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What we have learned so far

The epigenome refers to a collection of processes that
influence when and where genes are expressed, without
changing the DNA sequence itself. One of these processes,
DNA methylation (DNAm), has received much attention.
DNAm refers to the addition of a methyl group to DNA base
pairs—primarily the cytosine base in C-G dinucleotides—
which has been observed to repress transcription, resulting
in decreased gene expression (Jones, 2012). Studies have
found that DNAm (a) is influenced by genetic architecture
(e.g., cis-SNP [single nucleotide polymorphism] effects;
McRae et al., 2014), (b) is sensitive to pre- and postnatal
environmental exposures (e.g., nutrition, toxins, stress;
Kofink et al., 2013), and (c) plays an essential role in
normative development (e.g., cellular differentiation, aging;
Smith & Meissner, 2013). Importantly, disruptions in
DNAm patterns have been associated with altered biological
processes and the emergence of disease states (Klengel et al.,
2014). Consequently, interest in the potential role of DNAm
in addiction is fast increasing.

Much of what we currently know about DNAm and
addiction has come from animal studies, which enable the
experimental manipulation of important factors such as the
type, extent, and timing of substance exposure. These studies
have begun to shed light into the complex, reciprocal, and
developmentally moderated relationship between substance
use/exposure, DNAm, and addiction. For example, exposure
to substances (as early as preconception) has been shown
to alter DNAm patterns in the brain (e.g., Govorko et al.,
2012). In turn, these can mediate gene activation in regions
involved in reward processing (e.g., hypothalamus) and
memory consolidation (e.g., hippocampus), driving long-
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term neuroadaptations that underlie the onset and persistence
of addiction (Gangisetty et al., 2014; Nestler, 2014).

Animal studies have also provided some tentative
evidence for intergenerational transmission of DNAm
patterns implicated in addiction risk (e.g., Finegersh &
Homanics, 2014) as well as normalization of drug-induced
DNAm changes by chemical intervention (e.g., Bekdash
et al., 2013). In humans, studies have also supported a
link between DNAm and addiction, reporting methylomic
differences (e.g., in neurotransmitter genes) between
substance users and drug-free controls across a number of
tissue types and substances (Cecil et al., 2015; Harlaar &
Hutchison, 2013).

What our biggest challenges are and how they may be
addressed

Despite these promising findings, research on DNAm and
addiction currently faces a number of challenges that limit
the conclusions that can be drawn.

1. Limited knowledge of the epigenome

Commonly used platforms only capture a small
percentage of the methylome (e.g., Illumina 450k, <2%)
and typically focus on CpG (5´–C–phosphate–G–3´)-rich
“islands” near promoter regions—as such, many regions of
potential relevance to addiction remain largely inaccessible
(Non & Thayer, 2015). To complicate matters (and in
contrast to the genome), DNAm has been shown to vary
over time and across multiple factors, including age, tissue,
and cell type (Liang & Cookson, 2014). This is especially
relevant for addiction—a brain-based disorder that, in human
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epigenetic studies, is either examined in vivo via peripheral
tissues (e.g., blood, saliva) or in postmortem neural tissue,
thus making it difficult to infer epigenetic changes in live
brain tissue.

The way forward. Rapid technological advances, such
as the development of whole-genome bisulfite sequencing,
will make it increasingly possible to obtain a more complete
picture of DNAm, covering regions relevant to addiction in
greater depth. Moreover, the compilation of reference data
sets will be crucial for establishing a normative benchmark
of DNAm against which to compare addiction-related
epigenetic findings (Shakya et al., 2012). In particular,
sampling of multiple tissues over time will make it
possible to quantify peripheral-central nervous system
tissue variability (e.g., Walton et al., 2016) and to establish
why certain substance-induced DNAm signatures remain
stable whereas others change over time. Strategies for big
data integration will also help to establish the functional
significance of addiction-related DNAm changes at different
biological levels (e.g., transcriptomic, metabolomic, neural;
Gomez-Cabrero et al., 2014).

2. Issues with research methodology

DNAm data are multifactorial, high dimensional,
and inter-correlated, raising questions about how best
they should be analyzed (Almouzni et al., 2014). So far,
studies on DNAm and addiction have varied widely in
methodology (e.g., genomic coverage, quality control,
sample size, covariates, analysis, significance threshold)
as well as the choice of phenotype (e.g., type of substance,
severity of use, clinical features, diagnostic criteria),
limiting comparability of findings. Of note, addiction
studies using candidate gene versus hypothesis-free,
epigenome-wide analyses have generally produced
inconsistent results (Cecil et al., 2015).

The way forward. Guidelines for best practice are
continuously being fine tuned, and the increased availability
of standardized pipelines will help maximize convergence
across studies (Morris & Beck, 2015). Furthermore, the
development of data reduction strategies that draw on the
interrelatedness of DNAm data (e.g., network/regional
analyses) will help alleviate the burden of multiple testing
and move beyond single-site analyses (Hass et al., 2015;
Rotival & Petretto, 2014). Replication of findings (e.g.,
via independent samples/techniques) will also become
increasingly important in weeding out false positives, as was
the case for genetic studies. The availability of methylomic
data in relation to different drug classes will make it possible
to distinguish substance-specific markers from markers
that are “shared” across multiple substances, which may
reflect a general liability to addiction. Future work will
also be needed to establish how methylomic signatures may
vary depending on the phenotype of interest (e.g., chronic

vs. acute substance exposure, substance use vs. abuse vs.
addiction).

3. Difficulties in establishing causal pathways

Most studies on DNAm and addiction have used a cross-
sectional, case-control design. This is problematic because,
unlike the genome, DNAm is sensitive to both genetic and
environmental factors, raising issues of reverse causation.
Thus, it is difficult to establish whether identified DNAm
differences are a predisposing factor for addiction and/
or a consequence of long-term substance use. Even when
studies have been prospective, DNAm has typically been
examined at a single time point, precluding the possibility
of examining how substance exposure and DNAm interrelate
over time to influence addiction risk.

The way forward. Causal inference may be strengthened
by capitalizing on cross-species designs, using findings
from experimental/mechanistic animal models to inform
the investigation of DNAm markers in humans. Studies
will also need to better quantify the relative contribution of
genetic and environmental factors on DNAm (e.g., via twin,
GCTA [genome-wide complex tract analysis], and G × E
[Gene × Environment] analyses; Klengel & Binder, 2015;
Trzaskowski & Plomin, 2015) and use prospective designs
to examine whether DNAm patterns predict substance use
liability as well as addiction risk. Specifically, this will
require the use of longitudinal designs that make it possible
to compare pre- versus post-exposure methylomic signatures
during adolescence, a key period of vulnerability for the
development of substance use disorders (Crews et al., 2007).
Collecting repeated-measures data on substance exposure,
DNAm, and addiction status will also enable researchers
to test mediation hypotheses (e.g., via structural equation
modeling; Cecil et al., 2014), whereas the use of advanced
inference methods (e.g., Two-Step Mendelian randomization;
Relton & Davey Smith, 2012) will make it possible to use
genetic instruments to examine causal pathways.

What the future might hold: Implications and translational
potential

Epigenetics has been heralded as a key “missing link”
in the etiology of complex disorders, including addiction.
However, as we gain an appreciation of the challenges
facing epigenetic research, we must be mindful to manage
expectations. Bearing this in mind, there are a number of
ways in which epigenetic research may contribute in the
future to our understanding, prevention, and treatment of
addiction. Findings may refine existing models of how
risk factors for addiction become biologically embedded.
Longitudinal modeling of environmental and epigenetic
data may also be used to pinpoint specific windows of
biological vulnerability (e.g., prenatal period, adolescence)
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that may benefit most from preventive action. Over the long
term, epigenetic variation in specific genes may be used
as biomarkers for substance exposure, addiction risk, and
response to treatment. Chemical normalization of aberrant
DNAm patterns examined in animal studies may also be
extended to humans. Ultimately, this knowledge may inform
the development of novel strategies for treating addiction,
paving the way for personalized intervention.
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