754 75957896 15 -6.40E-02 7.26E-03 1.19E-18 4.40E-18 1.88E-17 c2/c6               

CPS1 2 rs16844839 211289490 43 -7.68E-02 7.71E-03 2.11E-23 2.99E-22 4.39E-21 gly/phe               

CPS1 2 rs4673553 211316624 0 -4.38E-02 4.13E-03 3.30E-26 7.81E-25 1.86E-23 gly/ser               

CPS1 2 rs4673553 211316624 0 -5.90E-02 5.28E-03 4.67E-29 1.68E-27 6.19E-26 gly/gln               

CPS1 2 rs4673553 211316624 0 -5.84E-02 5.50E-03 2.57E-26 4.39E-25 8.25E-24 gly/trp               

CPS1 2 rs4673553 211316624 0 -5.68E-02 6.02E-03 4.11E-21 2.14E-20 1.30E-19 gly/h1               

CPS1 2 rs4673553 211316624 0 -6.25E-02 5.51E-03 8.51E-30 3.68E-28 1.61E-26 gly/arg               
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CPS1 2 rs4673553 211316624 0 -6.69E-02 6.05E-03 1.99E-28 6.93E-27 2.44E-25 gly/thr               

CPS1 2 rs4673553 211316624 0 -6.27E-02 6.64E-03 3.63E-21 2.22E-20 1.54E-19 gly/tyr               

CPS1 2 rs4673553 211316624 0 -6.03E-02 5.38E-03 3.46E-29 1.42E-27 5.84E-26 gly/met               

CPS1 2 rs4673553 211316624 0 -6.13E-02 5.49E-03 6.29E-29 2.13E-27 7.51E-26 gly/his               

FADS1 11 rs174536 61308503               0 7.70E-02 7.55E-03 1.95E-24 3.46E-23 6.32E-22 1-arachidonoylglycerophosphocholine 
/1-palmitoleoylglycerophosphocholine 

FADS1 11 rs174536 61308503               0 6.57E-02 6.97E-03 4.06E-21 4.27E-20 4.57E-19 1-arachidonoylglycerophosphocholine 
/2-palmitoylglycerophosphocholine 

FADS1 11 rs174546 61326406               0 6.15E-02 8.00E-03 1.58E-14 4.54E-14 1.43E-13 1-arachidonoylglycerophosphocholine 
/1-stearoylglycerophosphocholine 

FADS1 11 rs174546 61326406               0 7.15E-02 7.39E-03 3.87E-22 3.81E-21 4.09E-20 1-arachidonoylglycerophosphocholine 
/2-oleoylglycerophosphocholine 

FADS1 11 rs174547 61327359 1 7.04E-02 4.58E-03 3.06E-53 1.19E-47 1.14E-42 lysopc_a_c20_4 
/lysopc_a_c18_1 2 9.24E-02 6.82E-03 8.37E-42 3.31E-38 7.61E-35 1-arachidonoylglycerophosphocholine 

/1-eicosatrienoylglycerophosphocholine 

FADS1 11 rs174547 61327359 1 7.04E-02 4.58E-03 3.06E-53 1.19E-47 1.14E-42 lysopc_a_c20_4 
/lysopc_a_c18_1.1               

FADS1 11 rs174547 61327359 1 8.82E-02 6.14E-03 9.41E-47 1.37E-42 9.66E-39 lysopc_a_c20_4 
/lysopc_a_c18_2               

FADS1 11 rs174547 61327359 1 8.82E-02 6.14E-03 9.41E-47 1.37E-42 9.66E-39 lysopc_a_c20_4 
/lysopc_a_c18_2.1               

FADS1 11 rs174547 61327359 1 5.98E-02 5.65E-03 3.63E-26 6.84E-25 1.37E-23 lysopc_a_c20_4 
/lysopc_a_c18_0               

FADS1 11 rs174547 61327359 1 5.98E-02 5.65E-03 3.63E-26 6.84E-25 1.37E-23 lysopc_a_c20_4 
/lysopc_a_c18_0.1               

FADS1 11 rs174549 61327958 2 9.53E-02 4.86E-03 1.56E-85 8.01E-72 1.02E-60 lysopc_a_c20_4 
\/lysopc_a_c20_3               

FADS1 11 rs174549 61327958 2 7.58E-02 5.77E-03 2.19E-39 2.04E-36 1.39E-33 lysopc_a_c20_4 
/lysopc_a_c16_1               

FADS1 11 rs174549 61327958 2 6.86E-02 5.04E-03 2.76E-42 1.17E-38 2.60E-35 lysopc_a_c20_4 
/lysopc_a_c16_0               

FADS1 11 rs1535 61354548               0 7.23E-02 6.39E-03 1.04E-29 1.45E-27 1.51E-25 1-arachidonoylglycerophosphocholine 
/1-oleoylglycerophosphocholine 

FADS1 11 rs1535 61354548               0 9.34E-02 8.28E-03 1.67E-29 2.83E-27 3.55E-25 1-arachidonoylglycerophosphocholine 
/2-linoleoylglycerophosphocholine 

FADS1 11 rs1535 61354548               0 8.06E-02 6.38E-03 1.52E-36 1.19E-33 6.31E-31 1-arachidonoylglycerophosphocholine 
/1-linoleoylglycerophosphocholine 

FADS1 11 rs1535 61354548               0 6.48E-02 7.31E-03 7.97E-19 5.62E-18 4.07E-17 1-arachidonoylglycerophosphocholine 
/1-palmitoylglycerophosphocholine 

FADS1 11 rs174574 61356918 49 7.23E-02 7.09E-03 2.06E-24 3.74E-23 6.82E-22 lysopc_a_c20_4 
/lysopc_a_c14_0               

ACADS 12 rs2066938 119644998 0 1.16E-01 6.05E-03 1.02E-81 2.79E-68 1.25E-57 c3/c4 0 2.22E-01 8.64E-03 3.56E-146 1.83E-109 3.36E-84 carnitine/butyrylcarnitine 

ACADS 12 rs2066938 119644998 0 1.10E-01 1.00E-02 4.24E-28 2.01E-26 8.72E-25 c5_dc/c4 0 2.19E-01 8.35E-03 1.85E-151 1.04E-112 3.34E-86 acetylcarnitine/butyrylcarnitine 

ACADS 12 rs2066938 119644998 0 1.13E-01 6.93E-03 3.37E-60 8.97E-53 2.02E-46 c0/c4 0 2.21E-01 8.38E-03 6.83E-153 1.13E-113 7.66E-87 propionylcarnitine/butyrylcarnitine 

ACADS 12 rs2066938 119644998 0 -1.17E-01 7.95E-03 6.05E-49 5.97E-44 1.62E-39 c4/val 0 2.26E-01 8.77E-03 7.57E-147 2.07E-108 7.92E-83 hexanoylcarnitine/butyrylcarnitine 

!
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Table S3-4. p-gain calculations for 101 overlap mGWAS Ratio Results  for Biocrates and Metabolon platforms 
 
BIOCRATES RATIO p-GAIN_BIOC p-value-RATIO-BIOC MIN(p-value BIOC) METABOLON RATIO p-GAIN_METAB p-value_RATIO_MET MIN(p-value MET) 

lysopc_a_c20_4/lysopc_a_c20_3 1.28205E+71 1.56E-85 2.00E-14 1-arachidonoylglycerophosphocholine_1-eicosatrienoylglycerophosphocholine 6.37993E+31 8.37E-42 5.34E-10 

lysopc_a_c20_4/lysopc_a_c18_2.1 2.1254E+32 9.41E-47 2.00E-14 1-arachidonoylglycerophosphocholine_1-linoleoylglycerophosphocholine 3.51316E+26 1.52E-36 5.34E-10 

lysopc_a_c20_4/lysopc_a_c18_1 6.53595E+38 3.06E-53 2.00E-14 1-arachidonoylglycerophosphocholine_1-oleoylglycerophosphocholine 5.13462E+19 1.04E-29 5.34E-10 

lysopc_a_c20_4/lysopc_a_c18_2 2.1254E+32 9.41E-47 2.00E-14 1-arachidonoylglycerophosphocholine_2-linoleoylglycerophosphocholine 3.1976E+19 1.67E-29 5.34E-10 

c3/c4 2.88235E+37 1.02E-81 2.94E-44 propionylcarnitine_butyrylcarnitine 1.10688E+18 6.83E-153 7.56E-135 

c2/c4 1.46269E-15 2.01E-29 2.94E-44 acetylcarnitine_butyrylcarnitine 4.08649E+16 1.85E-151 7.56E-135 

lysopc_a_c20_4/lysopc_a_c16_1 9.13242E+24 2.19E-39 2.00E-14 1-arachidonoylglycerophosphocholine_1-palmitoleoylglycerophosphocholine 2.73846E+14 1.95E-24 5.34E-10 

lysopc_a_c20_4/lysopc_a_c18_1.1 6.53595E+38 3.06E-53 2.00E-14 1-arachidonoylglycerophosphocholine_2-oleoylglycerophosphocholine 1.37984E+12 3.87E-22 5.34E-10 

c6/c4 1.58065E-07 1.86E-37 2.94E-44 hexanoylcarnitine_butyrylcarnitine 9.98679E+11 7.57E-147 7.56E-135 

c0/c4 8.72404E+15 3.37E-60 2.94E-44 carnitine_butyrylcarnitine 2.1236E+11 3.56E-146 7.56E-135 

lysopc_a_c20_4/lysopc_a_c18_0 5.50964E+11 3.63E-26 2.00E-14 1-arachidonoylglycerophosphocholine_2-palmitoylglycerophosphocholine 1.31527E+11 4.06E-21 5.34E-10 

lysopc_a_c20_4/lysopc_a_c18_0.1 5.50964E+11 3.63E-26 2.00E-14 1-arachidonoylglycerophosphocholine_1-palmitoylglycerophosphocholine 670012547.1 7.97E-19 5.34E-10 

c2/c6 34789915.97 1.19E-18 4.14E-11 acetylcarnitine_hexanoylcarnitine 461073825.5 1.49E-21 6.87E-13 

lysopc_a_c20_4/lysopc_a_c16_0 7.24638E+27 2.76E-42 2.00E-14 1-arachidonoylglycerophosphocholine_1-stearoylglycerophosphocholine 33797.46835 1.58E-14 5.34E-10 

c8/c2 452.4312896 4.73E-11 2.14E-08 octanoylcarnitine_acetylcarnitine 3222.632226 8.13E-14 2.62E-10 

c4/val 48595.04132 6.05E-49 2.94E-44 butyrylcarnitine_valine 517.8082192 1.46E-137 7.56E-135 

c6/phe 1012.224939 4.09E-14 4.14E-11 hexanoylcarnitine_phenylalanine 253.5055351 2.71E-15 6.87E-13 

arg/lysopc_a_c20_4 2534.854246 7.89E-18 2.00E-14 arginine_1-arachidonoylglycerophosphocholine 48.10810811 1.11E-11 5.34E-10 

c6/val 646.875 6.40E-14 4.14E-11 hexanoylcarnitine_valine 18.22281167 3.77E-14 6.87E-13 

lysopc_a_c20_4/lysopc_a_c14_0 9708737864 2.06E-24 2.00E-14 1-arachidonoylglycerophosphocholine_1-myristoylglycerophosphocholine 16.6875 3.20E-11 5.34E-10 

c6/c0 812.173913 5.75E-15 4.67E-12 hexanoylcarnitine_carnitine 16.39618138 4.19E-14 6.87E-13 

gly/met 1.52312E+12 3.46E-29 5.27E-17 glycine_methionine 6.4 2.00E-27 1.28E-26 

c6/tyr 16.23529412 2.55E-12 4.14E-11 hexanoylcarnitine_tyrosine 3.195348837 2.15E-13 6.87E-13 

gly/gln 1.12848E+12 4.67E-29 5.27E-17 glycine_glutamine 2.746781116 4.66E-27 1.28E-26 

gly/his 8.37838E+11 6.29E-29 5.27E-17 glycine_histidine 1.693121693 7.56E-27 1.28E-26 

c6/c5_oh 1.140495868 3.63E-11 4.14E-11 hexanoylcarnitine_hydroxyisovaleroyl carnitine 1.033082707 6.65E-13 6.87E-13 



 138 

c3/c6 9.241071429 4.48E-12 4.14E-11 propionylcarnitine_hexanoylcarnitine 0.660576923 1.04E-12 6.87E-13 

c6/c5 4456.404736 9.29E-15 4.14E-11 hexanoylcarnitine_isovalerylcarnitine 0.116243655 5.91E-12 6.87E-13 

c6/met 2.539877301 1.63E-11 4.14E-11 hexanoylcarnitine_methionine 0.115268456 5.96E-12 6.87E-13 

c6/c5_dc 1109.919571 3.73E-14 4.14E-11 hexanoylcarnitine_glutaroyl carnitine 0.066699029 1.03E-11 6.87E-13 

c4/phe 0.060995851 4.82E-43 2.94E-44 butyrylcarnitine_phenylalanine 0.05641791 1.34E-133 7.56E-135 

c6/gln 655.0632911 6.32E-14 4.14E-11 hexanoylcarnitine_glutamine 0.055853659 1.23E-11 6.87E-13 

c6/trp 11.0106383 3.76E-12 4.14E-11 hexanoylcarnitine_tryptophan 0.05452381 1.26E-11 6.87E-13 

c6/h1 1.761702128 2.35E-11 4.14E-11 hexanoylcarnitine_glucose 0.047708333 1.44E-11 6.87E-13 

gly/ser 1596969697 3.30E-26 5.27E-17 glycine_serine 0.047583643 2.69E-25 1.28E-26 

c6/his 3.980769231 1.04E-11 4.14E-11 hexanoylcarnitine_histidine 0.016514423 4.16E-11 6.87E-13 

c4/met 0.355072464 8.28E-44 2.94E-44 butyrylcarnitine_methionine 0.002088398 3.62E-132 7.56E-135 

gly/thr 2.64824E+11 1.99E-28 5.27E-17 glycine_threonine 0.000579186 2.21E-23 1.28E-26 

gly/phe 2497630.332 2.11E-23 5.27E-17 glycine_phenylalanine 0.000579186 2.21E-23 1.28E-26 

gly/val 2960.674157 1.78E-20 5.27E-17 glycine_valine 2.21071E-05 5.79E-22 1.28E-26 

gly/trp 2050583658 2.57E-26 5.27E-17 glycine_tryptophan 7.61905E-06 1.68E-21 1.28E-26 

gly/tyr 14517.90634 3.63E-21 5.27E-17 glycine_tyrosine 3.01176E-06 4.25E-21 1.28E-26 

gly/h1 12822.38443 4.11E-21 5.27E-17 glycine_glucose 1.84971E-06 6.92E-21 1.28E-26 

gly/pro 1.138228942 4.63E-17 5.27E-17 glycine_proline 5.76577E-08 2.22E-19 1.28E-26 

gly/lysopc_a_c18_0.1 0.000151003 3.49E-13 5.27E-17 glycine_1-palmitoylglycerophosphocholine 1.6732E-08 7.65E-19 1.28E-26 

gly/c0 0.393283582 1.34E-16 5.27E-17 glycine_carnitine 1.21905E-08 1.05E-18 1.28E-26 

gly/c5_dc 1.091097308 4.83E-17 5.27E-17 glycine_glutaroyl carnitine 4.83019E-09 2.65E-18 1.28E-26 

trp/c4 3307.086614 8.89E-48 2.94E-44 tryptophan_butyrylcarnitine 1.16308E-09 6.50E-126 7.56E-135 

gln/c4 1.36744186 2.15E-44 2.94E-44 glutamine_butyrylcarnitine 4.15385E-10 1.82E-125 7.56E-135 

c2/gly 0.075609756 6.97E-16 5.27E-17 acetylcarnitine_glycine 3.03318E-10 4.22E-17 1.28E-26 

gly/lysopc_a_c18_1.1 5.94138E-05 8.87E-13 5.27E-17 glycine_2-oleoylglycerophosphocholine 1.2549E-10 1.02E-16 1.28E-26 

gly/lysopc_a_c18_2.1 0.000270256 1.95E-13 5.27E-17 glycine_1-linoleoylglycerophosphocholine 8.15287E-11 1.57E-16 1.28E-26 

gly/c5_oh 0.024285714 2.17E-15 5.27E-17 glycine_hydroxyisovaleroyl carnitine 2.03498E-11 6.29E-16 1.28E-26 

gly/lysopc_a_c18_2 0.000270256 1.95E-13 5.27E-17 glycine_2-linoleoylglycerophosphocholine 3.45013E-12 3.71E-15 1.28E-26 

gly/lysopc_a_c18_0 0.000151003 3.49E-13 5.27E-17 glycine_2-palmitoylglycerophosphocholine 1.63057E-12 7.85E-15 1.28E-26 
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gly/arg 6.19271E+12 8.51E-30 5.27E-17 glycine_arginine 1.04065E-12 1.23E-14 1.28E-26 

c4/tyr 1.23013E-05 2.39E-39 2.94E-44 butyrylcarnitine_tyrosine 5.90625E-13 1.28E-122 7.56E-135 

gly/lysopc_a_c18_1 5.94138E-05 8.87E-13 5.27E-17 glycine_1-oleoylglycerophosphocholine 2.19554E-13 5.83E-14 1.28E-26 

c10/gly 1.43207E-05 3.68E-12 5.27E-17 decanoylcarnitine_glycine 1.54031E-13 8.31E-14 1.28E-26 

c3/gly 1.9812E-05 2.66E-12 5.27E-17 propionylcarnitine_glycine 5.63877E-14 2.27E-13 1.28E-26 

c6/gly 1.09336E-05 4.82E-12 5.27E-17 hexanoylcarnitine_glycine 3.60563E-14 3.55E-13 1.28E-26 

gly/lysopc_a_c16_0 5.82965E-05 9.04E-13 5.27E-17 glycine_1-stearoylglycerophosphocholine 2.35727E-14 5.43E-13 1.28E-26 

gly/c16 0.698938992 7.54E-17 5.27E-17 glycine_palmitoylcarnitine 2.11221E-14 6.06E-13 1.28E-26 

c8/gly 0.000202692 2.60E-13 5.27E-17 octanoylcarnitine_glycine 1.47636E-14 8.67E-13 1.28E-26 

gly/lysopc_a_c26_1 0.000590807 8.92E-14 5.27E-17 glycine_1-docosahexaenoylglycerophosphocholine 1.08475E-14 1.18E-12 1.28E-26 

h1/c4 0.013611111 2.16E-42 2.94E-44 glucose_butyrylcarnitine 3.78E-15 2.00E-120 7.56E-135 

gly/c18_1 11.73719376 4.49E-18 5.27E-17 glycine_oleoylcarnitine 2.5498E-15 5.02E-12 1.28E-26 

c5/gly 1.11416E-05 4.73E-12 5.27E-17 isovalerylcarnitine_glycine 6.5641E-16 1.95E-11 1.28E-26 

c4/his 6.606741573 4.45E-45 2.94E-44 butyrylcarnitine_histidine 1.82169E-19 4.15E-116 7.56E-135 

c8/c4 6.47577E-08 4.54E-37 2.94E-44 octanoylcarnitine_butyrylcarnitine 2.16619E-23 3.49E-112 7.56E-135 

pro/c4 2.26154E-14 1.30E-30 2.94E-44 proline_butyrylcarnitine 4.47337E-31 1.69E-104 7.56E-135 

c5_dc/c4 9.76415E+16 4.24E-28 4.14E-11 glutaroyl carnitine_butyrylcarnitine 1.75814E-31 4.30E-104 7.56E-135 

c4/lysopc_a_c18_0.1 3.69811E-11 7.95E-34 2.94E-44 butyrylcarnitine_1-palmitoylglycerophosphocholine 4.1087E-33 1.84E-102 7.56E-135 

c10/c4 6.17647E-15 4.76E-30 2.94E-44 decanoylcarnitine_butyrylcarnitine 1.39227E-38 5.43E-97 7.56E-135 

c4/c5_oh 483.5526316 6.08E-47 2.94E-44 butyrylcarnitine_hydroxyisovaleroyl carnitine 3.72414E-41 2.03E-94 7.56E-135 

ser/c4 1.34247E-07 2.19E-37 2.94E-44 serine_butyrylcarnitine 1.02578E-41 7.37E-94 7.56E-135 

c5/c4 0.945337621 3.11E-44 2.94E-44 isovalerylcarnitine_butyrylcarnitine 4.60976E-45 1.64E-90 7.56E-135 

gly/c4 2.19403E-10 1.34E-34 2.94E-44 glycine_butyrylcarnitine 4.97368E-47 1.52E-88 7.56E-135 

c16/c4 1.37383E-07 2.14E-37 2.94E-44 palmitoylcarnitine_butyrylcarnitine 2.52E-47 3.00E-88 7.56E-135 

c4/c18 8.32861E-14 3.53E-31 2.94E-44 butyrylcarnitine_stearoylcarnitine 9.53342E-49 7.93E-87 7.56E-135 

thr/c4 1.77108E-12 1.66E-32 2.94E-44 threonine_butyrylcarnitine 3.12397E-49 2.42E-86 7.56E-135 

arg/c4 1.126436782 2.61E-44 2.94E-44 arginine_butyrylcarnitine 4.52695E-55 1.67E-80 7.56E-135 

c4/lysopc_a_c18_1.1 2.72222E-11 1.08E-33 2.94E-44 butyrylcarnitine_2-oleoylglycerophosphocholine 2.72924E-57 2.77E-78 7.56E-135 

c4/lysopc_a_c18_2.1 1.27826E-12 2.30E-32 2.94E-44 butyrylcarnitine_1-linoleoylglycerophosphocholine 8.82147E-59 8.57E-77 7.56E-135 
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c18_1/c4 2.39024E-11 1.23E-33 2.94E-44 oleoylcarnitine_butyrylcarnitine 5.72727E-60 1.32E-75 7.56E-135 

c4/lysopc_a_c16_1 3.64764E-15 8.06E-30 2.94E-44 butyrylcarnitine_1-palmitoleoylglycerophosphocholine 1.15596E-61 6.54E-74 7.56E-135 

c4/lysopc_a_c18_1 2.72222E-11 1.08E-33 2.94E-44 butyrylcarnitine_1-oleoylglycerophosphocholine 1.63283E-62 4.63E-73 7.56E-135 

c4/lysopc_a_c18_0 3.69811E-11 7.95E-34 2.94E-44 butyrylcarnitine_2-palmitoylglycerophosphocholine 2.23009E-64 3.39E-71 7.56E-135 

c4/lysopc_a_c16_0 2.72222E-09 1.08E-35 2.94E-44 butyrylcarnitine_1-stearoylglycerophosphocholine 5.32394E-65 1.42E-70 7.56E-135 

c4/lysopc_a_c18_2 1.27826E-12 2.30E-32 2.94E-44 butyrylcarnitine_2-linoleoylglycerophosphocholine 1.02997E-66 7.34E-69 7.56E-135 

c4/lysopc_a_c14_0 1.52332E-09 1.93E-35 2.94E-44 butyrylcarnitine_1-myristoylglycerophosphocholine 5.86047E-67 1.29E-68 7.56E-135 

c4/lysopc_a_c20_3 4.10615E-10 7.16E-35 2.94E-44 butyrylcarnitine_1-eicosatrienoylglycerophosphocholine 1.27703E-67 5.92E-68 7.56E-135 

c12/c4 5.74219E-13 5.12E-32 2.94E-44 laurylcarnitine_butyrylcarnitine 5.00662E-73 1.51E-62 7.56E-135 

c4/orn 1.13953E-09 2.58E-35 2.94E-44 butyrylcarnitine_ornithine 1.79572E-73 4.21E-62 7.56E-135 

c4/lysopc_a_c20_4 1.20492E-13 2.44E-31 2.94E-44 butyrylcarnitine_1-arachidonoylglycerophosphocholine 1.53347E-79 4.93E-56 7.56E-135 

c4/lysopc_a_c26_1 0.036842105 7.98E-43 2.94E-44 butyrylcarnitine_1-docosahexaenoylglycerophosphocholine 1.39741E-80 5.41E-55 7.56E-135 

c14_1/c4 2.37097E-09 1.24E-35 2.94E-44 2-tetradecenoyl carnitine_butyrylcarnitine 5.68421E-84 1.33E-51 7.56E-135 

c4/lysopc_a_c16_0.1 2.72222E-09 1.08E-35 2.94E-44 butyrylcarnitine_2-stearoylglycerophosphocholine 5.55882E-87 1.36E-48 7.56E-135 

c4/lysopc_a_c17_0 4.91639E-12 5.98E-33 2.94E-44 butyrylcarnitine_1-heptadecanoylglycerophosphocholine 6.35294E-98 1.19E-37 7.56E-135 
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APPENDIX B Supplementary Tables for Chapter 5 

Table S5-1 121 DMPs identified from 42 T2D Metabolite-EWAS 

PROBE BETA t-stat p-value METABOLITE PATHWAY CHR POSITION GENE 

cg00007810 0.12 4.69 3.28E-06 3-methyl-2-oxovalerate Amino acid 12 49113738 - 

cg00237904 0.11 4.80 1.90E-06 15-methylpalmitate Lipid 11 2020314 H19 

cg00601916 0.14 4.56 6.04E-06 15-methylpalmitate  Lipid 1 16069388 TMEM82 

cg00875191 -0.29 -4.73 2.65E-06 arabinose Carbohydrate 14 105487648 CDCA4 

cg01132893 -0.13 -4.63 4.18E-06 X - 11550 NA 17 46712086 - 

cg01182926 -0.28 -4.97 8.06E-07 1,5-anhydroglucitol (1,5-AG) Carbohydrate 17 48614046 EPN3 

cg01240049 0.12 4.63 4.25E-06 10-heptadecenoate (17:1n7) Lipid 9 138068091 - 

cg01274929 -0.22 -4.64 4.10E-06 X - 10510 NA 16 4318696 TFAP4 

cg01408860 -0.36 -4.67 3.53E-06 1,5-anhydroglucitol (1,5-AG) Carbohydrate 16 29242368 - 

cg01419914 0.12 4.54 6.36E-06 valine Amino acid 17 79374691 BAHCC1 

cg01448610 0.20 4.64 4.15E-06 X - 11550 NA 15 74525447 - 

cg01502743 0.18 4.78 2.03E-06 X - 11550 NA 19 18883801 CRTC1 

cg01541565 0.15 4.76 2.33E-06 X - 13215 NA 6 32606385 HLA-DQA1 

cg01817965 -0.13 -4.81 1.82E-06 X - 11550 NA 5 139284250 NRG2 

cg01878214 0.18 4.50 7.86E-06 X - 11550 NA 7 45145334 TBRG4;SNORA5C 

cg01896085 0.16 4.45 9.90E-06 X - 12442 NA 2 9279786 - 

cg02303209 0.11 4.49 8.20E-06 myristoleate (14:1n5) Lipid 5 32223673 - 

cg02462443 -0.19 -4.51 7.59E-06 dimethylarginine Amino acid 6 32947897 BRD2 

cg02662495 0.10 4.58 5.26E-06 fructose Carbohydrate 12 34759279 - 
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cg02868468 0.14 4.52 6.98E-06 15-methylpalmitate Lipid 14 105045347 C14orf180 

cg02899346 -0.20 -4.47 9.01E-06 X - 11550 NA 19 45996372 RTN2 

cg02982237 -0.18 -4.48 8.69E-06 X - 11550 NA 14 100492002 - 

cg03184452 -0.25 -4.81 1.85E-06 dimethylarginine Amino acid 8 13105155 DLC1 

cg03331175 0.11 4.46 9.35E-06 X - 11315 NA 7 99069044 ZNF789 

cg03333776 0.17 5.12 3.79E-07 15-methylpalmitate Lipid 1 52455148 RAB3B 

cg03532223 -0.27 -4.93 9.81E-07 X - 06246 NA 6 32935858 BRD2 

cg03666973 -0.29 -4.99 7.30E-07 arabinose Carbohydrate 2 27008764 CENPA 

cg04252592 0.15 4.54 6.62E-06 X - 11315 NA 16 4387370 GLIS2 

cg04483701 0.15 5.00 7.03E-07 X - 12442 NA 16 86253703 - 

cg04591648 0.10 4.46 9.24E-06 4-methyl-2-oxopentanoate Amino acid 7 155791233 - 

cg04609439 -0.23 -4.49 8.06E-06 X - 12442 NA 16 32599417 - 

cg05466901 -0.24 -4.48 8.45E-06 heptanoate (7:0) Lipid 7 108095863 NRCAM 

cg05542681 -0.12 -4.67 3.54E-06 N-acetylglycine Amino acid 16 744328 FBXL16 

cg05721374 0.15 4.68 3.42E-06 pelargonate (9:0) Lipid 1 109619308 TAF13 

cg05925577 0.22 5.03 6.07E-07 malate Energy 1 121375906 - 

cg06175243 -0.30 -4.66 3.72E-06 X - 13215 NA 3 32443207 CMTM7 

cg06270776 0.21 4.55 6.05E-06 X - 10510 NA 6 160932670 LPAL2 

cg06304546 -0.20 -4.52 7.23E-06 mannose Carbohydrate 20 32448765 - 

cg06495728 0.18 4.91 1.09E-06 octanoylcarnitine Lipid 3 187462459 BCL6 

cg06928741 -0.13 -4.63 4.22E-06 lactate Carbohydrate 6 31691430 C6orf25 

cg07570055 0.16 4.55 6.24E-06 dimethylarginine  Amino acid 2 233387088 - 

cg07702548 0.19 4.56 5.82E-06 dimethylarginine  Amino acid 16 88636912 ZC3H18 

cg07707505 0.15 4.56 5.90E-06 X - 12442 NA 1 12185435 TNFRSF8 
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cg07882648 0.12 4.52 7.26E-06 5-dodecenoate (12:1n7) Lipid 20 62153067 PPDPF 

cg07959747 0.21 4.57 5.77E-06 palmitoleate (16:1n7) Lipid 10 82050672 MAT1A 

cg08526784 -0.36 -5.00 7.21E-07 lactate Carbohydrate 16 1811246 MAPK8IP3 

cg08620267 0.19 4.94 9.52E-07 X - 11550 NA 16 85126437 KIAA0513 

cg08636385 -0.13 -4.52 7.02E-06 heptanoate (7:0) Lipid 6 71816668 - 

cg09539496 0.09 4.72 2.80E-06 4-methyl-2-oxopentanoate Amino acid 8 20164433 - 

cg09610766 -0.17 -4.61 4.58E-06 malate Energy 3 105166570 ALCAM 

cg09816420 -0.10 -4.95 8.87E-07 heptanoate (7:0) Lipid 5 140605851 PCDHB14 

cg09816420 -0.11 -4.59 5.21E-06 dimethylarginine  Amino acid 5 140605851 PCDHB14 

cg09845604 0.14 4.65 3.97E-06 dimethylarginine  Amino acid 1 3229921 PRDM16 

cg11113753 0.20 5.28 1.70E-07 X - 11550 NA 2 44065383 ABCG5 

cg11183535 -0.23 -4.59 5.21E-06 octanoylcarnitine Lipid 7 157654985 PTPRN2 

cg11449344 0.19 4.49 8.22E-06 X - 11315 NA 6 31919727 CFB 

cg12079548 -0.12 -4.84 1.58E-06 mannose Carbohydrate 12 8068600 - 

cg12159028 0.16 4.58 5.29E-06 10-heptadecenoate (17:1n7) Lipid 12 133553715 - 

cg12585331 0.09 4.46 9.17E-06 myristate (14:0) Lipid 5 92904377 FLJ42709 

cg12612277 0.17 4.73 2.65E-06 glucose Carbohydrate 16 74455542 CLEC18B 

cg12612277 0.17 5.35 1.15E-07 mannose Carbohydrate 16 74455542 CLEC18B 

cg12612277 0.15 4.59 5.24E-06 arabinose Carbohydrate 16 74455542 CLEC18B 

cg12798257 0.11 4.49 8.22E-06 pelargonate (9:0) Lipid 18 77243594 NFATC1 

cg12798257 0.12 4.65 3.84E-06 heptanoate (7:0) Lipid 18 77243594 NFATC1 

cg14154487 0.26 4.50 7.71E-06 1,5-anhydroglucitol (1,5-AG) Carbohydrate 9 125133314 PTGS1 

cg14215666 0.11 4.55 6.05E-06 X - 08402 NA 11 97224825 - 

cg14215666 0.12 4.60 5.01E-06 X - 10510 NA 11 97224825 - 
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cg14321038 0.16 4.64 4.03E-06 malate Energy 7 31034129 - 

cg14540555 -0.20 -4.87 1.31E-06 1,5-anhydroglucitol (1,5-AG) Carbohydrate 11 86667375 FZD4 

cg15370815 -0.28 -4.72 2.76E-06 X - 12696 NA 11 108093335 NPAT;ATM 

cg15378866 -0.20 -4.48 8.48E-06 dimethylarginine  Amino acid 17 39723992 KRT9 

cg15523060 0.12 4.50 7.71E-06 pentadecanoate (15:0) Lipid 19 8952029 MBD3L1 

cg16264393 -0.29 -4.69 3.26E-06 octanoylcarnitine Lipid 19 2076579 MOBKL2A 

cg16443812 -0.18 -4.53 6.86E-06 X - 10506 NA 22 50987294 KLHDC7B 

cg16824024 -0.15 -4.50 7.96E-06 octanoylcarnitine Lipid 3 73092158 PPP4R2 

cg16874580 -0.12 -4.94 9.32E-07 X - 12696 NA 18 55092509 - 

cg17009073 0.14 4.47 8.76E-06 arabinose Carbohydrate 1 148865592 - 

cg17426923 0.12 4.79 2.00E-06 3-methyl-2-oxovalerate Amino acid 10 35464474 CREM 

cg17459635 0.18 4.74 2.52E-06 X - 11550 NA 15 89181615 ISG20 

cg18001780 -0.29 -4.45 9.74E-06 arabinose Carbohydrate 11 128500564 - 

cg18027903 -0.15 -4.52 7.04E-06 X - 12696 NA 7 15601624 TMEM195 

cg18093693 -0.33 -4.47 8.76E-06 X - 12696 NA 15 72668265 HEXA;C15orf34 

cg18406570 0.13 4.46 9.37E-06 X - 08402 NA 11 83984576 DLG2 

cg18446744 -0.13 -4.45 9.67E-06 dimethylarginine Amino acid 6 100680152 - 

cg18934106 0.13 4.67 3.60E-06 X - 12442 NA 6 33289610 DAXX 

cg19055828 0.09 4.46 9.28E-06 X - 11315 NA 12 51139321 DIP2B 

cg20707202 -0.21 -4.61 4.70E-06 octanoylcarnitine Lipid 11 33211414 - 

cg21365444 0.13 4.49 8.25E-06 X - 12442 NA 3 138554516 - 

cg21383495 -0.17 -5.00 7.19E-07 15-methylpalmitate  Lipid 17 54673193 - 

cg21831937 -0.20 -4.47 9.06E-06 X - 10500 NA 15 57519802 TCF12 

cg21831937 -0.24 -4.98 7.73E-07 cholesterol Lipid 15 57519802 TCF12 
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cg21831937 -0.23 -4.99 7.53E-07 X - 10510 NA 15 57519802 TCF12 

cg21831937 -0.22 -5.00 6.96E-07 lactate Carbohydrate 15 57519802 TCF12 

cg22118359 -0.28 -4.54 6.61E-06 arabinose Carbohydrate 11 33060800 TCP11L1 

cg22428762 -0.27 -4.64 4.12E-06 dimethylarginine  Amino acid 4 41984085 DCAF4L1 

cg22666438 -0.18 -4.61 4.68E-06 X - 11550 NA 19 919596 KISS1R 

cg23138608 -0.38 -4.69 3.27E-06 X - 11315 NA 14 91770145 CCDC88C 

cg23260105 -0.31 -4.86 1.40E-06 octanoylcarnitine Lipid 5 1218653 SLC6A19 

cg23324953 -0.39 -4.78 2.04E-06 arabinose Carbohydrate 8 145013728 PLEC1 

cg23427998 -0.32 -4.53 6.80E-06 arabinose Carbohydrate 5 54522784 - 

cg23465749 0.07 4.83 1.62E-06 isoleucine Amino acid 12 46123553 ARID2 

cg23826993 -0.11 -4.55 6.19E-06 malate Energy 8 58168222 - 

cg23867721 0.16 5.12 3.81E-07 X - 11550 NA 18 77631069 KCNG2 

cg23971215 0.24 4.59 5.13E-06 5-dodecenoate (12:1n7) Lipid 8 1359688 - 

cg24007312 0.19 4.57 5.67E-06 dimethylarginine  Amino acid 3 52312811 WDR82 

cg24077401 0.13 4.47 9.03E-06 X - 12696 NA 19 40372977 FCGBP 

cg24154777 0.18 4.61 4.62E-06 X - 11550 NA 14 103566588 C14orf73 

cg24197445 -0.24 -4.50 7.87E-06 dimethylarginine  Amino acid 3 167045873 ZBBX 

cg24470692 0.09 4.53 6.68E-06 1,5-anhydroglucitol (1,5-AG) Carbohydrate 8 6565084 AGPAT5 

cg25190151 -0.20 -4.61 4.60E-06 glucose Carbohydrate 7 21463675 - 

cg25443560 -0.12 -4.74 2.59E-06 N-acetylglycine Amino acid 19 35790951 MAG 

cg25553198 -0.21 -4.60 4.93E-06 octanoylcarnitine Lipid 4 54854922 RPL21P44 

cg25561382 0.15 4.47 8.78E-06 myristoleate (14:1n5) Lipid 19 18795207 CRTC1 

cg25561382 0.16 4.66 3.71E-06 X - 12442 NA 19 18795207 CRTC1 

cg25927227 0.13 4.49 8.11E-06 X - 13215 NA 8 41127218 SFRP1 
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cg26400325 -0.25 -4.69 3.19E-06 octanoylcarnitine Lipid 7 1997592 MAD1L1 

cg26646527 -0.19 -4.84 1.58E-06 1,5-anhydroglucitol (1,5-AG) Carbohydrate 18 77333373 - 

cg27171194 0.15 4.57 5.72E-06 dimethylarginine  Amino acid 1 3229579 PRDM16 

cg27229366 0.17 4.67 3.59E-06 X - 13215 NA 17 43574018 - 

cg27310761 -0.23 -4.50 7.73E-06 arabinose Carbohydrate 14 90798393 C14orf102 

cg27535047 -0.28 -4.55 6.32E-06 X - 13215 NA 22 42228699 SREBF2 

 
Table&S5)2&240&Associations&for&BN&&
 
GENE PROBE BIOCHEMICAL SNP 

(81 GWAS) CHR BETA 
(42 Ewas) 

p-value 
(42 Ewas) BETA-caco p-value-caco Score1  

MB<--SNP -->MT 
Score2- 
SNP -->MB -->MT 

Score3 
SNP -->MT -->MB Model with Max Score Relative 

likelohood 

TCF7L2 cg07861463 X - 11497 rs7903146 10 0.04 0.009015967 0.06 8.39E-05 -2452.9 -2451.4 -2450.6 3 1.53 

PSMD6 cg00629144 X - 12696 rs832571 3 0.03 0.008400409 0.05 0.000188961 -2369.6 -2366.2 -2369.3 2 4.77 

PRC1 cg26181196 pentadecanoate (15:0) rs12899811 15 -0.03 0.027091851 0.05 0.000987813 -2594.6 -2591.7 -2592.8 2 1.68 

PRC1 cg26181196 X - 11497 rs12899811 15 0.03 0.042059092 0.05 0.000987813 -2594.9 -2591.9 -2592.7 2 1.48 

PRC1 cg26181196 palmitoyl sphingomyelin rs12899811 15 -0.02 0.0085748 0.05 0.000987813 -2594.1 -2590.7 -2592.3 2 2.17 

PRC1 cg26181196 arabinose rs12899811 15 -0.02 0.045663162 0.05 0.000987813 -2595 -2592.1 -2592.7 2 1.35 

PRC1 cg26181196 cholesterol rs12899811 15 -0.04 0.015051407 0.05 0.000987813 -2594 -2591 -2592.7 2 2.32 

PRC1 cg26181196 X - 10510 rs12899811 15 -0.03 0.013777596 0.05 0.000987813 -2594 -2591.1 -2592.8 2 2.26 

PRC1 cg26181196 malate rs12899811 15 -0.03 0.008671852 0.05 0.000987813 -2592.6 -2589.3 -2592.4 2 4.72 

PRC1 cg26181196 lactate rs12899811 15 -0.03 0.041817777 0.05 0.000987813 -2588.7 -2585.9 -2592.8 2 4.23 

KCNQ1 cg17128405 glucose rs231362 11 -0.01 0.040116032 0.03 0.002115251 -3189.4 -3184.2 -3185.1 2 1.64 

KCNQ1 cg17128405 glucose rs2237892 11 -0.01 0.040116032 0.03 0.002115251 -2389.1 -2385.9 -2393.2 2 4.79 

KCNQ1 cg17128405 glucose rs231361 11 -0.01 0.040116032 0.03 0.002115251 -2843 -2840.4 -2841.8 2 2.06 

KCNQ1 cg17128405 glucose rs163184 11 -0.01 0.040116032 0.03 0.002115251 -3006.7 -3005.7 -3005.6 3 1.01 

KCNQ1 cg17128405 X - 12442 rs231362 11 -0.01 0.030021468 0.03 0.002115251 -3190.5 -3185.6 -3185.4 3 1.08 

KCNQ1 cg17128405 X - 12442 rs2237892 11 -0.01 0.030021468 0.03 0.002115251 -2391 -2388.1 -2393.4 2 4.21 
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KCNQ1 cg17128405 X - 12442 rs231361 11 -0.01 0.030021468 0.03 0.002115251 -2843.4 -2841 -2842.1 2 1.72 

KCNQ1 cg17128405 X - 12442 rs163184 11 -0.01 0.030021468 0.03 0.002115251 -3007 -3006.2 -3005.9 3 1.19 

KCNQ1 cg17128405 mannose rs231362 11 -0.01 0.012457595 0.03 0.002115251 -3190.4 -3185.4 -3185.3 3 1.01 

KCNQ1 cg17128405 mannose rs2237892 11 -0.01 0.012457595 0.03 0.002115251 -2393.3 -2390.4 -2393.4 2 4.38 

KCNQ1 cg17128405 mannose rs231361 11 -0.01 0.012457595 0.03 0.002115251 -2842.1 -2839.7 -2842 2 3.27 

KCNQ1 cg17128405 mannose rs163184 11 -0.01 0.012457595 0.03 0.002115251 -3006.6 -3005.7 -3005.9 2 1.06 

KCNQ1 cg17128405 octanoylcarnitine rs231362 11 -0.01 0.045979641 0.03 0.002115251 -3189.4 -3184.4 -3185.3 2 1.59 

KCNQ1 cg17128405 octanoylcarnitine rs2237892 11 -0.01 0.045979641 0.03 0.002115251 -2391 -2388 -2393.3 2 4.38 

KCNQ1 cg17128405 octanoylcarnitine rs231361 11 -0.01 0.045979641 0.03 0.002115251 -2840.4 -2838 -2842 2 3.39 

KCNQ1 cg17128405 octanoylcarnitine rs163184 11 -0.01 0.045979641 0.03 0.002115251 -3008.4 -3007.5 -3005.8 3 2.36 

KCNQ1 cg17128405 lactate rs231362 11 -0.02 0.019901703 0.03 0.002115251 -3189 -3184.1 -3185.4 2 1.91 

KCNQ1 cg17128405 lactate rs2237892 11 -0.02 0.019901703 0.03 0.002115251 -2392.9 -2390.1 -2393.4 2 4.22 

KCNQ1 cg17128405 lactate rs231361 11 -0.02 0.019901703 0.03 0.002115251 -2844.1 -2841.7 -2842.1 2 1.2 

KCNQ1 cg17128405 lactate rs163184 11 -0.02 0.019901703 0.03 0.002115251 -3008.3 -3007.5 -3005.9 3 2.28 

ANK1 cg07759223 valine rs516946 8 -0.01 0.036954492 0.02 0.002152063 -3188.8 -3187 -3190.5 2 2.54 

UBE2E2 cg07208565 malate rs1496653 3 -0.02 0.006083778 0.02 0.00452229 -2877.6 -2875 -2875.4 2 1.2 

KCNJ11 cg22937444 X - 13215 rs5215 11 -0.02 0.01962385 0.02 0.004877806 -2980.3 -2979.9 -2979 3 1.6 

KCNQ1 cg20768429 X - 12450 rs231362 11 0.01 0.037460735 0.03 0.006189381 -2989 -2986.1 -2982.9 3 4.96 

KCNQ1 cg20768429 X - 12450 rs2237892 11 0.01 0.037460735 0.03 0.006189381 -2194.3 -2192.8 -2191.6 3 1.82 

KCNQ1 cg20768429 X - 12450 rs231361 11 0.01 0.037460735 0.03 0.006189381 -2643.5 -2640 -2642.8 2 4.17 

KCNQ1 cg20768429 X - 12450 rs163184 11 0.01 0.037460735 0.03 0.006189381 -2804.7 -2804.5 -2804.9 2 1.13 

UBE2E2 cg03455225 X - 08402 rs1496653 3 -0.02 0.027600074 0.02 0.006270918 -2790 -2811.1 -2786.9 3 4.65 

UBE2E2 cg03455225 X - 10500 rs1496653 3 -0.02 0.037948917 0.02 0.006270918 -2789.8 -2811.9 -2788 3 2.38 

UBE2E2 cg03455225 cholesterol rs1496653 3 -0.02 0.038541781 0.02 0.006270918 -2788.6 -2809.9 -2787.1 3 2.11 

MAEA cg13680752 mannose rs6815464 4 -0.01 0.028523897 0.03 0.007535898 -2211.8 -2217.2 -2210.2 3 2.2 

MAEA cg13680752 lactate rs6815464 4 -0.03 0.008611729 0.03 0.007535898 -2209.6 -2214.9 -2210.1 1 1.31 
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MAEA cg13680752 fructose rs6815464 4 -0.02 0.023608136 0.03 0.007535898 -2211.3 -2216.7 -2210.2 3 1.7 

MAEA cg13680752 octanoylcarnitine rs6815464 4 -0.01 0.014960437 0.03 0.007535898 -2211.7 -2217.1 -2210.1 3 2.32 

MAEA cg13680752 glucose rs6815464 4 -0.02 0.020130916 0.03 0.007535898 -2209.7 -2215.1 -2210.2 1 1.28 

MAEA cg13680752 pentadecanoate (15:0) rs6815464 4 -0.02 0.03429492 0.03 0.007535898 -2212.6 -2218 -2210.2 3 3.23 

KCNQ1 cg26750319 X - 13215 rs231362 11 0.02 0.009561817 0.03 0.008813629 -3122.1 -3118.6 -3117.7 3 1.53 

KCNQ1 cg26750319 X - 13215 rs2237892 11 0.02 0.009561817 0.03 0.008813629 -2317.1 -2313.9 -2327.5 2 5.1 

KCNQ1 cg26750319 X - 13215 rs231361 11 0.02 0.009561817 0.03 0.008813629 -2774.2 -2774.5 -2773.2 3 1.92 

KCNQ1 cg26750319 X - 13215 rs163184 11 0.02 0.009561817 0.03 0.008813629 -2941.3 -2939.6 -2940.5 2 1.61 

FTO cg04036070 X - 12696 rs9936385 16 -0.01 0.00374644 -0.01 0.009219243 -3367.1 -3366.7 -3367.9 2 1.8 

TCF7L2 cg04064032 X - 08402 rs7903146 10 0.01 0.048668426 0.02 0.009853878 -2828.4 -2825.3 -2824.9 3 1.18 

ST6GAL1 cg15473502 proline rs16861329 3 -0.03 0.007275164 0.03 0.010646449 -2373.2 -2371.1 -2371.5 2 1.24 

ST6GAL1 cg15473502 X - 10506 rs16861329 3 0.02 0.01989082 0.03 0.010646449 -2372.3 -2368.9 -2370.3 2 2 

ST6GAL1 cg15473502 15-methylpalmitate rs16861329 3 -0.01 0.035593955 0.03 0.010646449 -2363.3 -2361.6 -2372 2 2.3 

HCCA2 cg18286323 15-methylpalmitate  rs2334499 11 0.01 0.023768066 -0.02 0.011410126 -2998.9 -2995.9 -2998.8 2 4.26 

SLC30A8 cg23338195 X - 10500 rs13266634 8 0.01 0.024822682 -0.01 0.011605501 -3369.5 -3365.8 -3368.9 2 4.61 

SLC30A8 cg23338195 X - 12696 rs13266634 8 -0.01 0.008682756 -0.01 0.011605501 -3371.5 -3368.2 -3369.2 2 1.72 

SLC30A8 cg23338195 palmitoyl sphingomyelin rs13266634 8 0.01 0.042647784 -0.01 0.011605501 -3371 -3367.7 -3369.2 2 2.14 

WFS1 cg00829753 X - 11423 rs4458523 4 -0.03 0.027805604 0.04 0.011896173 -2584.9 -2578.7 -2584.1 2 15.47 

CCND2 cg16994506 mannose rs11063069 12 -0.02 0.014460541 0.03 0.013095892 -2892.8 -2888 -2886.8 3 1.8 

CCND2 cg16994506 dimethylarginine rs11063069 12 0.03 0.0214259 0.03 0.013095892 -2892.5 -2886.5 -2885.6 3 1.57 

CCND2 cg16994506 lactate rs11063069 12 -0.04 0.001773676 0.03 0.013095892 -2892.8 -2887.9 -2886.6 3 1.86 

CCND2 cg16994506 cholesterol rs11063069 12 -0.04 0.009862066 0.03 0.013095892 -2892.3 -2887.2 -2886.5 3 1.41 

CCND2 cg16994506 malate rs11063069 12 -0.03 0.00177275 0.03 0.013095892 -2890.5 -2885.6 -2886.8 2 1.75 

CCND2 cg16994506 X - 10510 rs11063069 12 -0.02 0.045944452 0.03 0.013095892 -2891.5 -2886.2 -2886.3 2 1.04 

CCND2 cg16994506 X - 10500 rs11063069 12 -0.02 0.01888673 0.03 0.013095892 -2888.4 -2883.5 -2886.7 2 4.95 

CCND2 cg16994506 X - 10506 rs11063069 12 -0.03 0.00542079 0.03 0.013095892 -2892.2 -2887.2 -2886.6 3 1.34 
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CCND2 cg16994506 X - 13496 rs11063069 12 -0.02 0.040812529 0.03 0.013095892 -2893 -2885 -2883.6 3 2.04 

CCND2 cg16994506 glucose rs11063069 12 -0.02 0.006775431 0.03 0.013095892 -2893.1 -2888.2 -2886.8 3 2.09 

CCND2 cg16994506 X - 06246 rs11063069 12 -0.03 0.003616706 0.03 0.013095892 -2890.7 -2885.3 -2886.2 2 1.59 

MAEA cg01418351 X - 12442 rs6815464 4 0.01 0.006846993 0.02 0.01332383 -2539.2 -2536 -2539.3 2 4.94 

GLIS3 cg14340481 myristate (14:0) rs7041847 9 0.01 0.048392761 -0.02 0.013578443 -3194.4 -3191.9 -3192.9 2 1.69 

GLIS3 cg14340481 myristoleate (14:1n5) rs7041847 9 0.01 0.032459432 -0.02 0.013578443 -3192.9 -3190.4 -3193.1 2 3.37 

LPP cg04423294 citrulline rs6808574 3 0.01 0.030666435 -0.01 0.015744096 -3364.9 -3363.8 -3363.1 3 1.4 

KCNQ1 cg26958174 arabinose rs231362 11 -0.01 0.035182519 0.02 0.017026174 -3059.2 -3054.6 -3055.1 2 1.31 

KCNQ1 cg26958174 arabinose rs2237892 11 -0.01 0.035182519 0.02 0.017026174 -2266.7 -2262.9 -2264.4 2 2.16 

KCNQ1 cg26958174 arabinose rs231361 11 -0.01 0.035182519 0.02 0.017026174 -2715.4 -2710.9 -2714.2 2 5.36 

KCNQ1 cg26958174 arabinose rs163184 11 -0.01 0.035182519 0.02 0.017026174 -2882.8 -2879 -2878.9 3 1.06 

IGF2BP2 cg21531679 palmitoyl sphingomyelin rs4402960 3 -0.01 0.030324353 -0.02 0.017288687 -2786.1 -2784.6 -2782 3 3.67 

IGF2BP2 cg21531679 proline rs4402960 3 -0.02 0.015254048 -0.02 0.017288687 -2785.9 -2786.1 -2783.6 3 3.22 

IGF2BP2 cg21531679 X - 12696 rs4402960 3 -0.02 0.031253664 -0.02 0.017288687 -2780.3 -2780.4 -2783.6 1 1.05 

RBMS1 cg02048613 1,5-anhydroglucitol (1,5-AG) rs7593730 2 0.01 0.047756694 -0.01 0.01755332 -2780.3 -2781.4 -2783.6 1 1.73 

PPARG cg23514324 X - 13496 rs1801282 3 -0.02 0.005926219 0.02 0.017709731 -2780.3 -2780.4 -2783.6 1 1.05 

NOTCH2 cg05824755 X - 10506 rs1493694 1 0.01 0.021138158 -0.02 0.017913928 -2757.9 -2753.8 -2753.3 3 1.27 

NOTCH2 cg05824755 malate rs1493694 1 0.01 0.020645686 -0.02 0.017913928 -2757.7 -2755.2 -2755 3 1.12 

NOTCH2 cg05824755 dimethylargini rs1493694 1 -0.02 0.023529591 -0.02 0.017913928 -2756.3 -2752.1 -2753.2 2 1.74 

NOTCH2 cg05824755 arabinose rs1493694 1 0.01 0.04746119 -0.02 0.017913928 -2756 -2753.4 -2754.8 2 2.04 

NOTCH2 cg05824755 X - 06246 rs1493694 1 0.01 0.019867879 -0.02 0.017913928 -2757.4 -2752.5 -2752.5 2 1 

NOTCH2 cg05824755 cholesterol rs1493694 1 0.02 0.044871094 -0.02 0.017913928 -2755.6 -2753 -2754.9 2 2.5 

NOTCH2 cg05824755 X - 10500 rs1493694 1 0.01 0.048393796 -0.02 0.017913928 -2757.6 -2754.6 -2754.4 3 1.11 

NOTCH2 cg05824755 lactate rs1493694 1 0.02 0.014079808 -0.02 0.017913928 -2754.2 -2752.2 -2755.4 2 2.73 

NOTCH2 cg05824755 glucose rs1493694 1 0.01 0.034804872 -0.02 0.017913928 -2757.7 -2754.6 -2754.4 3 1.12 

IGF2BP2 cg25127692 X - 10500 rs4402960 3 0.02 0.017763148 0.02 0.018125741 -3104.5 -3102.1 -3103.4 2 1.91 



 150 

IGF2BP2 cg25127692 X - 10510 rs4402960 3 0.01 0.012417556 0.02 0.018125741 -3105.7 -3103.5 -3103.6 2 1.03 

IGF2BP2 cg25127692 cholesterol rs4402960 3 0.02 0.005962779 0.02 0.018125741 -3106.7 -3104.5 -3103.5 3 1.6 

IGF2BP2 cg25127692 X - 11497 rs4402960 3 -0.02 0.027062077 0.02 0.018125741 -3105.9 -3103.7 -3103.5 3 1.1 

IGF2BP2 cg25127692 pentadecanoate (15:0) rs4402960 3 0.01 0.037175207 0.02 0.018125741 -3106.1 -3103.7 -3103.3 3 1.2 

IGF2BP2 cg25127692 X - 12450 rs4402960 3 0.01 0.005071247 0.02 0.018125741 -3105.7 -3103.5 -3103.6 2 1.01 

IGF2BP2 cg25127692 heptanoate (7:0) rs4402960 3 -0.01 0.03955623 0.02 0.018125741 -3105.5 -3103.3 -3103.6 2 1.14 

IGF2BP2 cg25127692 dimethylargini rs4402960 3 -0.02 0.045603961 0.02 0.018125741 -3102.1 -3099.9 -3103.6 2 2.96 

IGF2BP2 cg25127692 X - 10506 rs4402960 3 0.01 0.032264169 0.02 0.018125741 -3105.8 -3103.3 -3103.3 2 1 

IGF2BP2 cg25127692 X - 12442 rs4402960 3 0.01 0.04440806 0.02 0.018125741 -3106.1 -3103.9 -3103.5 3 1.2 

IGF2BP2 cg25127692 lactate rs4402960 3 0.02 0.03152512 0.02 0.018125741 -3099 -3096.3 -3103.1 2 3.85 

IGF2BP2 cg25127692 mannose rs4402960 3 0.01 0.035120653 0.02 0.018125741 -3103 -3100.3 -3103.1 2 3.89 

IGF2BP2 cg25127692 glucose rs4402960 3 0.01 0.046005436 0.02 0.018125741 -3104.9 -3102.4 -3103.2 2 1.52 

CDKAL1 cg06512263 arabinose rs7756992 6 0.01 0.008586571 -0.01 0.018960068 -3341.7 -3340.1 -3341.8 2 2.29 

ARL15 cg04530345 X - 12696 rs702634 5 0.01 0.04945006 0.02 0.019046856 -2889.5 -2885.5 -2888.1 2 3.62 

HNF1A cg01394199 1,5-anhydroglucitol (1,5-AG) rs7957197 12 0.01 0.048207375 0.02 0.019165061 -2682.4 -2677.3 -2675.1 3 3.08 

HNF1A cg01394199 X - 12696 rs7957197 12 0.02 0.014917941 0.02 0.019165061 -2681 -2677 -2676.2 3 1.48 

FAF1 cg07911682 4-methyl-2-oxopentanoate rs17106184 1 -0.01 0.048374901 0.02 0.019270021 -2539.5 -2533.3 -2536.8 2 5.62 

FAF1 cg07911682 X - 10506 rs17106184 1 -0.02 0.047965615 0.02 0.019270021 -2543.7 -2536 -2535.3 3 1.4 

FAF1 cg07911682 X - 12442 rs17106184 1 -0.02 0.007194181 0.02 0.019270021 -2540.6 -2536.4 -2538.7 2 3.23 

FAF1 cg07911682 3-methyl-2-oxovalerate rs17106184 1 -0.01 0.049473993 0.02 0.019270021 -2539.6 -2535.4 -2538.7 2 5.45 

IGF2BP2 cg13618735 X - 12450 rs4402960 3 0.02 0.011771561 0.02 0.021113864 -2798.4 -2796.2 -2796.7 2 1.3 

IGF2BP2 cg13618735 proline rs4402960 3 -0.02 0.044790212 0.02 0.021113864 -2800 -2798.5 -2797.4 3 1.72 

TP53INP1 cg20039814 X - 11315 rs896854 8 -0.01 0.021925071 -0.01 0.022885282 -3212.5 -3244.5 -3212.8 1 1.18 

WFS1 cg22247194 citrulline rs4458523 4 -0.02 0.006919983 0.02 0.022945677 -2971.9 -2966.9 -2975.9 2 12.69 

WFS1 cg22247194 X - 11315 rs4458523 4 -0.02 0.012720613 0.02 0.022945677 -2979.6 -2974.9 -2976.4 2 2.05 

WFS1 cg22247194 1,5-anhydroglucitol (1,5-AG) rs4458523 4 -0.01 0.012585365 0.02 0.022945677 -2976.9 -2971.3 -2975.4 2 7.69 
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HCCA2 cg04902924 isoleucine rs2334499 11 -0.01 0.049353796 0.02 0.024296623 -3048.8 -3051.8 -3053.1 1 4.55 

HCCA2 cg04902924 leucine rs2334499 11 -0.01 0.048270233 0.02 0.024296623 -3050.1 -3053 -3053 1 4.18 

HCCA2 cg04902924 valine rs2334499 11 -0.02 0.037465148 0.02 0.024296623 -3048.5 -3051.6 -3053.2 1 4.65 

CCND2 cg07181862 pelargonate (9:0) rs11063069 12 -0.02 0.031578696 0.03 0.024400664 -2851.1 -2845.6 -2848.4 2 4.17 

CCND2 cg07181862 X - 11497 rs11063069 12 -0.02 0.040680081 0.03 0.024400664 -2853.1 -2847.7 -2848.6 2 1.56 

CCND2 cg07181862 palmitoyl sphingomyelin rs11063069 12 -0.02 0.003926466 0.03 0.024400664 -2851.2 -2845.8 -2848.6 2 4.12 

CCND2 cg07181862 X - 11550 rs11063069 12 -0.02 0.003567977 0.03 0.024400664 -2850.7 -2845.6 -2848.9 2 5.04 

FAF1 cg12278631 X - 10510 rs17106184 1 -0.02 0.025279779 0.02 0.024643124 -2451.7 -2447.2 -2448.2 2 1.63 

FAF1 cg12278631 lactate rs17106184 1 -0.02 0.041766419 0.02 0.024643124 -2453.5 -2449.2 -2448.4 3 1.46 

FAF1 cg12278631 fructose rs17106184 1 -0.02 0.005580859 0.02 0.024643124 -2451.9 -2446.9 -2447.7 2 1.5 

FAF1 cg12278631 X - 13496 rs17106184 1 -0.02 0.027794359 0.02 0.024643124 -2448.1 -2443.5 -2448.1 2 9.87 

FAF1 cg12278631 octanoylcarnitine rs17106184 1 -0.01 0.046233567 0.02 0.024643124 -2444.8 -2440.5 -2448.4 2 8.55 

FTO cg03312170 octanoylcarnitine rs9936385 16 -0.01 0.038521381 0.02 0.024721643 -3060.7 -3059.1 -3060.3 2 1.91 

HCCA2 cg00435469 X - 13215 rs2334499 11 -0.03 0.021199428 0.03 0.026510685 -2649.7 -2647.9 -2647.5 3 1.26 

HCCA2 cg00435469 proline rs2334499 11 -0.02 0.02656214 0.03 0.026510685 -2648.1 -2647.5 -2648.6 2 1.38 

HCCA2 cg00435469 X - 06246 rs2334499 11 -0.03 0.014867383 0.03 0.026510685 -2649.8 -2648.8 -2648.3 3 1.28 

CDKAL1 cg23560765 X - 12696 rs7756992 6 0.01 0.047844542 0.02 0.02711749 -3033.7 -3031.5 -3032.5 2 1.67 

IGF2BP2 cg24960291 X - 13215 rs4402960 3 -0.01 0.020281147 -0.01 0.027439181 -3246.9 -3245 -3242.8 3 3.02 

IGF2BP2 cg24960291 lactate rs4402960 3 0.01 0.018083612 -0.01 0.027439181 -3246.5 -3242.4 -3240.5 3 2.51 

IGF2BP2 cg24960291 X - 11550 rs4402960 3 -0.01 0.049134376 -0.01 0.027439181 -3244.7 -3244.3 -3244.3 2 1.01 

IGF2BP2 cg24960291 10-heptadecenoate (17:1n7) rs4402960 3 -0.01 0.044255401 -0.01 0.027439181 -3237.1 -3236.8 -3244.4 2 1.17 

IGF2BP2 cg24960291 X - 11497 rs4402960 3 -0.02 0.003447156 -0.01 0.027439181 -3242.6 -3241.4 -3243.5 2 1.79 

HNF1A cg07065256 X - 11423 rs7957197 12 -0.03 0.018877851 0.03 0.027506288 -2492.7 -2489.2 -2490.1 2 1.61 

HNF1A cg07065256 3-methyl-2-oxovalerate rs7957197 12 -0.01 0.048732922 0.03 0.027506288 -2492.9 -2488.7 -2489.5 2 1.46 

ZFAND3 cg03003722 arabinose rs9470794 6 0.01 0.025896405 -0.01 0.029458718 -2869.3 -2872.5 -2870 1 1.41 

CDKAL1 cg24273995 3-methyl-2-oxovalerate rs7756992 6 -0.01 0.014465973 0.03 0.02993546 -2622.3 -2619.1 -2626 2 4.87 
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CDKAL1 cg24273995 4-methyl-2-oxopentanoate rs7756992 6 -0.01 0.009416892 0.03 0.02993546 -2620.9 -2617.5 -2625.8 2 5.47 

HCCA2 cg25050723 octanoylcarnitine rs2334499 11 0.01 0.030869026 0.02 0.031301212 -3165.8 -3163.1 -3163.2 2 1.06 

KCNQ1 cg24609402 fructose rs231362 11 0.02 0.026264586 0.02 0.031545812 -3079 -3073.8 -3077.4 2 5.85 

KCNQ1 cg24609402 fructose rs2237892 11 0.02 0.026264586 0.02 0.031545812 -2278.2 -2276.8 -2283.7 2 1.96 

KCNQ1 cg24609402 fructose rs231361 11 0.02 0.026264586 0.02 0.031545812 -2733.1 -2732.1 -2732.4 2 1.16 

KCNQ1 cg24609402 fructose rs163184 11 0.02 0.026264586 0.02 0.031545812 -2904 -2900.2 -2900.7 2 1.3 

MAEA cg14386311 X - 12696 rs6815464 4 0.02 0.035536628 0.02 0.032578624 -2127.2 -2124.5 -2127.1 2 3.63 

IGF2BP2 cg24450631 X - 12696 rs4402960 3 0.01 0.049018909 0.01 0.032656191 -3420.5 -3417.4 -3423.8 2 4.89 

KLF14 cg09529138 X - 11550 rs972283 7 -0.01 0.015725329 -0.01 0.033795627 -3620.8 -3617.1 -3618.3 2 1.82 

ADCY5 cg14844401 N-acetylglycine rs11717195 3 0.01 0.004065766 -0.01 0.034699627 -3296.4 -3290.6 -3292.4 2 2.43 

ADCY5 cg14844401 X - 10510 rs11717195 3 0.01 0.033902512 -0.01 0.034699627 -3294.5 -3288.5 -3292.2 2 6.35 

ADCY5 cg14844401 X - 10506 rs11717195 3 0.01 0.019467994 -0.01 0.034699627 -3292.3 -3286.1 -3291.9 2 18.46 

ADCY5 cg14844401 X - 13496 rs11717195 3 0.01 0.040217595 -0.01 0.034699627 -3297.8 -3291.5 -3291.8 2 1.18 

ADCY5 cg14844401 arabinose rs11717195 3 0.01 0.04449706 -0.01 0.034699627 -3296.3 -3290.2 -3292.1 2 2.51 

ADCY5 cg14844401 lactate rs11717195 3 0.01 0.047796316 -0.01 0.034699627 -3296.3 -3289.6 -3291.5 2 2.6 

ADCY5 cg14844401 malate rs11717195 3 0.01 0.016594712 -0.01 0.034699627 -3292 -3286 -3292.2 2 21.36 

ADCY5 cg14844401 glucose rs11717195 3 0.01 0.042320012 -0.01 0.034699627 -3296.9 -3290.8 -3292 2 1.87 

ADCY5 cg14844401 pentadecanoate (15:0) rs11717195 3 0.01 0.043189212 -0.01 0.034699627 -3292.9 -3287.2 -3292.4 2 13.93 

ADCY5 cg14844401 cholesterol rs11717195 3 0.01 0.025670726 -0.01 0.034699627 -3295.6 -3289 -3291.5 2 3.58 

MTNR1B cg13171406 X - 12696 rs10830963 11 -0.01 0.033354661 -0.01 0.035355051 -3313.9 -3308.8 -3311.4 2 3.66 

PRC1 cg06613755 lactate rs12899811 15 -0.02 0.006661835 0.02 0.035363912 -3033.6 -3029.9 -3031.4 2 2.09 

PRC1 cg06613755 X - 10500 rs12899811 15 -0.02 0.040334966 0.02 0.035363912 -3034.8 -3031.9 -3032.2 2 1.16 

PRC1 cg06613755 dimethylargin rs12899811 15 0.02 0.021548853 0.02 0.035363912 -3028.3 -3025.1 -3031.9 2 5.02 

PRC1 cg06613755 arabinose rs12899811 15 -0.01 0.030034761 0.02 0.035363912 -3035.3 -3031.5 -3031.4 3 1.09 

KCNQ1 cg20170839 mannose rs231362 11 -0.02 0.020227261 0.02 0.03539522 -2981.4 -2976.1 -2977.3 2 1.82 

KCNQ1 cg20170839 mannose rs2237892 11 -0.02 0.020227261 0.02 0.03539522 -2178.5 -2177.9 -2182.8 2 1.37 
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KCNQ1 cg20170839 mannose rs231361 11 -0.02 0.020227261 0.02 0.03539522 -2635.1 -2632.4 -2634 2 2.31 

KCNQ1 cg20170839 mannose rs163184 11 -0.02 0.020227261 0.02 0.03539522 -2800.2 -2797.7 -2799.2 2 2.18 

TLE1 cg14254562 X - 13496 rs2796441 9 0.02 0.02987329 0.02 0.037060539 -3089.1 -3087.1 -3086.6 3 1.32 

JAZF1 cg27102995 X - 13496 rs849135 7 -0.02 0.022723393 -0.02 0.037324519 -3061.6 -3056.9 -3058.9 2 2.78 

FTO cg12495954 myristate (14:0) rs9936385 16 -0.01 0.026640058 -0.02 0.038265962 -2983 -2986.8 -2978.8 3 8.25 

FTO cg12495954 palmitoleate (16:1n7) rs9936385 16 -0.01 0.045960443 -0.02 0.038265962 -2984.6 -2986.9 -2977.4 3 37.12 

FTO cg12495954 X - 13215 rs9936385 16 -0.02 0.036707553 -0.02 0.038265962 -2983.9 -2987.6 -2978.7 3 13.7 

IGF2BP2 cg23956648 X - 11315 rs4402960 3 0.01 0.045049917 -0.01 0.040498821 -3180.5 -3185.7 -3179.8 3 1.39 

ANK1 cg23668222 X - 12696 rs516946 8 -0.02 0.020433541 0.02 0.041369955 -2843.7 -2850.8 -2841.1 3 3.67 

KCNQ1 cg19030519 X - 08402 rs231362 11 0.01 0.03398176 0.01 0.041832201 -3392.3 -3387.6 -3386.4 3 1.85 

KCNQ1 cg19030519 X - 08402 rs2237892 11 0.01 0.03398176 0.01 0.041832201 -2591.7 -2592.2 -2591.2 3 1.29 

KCNQ1 cg19030519 X - 08402 rs231361 11 0.01 0.03398176 0.01 0.041832201 -3043.6 -3043 -3041.5 3 2.14 

KCNQ1 cg19030519 X - 08402 rs163184 11 0.01 0.03398176 0.01 0.041832201 -3212 -3209.6 -3208.7 3 1.56 

KCNQ1 cg19030519 malate rs231362 11 0.01 0.011664896 0.01 0.041832201 -3386.4 -3381 -3385.7 2 10.36 

KCNQ1 cg19030519 malate rs2237892 11 0.01 0.011664896 0.01 0.041832201 -2590.6 -2590.5 -2590.5 2 1.01 

KCNQ1 cg19030519 malate rs231361 11 0.01 0.011664896 0.01 0.041832201 -3039.4 -3038.1 -3040.9 2 1.85 

KCNQ1 cg19030519 malate rs163184 11 0.01 0.011664896 0.01 0.041832201 -3209.2 -3206.1 -3208.1 2 2.63 

KCNQ1 cg19030519 X - 10506 rs231362 11 0.01 0.012660328 0.01 0.041832201 -3390 -3384.2 -3385.3 2 1.72 

KCNQ1 cg19030519 X - 10506 rs2237892 11 0.01 0.012660328 0.01 0.041832201 -2589.3 -2588.8 -2590.1 2 1.27 

KCNQ1 cg19030519 X - 10506 rs231361 11 0.01 0.012660328 0.01 0.041832201 -3042.4 -3040.8 -3040.5 3 1.16 

KCNQ1 cg19030519 X - 10506 rs163184 11 0.01 0.012660328 0.01 0.041832201 -3210.4 -3207 -3207.7 2 1.41 

KCNQ1 cg19030519 X - 13496 rs231362 11 0.01 0.040368502 0.01 0.041832201 -3389.2 -3384.4 -3386.2 2 2.47 

KCNQ1 cg19030519 X - 13496 rs2237892 11 0.01 0.040368502 0.01 0.041832201 -2592.3 -2592.7 -2591 3 2.3 

KCNQ1 cg19030519 X - 13496 rs231361 11 0.01 0.040368502 0.01 0.041832201 -3041.4 -3040.7 -3041.4 2 1.4 

KCNQ1 cg19030519 X - 13496 rs163184 11 0.01 0.040368502 0.01 0.041832201 -3211.4 -3208.8 -3208.6 3 1.15 

KCNQ1 cg19030519 arabinose rs231362 11 0.01 0.038591021 0.01 0.041832201 -3391.9 -3387 -3386.1 3 1.55 
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KCNQ1 cg19030519 arabinose rs2237892 11 0.01 0.038591021 0.01 0.041832201 -2590.8 -2591.1 -2590.9 1 1.06 

KCNQ1 cg19030519 arabinose rs231361 11 0.01 0.038591021 0.01 0.041832201 -3043.7 -3042.8 -3041.3 3 2.15 

KCNQ1 cg19030519 arabinose rs163184 11 0.01 0.038591021 0.01 0.041832201 -3207.8 -3205.2 -3208.5 2 3.74 

IGF2BP2 cg19952454 leucine rs4402960 3 -0.01 0.045154865 -0.01 0.043458776 -3321.1 -3315.1 -3316.6 2 2.11 

IGF2BP2 cg19952454 valine rs4402960 3 -0.01 0.044714999 -0.01 0.043458776 -3320 -3314.5 -3317.2 2 3.78 

BCAR1 cg01805890 X - 12696 rs7202877 16 0.02 0.014890923 0.02 0.043581866 -2499.6 -2497.2 -2499.1 2 2.68 

BCAR1 cg01805890 N-acetylglycine rs7202877 16 0.01 0.047497504 0.02 0.043581866 -2500.7 -2498 -2498.9 2 1.59 

PROX1 cg13921308 octanoylcarnitine rs2075423 1 -0.01 0.047495126 -0.02 0.044005829 -2997.4 -2992.2 -2993.9 2 2.31 

KCNQ1 cg04204548 15-methylpalmitate rs231362 11 -0.01 0.047000901 0.02 0.044440295 -3072.1 -3068.6 -3070.7 2 2.98 

KCNQ1 cg04204548 15-methylpalmitate rs2237892 11 -0.01 0.047000901 0.02 0.044440295 -2278.2 -2275.2 -2280.2 2 4.33 

KCNQ1 cg04204548 15-methylpalmitate rs231361 11 -0.01 0.047000901 0.02 0.044440295 -2732.1 -2729.2 -2729.4 2 1.13 

KCNQ1 cg04204548 15-methylpalmitate rs163184 11 -0.01 0.047000901 0.02 0.044440295 -2896.4 -2894.6 -2893.6 3 1.65 

MPHOSPH9 cg20350484 X - 12450 rs4275659 12 0.01 0.028497686 -0.02 0.044462367 -2883.7 -2878.2 -2878.8 2 1.34 

MPHOSPH9 cg20350484 X - 11315 rs4275659 12 0.01 0.022662912 -0.02 0.044462367 -2884.6 -2879.8 -2879.5 3 1.18 

MPHOSPH9 cg20350484 dimethylarginine  rs4275659 12 -0.02 0.040372391 -0.02 0.044462367 -2878.9 -2877.8 -2879.5 2 1.73 

RBMS1 cg19506623 leucine rs7593730 2 -0.02 0.036618474 0.02 0.044539174 -2878.9 -2879.8 -2879.5 1 1.35 

RBMS1 cg19506623 X - 13496 rs7593730 2 -0.01 0.046927625 0.02 0.044539174 -2878.9 -2879.8 -2879.6 1 1.42 

RBMS1 cg19506623 proline rs7593730 2 -0.02 0.023933275 0.02 0.044539174 -2878.9 -2879.8 -2879.5 1 1.35 

RBMS1 cg19506623 palmitoyl sphingomyelin rs7593730 2 -0.01 0.020646416 0.02 0.044539174 -2878.9 -2879.8 -2879.5 1 1.35 

RBMS1 cg19506623 valine rs7593730 2 -0.02 0.032304512 0.02 0.044539174 -2878.9 -2879.8 -2879.5 1 1.37 

RBMS1 cg19506623 octanoylcarnitine rs7593730 2 -0.01 0.007047227 0.02 0.044539174 -2878.9 -2879.8 -2879.5 1 1.35 

RBMS1 cg19506623 fructose rs7593730 2 -0.01 0.0217423 0.02 0.044539174 -2878.9 -2879.8 -2879.5 1 1.35 

RBMS1 cg19506623 X - 06246 rs7593730 2 -0.02 0.02098359 0.02 0.044539174 -2878.9 -2879.8 -2879.7 1 1.49 

RBMS1 cg19506623 X - 11315 rs7593730 2 -0.02 0.006864053 0.02 0.044539174 -2878.9 -2879.8 -2879.5 1 1.35 

HNF4A cg08407434 palmitoyl sphingomyelin rs4812829 20 -0.01 0.046885769 -0.01 0.044838842 -2993.9 -3000.7 -2989.5 3 8.93 

HNF4A cg08407434 X - 13496 rs4812829 20 -0.01 0.009969839 -0.01 0.044838842 -2992.7 -2998.1 -2988 3 10.5 
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HNF4A cg08407434 malate rs4812829 20 -0.01 0.027263263 -0.01 0.044838842 -2992 -2999.2 -2989.9 3 2.79 

TP53INP1 cg01824466 pentadecanoate (15:0) rs896854 8 0.01 0.021975132 -0.01 0.045217064 -3476.7 -3473.4 -3475.6 2 3.04 

TP53INP1 cg01824466 X - 10510 rs896854 8 0.01 0.043236591 -0.01 0.045217064 -3469 -3466.2 -3476.1 2 3.99 

TP53INP1 cg01824466 X - 13496 rs896854 8 0.01 0.023706849 -0.01 0.045217064 -3477.3 -3474.4 -3476 2 2.19 

HCCA2 cg18481342 valine rs2334499 11 0.02 0.016942719 0.02 0.045800576 -3105.5 -3103.3 -3102 3 1.87 

HCCA2 cg18481342 palmitoyl sphingomyelin rs2334499 11 -0.01 0.013978415 0.02 0.045800576 -3099.5 -3097.8 -3102.6 2 2.36 

HCCA2 cg18481342 leucine rs2334499 11 0.02 0.014910949 0.02 0.045800576 -3098.1 -3096.4 -3102.6 2 2.34 

HCCA2 cg18481342 isoleucine rs2334499 11 0.02 0.022289429 0.02 0.045800576 -3097.9 -3095.9 -3102.3 2 2.71 

ANK1 cg26172342 palmitoleate (16:1n7) rs516946 8 0.01 0.046859439 -0.01 0.047536783 -3214.5 -3209.1 -3209.5 2 1.21 

ANK1 cg26172342 pelargonate (9:0) rs516946 8 0.01 0.030532926 -0.01 0.047536783 -3213.8 -3208.9 -3210 2 1.71 

ANK1 cg26172342 heptanoate (7:0) rs516946 8 0.01 0.030092805 -0.01 0.047536783 -3207.5 -3202.5 -3209.8 2 12.49 

ANK1 cg26172342 X - 11550 rs516946 8 0.01 0.045652037 -0.01 0.047536783 -3213.3 -3208.4 -3209.9 2 2.15 

ANK1 cg26172342 X - 10500 rs516946 8 -0.01 0.010859229 -0.01 0.047536783 -3214.7 -3209.8 -3209.9 2 1.07 

ANK1 cg26172342 glucose rs516946 8 -0.01 0.030653213 -0.01 0.047536783 -3211.3 -3205.5 -3209.1 2 6.06 

ZMIZ1 cg14841514 X - 11550 rs12571751 10 -0.01 0.009290396 -0.02 0.048019101 -3061 -3057.2 -3058.1 2 1.55 

ANK1 cg08388995 X - 11550 rs516946 8 0.01 0.021247737 0.01 0.049314193 -3151.4 -3146 -3146.4 2 1.25 
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