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Abstract 

The ability of a range of hydrophilic nonionic cellulose ethers (CEs) (namely methylhydrox-

ethylcellulose, hydroxypropylmethylcellulose, ethylhydroxyethylcellulose, hydroxyethyl-

cellulose and hydroxypropylcellulose) to prepare stable nabumetone nanoparticles (< 1000 

nm, as measured by laser diffraction) using wet-bead milling has been investigated. Due to 

the limited range of CE molecular weights commercially available, the CEs were degraded 

using ultrasonication for varying lengths of time to yield CEs of lower molecular weight. Of 

the CEs tested, only hydroxyethylcellulose was found not to stabilise the production of 

nabumetone nanoparticles at any of the molecular weights tested, namely viscosity average 

molecular weights (Mv) in the range of 236 to 33 Kg/mol. All other CEs successfully stabilised 

nabumetone nanoparticles, with the lower molecular weight/viscosity polymers within a se-

ries being more likely to result in nanoparticle production than their higher molecular weight 

counterparts. Unfortunately due to the nature of the ultrasonication process, it was not pos-

sible to compare the size of nabumetone particles produced using polymers of identical Mv. 

There was, however, enough similarity in the Mv of the various polymers to draw the general 

conclusion that there was no strong correlation between the Mv of the various polymers and 

their ability to produce nanoparticles. For example hydroxypropylcellulose of 112.2 Kg/mol 

or less successfully produced nanoparticles while only ethylhydroxyethylcellulose and hy-

droxypropylmethyl polymers of 52 and 38.8 Kg/mol or less produced nanoparticles. These 

results suggest that polymer molecular weight is not the only determinant of nanoparticle 

production and that structure of the polymer is at least as important as its molecular weight. 

In particular the hydrophobic nature of the CE was thought to be an important factor in the 

production of nabumetone nanoparticles: the more hydrophobic the polymer, the stronger 

its interaction with nabumetone and the greater its ability to produce nanoparticles. In this 

context HPC was the most hydrophobic polymer and HEC the least hydrophobic. 

 

Key Words: cellulose ethers, nabumetone, nanoparticle, wet-bead milling, molecular weight 

 

Introduction 

Poor water-solubility of a potential new drug is a major challenge when formulating it for use 

as medicine by patients. This is because in order for an orally administered drug to be ab-

sorbed, it must be dissolved in the gastrointestinal fluid at its site of absorption. If a drug has 

no or extremely low solubility in the gastrointestinal fluid, i.e. it is very hydrophobic, it is 

unlikely to be absorbed to sufficient extent to allow it to exert its therapeutic effect and will 

never reach the market and therefore the patient. While the poor aqueous solubility of drugs 



 

 

has always been a challenge to formulators, the number of potential drugs that exhibit very 

poor water-solubility has increased significantly over recent years. This increase is widely 

attributed to the use of combinatorial chemistry and high throughput screening leading to 

new chemical entities with high molecular weight and increasing lipophilicity and therefore 

decreasing aqueous solubility. Indeed, it is estimated that, depending upon therapeutic area, 

up to 80-90% of new drugs currently under development exhibit poor water solubility 

(Thayer, 2010). 

 

Many approaches have been explored to increase the rate of solution and the aqueous 

solubility of drugs, including salt formation, use of co-solvent, complexation with cyclodex-

trins, solubilisation in micelles and microemulsions amongst other things (Lawrence and 

Rees, 2012; Kalepu et al., 2015; Loh et al., 2015). One approach to improving drug disso-

lution rate and aqueous solubility that has recently attracted a lot of attention is the prepa-

ration of drug particles in the nanometre size range (typically between 10 to 1000 nm) – this 

then yielding particles with a high surface area-to-volume ratio and resulting in an increased 

dissolution rate and therefore potentially an improved in vivo performance of the poorly sol-

uble drug (Loh et al., 2015; Li et al., 2016). Such drug nanoparticles can be produced by 

wet bead milling, using ceramic beads of millimeter diameter, crystalline drug in the pres-

ence of an aqueous solution of a surfactant and/or polymer to aid stability. Compared to 

other approaches to producing drug-containing nanoparticles for drug delivery, these nano-

particles have a number of advantageous properties. For example, the nanoparticles pos-

sess an exceptionally high drug loading, as the particle core is composed of pure drug ma-

terial, with the stabilising surfactant and/or polymer comprising only a very low amount of 

the composite particle (Peltonen and Hirvonen, 2010). The ‘crystalline’ nanoparticles exhibit 

a high degree of stability, while Ostwald ripening of the nanoparticles can be reduced if the 

drug nanoparticles are relatively monodisperse and exhibit a very low aqueous solubility 

(Verma et al., 2010). It is possible to use the nanoparticles as is, i.e., in the form of a nano-

suspension or to produce ‘dry’ nanoparticles that can be compressed into tablets or used as 

powder by freeze drying the suspension (Merisko-Liversidge et al., 2003), possibly in com-

bination with a carrier such as mannitol. Indeed most of the crystalline nanoparticle products 

that have reached the market so far are produced by wet-bead milling (Van Eefenbrugh et 

al., 2008; Junghaus and Müller, 2008). 

 



 

 

Despite this interest to date, however, no one single polymer or surfactant has been found 

suitable for stabilising all drugs, as different drugs have been found to require different sta-

bilisers (Li et al., 2016). Furthermore, as no understanding exists on the interaction(s) 

between stabilizers and drugs, the ‘best’ stabiliser for a particular drug has to be determined 

on a case-by-case basis (Li et al., 2016). As part of a study aimed at better understanding 

of the relationship between stabiliser and drug, we have determined the effect of the molec-

ular weight of polymer on the production of nanoparticles, their size and where appropriate, 

stability. To the authors knowledge this is the first time such a systematic study has been 

performed on the nature of the polymer used to stabilize drug nanosuspensions prepared 

by wet bead milling. Here, the poorly water soluble drug, nabumetone (Figure 1; aqueous 

solubility of 0.0047 mg/mL) was selected for study as previous studies have suggested that 

polymer molecular weight may be an important variable.  

 

A range of structurally-related, commercially available nonionic cellulose ethers (CEs), 

namely methylhydroxethylcellulose (MHEC), hydroxypropylmethyl cellulose (HPMC), 

ethylhydroxyethylcellulose (EHEC), hydroxyethylcellulose (HEC), and especially hydroxy-

propylcellulose (HPC) (Table 1) were examined for their ability to stabilise nabumetone na-

noparticles prepared by wet bead milling. However, due to the limited range of CE molecular 

weights available commercially, ultrasonication was used to produce, using the methodol-

ogy of Goodwin et al. (2011), CEs of varying molecular weights. Ultrasonication was se-

lected as the method of CE degradation in the present study as it possess a number of 

important advantages over other available methodologies, including the fact that the poly-

mer breaks towards the middle of the chain with no side reactions occurring and no mono-

mers being formed during degradation (Kulicke et al, 2005). 

 

Figure 1. 

 

Table 1. 

Materials and Methods 

Materials 

Nabumetone (Batch number 00N60141) was supplied by GlaxoSmithKline (Harlow, UK). 

Cellulose ethers (CEs) were used as received from the manufacturer with no corrections 

being made for moisture content. When available, pharmaceutical grade CE was purchased. 

The structure of the CEs was typically confirmed using a combination of UV, IR and NMR 

spectroscopy. Hydroxypropylcellulose (HPC(-EF); Klucel, nominal (Mw) molecular weight 



 

 

80,000 Kg/mol, molar degree of substitution (ms) = 3.9, degree of substitution (ds) is not 

stated) and hydroxyethylcellulose (HEC; Natrosol 250G, nominal (Mv) molecular weight 

300,000 Kg/mol, ms = 2.5, ds = 1.5) were obtained from Hercules (Wilmington, USA), hy-

droxypropylmethylcellulose (HPMC; Methocel(-4EM), nominal (Mn) molecular weight 86,000 

Kg/mol, ms and ds not stated) from Colorcon (Dartford, UK), methylhydroxyethylcellulose 

(MHEC; Tylose MH50G4, nominal molecular weight not stated, ms and ds not stated) from 

Clariant (Wiesbaden, Germany) and ethylhydroxyethylcellulose (EHEC; Bermocoll E230G, 

nominal molecular weight (method weight not stated) 85,000 Kg/mol ms = 2.0 (molar degree 

of hydroxyethyl substitution), ds = 0.9 (degree of ethyoxy substitution)).The quoted molecu-

lar weights of polymers are consequently viscosity average molecular weights (Mv). Table 2 

gives the measured viscosity and viscosity (Mv) average molecular weights of the CE poly-

mers used in the present study. Note that all polymer molecular weights quoted in this study 

are viscosity (Mv) average molecular weights. Aqueous stock solutions of the CEs were 

prepared by weighing the required mass of CE and adding about three quarters of the re-

quired volume of double-distilled water with constant stirring. After stirring for 19 h, the CE 

solution made up to final volume using double-distilled water. The resulting CE solution 

stored in a refrigerator (4 oC) for 24 h prior to its use. Yttrium zirconia (YTZ®) beads of di-

ameter 0.44 mm (0.35 – 0.5 mm range) were obtained from the Nikkato Corp. (Tokyo, Ja-

pan). Spectroscopically-pure, double distilled water was used throughout the study. 

 

Ultrasonication of Cellulose Ether Solutions 

When the effect of polymer molecular weight on nanoparticle production was investigated, 

1.5 wt% of CEs in aqueous solution were ultrasonically degraded. Although in the case of 

HPC-EF, degradation was also performed at 4 wt% of the CE in order to achieve solutions 

containing higher HPC concentrations).The method of ultrasonic degradation used was that of 

Goodwin et al (2011). In brief, the aqueous CE solution was placed in a screw-top glass jar within a 

jacketed bath containing water circulating at 2 oC. Ultrasonication of the CE solution was performed 

using a Soniprobe model 7535 A (Lucas Dawe Ultrasonics, UK) fitted with a tapered microtip oper-

ating at 15% of its maximum output (150 W). The CE solutions were ultrasonicated for either 1, 4, 8, 

16 or 24 h (Table 2), with 24 h being the longest degradation time used as Goodwin et al. (2011) 

had previously established that the reduction in molecular weight of the CE polymer had plateaued 

off by this time. The molecular weight of the resulting sonicated polymer was determined as de-

scribed below. After measuring the viscosity and viscosity (Mv) molecular weight, the polymer 

solutions were used without further manipulation. 

 

Table 2. 



 

 

 

Capillary Viscometry 

All CE polymers used where characterized by determining their viscosity average molecu-

lar weight (Mv) using capillary viscosity on CE solutions that were of a concentration to en-

sure that the viscometric measurements were performed below C* (defined as 1/[], where 

[] is the intrinsic viscosity of the polymer). In all cases the measurements were performed 

in triplicate using a Ubbelhode (suspended level) viscometer immersed in a precision wa-

ter bath at either 20 ± 0.1 oC for HPMC and 25 ± 0.1 oC for all other CE polymers (trans-

parent thermostat CT 1650, Schott-Geräte, Hofheim, Germany) and connected to a Vis-

cosity Measurement Unit AVS 350 (Schott-Geräte, Hofheim, Germany) and a ViscoDoser 

AVS 20 piston burette to allow the automatic dilution of the polymer solution. The intercept 

of separate Huggins and Kramer extrapolations of the measured flow times yielded the in-

trinsic viscosity [] and from this the molecular weight of the CE was determined by appli-

cation of the Mark-Houwink equation when the necessary parameters were available 

(Goodwin et al. 2011). 

 

 

Steric Exclusion Chromatography 

Steric exclusion chromatography (SEC) was carried out on selected undegraded and lyoph-

ilized degraded HPC samples to obtain both a number-average (Mn) and weight-average 

(Mw) and to give an indication of polydispersity (Pd) of the sample (Pd = Mw/Mn) by Rapra 

Technology (Shrewsbury, UK). Degraded CE solution were lyophilized at -57 oC using a 

Heto PowerDry LL3000 (Thermo Electron Co., Bath, UK). A THF solution of each HPC sam-

ple of interest was prepared by adding THF (10 mL) to sample (20 mg) and leaving until 

dissolved (typically < 12 h) after which time the solution was warmed to 50°C for 30 min and 

allowed to cool, after which it was filtered through a 0.2 μm polyamide membrane filter prior 

to SEC. SEC was performed using a PLgel guard column plus two mixed bed-B, 30 cm, 10 

μm columns (Polymer Laboratories Ltd, Shropshire, UK) at 30 °C with THF as solvent at a 

nominal flow rate of 1.0 mL/min. Detection was based on measurement of the refractive 

index, with differential pressure and light scattering. The data were collected and analysed 

using Viscotek Trisec 2000 and Trisec 3.0 software. Calibration of the polymer molecular 

weight was achieved using polystyrene calibrants. 

 

 

 



 

 

Preparation of Nabumetone Nanosuspensions Using Wet Bead Milling 

Prior to their use, all polymer solutions were stored in a refrigerator at 4 °C for at least 24 h. 

Crude suspensions of nabumetone in the hydrophilic CE polymer solution were prepared 

prior to milling by the gradual addition with constant (magnetic) stirring of 5 g of nabumetone 

into 20 g of polymer solution. The crude nabumetone suspension thus prepared was left to 

stirring overnight prior to wet bead milling. For the purpose of the present study, the polymer 

concentration quoted is that of the CE polymer solution used to form the crude nabumetone 

suspension prior to milling and not the slightly lower final concentration of CE polymer in the 

crude nabumetone suspension. Wet bead milling of the crude nabumetone suspensions 

was carried out using a Retsch MM200 mixer mill (Glen Creston, Stanmore, UK). The milling 

jars (volume 25 cm3 with a fill capacity of 20 cm3) were made from Nylube, food grade nylon 

(Nylacast, UK). The milling conditions used in the present study where those developed for 

‘optimal’ milling conditions by Sepassi et al. (2007). In brief, 10 cm3 of the crude nabumetone 

suspension was added to a milling jar containing 10 cm3 of 0.44 mm YTZ® beads and the 

crude suspension milled for 6 hours at a speed setting of 30 Hz. The particle size of the 

milled suspension was measured every hour by removing 0.05 mL for analysis by laser 

diffraction. After 6 hours milling, the YTZ® beads were removed using a 60 mesh sieve (0.25 

mm nominal aperture) and the resulting nabumetone nanosuspension collected and stored 

in sealed vials for further analysis. The 6 hour data were selected for the end point of the 

milling as preliminary studies using 1.5 wt% hydrophilic CE polymer of varying molecular 

suggested that the size reduction was complete by this time point (Goodwin 2008). The 

stability of the nabumetone nanoparticles was determined by measuring their size when 

stored at ambient suspended in excess CE polymer in low light conditions (Valero and 

Costa, 2003) using laser diffraction and photon correlation spectroscopy 6, 9 and 12 months 

after preparation. 

 

Physical Characterisation of Nanoparticles 

Laser Diffraction Particle Size Analysis 

A Malvern 2600 series laser diffractometer (Malvern Instruments, Malvern, UK) fitted with a 

Fourier transform lens providing a 63 mm focal length from a 2 mW He-Ne laser light source 

of wavelength 633 nm was used to size the nabumetone nanoparticles in suspension. Meas-

urements were conducted at 25°C. Approximately 15 mL of water was added into a Malvern 

PS1 “Stirred Cell” sample holder providing a beam path length of 14.3 mm. After taking a 

background light scattering reading, the suspension was added drop-wise to the stirred cell 

until an acceptable obscuration reading (between 0.1 – 0.3) was achieved. Typically a 0.002 



 

 

wt% solution of drug, corresponding to an obscuration value of approximately 0.2, was used. 

The size of the nanoparticles obtained from the laser diffraction measurements are recorded 

as the volume (or mass) moment mean (D[4,3]). The volume moment mean was selected 

for use with this study as it is sensitive to the presence of large particles in the sample 

(Rawle, 2002) which, even if they were small in terms of number, would make a up a con-

siderable proportion in terms of mass. Particle size measurements on each suspension 

sample were performed in triplicate and were found to exhibit good repeatability, usually 

around ± 3 – 5 %. 

 

Photon Correlation Spectroscopy 

Photon correlation spectroscopy (PCS) measurements were performed using a Brookhaven 

ZetaPlus Particle Sizer v2.29 (Brookhaven Instruments Corp, UK) with a 677 nm He-Ne 

laser light source. Measurements were conducted in water at 20oC and the fluctuation of the 

light scattering from the nabumetone particles were measured at 90o. The average particle 

diameter was calculated over an average of 10 measurements each of 30 sec duration and 

was found to be independent of drug concentration in the range 0.0015-0.005 wt%. Rou-

tinely, three drops (~0.0075 mL) were taken from the suspension and added to 3 mL of 

water in a disposable clear 4-sided fluorescence cuvette for size analysis, giving a final con-

centration of 0.0025 wt%. A solvent viscosity of 0.89 cP was used as it assumed that the 

considerable dilution of the original suspension required to enable PCS size measurements 

to be made would mean that the dispersion would possess a viscosity very nearly approach-

ing that of water (Fleer et al., 1993). Particle size measurements on each sample were per-

formed in triplicate and were found to exhibit good repeatability. 

 

Scanning Electron Microscopy 

In order to obtain scanning electron microscopy (SEM) images of the nabumetone nanopar-

ticles, a drop of the drug particle suspension was placed on the surface of a freshly cleaved 

piece of mica stuck to an SEM stub and allowed to air dry before being put in the electron 

microscope. The images were taken on an FEI Quanta 200F scanning electron microscope 

(FEI UK Limited, Cambridge, UK). The microscope was operated in low vacuum mode at a 

chamber pressure of 1.05 Torr (140 Pa) using an accelerating voltage of 5 kV and a small 

spot size to minimize specimen damage. The use of a low vacuum was essential, as Sepassi 

et al. (2007) found that nabumetone nanoparticles were prone to melt (melting point 78-

83°C) under standard vacuum settings. Each nanosuspension sample was examined using 

SEM on one occasion. 



 

 

 

Molecular Weight Studies of Adsorption 

An investigation into the molecular weight dependence of polymer adsorption onto 

nabumetone particles was undertaken by wet bead milling for 2, 4 and 6 hours and charac-

terising the molecular weight of the unadsorbed polymer using SEC. Three batches of crude 

suspension were prepared containing 20 wt% nabumetone and 1.5 wt% HPC-EF, either 

undegraded or ultrasonically degraded for either 4 or 24 hours. The crude nabumetone sus-

pensions were milled for 2, 4 or 6 hours after which the resulting suspension was immedi-

ately sieved to remove the milling media and centrifuged to separate the supernatant con-

taining the unabsorbed HPC polymer. The polymer supernatant was lyophilised (at -57 °C 

using a Heto PowerDry LL3000 (Thermo Electron Co., Bath, UK) freeze dryer) and its mo-

lecular weight analysized by SEC to obtain both a number-average (Mn) and weight-average 

molecular weight (Mw) and to give an indication of the polydispersity (Pd) of the sample (Pd 

= Mw/Mn). 

 
Results and Discussion 

Nabumetone Nanoparticle Production: Effect of Polymer Type and Molecular Weight 

The effect on the production of nabumetone nanoparticles, of the type and molecular weight 

of the five nonionic CEs of interest, was examined by milling nabumetone for 6 hours in the 

presence of a 1.5 wt% undegraded and ultrasonically degraded polymer solutions (Table 2). 

Significantly, it did not prove possible to mill nabumetone in the presence of HEC using any 

of the molecular weights available (Table 2) as the suspension solidified during milling sug-

gesting that this particular polymer and drug combination was not suitable for nanoparticle 

production. In contrast, however, it was possible to obtain nanoparticles and micron-sized 

particles when milling in the presence of HPMC, MHEC, EHEC and HPC of varying molec-

ular weight (Table 2). 

 

Figure 2 shows the variation in particle size with milling time when HPMC, MHEC or EHEC 

was used as stabilizing polymer while Figure 3 shows the data obtained for HPC. Note that 

the data reported in Figure 2 are the mean of triplicate laser diffraction measurements on 

one sample (i.e. n = 1) of each system tested and reports no standard deviation, while the 

data in Figure 3 reports the mean and standard deviation of 3 replicate measurements on 3 

individually milled samples. From the data shown in Figures 2 and 3, there is clear relation-

ship between CE molecular weight and ability to form nabumetone nanoparticles, in that the 

lower molecular weight CE polymers within a series favour nanoparticle production, while 



 

 

the highest molecular weight polymers are more likely to reach a minimum particle size that 

is greater that achieved using their lower molecular weight counterpart. 

 

Figure 2. 

 

Figure 3. 

 

In addition, Figures 2 and 3 show a definite trend within each series of CE polymer, of the 

systems containing the higher molecular weight polymer taking longer to mill to achieve a 

minimum size of nabumetone. The exponential decrease of the particle size with milling time 

seen in Figures 2 and 3 mirrors well that reported by other many other researchers, including 

ourselves (Sepassi et al., 2007). In the cases where a similarity in particle size was meas-

ured particle, it is suggested that particle breakage was the dominant mechanism of size 

reduction and that aggregation of the particles occurred at a smaller rate than particle break-

age. 

Although the rheological properties of the CE polymers were not examined in the present 

study, it is acknowledged that the more viscous, higher molecular weight CE’s where likely 

to result in a dampening effect which will be expected to affect particle size reduction (Mende 

et al., 2003; Knieke et al., 2010). It has been proposed that an increased viscosity of the 

milling suspension is associated with a reduction in the forces of impaction in the mill, via a 

cushioning effect, resulting in a less efficient size reduction (Denison, 1990; Parrott, 1974). 

This hypothesis is in agreement with simulations of the motion of balls in a vibration mill 

performed by Yokoyama et al (1996) in which an increase in the viscosity of the surrounding 

medium cased a radical drop in the intensity of ball collisions. 

 

Indeed it was expected that the lower molecular weight polymers would be more efficient at 

diffusing to, and coating, the freshly created ‘bare’ drug surfaces exposed during particle 

size reduction and thereby allow particle size reduction to proceed. It should be noted, how-

ever, that at ‘equilibrium, it would be expected that the higher molecular weight polymers 

would replace the lower molecular polymers which initially coat, and thereafter rapidly de-

sorb from the surface of the nanoparticles. The higher molecular weight polymers tend to 

remain ‘stuck’ on the surface due to their possession of a higher number of attachment 

points (Radeva, 2002). To illustrate this effect the change in the molecular weight and mo-



 

 

lecular weight distribution of the unadsorbed (and by implication the adsorbed) HPC remain-

ing in the supernatant was determined after varying periods of wet bead milling with 

nabumetone in the presence of undegraded and ultrasonically degraded polymer (Table 3). 

 

Table 3. 

 

As can be seen from Table 3, the measured molecular weight of the HPC polymer remaining 

in solution, i.e. present in the supernatant, decreases with time of milling with nabumetone. 

This reduction is particularly noticeable when the polymer is HPC-EF UnD, where the Mw 

approximately halves from 110 to 66.5 Kg/mol over the 6 hours of milling, while the Mn de-

creases by almost a quarter from 40.3 to 32.1 Kg/mol. A similar, but less pronounced effect 

is also seen with HPC-EP USD4h and HPC-EF USD 24 h. If there was no preference in 

terms of molecular weight absorption onto the nabumetone then the Mw and Mn (and Pd) 

would remain unchanged with time of milling. Instead,l the results obtained in the present 

study suggest that the higher molecular weight polymer is being preferentially absorbed, 

over time, onto the nabumetone. A similar observation has been reported by Sepassi-Ash-

nati (2003) when milling halofantrine with polyvinylpyrrolidone of differing molecular weights. 

 

It is anticipated that, during milling, the drug crystal will fracture to expose the weakest at-

tachment face, such that the properties of this weakest attachment face will dominate the 

milled state (York et al., 1998). Indeed, the more rapidly the drug crystal surface exposed 

during wet bead milling is coated with polymer, the less likely the fractured drug particles 

are to aggregate. When investigating nanoparticle formation using high pressure homoge-

nisation, Müller and Jacobs (2002) proposed that the stabilisers are required to diffuse to 

the freshly created ‘bare’ drug surfaces during size reduction and that the rate of diffusion is 

dependent upon both stabiliser molecular weight and the viscosity of the solvent. While it is 

acknowledged that the mechanism by which high pressure homogenisation reduces particle 

size is not the same as that occurring by impaction in wet bead milling, the principle of sta-

bilisation is comparable. 

 

The fact that smaller polymer molecules are able to diffuse and adsorb more rapidly from 

solution (Morrison and Ross, 2002) and are more easily able to adopt a suitable confor-

mation for adsorption may also facilitate the faster production of nanoparticles during wet 

bead milling since a greater proportion of particles that are fractured are covered in polymer 

before encountering another drug particle thereby inhibiting aggregation. The reduction in 



 

 

the milling time required to produce nabumetone nanoparticles seen using lower molecular 

weight polymers has important implications. The most obvious of these is the economic 

advantage gained from the fact that less energy and time are required for nanoparticle pro-

duction, especially when considering that the cost of a new technology is becoming increas-

ingly important (Müller et al., 2001).  

 

Despite the use of yttrium zirconia beads as milling media because of their reduced propen-

sity for shedding and therefore containing the nanosuspension (Ruddy and Roberts, 1998), 

a concern remains that the milling media may contaminate the product (Jacobs et al., 2001; 

Liversidge et al., 1992). Any reduction in milling time can only further act to diminish this 

effect and further assure the quality of the product. Microbiological contamination can also 

arise during wet bead milling due to the moderate temperature increase encountered in the 

milling jars and the fact that the dispersion media can act as a nutrition source for bacteria 

(Hu et al., 2004). Again, a reduced milling time may serve to limit this problem. 

 

While it was not possible in the present study to compare directly the size of nabumetone 

particles produced by wet bead milling using CE polymers of exactly the same molecular 

weight, there was enough similarity in polymer molecular weight to draw some general con-

clusions. Firstly, there was no strong correlation between polymer molecular weight and 

ability to produce nanoparticles. For example, it was not possible to obtain either nano- or 

even micron-sized particles using HEC of any of the molecular weights examined (Table 2). 

It was, however, possible to prepare nanoparticles using HPMC of 38.8 Kg/mol molecular 

weight, EHEC of 52 Kg/mol molecular weight or less and HPC of 112.2 Kg/mol molecular 

weight or less. (Note that it was not possible to determine the (viscosity average) molecular 

weight of MHEC that produced nanoparticles as the Mark-Houwink parameter was not avail-

able to convert measured viscosity to polymer molecular weight.) Furthermore, micron-sized 

nabumetone particles were formed using the lowest molecular weight HPMC polymer, while 

the highest molecular weight HPC used resulted in nano-sized particles. These results sug-

gest that polymer molecular weight is not the only determinant of the final particle size and 

that structure and composition of the polymer are at least as important as molecular weight. 

 

Due to the unionised nature of nabumetone and the nonionic CE polymers used in the pre-

sent study, it is most likely that the predominant mechanism of interaction between the CE 

polymers and nabumetone is non-specific, and most probably hydrophobic, in nature (Duro 

et al., 1999; Lochead, 1992). As a consequence, it is thought that the hydrophobic nature of 



 

 

the CE is an important factor in the production of nabumetone nanoparticles; the more hy-

drophobic the polymer, the stronger the interaction with the drug. In a study comparing the 

interfacial properties of three of the CEs used in the present study, namely HEC, HPMC and 

HPC, it was found that HPC was the most hydrophobic compound and HEC the least, with 

HPMC ranking intermediate (Daniels and Barta, 1994). The more hydrophilic nature of HEC 

may help to explain why it does not facilitate the production of nabumetone nanoparticles 

as it may be anticipated that the attraction between HEC and the aqueous solvent is greater 

than the interaction between HEC and drug, resulting in a reduced propensity for the HEC 

polymer to adsorb onto the surface of the drug. Note that while MHEC and EHEC were not 

included in the study by Daniels and Barta (1994), it is appears from the results obtained in 

the present study, that the presence of the methyl and ethyl groups on the sugar units are 

sufficient to increase the hydrophobicity of the polymers and thus cause the polymers to 

adsorb on the drug surface and stabilise nabumetone nanoparticles. 

 

Nabumetone Nanoparticle Production: Effect of HPC Molecular Weight and Concen-

tration 

As a consequence of the ability of the HPC polymers (over the whole molecular weight range 

available in the present study, namely 112, 89 or 57 Kg/mol) to produce nabumetone nano-

particles, it was decided to use the HPC polymers for further, more detailed studies. The 

effect of HPC molecular weight on the variation in particle size (as assessed by either laser 

diffraction or photon correlation spectroscopy) of nabumetone suspensions with polymer 

concentration was carried out using ultrasonically degraded polymer over a wide range of 

polymer concentrations, namely 0.5 - 4.0 wt% (Figure 4). Note that we have previously re-

ported the difference in the particle size measured by laser diffraction and photon correlation 

spectroscopy (Sepassi et al., 2007). Note too that, regardless of HPC molecular weight, it 

was not possible to produce nabumetone nanoparticles using less than 0.5 wt% HPC. A 

similar requirement for a minimum amount of stabiliser to be present during wet bead milling 

has also been noted by others researchers including Liversidge and Cundy (1995). 

 
Figure 4. 

 

As can be seen at the lowest polymer concentrations studied, namely 0.5 - 2.0 wt%, the 

molecular weight of HPC had little effect on the particle size of the resulting nabumetone 

nanoparticles. Interestingly, this observation conflicts with the results reported in the earlier 

study of Sepassi et al., (2007) who found that the minimum concentration of the polymer, 

HPMC, required to form nabumetone nanoparticles during wet bead milling approximately 



 

 

doubled from 0.63 to 1.25 wt% as the molecular weight of HPMC increased from 5.0 to 31.3 

Kg/mol. A possible explanation for this difference in behaviour observed with HPC and 

HPMC stabilised nanoparticles is the much wider molecular weight range of HPMC used 

compared to HPC, i.e. ~ 6 fold as opposed to ~ 2 fold. The smaller molecular weight range 

available for HPC was partly a result of the decreased reduction in molecular weight ob-

tained when degrading HPC and the limiting decrease in molecular weight of the polymer 

under the experimental conditions used (Goodwin et al., 2011). However, the advantage of 

using ultrasonically degraded polymer as compared with the commercially available grades 

at different molecular weights from different manufacturers as used by Sepassi et al. (2007), 

is that there is more confidence that any differences in adsorption noted between polymers 

is due solely to molecular weight effects rather than in substitution pattern or other manu-

facture to a manufacturer variations. The use of a wider molecular weight range of HPC may 

be expected to lead to a similar observation as seen by Sepassi et al. (2007). 

 

The most noticeable effect of polymer molecular weight occurs when HPC concentrations  

of greater than 2.0 wt% were used, where a distinct relationship between polymer molecular 

weight and the maximum polymer concentration at which nanoparticles are produced, was 

observed. When using HPC of molecular weight 106 kg/mol, the particle size of nabumetone 

increased to almost 1 μm (as assessed by laser diffraction) at 2.5 wt% HPC. Whereas when 

using HPC of molecular weights of 89 of 57 kg/mol, the nabumetone particles only reached 

1 μm (as assessed by laser diffraction) when the HPC concentrations were 3.5 and 4.0 wt% 

HPC, respectively. The reason why nanoparticles can be stabilized at higher concentrations 

when using with low molecular weight polymer is thought to be the result of the lower vis-

cosity of the polymer solution allowing the milling beads to travel faster during milling, lead-

ing to a higher force of impaction on the nabumetone particles. 

 

For industrial formulation purposes, the implication of this finding is that there is more flexi-

bility to alter the polymer concentration when using a lower molecular weight polymer with-

out affecting the size of the drug nanoparticles produced. This observation may be benefi-

cially used, for example, to tailor the rheological properties of the milled nanosuspension to 

allow for further processing in instances where viscosity can influence the performance of 

such processes, such as spray drying or use as a binder for granulation. 

 



 

 

Nabumetone Nanoparticle Production: Effect of HPC Molecular Weight and Concen-

tration on Morphology 

In order to further understand the size distribution of the nabumetone nanoparticles obtained 

from laser diffraction (and photon correlation spectrocopic) measurements as well as obtain 

shape and structural information, it is beneficial to visualise the nabumetone particles in the 

milled suspension (Shi et al., 2003). Examples of the electron scanning micrograph (SEM) 

images of nabumetone nanoparticles when milled for 6 hours with varying HPC concentra-

tion and molecular weight are shown in Figure 5. 

 

Figure 5. 

 

From the SEM images it appears that, at low HPC concentrations of 0.5 wt%, most large 

nabumetone particles tend to show cuboidal morphology, whereas at higher polymer con-

centrations of 1.5 and 3.0 wt%, the larger particles become more elongated. This effect may 

be the result of the viscosity of the dispersion medium wherein a lower viscosity results in a 

higher proportion of the particles being fragmented, whereas cleavage or abrasion is the 

predominant size reduction mechanism when the force of impact is reduced (Varinot et al., 

1997) due to the increased viscosity of the dispersion. Previously, Merisko-Liversidge et al. 

(2003) have suggested that the morphology of the nanoparticles is dictated by the morphol-

ogy of the starting material, the fracture plane of the drug crystal and the drug/stabilizer 

interactions, while Sepassi et al. (2007) proposed that nanoparticle morphology was de-

pendent on the nature of the stabiliser. From the results of the present study, it appears 

polymer concentration has little impact on the morphology of the resulting nanoparticles. 

 

The SEMs indicate that the nanoparticles are fairly polydisperse with respect to both size 

and shape especially at the extremes of the studied HPC concentration range, i.e. 0.5 and 

3.0 wt%. It is clear from the SEMs that the nabumetone nanoparticles were smallest when 

intermediate HPC concentrations were used as well as when using lower molecular weight 

polymer; results which confirm the findings of the laser diffraction measurements. In addi-

tion, it appears from the SEM images, that when using 3.0 wt% HPC, the nabumetone par-

ticles appear to be large, while in contrast when using 0.5 wt% HPC the individual nanopar-

ticles are relatively small although they may exhibit agglomeration or aggregation. This ob-

servation is particularly noticeable when using the high molecular weight, 106 Kg/mol, poly-

mer (Figure 5a). 

 



 

 

Nabumetone Nanoparticle Production: Effect of Milling Time on Size and Morphology 

The SEMs of nabumetone particles obtained after wet bead milling in the presence of vari-

ous molecular weights of 1.5 wt% HPC for 2, 4 and 6 hours are shown in Figure 6. 

 
Figure 6. 

 

Figure 6 shows that when wet bead milling nabumetone with 1.5 wt% HPC of molecular 

weight of 109 kg/mol, there is a large proportion of particles present with a particle size 

greater than 3 μm after 2 and 4 hours milling. After 6 hours milling the polydispersity of the 

sample had decreased such that the majority of particles were around 1 μm in size and 

possessed a columnar morphology. Decreasing the molecular weight of HPC to 89 kg/mol 

(Figure 6b) and 56 kg/mol (Figure 6c) eliminated the majority of these large particles at the 

shorter milling times of 2 h and 4 h, and yielded nanoparticles after 4 and 6 h that tended to 

be much more spherical in shape, although there were still some larger rod-shaped particles 

present, albeit in the sub-micron size range. 

 

 

Nabumetone Nanoparticle Stability 

The variation in nabumetone nanoparticle size, as assessed by laser diffraction, with storage 

time at room temperature in the presence of excess polymer is illustrated in Figure 7, using 

laser diffraction. From the particle size results shown it appears that the nabumetone parti-

cles were physically stable over the whole of the studied HPC concentration and molecular 

weight range, with no apparent increase in particle size over 12 months storage. 

 

Figure 7. 
 

Ostwald ripening is considered to be one of the main sources of (long-term) physical insta-

bility of drug nanoparticle suspensions (Grau et al, 2000; Jacobs et al, 2001; Müller and 

Keck, 2004; Müller et al, 2001). The phenomenon arises from the different saturation solu-

bilities exhibited by a dispersion with a heterogeneous size distribution. The preferential dis-

solution of smaller particles leads to supersaturation of the solution and a subsequent re-

crystallisation onto the surface of the larger particles causing the larger particles to grow 

(Müller et al., 2001). One strategy to limit Ostawld ripening is to ensure that the drug nano-

particles exhibit as narrow a size polydispersity as possible (Grau et al., 2000; Jacobs et al., 

2000). In this context, the SEM images of the nabumetone particles, clearly show polydis-

persity in size, particularly those prepared using the extremes of polymer concentration – 

although these particular nanosuspensions surprisingly exhibit no instability with respect to 



 

 

particle size. In this context, the presence of the adsorbed polymer layer may have an addi-

tional role in providing a protective layer against recrystallisation and particle growth (Ziller 

and Ruprecht, 1991). Indeed it has long been known that polymers, including some CEs 

(Raghavan et al, 2001), inhibit the process of crystallisation by occupying the adsorption 

sites on a crystal lattice where drug molecules would attach (Raghavan et al, 2000; Simonelli 

et al, 1970; Ziller and Ruprecht, 1988). This inhibition of crystal growth (Lee et al, 2000) may 

explain the stable nature of these polymer coated nanoparticles. 

 

Of course, the requirement for a system to remain stable over weeks or months is of less 

importance if a nanosuspension is dried (e.g. lyophilised or spray-dried) immediately after 

production and formulated into a solid dosage form (Merisko-Liversidge et al., 2003). Re-

gardless, of the final form of the nanoparticles, however it is essential is that the nanoparti-

cles remain, or more accurately retain the ability to redisperse into discrete nanoparticles in 

vivo and the presence of long term nanoparticle size stability may be a useful indicator of 

an adsorbed layer of sufficient thickness and stability for this to occur. 

 

In order to summarise the effect of HPC concentration, molecular weight and the duration 

of milling time on the particle size of nabumetone suspensions, contour plots which include 

additional size analysis results after milling between 2 and 6 hours at different polymer con-

centrations are shown in Figure 8. 

 

Figure 8.  
 
Figure 8 clearly shows an increased region of nanoparticle formation (blue shaded area) 

when the lower molecular weight HPC is used, nanoparticles being formed more quickly and 

using a wider range of polymer concentrations. When the highest molecular weight polymer, 

the commercially available HPC(-EF) was used (Figure 8a) the region of nanoparticle for-

mation is relatively narrow and there is a need to mill for longer periods to achieve a particle 

size (as assessed using laser diffraction) of less than 1 μm. These contour plots provide a 

useful guide for the formulator in determining which polymer concentration to use at a certain 

molecular weight. For example, from Figure 8 a polymer concentration of 1.5 wt% at a HPC 

Mv molecular weight of 57 kg/mol is clearly in the middle of the range where nabumetone 

nanoparticles are be formed and as such small variations in HPC concentration should not 

result in the formation of microparticles. 

 



 

 

Using the data obtained for the effect of HPC concentration on the particle size profile ob-

tained from the wet bead milling of nabumetone it is possible to divide the results into three 

parts, namely region A, B and C (Figure 9), with nanoparticles being formed by HPC con-

centrations in region B. Indeed it is considered that the profile illustrated in Figure 9 is gen-

eral and can be applied to milling with a different polymer, e.g. HPMC (Sepassi et al., 2007). 

Although it should be noted that the concentration range over which nanoparticles are 

formed will vary with the nature of the drug and polymer studied (Liversidge et al., 1992; 

Sepassi et al., 2007). 

 

Figure 9. 
 
The increases in particle size seen when milling in the presence of low and high concentra-

tions of polymer, i.e. concentrations in the regions denoted A or C are thought to be the 

result of different effects. In region A, the small amount of polymer present is considered to 

be insufficient to fully coat the drug particle in order to form a protective layer against aggre-

gation/agglomeration. In addition, the presence of the relatively high drug loading required 

for wet bead milling, combined with low polymer concentrations in region A predisposes the 

nanoparticles to bridging flocculation, whereby an individual polymer molecule becomes at-

tached to two or more particles causing them to flocculate (Lochead, 1992). The large par-

ticle size observed in polymer concentration region A is therefore the result of either agglom-

eration or aggregation of the nanoparticles and/or the occurrence of bridging flocculation. 

 

The increase in particle size seen in the polymer concentration range in region C is fre-

quently attributed to Ostwald ripening (Merisko-Liversidge et al., 2003). Although, in this 

context, the absence of any increase in nabumetone particle size over 12 months storage 

observed in the present study, suggests that Ostwald ripening might be less important than 

originally thought. Alternatively, Sato and Kohnosu, (1994) have suggested the particle 

growth may be due to the phenomenon of depletion flocculation, i.e. where non-adsorbing 

polymer destabilises dispersions due to an osmotic effect that occurs when polymer mole-

cules are excluded from interparticle regions leading to an attraction force between particles 

and subsequent particle growth (Nashima and Furusawa, 1991). Another possible explana-

tion is that the increased viscosity associated with increasing polymer concentration reduces 

the forces of impaction in the mill, via a cushioning effect, resulting in a less efficient size 

reduction (Denison, 1990; Parrott, 1974). This hypothesis is in agreement with simulations 

of the motion of balls in a vibration mill performed by Yokoyama et al (1996) in which an 

increase in the viscosity of the surrounding medium cased a radical drop in the intensity of 



 

 

ball collisions. Indeed, it is not possible to mill using high concentrations of polymer due to 

high viscosity of the system. The growth of the particles may be due to one or all of the 

above mechanisms. However, regardless of the causative mechanism(s), the ultimate effect 

of the increase in particle size seen in Region C, is the loss of the increased surface area 

and reduction in bioavailability. 

 

The size of nabumetone nanoparticles obtained when milling in the presence of HPC over 

the concentration range B remained fairly constant and is thought to be dependent upon  

the balance between the hardness of the drug, the energy input in the mill and the bead 

size, amongst other things. In fact the minimum particle size (as assessed by laser diffrac-

tion) of ~0.75 μm (or ~0.4 μm using photon correlation spectroscopy) achieved for 

nabumetone after 6 hours milling is relatively high compared to other studies using other 

drugs where sizes of 400 nm (Liversidge, 1991) or even 200 nm (Merisko-Liversidge et al., 

2003) have been reported and suggests that nabumetone is particularly hard to mill to a 

small particle size. The low melting point of nabumetone could account for this result as 

Kondo et al. (1993) have reported that empirically, a drug with a high melting point is pref-

erable for micronisation since it is easier to fracture into small particles and this may exac-

erbated during wet bead milling due to the increase in temperature that was observed during 

milling (Parrott, 1985). 

 

It is worth noting, however, that it is not essential that the drug nanoparticles are as small 

as possible for every application since it depends on the therapeutic class and therefore the 

intended use of the drug in question (Müller et al., 2001). In cases where very fast dissolution 

is required, a size of 100-200 nm is sometimes quoted as the target particle size (Müller et 

al., 2001), Yamada et al. (1999) have observed moderate increases in dissolution of up to 

four-fold by reducing the particle size of a poorly water soluble model drug from ~8 μm to 

~1 μm. It is also reported that the saturation solubility of a compound is observed to increase 

as the particle size falls below 1-2 μm (Keck and Müller, 2006; Mosharraf and Nyström, 

1995) which further increases the dissolution rate of a compound according to the Noyes-

Whitney equation. 

 

Conclusions 

A range of hydrophilic nonionic CEs (methylhydroxethylcellulose (MHEC), hydroxypropyl-

methyl cellulose (HPMC), ethylhydroxyethylcellulose (EHEC) and hydroxypropylcellulose 

(HPC)) of varying molecular weight (measured as a viscosity average molecular weights 



 

 

(Mv)), have been found to prepare stable nabumetone nanoparticles (< 1000 nm, as meas-

ured by laser diffraction) using wet-bead milling. Only hydroxyethylcellulose (HEC) was 

found not to produce nabumetone nanoparticles at any of the molecular weights tested. 

Although molecular weight was important in that the lower the CE molecular weight the 

greater the likelihood of nanoparticle production than their higher molecular weight counter-

parts, the results suggest that polymer molecular weight is not the only determinant of na-

noparticle production and that structure of the polymer is at least as important as its molec-

ular weight. In particular the hydrophobic nature of the CE is an important structural factor 

in the production of nabumetone nanoparticles: the more hydrophobic the polymer, the 

stronger its interaction with nabumetone and the greater its ability to produce nanoparticles. 

In this context HPC was the most hydrophobic polymer and HEC the least hydrophobic.  

 

The nabumetone nanoparticles produced using HPC of different molecular weights and con-

centrations demonstrated good long-term physical stability for up to at least one year.  Both 

the concentration and molecular weight of the stabilising HPC affected whether nanoparti-

cles of nabumetone could be produced. Using too low or too high a concentration of HPC 

polymer resulted in the formation of large particles of greater than 1 μm, a phenomenon 

which is thought to be due to agglomeration and a reduced size reduction, respectively. In 

contrast nabumetone nanoparticles could be produced when milling in the presence of in-

termediate concentrations of HPC. Furthermore, as the molecular weight of the HPC was 

decreased, the concentration over which nanoparticles could be formed was increased, 

while the milling time required for nanoparticle production was reduced. Although this gen-

eral effect is found to occur for other CEs, the relevant CE concentrations and molecular 

weights are considered to be drug and polymer specific. 
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Figure 1. Structure of nabumetone 

 

 

  



 

 

 
Figure 2. The variation in particle size determined using laser diffraction with milling time of 20 wt% 
nabumetone suspensions in the presence of various molecular weight of 1.5 wt% (a) HPMC(-EM4) 
(b) MHEC, (c) EHEC polymer solutions. CE degraded for 1 h (■), 4 h (▲), 8 h (x), 16 h (), 24 h (●), 
n = 1. Viscosity average molecular weights (Mv) of the CEs are given in Table 2. No error bars are  
shown due to the results being obtained from one experiment, although it should be noted that the 
date are the mean of triplicate measurements of particle size using laser diffraction, a repeatability 
of around 3-5 % was routinely obtained in the measurements. 



 

 

 

 
 

 
Figure 3. The variation in particle size determined using laser diffraction with milling time of 20 wt% 
nabumetone suspensions in the presence of various molecular weight of 1.5 wt% HPC(-EF) solu-
tions undegraded Mv 112 Kg/mol (♦); HPC(-EF) degraded for 1 h, Mv 95 Kg/mol (■); HPC(-EF) de-
graded for 4 h Mv 80 Kg/mol (▲); HPC(-EF) degraded for 8 h, Mv 65 Kg/mol (×); HPC(-EF) degraded 
for 24 h, Mv 47 Kg/mol (●) (n = 3 ± sd). 

  



 

 

 

 
 

Figure 4. The effect of polymer molecular weight and concentration on the mean particle size ob-
tained from laser diffraction (solid line) and photon correlation spectroscopy (dashed line) of 
nabumetone particles wet bead milled for six hours. HPC(-EF) undegraded, Mv 106 Kg/mol (♦); 
HPC(-EF) degraded 4 h, Mv 89 Kg/mol (▲); HPC(-EF) degraded 24 h, Mv 57 Kg/mol (●) (n = 3 ± sd). 

 

 

 

 

 

 

  



 

 

 
 

 
 

 
Figure 5a. Scanning electron micrographs of a nabumetone suspension wet bead milled for 6 h in 
the presence of (top) 0.5 wt%, (middle) 1.5 wt%, (bottom) 3.0 wt% HPC(-EF) undegraded, Mv 106 
Kg/mol (x 20,000). 



 

 

 

 

 

Figure 5b. Scanning electron micrographs of a nabumetone suspension wet bead milled for 6 h in 
the presence of (top) 0.5 wt%, (middle) 1.5 wt%, (bottom) 3.0 wt% HPC(-EF) degraded 4 h, Mv 89 
Kg/mol (x 20,000). 



 

 

 

 

 

Figure 5c. Scanning electron micrographs of a nabumetone suspension wet bead milled for 6 h in 
the presence of (top) 0.5 wt%, (middle) 1.5 wt%, (bottom) 3.0 wt% HPC(-EF) degraded 24 h (Mv 57 
Kg/mol) (x 20,000). 
 



 

 

 

 

 

Figure 6a. Scanning electron micrographs of a nabumetone suspension wet bead milled for in the 
presence of 1.5 wt% HPC(-EF) undegraded (Mv 106 Kg/mol) for (top) 2 h, (middle) 4 h and (bottom) 
6 h (x 20,000). 



 

 

 

 

Figure 6b. Scanning electron micrographs of a nabumetone suspension wet bead milled for in the 
presence of 1.5 wt% HPC(-EF) degraded 4 h (Mv 89 Kg/mol) for (top) 2 h, (middle) 4 h and (bottom) 
6 h (x 20,000). 

  



 

 

 

 

 

Figure 6c. Scanning electron micrographs of a nabumetone suspension wet bead milled for in the 
presence of 1.5 wt% HPC(-EF) degraded 24 h (Mv 57 Kg/mol) for (top) 2 h, (middle) 4 h and (bottom) 
6 h (x 20,000). 

 



 

 

 

 

Figure 7. The variation in particle size obtained from laser diffraction of nabumetone suspensions 
milled in the presence of varying HPC(-EF) concentrations at a) Mv 106 Kg/mol, b) Mv 89 Kg/mol c) 
Mv 57 Kg/mol with storage time. Immediately after production (♦); 6 months (▲); 9 months* (■); 12 
months* (●). (n = 3 ± sd, *n = 2).  



 

 

 

 

 

Figure 8. Contour plot of mean particle size obtained from laser diffraction against duration of wet 
bead milling and HPC(-EF) concentration at (a) undegraded, Mv 106 Kg/mol, (b) degraded 4 h, Mv 
89 Kg/mol and (c) degraded 24 h, Mv 57 Kg/mol (n = 3). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

 

Figure 9. Generalisation of the effect of increasing polymer concentration on the particle size of wet 
bead milled drug particles. 

  



 

 

Table 1. Structure of nonionic cellulose ethers studied 

 

 
  



 

 

Table 2. Measured viscosity and viscosity (Mv) molecular weight of un-degraded and ultrasonically 
degraded cellulose ethers (Goodwin et al., 2011) 
 

Cellulose 
Ether 

HEC HPC MHEC EHEC HMPC 

Time of  
Degradation 

[] 

dL/g 

 Mv 

Kg/mol 

[] 

dL/g 

Mv 

Kg/mol 

[] 

dL/g 

Mv 

Kg/mol 

[] 

dL/g 

Mv 

Kg/mol 

[] 

dL/g 

Mv 

Kg/mol 

Undegraded 4.48 236.0 1.09 112.2 2.56 N/D 4.19 114.0 7.7

0 

382.7 

Degraded 1 h 2.89 142.2 0.95 94.9 2.01 N/D 2.19 52.0 4.2

5 

186.5 

Degraded 4 h 1.75 79.9 0.82 79.4 1.68 N/D 1.29 26.8 3.3

4 

139.4 

Degraded 8 h 1.38 60.8 0.69 64.5 1.45 N/D 1.09 21.8 2.3

8 

92.5 

Degraded 16 

h 

0.96 40.1 0.60 55.2 1.20 N/D 0.88 16.6 1.6

6 

59.8 

Degraded 24 

h 

0.83 33.0 0.53 47.0 1.07 N/D 0.79 14.5 1.6

6 

38.8 

 

*Mark-Houwink parameter not available for MHEC, hence only [] quoted. 
 

  



 

 

Table 3. The effect of wet bead milling time on the number averaged (Mn) and weight aver-
aged molecular weight (Mw) of unadsorbed HPC with nabumetone (n=1). 
 

Sample Duration of 
Milling (h) 

Mn 
(kg/mol) 

Mw 
(kg/mol) 

Pd 

HPC-EF UnD 0 40.3 110.0 2.8 

2 43.4 114.5 2.7 

4 36.5 92.7 2.6 

6 32.1 66.5 2.1 

HPC-EF USD4h 0 ND 79.4* ND 

2 34.9 82.0 2.4 

4 31.7 72.0 2.3 

6 29.8 55.0 1.9 

HPC-EF USD24h 0 29.5 55.4 1.9 

2 27.7 51.1 1.9 

4 25.9 45.4 1.8 

6 25.7 44.2 1.7 

 
*Mv 
ND = not determined 
†The results for un-degraded samples refer to separate samples and were not from the same stock solution 
as those milled. 

 
 

 

 

 
 

 


