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Abstract 
  

 

Vascular remodelling in arterial disease is characterised by vascular smooth muscle cell 

and adventitial fibroblast (AF) proliferation and migration due to mechanical and 

oxidative stresses within the vessel wall, leading to enhanced growth factor signalling. 

Transforming growth factor -1 (TGF-β1) is a pleiotropic growth factor that mediates 

vascular remodelling through eliciting phenotypic changes in AF, which may result 

from the generation of reactive oxygen species (ROS). Nrf2 is a key transcription factor 

that co-ordinates expression of endogenous antioxidant defense genes such as heme 

oxygenase-1 (HO-1) and plays an important role in cellular defense against the 

deleterious effects of ROS. This thesis has investigated whether TGF-β1 modulates 

redox-related signalling pathways, gene expression, cell phenotype and motility in AF 

derived from human aortas. 

 

Results from this study have demonstrated that TGF-β1 treatment resulted in an 

increase in HO-1 protein expression in AF, an effect that was partially diminished in 

cells where Nrf2 had been knocked-down using siRNA. In addition, TGF-β1 also 

enhanced AF migration, measured using time-lapse video microscopy. In the presence 

of superoxide dismutase (SOD), migration of AF was significantly abrogated 

suggesting that TGF-β1-mediated AF migration may be mediated by the generation of 

superoxide. Measurement of ROS generation revealed an increase in AF treated with 

TGF-β1, an effect that was partially attenuated in the presence of a NAD(P)H oxidase 

inhibitor  or SOD.  

  

The ability of the dietary isothiocyanate, sulforaphane (SFN) to activate the Nrf2 

pathway in AF was also investigated. Results revealed that SFN treatment increased 

HO-1 protein expression which was diminished in cells where Nrf2 had been silenced 

using siRNA, suggesting that HO-1 induction was Nrf2-dependent. SFN also caused 

increased nuclear accumulation of Nrf2 and binding to the antioxidant response element 

(ARE), suggesting the involvement of Nrf2 in ARE-mediated antioxidant gene 

expression. The ability of SFN to activate endogenous antioxidant defenses may be a 

potential therapeutic strategy to counteract pathophysiological processes following 

vascular injury and in the pathogenesis of atherosclerosis. 

  

 



  Abstract 

 

 3 

Findings from this study provide novel insights in to the mechanisms underlying the 

contribution of redox signaling in AF that lead to vascular diseases and for interventions 

to modulate TGF-β1-induced adventitial oxidative stress.  
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Na+ Sodium ion  

NAD(P)H Nicotinamide adenine dinucleotide phosphate 

NAD(P)H-Oxidase Nicotinamide adenine dinucleotide phosphate oxidase 

NADPH Nicotinamide adenine dinucleotide phosphate 

NAN3 Sodium azide  

NES Nuclear export signal 

NFκB Nuclear factor kappa B 

NIK NFκB inducing kinase  

NLS Nuclear localising signal 

NO Nitric oxide 

NOS Nitric oxide synthase 

NOX NAD(P)H oxidase 

NOX2 NADPH oxidase isoform 2 

NOX4 NADPH oxidase isoform 4 

NQO1 NAD(P)H dehydrogenase (quinone 1) 

Nrf2 Nuclear factor erythroid 2 related Factor 2 

NRK-49F Normal rat kidney 49 fibroblasts 

O2 Singlet oxygen 

O2
.- Superoxide  

ONOO. Peroxynitrite  

OPA O-phthalaldehyde 
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oxLDL Oxidized LDL 

PAI-1 Plasminogen activator inhibitor-1 

PAK P21/Cdc42/Rac1-activated kinase 

P/S Penicillin / streptomycin 

p38 MAPK p38 mitogen activating protein kinase 

PAB Polyclonal antibody 

PBS Phosphate buffered saline 

PDAC Pancreatic ductal adenocarcinoma 

PDGF Platelet-derived growth factor 

PDGFR Platelet-derived growth factor receptor 

PHOX Phagocyte oxidase 

PI Propidium iodide 

PI3K Phosphatidylinositol-3-kinase 

PIC Proteinase inhibitor cocktail 

PEITC Phenethyl isothiocyanate 

PKC Protein kinase C 

PKCδ Protein kinase c delta 

PPARγ Peroxisome proliferator-activated receptor gamma 

PRX1 Peroxiredoxin-1 

PVDF Polyvinylidene difluoride 

RAS Rat Sarcoma gtpase 

Redox  Reduction – oxidation reactions 

RNI Reactive nitrogen intermediates 

RNS Reactive nitrogen species 

ROS Reactive oxygen species 

RPL13A Rbosomal protein L13a  

RTK Receptor tyrosine kinases 

SARA Smad anchor for receptor activation 

S.E.M Standard error of the mean 

SDHA Succinate dehydrogenase unit complex A 

SDS-PAGE Sodium dodecyl sulphate polyacrylamide gel electrophoresis 

SFN Sulforaphane 

sGC Soluble guanylyl cyclase 

siRNA Small interference ribonucleic acid  

Shc Src homology domain 2-containing protein 

SHR Spontaneously hypertensive rat 

Smad Small mothers against decapentaplegic 

small MAF Musculoaponeurotic fibrosarcoma oncogene 

SMC Smooth muscle cell 

SOD Superoxide dismutase  

Src Sarcoma gene 

S-S Disulfide bond 

Sulforaphane 1-isothiocyanato-(4R,S)(methylsulfinyl)butane 

TAK TGF-β-associated kinase 1 

TATA BOX Thymine, adenine, thymine, adenine box 

T/E Trypsin/Ethylenediaminetetraacetic acid 
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tBHQ Tert-butylhydroquinone  

TCA Trichloroacetic acid 

TEMED Tetramethylethylenediamine 

TGF-β1 Transforming Growth Factor-β1 

Tβ1R1 TGF-β1 receptor type I 

TH1/2 T helper cell 

TIMP Tissue inhibitor of metalloproteinase 

TNFR Tumour necrosis factor receptor 

TNF-α Tumour necrosis factor alpha 

TRAF 6 TNF receptor associated factor-6 

TRX  Thiroredoxin 

TRXR Thioredoxin reductase 

Ty Tyrosine 

VCAM-1 Vascular adhesion molecule-1 

VEGF Vascular endothelial growth factor 

Veh Vehicle 

VSMC Vascular smooth muscle cell 

WASP Wiskott-Aldrich syndrome family protein 

XCT Cysteine-glutamate transporter 

α-SMA Αlpha-smooth muscle actin 

α-Tubulin Alpha-tubulin 

γ-GCL Gamma-glutamate cysteine ligase 

γ-GCS Gamma-glutamate cysteine synthetase  

γ-GT Gamma glutamyl transferase 

15d-PGJ2 15-deoxy-delta(12,14)-prostaglandin J2 
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CHAPTER 1: Introduction 
 

1.1 Atherosclerosis 

Cardiovascular disease (CVD) is the leading cause of death in the world, accounting for 

29% of all deaths globally in 2012 (World Health Organisation, 2012). Atherosclerosis, 

a progressive disease of the medium and large-size arteries is one of the most prevalent 

CVDs and a leading cause of mortality globally, with populations of middle to low 

income countries being most at risk (World Health Organisation, 2012). Despite 

advances in the knowledge about the pathogenesis of atherosclerosis, current therapies, 

although have helped to treat millions of patients, are unable to curb the rising numbers 

of individuals predisposed to this disease. Novel approaches to studying atherosclerosis 

from an alternative perspective may help to tackle this disease more effectively through 

better understanding of the mechanisms involved in its progression. 

 

1.1.1 The ‘inside-out’ hypothesis of atherosclerosis 

Cardiovascular disease and in particular, atherosclerosis, has traditionally been 

associated with the concept that the primary and predominant response to injury in a 

blood vessel is initiated in the lumen and the ensuing events occur in the sub-endothelial 

space (Lusis, 2000; Diaz et al., 1997; Quinn et al., 1987; see Fig 1.1). This well-

established ‘inside-out’ hypothesis postulates that the endothelium plays a central role 

in mediating the inflammatory response by modulating monocyte adhesion and playing 

a pivotal role in the infiltration of oxidized lipids and the consequent formation and 

activation of atherosclerotic lesions (Diaz et al., 1997).  

 

According to the “inside-out” hypothesis, cardiovascular risk factors, including those 

with a strong genetic component such as familial hypercholoesterolaemia, hypertension, 

diabetes and elevated levels of haemostatic factors as well as environmental factors 

such as a high-fat diet, lack of excercise and smoking, are thought to adversely alter the 

vascular endothelium and trigger a  cascade of events (Hansson,  2005; Dzau et al., 

2002; Lusis, 2000). Alterations in blood flow play a critical role in endothelial 

dysfunction which is central to this paradigm (Lovett and Rothwell, 2003; Ross, 1999; 

Nakashima et al., 1998; Gotlieb et al.,1996; MacMillan, 1985). Endothelial cells in the 

straight areas of arteries where flow is uniform and laminar are aligned in the direction 

of flow, however endothelial cells in and around areas of arterial branching where blood 

flow is disturbed and oscillatory, such as the aortic arch and bifurcations,  have no 
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Figure 1.1  The structure of a normal large artery.  

Atherosclerosis is a disease of large and medium-sized arteries. The normal morphological 

structure of a large artery consists of three layers (the intima, the media and the adventital layer)  

The luminal facing surface of the vessel consists of a monolayer of endothelial cells which rests 

on an internal elastic lamina. The intima which consists of extracellular connective tissue 

matrix, is a very thin layer and is mainly made up of proteoglycans and collagen. The media 

consists of smooth muscle cells and the outer layer, the adventitia, is mainly made up of 

connective tissue, some SMC, with the majority cell-type being fibroblasts. Adapted from Hu 

and Xu, 2011. 
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particular orientation and are likely to be more vulnerable to oxidarive and mechanical 

stresses, making them more permeable to macromolecules such as low density 

lipoprotein (LDL) and hence, lesion formation (Lusis 2000; Gimbrone, 1999). 

 

Dysfunctional endothelium is an early manifestation of cardiovascular disease and in 

this context is usually characterised by impaired flow-mediated dilatation throughout 

the arterial tree due to the reduced bioactivity of nitric oxide (NO) (Forstermann, 2008; 

Davies, 2009). Under normal physiological conditions, NO biosynthesis from the 

endothelium is catalysed by the action of endothelial nitric oxide synthase (eNOS) 

which transfers electrons from NAD(P)H in its reductase domain to heme in its oxidase 

domain where the substrate, L-arginine is oxidized to L-citrulline and NO. This 

sequence of events is disturbed when the essential eNOS co-factor, tetrahydrobiopterin 

(BH4) is depleted. Reactive oxygen species (ROS), likely to be generated via NAD(P)H 

oxidase (Landmesser et al., 2003), a hallmark of atherosclerosis, is thought to increase 

the degradation of NO by its reaction with superoxide leading to the formation of the 

peroxynitrite anion (ONOO.) which oxidizes BH4 to the trihydrobioterin radical cation, 

BH3 (Davies, 2009). BH3 can be recycled to BH4 by eNOS or by L-ascorbic acid, 

however increased levels of ONOO., as a result of oxidation of BH4 to biologically 

inactive products, overwhelm the cell’s ability to perform this reduction resulting in 

eNOS uncoupling, that reduces oxygen to superoxide but no longer synthesises NO 

(Davis, 2008).  

 

In addition to reduced bioavailability of NO during atherogenesis, another manifestation 

of altered redox state is the expression of genes that may directly or indirectly regulated 

by ROS (Kunsch and Medford, 1999). These adhesion molecules expressed by the 

dysfunctional endothelium such as intercellular adhesion molecule (ICAM-1) and 

vascular cell adhesion molecule (VCAM-1), increasing its adhesiveness and allowing 

the attachment and infiltration of inflammatory cells such as leukocytes and monocytes 

(Ross, 1999). Accumulation of oxidized LDL in the extracellular sub-endothelial matrix 

occurs passively through endothelial cell junctions and its retention in the vessel wall is 

thought to involve interactions between its protein constituent, apolipoprotein B and 

matrix proteaglycans (Boren et al., 1998). This causes endothelial cells to release 

proinflammatory molecules such as monocyte chemotactic protein-1 (MCP-1) and 

granulocyte colony stimulating factor (GCSF), consequently resulting in the recruitment  
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Figure 1.2 Endothelial nitric oxide-mediated vasodilation. In response to chemical and 

haemodynamic forces at the luminal surface of the blood vessel, eNOS production is stimulated. 

eNOS transfers electrons from NAD(P)H to the substrate, L-arginine which is then oxidized to 

L-citrulline and NO. NO diffuses into vascular smooth muscle cells in the media of the blood 

vessel and activates soluble guanylyl cyclase (sGC) which catalyses the production of cyclic 

GMP (cGMP) from GTP and causes vasorelaxation. Taken from Levy et al., 2009. 
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of monocytes to the arterial wall and their subsequent differentiation into macrophages 

(Diaz et al., 1997; Navab et al., 1996). 

 

Further peroxidation of mildly oxidized LDL to highly oxidized LDL by monocytes and 

macrophages causes the modified apolipoprotein B component of LDL to become more 

negatively charged and allows scavenger receptors on macrophages to phagocytose 

accumulated LDL (Ross, 1999; Raines and Ross, 1993;. Goldstein et al., 1979).  

 

The build-up of this oxidized LDL within the macrophage results in the formation of 

cytosolic lipid droplets and ultimately leads to the transformation of the macrophage 

into a foam cell (Hansson, 2005; Quinn et al., 1987). Activated macrophages also 

release pro-inflammatory cytokines and growth factors, including platelet-derived 

growth factor (PDGF), fibroblast growth factor (FGF-2) and transforming growth factor 

β1 (TGF-β1; Ross, 1999) which exacerbate the inflammatory response, causing the 

migration and proliferation of smooth muscle cells (SMC) and the synthesis of 

extracellular matrix (Hansson; 2005; Lusis, 2000), and results in the formation of a 

fibrous cap which covers a necrotic core consisiting of extracellular lipid, cholesterol 

crytstals and necrotic debris (Spagnoli et al., 2007; Hansson, 2005; Ross, 1999). For a 

time, the vessel may be able to compensate for this focal thickening by initiating 

outward remodelling in order to try and counteract the decrease in lumen size (Ward et 

al., 2000), however over time and due to a sustained inflammatory response 

accompanied by smooth muscle cell migration, proliferation and intimal thickening, the 

lumen of the vessel becomes occluded causing stenosis and restricting blood flow 

(Glagov et al., 1987), increasing haemodynamic forces acting on the vessel wall and 

further exacerbating endothelial dysfunction (Davies, 2009). Vascular smooth muscle 

cell (VSMC) migration is an essential element in the process of intimal hyperplasia and 

migration of VSMC from the media to the intima and their secretion of extracellular 

matrix (ECM) proteins is a major component of advanced complicated lesions (Willis et 

al., 2004, see Fig 1.3). 
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Figure 1.3 The progression of atherosclerosis from the ‘inside-out’. (A) Endothelial 

dysfunction. The earliest hallmark of atherosclerosis is increased endothelial permeabilty, 

expression of adhesion molecules on the surface of endothelial cells and leukocyte adhesion (B) 

Fatty streak formation. Infiltration of monocytes, their transdifferentiation to macrophages 

within the vessel wall and their uptake of lipids results in fatty streak formation. (C) Formation 

of an advanced complicated lesion. A fibrous cap forms over the lesion, walling it off from the 

lumen of the vessel. (D) An unstable fibrous cap. Rupture or ulceration of the fibrous cap can 

lead to thrombosis and consequent occlusion of the lumen of the blood vessel. Adapted from 

Ross, 1999. 

 

 

 

 

 

 

A 

C D 

B 



Chapter 1                                                                                                                                      Introduction 

 

 27 

Although coronary artery stenosis contributes to localised ischemia and potentially 

myocardial infarction, it, in itself is not thought  to precipitate these clinical events; 

most cases of infarction are preceded by the formation of an occluding thrombus on the 

surface of the plaque which consists of platelets and activated monocytes (Hansson, 

2005; Zarifis, 2005). Thrombosis may be caused by plaque rupture, an event which can 

result in  the seeping of the contents of the atheromatous plaque into the lumen of the 

blood vessel and consequent exposure of the thrombogenic core of the plaque to the 

blood (Hansson, 2005). The inflammatory response which is a result of the 

accumulation of mast cells, macrophages, platelets and T-cells at the site of the plaque, 

release molecules including inflammatory cytokines, proteases, coagulation factors, 

vasoactive molecules and radicals which contribute to plaque rupture; in particular two 

types of proteases, matrix metalloproteinases and cysteine proteases. Members of these 

families of enzymes, such as MMP-2, MMP-3 and MMP-9 affect the composition of 

the matrix and can lead to hemorrhage from the vasa vasorum or from the lumen of the 

artery with the final result often being acute coronary syndrome, and in most cases 

myocardial infarction (Hansson, 2005; Jones et al., 2003; Dzau et al., 2002; Ross, 

1999). 

 

The importance of looking at new strategies investigating other sites within the vessel 

wall, such as the adventitia, which is likely to play a role in atherogenesis, is apparent. 

Current therapeutic intervention such as aspirin, statins, calcium channel blockers 

(Willis et al., 2004) and sublingual nitroglycerine administration, though largely 

effective, cannot counteract the prevalence of this disease. Targeting other sites of 

inflammation may offer new insights into atherosclerosis as well as the opportunity for 

novel therapeutic intervention 

 

1.1.2 The ‘outside-in’ hypothesis of atherosclerosis 

The majority of evidence implicates the luminal surface as being the main site of the 

inflammatory response where atherosclerosis is initiated, however, there is a growing 

body of evidence which points to the previously ignored, outermost adventital layer of 

the blood vessel (Fig 1.4), which is composed mainly of fibroblasts (Maiellaro and 

Taylor, 2007). The ‘outside-in’ hypothesis postulates that the inflammatory reaction, 

involving complex interactions between an increased number of fibroblasts and 

myofibroblasts and inflammatory cells is one of the early hallmarks  of vascular 

inflammation.  
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A key characteristic of the ‘outside-in’ hypothesis postulates that a denser vasa vasorum 

is thought to be implicated in the progression of the atherosclerotic plaque and eventual 

rupture by nourishing the plaque and potentially playing a role in the maintenance of 

vessel homeostasis during vascular remodelling in hypertensive arteries (Kuwahara et 

al., 2002). In addition to providing essential oxygen and nutrients to the media 

(Crawford et al., 1998), the vasa vasorum is associated with increased expression of 

adhesion molecules by the endothelial cells that line this network of microvessels, 

resulting in a high adventitial infiltration of various classes of leukocytes (Csanyi et al., 

2009). Another characteristic of this hypothesis is an increased production of ROS 

(Maillero and Taylor, 2007; Pagano et al., 1997, see Fig. 1.4), which in turn further 

exacerbates the infiltration of inflammatory cells in the adventitial layer (Csanyi et al., 

2009). Although the exact mechanisms underlying the early inflammatory response 

inititated in the adventitia are not clear, there is some evidence to suggest that ROS 

upregulate the transcription factor, NFκB, which causes the release of several pro-

inflammatory cytokines, which contribute to adhesion molecule expression (Sarada et 

al., 2008). 

 

Fibroblasts from different tissue beds display the same heterogeneous  phenotype, and 

are morphologically characterised as adherent, flat, spindle-shaped cells with flat, oval 

nuclei (Enzerink and Vaheri., 2011). The origins of fibroblasts are thought to be of 

mesenchymal or neural crest origin, however little is known about their differentation 

into specific subsets during pathological processes (Enzerink and Vaheri., 2011). The 

adventitial fibroblast is a central tenet to the ‘outside-in’ hypothesis of atherosclerosis 

and its phenotypic switch to a myofibroblast within the vessel wall is a pivotal event 

(van den Borne et al., 2009; Powell, 2000). The phenotypic switch from a fibroblast to a 

myofibroblast during disease has been widely reported as being TGF-β1-dependent in 

several different types of fibroblast (Wang et al., 2010; van den Borne et al., 2009; 

Powell, 2000; Desmouliere, 1995; Desmouliere et al., 1993). When treated with TGF-

β1, fibroblasts become ‘activated’ and express several proteins which give them the 

characteristic myofibroblast phenotype (Powell, 2000; see Fig 1.4).  
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Figure 1.4 The mechanisms leading to the initiation and progression of vascular disease 

from the ‘outside-in’. According to the ‘outside-in’ hypothesis, the adventitia plays a pivotal 

role in the initiation of the inflammatory response seen in atherosclerosis. Inflammatory cues 

such as cytokines signal  adventitial fibrobolasts to undergo a phenotypic switch to a migratory 

myofibroblast. These myofibroblasts migrate to the medial and intimal layers and contribute to 

neointimal hyperplasia. The myofibroblast transforms into a contractile myofibroblast and 

generates cytokines, eventually undergoing apoptosis. Cytokine release causes a massive influx 

of exogenous leukocytes from the vasa vasorum and the subsequent production of superoxide 

which is enzymatically dismuted to H2O2 which may act as a paracrine mediator across the 

vessel wall. Under pathophysiological conditions, NO is rapidly inactivated by NAD(P)H-

derived ROS and results in the highly reactive ROS, peroxynitrite (ONOO-). VSMC 

proliferation and migration lead to further hypertrophy and constrictive medial remodelling 

characteristic of progeressive atherosclerotic disease. Taken from Csanyi et al., 2009. 
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Fully differentiated myofibroblasts are characterised by the expression of several 

smooth muscle cell proteins including α-smooth muscle actin, the actin polymerising 

protein, desmin as well as metavinculin and vimentin (Ehler et al., 1996; Powell, 2000; 

Zargham, 2008). Although they express many SMC proteins, myofibroblasts differ 

from smooth muscle cells in that they express very low levels of smooth muscle myosin 

heavy chain (SM-MHC) (Ehler et al., 1996; van den Borne et al., 2009). The contractile 

characteristic of a myofibroblast is mainly owing to the expression of α-smooth muscle 

actin and this cell type displays a secretory phenotype and produces an array of 

proinflammatory chemokines and prostaglandins (Eyden, 2001). It has been reported 

that at least three local events are required to generate α-smooth muscle actin-positive 

differentiated myofibroblasts; the accumulation of biologically active TGF-β1, the 

presence of certain ECM proteins such as the ED-A splice variant of fibronectin, and 

thirdly high extracellular stress arising from the mechanical properties of the ECM and 

cell remodelling activity (Hinz et al., 2007; Desmouliere et al., 2005; Tomasek et al., 

2000; Fig 1.5).  

 

During the progression of atherosclerosis, smooth muscle cells and adventitial 

fibroblasts proliferate and migrate into the intima and where adventitial fibroblasts 

secrete excess extracellular matrix proteins and contribute to neointima formation, 

constrictive remodelling and restenosis. Evidence of this adventital cell migration was 

seen in a model of transluminal coronary angioplasty where vascular lesion formation 

was assessed following balloon overstretch in porcine coronary arteries after days 1, 3, 

7 and 14. It was found that BrdU-labelled adventitial cells had migrated into the intima 

of the injured vessel from 3 days after injury and after fourteen days, the majority of 

BrdU-labelled adventitial cells had migrated into the neointima suggesting that these 

cells contributed to vascular lesion formation in this disease model (Scott et al., 1996). 

The same study also detected an increase in the levels of α-smooth muscle actin in these 

cells after arterial injury, indicating that in addition to migration, the myofibroblasts had 

undergone differentiation and subsequently contributed to arterial remodelling and 

luminal occlusion (Scott et al., 1996).  Further evidence of adventitial fibroblast 

migration into the neointima comes from a rat model of balloon injury, where 

adventitial fibroblasts transfected with beta-galactosidase (LacZ) were introduced into 

the adventita immediately after balloon injury. 
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Figure 1.5 The process of fibroblast differentiation. Under mechanical stress, fibroblasts 

differentiate into proto-myofibroblasts which exhibit actin-containing stress fibres. In the 

presence of TGF-β1 and ED-A fibronectin, proto-myofibroblasts differentiate further into 

myofibroblasts. Myofibroblasts are characterised by the de novo expression of α-smooth muscle 

actin and vimentin as well as the presence of focal adhesions and fibronectin which aid cell 

migration and are responsible for the contractile nature of this cell type. Differentiated 

fibroblasts express many proteins also expressed by smooth muscle cells, however they differ 

from SMC in that they express very low levels of smooth muscle myosin heavy chain (SM-

MHC). Taken from Tomasek et al., 2002.   
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Five days post-injury, LacZ-transfected cells were detected in the media and neointima 

at days 7, 10 and 14 (Li et al., 2000). In a similar study investigating arterial injury in 

rat carotid artery, TGF-β1 mRNA levels were increased fivefold after 14 days, during 

which there was significant neointimal formation indicating the importance of TGF-β1 

in the process of adventitial cell-dependent neointimal thickening after injury (Majesky 

et al., 1991). Antagonism of TGF-β1 with the overexpression of inhibitory Smad7 in the 

adventitial layer of carotid artery exposed to balloon injury resulted in the attenuation of 

adventitial cells expressing β-galactosidase contributing to neointima formation 

(Mallawaarachchi et al., 2005) suggesting that neointimal formation is partly mediated 

by this growth factor. 

 

Another growth factor released by platelets, mononuclear cells, endothelial cells and 

SMC in and in the surrounding area of vascular injury that has also been linked to 

enhancing vascular disease progression in concert with TGF-β1 during atherogenesis, is 

platelet-derived growth factor (PDGF; Levitzki, 2004). In vitro, PDGF has been found 

to increase the proliferation of VSMC, as well as increasing their migration; cells 

stimulated with this growth factor exhibited increased expression of actin filaments 

conducive to enhanced cell migration (Engel and Ryan, 1997). A possible mechanism 

by which PDGF may exert its effects on VSMC has been postulated by Sundaresan and 

colleagues who suggest that PDGF transiently increases intracellular levels of H2O2, 

which in-turn may act as a signalling molecule, causing tyrosine phosphorylation, 

mitogen-activated protein kinase activation and cell migration (Sundaresan et al., 1995). 

Furthermore, in a hamster vascular stenosis model in hypercholesterolemic hamsters, 

binding of PDGF to VSMC was higher than that seen in control animals and was 

associated with increased cell proliferation and increased neointima formation when 

compared to control animals (Matsuno et al., 2001). Due to its effect on VSMC 

proliferation in atherosclerotic disease, it is thought that PDGF targets the cyclin-

dependent kinases 2 and 4 (Cdk2/Cdk4) in order to promote cell cycle progression and 

that targeting these may somewhat attenuate neointima formation (Chang et al., 1995; 

Abe et al., 1994).  

  

In addition to adventitial cells contributing to neointimal formation; there is also recent 

evidence to suggest that progenitor cells arising from the adventitial layer may also play 

a role in luminal occlusion following injury. In order to investigate the possibility of 

vascular progenitor cells contributing to the atherosclerotic disease process, Hu and 
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colleagues examined tissue from  ApoE-deficient mice (Hu et al., 2004). 

Immunohistochemical analysis of the adventitial layer from aortic roots revealed that 

large amounts of cell expressed stem cell markers, including Sca-1+, c-kit+, CD34+ and 

Flk1+ (Hu et al., 2004). Furthermore, the same study reported that when Sca-1+ cells 

carrying the LacZ gene were transfected were transferred to the adventitial side of the 

vein grafts in these mice, β-gal+ cells were found in the atherosclerotic lesion of the 

intima suggesting that progenitor cells do indeed contribute to atherosclerotic lesion 

formation (Hu et al., 2004). Interestingly, in vitro, in response to treatment with PDGF-

BB, isolated Sca-1+ cells were able to differentiate into SMC, suggesting that this 

growth factor may contribute to progenitor cell differentiation (Hu et al., 2004). 

Conversley, a study in mouse embryonic stem cells has shown that use of a PDGF 

inhibitor or TGF-β1-neutralizing antibodies did not prevent these cells from 

differentiating into SMC (Lindskog et al., 2006). 

 

A more recent study has also reported similar findings; in injured femoral arteries in a 

mouse model, the number of cells expressing mesenchymal-stem cell markers were 

markedly higher when compared to uninjured control and originated from the adventitia 

(Tigges et al., 2013). In addition, this population of cells was found to contribute to 

neointimal formation (Tigges et al., 2013). Passman and colleagues have also postulated 

that the adventitia is the source of progenitor cells; immunohistochemical analysis 

revealed that Sca-1+, c-kit+, CD34+, CD140+ and Flk1+ expressing cells clustered in a 

domain of sonic hedgehog signnalling  (Shh) that was restricted solely to the adventitial 

layer (Passman et al., 2008). The above studies suggest that the adventitia is a possible 

source of progenitor cells which may act in concert with adventitia-derived fibroblasts 

and contribute to neointimal formation during atherosclerotic disease.  

 

There is increasing evidence to support the hypothesis that the adventitia may be the 

‘first responder’  and initiator of vascular remodelling in large and small arteries during 

atherogenesis, neointima formation following balloon injury and in restenosis. In 

addition to this, TGF-β1 seems to contribute to the activation, phenotypic switch and 

migration of adventital fibroblasts during these disease prosesses. Interactions between 

the outer layer of the blood vessel and this growth factor offer opportunity for novel 

therapeutic intervention from the outside-in (Siow and Churchman, 2007). 
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1.2 Reactive oxygen species in vascular disease 

The term, ROS, refers to a group of biological molecules that are formed upon the 

incomplete reduction of oxygen making them highly reactive (D’Autreaux and 

Toledano, 2007). They include the superoxide anion (O2
-.), hydrogen peroxide (H2O2) 

and the hydroxyl radical (OH.) with each of these having distinct biological activities 

including lipid solubility, half-life and chemical reactivity (D’Autreaux and Toledano, 

2007). Originally hypothesized to be the by-products of enzymatic reactions, and 

considered biological hazards, which caused gross cellular damage, mutagenesis, cancer 

and aging (Ray and Shah, 2005; Droge, 2002; Harman, 1956), upon closer observation 

it was revealed that ROS played complex roles in normal and pathophysiology.  The 

balance between ROS generating systems and antioxidant defence systems is disturbed 

and results in oxidative stress where ROS generation overcomes the cells antioxidant 

defence system (Fig 1.6. B) and antioxidant enzymes (Fig 1.6. C).  

 

Various enzyme systems have been implicated in the production of ROS in the 

cardiovascular system, including NAD(P)H oxidases, xanthine oxidase (XO), 

uncoupled eNOS as well as the leakage of activated oxygen from mitochondria during 

oxidative respiration (Forstermann, 2008). O2
-. is one of the ROS implicated in the 

pathogenesis of vascular disorders and targets Fe-S clusters due to its high electrostatic 

attraction to them. However, due to its charge and its relatively short half-life 

(Paravicini and Touyz, 2006), this radical is unable to cross biological membranes 

making it a poor signalling molecule. O2
-. is spontaneously dismuted to H2O2 by 

superoxide-dismutase (SOD; D’Autreaux and Toledano, 2007).  

 

H2O2 is a milder oxidant in comparison to O2
- and reacts with [Fe-S] and very slowly 

with glutathione and cysteine residues (D’Autreaux and Toledano, 2007). It has a longer 

half-life and is able to diffuse across lipid bilayers, making it an ideal candidate for 

signalling. H2O2 can undergo spontaneous conversion to the hydroxyl radical (OH.), the 

three-electron reduction state of molecular oxygen, via the Fenton reaction 

(Forstermann, 2008). This ROS is highly reactive and indiscriminate in its targets, 

however due to its extremely short half-life it is unlikely to mediate its effects distant 

from where it is produced (Paravicini and Touyz, 2006). These three main oxygen 

species are derived from various cellular enzyme systems, however those that are most 

relevant to vascular disease appear to be XO, uncoupled eNOS, the mitochondrial 

respiratory chain and NAD(P)H oxidase. 
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1.2.1 ROS-generating enzyme systems 

1.2.1(a) Xanthine oxidase 

Xanthine oxidase (XO) is a metalloenzyme that catalyses the oxidation of hypoxanthine 

and xanthine to form O2
-.. Its ability to readily donate electrons to molecular oxygen to 

produce O2
- has implicated it in vascular disease, in particular it is known to be present 

within the vascular endothelium and may play a role in endothelial dysfunction.  

 

Several studies have shown that XO-generated O2
-. plays a role in hypertension and 

perhaps atherosclerosis. In vivo evidence of XO involvement in atherosclerosis has been 

observed in spontaneously hypertensive rats (SHR) where the activity of the oxyradical 

producing form of XO was seen to be three-fold higher in comparison to the control 

group, with an associated increase in vascular tone in these animals. Administration of a 

tungsten-rich diet containing an inhibitor of XO eliminated detectable levels of enzyme 

activity, suggesting that this enzyme is responsible for oxyradical generation associated 

with increased vascular tone and may contribute to hypertension (Suzuki et al., 1998). 

In contrast to this, Laaksa and colleagues found that long-term treatment of SHR with 

the XO inhibitor, allopurinol reduced XO activity in a salt-induced hypertension model 

but did not reduce overall blood pressure, suggesting that in this case, XO–mediated 

ROS production was a consequence rather than a cause of hypertension (Laaksa et al., 

1998). 

 

 

 

 

 

 

 

 

 
Figure 1.7 The XO reaction. Xanthine oxidase catalyses the oxidation of hypoxanthine and 

xanthine to form highly reactive O2
_. .  

 

 

The source of XO in the plasma is unclear, but it is thought that increased levels of 

plasma cholesterol, as seen in atherosclerosis cause the release of this enzyme from the 

liver and into the circulation, whereupon it is able to bind to glycosaminoglycans on 

                    

                                           Xanthine oxidase (XO) 

 

          Hypoxanthine + H2O + 2O2    Xanthine + 2O2
-. + 2H. 

Xanthine + H2O + 2O2  Uric acid 2O2
-. + 2H. 
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endothelial cells which may be overexpressed as a result of hyperlipidemia (White et 

al., 1996). There is also evidence to suggest that endothelial cells may express xanthine 

dehydrogenase which is converted to XO (Forstermann, 2008), and that XO activity 

may depend upon the activity of NAD(P)H oxidase; endothelial cells lacking the 

p47phox subunit of NAD(P)H oxidase exhibited a markedly reduced production of O2
_.  

and had minimal XO protein and activity (McNally et al., 2003). 

 

Although there is some evidence to suggest that XO contributes significantly to vascular 

disease and to a certain extent, endothelial dysfunction, as demonstrated by studies 

where XO inhibitors caused an overall decrease in O2
_. and an apparent restoration of 

endothelial cell function (Suzuki et al., 1998; Ohara et al., 1993), its role as a causative 

factor in vascular disease rather than a consequence (Laaksa et al., 1998) is still 

somewhat controversial. However, it is clear that XO-derived O2
-.   plays an important 

role in vascular pathophysiology. 

 

1.2.1(b) Endothelial nitric oxide synthase  

Nitric oxide (NO)-mediated vasodilatation is an important regulator of vascular 

homeostasis (Levy et al., 2009). Under normal physiological conditions, and in response 

to chemical and haemodynamic forces at the luminal surface of the blood vessel, 

endothelial nitric oxide synthase (eNOS) generates NO, which in-turn indices 

vasodilation, inhibits platelet aggregation and prevents oxidative modification of LDL 

cholesterol (Forstermann, 2008). 

 

eNOS is a homodimeric enzyme with each subunit consisting of a reductase and 

oxygenase domain (Forstermann, 2008). Between these two domains is a zinc-thiolate 

cluster where the co-factor tetrahydrobiopterin  (BH4) and the substrate L-arginine bind 

(Forstermann, 2008). Electron transfer from the reductase domain enables ferric heme 

to bind to oxygen and form a ferrous dioxy-species, which can receive a second electron 

from either BH4 or from the reductase domain.  This reduction allows the oxidation of 

the substrate, L-arginine to L-citrulline and NO. NO is then able to diffuse from the 

endothelium into the adjacent SMC layer and cause vasodilatation via the activation of 

NO causes the elevation of cyclic-GMP and vasorelaxation via the activation of soluble 

guanylate cyclase (sGC) in the SMC layer.  
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Under pathophysiological conditions, such as hypertension and atherosclerosis, 

increased oxidative stress enhances the degradation of NO by its reaction with O2
-. 

leading to the formation of the peroxynitrite anion (ONOO-), which is able to oxidize 

BH4  to form the radical BH3  and  results in the uncoupling of eNOS (Forstermann, 

2008). This dysfunctional eNOS is no longer able to synthesize NO, and reduces 

oxygen to O2
-. (Forstermann, 2008; Paravicini and Touyz, 2006). Endothelial 

dysfunction is the first step towards progressive atherogenesis (Ross, 1999; Lusis, 

2000). Either the depletion of the co-factor BH4, or decreased availability of L-arginine 

can contribute to eNOS uncoupling; however BH4 supplementation can attenuate this 

process.  In one study administration of BH4 to normotensive and hypertensive patients 

resulted in augmentation of endothelium-dependent vasodilatation in both groups 

(Higashi et al., 2002). Uncoupled eNOS been implicated in many vascular diseases, in 

particular during the pathogenesis of diabetes, hypertension (Forstermann, 2008) and 

atherogenesis (Lusis, 2000), and its role in these diseases points to the pivotal role it 

may play in pathophysiology. 

 

1.2.1(c) Mitochondria-derived ROS 

Mitochondria are constant sources of superoxide, with NADH dehydrogenase (complex 

I) and ubiquinone-cytochrome b-c1 (complex III) being the primary sources of O2
- 

production (Madamanchi and Runge, 2007). The amount of superoxide released from 

the mitochondria is dependent upon the activity of the antioxidant, manganese-

containing superoxide dismutase 2 (SOD2) located in the mitochondrial matrix which 

protects against oxidative damage. Overexpression of SOD2 in a mouse model limited 

the infarct size following coronary artery ligation as well as rendering the heart more 

resistant to ischemia and reperfusion injury (Chen et al., 1998). 

 

There is some evidence to suggest a link between atherosclerotic lesion development 

and mitochondrial dysfunction. Assessment of mitochondrial oxidant generation and 

DNA damage in human specimens showed that the degree of mitochondrial oxidant 

production corresponded with the degree of atherosclerotic lesion development. The 

same study found that in ApoE -/- mice, deficient in mitochondrial SOD2 exhibited 

early increases in mitochondrial DNA damage and a phenotype of accelerated 

atherosclerosis (Ballinger et al., 2002). 
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Figure 1.8 Uncoupling of endothelial nitric oxide synthase. Enhanced production of 

peroxynitrite as a result of oxidative stress causes the oxidation of BH4 to biologically inactive 

products and overwhelms the cells capacity to re-reduce these back to BH4, leading to an 

‘uncoupled’ enzyme that reduces oxygen to superoxide but is no longer able to synthesize NO. 

Taken from Forstermann, 2008.  
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A recent study has implicated mitochondrial-derived ROS in the profibrotic effects of 

TGF-β1 in normal human lung fibroblasts; genetic disruption of mitochondrial complex 

III-generated ROS production was seen to attenuate TGF-β1-mediated profibrotic gene 

expression as well as attenuating myofibroblast dedifferentiation (Jain et al., 2013). 

Findings from this study highlight one of the potential sources of ROS which are 

thought to augment TGF-β1-driven vascular remodelling as seen during arterial repair 

(Shi et al. 1996). 

Although direct evidence for the causal role of mitochondrial-derived ROS in vascular 

disease is yet to be elucidated, there is mounting evidence that mitochondrial 

dysfunction and consequent superoxide generation play a part in the development of 

vascular dysfunction, particularly in advanced atherosclerosis (Madamanchi and Runge, 

2007). 

 

1.2.1(d) NAD(P)H oxidase 

NAD(P)H oxidases are multicomponent enzymes, originally found and characterised in 

phagocytes (Ray and Shah, 2005), are functional in membranes of vascular endothelial 

cells, SMCs and fibroblasts (Forstermann, 2008) and are thought to be the major source 

of ROS in the vascular wall (Birukov, 2009). There are seven different homologues; 

Nox1, Nox2, Nox3, Nox4, Nox5 as well as larger and more complex homologues, 

Duox1 and Duox2 (Ray and Shah, 2005). The NAD(P)H oxidase enzyme system 

reduces molecular oxygen to produce O2
- by utilising NADH/NAD(P)H as an electron 

donor. Activation of NAD(P)H oxidases requires the assembly of several membrane-

bound (gp91phox, Nox1/Nox4 and p22phox) and cytosolic subunits (p47phox and 

p67phox; see Fig 1.9). Vascular NAD(P)H oxidases produce constant low-levels of 

ROS under normal physiological conditions and are regulated by various vasoactive 

cytokines and growth factors as well as by physical factors such as shear stress, pulsatile 

strain and stretch (Birukov 2009; Haurani and Pagano, 2007).  

 

In animal models of hypertension, NAD(P)H oxidase activation in the vasculature is 

apparent. In a rat model of angiotensin II (Ang II) -induced hypertrophy and subsequent 

measurement of the mRNA of the membrane bound subunit, p22phox showed that 

expression of this subunit increased three days following infusion (Fukui et al., 1997). 

Administration of SOD decreased both blood pressure and p22phox mRNA expression, 

suggesting that the NAD(P)H oxidase system is involved in the pathology of 

hypertension in vivo (Fukui et al., 1997). Interestingly, in situ hybridisation of aortic 
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tissue from these animals showed an increase in p22phox expression not only in the 

medial smooth muscle but also in the adventitia (Fukui et al., 1997). Further evidence in 

a Nox1 -/- murine model found that infusion of Ang II failed to increase blood pressure 

(Matsuno et al., 2005), suggesting a pivotal role for NAD(P)H oxidase-derived ROS in 

hypertension. 

 

Though much evidence implicates Nox proteins in the development of atherosclerosis, 

recent evidence suggests that their role may be more complex than previously 

envisioned. Genetic deletion of p47phox in a model of diet-induced atherosclerosis in 

ApoE-/- mice found only a partial attenuation in the development of this disease 

(Martino et al., 2008) and a similar study found that p47phox deletion did little to stop 

the progression of atherosclerosis (Yang et al., 2004). Although the role of Nox proteins 

in atherosclerosis is contentious, their role in neointima formation and vascular 

remodelling seems to be more evident. Nox1 knockout mice displayed a significant 

reduction in neointima formation after wire-induced injury (Thomas et al., 2006) with a 

reduction in SMC migration and consequent neointima formation (Looi et al., 2008).  

 

NAD(P)H-derived ROS production is clearly involved in atherosclerosis, but whether 

they are involved in promoting pro-atherosclerotic markers of this disease or play a 

greater role in the later stages including restenosis, neointima formation and vascular 

remodelling is yet to be clearly elucidated.  
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Figure 1.9  Spatial and molecular organization of vascular Nox enzymes. Nox 1, 2 

and 5 are represented here in different cellular compartments but can be located either 

within cells or at the plasma membrane, thus releasing O2
.- inside vesicles or 

extracellularly after activation of receptor (R) by ligand (L). O2
.- may affect cytosolic 

signalling after crossing membranes via anion channels, reversible protonation, or 

conversion to H2O2. In contrast Nox4 is always intracellular and constitutively produces 

a higher proportion of membrane-permeable H2O2 than other oxidases. All oxidases, 

except Nox5, form a membrane complex with p22phox. Cytosolic activators vary with 

oxidase subtype: Rac, p47phox and Noxa1 for Nox1 in VSMC; Rac, p47phox and 

p67phox for Nox2; Poldip2 for Nox4; and Ca++ for Nox5. All vascular cells express 

multiple Nox subtypes simultaneously. Taken from Lassegue and Griendling, 2010.  
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1.2.2. Mechanical stretch and ROS 

Exposure of blood vessels to cyclic stretch is essential in maintaining vascular 

homeostasis under normal physiological conditions as well as playing a significant role 

in vascular remodelling and maintenance of vascular cell phenotype, regulation of 

vascular tone and expression of vascular wall extracellular matrix constituents (Birukov, 

2009). However, under pathophysiological conditions, such as hypertension, 

atherosclerosis and diabetes, cyclic stretch plays a detrimental role and contributes to 

disease progression (Birukov, 2009). 

 

Chronic increases in cyclic stretch result in hypertension-induced vascular remodelling 

because of vascular cell proliferation and excess collagen synthesis. Ultimately, this 

remodelling leads to a decrease in luminal diameter and increased vascular resistance 

characteristic of clinical hypertension (Ali and Schumacker, 2002). Cell membranes and 

attachment sites are thought to serve as mechanosensors (Davies, 1995) which mediate 

mechanical signals via activation of signalling molecules such as tyrosine (focal 

adhesion kinase) kinases, growth factor receptors and via ion channels (Birukov, 2009).  

 

Recent evidence has shown that ROS generated by stretch may act as signalling 

molecules to regulate gene expression. Endothelial cells exposed to cyclic stretch have 

been shown to generate ROS production which is attenuated by the use of the 

mitochondrial inhibitors diphenylene iodonium (DPI) or rotenone, indicating that the 

mitochondria may be the source of ROS during stretch. In addition to this, the same 

study has shown increased NFκB activation and VCAM-1 mRNA expression, which is 

absent in the presence of antioxidants (Ali et al., 2004). Similarly, in fibroblasts, cyclic 

stretch induced NFκB activation and translocation to the nucleus, which was abrogated 

in the presence of antioxidants suggesting the stretch caused ROS production and as a 

result, the translocation of this transcription factor to the nucleus and potential gene 

transcription of various antioxidant genes (Amma et al., 2005). 

 

This stretch-mediated ROS production and consequent antioxidant gene expression is 

also seen in acute respiratory distress syndrome, where Nrf2/ARE pathway is activated 

resulting in the upregulation of several antioxidant enzymes, including HO-1 (Cho et 

al., 2006). In vitro investigation of the effect of cyclic stretch on Nrf2-dependent ARE-

mediated transcriptional response in pulmonary epithelial and endothelial cells revealed 

that actin remodelling along with epidermal growth factor receptor (EGFR)-activated 
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PI3K-Akt signalling were necessary for the regulation of the Nrf2-regulated antioxidant 

genes, GCLM and GPx1 (Papaiahgari et al., 2007). Previously, actin remodelling has 

been postulated in playing a key role in the modulation of transcription factor activation 

and subsequent gene transcription in epithelial and endothelial cells (Birukova et al., 

2005). As Keap1 is an actin binding protein and involved in the regulation of Nrf2, 

mechanosensing during stretch may be pivotal in activating the induction of antioxidant 

enzymes. There is much evidence for the stretch-induced activation signal transduction 

and gene expression in the vasculature (see Table 1.1). Stretch is particularly important 

in modulating changes in the outer layer of the blood vessel, the adventitia and may 

play a pivotal role in the generation of ROS. These ROS are likely to act as signalling 

molecules and cause changes in cellular differentiation, proliferation and migration and 

therefore constrictive remodelling in disease (Birukov, 2009; Cowan et al., 2003).   



C
h
ap

te
r 

1
  

  
  

  
  

  
  

  
  
  

  
  
  

  
  
  

  
  

  
  

  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  

  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  

  
  

  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  

  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  

  
  

  
  

  
  

In
tr

o
d

u
ct

io
n

 

  
4

5
 

T
it

le
 

 

M
et

h
o

d
s 

T
re

a
tm

e
n

t 
K

ey
 F

in
d

in
g

s 
R

ef
er

en
ce

 

S
tr

et
ch

-i
n
d

u
ce

d
 r

eg
u
la

ti
o

n
 o

f 

an
g
io

te
n
si

n
o

g
en

 g
en

e 

ex
p

re
ss

io
n
 i

n
 c

ar
d

ia
c 

m
y
o

c
y
te

s 

an
d

 f
ib

ro
b

la
st

s:
 O

p
p

o
si

n
g
 r

o
le

s 

o
f 

JN
K

1
/2

 a
n
d

 p
3

8
α

 M
A

P
 

k
in

a
se

s.
  

Is
o

la
te

d
 n

eo
n
at

al
 r

at
 

v
en

tr
ic

u
la

r 
m

y
o

c
y
te

s 

an
d

 f
ib

ro
b

la
st

s 
 

2
0

%
 e

q
u
ia

x
ia

l 
st

a
ti

c
-

st
re

tc
h
 (

0
-2

4
 h

) 

E
x
p

re
ss

io
n
 o

f 
an

g
io

te
n

si
n
o

g
e
n
 (

A
o

),
 w

as
 ↓

 f
o

ll
o

w
in

g
 f

o
u
r 

h
o

u
rs

 

o
f 

m
ec

h
an

ic
al

 s
tr

et
c
h
. 

A
ft

er
 8

 h
o

u
rs

 A
o

 e
x
p

re
ss

io
n
 ↑

. 
JN

K
1

/2
 

n
eg

at
iv

el
y
 r

eg
u
la

te
d

 s
tr

et
c
h
 m

ed
ia

te
d

 A
o

 e
x
p

re
ss

io
n
 w

h
er

ea
s 

p
3

8
α

/β
 s

ig
n
if

ic
a
n
tl

y
 ↑

 s
tr

et
ch

-i
n
d

u
ce

d
 (

2
4

 h
) 

A
o

 g
e
n
e 

ex
p

re
ss

io
n
. 

 L
al

  
et

 a
l.

, 

2
0

0
8
 

R
o

le
 o

f 
in

te
g
ri

n
s 

a
n
d

 f
o

ca
l 

ad
h
es

io
n
 k

in
as

e 
in

 t
h
e 

o
ri

en
ta

ti
o

n
 o

f 
d

er
m

a
l 

fi
b

ro
b

la
st

s 
ex

p
o

se
d

 t
o

 c
y
cl

ic
 

st
ra

in
. 

D
er

m
al

 f
ib

ro
b

la
st

s 
 

C
y
cl

ic
 s

tr
et

c
h
 0

–
2

4
%

 
F

o
ca

l 
ad

h
es

io
n
 k

in
as

e 
(F

A
K

),
 p

3
8

 a
n
d

 R
h
o

 a
ct

iv
at

ed
 i

n
 f

ib
ro

b
la

st
s 

ex
p

o
se

d
 t

o
 c

y
cl

ic
 s

tr
et

c
h
 a

n
d

 i
n
cu

b
at

io
n
 o

f 
ce

ll
s 

w
it

h
 a

n
ti

-i
n
te

g
ri

n
 

β
1

 b
ef

o
re

 s
tr

et
ch

 a
b

ro
g
at

ed
 f

ib
ro

b
la

st
 o

ri
en

ta
ti

o
n
. 

F
ib

ro
b

la
st

 

o
ri

en
ta

ti
o

n
 i

n
 r

es
p

o
n
se

 t
o

 c
y
cl

ic
 s

tr
et

ch
 i

s 
p

ar
tl

y
 m

ed
ia

te
d

 b
y
 

in
te

g
ri

n
 β

1
 t

h
ro

u
g
h
 p

h
o

sp
h
o

ry
la

ti
o

n
 o

f 
F

A
K

, 
p

3
8

 a
n
d

 a
ct

iv
at

io
n
 

o
f 

R
h
o

. 

W
en

 e
t 

a
l.

, 

2
0

0
9
 

M
ec

h
an

is
m

s 
o

f 
co

ro
n
ar

y
 

an
g
io

g
en

e
si

s 
in

 r
es

p
o

n
se

 t
o

 

st
re

tc
h
: 

ro
le

 o
f 

V
E

G
F

 a
n
d

 

T
G

F
-β

1
. 

C
ar

d
ia

c 
m

y
o

c
y
te

s o
r 

C
M

E
C

 (
ca

rd
ia

c 

m
ic

ro
v
as

c
u
la

r 

en
d

o
th

el
ia

l 
ce

ll
s)

  

1
0

%
 s

tr
et

ch
, 

3
0

 c
y
cl

e
s/

m
in

 

T
G

F
 (

1
 o

r 
1

0
 n

g
/m

l)
 f

o
r 

4
 

h
 

T
G

F
-β

1
 ↑

 2
.5

-f
o

ld
 a

ft
er

 1
 h

 o
f 

st
re

tc
h
. 

A
d

d
it

io
n
 o

f 
T

G
F

-β
1

 

n
eu

tr
al

iz
in

g
 a

n
ti

b
o

d
ie

s 
in

h
ib

it
ed

 t
h
e 

st
re

tc
h

-i
n
d

u
ce

d
 u

p
re

g
u
la

ti
o

n
 

o
f 

V
E

G
F

. 
S

tr
et

c
h
 o

f 
C

M
E

C
 ↑

 V
E

G
F

 m
R

N
A

 a
n
d

 ↑
 t

h
e 

le
v
el

s 
o

f 

V
E

G
F

 p
ro

te
in

 i
n
 t

h
e 

co
n
d

it
io

n
ed

 m
ed

ia
. 

Z
h
en

g
 e

t 
a

l.
, 

2
0

0
1
 

C
y
cl

ic
 m

ec
h
a
n
ic

al
 s

tr
et

c
h
in

g
 

m
o

d
u
la

te
s 

se
cr

et
io

n
 p

at
te

rn
 o

f 

g
ro

w
th

 f
ac

to
rs

 i
n
 h

u
m

a
n
 

te
n
d

o
n
 f

ib
ro

b
la

st
s.

 

H
u

m
an

 t
e
n
d

o
n
 

fi
b

ro
b

la
st

s 
 

C
y
cl

ic
 b

ia
x
ia

l 
m

ec
h
a
n
ic

al
 

st
re

tc
h
in

g
 f

o
r 

1
5

 a
n
d

 6
0

 

m
in

 

M
ec

h
an

ic
al

 s
tr

et
c
h
in

g
 ↑

 s
ec

re
ti

o
n
 p

at
te

rn
 o

f 
T

G
F

-β
. 

↑
 P

D
G

F
 a

n
d

 

b
F

G
F

  
 g

ro
w

th
 f

ac
to

r 
st

im
u

la
te

 c
el

l 
p

ro
li

fe
ra

ti
o

n
, 

d
if

fe
re

n
ti

ti
at

io
n
 

an
d

 m
at

ri
x
 f

o
rm

at
io

n
 a

n
d

 e
n
c
o

u
ra

g
e 

w
o

u
n
d

 h
ea

li
n

g
. 

S
k

u
te

k
 e

t 
a

l.
, 

2
0

0
1
 

C
y
cl

ic
 m

ec
h
a
n
ic

al
 s

tr
et

c
h
 

in
d

u
ce

s 
V

E
G

F
 a

n
d

 F
G

F
-2

 

ex
p

re
ss

io
n
 i

n
 p

u
lm

o
n
ar

y
 

v
as

c
u
la

r 
sm

o
o

th
 m

u
sc

le
 c

el
ls

. 

O
v
in

e 
p

u
lm

o
n
ar

y
 

ar
te

ri
al

 s
m

o
o

th
 m

u
sc

le
 

ce
ll

s 
 

B
ia

x
ia

l 
st

re
tc

h
 a

t 
a 

fr
eq

u
en

c
y
 o

f 
1

 H
z f

o
r 

2
4

 h
 

at
 a

m
p

li
tu

d
es

 o
f 

5
, 

1
5

, 
an

d
 

2
5

%
 

m
R

N
A

 e
x
p

re
ss

io
n
 o

f 
V

E
G

F
 a

n
d

 F
G

F
 p

ea
k
ed

 i
n
 s

tr
et

c
h
ed

 c
el

ls
 a

t 

2
4

 h
 a

n
d

 d
ec

li
n
ed

 t
o

w
ar

d
 c

o
n
tr

o
l 

le
v
el

s 
at

 4
8

 h
. 

Q
u
in

n
 e

t 
a

l.
, 

2
0

0
2
 

C
y
cl

ic
 s

tr
et

c
h
 i

n
cr

ea
se

s 
V

E
G

F
 

ex
p

re
ss

io
n
 i

n
 p

u
lm

o
n
ar

y
 

ar
te

ri
al

 S
M

C
s 

v
ia

 T
G

F
-β

1
 a

n
d

 

R
O

S
: 

a 
re

q
u
ir

e
m

en
t 

fo
r 

N
A

D
(P

)H
 o

x
id

as
e 

  
  

  
  
  

  
  
  

  
  

  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  

  
  

  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  

  
  

  
  
  

  
  
  

  
  
  

  
  
  

P
u
lm

o
n
ar

y
 a

rt
er

ia
l 

sm
o

o
th

 m
u

sc
le

 c
el

ls
  

2
0

%
 s

tr
et

ch
 (

0
–

2
4

 h
) 

C
y
cl

ic
 s

tr
et

c
h
 i

n
cr

ea
se

d
 l

e
v
el

s 
o

f 
R

O
S

 v
ia

 T
G

F
-β

1
, 

R
O

S
 w

a
s 

ab
ro

g
at

ed
 f

o
ll

o
w

in
g
 t

re
at

m
e
n
t 

o
f 

ce
ll

s 
w

it
h
 T

G
F

-β
1

 n
e
u
tr

al
iz

in
g
 

an
ti

b
o

d
y
. 

M
at

a-

G
re

en
w

o
o

d
 e

t 

a
l.

, 
2

0
0

5
 

 T
a

b
le

 1
.1

 S
tu

d
ie

s 
in

v
es

ti
g
at

in
g
 t

h
e 

ef
fe

ct
 o

f 
m

ec
h

an
ic

al
 s

tr
et

ch
 i

n
 v

as
cu

la
r 

ce
ll

s.
 



Chapter 1                                                                                                                                      Introduction 

 

 46 

1.2.3. Adventitia-derived ROS  

Fibroblast NAD(P)H oxidase production has received increasing attention in recent 

years, and there is controversy surrounding the location of NAD(P)H oxidases in the 

vascular wall. However, a large body of evidence in favour of NAD(P)H oxidases being 

the main culprits of ROS production in the vasculature has led to the idea that 

adventitial NAD(P)H oxidase is a harbinger and initiator of vascular disease. 

Interestingly, the ROS-generating system in adventitial fibroblasts shares a degree of 

homology to the phagocytic NAD(P)H oxidases, which surpasses that of any other 

vascular oxidase (Haurani and Pagano, 2007).  

 

Several studies have implicated NAD(P)H oxidase-derived superoxide within the 

adventitia as being an important and pivotal event in the development of diabetes 

mellitus, hypertension, atherosclerosis and vascular injury (Chan ett al., 2007; Zhang et 

al., 2003; Azumi et al., 2002; Sorescu et al., 2002; Paravicini et al., 2000; Cifuentes et 

al., 1999; Wang et al., 1999). In a porcine model of stretozotocin-induced diabetes, 

increased NAD(P)H oxidase activity was observed in the coronary media and adventitia 

and was accompanied by an increased inflammatory response in the adventitia (Zhang 

et al., 2003). The NAD(P)H oxidase-dependent inflammatory response has also been 

reported by others; increased expression of adhesion molecules on the endothelial 

surface of the vasa vasorum was seen to lead to the subsequent infiltration of leukocytes 

into the adventitia (Li and Shah, 2004; Libby et al., 2002) leading to a proposal by 

Stenmark and colleagues that ROS-mediated cross-talk between adventitial fibroblasts 

and NFκB-dependent inflammatory processes may be a critical event during 

atherosclerotic disease (Stenmark et al., 2006).  

 

In vivo it has been shown that delivery of the NAD(P)H oxidase inhibitor, gp91ds-tat 

(decoy peptide for cytosolic oxidase component p47phox) to the left carotid adventitia 

specifically blocked Ang-II-induced aortic NAD(P)H oxidase activity, as well as 

reducing Ang-II-induced medial hypertrophy, suggesting this process is mediated by 

adventitial fibroblast-derived ROS (Liu et al., 2004). In addition, Szöcs and colleagues 

have reported an increase in superoxide production 3 days after balloon injury in the 

adventitial and medial layer of coronary arteries (Szöcs et al., 2002), an event also 

reported in response to hypoxia in pulmonary artery adventitial fibroblasts, and 

postulated to be Nox4 dependent (Li et al., 2008). 
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Although there are a plethora of studies suggesting an important role of NAD(P)H 

oxidase-derived ROS in the adventitia, there is contention over the exact isoform that is 

predominantly expressed in the adventitia and several studies suggest that the isoform 

responsible for adventitia-derived ROS is Nox2; a study in Nox2-deficient mice found 

that AngII infusion for six days caused aortic superoxide production and an increase in 

the size of the medial layer in the wild-type (WT) animals that was absent in the 

knockout animals (Wang et al., 2001), with the aortic media increasing in size in the 

WT animals suggesting a role for Nox2–mediated SMC hyperplasia. Histological 

analysis of aortic sections from WT mice infused with Ang II revealed that the majority 

of Nox2 was located in the endothelium and adventitia (Wang et al., 2001). Abundant 

colocalization of Nox2, p22phox, p47phox and p67phox has been observed in cultured 

adventitial fibroblasts of rabbit aorta (Pagano et al., 1998; Pagano et al., 1997). In 

addition, fluorescent immunohistochemistry has demonstrated that Nox2 was highly 

expressed in the adventitial layer of human coronary arteries whereas Nox4 was barely 

detectable (Sorescu et al., 2002). In contrast, in a separate study, qRT-PCR analysis of 

human cardiac fibroblasts has shown that Nox4 and Nox5 were abundantly expressed in 

cardiac fibroblasts whereas levels of Nox1 and Nox2 were barely detectable (Cucoranu 

et al., 2005).  

 

Even under basal conditions, various findings have shown that the vascular adventitia is 

a major source of ROS (Wang et al, 2001; Pagano et al., 1995). Dihydroethidium 

(DHE) fluorescence in situ has shown that superoxide levels are greater in adventitial 

fibroblasts than in SMC (Chamseddine and Miller, 2003). It is thought that the 

predominant Nox isoform in the adventitia is Nox4 (Sorescu et al., 2002) and that in 

general, adventitial fibroblasts possess high specific activity of NAD(P)H oxidase 

relative to other vascular segments (Haurani and Pagano, 2007).  

 

These recent investigations have shown that the adventitia, along with the media, is a 

potential source of ROS, which is likely to contribute to vascular remodelling, 

neointima formation and restenosis (see Table 1.1). Targeting ROS from these layers 

may attenuate this constrictive remodelling and lead to a decrease in consequent future  

vascular events.
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1.3 Transforming Growth Factor- β 

The transforming growth factor β (TGF-β) family is responsible for eliciting a plethora 

of cellular processes including cell proliferation, differentiation, extracellular matrix 

synthesis and apoptosis (Wrighton et al., 2009; Zhang, 2009; Pardali and Moustakas, 

2007; Bierie and Moses, 2006), as well as important signalling during embryonic 

development (Shi and Massagué, 2003). Conservation of this superfamily across species 

indicates the intrinsic role it plays in biological processes and consequently, 

perturbation of TGF-β signalling can play a significant role in cancer metastasis, 

fibrotic, cardiovascular and autoimmune disease (Goumans et al., 2009; Padua and 

Massagué, 2009; Watabe and Miyazono, 2009; Grainger, 2007; Zhiang et al., 2007). Its 

synthesis and activation are dependent upon various extracellular factors which regulate 

its transcription and consequent expression. 

 

1.3.1 TGF-β1 activation 

The TGF-β family of cytokines contains two subfamilies; the TGF-β/Activin Nodal 

subfamily and the BMP (Bone morphogenic protein) subfamily (Shi and Massagué, 

2003). Members of this superfamily elicit distinct cellular responses, are structurally 

similar and all signal through the activation of heteromeric receptor complexes of type 

II and type I transmembrane threonine/serine kinases (Wrighton et al., 2009). 

 

TGF-β1 mRNA expression is increased in response to various extracellular factors, 

including Ang II, mechanical stress, high glucose concentration or ET-1 (Ruiz Ortega et 

al., 2007) and as a result there is an increase in the production of TGF-β1 protein.  TGF-

β1 is produced as a large latent complex (Annes et al., 2003) which is inactive and 

consists of a main region and a latency associated peptide (LAP). This inactive form is 

anchored in  the extracellular matrix by latent TGF-β binding proteins (Ruiz-Ortega et 

al., 2007) and can be activated by proteolytic cleavage by matrix metalloproteinases 

(MMP-2 and 9) and acidic microenvironments (Ruiz-Ortega et al., 2007). In addition, 

ROS have also been implicated in the activation of latent TGF-β; Baricellos-Hoff and 

colleagues showed that ROS generated by irradiation caused oxidation of several amino 

acids in the latency conferring peptide leading to a conformational change in the latent 

complex, allowing release of TGF-β (Barricellos-Hoff and Dix, 1996). Integrin-

mediated physical forces can also activate TGF-β1; it has been shown that distorting the 

large latent complex via single-molecule force spectroscopy resulted in the release of 

active TGF-β1 (Hubmacher and Apte, 2013). This release is as a result of the cells 
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pulling at the LAP within the large latent complex/latent TGF-β1 binding proteins, 

‘squeezing’ out the active TGF-β1 (Humacher and Apte, 2013). This suggests that 

movement of the cell can augment the release of further TGF-β1, which is of particular 

relevance during vascular remodelling. During the pathophysiology of atherosclerosis, 

fibroblasts and SMC become activated and move from the adventitial and medial layer 

toward the lumen of the vessel, partly due to the chemotactic effect of TGF-β1 and 

other growth factors released from platelets and endothelial cells at the lumen of the 

vessel (Grainger, 2007; Silverstein and Rifkin, 1987) and from macrophages and T-cells 

recruited from the circulation into the intima, forming the beginnings of a plaque (Gong 

et al., 2012; Grainger, 2007). The high levels of activated TGF-β1 at the site of vascular 

injury accelerate the inflammatory disease process (Stenmark et al., 2012). Interestingly, 

several studies into serum levels of TGF-β1 have reported an increase in the levels of 

latent TGF-β1 and a marked decrease in active TGF-β1 levels amongst patients with 

severe atherosclerosis (Grainger, 2007; Grainger et al., 1995) although other studies 

have reported that serum levels of active TGF-β1 are actually increased in these 

individuals (Wang et al., 1997). This is in contrast to the high concentration of active 

TGF-β1 within the neointima, released from platelets, endothelial cells, inflammatory 

cells, as well as from migrating fibroblasts and SMC (Stenmark et al., 2012; Grainger, 

2007, Grainger et al., 1995).  

 

The active form of TGF-β is a 25 kDa dimer, with the two polypeptides interacting via a 

disulphide bond and hydrophobic links.  Once active TGF-β is released, it binds to the 

TGF-βII receptor (TβRII) resulting in activation of TGF-β signalling cascades. 

There are seven known mammalian type I receptors termed ALK1-7 (activin receptor 

like-kinase and five type II receptors (Rahimi and Leof, 2007) in the vast majority of 

cell types. The receptor serine/threonine kinase family is made up of seven type I 

(TβRI) and five type II (TβRII) receptors (Manning et al., 2002) both types of which 

consist of approximately 500 amino acids organised into an N-terminal extracellular 

ligand binding domain, a transmembrane region and a C-terminal serine/threonine 

kinase domain (Shi and Massagué, 2003; Huse et al., 1999). The receptor complex 

usually comprises of two type II receptors and two type I receptors. Upon ligand 

binding, the two receptor types are brought together, and the type II receptor 

transphosphorylates the GS region of the type I receptor, causing its activation and 

allowing it to catalyse the phosphorylation of receptor-regulated SMADs (R-Smads). 

Phosphorylated R-Smads form complexes involving two R-Smads and one Co-smad, in 
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the cytoplasm and these complexes translocate to the nucleus to regulate gene 

transcription (Lonn et al., 2009). 

 

1.3.2 The Smad family of proteins               

The first intracellular mediator of TGF-β signalling, mothers against decapentplegic 

(MAD; Sekelsky et al., 1995) was identified in Drosophila and consequent studies 

revealed orthologs in C.elegans and vertebrates (Derynck et al., 1996) that were given 

the name ‘SMA’ from gene sma for small body size. Smad is a portmanteau of the two.  

 

The Smad family comprises of eight Smad proteins, which can be classified into three 

functional groups. The first group are the receptor-activated Smads (R-Smads; Smad 

1/2/3/5/8), which are phosphorylated by the type I receptor kinases on the Ser-Ser-X-

Ser (SSXS) motif at their extreme C-termini (Hill, 2009). This phosphorylation is 

facilitated by auxillary proteins including SARA (Smad anchor for receptor activation) 

and HRS/HGS (hepatocyte growth factor-regulated tyrosine kinase substrate; Miura et 

al., 2000; Tsukkazaki et al., 1998). 

 

Both SARA and HRS/HGS contain the phospholipid binding FYVE domainand 

function as adaptors to aid recruitment of the receptor activated Smads, Smads2 and 3 to 

the TGF-β receptor complex (Rahimi and Leof., 2007). In particular SARA immobilizes 

Smad2 and 3 near the cell surface in order to aid phosphorylation of these proteins by 

the type I receptor (Tsukazaki et al., 1998). In the basal state, the R-Smads are 

associated with SARA in the cytoplasm, however phosphorylation of Smad2/3 by type I 

receptors on C-terminal residues is thought to decrease their affinity for the binding site 

on SARA (Xu et al., 2000; Tsukazaki et al., 1998). As a result, Smads2/3 dissociate 

from SARA (Tsukazaki et al., 1998) and associate with co-Smad4. The need for adaptor 

proteins to generate the active receptor complex is also coupled to receptor endocytic 

activity, which directly impacts on downstream TGF-β signalling (Hayes et al., 2002; 

Peinheiter et al., 2002). Smad anchor for receptor activation (SARA) is thought to be an 

important accessory protein in the facilitation of Smad signalling, however there is 

evidence to suggest that this protein is not an essential requirement for Smad3 activation 

(Goto et al., 2001).  COS7 cells transfected with mutant Smad3 which lacked the 

binding site for SARA was phosphorylated by TβRI in a similar manner to the wild type 

Smad3. In addition, mutant Smad3 was also able to form complexes with Smad4 and 

translocate to the nucleus in the absence of its SARA binding site (Goto et al., 2001). 
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Figure 1.10 TGF-β synthesis and signalling. Several extracellular stimuli increase TGF-β 

mRNA expression, leading to synthesis of this protein. TGF-β is synthesized as an inactive pro-

peptide consisting of a main region and a latency associated peptide (LAP), which is targeted to 

the ECM. TGF-β is activated upon cleavage and binds to the TβR II which inturn 

transphosphorylates TβRI leading to downstream TGF-β signalling-mediated target gene 

expression. Adapted from Ruiz-Ortega et al., 2007. 
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Furthermore, mutant and wild-type Smad3 equally enhanced TGF-β-induced 

transcription (Goto et al., 2001), indicating that in contrast to SARA/Smad2 interaction, 

SARA/Smad3 interaction is not essential for TGF-β/Smad3-mediated signalling (Goto 

et al., 2001). 

 

Once phosphorylated, the R-Smads dissociate from the receptor/SARA complex and 

form either homomeric or heteromeric complexes with Smad4, which makes up the 

second functional group of Smad proteins, known as the common or co-Smad (Hill, 

2009, Wrighton et al., 2009). This R-Smad/Co-Smad complex translocates to the 

nucleus and interacts with Smad-binding elements (SBE: GTCT) or GC-rich sequences 

present in certain promoters (Shi et al., 1998; Zawel et al., 1998). Due to the close 

proximity of SBEs to other transcription factors, Smad proteins have often been found 

to cooperate with a wide variety of transcription factors to regulate gene expression 

such as the members of the forkhead box O family (FoxO1, FoxO3, and FoxO4) 

(Gomis et al., 2006; Massague et al., 2005).  

 

Interestingly the differential functional roles of Smad have also been demonstrated. In a 

pancreatic ductal adenocarcinoma cell line (PDAC), siRNA-mediated silencing of 

Smad3 induces growth inhibition but increases migratory response. Conversely, 

silencing of Smad2 enhanced enhances growth inhibition but decreases migratory 

response (Ungfroroen et al., 2011). This balance between the different R-Smads and 

their consequent responses is obviously a critical factor in the downstream effects on 

gene expression.  

There is increasing evidence to suggest nucleocytoplasmic shuttling of Smad proteins 

(Hill 2009). Studies in mouse oocytes revealed that treatment of cells with leptomycin 

B, a specific inhibitor of CRM1 or Exportin 1 led to the rapid nuclear accumulation of 

Smad4 suggesting that CRM1 was required for the nuclear export of Smad4 (Pierreux et 

al., 2000; Watanabe et al., 2000; Fonerod et al., 1997). This inhibition did not affect 

Smad2/3 shuttling, however later studies in zebrafish embryos using GFP-tagged 

Smad2/3 have provided visual evidence of the continuous shuttling of the R-Smads 

from the cytoplasm to the nucleus (Batut et al., 2007; Schmierer et al., 2005; Nicolas et 

al., 2004). Smad2/3 and Smad4 nuclear accumulation of a relatively slow process which 

reaches maximum response 45 min following ligand stimulation by TGF-β1 (Pierreux et 

al.. 2000) and the majority have been reported to remain in the nucleus for 4-5 h after 
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which they begin to be exported back to the cytoplasm (Inman et al., 2002). In addition 

it is thought that Smad2/3 and Smad4 complexes dissociate in the nucleus as a result of 

Smad2/3 dephosphorylation and are then exported out of the nucleus separately by 

distinct mechanisms (Chen et al., 2005). Thus continuous Smad4 shuttling requires the 

activity requires the activation of nuclear export proteins, whilst Smad2/3 require low 

level dephosphorylation (Hill, 2009).  

The third functional group of Smad proteins comprises of the inhibitory Smads (I-

Smads), Smad6 and Smad7 (Wrighton et al., 2009). These proteins negatively regulate 

the TGF-β pathway by mediating receptor inactivation through recruiting the E3 

ubiquitin ligases; Smurf1/2 (Smad ubiquitination regulatory factor-1) or recruiting the 

catalytic subunit of protein phosphatase-1 to the receptors (Shi et al., 2004) which lack 

the C-terminal sites for phosphorylation by TβRI (Rahimi et al., 2007). Smad6 and 7 

inhibit TGF-β signalling via different mechanisms; Smad6 appears to only inhibit the 

BMP pathway whereas Smad7 inhibits the TGF-β/activin and BMP pathways (Hayashi 

et al., 1997; Imamura et al. 1997). Smad6 competes with Smad4 for receptor 

phosphorylated Smad1 binding whereas Smad7 competes with R-Smads for interacting 

with TβRI (Hayashi et al., 1997) as well as directly mediating TGF-β receptor 

ubiquitination by recruiting Smurf ubiquitin ligases (Kavsak et al., 2000). The 

transcription of inhibitory Smad mRNA is induced by TGF-β and therefore it is likely 

that they act as part of an autoregulatory negative-feedback mechanism during TGF-β 

signal transduction (Heldin et al., 1997). 

 

The importance of the regulation of the TGF-β signalling pathway is evident where 

dysregulation of signalling results in metastatic cancers, fibrotic and cardiovascular 

disease including hypertension, restenosis, atherosclerosis, cardiac hypertrophy, and 

heart failure (Ruiz-Ortega et al., 2007). As a result, various regulatory processes are set 

in place, which, under normal conditions police this pathway.  

 

1.3.3 Non-Smad pathways in TGF-β signalling               

Although it is well established that canonical TGF-β signalling occurs downstream via 

Smad proteins, it is becoming increasingly evident that TGF-β also signals via Smad-

independent pathways that are activated by the TGF- β receptors through either 

phosphorylation or direct interaction. These pathways include branches of MAP kinase 
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(MAPK) pathways, Rho-like GTPase signalling pathways, and phosphatidylinositol-3-

kinase (PI3K)/Akt pathways (Zhang. 2009).  

 

TGF- β mediated Erk-pathway activation was first identified in rat intestine and mink 

lung epithelial cells (Mulder et al. 1992; Yan et al., 1994). The kinetics of Erk activation 

in response to TGF-β stimulation is an entirely cell and culture dependent event; rapid 

activation has been observed in epithelial cells (Hartsough and Mulder., 1995) breast 

cancer cells (Frey and Mulder., 1996) and fibroblasts (Musci et al., 1996) whereas more 

delayed activation has been observed in pancreatic acinar cells (Simeone et al., 2001).  

 

Recent discovery of the dual specificity of TβRs acting as both tyrosine and 

serine/threonine kinases resulted in the elucidation of the mechanism whereby TGF-β 

activates the Ras-Erk-MAPK pathway (Zhang, 2009). Phosphorylation of both serine 

and threonine residues as well as at tyrosine residues has been shown to be an initial 

event which results in the recruitment of several adaptor proteins that leads to the 

activation of the Erk-MAPK signalling pathway in response to TGF-β stimulation. 

Tyrosine autophosphorylation on three sites of the cytoplasmic domain of TβRII 

(Lawler et al., 1997) can result in the recruitment of Src homology domain 2-containing 

protein (Shc) and consequent phosphorylation of TβRII Ty284 and recruitment of the 

Shc domain of growth factor binding protein 2 (Grb2) and p38 MAPK activation 

(Galliher and Schiemann, 2007). The tyrosine kinase activity of TβRII suggests that it 

could promote non-Smad signalling pathways, further supported by the finding that 

selective activation of the Erk 1/2 in dermal cells has been attributed to the high 

expression of TβRII, whereas in contrast, in epidermal cells, canonical TβRI-Smad 

signalling is dominant and Erk activation is non-existent due to the high expression of 

TβRI (Bandyopadhay et al., 2011). 

 

Activated TβRI uses its intrinsic tyrosine kinase activity to phosphorylate Shc directly 

on its tyrosine kinase and serine residues (Mu et al., 2012). Phosphorylated Shc then 

associates with TβRI and recruits Grb2 and SOS, and in the process, activates Erk-

MAPK (Lee et al., 2007). Dephosphorylation of TβRI by PP2a results in the inhibition 

of further signalling downstream of this receptor, indicating that its activity is highly 

dependent upon its phosphorylation status; decreased recruitment of PP2a to TβRI 

results in increased TβRI signalling in a manner dependent on Erk-MAPK (Yu et al., 

2010).  
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In addition to Erk-MAPK activation, TGF-β has also been demonstrated to activate the 

JNK/p38 pathway, which is perhaps the best characterised Smad-independent pathway. 

JNK and p38 are activated by MAP kinase kinases (MKK); TGF-β is able to activate 

JNK and p38 through MKK4 and MKK3/6 respectively (Engel et al., 1999; Hocever et 

al. 1999; Frey and Mulder, 1997) and p38 MAPK in the C2C12 fibroblast cell line 

(Hanausa et al., 1999), in HEK293 cells (Sano et al., 1999), and in murine epithelial 

cells (Bhowmick et al., 2001). The Smad proteins have been shown to be dispensable in 

the TGF-β-induced activation of JNK; experiments carried out using a dominant-

negative form of Smad3 or use of cells deficient in Smad3 or Smad4 have demonstrated 

the induction of genes downstream of TGF-β as a result of activation of JNK signalling 

(Hocevar et al., 1999; Engle et al., 1997). Furthermore, use of a mutant TβRI with a 

mutation in the L45 loop rendering it defective in Smad binding and activation but 

without the loss of its kinase activity, demonstrated activation of the JNK and p38 

MAPK pathways in response to TGF-β ligand binding (Itoh et al., 2003; Yu et al., 

2002). 

 

One component that is important in the upstream activation of p38-MAPK is TGF-β-

activated kinase 1 (TAK1) (Yamaguchi et al., 1995). TAK1 has been postulated as 

being indispensible for TGF-β-induced activation of JNK; deletion of the Tak1 gene in 

mice led to earlt embryonic lethality and impaired JNK activation (Shim et al., 2005). 

Recently, it has been reported that TGF-β activates TAK-1 through the catalytic 

activation of the ubiquitin ligase TNF-receptor-associated factor 6 (TRAF6, Landstrom 

et al., 2010). TRAF6 was found to be a crucial component in the activation of TAK1-

KNK/p38 pathways; phosphorylation of p38 by TβRI was severely curtailed by a 

TRAF6 deletion mutant (Yu et al., 2002). In a mouse hepatocyte cell line, knockdown 

of TRAF6 using siRNA resulted in the inhibition of TGF-β activation of JNK and p38, 

however upon reintroduction of TRAF6 into these cells using TRAF6 cDNA restored 

the activation of these kinase pathways in response to TGF-β (Yamashita et al., 2008). 

 

The TRAF6-TAK1-JNK/p38 cascade occurs in conjunction with the Smad-dependent 

pathway to regulate cellular responses downstream of TGF-β such as the induction of 

apoptosis, during which TRAF6-TAK1-JNK/p38 pathway is essential; knockdown of 

TRAF6 or using a p38 inhibitor resulted in the abrogation of TGF-β-mediated apoptosis 

in mouse hepatocytes and mouse epithelial cells (Yu et al., 2002; Yamashita et al., 

2008). Furthermore, using a dominant negative form of MKK3 or p38 blocked TGF-β-
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induced changes in the cytoskeleton and EMT (Yu et al., 2002). Similarly, knockdown 

of TRAF6 resulted in inhibition of TGF-β-mediated EMT (Yamashita et al., 2008). 

 

Another pathway implicated in the TGF-β signalling pathway is PI3K which has been 

shown to rapidly activate PI3K by phosphorylating its downstream effector, Akt. In 

mouse mammary epithelial cells, treatment with exogenous TGF-β1 resulted in the 

phosphorylation of Akt at Ser-473 and consequent changes in cell morphology, 

including the acquisition of spindle cell morphology, an effect which was inhibited in 

the presence of the Akt inhibitor, LY294002 (Bakin et al 2000). The ability of TGF-β1 

to induce cell survival and induce angiogenesis is also PI3K/Akt dependent; inhibition 

of this pathway resulted in decreased cell survival and impairment of angiogensis in 

mouse capillary endothelial cells (Vinals and Pouyssegur, 2001). 

 

There is much evidence in the literature to demonstrate the importance of Smad-

independent pathways in TGF-β1-mediated cell responses in a wide range of cell types. 

It is important to note that these pathways often work in conjunction with the Smad 

proteins to elicit various cellular mechanisms and also highlights the complexity of 

TGF-β1-mediated signalling, the regulation of which is extremely important and 

perturbation of which can result in pathological conditions.  

 

1.3.4 Regulation of TGF-β receptors 

An early step in TGF-β signalling is the ligand-induced formation of a tetrameric 

receptor complex comprising of two TβRII and TβRI units (Lonn et al., 2009). This 

activated tetrameric receptor complex is internalized via either clathrin-coated pits or 

clathrin-independent caveolin-1-positive lipid rafts (Guglielmo et al., 2003). The 

mechanism of endocytosis at the cell membrane can have direct downstream effects on 

signal transduction. Clathrin-mediated endocytosis results in receptor re-cycling back to 

the cell surface subsequent to transportation of receptors to early endosomes. 

Conversely caveolae-dependent internalisation results in receptor ubiquitination and 

lysosomal degradation (Lonn et al., 2009). Receptor endocytosis via these two pathways 

is at equilibrium; TGF-β mediated receptor activation is not thought to favour one of 

these pathways of internalisation over the other (Lonn et al., 2009). Receptor 

endocytosis is still a poorly understood phenomenon and specific factors, which result 

in either of these two pathways of receptor internalisation have not been determined.  

Furthermore, It has been proposed that in the serine-threonine kinase system, ligands do 
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not regulate trafficking but rather act to recruit the type I receptor and stabilize the 

heterotetrameric receptor complexes during constitutive trafficking (Guglielmo et al., 

2003).  

 

In broad terms, clathrin-mediated endocytosis increases TGF-β signalling by carrying 

the receptor complex to early endosomes where sustained signalling may take place 

after which the receptors are recycled back to the cell surface (McClean amd 

Guglielmo, 2010; Guglielmo et al., 2003). In this pathway, the Smad2 anchoring 

protein, SARA is bound to receptors at the plasma membrane but it is also highly 

enriched in early endosomes (Guglielmo et al., 2003). Although it was previously 

thought that the clathrin-mediated pathway was responsible for bringing the receptor to 

SARA-bound Smad2 and therefore resulting in receptor-mediated Smad2 

phosphorylation, it is now believed that this pathway functions to sequester receptors 

away from the caveolin-1-positive lipid rafts, which can inhibit TβRI and its 

downstream signalling (Guglielmo et al., 2003). 

 

Caveolin-1-positive lipid rafts are involved in the negative feedback of TGF-β 

signalling as internalisation via caveolae results in the association of Smurf2 with the 

recepors and consequent ubiquitination of the receptor complex and lysosomal 

degradation (McClean and Guglielmo, 2010; Lonn et al., 2009). Whereas SARA-bound 

Smad2 localises to early endosomes rich in phosphatidyl inositol 3 phosphate 

(PtdIns(3)P), the inhibitory Smad7 and the E3 Ubiquitin ligase, Smurf1/2 prefer 

association with the cholesterol and sphingolipid-rich composition of lipid rafts which 

aid inhibition of downstream signalling (Guglielmo et al., 2003). It has been proposed 

that the Smurf proteins enhance the interaction of inhibitory Smad7 with the TGF-β 

receptor complex, allowing Smad7 to compete with R-Smads for receptor activation 

before it begins to degrade the receptor complex (Suzuki et al., 2002). Various proteins, 

including heat shock protein 90, the adaptor serine-threonine kinase receptor-associated 

protein (STRAP) and several E2 and E3 ubiquitin ligases control the overall process of 

receptor downregulation (Lonn et al., 2009). 

 

Equilibrium between each of these receptor-regulatory pathways determines whether 

the pathway results in Smad activation and gene transcription (clathrin-dependent 

pathway) or receptor degradation (raft-caveolin route) and therefore inhibition of TGF-β 

signalling. The endocytic mechanism of TβRs can therefore have profound effects on 
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TGF-β signalling and a number of pathologies, including metastatic cancers and fibrotic 

diseases show aberrant TGF-β signalling indicating the importance of receptor 

endocytosis as a method by which downstream TGF-β signalling is regulated.  

 

 

1.3.5 Dysegulation of TGF-β signalling 

Due to the wide-ranging effects of TGF-β1 on cellular processes, its signalling is a 

tightly regulated process which, when it becomes dysregulated, can result in 

pathophysiological situations. Notably, dysregulation is often associated with epithelial-

mesenchymal transition (EMT) and myofibroblastic differentiation, where excess 

production of TGF-β1 can result in a pathological cell type that can compound and 

accelerate vascular disease (Bobik, 2006). These initial local changes can have far-

reaching implications during disease development with excessive fibrocellular 

proliferation and inward arterial remodelling, which can eventually result in a clinical 

event (Davies et al., 2003; Wu et al., 2003; Ward et al., 1997).   

 

1.3.5a TGF-β1 and vascular disease 

TGF-β has a multitude of effects on the different cell types that make up the vessel wall 

(Grainger, 2007). In culture, TGF-β1 stimulates ECM production and the expression of 

contractile proteins and in endothelial cells it inhibits cell proliferation, migration and 

the expression of adhesion molecules (Grainger et al., 2000). Dysregulation of TGF-β1 

signalling ultimately results in pro-atherogenic changes in the blood vessel (Ruiz-

Ortega et al., 2007).  

 

Several animal models have highlighted the importance of TGF-β1 in the maintenance 

of normal vessel physiology; deletion of a single allele of the tgfb1 gene caused a 50% 

reduction in TGF-β1 protein in the vessel media in mice. A high-fat diet caused these 

mice to express high levels of ICAM-1 and VCAM-1 on their vascular endothelium, 

which was accompanied by the infiltration of macrophages and fatty streak formation in 

the aortic wall, characteristic of early inflammatory changes in lesion formation in 

human atherosclerotic disease (Grainger et al., 2000). TGF-β1 is thought to be involved 

in plaque stability by promoting the secretion of ECM proteins such as collagen. In 

order to investigate this further, Mallat and colleagues used a neutralizing TGF-β 

antibody in ApoE-/- mice which led to the acceleration of lesion formation. These 

lesions contained more inflammatory components and a decreased collagen content, 

making them more prone to rupture (Mallat et al., 2001). This is supported by findings 
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from human coronary arteries in which there was a decreased expression of TGF-β1 in 

unstable plaques when compared to TGF-β1 expression in stable plaques, where its 

expression was invariably higher (Jiang et al., 2004; Reckless et al., 2001). mRNA 

expression analysis of human aortas found that in branch-points of the aorta that were 

more likely to develop atherosclerotic plaques, TGF-β1 mRNA expression was very 

low, whereas in straight parts of the aorta where the probability of plaque development 

was low, higher levels of TGF-β1 mRNA expression were detected (Borkowski et al., 

1995). In spite of the body of evidence which suggests that impaired TGF-β1 signalling 

accelerates atherosclerosis, it is not clear whether increased expression of TGF-β1 

protects against atherosclerosis. However, one study has reported that the 

overexpression of TGF-β1 in the aortae of ApoE-/- hyperlipidemic mice resulted in 

fewer T-lymphocytes, more collagen, less lipid and lower expression of inflammatory 

cytokines which may offer possible therapeutic potential (Frutkin et al., 2009).  

 

Further animal studies have yielded similar results; in mice, in areas of arterial injury 

following surgery, the expression of active TGF-β1 was lower in the medial layer than 

that seen in non-injured arteries, with expression of SM-MHC and type IV collagen also 

significantly depressed in the media, suggesting that TGF-β1 modulates arterial 

remodelling by causing the differentiation of cells in the medial layer (Grainger et al., 

1998).  

 

Initial studies looking at the role of TGF-β1 in arterial injury produced by balloon 

angioplasty revealed that mRNA levels of TGF-β1 were significantly increased within 6 

h of carotid injury (Majeskt et al., 1991). Furthermore, immunohistochemical studies 

showed that the majority of SMC in the neointima stained for TGF-β1 and was related 

to neointima formation implicating it in neointima thickening following balloon 

angioplasty (Majesky et al., 1991). More recently, study into LTBPs which govern 

TGF-β1 release has shown that LTBP-1 and 2 are detected in the neointima and 

neoadventitia of a porcine model of coronary angioplasty, in a similar fashion to TGF-

β1 (Sinha et al., 2001). The same study demonstrated a higher level of LTBP proteolysis 

that correlated with increased active and latent levels of TGF-β1 and increased arterial 

injury response suggesting a pivotal role for TGF-β1 during angioplasty-induced injury 

(Sinha et al., 2001). Results in neoadventital cells from this study  are supported by 

those in a balloon catheter denudation model in which rats were treated with vehicle or 

TGF-β1 inhibitor (Ryan et al., 2003). Inhibition of TGF-β1 was seen to promote vessel 
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enlargement, however lumen size remained unchanged, despite neointima formation 

suggesting a role for TGF-β1 in injury-induced reduction of lumen area since its 

inhibition prevented this (Ryan et al., 2003). Intra-arterial infection of adenovirus-

expressing Smad3 (AdSmad3) in Sprague-Dawley rats that had undergone left carotid 

balloon injury found that contribution of TGF-β1 to neointima formation may be via the 

proliferation of vascular SMC resulting in intimal hyperplasia, an event that was found 

to be dependent upon the phosphorylation of the cyclin-dependent kinase inhibitor p27 

by Smad3 (Tsai et al., 2009). This critical role for Smad3 in remodelling has been 

further compounded by its medial gene transfer in a rat carotid angioplasty model in 

which it caused adventitial changes including myofibroblast transformation, 

proliferation and collagen production, which are all hallmarks of adaptive remodelling 

(Kundi et al., 2009). In light of these findings that implicate TGF-β1, it is not surprising 

that antagonising its actions has proven to be beneficial in preventing fibrosis and 

scarring.  The use of locally administered TGF-β1 receptor antagonists following 

angioplasty/stenting are therefore a promising therapeutic avenue for the prevention of 

restenosis following angioplasty-induced injury (Agrotis et al., 2005).  

 

Although the majority of data on the biological role of TGF-β in the vascular wall 

shows that it is protective against disease by promoting plaque stability, there is some 

data that contends this (Grainger, 2007). A number of studies have shown that TGF-β1 

is implicated in disease pathogenesis (Table 1.3). In the intima of normal human non-

atherosclerotic aortic segments there was very little expression of TGF-β1, however 

fibro-fatty/fatty streak lesions a high expression of TGF-β1 was detected, indicating that 

TGF-β1 could contribute to lesion formation (Grainger, 2007). In particular, in smooth 

muscle cells in vitro, TGF-β1 stimulates the production of the ECM proteins, 

fibronectin and type I collagen (Pennttnen et al., 1988; Ignotz et al., 1987), 

characteristics of adverse vessel remodelling that is associated with coronary artery 

occlusion (Ross, 1999). Transfection of the human tgf-β1 gene into porcine arteries in 

vivo demonstrated that this increased TGF-β1 expression was associated with ECM 

synthesis accompanied by intimal hyperplasia, implicating TGF-β1 in the development 

of vascular lesions (Nabel et al. 1993). A more recent study has also reported similar 

findings; delivery of a TGF-β1 antisense-expressing construct prevented TGF-β1 

expression in a rat model of intimal hyperplasia, and consequently also significantly 

decreased intimal thickness when compared to saline-treated control animals (Sun et al., 

2012).  
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The regulation of gene expression in cardiovascular disease by microRNAs (miRNAs), 

and in particular, those that regulate the downstream actions of the TGF-β1 signalling 

pathway are a highly topical area of research. miRNAs are strands of short non-coding 

RNAs that regulate gene expression by modulating the translation and/or ability of 

target mRNAs (Boyd, 2008). Primary transcripts of miRNAs are transcribed by RNA 

polymerase II, subsequently processed within the nucleus by the RNaseIII 

endonuclease, Drosha into approximately 70 nt hairpin intermediates known as pre-

miRNAs. These are subsequently cleaved by the cytoplasmic RNaseIII, Dicer to release 

a double-stranded duplex comprising the mature miRNA and its antisense complement. 

miRNAs are incorporated  into the RNA-induced silencing complex (RISC) which 

recognises its target genes by partial sequence complementarity between the miRNA 

and motifs typically within the 3’untranslated regions (UTRs) of its target gene then 

promote mRNA degradation or inhibit translation (Dimmeler and Nicotera, 2012). 

 

Recent investigation into miRNA regulation of TGF-β1 has highlighted several 

miRNAs that are involved in vascular disease progression, including miR-26a, miR-143 

and miR-145 (Hata and Davis, 2009; Thum et al., 2008; see General discussion section 

6.5.1). These miRNAs have been implicated in vascular disease progression in response 

to the production of TGF-β1, though the mechanisms behind this relationship are still to 

be fully elucidated (Thum et al., 2008). Preliminary data regarding the cross-talk 

between TGF-β1 and several miRNAs is displayed in the General Discussion (section 

6.5.1). 

 

The importance of local changes in TGF-β activity at sites of lesion formation and its 

subsequent role in the balance between a stable and unstable plaque phenotype 

ultimately dictates the progression of atherosclerosis and disease outcome. The 

significance of this cytokine in the vessel wall during atherogenesis is evident and its 

effects on the various vascular cell types make it a key target for therapeutic 

intervention. 
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1.4 Sulforaphane 
 

Sulforaphane (SFN) is one of a large number of naturally occurring isothiocyanates 

(ITC), first identified and isolated from hoary cress (Prochdzka, 1959) and later from 

broccoli florets (Zhang et al., 1992). Its isolation from broccoli was also accompanied 

by the observation that SFN was able to induce both quinine reductase and glutathione-

S-transferase activities in liver, stomach, small intestine and lung tissue derived from 

mice fed SFN extracts (15 μM, 5 days). Later studies showed that it is a potent 

chemopreventative (Keum, 2011; Munday et al., 2008; Traka et al., 2008; Zhang and 

Tang, 2007; Kwak et al., 2002) and is also a known activator of the Nrf2/ARE pathway 

and consequently, the induction of Nrf2-target antioxidant genes (Oh et al., 2012; Chen 

et al., 2011; Chang et al., 2010).  

 

1.4.1 Occurrence/source(s) and isolation 

ITCs are found in cruciferous vegetables such as broccoli florets, cabbage and 

cauliflower. SFN is an ITC and in its natural form, exists as the glucosinolate precursor, 

glucoraphanin. ITC are known to be synthesized and stored as glucosinolates in plants 

and are released when damage to plant tissues occurs (Zhang and Tang, 2007). The 

conversion of glucosinolate to ITC is catalysed by myrosinase, which, in plants, co-

exists with glucosinolates but is stored separately (Fenwick et al., 1983). Glucosinolate 

can be partially hydrolysed in the intestinal tract and local enteric flora is known to 

possess myrosinase activity allowing the coversion of glucosinolates to ITC 

(Bheemreddy and Jeffery, 2007).  

  

1.4.2 Metabolism and excretion  

In vivo, SFN is rapidly metabolized through the mercapturic acid pathway (Zhang and 

Tang, 2007) and conjugated with GSH, a reaction that is catalysed by GST and results 

in a conjugate which undergoes further enzymatic modifications, catalysed by Υ-

glutamyltranspeptidase and results in the formation of a cysteinylglycine-SFN 

conjugate. Following further modification, which is catalysed by cysteinylglycinase, 

results in the formation of a cysteine conjugate. A final modification by N-

acetyltransferase results in a N-acetylcysteine-SFN conjugate (Zhang and Tang, 2007). 

 

SFN is rapidly eliminated and this is correlated with its rapid absorption and short 

plasma half-life; in one human study, plasma concentrations were reported to be in the 
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range of 0.94 – 2.27 μM one hour following consumption of 200 μM ITC extract (Petri 

et al., 2003). Other pharmacokinetic studies in humans have revealed that consumption 

of a single portion of broccoli cress or mature broccoli can generate plasma SFN 

concentrations of approximately 1 μM (Riedl et al., 2009; Ye et al., 2002) and 60 nM 

(Hanlon et al., 2009) respectively. Further studies have gone on to confirm the 

breakdown and excretion of SFN to be mainly via the mercapturic acid pathway (Al 

Janobi et al., 2006; Gasper et al., 2005).  

 

In cell culture, the intracellular accumulation of SFN, particularly in the cytoplasm, is a 

rapid process and has been reported in several different cell types (Callaway et al., 

2004; Zhang and Callaway; 2002; Zhang, 2001). In murine hepatoma cells, treatment 

with SFN (5 μM) resulted in rapid intracellular accumulation after just 30 min of 

exposure which continued to increase for up to 6 h, reaching peak levels of 350 μM and 

decreasing thereafter (Zhang and Talalay, 1998). Similarly in mouse fibroblast cells, 

rapid intracellular accumulation of SFN was observed after 30 min, with intracellular 

concentrations attained being 40 – 180 times higher than the initial extracellular 

concentration (5 μM) (Zhang and Talalay, 1998). The rapid accumulation of SFN is 

thought to be a GSH-driven process where ITC-GSH conjugates accumulate in cells and 

as a result, cause phase II enzyme induction. Therefore this suggests that cells with 

higher GSH concentrations have a higher level of intracellular accumulation of ITC 

(Zhang, 2001; Callaway et al., 2004). ITC that are already conjugated with thiols are 

unable to accumulate in cells with accumulation also being dependent on the continuous 

presence of ITC in the extracellular space (Zhang, 2000). In order to counteract ITC-

GSH build-up inside the cell, conjugates are rapidly exported by a membrane transport 

protein, MRP1. In human leukaemia and human myeloma cells, use of an inhibitor for 

MRP1 resulted in continued intracellular accumulation of SFN-GSH conjugates (Zhang 

and Callaway., 2002). The balance between the accumulation and export of ITC-GSH 

conjugates is an important process, and one which results in the induction of phase II 

detoxifying enzymes, thereby enhancing the cells ability to protect itself against further 

extracellular insults.  
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Figure 1.11 Cellular accumulation and export of SFN. SFN (R-N=C=S) penetrates the cell 

membrane by diffusion and upon entering the cell is rapidly conjugated with intracellular thiols, 

predominantly GSH. Intracellular accumulation of SFN-GSH conjugates results in the rapid 

export of these conjugates and is mediated by the membrane transporter, multidrug resistance 

protein (MRP). 

 

 

1.4.3 SFN and therapeutic benefits 

A number of epidemiological studies have revealed the beneficial effects of diet in 

preventing the pathophysiological events that can lead to cardiovascular disease (CVD) 

(Cornelis et al., 2007; Genkinger et al., 2004; Hung et al., 2004; Yochum et al., 1999) 

and more recently, several studies have reported the beneficial effects of the 

consumption of SFN-rich vegetables in reducing the risk of CVD-related complications. 

Although rapidly cleared from plasma, it is plausible that SFN is able to induce 

antioxidant enzymes for up to at least 24 h in healthy individuals, and levels that have 

been reported in plasma through consumption of Brassica vegetables have been 

demonstrated to influence the physiology of vascular and inflammatory cells (Evans, 

2011). Several studies have investigated the effects of Brassica vegetable consumption 

on vascular physiology and pathophysiology. In one such study, ingestion of 200 

mg/day of broccoli sprouts in a hypertensive-stroke prone rat model resulted in 

significantly lower oxidative stress levels in cardiovascular and kidney tissues as 

demonstrated by increased levels of reduced glutathione (GSH) content and decreased 

oxidized GSH in addition to an increase in endothelial-dependent relaxation of the aorta 

and significantly lower blood pressure, demonstrating the beneficial effects of its 

consumption during hypertension (Wu et al., 2004). Another study investigating the 

effects of SFN on the murine aorta from wild-type and Nrf2- knockout animal found 
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that SFN was able to abrogate the expression of the adhesion molecule VCAM-1 in 

atheroprone sites within the aorta whilst also activating the Nrf2/ARE pathway (Zakkar 

et al., 2009). 

 

Evidence from in vitro studies has also confirmed the beneficial and potentially 

therapeutic effects of SFN on pathophysiology. In rat aortic smooth muscle cells, 

treatment with SFN (0.25 – 5 μM) has been shown to result in a concentration-

dependent induction of GSH, glutathione peroxidase, glutathione S-transferase and 

NQO1 (Zhu et al., 2008). The same study also showed that pre-treatment with SFN 

protected aortic smooth muscle cells from oxidative and electrophilic cytotoxicity 

induced by xanthine oxidase or H2O2, giving cells resistance to extracellular stresses 

(Zhu et al., 2008). These results correlate with those found in a later study in endothelial 

cells where a one hour of pre-treatment with SFN (1 – 4 μM) suppressed TNF-α-

induced monocyte chemotactic protein (MCP-1) and VCAM-1 mRNA and protein 

levels. Expression of dominant negative Nrf2 inhibited SFN-induced ARE-driven 

promoter activity in the same study, though this had no effect on SFN-mediated 

inhibition of VCAM-1 and MCP-1 (Chen et al., 2009). GSH is one of the first lines of 

defence cells employ in order to protect against oxidative insults and measurement of 

intracellular GSH and its associated enzymes is often used as an indicator of a cell’s 

redox status; the oxidation and reduction of proteins which can often occur in a 

complementary fashion in order to maintain cellular homeostasis. In vascular SMC 

from spontaneously-hypertensive rats, basal levels of GSH were significantly lower 

than those observed in normotensive rats. This was accompanied by higher levels of 

oxidative stress that were attenuated by treatment with SFN, which also enhanced HO-1 

protein levels in these animals (Wu and Juurlink, 2001).  

 

As well as being cardio-protective, SFN is also a widely known chemopreventative 

agent and has been demonstrated as being a potent natural inhibitor of the cancer 

disease pathology. In animal models of chemical carcinogenesis, SFN has been shown 

to abrogate, and in some cases, inhibit the disease process. Zhang and colleagues have 

shown that administration of SFN (75 - 150 μM, 5 days) around the time of exposure to 

the carcinogen, 9,10-dimethyl-1,2-benzanthracene, resulted in a significant decrease in 

the incidence, multiplicity and weight of mammary tumours in a Sprague-Dawley 

model of chemical carcinogenesis (Zhang et al., 1994). Similar results have been 

reported in a mouse model of benzo[a]pyrene-induced carcinogenesis formation where 
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SFN (7.5 μmol/day for 20 weeks) blocked tumour formation in the forestomach region 

(Fahey et al., 2002). The same study reported that brief exposure to SFN was shown to 

be bacteriacidal and was reported to eliminate intracellular H- pylori from a human 

epithelial cell line (Fahey et al., 2002). Both the chemopreventative and 

antibacteriacidal effects of SFN in this study have been postulated to be attributed to the 

induction of phase II antioxidant enzymes via the Nrf2/ARE pathway (Fahey et al., 

2002) (see below). The chemopreventative action of SFN has been attributed to its 

ability to inactivate histone deacetylase-6, thereby interfering with the expression of 

androgen receptor genes which are important in facilitating signalling and therefore 

disease progression during cancer (Gibbs et al., 2009).  

 

1.4.4 SFN and the Nrf2/ARE pathway  

The activation of the Nrf2/ARE pathway by SFN has been shown to be as a result of the 

modification of critical cysteine residues on Keap1 (Dinkova-Kostova et al., 2002). One 

study has shown that SFN-mediated ARE-luciferase activation is abrogated when 

NIH3T3 cells are co-transfected with plasmids containing an ARE-luciferase reporter 

gene for Nrf2 and a mutant Keap1 protein containing deletions of several domains 

including C151, suggesting this cysteine is essential for SFN-mediated activation of the 

Nrf2 pathway (Zhang and Hannink, 2003). Work carried out by Hong and colleagues 

has shown that exposure of recombinant Keap1 protein to SFN results in the formation 

of a Keap1-SFN adduct (Hong et al., 2005). Further work by another group has 

confirmed the formation of a Keap1-SFN adduct and have postulated that this interation 

occurs between SFN and the Cys151 residue on Keap1 (Hu et al., 2011). In contrast, 

one study has suggested that the modification of specific cysteine residues on Keap1 

may be insufficient for Nrf2 activation and that this activation may occur through 

alternative mechanisms, possibly via the ubiquitination of Keap1, which is followed by 

the nuclear accumulation of Nrf2 (Eggler et al., 2005). Other studies have postulated the 

importance of the mitogen-activated protein kinase pathway in SFN-mediated Nrf2 

activation; treatment of human hepatoma (HepG2) and murine hepatoma (Hepc1c1c7) 

cells with SFN stimulated the activity of Erk2 and resulted in the induction of NQO1, 

which was abolished after the use of an Erk2 inhibitor (Yu et al., 1999). Furthermore, in 

HepG2 cells, the same treatment stimulated the activity of p38 MAPK, and its 

inhibition using a specific inhibitor resulted in enhanced activity of quinone reductase 

while overexpression of dominant-negative mutant of p38 MAPK potentiated the 

activation of the ARE reporter gene suggesting that p38 MAPK is important in the 
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regulation in ARE-mediated induction of phase II detoxifying enzymes following SFN 

treatment (Yu et al., 2000). 

 

Although the mechanisms behind the activation of Nrf2 by SFN remain to be fully 

elucidated, it is well established that the Nrf2/ARE pathway is an important downstream 

target of SFN and several studies have reported the modulatory effects of SFN on this 

antioxidant defence pathway. Initial in vivo evidence came from a murine Nrf2 

knockout model which concluded that the protective effects of SFN administration 

against tumour formation were abrogated in Nrf2-deficient animals and strongly 

suggested that this protective effect was due to the activation of the Nrf2/ARE pathway 

(Fahey et al., 2002). This led to further studies examining the protective effects of SFN 

as a chemopreventative agent and results from Fahey and colleagues were confirmed in 

a skin tumorigenesis mouse model study. Here, the topical application of SFN (100 

nmol/day for 14 days) prior to exposure to a carcinogen resulted in a decrease incidence 

of skin tumour in the WT animals whilst no chemoprotective effect was observed in 

Nrf2 knockout animals (Xu et al., 2006). Furthermore, microarray analysis of tissue 

samples from the small intestine of wild-type and Nrf2-knockout mice treated with 

SFN, revealed that a number of phase II genes were upregulated, including NQO1, 

GST, GCS, GPx and biosynthetic enzymes of the GSH and glucoronidation conjugation 

pathways as well as the induction of Nrf2 protein in wild-type animals, an effect that 

was abrogated in knockout animals (Thimulappa et al., 2002). Interestingly, the study 

also reported that Nrf2 mRNA levels remained unchanged, confirming previous 

findings that SFN may affect Nrf2 post-translationally by mediating the activity of a 

variety of intracellular kinases pathways and thereby causing its phosphorylation 

(Keum, 2011; Zhang and Hannink, 2003).  

 

Due to its beneficial effects during cancer pathogenesis, there has been growing interest 

in the potential therapeutic benefits of SFN during other disease pathologies. In a study 

in a streptozocin-induced model of diabetic nephropathy, SFN was able to significantly 

attenuate oxidative damage and prevent the fibrotic changes such as hypertrophy and 

extracellular matrix accumulation in the kidney by suppressing the protein expression of 

TGF-β1 in wild-type animals whilst having little or no effect in Nrf2-deficient animals. 

The same study also reported increases in Nrf2 protein levels and an inverse decrease in 

TGF-β1 protein expression in human renal mesangial cells treated with SFN (Zheng et 

al., 2011). The effects and possible cross-talk between SFN and the TGF-β1 signalling 
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pathways has also been demonstrated in a hepatic fibrosis mouse model. SFN was 

reported to prevent hepatic fibrosis in this model, whilst also reducing the expression of 

α-SMA and type I collagen. This effect was postulated to be due to the Nrf2-dependent 

inhibition of TGF-β1 signalling where Nrf2 was thought to prevent the phosphorylation 

of Smad2/3, thereby preventing TGF-β1-mediated gene expression and fibrosis (Oh et 

al., 2012). 

 

The inconclusive evidence from clinical trials looking at the potential therapeutic effects 

of exogenous antioxidant administration has led to the investigation of ways in which 

endogenous antioxidants may be upregulated in order to protect against oxidative stress 

and disease (Kris-Etherton et al., 2004; BiondiS-Zaccai et al., 2002; Steinberg, 2000). 

The dietary intake of SFN may help to protect against disease by activating the 

endogenous antioxidant Nrf2/ARE pathway and therefore may be used as a preventative 

measure against various disease pathologies (Annabi et al., 2008; Noyan-Ashraf et al., 

2006).  

 

1.4.5 SFN and reactive oxygen species  

Several studies have postulated that SFN may cause the activation of endogenous 

antioxidant pathways by increasing the transient generation of intracellular ROS. In 

human bronchial epithelial cells, SFN (10 μM) has been shown to increase ROS levels 

as measured by the DCF-DA assay, 10 min after treatment and these levels continued to 

increase up until 8 h after treatment. This increase in ROS levels was accompanied by 

the activation of the Nrf2/ARE pathway and increased protein expression of HO-1 after 

4 h, an observation that was abrogated in cells transfected with Nrf2 siRNA (Lee and 

Lee, 2011). Although this particular study highlights the possibility that SFN activates 

Nrf2-mediated gene expression through the generation of ROS, it did not investigate the 

potential source of ROS in this cell type (Lee and Lee, 2011), however it has been 

suggested that the source of ROS may be mitochondria-dependent.  

 

Previously, Singh and colleagues have reported that in a human prostate cancer cell 

model, SFN increases intracellular ROS levels by disrupting the mitochondrial 

membrane potential as SFN-induced ROS generation was significantly attenuated on 

pre-treatment with mitochondrial respiratory chain complex 1 inhibitors including 

diphenyleneiodonium and rotenone (Singh et al., 2005). Furthermore, SFN treatment 

also resulted in GSH depletion and a decrease in cell viability which was attenuated in 
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cells pre-treated with N-acetylcysteine in this cell type (Singh et al., 2005). Similar 

results were found in a study where endothelial cells were exposed to SFN (4 μM) in 

culture, resulting in an increase in intracellular ROS levels as assessed by the DCF-DA 

assay, and was accompanied by an increase in the activation of Nrf2 and related ARE-

linked gene expression which protected cells from further oxidative damage and 

cytotoxicity (Xue et al., 2008). A more recent study in human lung cells has also 

reported an increase in Nrf2-regulated gene expression (NQO1, glutmate-cysteine ligase 

and thioredoxin reductase) at 24 h following the nuclear accumulation of Nrf2 in 

response to a rise in intracellular ROS levels follwowing exposure of cells to SFN 

(Poerschke et al., 2012). 

 

The ability of SFN to activate the endogenous antioxidant Nrf2/ARE pathway 

highlights it as an important, possible preventative and therefore therapeutic agent 

during cardiovascular disease. Its ability to rapidly enhance intracellular ROS levels and 

therefore cause an elevated and sustained increase in antioxidant gene expression even 

after its metabolism and excretion may offer it up as a preventative measure to attenuate 

disease progression.   

 

 

1.5 Endogenous antioxidant enzyme systems 

In order to counter-balance oxidative stress, the cell has a number of antioxidant 

defence systems, which protect it against the excess production of ROS and maintain 

cellular homeostasis.  In particular, glutathione, is the first line of defence and is 

responsible for the conjugation, metabolism and excretion of most stress-inducing 

insults facing the cell. Antioxidant genes are also important in providing the cell with 

longer-term defence and these include heme-oxygenase (HO-1) and the phase II 

detoxifying enzyme, NQO1. These cellular defence systems are tightly regulated and 

under the control of Nrf2, a transcription factor that plays an important role in the 

protection of the cell against oxidative stress.  

 

1.5.1 Nrf2-Keap 1 pathway 

The Nrf2-Keap1 pathway regulates the oxidative stress-protective responses in 

mammals (D’Autreaux and Toledano, 2007). Nrf2 (nuclear factor (erythroid-derived-2)-

like2) is a cap’n’collar basic leucine zipper (CNC-bZIP) transcription factor which 

binds to the antioxidant response element (ARE) found in promoter regions of genes 
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encoding phase II detoxification enzymes and antioxidant proteins (Lee and Johnson, 

2004) and which is thought to be ubiquitously expressed. However, despite its 

widespread expression, disrupting the nrf2 gene in mouse embryonic stem cells has 

revealed that it may be dispensable for normal development (Chan et al., 1996). 

Regulation of Nrf2 is via six highly conserved domains known as Nrf2-ECH homology 

(Neh 1-6) domains; the Neh1 domain contains a CNC-type basic leucine zipper domain, 

which allows Nrf2 to heterodimerize with small Maf proteins and is essential for DNA 

binding as well as containing a nuclear localization signal (Motohashi et al., 2004; Itoh 

et al., 1999). The N-terminal Neh2 domain binds to the Kelch domain of the Nrf2-

cytosolic repressor, Keap1 (Itoh et al., 1999) and contains seven lysine residues to allow 

for the negative regulation of Nrf2 via ubiquitin conjugation and subsequent 

proteasome-mediated degradation of Nrf2 (Zhang et al., 2004). The C-terminal Neh3 

domain is essential for the transcriptional activity of Nrf2 Zhang, 2006) whilst Neh4 

and 5 are two independent transactivation domains that interact with CREB-binding 

protein (Katoh et al., 2001). The Neh6 domain contains an abundance of serine residues, 

though the exact function of this domain has not been clearly identified (Zhang, 2006). 

 

The activity of Nrf2 is regulated by its inhibitory protein Keap1 (Zhang, 2006). Its 

discovery was as a result of using the N-terminal Neh2 domain of Nrf2 as bait in a yeast 

two-hybrid assay (Itoh et al., 1999) during which it was found that the C-terminal Kelch 

domain of Keap1 was found to bind to the Neh2 domain of Nrf2 (Li et al., 2004). There 

is much controversy over the exact location of Keap1. Initially described as being 

located primarily in the cytoplasm, bound to the actin cytoskeleton and with its main 

role being to retain Nrf2 in this subcellular compartment until exposure of cells to 

oxidative stress (Kang et al., 2004), there is now evidence to suggest that Keap1 may 

not be as passive a protein as initially thought. Several studies have reported that Keap1 

plays a pivotal role in actively targeting Nrf2 for proteasomal degradation rather than 

passively sequestering it in the cytoplasm (Nguyen et al., 2009; Kobayashi et al., 2004; 

Zhang et al., 2004). It has been suggested that under basal conditions, the constitutive 

activity of Keap1 promotes the ubiquitylation of Nrf2 through the cullin-3-dependent 

pathway (Kobayashi et al., 2004; Zhang et al., 2004), however oxidative stress enables 

Nrf2 escape Keap1-dependent degradation, leading to stabilization of Nrf2, its nuclear 

localization and activation of ARE-driven genes (Zhang and Hannink, 2003). In 

particular, two critical cysteine residues important for Keap1-dependent ubiquitylation 

have been found on Keap1; C273 and C288 and serine substitution at either disables 
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Keap1-dependent ubiquitination of Nrf2 (Zhang and Hannink, 2003). A third cysteine 

residue, C151, located on the BTB domain of Keap1 has been reported to be required 

for the stabilization of Nrf2 and for the activation of Nrf2-regulated gene transcription 

(Tian et al., 2012). It has also been suggested that antioxidant-induced modification of 

Keap1 C151 leads to a conformational change in Keap1, allowing Nrf2 to be 

phosphorylated at Ser40, leading to Nrf2 release from Keap1 (Tian et al., 2012). Other 

studies suggest that due to the constitutive expression of Nrf2-regulated genes, the Nrf2-

Keap1 complex is not localized within the cytoplasm but rather that it shuttles in and 

out of the nucleus to allow for basal expression of genes in order to maintain redox 

homeostasis within the cell (Petri et al., 2012). Many studies report increases in Nrf2 

protein levels but no change in Nrf2 mRNA levels suggesting that some oxidants may 

regulate Nrf2 in a post-translational manner (Purdom-Dickinson et al., 2007).  

 

Several kinases have been reported to directly phosphorylate Nrf2, thereby affecting its 

cellular location and stability (Keum, 2011). Initial studies looking at possible kinases 

identified protein kinase C (PKC) as being a possible candidate responsible for this 

phosphorylation; Huang and colleagues found that exposing HepG2 cells to oxidative 

stress in the form of phorbol 12-myristate 13-acetate (PMA) resulted in the nuclear 

localization of Nrf2, an effect which was abrogated in the presence of a PKC inhibitor 

suggesting PKC-mediated phosphorylation is important in the nuclear translocation of 

this transcription factor (Huang et al., 2000). Further work by the same group revealed 

the phosphorylation site as being Ser40 on Nrf2; Nrf2 bearing a Ser to Ala mutatuion at 

amino acid 40 was not phosphorylated by PKC and partially impaired Nrf2 activation 

og ARE-driven transcription in a reporter gene assay (Huang et al., 2002). However, the 

observation that Nrf2 activation was only partially impaired suggested that there may be 

other factors that may modify Nrf2 and thereby downstream gene transcription.  

Treatment of rat cardiomyocytes with H2O2 showed an increase in Nrf2 protein after 1 h 

as well as increased Nrf2-ARE binding activity, both of which were blocked by 

treatment of cells with the PI3K inhibitor, LY294002 (Purdom-Dickinson et al., 2007). 

To further confirm that the increase in Nrf2 protein was not due to increased levels of 

Nrf2 RNA, cells were treated with the RNA synthesis inhibitor, actinomycin D, which 

failed to block H2O2 from increasing levels of Nrf2 protein (Purdom-Dickinson et al., 

2007). This study demonstrates that in addition to PKC, PI3K may also regulate Nrf2 by 

phosphorylation by increasing its stability and thereby allowing it accumulation in the 

cell.  
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Figure 1.12 The Nf2-Keap1 pathway of ARE-driven gene expression. Under normal 

physiological conditions, Nrf2 is sequestered in the nucleus by Keap1 and targeted for 

degradation via the ubiquitin-proteasome pathway. However, in response to oxidative stress, 

cysteine residues on Keap1 become oxidized and Keap1 is no longer able to mediate the 

degradation of  Nrf2. Nrf2 translocates to the nucleus, and along with small Maf protein binds 

to the ARE of target genes to drive their expression.  
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In addition to PKC and PI3K, there is evidence to suggest that p38 MAPK also directly 

phosphorylates Nrf2; in HepG2 cells, p38 MAPK directly phosphorylated the 

recombinant GST-tagged Nrf2 protein and promoted the interaction of this recombinant 

protein with endogenous Keap1 in vitro, preventing Nrf2 nuclear translocation (Keum 

et al., 2006). In the same study, the isothiocyanate, SFN was found to promote the 

nuclear translocation of Nrf2 by blocking the p38 MAPK pathway, suggesting that this 

pathway is involved in the negative regulation of Nrf2 (Keum et al., 2006). A study in a 

hamster cancer cell line treated the isothiocyanate, phenethyl isothiocyanate (PEITC), 

found that this compound increased the phosphorylation of ERK1/2 and JNK1/2, 

causing the release of Nrf2 from Keap1 and its subsequent translocation to the nucleus, 

indicating the importance of these kinases in ARE-driven gene expression (Xu et al., 

2006). The import and export of Nrf2 is pivotal in driving antioxidant gene expression; 

sustained and excessive nuclear accumulation of Nrf2 has been shown to be lethal in 

mice (Wakabayashi et al., 2003) and in vitro has been shown to be lead to apoptotic cell 

death (Strachan et al., 2005) therefore it can be assumed that the regulation of the 

nuclear export of Nrf2 is also tightly regulated. Jain and Jaiswal have proposed that 

Fyn, a tyrosine kinase that phosphorylates Nrf2 at Tyr568, and promotes its nuclear 

export and degradation (Jain and Jaiswal, 2006). Further work by the same group 

proposes that GSK-3β acts as adirect upstream regulatory kinase of Fyn, contributing to 

Nrf2 phosphorylation at Tyr568 (Jain and Jaiswal, 2007). This is further compounded 

by evidence froma study carried out by Rojo and colleagues in which SFN is thought to 

activate ARE-dependent gene expression by regulating Fyn/ GSK-3β activity (Rojo et 

al., 2008).  

 

As well as phosphorylation, the acetylation and deacetylation of Nrf2 has also been 

postulated to play a role in its nuclear localization and transactivation. In HEK293T 

cells exposed to sodium arsenite, Nrf2 was shown to undergo reversible acetylation in a 

number of lysine residues in its Neh1 DNA-binding domain under the action of CREB-

binding protein (CBP). This acetylation was reported to encourage Nrf2 transcriptional 

activity (Sun et al., 2009). Similarly, in another study, in HepG2 cells, CBP induced the 

acetylation of Nrf2, increasing its binding to the ARE and thereby increasing Nrf2-

driven gene transcription (Kawai et al., 2011). Furthermore, the histone deacetylase, 

sirtuin 1 (SIRT1) was shown to decrease acetylation of Nrf2 and subsequent gene 

transcription; briefly the study reported that acetylation of Nrf2 resulted in its increased 

nuclear localization whereas deacetylation conditions favored its cytoplasmic 
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localization (Kawai et al., 2011). It is now widely reported that the post-translational 

modification of Nrf2 is pivotal in determining its sub-cellular localization and 

consequently its ability to induce antioxidant genes. Phosphorylation and acetylation 

events can enhance Nrf2 nuclear localization, however as the above studies have shown, 

these events can change depending on the oxidative stressor or the cell type in question.  

 

ARE-driven enzymes and antioxidants include glutathione peroxidase (GSH), 

NADPH:quinone oxidoreductase-1 (NQO1), heme-oxygenase-1 (HO-1) and 

Peroxiredoxin (Prx). Nrf2-regulated expression of antioxidant enzymes in relation to 

cardiovascular disease has been widely reported. Treating murine aortic smooth muscle 

cells and macrophages with the lipid peroxidation product, 4-hydroxynonenol (4-HNE) 

resulted in the nuclear translocation of Nrf2. Nrf2 also caused the up-regulation of 

CD36 on macrophages, an important scavenger receptor mediating the uptake of 

oxidized LDL (oxLDL) and playing an important role in foam cell formation. This was 

accompanied by Nrf2-mediated HO-1 and Prx protein expression in the macrophage 

(Ishii et al., 2004). The Nrf2-mediated induction of antioxidant enzymes human aortic 

smooth muscle cells in response to oxidized lipids was also seen in another study where 

Nrf2 induced HO-1 protein expression in response to moderately oxidized LDL (Anwar 

et al., 2005). In a similar study, Nrf2-expressing adenovirus was transfected into 

vascular smooth muscle cells (VSMCs) following angioplasty, resulting in an increase 

in the expression of several antioxidant enzymes, including HO-1 (Levonen et al., 2007) 

as well as effectively reducing oxidative stress in response to oxLDL and vascular 

inflammation as assessed by macrophage cell count (Levonen et al., 2007). 

 

The importance of this pathway has also been seen in endothelial cells exposed to shear 

stress. Laminar shear stress is thought to be atheroprotective and exposure of 

endothelial cells to laminar shear stress revealed that Nrf2 was strongly activated and 

mediated downstream antioxidant protein expression, offering some of the first 

evidence that the Nrf2/ARE pathway was key in protecting certain areas of the artery 

from atherosclerotic lesion formation (Dai et al., 2007). Shear stress also caused 

activation of the Nrf2/ARE pathway in human umbilical vein endothelial cells 

(HUVECs) exposed to laminar shear stress. These cells exhibited an upregulation of 

several Nrf2-mediated genes, including HO-1 and NQO1 and inhibition of Nrf2 with 

the antioxidant, N-acetyl cysteine, also caused a downregulation in the expression of 

HO-1 and NQO1 (Warabi et al., 2007). 
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These studies demonstrate the significance of the Nrf2/ARE pathway in protecting 

against oxidative insults and regulating redox balance in the vasculature. 

 

1.5.2 Glutathione  

Glutathione (GSH) is one of the first and most important antioxidant defence systems in 

mammalian cells (Meister, 1983 Meister 1988a & b). An ubiquitous intracellular 

tripeptide, it is composed of glutamate, cysteine and glycine and its synthesis in the 

cytosol is a tightly regulated process (Lu, 2009) and it is also here that the majority of 

cellular GSH is located as well as within several intracellular organelles including the 

mitochondria, which contains a much smaller proportion of cellular GSH, with a small 

percentage located in the endoplasmic reticulum (ER) and the remainder in the nucleus 

(Hwang et al., 1992; Meredith and Reed, 1982). GSH is the thiol-reduced form and 

exists in millimolar concentration in most mammalian cells (fibroblasts 0.5 – 5 mM, 

Zucker et al., 1997, liver 5 – 10 mM, Lu., 2009), with the disulphide-oxidised (GSSG) 

form making up less than 1% of total cellular GSH (Akerboom et al., 1982). The 

importance of this intracellular thiol is demonstrated in the number of vital functions it 

serves within the cell; detoxification of electrophiles; scavenging free radicals; 

maintainence of protein thiol status; acting as a reservoir for cysteine as well as 

modulating critical cellular processes such as DNA synthesis, immune function and cell 

proliferation (Kaplowitz et al., 1985; Meister and Anderson 1983). 

 

The most important and well-known function of GSH is antioxidant defence; GSH can 

detoxify H2O2 and lipid peroxide, reactions which are catalysed by glutathione 

peroxidase (GPx) as well as conjugating with and detoxifying electrophiles through 

glutathione S-transferase-catalysed reactions (Liu and Pravia, 2010). The small redox 

enzymes glutaredoxin (Grx) and sulfiredoxin (Srx) catalyse reactions, which keep 

protein cysteine residues in their reduced form, which when oxidised can be converted 

to the sulfenic (RSOH), sulfinic (RSO2H) or sulfonic (RSO3H) acid (see Fig 1.13). The 

oxidative modification of protein cysteine residues, including those on the cytosolic 

inhibitor of Nrf2, Keap1 (Kobayashi and Yamamoto, 2005) are important in ROS-

mediated regulation of protein function (Lui and Pravi, 2010). The ratio of GSSG:GSH 

is an indicator of a cell’s redox status and maintenance of intracellular GSH 

homeostasis is vital for normal cellular functions; GSH redox cycling, catalysed by 

GSSG reductase prevents loss of GSH in the form of GSSG during various reduction 

reactions with oxidants, however most cells maintain their redox status by de novo 
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synthesis of GSH. This synthesis is a two-step process, catalysed by glutamate-cysteine 

ligase (GCL) and GCL synthetase and is explained further below. 

 

The availability of cysteine, the sulphur amino acid precursor and the activity of the rate 

limiting enzyme, GCL, composed of a  catalytic (GCLC) and modifier (GCLM) 

subunit, are the main determinants of GSH synthesis (Liu and Pravia., 2010; Lu., 2009). 

The rate of GSH synthesis is highly dependent upon the levels of GCL activity; 

oxidative stress caused by a variety of agents can result in increased GCL activity, 

increased GCLC mRNA and GCLC gene transcription and as a consequence, an 

increase in total cellular levels of GSH (Wild et al., 1999; Zipper and Mulcahy 2003; 

Zipper and Mulcahy 2000). TGF-β1 has also been shown to regulate GSH synthesis at 

the level of GCLC; in type II alveolar epithelial cells, TGF-β1 was found to inhibit the 

expression of GCLC whilst having no effect on GCLM (Jardine et al., 2002) and this 

was further confirmed in hepatocytes where TGF-β1-mediated apoptosis resulted in 

decreased GCLC mRNA and cleavage of GCLC protein and consequently a decrease in 

GCL activity but had no effect on GCLM protein levels (Franklin et al., 2003). 

Furthermore, in rat hepatic stellate cells, TGF-β1 lowered levels of GSH, which 

consequently facilitated fibrogenesis (Fu et al., 2008).  

 

The transcriptional regulation of GCLC has been closely studied and consensus NFκB, 

Sp-1, AP-1, metal response and antioxidant response (ARE)/electrophile responsive 

(EpRE) elements have been identified in the human GCLC promoter (Moinova and 

Mulcahy, 1998; Mulcahy et al., 1997; Mulcahy and Gipp,, 1995). In particular, 

identification of ARE led to the finding that Nrf2 plays an important role in the 

regulation of GSH synthesis by transactivating the human GCLC promoter (Mulcahy et 

al., 1997). To further confirm this, transcriptional regulation of rat GCLC using Nrf2 

knockout fibroblasts showed that Nrf2 knockout cells had lower levels of GCLC (Yang 

et al., 2005a). Okouchi and colleagues have also shown that Nrf2 is important for 

GCLC subunit expression; exposure of human brain endothelial cells to chronic 

hyperglycemic stress resulted in apoptosis, increased activation of PI3K/Akt/mTOR 

signalling and increased phosphorylation and nuclear translocation of Nrf2 and 

consequently increased GCLC subunit expression (Okouchi et al., 2006).   

 

Nrf2 is also important for the induction of GCLM; the rat GCLM promoter has a 

functional ARE element (-295 to -285) which is important for the basal promoter 
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activity as well as TNF-α-mediated induction of GCLM (Yang et al., 2005b). Mulcahy 

and colleagues have demonstrated that upregulation of GCLM by beta-naphthoflavone 

involved binding of Nrf2 to a functional ARE/EpRE site located at -302 of human 

GCLM (Moinova and Mulcahy, 1998). However, not all inducers of oxidative stress 

affect levels or induction of GCLM and the discordance between the relative expression 

of GCLC and GCLM may depend upon the expression of the two subunits in different 

cell/tissue types (Lu, 2009). 

 

Increased levels of GSH are associated with an early proliferative response and are 

essential for the cell to enter the S phase (Iwata et al., 1994; Messina and Lawrence, 

1989; Shaw and Chou, 1986). Increased levels of GSH have been reported in rat 

hepatocytes (Huang et al. 2008) and following partial hepatectomy; blocking the 

increase in GSH resulted in impaired liver regeneration (Huang et al., 2001). It is known 

that GSH modulates DNA synthesis by maintaining reduced glutaredoxin or 

thioredoxin, both of which are required for the activity of ribonucleotide reductase, the 

rate-limiting enzyme in DNA synthesis (Holmgren, 1981) and this may be one way by 

which GSH modulates cell proliferation. Changes in the thiol-redox status may also 

affect the expression or activity of factors important for cell cycle progression and can 

also modulate cell death; GSH depletion has been reported during apoptosis secondary 

to increased ROS, enhanced GSH efflux and decreased GCL activity (Lu, 2009).  
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Figure 1.13 GSH synthesis and cycling in cells 

GSH reduces hydrogen peroxide (H2O2) and lipid peroxide (LOOH) through glutathione 

peroxidase (GPx) catalysed reactions resulting in oxidised glutathione (GSSG). GSSG is then 

reduced back to GSH in a reaction catalysed by glutathione reductase (GRS) and which requires 

NAD(P)H. GSH is also important in protein redox signalling; depending upon the intensity of 

the oxidative insult, protein cysteine residues can be oxidised to sulfenic (RSOH), sulfinic 

(RSO2H) and sulfonic (RSO3H) acid. Conversion to sulfonic acid form is considered to be 

irreversible, however sulfinic acid can be reduced back to sulfenic acid through an Srx catalyzed 

reaction. Sulfenic acid then reacts with GSH to form protein mixed disulfides 

(glutathionylation), which can be reduced back to free-thiol form (deglutathionylation) through 

Grx or Srx catalyzed reactions using GSH as a reductant. Taken from Liu and Gaston-Pravia, 

2009). 
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1.5.3. Heme oxygenase-1 

Various risk factors for the development of coronary heart disease and other 

cardiovascular diseases mediate HO-1 gene expression, including increased blood 

pressure, altered laminar flow, advanced glycation end products (AGEs), oxidized lipids 

and a number of inflammatory processes (Stocker and Perella, 2006). HO-1 catalyses 

the first rate-limiting step of heme to its metabolites carbon monoxide (CO), which 

causes mild vasodilation, ferrous iron (Fe3+) which is stored by ferritin and biliverdin 

which is further broken down to bilirubin and which acts as an antioxidant (Fig 1.14).  

 

High levels of bilirubin and biliverdin are thought to be inversely related to the 

progression of atherosclerosis (Idriss et al., 2008). The protective effects of bilirubin 

may be due to its ability to protect plasma lipids, such as LDL from peroxidation by 

strongly inhibiting the formation of hydrogen peroxide (Neuzil and Stocker, 1994). 

Bilirubin has also been shown to be protective, in the post-ischemic myocardium in a 

Langendorff model of ischemia/reperfusion, where exogenously applied bilirubin 

significantly restored myocardial function, limited infarct size and mitochondrial 

damage. This attenuation in myocardial function was completely abolished in the 

presence of a heme-oxygenase inhibitor (Clarke et al., 2000), suggesting that HO-1-

derived bilirubin is involved in cardio-protection against reperfusion injury. Further 

evidence for the protective role of bilirubin in the vasculature comes from studies that 

show that there is an inverse relationship between plasma bilirubin and risk of coronary 

artery disease (Idriss et al, 2008). Evidence for the cardio-protective role of bilirubin in 

the prevention of atherosclerosis is supported  detection of decreased bilirubin activity 

in atherosclerosis (Hopkins et al., 1996). More recent evidence has shown that the 

cardio-protective effects of bilirubin may be due to its ability to directly inhibit 

NAD(P)H oxidase by interrupting the assembly and activation of this enzyme (Jiang et 

al., 2006), thereby attenuating ROS generation.  

 

Another product of HO-1 that is cardio-protective is CO, which has anti-proliferative 

and anti-inflammatory properties (Morita, 2005). Its action as a vasodilator is  due to its 

ability to increase levels of cGMP in VSMCs; inhibition of CO using haemoglobin 

reduced VSMC cGMP (Morita and Kourembanas, 1995). The same study found that the 

additional effects of CO included inhibition of endothelin-1 (ET-1) and platelet-derived 

growth factor (PDGF-B) which in turn abrogated VSMC proliferation. Therefore CO  
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may play a role in attenuating neointima formation and medial hyperplasia in 

atherosclerosis 

 

 

  

 

 

Figure 1.14  The heme-oxygenase enzyme system. Heme oxygenase is the first rate limiting 

enzyme that catalyses the breakdown of heme to CO (mild vasodilator), ferrous iron (which is 

stored by ferritin) and biliverdin which is further broken down to bilirubin by biliverdin 

reductase (antioxidant properties). 

 

 

The third product of heme metabolism, ferrous iron, can act as an electron donor and 

therefore contribute to ROS generation. However, there is some evidence to show that it 

can also be cardioprotective (Idriss et al, 2008). The HO-1-dependent release of ferrous 

iron is thought to increase resistance to oxidative stress (Ossola et al., 2000) by  

enhancing cellular capacity for sequestering iron (Tomaro and Batlle, 2002). In addition 

to this, in endothelial cells, increases in ferritin keep iron pools low and reduce oxidant-

induced lipid peroxidation (Selmeci et al., 2000). This experimental evidence highlights 

the important role of HO-1 and its metabolites in protecting the vasculature against the 

damaging effects of oxidative stress.  

 

1.5.4 NADPH:quinone oxidoreductase 1 

NQO1 is an enzyme belonging to the family of phase II detoxification enzymes, which 

are responsible for the conjugation of xenobiotics into water-soluble compounds, which 

may be excreted in urine or bile. NQO1 is thought to be involved in the cellular defence 

against the electrophilic and oxidizing metabolites of xenobiotic quinones, such as 

vitamin E, which results in the generation of the antioxidant forms of these molecules 

(Ross, 2004). Although initial study revealed that its primary function is 

chemoprotection, recent evidence has shown that it is involved in superoxide 
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scavenging with the cell (Ross, 2004). NQO1 works by mediating the two-electron 

reduction of quinones to hydroquinones, in particular its antioxidant role involves 

reduction of ubiquinone to ubiquinol (Ross, 2004). A two-electron reduction removes a 

reactive electrophilic quinone from a biological system and bypasses one-electron 

reduction reactions that can generate reactive oxygen species (Ross, 2004). NQO1 

knockout mice have revealed the importance of this enzyme against quinone toxicity; 

NQO1 knockout mice administered with the superoxide and quinone generator, 

menadione were more susceptible to oxidative stress and toxicity when compared to 

wild-type animals (Radjendirane et al., 1998). Under levels of high oxidative stress, 

NQO1 is induced  in cells to high levels (Dinkova-Kostova and Talalay, 2010), and 

although the rate of interaction of this enzyme with superoxide is less than a magnitude 

above the rate of chemical dismutation of superoxide (Dinkova-Kostova and Talalay, 

2010), its activity in tissues with decreased activity of SOD could provide an additional 

layer of protection against oxidative stress.  

 

1.5.5. Superoxide dismutase 

As previously mentioned, NO, which has important anti-inflammatory and 

anticoagulant properties as well as its vasodilatory effect, can be rapidly inactivated by 

reacting with O2
- leading to the production of the unstable anion ONOO., a process 

commonly occurring in hypercholesterolemia, hypertension, diabetes and ageing (Fukai 

and Fukai, 2011; Madamanchi and Runge, 2007; Guzik and Harrison, 2006). The main 

cellular defence against this reaction are a group of oxidoreductase enzymes, known as 

superoxide dismutases (SODs). The SOD system is one of the major antioxidant 

systems in the cell, catalysing the dismutation of the highly reactive O2
- to oxygen and 

H2O2. Three forms of the enzyme exist in humans, SOD1 (copper-zinc SOD located in 

the cytoplasm), SOD2 (manganese SOD, found in the mitochondria) and SOD3 (an 

extracellular form of copper-zinc SOD) (Forstermann, 2008) each of which are 

contained in distinct subcellular localisations; SOD1 is localised in the cytosol and 

mitochondria, SOD2 is localised to the mitochondrial matrix and SOD3 is anchored to 

the extracellular matrix (Nguyen et al., 2004; Petersen et al., 2004; Fukai et al., 2002). 

Although their cellular localisations are distinct, all three isoforms exert various 

biological effects through H2O2, which can function as a signalling molecule and 

stimulate cellular responses such as hypertrophy, proliferation and migration via the 

oxidation of Akt, Src, and MAPKs or the inactivation of protein tyrosine kinases (Fukai 

and Fukai, 2011; Rhee, 2006).  
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Due to its localisation in the cytosol, SOD1 plays an important role in protecting NO-

mediated vasorelaxation; SOD1 knockout mice exhibit increased levels of vascular O2
- 

and ONOO., increased myogenic tone and vasoconstrictor responses (Didion et al., 

2002). Furthermore, overexpression of SOD1 in transgenic mice has been shown to 

improve vascular dysfunction in a model of subarachnoid haemorrhage (Kamii et al., 

1999). Adenoviral gene-transfer of SOD1 to the aortas of Watanabe heritable 

hyperlipidemic rabbits resulted in a significant decrease in endothelial O2
- (Miller et al., 

1998). A similar study in diabetic rabbits found that the adenoviral gene-transfer of 

SOD to the aorta significantly reduced O2
- production and thereby improved 

endothelium-dependent relaxation, suggesting that SOD prevented the oxidation of NO 

to ONOO. in this disease model (Zanetti et al., 2001) and mice with a deleted SOD1 

gene were more susceptible to ischemia/reperfusion injury in comparison with wild-

type animals (Forstermann, 2008). Due to the ability of SOD to stimulate cellular 

responses such as migration, several studies have examined the role of SOD in reducing 

neointima formation. Ozumi and colleagues have reported that adenoviral transfer of 

extracellular SOD reduced ROS generation as well as reducing proliferation of VSMC 

and associated neointima formation in a cuff-injury model in rats (Ozumi et al., 2005). 

Similarly, catheter-mediated gene transfer to the arterial wall of balloon-denuded rabbit 

aortas reduced restenosis by decreasing the number of macrophages and enhancing the 

recovery of endothelial layer in this disease model (Laukkanen et al., 2002) whilst 

liposomal SOD delivery reduces redox-dependent expression of TGF-β1 and collagen 

in dermal myofibroblasts (Vozenin-Brotons et al., 2001). This evidence points to the 

critical regulation of O2
-, H2O2, and ONOO., by SOD as being one of the most 

important defence systems in the vasculature that protects against increased oxidative 

stress during vascular physiologies and pathophysiologies. 
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1.6 Cell migration 

Cell migration is a highly regulated process, involving the spatiotemporal 

reorganization of a number of structural proteins which make up the actin cytoskeleton 

as well as coordinating a myriad of signaling events that come together to mediate 

migration during embryogenesis, wound healing, immune response and tissue 

development (Kole et al., 2005). Due to the diverse role it plays in normal physiological 

processes, its dysregulation can contribute to the development of various pathological 

processes, including cardiovascular disease and cancer (Ridley, 2001).  

 

Depending upon the stimulus, cell migration can be directional or random, however it is 

not entirely clear how the cells basic motility machinery is coupled to a steering 

mechanism that is able to integrate environmental cues with polarized signalling to 

promote persistent migration. Directional cell migration is thought to have two sources: 

intrinsic cell directionality and external regulation. Intrinsic directionality is as a result 

of the cell responding to a non-directional motogenic signal, such as the uniform 

application of PDGF that can trigger the motility machinery in the absence of an 

external guiding factor and is often known as chemokinesis (Giannone et al., 2009; 

Petrie et al., 2009). During chemokinesis, In contrast, chemotaxis occurs when a soluble 

factor, such as TGF-β1 is applied asymmetrically and dictates the direction of cell 

migration. This directional migration is as a result of regulated formation of 

lamellopodia, which are observed as a consequence of external guidance cues, 

topography of the ECM, intracellular polarity machinery and adhesion receptors (Petrie 

et al., 2009). Directional migration is as a result of new protrusions forming at the pre-

existing leading edge, rather than in different directions around the cell periphery 

(Andrew and Insall, 2007). TGF-β1 has been shown to be a chemotactic agent for 

fibroblasts and application of this growth factor can result in the directional movement 

of this cell type toward the increasing gradient of this chemotactic agent (Acharya et al., 

2009; Postlethwaite et al., 1987). In addition to TGF-β1, fibroblasts have also been 

shown to migrate towards chemotactic agents, including PDGF, FGF and epidermal 

growth factor (Archarya et al., 2009; Giannone et al., 2009; Petrie et al., 2009). 

Transwell migration assays have shown that the addition of a PDGF to the lower 

chamber of the well results in the directional migration of fibroblasts, which increases 

with increasing PDGF concentration (Engel and Ryan, 1997). In vivo, growth factors 

that can act as chemotactic agents are numerous, especially during disease, when the 

production of several of these is increased and can work in synergy to cause the 
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directional movement of fibroblasts toward the lumen of the vessel, where they are 

usually concentrated (Stenmark et al., 2012; Grainger et al., 2007). 

An initial event seen during cell migration is the establishment of spatial polarity 

accompanied by the extension of membrane protrusions, known as lamellipodia in the 

direction of movement. In vitro, study of fibroblasts cultured on a 2D matrix has 

revealed that cells exhibit a polarized morphology; the leading edge displays a fan-like 

front called the lamella and a tapered tail end (Suraneni et al., 2012). Observation of the 

leading edge has revealed membrane ruffling, a process that is facilitated by the 

formation of newly polymerized actin filaments which make up the two of the structures 

seen at the leading edge; filopodia and lamellipodia (Ridley, 1994; Fig 1.15). Both 

structures lie on top of the more stable lamellal actin network and probe the cellular 

environment ahead of a migrating cell, detecting the stiffness of the surrounding ECM. 

In particular, the lamellopodia and the lamella are thought to play a pivotal role during 

migration and both of these actin-rich structures are known to work together in order to 

drive the forward movement of the cell (Giannone et al., 2009). Adhesions located at 

the leading edge are transduced by the actin network to the rear of the lamellipodium 

where myosin II-dependent contractile forces are generated, eventually pulling at the 

lamellipodial actin bundles resulting in a variation of migratory behavior dependent 

upon the strength of the adhesions (Burnette et al., 2011). An alternative model of cell 

migration has been postulated where actin filaments that are gathered in the 

lamellipodia as ‘arcs’ are thought to be pulled back into the lamella by myosin II and 

adhesions at the leading edge. In this model, a single arc may contact a number of 

adhesion sites, acting as a break to slow down migration or alternatively, using it as a 

site of future protrusion resulting in a net gain in forward movement of the cell as long 

as adhesions at the leading edge remain strong (Burnette et al., 2011; Giannone et al., 

2007).  

Actin polymerization is a critical event in the initial step of lamellipodial extension 

during cell migration and requires the activity of the small signaling G-protein, Rac. 

Branching of the existing actin filament networks that make up lamellipodial extensions 

is thought to be through the Rac-dependent activation of actin-related proteins 2/3 

(Arp2/3) and this complex acts as a nucleation site for new actin filaments to form at 

70° from existing, ‘mother’ filaments (Lauffenberger and Horwitz, 1996) downstream 

of Rac activation. The Rac-driven interaction of IRSp53, an adaptor protein necessary 

for Rac1-mediated membrane ruffling, with WAVE, a member of Wiskott-Aldrich 
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syndrome family protein (WASP), further drives filament branching as this complex 

binds to the C-terminal acidic domain of the Arp2/3 complex, resulting in its nucleation 

(Ridley, 2001). An additional mechanism by which Rac promotes actin polymerization 

is by ‘uncapping’ actin filaments at their barbed ends or by affecting the rate of actin 

depolymerization by stimulating the activity of LIM-kinase which then phosphorylates 

and inactivates cofilin, a protein that severs actin filaments thereby enhancing actin 

depolymerization by (Pavlov et al., 2007; Stanyon and Bernard, 1999; Arber et al., 

1998). The initial induction of Rac has been reported to be as a result of growth factors, 

including TGF-β1, cytokines as well as extracellular components, and whose activation 

is mediated by tyrosine kinases and G-protein coupled receptors, both of which are 

dependent upon PI3K activity (Ridley, 2001). 

Evidence implicating Rac in the phosphorylation of both myosin heavy chain (MHC) 

and myosin light chain (MLC) via p21-activated kinase (PAK) with one study reporting 

enhanced phosphorylation of MLC in the lamellipodial region of cells (Matsumura et 

al., 1998).  

The attachment of the extending lamellipodia to the extracellular matrix 

(ECM)/substrate is modulated by the small focal complex structures and is thought to 

activate Rac and the small GTPase, Cdc42 (Horwitz and Parsons, 1999). The speed of 

migration and the level of activity of Rac and Cdc42 are dependent upon the 

composition of the surrounding ECM/substrate (Ridley, 2001). In slow moving cells, 

such as fibroblasts, focal complexes can mature into Rho-induced focal adhesions 

(Velichkova and Hasson, 2003). Under normal physiological conditions, the continuous 

assembly and disassembly of focal complexes is an important event during migration, a 

process that is also regulated by Rac, directly through PAK and indirectly by its ability 

to antagonize Rho activation (Sander, 1999). As well as Rac, Src and focal adhesion 

kinase (FAK) have also been reported to induce the disassembly of focal adhesions 

(Ridley, 2001).  

As the cell moves forward, its body contracts in order to facilitate movement, an event 

that is dependent upon actomyosin contractility and can be regulated by Rho. Rho-

activation of Rho-kinases results in the inhibition of phosphorylation of MLC which is 

mediated by MLCK, and is activated by calcium and stimulated by Erk MAPKs (Sander 

1999) (Fig 1.15). Reducing Rho activity can have two converse effects; enhanced 

migration due to reduction in the adhesion of cells to the ECM or alternatively, a 

reduction in cell contractility which inevitably attenuates the process of cell migration 
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(Sander et al., 1999; Arber et al., 1998).  

A fourth and final event during cell migration is tail detachment and is generally 

considered the ‘rate-limiting’ step of cell migration, with the rate of tail detachment 

being dependent upon the type of cell and the number of focal adhesion attachments to 

the ECM (Palecek et al., 1998). In slow moving cells such as fibroblasts, this process is 

regulated by calpain, a cysteine protease responsible for facilitating the degradation of 

focal adhesion complexes at the rear of a moving cell (Palecek et al., 1998). The 

importance of calpain in mediating tail detachment has been demonstrated by the use of 

pharmacological inhibitors of this protease in goldfish fin fibroblasts where it was 

observed that inhibiting it resulted in an inhibition of adhesion complex disassembly, 

suggesting a critical role for it during cell migration (Bhatt et al., 2002). Src and FAK 

may also mediate focal adhesion disassembly and therefore mediate tail detachment 

(Ridley, 2001). 
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Figure 1.15 Role of Ras and Rho GTPases in cell migration 
The formation of protrusions at the leading edge of a cell requires the activity of the small 

GTPase, Rac whilst Cdc42 induces filopodia formation and provides a polarity signal, ensuring 

that Rac-induced protrusions are restricted to the leading edge. Focal adhesions form at the 

trailing edge of the cell and undergo continuous assembly and disassembly, often occurring as a 

result of Ras-dependent inhibition of Rho. Contraction at the rear of the cell requires the activity 

of Erk-dependent phosphorylation of myosin light chain kinase (MLCK).  

 

 

 

 

 

 

 

 

 

 



Chapter 1                                                                                                                                      Introduction 

 

 91 

1.7 Hypothesis and Aims 
 

TGF-β1 can modulate fibroblast phenotype leading to enhanced expression of 

myofibroblast marker proteins and increased cell motility. Previous studies have also 

reported that TGF-β1 causes the upregulation of antioxidant enzymes, possibly by 

causing the generation of reactive oxygen species (ROS). We hypothesise that TGF-β1 

may cause activation of the Nrf2 signalling pathways and increase the activity and 

protein expression of HO-1 and NQO1 as well as depleting total cellular GSH. 

Therefore the aims of this thesis were to examine whether TGF-β1, a growth factor 

which is involved in atherogenesis, differentially modulates the expression and activity 

of proteins and enzymes downstream of the antioxidant stress pathway, Nrf2, including 

mRNA and protein levels of HO-1 and NQO1 and total intracellular glutathione (GSH) 

in cultured human aortic adventitial fibroblasts (HAoAF).  

 

In addition, the effects of the dietary isothiocyanate, sulforaphane (SFN) were also 

investigated in HAoAF. SFN has been reported as a known activator of the Nrf2/ARE 

pathway and an inducer of phase II enzyme activity and several studies have 

demonstrated its potential therapeutic benefit when administered either prophylactically 

or during cardiovascular disease. We hypothesise that SFN activates the Nrf2 pathway 

and increases the protein expression and activity of HO-1 and NQO1 in HAoAF as well 

as causing the depletion of GSH levels. The current study sought to investigate the 

effect of SFN on the activation of the Nrf2/ARE pathway and its downstream 

transcriptional targets. The effect of SFN on HO-1and NQO1 mRNA and protein levels 

were determined and its effect on total cellular GSH was also measured, the activation 

of which may be of potential therapeutic benefit in this cell type.  

 

TGF-β1 and ROS in the vessel wall may contribute to neointimal hyperplasia in 

atherogenesis, partly by the modulation of vascular remodelling as a result of enhanced 

cell migration from the adventitial and medial layers towards the intima. We 

hypothesise that TGF-β1 casues an increase in HAoAF migration and that this may 

occur in a ROS-dependent manner. The aim of this thesis was to further elucidate the 

effect of TGF-β1 on HAoAF migration and to determine whether this effect was a ROS-

modulated process. Furthermore, investigation into the potential source of ROS was 

also investigated.  The findings from this study may provide novel insights for future 
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therapeutic intervention to modulate antioxidant defence genes with TGF-β1 signalling 

or SFN during the pathogenesis of cardiovascular disease.  
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CHAPTER 2: Materials and Methods 

 

2.1 Human aortic adventitial fibroblasts 

 
2.1.1 Culture of human aortic adventitial fibroblasts 

Cryopreserved human aortic adventitial fibroblasts (HAoAF) were commercially 

obtained (Lonza) at passage 3. Manufacturer’s information indicated that cells had been 

routinely characterized using immunofluorescence staining and stained negative for 

smooth muscle α-actin, a marker used to indicate that HAoAF had not differentiated 

into smooth muscle cells. Quality control information provided by the manufacturer 

stated that all cells were performance assayed for HIV-1, mycoplasma, Hepatitis-B, 

Hepatitis-C, bacteria, yeast and fungi and that cell viability, morphology and 

proliferative capacity were measured after recovery from cryopreservation.  

 

Subsequently, cells were defrosted and cultured in a T25 (25 cm2) flask. Cells were 

cultured in phenol red-free Dulbecco’s modified Eagles medium (DMEM, Sigma-

Aldrich UK) containing 1000 mg/L glucose and supplemented with 10% fetal calf 

serum (FCS), L-glutamine (5 mM), penicillin (100 U/ml) and streptomycin (100 ug/ml). 

Cells were maintained at 37°C in an atmosphere of air and 5% CO2. Experiments were 

conducted with cells from passages 4-9. Once cells had reached confluence in the T25 

flask, they were detached using trypsin/EDTA (0.1% trypsin and 0.02% EDTA) in 

sterile phosphate-buffered saline (PBS). Detachment of cells was checked using an 

inverted light microscope (Nikon, TMS). The trypsin/EDTA was inactivated using 

phenol red-free DMEM supplemented with 10% FCS (37°C). The cells were then 

resuspended and transferred to a T75 (75 cm2) flask. Once confluence was reached, 

cells were further subcultured into T75 flasks or in 6, 24 or 96 well plates for 

experiments (see section 2.1.3). The media was replaced every 2 days until an 80% 

confluent monolayer was observed.  

 

2.1.2 Determination of fibroblast seeding density 

To seed the requisite number of fibroblasts for experiments (Table 2.1), cell density was 

determined using a Neubauer chamber (Fig 2.1). Confluent fibroblasts at passage 4-8 

were trypsinized and resuspended in DMEM supplemented with 10% FCS. For 

counting, 10 μL of cell suspension was transferred onto a haemocytometer chamber. 

The number of cells overlying four 1 mm2 areas of the haemocytometer were counted 
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using an inverted light microscope (4× objective magnification) and the number of cells 

per millilitre of cell suspension determined from average of cell numbers in all four 

areas using the following formula; concentration = number of cells x 10,000/number of 

squares. The media was replaced every other day until the monolayer was confluent. 

 

Culture plate Seeding area (cm2) Working 

volume/well (ml) 

Average cell yield at 

confluency 

6-well plate 9.5 1.9 – 2.9  9.5 x 105 

24-well plate 1.9 0.38 – 0.57 1.9 x 105 

96-well plate 0.32 0.1 – 0.2 0.32 x 104  

 

Table 2.1 Number of fibroblasts seeded per culture plate 

 

 

                

 
 

 
Figure 2.1 Cell counting using a haemocytometer 
Cells in the corner areas were counted under a microscope. Cell density was calculated from the 

average of the cell numbers in four corner areas using the following formula; concentration = 

number of cells x 10, 000/number of cells. 
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2.1.3 Treatment of human aortic adventitial fibroblasts 

Confluent monolayers of HAoAF were equilibrated in DMEM supplemented with 1% 

FCS, L-glutamine (5 mM), penicillin (100 U/ml) and streptomycin (100 μg/ml) 18-24 h 

prior to incubating with treatments. Treatments (transforming growth factor beta-1 

[TGF-β1, 0-10 ng/ml], sulforaphane [SFN, 0-10 μM] or vehicle [0.01% dimethyl-

sulphoxide, DMSO v/v] were diluted in DMEM supplemented with 1% FCS. Cells 

were incubated with treatments for 0-72 h. In studies investigating migration in HAoAF 

and in studies investigating ROS generation, cells were treated in the absence or 

presence of superoxide dismutase (SOD, 200 U/ml) in addition to treatment with TGF-

β1. Furthermore, in ROS-generation studies, cells were pre-incubated with the   

NAD(P)H oxidase inhibitor, VAS2870 (10 μM) or SOD (200 U/ml) for 30 min and then 

acutely co-treated with TGF-β1 and VAS or SOD for 40 min during measurement of 

ROS generation.  

 

2.2 Determination of protein expression in HAoAF by Western blot          

      analysis 

2.2.1 Extraction of total cellular proteins 

After treatment periods were completed, HAoAF cultured in 6 or 24-well plates were 

gently washed twice with ice cold PBS. Cells were then lysed in 125 μl for 6-well plates 

or 75 μl for 24-well plates of sodium-dodecyl sulphate (SDS) lysis buffer (50 mM Tris 

base pH 6.8, 10% glycerol and 2% SDS and with the addition of 0.02% protease 

inhibitor cocktail [protease inhibitor I and II, see Appendix II]). Lysis buffer used for 

the extraction of phosphorylated proteins contained phosphatase inhibitors I and II (0.1 

% v/v, Sigma-Aldrich, UK, see Appendix II). The cells were incubated on ice for 10 

min and lysates subsequently transferred to microcentrifuge tubes and heated for 5 min 

at 95°C and stored at -20°C until further analysis.  

2.2.2 Extraction of nuclear proteins 

HAoAF were cultured in T75 cm2 flasks until confluent and nuclear protein was 

extracted using a nuclear fraction extraction kit (Active Motif, USA). After treatment 

with TGF-β1 (2.5 or 5 ng/ml), SFN (2.5 or 5 µM) or vehicle control (DMSO 0.01% 

v/v), confluent monolayers were washed with ice cold PBS/phosphatase inhibitor 

solution once and detached by scraping in 3 ml of this buffer. The cell suspension was 

centrifuged at 500 rpm for 5 min and cell pellets were resuspended in 500 µl kit 
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hypotonic buffer and incubated on ice for 15 min in order to rupture cell membranes. 25 

µl of kit detergent was added to the cell pellet and the total solution was vortexed for 10 

s. The cell pellet was centrifuged at 13,000 rpm for 30 s and supernatants containing the 

cytosolic fraction were collected and stored at -80 °C until required for western blot 

analysis. Pellets containing nuclear proteins were resuspended in 50 µl kit complete 

lysis buffer (containing protease inhibitor cocktail, lysis buffer and supplemented with 

10 mM dithiothreitol [DTT]) and subsequently placed on a rotating platform (150 rpm) 

for 30 min. Pellets were then vortexed for 30 s and centrifuged at 13,000 rpm for a 

further 10 min. Nuclear extracts in the supernatant were then collected and stored at -80 

°C until further analysis by western blot or DNA binding ELISA (TransAM, Activ 

Motif, USA). Fractionation of nuclear and cytosolic lysates was confirmed by western 

blot analyses of specific nuclear and cytosolic proteins.  

Protein concentration of nuclear lysates was determined using the BCA protein assay 

(see section 2.2.3).  

 

2.2.3 Determination of protein concentration using the bicinchoninic acid protein  

         assay 

The protein concentration of each sample was determined using the bicinchoninic acid 

(BCA) protein assay as described by Smith et al., 1985. The assay was performed using 

a commercial kit (BCA Protein, Novagen) in a clear 96-well plate. Samples were heated 

at 95 °C for 5 min before being diluted 1:1 with ddH2O. The protein concentration of 

unknown samples was determined by using bovine serum albumin (BSA) protein 

standards (0.15 - 2 mg/ml BSA in distilled water). 5 μl of each standard and 5 μl of SDS 

lysis buffer was added to duplicate wells in order to generate a standard curve. A blank 

duplicate consisted of 5 μl ddH2O and 5 μl SDS lysis buffer.  

200 μl of BCA reagent, made up of reagent A (bicinchoninic acid, sodium carbonate, 

sodium tartrate, and sodium bicarbonate in 0.1 M NaOH, pH 11.25) and reagent B (4% 

cupric sulphate) in a ratio of 50:1 was added to each well. The plate was then covered 

and incubated at 37°C for 30 min before absorbance was measured at 562 nm using a 

plate reader (Spectramax 190, Molecular devices). Data was analysed using the 

SoftMaxPro programme and protein concentrations were calculated based on mean 

absorbance values. In order to ensure an accurate readout was being taken, only 

standard curves with a correlation coefficient of R2 >0.995 were accepted (see Fig. 2.2). 
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Protein concentration of nuclear lysates was determined using the BCA protein assay 

(see above). Due to the high reactivity of reducing agents within the lysis buffer with 

the cupric ions in the BCA reagents, nuclear lysate samples were diluted five-fold in 

ddH2O. Nuclear extracts were then diluted 1:1 with SDS lysis buffer and heated for 5 

min at 95 °C before SDS-PAGE and subsequent assessment of nuclear protein 

expression by western blot analysis.   

 

2.2.4 SDS-PAGE and Western blotting 

Expression of specific proteins in total and nuclear lysates was determined by western 

blot analysis. Samples were separated on either 10% or 12% polyacrylamide minigels 

using the Laemmli SDS-PAGE buffer system (Laemmli, 1970). Polyacrylamide 

minigels were prepared (375 mM Tris, 0.1% SDS at pH 8.8, 0.04% ammonium 

persulphate [APS] and 0.08% N,N,N’,N’-tetramethylethylenediamine [TEMED] ) and 

overlaid with a 3% stacking gel (0.125 M Tris, 0.1% SDS at pH 6.8, 0.05% APS and 

0.2% TEMED). Before loading, all samples were first reduced by the addition of 2-

Mercaptaethanol and 0.2% bromophenol blue and then treated for 5 min at 95°C. 

Samples (10 µg per lane) were loaded onto the stacking gel and a voltage gradient of 

150 volts was applied for 1 h in a mini gel electrophoresis tank (Biorad). Following 

SDS-PAGE, the separated proteins were transferred onto a methanol-activated 

polyvinylidene (PVDF) membrane using a semi-dry electrophoretic transfer cell 

(Biorad) and transfer buffer (25 mM Tris, 192 mM glycine and 10% methanol), as 

described by Towbin et al., 1979, at 20 V for 1.5 h.  

In order to determine whether proteins had been adequately transferred onto 

polyvinylidene difluoride (PVDF) membranes, the membranes were stained using the 

azo dye, Ponceau red (Sigma) and subsequently washed several times in ddH2O in order 

to remove residual staining.  Membranes were then incubated in 5% non-fat dried milk 

in PBS 0.1% Tween for 1 h at room temperature in order to minimise non-specific 

primary antibody binding, followed by washing in PBS 0.1% Tween and incubation 

with appropriate primary antibody diluted in 3% BSA (w/v) in PBS 0.1% Tween (Table 

2.1) for a further hour. After the transfer, the polyacrylamide minigels were stained 

using coomassie blue gel staining solution (50% methanol, 0.05% Coomassie Brilliant  
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Figure 2.2 Protein concentration standard curve 

Bovine serum albumin (BSA) protein standards (0.15-2.0 mg/ml) were added in duplicate to a 

96 well plate. 200 µl of BCA protein assay reagent was added to each well and the plate was 

incubated for 30 min at 37°C. The absorbance read on a plate reader (Spectramax 190, 

Molecular devices) at a wavelength of 562 nm. Correlation coefficient, r2 = 0.996. 
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Blue R and 10% acetic acid) overnight at room temperature. The following day, gels 

were destained using destain solution (7% acetic acid and 5% methanol) in order to 

visualise protein bands. 

After primary antibody incubation, membranes were washed in PBS 0.1% Tween for 15 

min and subsequently for 3 x 5 min washes and incubated with appropriate HRP-

conjugated secondary antibody made up in 3% (w/v) non-fat milk (Table 2.2) for 1 h at 

room temperature. Membranes were washed as before and enhanced 

chemiluminescence was performed in order to visualise protein expression (Thorpe and 

Kricka., 1986). 

 

2.2.5 Enhanced Chemiluminescence Detection 

Enhanced chemiluminescence (ECL) was performed after incubation of the PVDF 

membrane with HRP-conjugated secondary antibody using a commercially available 

detection kit (Pierce). The ECL solution was prepared by diluting the reagents provided 

by the manufacturer to a ratio of 1:1. The membrane was placed on saran wrap and the 

protein side was incubated with ECL solution for 1 min at room temperature. Excess 

ECL solution was removed and the protein bands visualised using the G:Box gel 

imaging system from SynGene (Cambridge, UK). Relative band densities were 

quantified using the densitometry software, ImageJ (version 1.42, National Institutes of 

Health) and the ratio of the protein of interest to the loading control, α-tubulin, for 

whole cell extracts or lamin C for nuclear extracts, was determined and expressed a 

ratio and plotted using Graphpad Prism (v6.0). 
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Target Protein MW (kDa) Species Dilution Supplier Catalog No. 

HO-1 32 Mouse 

mAb 

1:500 BD 

Transduction 

610713 

NQO1 31 Goat pAb 1:500 Santa Cruz Sc-16464 

Nrf2 (c20) 110 Rabbit pAb 1:500 Santa Cruz Sc-722 

Nrf2  66 Rabbit pAb 1:500 Spring 

Biosciences 

E12501 

Smooth muscle α-

actin 

43 Mouse 

mAb 

1:1000 Santa Cruz sc-32251 

Vimentin 57 Rabbit 

mAb 

1:1000 Abcam ab15248 

Caldesmon 120-150 Mouse 

mAb 

1:1000 Millipore mab3576 

Calponin 36 Rabbit 

mAb 

1:1000 Millipore 46794 

Phospho Smad2 

(Ser465/467) 

55-60 Rabbit 

mAb 

1:500 Millipore 04953 

Smad 2/3 50 - 60 Rabbit pAb 1:500 Millipore 07-408 

Phospho-Akt 60 Rabbit 1:500 Cell 

Signalling 

9271S 

pan-Akt 60 Rabbit 1:500 Cell 

Signalling 

4685S 

Phospho-JNK 46, 54 Rabbit 1:500 Cell 

Signalling 

9251L 

pan-JNK 46, 54 Rabbit 1:500 Cell 

Signalling 

9252L 

Phospho-Erk 1/2 44, 42 Rabbit 1:500 Cell 

Signalling 

4370L 

pan-Erk1/2 60 Rabbit 1:500 Cell 

Signalling 

4695 

p38MAPK 43 Rabbit 1:500 Cell 

Signalling 

9212S 

Lamin A/C 69, 62 Goat pAb 1:500 Santa Cruz sc-6254 

α-Tubulin 55 Rat mAb 1:5000 Chemicon mab1864 

 

 
Table 2.2 Primary antibodies used for the determination of specific proteins on 

polyvinylidene membrane. Following semi-dry transfer of proteins onto nitrocellulose 

membrane, the membrane was blocked for 1 h and subsequently incubated with 10 ml of 

appropriate primary antibody, diluted in PBS containing 3% BSA and 0.1% Tween-20, for a 

further hour. The membrane was then washed in PBS 0.1% Tween for 30 min in order to 

remove any non-specific binding and incubated for a further hour with HRP-conjugated 

secondary antibody. Antibodies for phosphorylated proteins were diluted in TBS-T containing 

5% BSA and 0.05% Tween-20. 
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Antibody Dilution Supplier Catalog No. 

Donkey anti-goat 1:2000 Santa Cruz sc-2020 

Goat anti-mouse 1:2000 Autogen abn106 HRP 

Goat anti-rabbit 1:2000 Autogen abn117 HRP 

Goat anti-rat 1:2000 Autogen abn192 HRP 

 
Table 2.3 Secondary antibodies used for the determination of specific proteins on 

polyvinylidene membrane.  Following incubation with primary antibody for 1 h, the 

membrane was washed in PBS 0.1% Tween for 30 min and subsequently incubated for a further 

hour with HRP-conjugated secondary antibody. After incubation with secondary antibody, the 

membrane was washed for 30 min to remove any non-specific binding and analysed using 

enhanced chemiluminescence. 

 

 

2.3 Tetrazolium assay to measure HAoAF viability 

The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was 

used as an index to measure HAoAF viability. Mitochondrial dehydrogenases in viable 

cells reduce the tetrazolium dye, MTT to the water insoluble dark blue/purple formazan 

(Denizot and Lang., 1986). A solubilisation solution, such as dimethyl sulphoxide 

(DMSO) is added to dissolve the insoluble formazan solution to give a visible dark 

purple colour which acts as an indicator of cell viability and which can be quantified by 

measuring the intensity of absorbance and correlating it with the mitochondrial 

dehydrogenase activity and cell viability.  

Confluent cultures of HAoAF were seeded at a density of 1x103 cells per well in a 96 

well plate in DMEM supplemented with 10% FCS. Cells were equilibrated in DMEM 

supplemented with 1 % FCS 18 h prior to treatment with TGF-β1 (0 – 5 ng/ml), SFN 

(2.5 – 10 μM) or H2O2 (50 – 100 μM) for 24 h. Cells were treated in 4 replicate wells in 

each experiment. After this incubation period, the treatment conditions were aspirated 

and 50 μl of 10% MTT solution (made up in DMEM supplemented with 1% FCS) was 

dispensed into each well. The cells were then further incubated at 37°/5% CO2 for 4 h 

after which 200 μl of DMSO was added to each well and left on a rotating platform for 

10-15 min to aid dissolution of the formazan crystals. The absorbance was then 

measured at 562 nm using a spectrophotometer (SpectraMax 190, Molecular Devices) 

and data was expressed as a percentage of the absorbance in untreated control cells. 

 

http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Thiazole
http://en.wikipedia.org/wiki/Phenyl
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 2.4 Measurement of nuclear Nrf2 accumulation and DNA binding 

To investigate the effect of TGF-β1 on the transcription factor, Nrf2, and its nuclear 

accumulation in HAoAF and the Nrf2 mediated antioxidant gene activation was 

determined by western blotting, immunofluorescence (He et al., 2009; Churchman et 

al., 2009) and a DNA binding ELISA (TransAM, Activ Motif, USA).  

 

2.4.1 DNA binding ELISA for Nrf-2-DNA binding activity 

The capacity of nuclear Nrf2 to bind ARE sequences was quantified using a DNA 

binding ELISA kit (TransAM, Active Motif, USA) in order to detect and quantify Nrf2 

activation. Oligonucleotides containing the ARE consensus binding site (5’-

GTCACAGTGACTCAGCAGAATCTG -3’) immobilized on an ELISA plate bind the 

active form of Nrf2 contained in the nuclear extracts. Following incubation of the 

nuclear extracts with the immobilized oligonucleotide, a primary antibody used to 

detect Nrf2 upon DNA binding is added to the wells followed by the addition of an 

HRP-conjugated secondary antibody. The result is colorimetric change that can be 

quantified by spectrophotometry at 450 nm (Spectramax 190, Molecular devices).  

HAoAF nuclear extracts were thawed at room temperature and subsequently placed on 

ice. As recommended by the manufacturers protocol, 7.5 µg of nuclear extract diluted in 

complete lysis buffer (provided by the kit) to give a total volume of 10 μl was added to 

the ELISA plate in duplicate followed by the addition of 40 µl complete binding buffer. 

In addition, 10 µl complete lysis buffer as blank and 7.5 µg of Nrf2-transfected COS 

(CV-1 (simian) in Origin, and carrying the SV40 genetic material) nuclear extract 

(provided by the kit) and used as a positive control were also assessed in addition to 

HAoAF nuclear extracts.  

After incubation of nuclear extracts with immobilized oligonucleotides at room 

temperature for 1 h with mild agitation, the wells were washed twice with washing 

buffer (provided with the kit) and incubated with Nrf2 specific primary antibody 

(1:1000 diluted in antibody binding buffer, 100 µl/well) at room temperature without 

agitation. HRP-conjugated secondary antibody (1:1000 diluted in antibody binding 

buffer, 100 µl/well) was then added to the wells and incubated for a further 1 h. 

Subsequent to antibody incubations, wells were washed twice using buffer and 

incubated with developing solution (provided with the kit, 100 µl/well) for ~15 min in 

the dark until a colour change from yellow to medium-dark blue was observed. A stop 
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solution (provided with the kit, 100 µl/well) was then immediately added to the wells in 

order to prevent further colour development.  The absorbance was measured at 450 nm 

using a spectrophotometer (Spectramax 190, Molecular devices) within 5 min of the 

addition of the stop solution with a reference reading taken at 655 nm. All readings 

were corrected for background.  

 

2.4.2 Immunofluorescent staining of Nrf2 in HAoAF 

To evaluate Nrf2 nuclear translocation, cells were incubated with TGF-β1 (5 ng/ml) or 

SFN (5 μM) for 1, 2 or 4 h, washed twice with PBS, and fixed with 4% formaldehyde 

for 30 min at room temperature. Cells were left in permeabilization solution (0.1% 

Triton X-100 in PBS) for 10 min followed by antibody blocking solution (3% BSA in 

PBS) for 30 min, and subsequent overnight incubation with primary antibody anti-Nrf2 

(rabbit, 1:400; Santa Cruz Biotechnologies, Santa Cruz, CA, USA) diluted in PBS (1% 

BSA) at 4 °C. After being washed with PBS, the cells were incubated with Alexa 488-

conjugated secondary antibody (goat anti-rabbit IgG–488; 1:200; Invitrogen, Paisley, 

UK) for 2 h at room temperature and then washed twice with PBS. In order to viualise 

F-actin, cells were further incubated with rhodamine phalloidin conjugated to 

tetramethylrhodamine (TRITC, 200 nM) diluted in PBS for 1 h at room temperature. 

Coverslips were mounted upside down onto SuperFrost® microscope slides (Menzel 

Glaser, Braunschweig, Germany) using Vectasheild® Mounting Medium containing 

4',6-Diamidino-2-Phenylindole, Dilactate (DAPI) for nuclear staining. Coverslips were 

viewed using a fluorescent inverted microscope (Nikon Diaphot adapted for 

fluorescence, Japan) fitted with appropriate filters and linked to image processing 

software (Hamamatsu HC Image Live v1.2 , Japan). 
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Figure 2.3 DNA binding ELISA assay for the determination of nuclear Nrf2 activity 

Nuclear lysates containing activated Nrf2 from HAoAF were incubated with the ELISA plate 

coated with immobilized oligonucleotides containing an ARE sequence. Following incubation, 

primary antibody which recognises epitopes on Nrf2 upon DNA binding was added to the wells 

followed by the addition of HRP conjugated secondary antibody. The colorimetric readout was 

detected at 450 nm using a spectrophotometer and indicated the levels of active Nrf2 in the 

nuclear extracts (schematic taken from manufacturer’s manual). 
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2.5 Expression of marker proteins to characterise HAoAF phenotype 

2.5.1 Immunfluorescent staining of human aortic adventitial fibroblasts 

Cultures of human aortic adventitial fibroblasts were stained for α- smooth muscle actin 

(Santa Cruz) and vimentin (Abcam) in order to determine their phenotype. 

Immunofluorescent staining was performed following treatment of cells with control 

(DMEM supplemented with 1% FCS) or TGF-β1 (2.5 – 5 ng/ml, 0-24 h). Cells were 

cultured on glass coverslips (VWR International) in 6 well plates. Cells were adapted in 

DMEM supplemented with 1% FCS for 18-24 h prior to commencement of 

treatment(s). Following treatment with TGF-β1 for appropriate time period, treatments 

were aspirated and cells were gently washed twice with PBS (37°C) and fixed with 4% 

formaldehyde in PBS (1 ml/well) for 30 min at room temperature. Following 

formaldehyde fixation, cells were gently washed again twice with PBS and 

permeabilised with Triton X-100 (0.1 % in PBS) for 10 min at room temperature. In 

order to minimise non-specific primary antibody binding, cells were incubated with 

blocking buffer containing 3% BSA in PBS for 30 min at room temperature before 

being incubated with appropriate primary antibody in 1% BSA for 4 h at room 

temperature. Following incubation of cells with primary antibody (α- smooth muscle 

actin or vimentin), cells were incubated with an Alexafluor 488 labelled secondary 

antibody (1:400, ex/em 495/519 nm, Invitrogen) for 2 h at room temperature in the dark 

and subsequently washed. To stain for F-actin fibres, cells were stained with rhodamine 

phalloidin conjugated to tetramethylrhodamine (TRITC, 200 nM)  (200 nm, Sigma 

Aldrich) diluted in PBS for 1 h at room temperature. Coverslips were mounted upside 

down onto SuperFrost® microscope slides (Menzel Glaser, Braunschweig, Germany) 

using Vectasheild® Mounting Medium containing 4',6-Diamidino-2-

Phenylindole, Dilactate (DAPI) for nuclear staining. Coverslips were viewed using a 

fluorescent inverted microscope (Nikon Diaphot adapted for fluorescence, Japan) fitted 

with appropriate filters and linked to image processing software (Hamamatsu HC Image 

Live v1.2 , Japan). 
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2.6 Determination of intracellular glutathione  

2.6.1 Cell extraction for glutathione assay 

After incubation with treatments (see section 2.1.3), medium was aspirated and cells 

were washed twice with ice-cold PBS and incubated with 400 μl/well of 6.5% 

trichloroacetic acid (TCA) to lyse cells. The plates were then left on ice and gently 

agitated occasionally to ensure even coverage of the cells with 6.5% TCA. After 10 

min, supernatant containing GSH was collected and transferred for storage at -80°C for 

further analyses. The remaining cells in the well plate were solubilised by adding 300 μl 

of 0.5 M NaOH to each of the wells and left on the bench for 2-4 h before storage at -

20°C until further required for analysis of protein content. Protein concentrations were 

determined using the BCA assay (Pierce) as previously described in section 2.3.1 to 

correlate with the GSH levels. 

 

2.6.2 Determination of intracellular reduced glutathione by fluorometric assay 

Intracellular glutathione levels were measured as originally described by Hissin & Hilf 

(1976) and as modified by Senft et al., (2000). Samples stored at -80°C, previously 

extracted as described above, were defrosted on ice for determination of glutathione 

(GSH) content using a fluorometric assay. Conjugation of total GSH to a fluorophore 

reagent O-Phthaldialdehyde (OPA) leads to the formation of a highly fluorescent 

isoindole (Senft et al., 2000). 

Microcentrifuge tubes containing the extracted sample in 6.5% TCA or GSH standards 

prepared in 6.5% TCA (0-30 nmol) were vortex mixed and 7.5 μl each added to 277.5 

μl of phosphate-EDTA (0.1 mol-1 KH2PO4, 5 nmol -1 EDTA, pH>8) in triplicate to a 

black 96 well plate. This was followed by the addition of 15 μl of freshly prepared 0.1% 

w/v o-Phthaldialdehyde (OPA, Sigma-Aldrich, UK) in methanol which fluoresces upon 

reacting with the GSH in the cell extracts. The plate was incubated in the dark for 25 

min at room temperature and fluorescence measured at 350 nm excitation and 420 nm 

emission in a microtitre plate reader (Hidex Chameleon V). Glutathione concentrations 

in each sample were determined by correlating with the glutathione standard curve 

obtained (Fig 2.4) and normalised for protein content in each well to express glutathione 

concentration as nmol/mg protein. 
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Figure 2.4 Representative GSH standard curve 

Fluorescence readings of the GSH standards were expressed relative to their known 

concentrations (0-30 μM) to generate a standard curve. The equation obtained from the standard 

curve was then used to calculate the concentration of GSH in samples read on the same plate 

with the standards. Only the standard curves with R2 > 0.95 were used for experiments. 
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2.7 Reactive oxygen species detection 

2.7.1 Determination of reactive oxygen species generation using luminescence 

Detection of reactive oxygen species (ROS) generation in live cells was carried out 

using the luminol analogue, LO12 (20 μM, Wako Chemicals, USA), which has been 

shown to detect extracellular superoxide generation (Daiber et al., 2004). Cells were 

seeded in sterile white 96 well plates with a clear-bottomed base and equilibrated in 

phenol red-free DMEM supplemented with 1% FCS 18-24 h prior to treatment. All 

treatments were in quadruplicate and were diluted in Krebs buffer (131 mM NaCl, 5.6 

mM KCl, 25mM NaHCO3, 1mM NaH2PO4.H2O, 2.5mM CaCl2, 1mM MgCl2, 5mM 

HEPES, 5mM  glucose and 100uM L-arginine) and the plate was read in a 

luminescence plate reader (Hidex Chameleon V) for 1 sec/well over 40 min at 37°C. 

For long-term treatments, cells were incubated with treatments diluted in phenol red-

free DMEM supplemented with 1% FCS and after the appropriate incubation times, the 

treatments were removed and replaced with the same treatment conditions diluted in 

Krebs buffer and subsequently luminescence was measured over 40 min. Luminescence 

was determined as mean light units (MLU) and were indicative of superoxide 

generation. After readings were obtained, the Krebs buffer was removed from the plate 

and replaced with 50 µl NaOH (0.5 M) overnight at room temperature for the 

determination of protein (µg) content per well. The BCA protein assay was performed 

(see section 2.3.1) and chemiluminescence readings were corrected for protein content 

of each well.  An average of the MLU for each condition was taken in order to 

determine the changes in superoxide in response to various treatments. 
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2.8 Transfection of HAoAF with Nrf2 siRNA 

In order to determine whether the transcription factor, Nrf2 is responsible for the 

upregulation of specific antioxidant proteins in response to various treatments, cells 

were transfected with short interfering (siRNA) targeted against Nrf2 (Piao et al., 2012) 

and then challenged with either TGF-β1 or SFN. Short RNAs area group of intracellular 

regulatory RNAs (usually <30 bp) including siRNA, micro interfering (miRNA) and 

repeat associated short interfering (rasiRNA) (Hannon and Rossi, 2004; Meister and 

Tuschl, 2004). The mechanism of small RNA interference is depicted in Fig 2.6. once 

delivered into mammalian cells, double strand short RNA templates undergo several 

maturation steps to form a single strand short RNA. This single strand short RNA is 

complementary to the target mRNA and its binding initiates the degradation of the 

target mRNA, mediated by the RNA-induced silencing complex (RISC) (Meister and 

Hannon, 2004). Specific gene silencing provides an important method to investigate the 

downstream effects of the protein of interest. In the current study, comparison of 

antioxidant responses in HAoAF to TGF-β1 or SFN were determined in cells 

transfected with siRNA targeted against Nrf2. Whole cell protein lysates were then 

collected and protein expression determined using SDS-PAGE and western blot 

analysis. 

Cells were seeded at a density of 50,000 cells per well in a 24-well plate and were 

maintained in phenol red-free DMEM supplemented with 10 % FCS. Cells were 

allowed to adhere for 24 h and were subsequently transfected with siRNA.  2 μl of 

DharmaFECT4® (Dharmacon, Thermo Scientific, UK) was diluted into 498 μl of 

serum-free Optim-MEM® (Roche). Scrambled and Nrf2 siRNA was also prepared by 

diluting 8 μl scrambled siRNA or 8 μl Nrf2 siRNA with 100 μl Optim-MEM® to give a 

final concentration of 4 picomoles/well. The transfection reagent was then added to the 

scrambled and Nrf2 siRNA tubes and incubated for 20 min to allow the siRNA to form 

a complex with the transfection reagent. The siRNA:transfection complex was then 

added drop-wise to wells containing phenol red-free DMEM supplemented with 10% 

FCS and the plate was gently rotated to ensure equal distribution of siRNA over the 

centre surface of the well. Eight hours following transfection, the transfection mixture 

was aspirated from wells and replaced with DMEM supplemented with 1% FCS for 

overnight equilibration. Cells were then treated with TGF-β1 or SFN for 8 h. Control 

wells contained only DMEM supplemented with 1% FCS. Following incubation with 

appropriate treatment, culture medium was aspirated and cells were gently washed twice 
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with ice cold PBS (4°C). Cells were lysed in 75 μl SDS-lysis buffer and the collected 

sample was boiled at 95°C for 5 min. Samples were stored at -20°C until required for 

analysis. 

 

 

 

 

Figure 2.5 Gene silencing by short RNA in mammalian cells  

Exogenous short RNAs such as dsRNA (siRNA) and short hairpin RNA (shRNA) and 

endogenous miRNA in mammalian cells undergo the same maturation process to a single strand 

small RNAwhich is complementary to the target mRNA. The binding of small RNA to the 

target mRNA initiates its degradation mediated by RNA-induced silencing complex (RISC). 

Figure adapted from Hannon and Rossi, 2004.  
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2.9 Quantitative reverse transcription polymerase chain reaction  

      (qRT-PCR) for detection of mRNA and miRNA levels in HAoAF 

Levels of messenger RNA and microRNA of genes of interest in HAoAF were 

determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) 

and mRNA and miRNA was extracted using the Qiagen miRNeasy spin column kit and 

the RNeasy Plus mini kit respectively, following the manufacturer’s protocol. All 

experimental procedures were carried out using DNase and RNase-free consumables.  

 

2.9.1 Extraction and purification of total RNA 

Total RNA was extracted from cells using the miRNeasy spin column kit (Qiagen) 

following the manufacturers protocol. The kit provided all materials required for the 

isolation of total RNA <200 nucleotides using spin columns and their patented phenol-

guanidine-based QIAzol Lysis Reagent. All experimental procedures were carried out 

using DNase and RNase-free consumables. Briefly, after adapting cells to DMEM 

supplemented with 1% FCS for 18-24 h, confluent HAoAF were treated with either 

TGF-β1 (0-5ng/ml) or SFN (0-5 µM) for 4 or 8 h. Following incubation, cells were 

washed with ice-cold PBS twice prior to the addition of QiaZol lysis reagent (300 

µl/well for 6 well plate) and incubated on ice for 10 min before being transferred to 

RNase-free microcentrifuge tubes for homogenizing by vortex-mixing. The homogenate 

was then incubated at room temperature (15-25°C) for 5 min followed by the addition 

of 140 µl chloroform (Sigma) after which it was shaken vigorously for 15 s and 

incubated at room temperature for 2-3 min. The homogenate was then spun down and 

the resulting precipitated RNA was sequentially purified and eluted using the spin 

column procedure where the sample was loaded onto the spin column and spun down 

followed by several wash steps resulting in the adsorption of the RNA onto the silica gel 

membrane. Total RNA was then eluted in nuclease-free water and RNA concentration 

was determined by using a spectrophotometer.  

 

2.9.2 Extraction and purification of microRNA 

Total miRNA was purified from total RNA in cells using the RNeasy Plus mini kit 

(Qiagen) following the manufacturers protocol. The kit provided all materials for the 

isolation of small RNA (containing miRNA, ~22 nucelotides in length) using gDNA 

Eliminator spin columns. All experimental procedures were carried out using DNase 

and RNase-free consumables. Briefly, after adapting cells to DMEM supplemented with 
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1% FCS for 18-24 h, confluent HAoAF were incubated with either DMEM 

supplemented with 1% FCS (control), TGF-β1 (5ng/ml), HNE (10 µM) or glucose 

oxidase (2.5 U/ml), for 6 h. Following incubation, cells were washed with ice-cold PBS 

twice prior to the addition of Buffer RLT Plus (350 µl/well for 6 well plate) before 

disrupting and homogenizing the sample. The homogenate transferred to a gDNA 

Eliminator spin column and centrifuged for 30 s at >10,000 rpm. 1.5 volumes of 70% 

ethanol was added to the flow-through and mixed thoroughly by vortexing. The sample, 

including any precipitate that may have formed, was then transferred to an RNeasy spin 

column and centrifuged for 15 s at >10,000 resulting in the adsorption of the RNA onto 

the silica gel membrane. 0.65 volumes of 100% ethanol was added to the flow-through 

and mixed thoroughly by vortexing before transferring to a RNeasy MiniElute spin 

column and centrifuging for 15 s at >10,000 rpm. Following a wash step, 500 µl of 80% 

ethanol was added to the RNeasy MiniElute spin column and then spun for 15 s at 

>10,000 rpm. The flow-through was discarded and the RNeasy MiniElute spin column 

was placed in a 1.5 ml collection tube. Small RNA (containing miRNA) was then eluted 

in RNase-free water.  

 

2.9.3 Measurement of RNA quality 

RNA concentration in the extract (1 µl) was determined by absorbance read at 260 nm 

(A260) using a Nanodrop ND-1000 spectrophotometer (NanoDrop Technologies, USA). 

Concentrations (ng/µl) were calculated based on the assumption that 1 unit absorbance 

at 260 nm represents 40 ng/µl of mRNA in the sample. RNA purity was checked by the 

ratio of absorbance at 260 nm to 280 nm (A260/A280). A pure RNA extraction with 

minimum genomic DNA contamination is indicated by a ratio of ~2. The ratio of 18S to 

28S (ribosomal peaks) was used as a reference for RNA integrity. Only samples with 

A260/A280 > 2 were used in this study according to recent guidelines (Bustin et al., 

2009). 

 

2.9.4 Reverse Transcription 

In order to perform qRT-PCR, isolated RNA was first transcribed into cDNA using the 

High Capacity RNA-to-cDNA Kit from Applied Biosystems according to the 

manufacturer’s instructions. The kit provides removal of any contaminating genomic 

DNA as well as the achievement of a high yield of cDNA. 500 ng of extracted RNA 

was used for RT and added to 10 µl of RT mix. The total mixture was made up to 20 µl 

with RNase-free water and RT was run using a thermal cycler (Applied Biosystems) 
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pre-set according to manufacturers guidelines. The cycle was as follows; 37°C for 60 

min, 95°C for 5 min and a subsequent hold at 4°C for 5 min. Following RT, stock 

concentration was then diluted 1 in 5 for qRT-PCR.  

 

2.9.5 qRT-PCR 

cDNA in the RT samples was assessed by real time quantitative polymerase chain 

reaction using a SyberGreen-based PCR mix (Sensi-Mix® SYBR-green no ROX, 

Bioline). A master mix containing forward primer, reverse primer, Quantifast SYBR 

green and nuclease free H2O was first prepared on ice (see 2.9.1 composition) and 

added to 100 well gene discs (Qiagen) using an automated robot, CAS-1200  (Corbett 

Life Sciences, Australia) into tubes containing 2 µl of sample cDNA  or of standard 

cDNA (10-1 - 10-9 copies of target genes). On each disc, 2 blank (nuclease free water 

only) and two RT negative samples were also assessed to check contamination of 

genomic DNA. Loaded discs were run for PCR amplification in a Corbett Rotorgene 

which determines copy numbers via relative fluorescence generated by SYBR-green 

following its excitation. The polymerase enzyme in the samples was activated at 95°C 

for 10 min, followed by 45 cycles of 95°C for 10 s (denaturing), 57°C for 15 s (primer 

annealing) and at 72°C for 5 s (amplification). To assess the quality and efficiency of 

the PCR reaction, a melting point analysis was carried out after each run to distinguish 

target amplicons from PCR artefacts such as misprimed products; samples were heated 

from 65°C to 95°C at 1 degree/cycle. Rotorgene PC software (Corbett, UK) was used to 

evaluate PCR efficiency and transform the absorbance values to a logarithmic scale 

which allowed gene copy number in samples to be obtained, relative to the standard 

curve. The copy number of target genes was adjusted relative to the geometric mean of 

3 stably expressed house-keeping genes: ribosomal protein L13a (RPL13A), succinate 

dehydrogenase unit complex A (SDHA) and TATABOX (thymine, adenine, thymine, 

adenine box). The stability of these genes was determined as an M value using GeNorm 

Excel software (http://medgen.ugen.be/ivdesomp/genorm/), which analyses the 

variation in the expression of a reference gene compared with that of other reference 

genes (Vandesomplele et al., 2002). The M value is inversely proportional to the 

variation and any reference gene with an M value < 1.5 was rejected for use for the 

pairing analysis, with the final combination of 3 reference genes having the lowest M 

value indicating their relative stability in this cell system. A normalisation factor for 

each sample was then calculated by the software based on the geometric mean of these 

reference genes, the expression of target genes (copy numbers) in each sample was then 

http://medgen.ugen.be/ivdesomp/genorm/
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corrected by the corresponding normalisation factor using the Rotorgene program to 

minimize non-biological variations between the samples (Vandesompele et al., 2002; 

Dikalov et al., 2007).  

 

Reagent Volume (μl) 

Forward primer 0.4 

Reverse primer 0.4 

SYBR-Green 5 

H2O 3.6 

cDNA 1 

Total 10 

 

Table 2.4 Relative components of mastermix used for RT-qPCR 

 

During PCR, the number of cycles required to enter the exponential phase of the PCR is 

dependent upon the initial amount of target sequence at the beginning of the reaction 

and shifts in PCR curves are expressed as the differences between the crossing 

thresholds (CT) between each sample (Guenin et al., 2008). Following the assessment 

of PCR efficiency (Fig 2.5), which is specific for each primer pair and therefore 

indicative of the suitability of the primers chosen, the difference between the expression 

of a target gene between two samples can be calculated and then normalized to a 

reference gene. 
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    A 

 

 

B 

 

 

Figure 2.6 Representative qPCR standards to determine gene copies in samples 

(A) Logarithmic-transformed amplification profile of a typical standard curve, demonstrating 

that gene copy number is inversely proportional to the point at which the amplification plot 

crosses the cycle number threshold. (B) Logarithmic-transformation of the standard curve 

plotting log concentration against the cycle number in which the amplification plot (A) crosses 

the threshold. Linear regression analysis shows the correlation coefficient (R2) and the 

efficiency of the reaction, which gives a measure of both the accuracy of the qPCR step and the 

suitability of the primers chosen.  
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2.10 Time-lapse Video Microscopy 

Time-lapse video microscopy was performed in cells cultured in 12 well plates. Cells 

were seeded in phenol red-free DMEM supplemented with 10% FCS at a density of 

30,000 cells/well and allowed to adhere for 24 h. Culture media was changed to phenol 

red-free DMEM supplemented with 1% FCS 18 h prior to incubation with the 

treatments (see Methods section 2.1.3) in DMEM supplemented with 1% FCS. Some 

cells were incubated with SOD (200 U/ml) for 30 min prior to the commencement of 

imaging. iMultifield live cell imaging was performed on a Zeiss Axiovert 100 

microscope using an automated scanning stage. Phase contrast images were acquired by 

using a 10x/0.25 N-Achroplan phase contrast objective. Images were collected using a 

Sensicam (PCO Cook) charge coupled device (CCD) camera. A frame was captured 

every 10 min over 8 h using AQM acquisition software (Andor Bioimaging, Belfast, 

U.K.). Nuclei of migrating cells from the time-lapse sequence were tracked using 

ImageJ software. Movement of the nuclei was taken as an indication of the distance 

migrated per cell and the average of the total distance travelled per cell was calculated. 

All cells in a particular field were tracked and the average distance of all cells was 

determined in that particular field of view and taken as the average distance migrated in 

response to the treatment administered. Migration speed and distance was quantified by 

importing cell-tracking data into Excel and calculating the average distance migrated 

per treatment group. 
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Figure 2.7 Representative image of cell tracking using ImageJ  

Cells migration was analysed using ImageJ. Tracking the movement of nuclei was used as an 

indicator of cell migration and all cells in the field of view were tracked over 8 h. Frame (A) is 

the first frame taken from a single well and (B), (C) and (D) are subsequent frames over an 8 h 

period. Circles indicate the movement of the nucleus of a single cell being tracked. Tracking 

data was then imported into Excel and the total distance migrated by cells was calculated.   
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2.11 Statistical analysis 

All data are expressed as means ± standard error of the mean (SEM) from a minimum of 

at least 3 different experiments, unless stated otherwise. Statistical variance from the 

mean was determined using the normal distribution, tested using a two-tailed students t-

test in Microsoft Excel. Confidence limits were established using an unpaired Student’s 

t-test or one-way analysis of variance (ANOVA) with the Tukey’s post hoc correction 

for multiple comparisons, to give a statistical significance between data sets established 

at p < 0.05 to p < 0.001. All results that are statistically significant are marked, and in 

the absence of such indication can be assumed to not be significant.  
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CHAPTER 3: Phenotypic characterisation of human aortic adventitial 

fibroblasts 
 

 

3.1 Introduction 

The adventitial fibroblast, previously assumed to be an inert cell type, whose main role 

was thought to provide support and contribute to the structure of the outermost layer of 

the blood vessel, is now a known key player in the pathology of vascular diseases. First 

described in experimental wound healing (Gabbiani et al., 1971), fibroblast to 

myofibroblast differentiation is initiated during tissue injury, when the local release of 

cytokines, in particular, TGF-β1 (Eyden, 2004) results in the activation of fibroblasts, 

which, as a consequence, acquire a migrating (Coen et al., 2011) and contractile 

phenotype (Desmouliere et al., 2005), typically seen after stretch injury due to balloon 

angioplasty and during wound healing. This differentiation process is characterised by 

the acquisition of a contractile apparatus (Desmouliere et al., 2005; Gabbiani et al., 

1971) during which the de novo expression of the cytoskeletal proteins, α-smooth 

muscle actin and vimentin, occurs (Enzerink and Vaheri, 2011; Tomasek et al., 2002). 

These series of events eventually lead to the synthesis of several components of ECM 

and the organisation of a mechanically supportive structure, which is able to produce 

significant contractile force (Hinz et al., 2007; Tomasek et al., 2002). 

 

There is much evidence to implicate of TGF-β1 in the pathogenesis of fibrosis during 

disease and wound healing. Release of biologically active TGF-β1 enhances the 

synthesis of extracellular matrix (ECM) proteins, exerting its effects via the intracellular 

Smad proteins, which have been postulated to play an essential role in ECM protein 

gene expression (Dobaczewski et al., 2010) as demonstrated in a mouse model of 

bleomycin-induced pulmonary fibrosis, where Smad3 deficiency attenuated collagen 

deposition (Zhao et al., 2002). Similar results were observed in a murine model of renal 

tubulointerstitial fibrosis induced by unilateral ureteral obstruction  (Sato et a., 2003), 

where the TGF-β1/Smad3 signalling pathway was disrupted resulting in a decrease in 

the levels of renal fibrosis and epithelial to mesenchymal transition.  

 

The incorporation of α-smooth muscle actin into stress fibres augments the contractile 

activity of fibroblastic cells and is a pivotal step in the contraction phase of connective 

tissue remodelling (Hinz et al., 2001); interfering with α- smooth muscle actin 

significantly reduces tension generated by myofibroblasts (Hinz et al., 2002). 
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Furthermore, in the infarct area of post-myocardial infarcted heart, there was an 

upregulation of α-smooth muscle actin protein expression when hearts were subjected to 

pressure or volume overload (Santiago et al., 2010; Borg et al., 1996).  

 

In addition to α-smooth muscle actin, a second cytoskeletal protein is expressed by 

myofibroblasts. Vimentin, first described as being the only intermediate filament 

protein to be expressed by myofibroblasts (Schurch et al., 1984), and initially a widely 

used marker for the identification of myofibroblast phenotype (Coulson-Thomas et al., 

2010; de Matos et al., 2010; Firth et al., 2010; Ji et al., 2010; Touhami et al., 2005; 

Muchaneta-Kubara et al., 1997), is expressed by mesenchymal cells (Shi et al., 1996). 

The primary function of vimentin is to provide structure to cells and is thought to be 

potentially involved in cell movement (Strauss et al., 2000). Several studies have 

reported an increase in the expression of vimentin in myofibroblasts (Ji et al., 2010). In 

tissue from patients with chronic thromboembolic pulmonary hypertension, there was 

an increase in vimentin in areas of fibrotic thrombus formation with resident fibroblasts 

expressing vimentin and exhibiting a myofibroblast phenotype (Firth et al., 2010). In 

addition to this, thoracic aortas transplanted into the abdominal aortas of Wistar rats in 

order to assess the role of adventitial fibroblasts in transplant vasculopathy, revealed 

adventitial fibroblast activation and differentiation into myofibroblasts was 

characterized by immunostaining of vimentin and α-smooth muscle actin (Ji et al., 

2010). Furthermore, the treatment of pulpal fibroblasts with TGF-β1 enhanced the 

expression of vimentin and resulted in a contractile myofibroblast phenotype (Martinez 

et al., 2007). Therefore this chapter aimed to determine the phenotype of HAoAF in 

culture by assessing the expression of these two myofibroblast markers and the response 

of this cell type to exogenous TGF-β1 treatment. 

 

TGF-β1 is known to be promitogenic in several different cell types (Bhowmick et al., 

2003), it is also a potent growth inhibitor in epithelial and hematopoietic cells (Akhurst, 

2002), whilst in fibroblasts it causes proliferation and migration (Strutz et al., 2001). 

The ability of TGF-β1 to cause proliferation and migration in some cell types and 

growth inhibition in others is still only partly understood; its growth arrest properties 

are though to be attributed to its association with a group of proteins known as cdks 

(Strutz et al., 2001) which associate with cell-cycle regulating cyclins. These proteins 

form a dimer which drives cell cycle progression and can be inhibited by the action of 

cdk inhibitors that can be mediated by TGF-β1. In addition to this, TGF-β1 also opposes 
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the effects of genes that affect vascular remodelling (Bobik, 2006), mitogenic growth 

factors and proinflammatory cytokines; the binding of Smad3 to the CCAT/enhancer-

binding protein-β and reducing the expression of CCAT/enhancer-binding protein-δ 

results in the activation of vascular smooth muscle cells (VSMC; Feinberg at el., 2005). 

Despite evidence to suggest that TGF-β1 can act as a growth inhibitor, it is well 

established that its autocrine and paracrine action on VSMC during neointima formation 

results in their activation and proliferation (Kundi et al., 2009). At low concentrations it 

can stimulate proliferation of VSMC by inducing platelet-derived growth factor (PDGF, 

Kundi et al., 2009)  

 

The effects of TGF-β1 on HAoAF are poorly defined in the literature, and due to the 

pleiotropic nature of this growth factor it is important to establish the various actions it 

may have on this cell type in terms of phenotype, proliferation, toxicity and activation 

of downstream signalling.  
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3.2 Morphology of HAoAF  

3.2.1 Expression of α-smooth muscle actin in HAoAF 

α-Smooth muscle actin is a widely used marker for the characterisation of fibroblast to 

myofibroblast differentiation, (Hinz et al., 2012; Dabiri et al., 2006; Cucoranu et al., 

2005; Rocic and Lucchesi, 2005). In order to determine whether exposure to TGF-β1 

contributes to HAoAF differentiation, HAoAF were treated with TGF-β1 (0-5 ng/ml, 

12-24 h) and subsequently incubated with a primary antibody against the cytoskeletal 

protein α-smooth muscle actin and a secondary fluorescent antibody (see Methods 

section 2.5). Immunofluorescence analysis revealed that there was basal expression of 

α-smooth muscle actin in untreated cultured HAoAF (Fig 3.1, panel D). This expression 

was not significantly increased following treatment of cells with TGF-β1 for 12 or 24 h 

(Fig 3.1, panel E and F), indicating that these cells had undergone differentiation in 

culture and were exhibiting a myofibroblast phenotype. 

 

In addition to immunofluorescence analysis, to confirm that HAoAF expressed α-

smooth muscle actin, Western blot analysis of protein expression was carried out in 

cells treated with TGF-β1 (0-5 ng/ml,) for 4-72 h to assess the long-term effects of 

TGF-β1 on HAoAF phenotype. Confluent HAoAF were equilibrated in DMEM 

supplemented with 1% FCS 18 h prior to treatment with TGF- β1. Subsequently, cells 

were lysed and total cell protein was extracted and assessed using SDS-PAGE and 

Western blot analysis (see Methods section 2.2). Results revealed that there was a basal 

expression of α-smooth muscle actin in HAoAF and that this expression was not 

significantly augmented following exposure to TGF-β1 (0 – 5 ng/ml) over 72 h (Fig 3.2 

A & B). This finding further confirms the results from immunofluorescence analysis 

and suggests that HAoAF had acquired a myofibroblast phenotype in vitro. In addition, 

cells treated with SFN exhibited no change in the expression of α-smooth muscle actin, 

suggesting that their phenotype did not alter in response to this isothiocyanate (Fig 3.2, 

C). 
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A 

 

 

B 

 

 

C 

                               

 

 

Figure 3.2 α- Smooth muscle actin protein expression in HAoAF after treatment with 
TGF-β1. Confluent HAoAF were equilibrated in phenol red-free DMEM supplemented with 

1% FCS and subsequently treated with TGF-β1 (0 -10 ng/ml) for 4 - 72 h prior to whole cell 

protein extraction. α-Smooth muscle actin protein expression levels in these samples was 

assessed using SDS-PAGE and Western blot analysis (A and B). Results were analysed by 

densitometry with smooth muscle α-actin corrected for the loading control, α-Tubulin (C). 

Values denote means ± SEM, n = 3 independent experiments.   
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Figure 3.3 α-Smooth muscle actin protein expression in HAoAF after treatment with SFN. 

Confluent HAoAF were equilibrated in phenol red-free DMEM supplemented with 1% FCS and 

subsequently treated with vehicle control (DMSO 0.01%) or SFN (5 μM) for 4 - 72 h prior to 

whole cell protein extraction. α- Smooth muscle actin protein expression levels in these samples 

was assessed using SDS-PAGE and Western blot analysis (A). Results were analysed by 

densitometry with α- smooth muscle actin corrected for the loading control, α-Tubulin (B). 

Values denote means ± SEM, n = 3 independent experiments.   
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3.2.2 Expression of vimentin in HAoAF  

Another molecular marker that is characteristic of the phenotypic switch of a fibroblast 

to a myofibroblast is the intermediate filament protein vimentin, the expression of 

which has been widely used as an index of myofibroblast differentitation (Roelofs et al., 

1998; Sampson et al,. 2011). In order to determine whether exposure to TGF-β1 

contributes to HAoAF differentiation, cells were treated with TGF-β1 (0-5 ng/ml, 12-24 

h) and subsequently incubated with a primary antibody against vimentin and a 

secondary fluorescent antibody (see Methods section 2.5). Basal expression of vimentin 

was observed in untreated cells (Fig 3.4, panel D) and this was comparable to vimentin 

expression exhibited by cells treated with TGF-β1 (5 ng/ml, 12 - 24 h, Fig 3.3, panels E 

and F). This effect was independent of the time period of incubation with the treatment 

conditions, as indicated by the cytoplasmic staining of vimentin in all treatment groups 

(Fig 3.3). This immunofluorescence data suggests that HAoAF exhibit basal expression 

of vimentin and that this expression is not further enhanced or altered by treatment with 

TGF-β1 suggesting that HAoAF exhibited a myofibroblast phenotype at the time of 

experiments. 

 

In addition, vimentin protein expression was also assessed by Western blot analysis. 

Cells were treated with TGF-β1 (0-5 ng/ml,) for 4-72 h to assess the long-term effects 

of TGF-β1 on HAoAF phenotype. Results revealed that there was a basal expression of 

vimentin in HAoAF in untreated control cells and that this expression was not enhanced 

in the presence of TGF-β1.  Treatment of cells with SFN also revealed that SFN did not 

alter the expression of vimentin in HAoAF. These findings confirm results from 

immunofluorescent analysis and further indicate that HAoAF had differentiated into 

myofibroblasts (Fig 3.4, A & B).  
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Figure 3.5 Protein expression of vimentin in HAoAF after treatment with TGF-β1  

Confluent HAoAF were equilibrated in phenol red-free DMEM supplemented with 1% FCS and 

subsequently treated with TGF-β1 (0 -10 ng/ml) for 4 - 72 h prior to whole cell protein 

extraction. Vimentin protein expression levels in these samples was assessed using SDS-PAGE 

and Western blot analysis (A and B). Results were analysed by densitometry with vimentin 

corrected for the loading control, α-Tubulin (C). Values denote means ± SEM, n = 3 

independent experiments.   
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Figure 3.6 Protein expression of vimentin in HAoAF after treatment with SFN 

Confluent HAoAF were equilibrated in phenol red-free DMEM supplemented with 1% FCS and 

subsequently treated with vehicle control (DMSO 0.01%) or SFN (5 μM) for 4 - 72 h prior to 

whole cell protein extraction. Vimentin protein expression levels in these samples was assessed 

using SDS-PAGE and Western blot analysis (A). Results were analysed by densitometry with 

vimentin corrected for the loading control, α-Tubulin (B). Values denote means ± SEM, n = 3 

independent experiments.   
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3.3 Effect of SOD on expression of α-smooth muscle actin and vimentin       

      in HAoAF 

In order to determine whether the differentiation of HAoAF was dependent upon ROS, 

in particular, O2
-. (Vozenin-Brotons et al., 2001), HAoAF were treated with TGF-β1 in 

the absence or presence of superoxide dismutase (SOD). Confluent HAoAF were 

equilibrated in DMEM supplemented with 1% FCS 18 h prior to treatment with TGF- 

β1 (0 - 5 ng/ml) in the absence or presence of SOD (200 U/ml), for 4 – 72 h. 

Subsequently, cells were lysed and total cell protein was extracted and assessed using 

SDS-PAGE and Western blot analysis (see Methods section 2.2). 

 

Results revealed that basal expression of vimentin and α-smooth muscle actin in 

HAoAF was not affected in the presence of SOD. Exposure of cells to TGF-β1 (0 - 5 

ng/ml, 4-72 h) did not alter their phenotype and no differences were observed when 

cells were incubated with SOD. These results suggest that the differentiation of HAoAF 

to myofibroblasts may not be altered by scavenging O2
-. which further suggests that 

cells are already terminally differentiated myofibroblasts.  
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Figure 3.7 α- Smooth muscle actin protein expression in HAoAF after treatment with 
TGF-β1 and SOD. Confluent HAoAF were equilibrated in phenol red-free DMEM 

supplemented with 1% FCS and subsequently treated with TGF-β1 (0 -5 ng/ml) in the absence 

or presence of SOD (200 U/ml) for 4 - 72 h prior to whole cell protein extraction. α- Smooth 

muscle actin protein expression levels in these samples was assessed using SDS-PAGE and 

Western blot analysis (A). Results were analysed by densitometry with α- smooth muscle actin 

corrected for the loading control, α-Tubulin (B and C). Values denote means ± SEM, n= 3 

independent experiments.   
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Figure 3.8 Vimentin protein expression in HAoAF after treatment with TGF-β1 and SOD 

Confluent HAoAF were equilibrated in phenol red-free DMEM supplemented with 1% FCS and 

subsequently treated with TGF-β1 (0 -5 ng/ml) in the absence or presence of SOD (200 U/ml) 

for 4 - 72 h prior to whole cell protein extraction. Vimentin expression levels in these samples 

was assessed using SDS-PAGE and Western blot analysis (A). Results were analysed by 

densitometry with α- smooth muscle actin corrected for the loading control, α-Tubulin (B and 

C). Values denote means ± SEM, n= 3 independent experiments.   
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3.4 Effect of TGF-β1 on mitochondrial dehydrogenase activity in  

      HAoAF 

Cell viability was assessed by measuring mitochondrial dehydrogenase activity using 

the MTT assay (see Methods section 2.3), a widely used method to assess cytotoxicity 

in cultured cells (Fotakis & Timbrell, 2006; Bjorkerud & Bjorkerud, 1996). HAoAFs 

were seeded at a density 1x103 cells per well in a 96 well plate in DMEM supplemented 

with 10% FCS. Once confluent and 18 h prior to incubation with treatment conditions, 

cells were equilibrated in DMEM supplemented with 1 % FCS and subsequently treated 

with TGF-β1 (2.5 – 10 ng/ml), vehicle control (DMSO 0.01%), SFN (2.5 -10 μM) or 

H2O2 (50 – 100 μM). Cells treated with TGF-β1 exhibited no significant change in 

mitochondrial dehydrogenase activity when compared to untreated control (Fig 3.7, A), 

indicating that TGF-β1 has no effect on HAoAF mitochondrial dehydrogenase activity. 

H2O2, which was used as a positive index of MTT formazan development; cells treated 

with 50 and 100 μM exhibited a 93% decrease in mitochondrial dehydrogenase activity, 

suggesting that H2O2 caused a significant decrease in the viability of HAoAF.  

 

In addition to TGF-β1, cells were also treated with SFN. Following treatment of 

HAoAF with SFN (2.5 μM), there was a slight decrease in mitochondrial 

dehydrogenase activity when compared to vehicle control and treatment with SFN (10 

μM) also resulted in a decrease in mitochondrial dehydrogenase activity (Fig 3.7, B), 

however this decrease was not statistically significant. These results suggest that SFN 

does not cause a significant decrease in HAoAF viability at the concentrations used in 

this study.  
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Figure 3.9 Effect of TGF-β1 and SFN on HAoAF viability 
Confluent cultures of HAoAF were seeded at 1x103 cells per well in a 96 well plate in DMEM 

supplemented with 10% FCS. Cells were equilibrated in DMEM supplemented with 1 % FCS 

18 h prior to treatment with (A) TGF-β1 (2.5 – 5 ng/ml), (B) SFN (2.5 – 10 μM) or H2O2 (50 – 

100 μM) for 24 h. Mitochondrial dehydrogenase activity was determined by measuring the 

formation of MTT formazan dye as described in Methods and was used as an indicator of cell 

viability. Values denote mean ± SEM, n = 4 independent experiments. ***p <0.001 vs. control 

or vehicle control (DMSO 0.01%) using ANOVA.  
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3.5 Effect of TGF-B1 on Smad phosphorylation in HAoAF 

The phosphorylation of Smad2 (pSmad2) investigated in HAoAF to confirm the 

activation of TGF-β1 signalling in these cells. Confluent HAoAF (P6 - P9) were 

equilibrated in DMEM supplemented with 1% FCS 18 h prior to treatment with TGF- 

β1 (0 - 5 ng/ml), for 0.5 – 4 h. Subsequently, cells were lysed and total cell protein was 

extracted and assessed using SDS-PAGE and Western blot analysis (see Methods 

section 2.2). Basal expression of pSmad2 protein was observed in untreated HAoAF 

(0.5 – 4 h). This effect was significantly augmented during the treatment of HAoAF 

with TGF- β1 (2.5 ng/ml, 2 – 4 h, p<0.05), and maximum expression of pSmad2 was 

observed after 2 h (5 ng/ml, p<0.05; Fig 3.8, A). These results corroborate those 

observed during immunofluorescence analysis and suggest that cells are responsive to 

TGF- β1 and that the Smad signalling pathway is activated in this cell type.  
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Figure 3.10 Phosphorylated Smad2 protein expression in HAoAF after treatment with 
TGF-β1. Confluent HAoAF were equilibrated in phenol red-free DMEM supplemented with 

1% FCS and subsequently treated with TGF-β1 (0 -5 ng/ml) for 30 min – 4 h prior to whole cell 

protein extraction. pSmad2 protein expression levels in these samples was assessed using SDS-

PAGE and Western blot analysis. Results were analysed by densitometry with pSmad2 protein 

levels corrected for the loading control, total Smad2/3. Values denote means ± SEM, *p<0.05 

vs. untreated control using unpaired Student’s t-test. n = 3 independent experiments.   
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3.6 Effect of TGF-β1 on pSmad localisation in HAoAF 

Phosphorylation of Smad2 and its nuclear translocation in response to TGF-β1, which 

typically occurs between 30 min - 4 h (Stockwell and Schreiber, 1998; Xu et al., 2000; 

Watkins et al., 2012), is an important and definitive step in the activation of the TGF-β1 

pathway (Guo et al., 2009; Lu et al., 2009) and is often used as an index to assess the 

activation of this pathway (Watkins et al., 2012; Ungefroren et al., 2011; Mavrakis et 

al., 2007; Bitzer et al., 2000). HAoAF were seeded onto glass coverslips in DMEM 

supplemented with 10% FCS. Once appropriate confluence was achieved, cells were 

equilibrated in DMEM supplemented with 1% FCS 18 h prior to incubation with TGF-

β1 (2.5 - 5 ng/ml) for 2 h. Cells were subsequently fixed and stained for pSmad2. 

Immunofluorescence staining of HAoAF revealed that pSmad2 is localized diffusely in 

the cytoplasm as well as the nucleus. However, upon treatment with TGF-β1 (2.5 – 5 

ng/ml) for 2 h, cells exhibit increased fluorescence within the nuclear compartment 

indicating that there is an increase in the levels of pSmad2 in the nuclei of TGF-β1-

treated cells. These results suggest that the TGF-β1 signaling pathway may already be 

acutely activated in HAoAF, perhaps due to the autocrine production of TGF-β1 by 

these cells, however when incubated with exogenous TGF-β1, pSmad2 nuclear 

translocation is enhanced and therefore indicative of the activation of this signaling 

pathway by exogenous administration of TGF-β1 in these cells.  
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3.7 Effect of TGF-β1 on HAoAF proliferation 

TGF-β1 is well known to increase proliferation in mesenchymal cells and in fibroblasts 

(Frolik et al., 1983), whilst in SMC, epithelilal and endothelial cells it acts as a growth 

inhibitor (Chen et al., 2006). To assess the effect of TGF-β1 on HAoAF proliferation, a 

cell proliferation assay was carried out. Cells were seeded at a density of 1 x 104 

cells/well in a 24-well plate in DMEM supplemented with 10% FCS. 18 h prior to 

incubation with treatment conditions, cells were equilibrated in DMEM supplemented 

with 1% FCS and subsequently incubated with either low serum media (DMEM 

supplemented with 1% FCS), high serum media (DMEM supplemented with 10% FCS) 

or with TGF-β1 (5 ng/ml) in DMEM supplemented with 1% FCS for a time period of 0-

4 days. Cell number and protein content was determined every 24 h over this time 

period; Figures 3.10, A and B show the differential increase in protein concentration 

and cell number over time. Cells treated with high serum media, exhibited a significant 

increase in cell number over four days (p<0.001); this was correlated with protein 

concentration, which also increased over four days. Similarly, cells incubated with 

TGF-β1 exhibited a significant increase in cell proliferation as measured by cell number 

and protein after 4 days (p<0.001). In contrast to this, cells in low serum media 

exhibited no change in cell number or in protein concentration. When cell number and 

protein concentration were plotted, data exhibited a positive linear correlation 

coefficient of r2 = 0.967 (Fig 3.11). 
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Figure 3.12 HAoAF cell proliferation curve following treatment with TGF-β1 

Cells were seeded in 24 well plates in phenol red-free DMEM supplemented with 10% FCS. 

Cells were adapted to DMEM supplemented with 1% FCS for 18 h, 24 h after seeding. Once 

adapted, cells were treated with either phenol red-free DMEM supplemented with 1% FCS, 

phenol red-free DMEM supplemented with 10% FCS or with TGF-β1 (5 ng/ml) added to 

DMEM supplemented with 1% FCS for four days. The (A) average protein concentration and 

(B) cell number was determined every 24 h over four days. Total protein concentrations were 

determined following lysis of cells with NaOH (0.5 M) using the BCA protein assay.  Values 

denote means ± SEM. *p <0.05 vs. control, **p <0.01 vs. control, ***p <0.001 vs. control using 

unpaired Student’s t-test. n = Representative of 4 independent cell cultures. 
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Figure 3.13 Correlation of cell number with protein concentration in cultured HAoAF  

Cells were seeded in 24-well plates in phenol red-free DMEM supplemented with 10% FCS. 

Cells were adapted in DMEM supplemented with 1% FCS for 18 h, 24 h after seeding. Once 

adapted, cells were treated with either phenol red-free DMEM supplemented with 1% FCS, 

phenol red-free DMEM supplemented with 10% FCS or with TGF-β1 (5 ng/ml) for four days. 

Values represent correlation of mean data shown in Fig 3.10. n = 6 independent experiments, 

correlation coefficient r2 = 0.967. 
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3.8 Effect of TGF-β1 on activation of Smad-independent signalling  

      pathways  

In addition to Smads, TGF-β1 also modulates other downstream cellular signalling 

pathways through either phosphorylation or via direct interaction, including various 

branches of MAP kinase and phosphatidylinositol-3-kinase (PI3K)/Akt pathways 

(Bakin et al., 2000; Simeone et al., 2001; Zhang et al., 2009). It has also been postulated 

that the activation of the Nrf2/ARE signalling pathway may be regulated by several 

kinases including phosphorylation of Erk 1/2  (Cullinan et al., 2003; Araujo et al., 

2010), p38MAPK and Akt/PI3K pathways (Zipper et al., 2000; Zipper et al., 2003; 

Papaiahgari et al., 2006). Therefore, in order to determine whether TGF-β1 activates 

Smad-independent pathways in HAoAF and whether activation of these may lead to 

phosphorylation events that may trigger activation of the Nrf2/ARE pathway, 

phosphorylation of kinases was investigated in HAoAF. Confluent HAoAF (were 

equilibrated in DMEM supplemented with 1% FCS 18 h prior to treatment with TGF- 

β1 (5 ng/ml) or SFN (5 μM) for 1 – 4 h. Subsequently, cells were lysed and total cell 

protein was extracted and assessed using SDS-PAGE and Western blot analysis (see 

Methods section 2.2). 

 

Following treatment of HAoAF with TGF-β1 for 1 – 4 h, there was a significant 

increase in pAkt protein expression when compared to untreated control (p<0.05). This 

increase was observed 1 h after treatment and continued to increase with maximum 

protein expression was observed after 2 h (p<0.01). At 4 h, this decreased slightly, 

however remained significantly upregulated when compared to untreated control 

(p<0.05). There was no increase in pAkt seen in untreated control cells (Fig 3.12). SFN 

(5 μM) also caused an increase in pAkt, (p<0.05) and continued to increase after 4 h 

(p<0.01). This suggests that both TGF- β1 and SFN activate the PI3K/Akt signalling 

pathway in HAoAF.  

 

The protein expression of pErk 1/2 was also investigated. Basal expression of protein 

expression of pErk was observed in HAoAF in untreated control after 30 min. This 

expression decreased over time, and was seen to decrease in a time-dependent manner 

after 1 h. Similarly, after 30 min of TGF- β1 treatment, protein expression of pErk was 

observed after 30 min, an effect which had markedly decreased after 4 h. This response 

to TGF- β1 was not statistically significant when compared to untreated control (Fig 
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3.13). HAoAF treated with SFN expressed pErk 30 min after treatment which was 

sustained for 2 h following treatment but which decreased after 4 h, however this 

decrease was not statistically significant.  

 

There was also some basal protein expression of p-p38MAPK in HAoAF that was 

sustained for up to 2 h and had increased after 4 h in untreated control cells. In TGF- β1 

treated cells, there was an increase in p-p38MAPK 30 min following treatment which 

continued to decrease after 2 h, though this decrease was not statistically significant. 

SFN treated cells exhibited an increase in p-p38MAPK after 30 min and this increase was 

maintained in cells for up to 4 h after 60 min and remained elevated after 4 h (Fig 3.16).  
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Figure 3.14 Phosphorylated Akt protein expression in HAoAF after treatment with TGF-

β1 or SFN. Confluent HAoAF were equilibrated in phenol red-free DMEM supplemented with 

1% FCS and subsequently treated with TGF-β1 (0 -5 ng/ml) or SFN (5 μM) for 30 min – 4 h 

prior to whole cell protein extraction. Phospho-Akt protein expression levels in these samples 

was assessed using SDS-PAGE and Western blot analysis (A). Results were analysed by 

densitometry with pAkt protein levels corrected for the loading control, total Akt (B). Values 

denote means ± SEM, *p <0.05 TGF- β1 vs. control, **p <0.01 TGF- β1 vs. control, #p <0.05 

TGF- β1 vs. control, ##p <0.001 SFN vs. control using unpaired Student’s t-test. n= 3 

independent experiments.  
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Figure 3.15 Phosphorylated Erk protein expression in HAoAF after treatment with TGF-

β1 or SFN. Confluent HAoAF were equilibrated in phenol red-free DMEM supplemented with 

1% FCS and subsequently treated with TGF-β1 (0 -5 ng/ml) or SFN (5 μM) for 30 min – 4 h 

prior to whole cell protein extraction. Phospho-Erk protein expression levels in these samples 

was assessed using SDS-PAGE and Western blot analysis (A). Results were analysed by 

densitometry with pErk protein levels were corrected for the loading control, total Erk (B). 

Values denote means ± SEM, n= 3 independent experiments.   
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Figure 3.16 Phosphorylated p38 MAPK protein expression in HAoAF after treatment with 
TGF-β1 or SFN. Confluent HAoAF were equilibrated in phenol red-free DMEM supplemented 

with 1% FCS and subsequently treated with TGF-β1 (0 -5 ng/ml) or SFN (5 μM) for 30 min – 4 

h prior to whole cell protein extraction. Phospho-p38 protein expression levels in these samples 

was assessed using SDS-PAGE and Western blot analysis (A). Results were analysed by 

densitometry with P-p38 protein levels corrected for the loading control, total p38 (B). Values 

denote means ± SEM. *p<0.05 TGF-β1-treated vs. control (1 h), #p<0.05 SFN-treated vs. 

control (1 h), ##p<0.001 SFN-treated vs. control (2 h) using unpaired Student’s t-test. n= 3 

independent experiments.   
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3.9 Discussion 
 

Vascular disease is partly characterised with changes in the cellular microenvironment 

that actively promote disease development, one characteristic feature of this process 

being fibroblast differentiation (Sampson et al., 2011). Differentiation of fibroblasts to a 

myofibroblast phenotype is a well established sequence of events (Hu and Xu, 2011) 

and is initiated upon vascular injury, causing the release of cytokines, including TGF-

β1, from resident cells (Werner and Grose, 2003). The process takes place in the arterial 

adventitia and results in myofibroblast formation, a cell type that has migratory and 

contractile properties partly owing to the de novo expression of α-smooth muscle actin 

and vimentin and consequent actin cable formation and the expression of focal 

adhesions, events which, in concert, facilitate the pathophysiological role of this cell 

type (Engel et al., 1997; Stephens et al., 1997). During vascular disease and in response 

to TGF-β1, myofibroblasts migrate towards the neointima and contribute to adverse 

vascular remodelling (Enzerink et al., 2011), therefore in this chapter, HAoAF were 

characterised and the effect of TGF-β1 on HAoAF was investigated. 

 

3.9.1 Expression of α-smooth muscle actin and vimentin in HAoAF 

Fibroblasts acquire contractile stress fibres in response to mechanical challenge, which 

are composed of the cytoplasmic actins, β and γ-actins, a feature that is characteristic of 

the ‘protomyofibroblast’. This phenotype is an intermediate step in in vivo vascular 

models of disease and usually proceeds toward the ‘differentiated myofibroblast’ (Hinz 

et al., 2007). Further differentiation results in a cell type that has migratory and 

contractile properties and is known as the myofibroblast. Several studies have reported 

the myofibroblastic transformation of vascular fibroblasts in vitro (Li et al., 2007; 

Shephard et al., 2004; Masur et al., 1996). Therefore, in order to establish the phenotype 

and morphology of cells being used for this study, the protein expression of α-smooth 

muscle actin and vimentin in HAoAF was investigated using immunofluorescence and 

Western blot analysis. Immunofluorescence analysis revealed the basal expression of 

both of these myofibroblast marker proteins by HAoAF. (Fig 3.1 and 3.4). Similarly, 

Western blot analysis revealed the basal expression of both α-smooth muscle actin and 

vimentin, the expression of which did not change with treatment of cells with 

exogenous TGF-β1 (Fig 3.2 and 3.4). These results suggest that cells had differentiated 

into myofibroblasts, possibly through the process of cell culture (Hinz et al., 2009; 

Wipiff et al., 2007).  
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The release of endogenous TGF-β1 by fibroblasts in culture has been widely reported in 

the literature and has been shown to result in fibroblast differentiation (Hinz et al., 

2007; Li et al., 2007; Shephard et al., 2004). Masur and colleagues postulate that 

although the presence of TGF-β1 is necessary for the differentiation of fibroblasts to 

myofibroblasts in culture, it alone is not sufficient since, in addition to the presence of 

this growth factor, the lack of cell-cell contacts is also required for myofibroblastic 

transformation to occur (Masur et al., 1996). Their study in corneal fibroblasts revealed 

that cells seeded at lower density (5 cells per mm2) produced a cell culture population 

consisting of 70-80% myofibroblasts, 5-7 days after seeding however, cells seeded at a 

high density (500 per mm2) produced cultures with only 5-10% myofibroblasts (Masur 

et al., 1996). In the current study, HAoAF were cultured at a sub-confluent density; 

although cells in culture were not completely devoid of cell-cell contact, in comparison 

to in vivo conditions, and coupled with other culture conditions, as discussed below, it 

may, in part, explain the myofibroblast phenotype exhibited under basal conditions by 

these cells.  

 

Other studies have also reported differentiation of cells through the cell culture process. 

Investigation of rat hepatic fibroblasts in culture revealed that this cell type also 

underwent differentiation in vitro, with increased staining of α-smooth muscle actin 

observed on day 4 of culture which progressively increased over time. Further analysis 

using qRT-PCR also demonstrated the development if α-smooth muscle actin 

expression over time in culture (Li et al., 2004). This differentiation was seen to be 

TGF-β1-dependent since use of a TGF-β1 receptor kinase inhibitor which antagonised 

autocrine TGF-β1 signalling, resulted in the attenuation of the differentiation of 

fibroblasts into myofibroblasts, as measured by α-smooth muscle actin expression (Li et 

al., 2007). The same study postulated that this differentiation was a function of 

mechanical stiffness, i.e. the stiffness of the substrate upon which cells were plated. It 

was observed that fibroblasts plated on gels of increasing stiffness underwent 

myofibroblastic differentiation, with α-smooth muscle actin being more readily 

incorporated into stress fibres, accompanied by cell spreading and increased expression 

of pro-collagens I and III (Li et al., 2007). 

 

In culture, fibroblasts may become ‘activated’ by rigid cell culture vessel plastic and 

acquire α-smooth muscle actin-positive stress fibres, an effect which is not exhibited by 
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cells cultured on soft culture substrates (Hinz, 2012). The first report of this 

phenomenon came from a study in NIH3T3 fibroblasts that observed that cells detected 

and responded to soft and stiff substrates (Pelham and Wang, 1997) with cells cultured 

on a soft substrate generating well-separated myotubes with actomyosin appearing 

diffuse, however, cells grown on a stiff substrate began to acquire abundant stress fibres 

and strong focal adhesions after only a few days in culture (Discher et al., 2005; Pelham 

and Wang., 1997). Cell shape was also distinctly different; on the more rigid substrate, 

cells were well spread, however, those grown on increasingly flexible substrates were 

less so and displayed an irregular shape, different to the atypical spindle shape 

displayed by undiffentiated fibroblasts (Pelham and Wang, 1997). These studies suggest 

that substrate stiffness may be partly responsible for the cytoskeletal re-organisation 

seen in fibroblasts undergoing differentiation and may be an important factor with 

further implications on cell migration in culture conditions (Buxboim et al., 2010; 

Discher et al., 2005; Engler et al., 2004). These reports partly explain the myofibroblast 

phenotype exhibited by HAoAF observed in the current sudy, a phenomenon which 

may be due to the conditions in which cells were cultured.   

 

In contrast, other studies have reported that in culture, cells remain undifferentiated and 

only differentiate upon exposure to TGF-β1. Results from this study are not consistent 

with those observed in cultured human colon-derived fibroblasts, where untreated cells 

exhibited no myofibroblast markers, however upon treatment of cells with TGF-β1, 

cells underwent myofibroblastic transformation and exhibited an increased expression 

of α-smooth muscle actin and myofibroblast contractility which were accompanied by 

the release of collagen type I when compared to untreated cells (Denys et al., 2008).  

However, other studies have revealed that TGF-β1 may not completely account for the 

process myofibroblastic transformation and that mechanical force generation, culture 

medium containing high levels of serum and other growth factors may also be involved 

as demonstrated by a keratinocyte-fibroblast co-culture model (Shephard et al., 2004). 

In this co-culture model, TGF-β1 alone was insufficient in causing fibroblast 

differentiation, however in the presence of a stiff substrate, and in synergy with 

granulocyte-macrophage colony stimulating factor, fibroblasts began to express α-

smooth muscle actin (Shephard et al., 2004). Results reported in the literature and work 

from the current study suggest that the culture conditions, substrate stiffness and length 



Chapter 3  Characterising HAoAF response to TGF-β1 

 

 

 152 

of time in culture may all have played a role in the differentiation of HAoAF into 

myobroblasts in this study.  

 

It must be noted that the origin of the cells used in the current study carries several 

experimental limitations. The manufacturer (Lonza, USA) stated that cells had 

undergone routine characterization and had stained negative for smooth muscle α-actin, 

a common marker used for the identification of a smooth muscle cell morphology 

(Enzerink and Vaheri, 2011; Tomasek et al., 2002; see Chapter 3 discussion). However, 

although this is the case, it was also stated that the cultures generated from these cells 

could be used for the study of disorders of fibrosis, scleroderma, fibrosarcoma, 

xeroderma pigmentosum and histiocytoma. This may indicate that the results reported 

in this study regarding the effects of TGF-β1 may not be HAoAF specific and that TGF-

β1 may have similar effects on non-aortic fibroblasts. Future work in non-aortic 

fibroblasts, such as dermal fibroblasts, in order to determine an experimental 

comparison would need to be carried out.  

 

3.9.2 Effect of TGF-β1 and SFN on mitochondrial dehydrogenase activity in  

         HAoAF  

Studies have previously reported that TGF-β1 is able to increase the proliferation of 

fibroblasts in vitro (Zang et al., 2006) whereas others have reported that TGF-β1 is an 

antiproliferative cytokine (Kim et al., 2002). SFN has also been shown to be 

cytoprotective in mouse embryonic fibroblasts (Akhtar et al., 2012; Higgins et al., 2009) 

whilst also demonstrated as being a cytotoxic agent by other studies (Doudican et al., 

2010; Sestili et al., 2010). Therefore in order to determine the effect of TGF-β1 and 

SFN on HAoAF viability, the colorimetric MTT assay was employed. Cells were 

treated with TGF-β1 (2.5 – 10 ng/ml) or SFN (2.5 – 10 μM) for 24 h and subsequently 

the MTT assay was carried out. Results indicated that treatment with TGF-β1 resulted 

in no changes in mitochondrial dehydrogenase activity when compared to untreated 

control. HAoAF treated with SFN also displayed no significant changes in 

mitochondrial dehydrogenase activity when compared to untreated control.  

 

Previous studies using the MTT assay have also shown that TGF-β1 does not suppress 

cell growth; in nasopharyngeal carcinoma cells treated with TGF-β1, there was no 

effect on growth despite observed nuclear translocation of pSmad2, indicating that 
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TGF-β1 signalling pathways were activated in this cell type (Xiao et al., 2010). Similar 

results have been reported in ovarian cancer cells, where cells exhibited no significant 

growth inhibition in response to TGF-β1 (5 ng/ml) as measured by the MTT assay, 

despite activation of the TGF-β1 signalling pathway, as determined by phosphorylation 

of the type I TGF-β1 receptor (Yamada et al., 1999). A more recent study in keloid 

fibroblasts has shown that exposure to TGF-β1 (5 ng/ml) for 24 h resulted in no change 

in cell viability or alteration in proliferation when compared to untreated control (Wu et 

al., 2012). In contrast to these findings, the anti-proliferative activity of TGF-β1 has 

been reported in other cell types. In NRK-49F fibroblasts, a fibroblast cell line derived 

from a mixed population of fibroblasts, TGF-β1 caused a dose-dependent decrease in 

cell number as measured by the MTT assay following exposure to TGF-β1 for 6 – 96 h 

(Weyhe et al., 2007). The authors attributed this phenomenon as being cell type-

dependent as well as being partly due to culture conditions such as substrate material 

and noted that it was in contrast with the existing literature (Weyhe et al., 2007).  

However, the concentration of TGF-β1 that fibroblasts were exposed to in this 

particular study was supra-physiological (25 ng/ml – 50 ng/ml), and similar levels that 

would only be seen in pathophysiological conditions such as in end-stage systemic 

sclerosis or advanced atherosclerotic lesions and may in-part explain these contrasting 

findings (Dziadzio et al., 2005; McCaffery, 2000).  

 

Additionally, in human limbal epithelial cells, TGF-β1 (1 ng/ml) has been shown to 

decrease cell viablility and was thought to do so by antagonising the ability of 

epidermal growth factor to stimulate corneal cell proliferation as well as by 

upregulating the expression of the cyclin-dependent kinase inhibitors, p57 and p15 

(Chen et al., 2006). There is evidence in the literature which points to TGF-β1 being a 

growth suppressor by decreasing cell viability as well as increasing cell growth as 

measured by the MTT assay, however, the effect of TGF-β1 appears to be a cell-type 

and TGF-β1 concentration and time-dependent event. Existing evidence in the literature 

suggests that TGF-β1 is a growth-inhibitor for epithelial cell cultures whilst acting as a 

powerful growth factor for mesenchymal cells (Bhowmick et al., 2003; Wenner and 

Yan, 2003; Moses et al., 1992). In VSMC and endothelial cells, TGF-β1 has been 

reported to inhibit proliferation (Halloran et al., 1995; Kirschenlohr et al., 1995; Mii et 

al., 1993; Bjorkerud, 1991; Takehara et al., 1987; Baird and Durkin et al., 1986). One 

study has postulated that the antiproliferative effects of TGF-β1 in SMC are due to the 
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ability of TGF-β1 to prolong the G2 phase during proliferation of SMC in vitro 

(Grainger et al., 1994).  In the current study, it has been found that TGF-β1 (2.5 -5 

ng/ml) does not increase cell proliferation or decrease cell viability in HAoAF over a 24 

h time-period.  

 

SFN has been demonstrated to cause cytotoxicity in several cell types. In B16F-10 cells, 

a melanoma cell line, increasing concentrations of SFN (1 – 50 g/ml) caused a 

concomitant increase in cytotoxicity and significantly reduced the rate of proliferation 

in these cells (Thejass and Kuttan, 2006). Further investigation in mouse embryonic 

fibroblasts from wild-type and Nrf2 -/- animals revealed that SFN caused a significant 

increase in cell death at concentrations above 3 M in cultures from wild-type animals. 

This effect was markedly enhanced in knockout animals where challenge with SFN 

caused a significant decrease in cell viability, suggesting that the activation of the 

Nrf2/ARE is protective against SFN-induced cytotoxicity in this cell type (Higgins et 

al., 2009). A similar study carried out in a pancreatic tumour cell line has also reported 

that treatment of these cells with SFN resulted in an increase in apoptotic cell death, 

thought to be as a result of SFN antagonising the NFκB pathway, downregulating 

apoptotic inhibitors, and thus decreasing cell viability (Kallifatidis et al., 2009). 

Conversely, one study looking at the effect of SFN against the toxic response of copper 

oxide (CuO) nano-particles in mouse embryonic fibroblasts found that in cells exposed 

to these nanoparticles, there was a dose-dependent decrease in cell toxicity in cells 

treated with SFN (Akhtar et al., 2012). The study postulated that the protective effect of 

SFN against CuO nano-particles was due to the ability of SFN to activate the Nrf2/ARE 

pathway and consequently up-regulate levels of glutathione reductase and GSH in this 

cell type (Akhtar et al., 2012). The effect on SFN as a cytotoxic agent may be harnessed 

and its use as a theraputic agent in diseases such as cancer may be of high therapeutic 

value.   

 

Due to its ability to activate phase II enzymes, SFN may be used as a therapeutic agent 

to prevent or attenuate vascular disease processes such as hypertension. Previously, Wu 

and colleagues have reported that treatment of SMC from spontaneously hypertensive 

rats (SHR) displayed higher oxidative stress when compared to wild-type animals, as 

determined by the expression of HO-1 protein (Wu et al., 2001). However, when treated 

with SFN (0.05 – 1 μM) for 24 h, SMC exhibited an increase in cellular GSH levels and 
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experienced a decrease in oxidative stress levels (Wu et al., 2001). Recent evidence has 

also reported the ability of SFN to inhibit neointima formation by targeting adhesion 

molecules such as vascular cell adhesion molecule (VCAM-1) and intercellular 

adhesion molecule-1 (ICAM-1) through the suppression of NFκB and another 

transcription factor, GATA6, the mRNA and protein expression of both of which was 

reduced in SFN-treated injured carotid artery sections (Kwon et al., 2012). SFN 

treatment of SMC from these animals revealed that both proliferation and migration of 

SMC was inhibited by SFN (Kwon et al., 2012). These results were confirmed in a 

separate study that also suggests that SFN may attenuate SMC proliferation and 

therefore neointima formation by suppressing VCAM-1, the increased expression of 

which is associated with increased proliferation of SMC which eventually leads to 

enhanced atherosclerotic lesion formation (Kim et al., 2012). However, in the current 

study, SFN (2.5 – 10 M) did not cause a significant decrease in cell viability following 

exposure of cells for 24 h, but it must be noted that  the ability of SFN to induce 

cytotoxicity may be a function of cell type, concentration and length of time of exposure 

to this isothiocyanate.  

 

 

3.9.3 TGF-β1 elicits Smad phosphorylation and nuclear translocation in HAoAF 

In order to demonstrate that TGF-β1 was able to activate Smad signalling in HAoAF, 

the phosphorylation of Smad2 was investigated using Western blot analysis. Cells were 

treated with TGF-β1 (2.5 – 5 ng/ml) for 0.5 – 4 h and whole cell protein was extracted 

and Western blot analysis was carried out (Massague, 2012; Hill, 2009; Feinberg et al., 

2005, Fig 3.10). Results demonstrated that exposure to TGF-β1 resulted in the 

significant phosphorylation of Smad2 when compared to untreated control, indicating 

that the Smad signalling pathway is activated downstream of TGF-β1 in HAoAF. In 

order to further confirm the activation of this pathway, immunofluorescence analysis 

was carried out in order to determine the nuclear translocation of pSmad2 in HAoAF, an 

event which is required for the induction of genes downstream of TGF-β1 (Fig 3.11). 

Results showed that in response to TGF-β1, there was enhanced nuclear translocation of 

pSmad2, further confirming the activation of the Smad signalling pathway by TGF-β1 

in HAoAF.  

 

The phosphorylation of Smad2 downstream of TGF-β1 is well established  signalling 

event, and in particular, the phosphorylation of two serine residues in the C-terminus of 
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Smad2, Ser465 and 467, in an obligate manner, are required for TGF-β1 signalling to 

occur (Souchelnytskyi et al., 1997). A recent study in keloid fibroblasts that were 

exposed to TGF-β1 (5 ng/ml) for 48 h showed that cells exhibited a sustained activation 

of the Smad signalling pathway in response to this growth factor as demonstrated by the 

phosphorylation of Smad2 and 3 (Wu et al., 2012). In nasal polyp-derived fibroblasts, 

the phosphorylation of Smad2/3 has been shown to be a ROS-dependent process as 

exposure of cells to TGF-β1 treatment of cells resulted in the production of ROS as 

measured by 2″,7″-dichlorfluorescein-diacetate (DCF-DA) in addition to the 

phosphorylation of pSmad2/3, however treatment of cells with the flavoprotein inhibitor 

diphenyliodonium, or the antioxidants N-acetylcysteine, and ebselen resulted in the 

abrogation  Smad2/3 phosphorylation, suggesting that the activation of this pathway 

downstream of TGF-β1 may be partly mediated by ROS (Park et al., 2012). In the 

present study, the potential regulation of Smad2 phosphorylation by ROS was not 

investigated, however, further work investigating this possibility of ROS in affecting 

signalling downstream of TGF-β1 would be novel in HAoAF. 

 

In HAoAF, a basal expression and nuclear translocation of pSmad2 was observed in 

untreated control cells. Several studies have proposed that the activation of the Smad 

signalling pathway occurs during myofibroblast differentiation (Usuki et al., 2012; Gu 

et al., 2007; Hu et al., 2003).  In a murine lung fibroblast cell line, exposure to TGF-β1 

for 24 h resulted in an increase in mRNA levels of α-smooth muscle actin and a 

concomitant increase in mRNA levels of type I collagen, which is typically downstream 

of TGF-β1/Smad signalling. Double immunostaining of cells showed phosphorylation 

of Smad2 as well as an increase in α-smooth muscle actin expression suggesting that 

differentiation of this cell type was closely related to Smad2 phosphorylation and its 

nuclear translocation (Usuki et al., 2012). An additional study in human fetal lung 

fibroblasts demonstrated that the overexpression of Smad3 markedly increased TGF-β1-

induced α-smooth muscle actin promoter activity and α-smooth muscle actin expression 

in vitro, an effect that was abrogated in the presence of the overexpression of a 

dominant negative mutant Smad3 or Smad7 (Gu et al., 2007). Gu and colleagues 

postulate the involvement of Smad3 in fibroblast differentiation as cells had undergone 

differentiation and exhibited the expression of myofibroblast markers in culture, as well 

as the basal expression of pSmad2 and its presence in the nucleus in untreated control 
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cells which may suggest that these two events may be related (Gu et al., 2007). These 

results are consistent with those reported in the current study. 

 

3.9.4 TGF-β1 results causes HAoAF proliferation 

To determine the effects of TGF-β1 on proliferation in HAoAF, cells were treated with 

TGF-β1 for 1-4 days and cell number was recorded and total cell protein was extracted 

and used as a an indicator of proliferation.  Results showed that TGF-β1 caused a 

significant increase in the average cell protein concentration (p<0.001) and an 

associated increase in average cell number (Fig 3.12) over 4 days when compared to 

untreated control. Since its discovery, TGF-β1 has been widely associated with the 

proliferation of various cell types (Frolik et al., 1983) but in particular, during vascular 

pathophysiology, it is seen as being a key player in the proliferation of fibroblasts. In 

vivo, during transplant vasculopathy performed in rats, qRT-PCR revealed a significant 

upregulation of TGF-β1 and further analysis using immunohistochemistry revealed 

proliferation of fibroblasts and myofibroblasts in the adventitial layer and their 

subsequent migration towards the neointima, an event that was TGF-β1-dependent (Ji et 

al., 2010). Furthermore, in rats, pressure overload induced by a suprarenal aortic 

constriction resulted in the production of myocardial fibrosis as a result of fibroblast 

proliferation in response to increased levels of TGF-β1 mRNA (Kuwahara et al., 2002).  

 

Assessment of myocardial mRNA revealed increased TGF-β1 levels after 3 days, but 

intraperitoneal administration of an anti-TGF-β1 neutralizing antibody subsequently 

prevented myocardial fibrosis, implicating TGF-β1 in driving proliferation in this 

disease model (Kuwahara et al., 2002). In addition to in vivo studies, in vitro studies 

have also confirmed the role of TGF-β1 in enhancing cell proliferation. In fibroblasts 

from a transgenic mouse model in which the TGF-β1 type II receptor is upregulated, it 

was found that exogenous treatment with TGF-β1 resulted in enhanced fibroblast 

proliferation, a finding that was confirmed with immunohistochemistry (Derret-Smith et 

al., 2010). Yijing and colleagues have also demonstrated similar findings in adventitial 

fibroblasts derived from rat aorta where exposure of cells to TGF-β1 for 24 h resulted in 

a two-fold increase in proliferation when compared to untreated control (Yijing et al., 

2012). This increase was coupled with an increase in the protein expression of pErk 1/2, 

known to be upregulated during proliferation of cells (Mebratu and Tesfaigzi, 2009). In 

another study, targeted knockdown of Erk2 using a lentivirus resulted in a marked 
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decrease in proliferation in rat joint-adhesion tissue fibroblasts, suggesting that TGF-β1 

activation of Erk1/2 is an important pathway involved in TGF-β1-mediated proliferation 

of fibroblasts  (Li et al., 2009). This is of particular relevance to the current study as 

basal upregulation of pErk was observed in HAoAF and may explain the increase in cell 

proliferation following exposure of cells to TGF-β1. 

 

Although in fibroblasts, TGF-β1 is known to cause cell proliferation, in several different 

other cell types including epithelial, endothelial and hematopoietic cells, it can potently 

inhibit cell proliferation (Elliot and Blobe, 2005). This inhibition of growth, although 

poorly understood, is thought to be due to the ability of TGF-β1 to prevent progression 

through the cell cycle by inducing the expression of cyclin kinase inhibitors p15INK4b 

(Hannon et al., 1994), p21CiP1 (Datto et al., 1995) and p27KIP1 (Polyak et al.,1994) 

which block cyclin and cyclin-dependent kinases from phosphorylating the tumour 

suppressor protein, retinoblastoma protein, allowing the hypophosphorylated form of 

this protein to bind and sequester the E2F transcription factor, as well as directly 

suppressing c-myc expression (Pietenpol et al., 1990).  

 

An increase in oxidative stress can act as a pro-oncogenic-associated stress that 

promotes proliferation and motility (Rachkonda et al., 2010). Loss of MnSOD in mouse 

embryonic fibroblasts increased ROS levels, stimulating cyclins D1 and B1, making 

cells insensitive to antigrowth signals whereas overexpression of MnSOD, resulted in 

the suppression of superoxide levels and facilitated the transition of proliferating cells 

into a quiescent phase (Sarsour et al. 2008). Conversely, in lung fibroblasts, enhanced 

proliferation following exposure to TGF-β1 was not attenuated after treatment with the 

antioxidant N-acetyl-cysteine (Moses et al., 1994). In the current study, cell 

proliferation in the presence of TGF-β1 and an antioxidant was not assessed. Further 

studies looking at the potential of antioxidants to attenuate adventitial fibroblast 

proliferation in the presence of TGF-β1 may offer a window of therapeutic opportunity 

since TGF-β1 has been reported to increase the production of ROS, therefore its 

attenuation may be clinically beneficial (Samson et al., 2011; Sturrock et al., 2006; 

Rocic et al., 2005).  
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3.9.5 Effect of TGF-β1 on activation of Smad-independent signalling pathways  

It is becoming increasingly evident that in addition to the classical Smad pathway, TGF-

β1 also activates non-Smad signalling pathways including Erk, p38 MAPK and PI3K/Akt, 

which were investigated in this study.  

 

The mechanism by which TGF-β1 causes the activation of the Erk pathway has recently 

been reported as being attributed to the dual specificity of the TGF-β1 type I and II 

receptors that are thought to act as both tyrosine and serine/threonine kinases and 

phosphorylation of tyrosine residues in the activated receptors results in the recruitment 

of several adaptor proteins, possibly Smad7, which have been reported to be involved in 

the Erk signalling pathway (Mu et al., 2012). Erk-MAPKs are thought to interact with 

the canonical Smad signalling pathway by preventing the nuclear translocation of Smad 

proteins which occurs when Erk phosphorylates the linker region in Smads, 

consequently preventing TGF-β1-dependent gene expression (Feng and Derynck, 

2005). In the current study, Erk phosphorylation was observed basally in untreated 

control cells and in TGF-β1 treated cells, it was observed after 30 min of stimulation. 

The kinetics of Erk phosphorylation have been postulated as being cell-type and 

culture-condition dependent with some studies reporting peak Erk phosphorylation 

hours after TGF-β1 stimulation as seen in pancreatic acinar cells (Simeone et al., 2001) 

whilst others have reported phosphorylation after 5-10 min (Olsson et al., 2001; Musci 

et al., 1996). In the current study, Erk phosphorylation was observed basally in 

untreated control cells and in TGF-β1 and SFN-treated groups after 30 min Fig. 3.15). 

A recent study carried out in epithelial and mesenchymal cells and in fibroblasts has 

reported similar findings. Basal phosphorylation of Erk was reported in mesenchymal 

cells, however this activation was not observed in epithelial cells, which required 

exposure to TGF-β1 for it to occur (Hough et al., 2012). The same study reported that 

Erk phosphorylation was necessary for TGF-β1 –dependent fibroblast proliferation 

(Hough et al., 2012). Results from proliferation studies in HAoAF demonstrate that 

proliferation in this cell type is TGF-β1-dependent, and the activation of Erk signalling 

may be a mechanism by which these cells proliferate. These results are supported by 

further evidence in NIH3T3 cells in which fibroblast proliferation and differentiation 

induced by TGF-β1 was an Erk-dependent process as use of an Erk 1/2 inhibitor 

completely abrogated this response in cells (Xiao et al., 2012).  
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p38MAPK has also been implicated in mediating cell proliferation in conjunction with 

Erk1/2. Airway SMC treated with TGF-β1 (1 ng/ml) exhibited increased [3H]-

thymidine incorporation and cell number over 48 h whilst also exhibiting a significant 

increase in phosphorylated p38 and Erk1/2 after 1 h of treatment. Treatment of cells 

with p38 or Erk1/2 inhibitors significantly abrogated TGF-β1-induced DNA synthesis 

in these cells suggesting p38 and Erk1/2 phosphorylation is necessary for TGF-β1-

dependent proliferation in this cell type (Chen and Kalil, 2006). 

 

There is also a plethora of evidence to suggest a role of PI3K in TGF-β1 signalling. In 

the current study, the downstream effector of PI3K, Akt was observed to be rapidly and 

significantly phosphorylated in HAoAF exposed to TGF-β1 after 1 h of treatment (Fig 

3.12, p<0.05 TGF- β1 vs. control and p<0.01 TGF- β1 vs. control at 2 h). This 

phosphorylation by TGF-β1 has been previously reported as being due to the 

constitutive association of the TGF-β1 type II receptor with p85, a regulatory subunit of 

PI3K (Yi et al., 2005). Upon TGF-β1 binding to the receptor, p85 also associates with 

the TGF-β1 type I receptor and activates PI3K consequently activating a downstream 

signalling cascade (Yi et al., 2005). The downstream PI3K/Akt pathway has been 

implicated in being involved in TGF-β1-induced EMT with one study reporting that it 

was necessary for the TGF-β1-mediated actin filament reorganisation and consequent 

cell migration seen during epithelial-mesenchymal transition (Bakin et al., 2000). As 

well as this, PI3K/Akt activation has also been postulated to play a role in TGF-β1-

mediated fibroblast proliferation as pharmacological inhibition of this kinase results in 

an abrogation in TGF-β1-mediated morphological alterations and cell proliferation in 

fibroblasts (Wang et al., 2005; Daniels et al., 2004). These studies suggest that 

PI3K/Akt activation is an important downstream pathway by which TGF-β1 exerts its 

mitogenic effects in fibroblasts. In the context of the current study, this pathway may be 

involved in the TGF-β1-dependent proliferation of HAoAF, however, further studies 

examining the effects of pharmacological inhibition of PI3K/Akt are required in order 

to confirm this.   

 

A number of studies have reported the ability of SFN to effect the activation of Erk and 

p38 pathways. In the present study, SFN was observed to significantly increase the 

protein levels of phosphorylated Akt (p <0.05 SFN vs. control and p <0.01 SFN vs. 

control) as well as increasing phosphorylated p38 in a time-dependent manner; 
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however, Erk phosphorylation was upregulated after 30 min of exposure to SFN (Figs 

3.12 and 3.13). It is apparent from previous studies that the effect of SFN on these 

various kinase pathways is dependent upon several different factors, including cell type, 

period of time of exposure and the concentration of SFN that cells are exposed to. In 

human HepG2 cells, SFN (20 μM) has been reported to activate Erk1/2 phosphorylation 

whilst strongly suppressing phosphorylation of p38 (Keum et al., 2006). The authors 

also postulated that stimulation of p38 in these cells resulted in a greater interaction of 

Nrf2 with its inhibitory protein, Keap1, suggesting that SFN-mediated activation of this 

antioxidant pathway was partly regulated by SFN-mediated suppression of p38 (Keum 

et al., 2006). The ability of SFN to augment antioxidant signalling downstream of Nrf2 

may be of therapeutic relevance as this modulation of an endogenous antioxidant 

pathways can offer increased cytoprotection against oxidative stress, something that 

exogenous antioxidants have not been able to achieve (Kris-Etherton et al., 2004; 

Steinberg 2000). However the disparity of the effects of SFN in different cell types 

highlights the complexity of its actions on cell signalling and must be taken into account 

when considering it for therapeutic use. This disparity is reflected in a study 

investigating its effects on adipocytes exposed to SFN (0 – 20 μM) for up to 48 h where 

SFN was reported to decrease the phosphorylation of Erk 1/2 and Akt, an effect that 

resulted in cell cycle arrest at the G0/G1 phase (Choi et al., 2012). A more recent study 

carried out in VSMC has reported that 2 h pre-treatment of cells with SFN (1-5 μg/ml) 

resulted in a dose-dependent inhibition of TNF-α-induced adhesion of THP-1 

monocytic cells and protein expression of VCAM-1 coupled with an associated 

suppression of TNF-α-induced production of intracellular ROS and suppression of 

phosphorylation of p38, Erk and JNK (Kim et al., 2012). The anti-inflammatory actions 

of SFN observed in this study further point to the potential therapeutic use of this ITC in 

modulating endogenous antioxidants with its use being of particular relevance to 

cardiovascular disease. 

 

Chuang and colleagues have shown that SFN inhibited PI3K signalling in platelets, and 

in culture was able to significantly reduce thrombus formation on a collagen-coated 

surface under flow conditions (Chuang et al., 2013). The underlying mechanism of this 

inhibition was postulated to be the ability of SFN to cause the ubiquitination of the p85 

regulatory subunit of PI3K, thereby preventing its translocation to the membrane for 

signalling events to occur, as well as causing the ubiquitination and degradation of 
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phosphoinositide-dependent kinase 1 which is required for Akt activation (Chuang et 

al., 2013). The underlying mechanisms of MAPK activation by SFN were not 

investigated in this study but further work examining these may offer a clearer 

understanding of how SFN modulates the activation of various signalling cascades in 

HAoAF. The increase in pAkt in response to SFN in HAoAF may suggest a possible 

alternative route by which SFN may phosphorylate Nrf2, thereby activating the 

Nrf2/ARE pathway, as has also been reported elsewhere (Zheng et al., 2011). 

 

This chapter has provided evidence of the effects of TGF-β1 on HAoAF in culture 

conditions. Exposure of cells to TGF-β1 results in the activation of the Smad signalling 

pathway in this cell type as well as the activation of several Smad-independent 

signalling pathways. Stimulation of HAoAF with TGF-β1 did not appear to alter the 

phenotype of these cells in culture and it was demonstrated that these cells had fully 

differentiated into a myofibroblast cell type. TGF-β1 has also been shown to increase 

cell proliferation and activate several Smad-independent pathways which were also 

activated by exposure to SFN in this cell type. 
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CHAPTER 4: Activation of redox signalling in human aortic adventitial 

fibroblasts treated with TGF-β1 and SFN 
 

 

4.1 Introduction 
 

Adventitial fibroblast (AF) migration and proliferation contributes to medial 

hypertrophy following vascular injury (Siow et al., 2003; Li et al., 2000) and there is 

increasing evidence to suggest that adventitia-derived reactive oxygen species (ROS) 

can act as signalling molecules to enhance this migration (Cascino et al., 2011; Haurani 

and Pagano, 2007). The cytokine, TGF-β1 is a key regulator of remodelling in vascular 

diseases, contributing to AF migration, a process that may occur in concert with 

enhanced ROS generation (Siow and Churchman, 2007). The Nrf2/ARE pathway is one 

of the most important antioxidant pathways within a cell that acts to restore redox 

balance following excess ROS production. Under normal physiological conditions, Nrf2 

is sequestered in the cytoplasm by its inhibitory protein, Keap1 and is subject to 

proteasomal degradation (Itoh et al., 1999; McMahon et al., 2003). However Nrf2 

activation, as a result of disruption of the complex formed between Keap1 and Nrf2 is 

an important mechanism of defence against oxidative and xenobiotic stress (Motahashi 

et al., 2004) and results in the accumulation of Nrf2 in the nucleus, dimerization with 

small Maf protein and its binding to the ARE in the promoter region of target genes and 

their consequent transcriptional activation (Osburn and Kensler, 2008).  

 

Heme oxygenase-1 (HO-1) is one of the many Nrf2-regulated genes and is a rate 

limiting, stress inducible enzyme that has previously been shown to confer protection 

against oxidative injury whilst maintaining tissue homeostasis (Morita, 2005; Ning et 

al., 2002). Its role in catalysing the degradation of heme to yield bilirubin, carbon 

monoxide and free ferrous iron has been reported as being protective in rodent models 

of ischemia reperfusion injury and intimal hyperplasia following balloon injury 

(Otterbein et al., 2003). The importance of this antioxidant enzyme has been exhibited 

in HO-1 knockout mice where absence of HO-1 results in increased cell death and 

accelerated neointima formation due to enhanced vascular smooth muscle cell migration 

(Yet et al., 2003).  

 

The flavoenzyme, NAD(P)H-quinone oxireductase (NQO1) is another Nrf2-regulated 

antioxidant gene and the depletion or knockdown of NQO1 is associated with increased 
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oxidative stress and predisposition to disease (Li et al., 2012). In vitro and in vivo 

studies carried out in human and rodent models have consistently reported that NQO1 is 

one of the most robustly inducible genes amongst the battery of Nrf2-regulated 

antioxidant enzymes and a number of pharmacological inducers of the Nrf2/ARE 

pathway have been shown to induce NQO1 mRNA and protein levels (He et al., 2011; 

Higgins et al., 2011; Suh et al., 2004). Recently, a number of studies in animal models 

have reported the potential protective role NQO1 plays in cardiovascular injury and 

atherogenesis, therefore investigating its induction in HAoAF in response to TGF-β1 

and SFN is an important indicator of the induction of the Nrf2/ARE pathway (Zhu and 

Li, 2012). 

 

Glutathione (GSH) is one of the first lines of defence cells employ in order to protect 

against oxidative stress (Lui et al., 2011). This tripeptide is able to prevent damage to 

important cellular components caused by ROS by serving as an electron donor, itself 

becoming reversibly oxidised. Its reversion back to its reduced form is catalysed by 

glutathione reductase (GSR; Englemann et al., 2005). The ratio of reduced to oxidised 

glutathione within cells is often an indicator of cellular toxicity and measurement of 

GSH depletion is widely used method of assessing the degree of oxidative stress that a 

pharmacological compound induces (Chen et al., 2006; Hissin and Hilf, 1976). 

Glutamate cysteine ligase (GCL) is a heterodimeric enzyme critical in the first step of 

glutathione synthesis and is composed of two proteins; glutamate cysteine ligase 

catalytic subunit (GCLC) and glutamate cysteine ligase modifier subunit (GCLM), both 

of which are transcriptionally regulated by Nrf2 (Yang et al., 2005). The levels of GSH 

and the expression of the component parts of its pathway are accurate indicators of 

levels of stress in a cell or tissue and are a routine measure of cellular toxicity (Hissin 

and Hilf, 1976).    

 

Due to its inducible nature and its biological effects, the Nrf2/ARE pathway plays a 

protective role in the vascular wall against atherogenesis (Morita, 2005) and 

interventions aimed at modulating the activation of this pathway in the vascular wall 

may therefore provide a novel way in which to treat or prevent vascular injury or 

disease.  Previously it has been shown that TGF-β1 activates the Nrf2 antioxidant 

pathway in human aortic smooth muscle cells, resulting in HO-1 protein expression 

(Churchman et al., 2009) as well as causing the depletion of GSH during fibrosis in 
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various disease models (Kang et al., 20011; Lui et al., 2004). SFN is a known phase II 

enzyme inducer, as well as causing glutathione depletion in various cell culture and 

animal models and in the current study it was used to activate the Nrf2/ARE pathway 

(Krehl et al., 2012; Oh et al., 2012; Vomhof-Dekrey et al., 2012; McMahon et al., 

2001). Therefore, following the characterisation of HAoAF, as described in Chapter 3, 

this chapter sought to explore the effect of TGF-β1 and SFN on the transcriptional 

activation of the Nrf2 pathway in HAoAF.   
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4.2 Nrf2 expression in HAoAF treated with TGF-β1 or SFN 

Total protein and mRNA levels of Nrf2 in whole cell lysates from HAoAF treated with 

TGF- β1 (0-5 ng/ml, 4-8 h) were determined by Western blot analyses and qRT-PCR 

respectively. HAoAF lysates were probed with a Nrf2 specific antibody (Spring 

Bioscience, USA, see Methods section 2.2 and 2.9) which detected two bands at 110 

kDa and 66 kDa. There is evidence to suggest that the mobility of the Nrf2 protein on 

denaturing Tris/glycine buffered SDS gels does not correspond directly to its molecular 

mass of approximately 66 kDa (Nguyen et al., 2009; Li et al., 2005) and may be due to 

an abundance of acidic residues found in Nrf2, causing it to migrate anomalously (Moi 

et al., 1994) to give a band at 110 kDa. Furthermore, in siRNA knockdown experiments 

carried out in this study, a decrease in Nrf2 expression detected at the 66 kDa band has 

been observed. Therefore, all western blot analysis of Nrf2 in HAoAF was based on the 

densitometry of the 66 kDa band (Nguyen et al., 2009). 

 

4.2.1 Nrf2 mRNA levels in HAoAF following treatment with TGF- β1 or SFN 

For the determination of Nrf2 mRNA levels following treatment of HAoAF with TGF- 

β1 (0-5 ng/ml, 4-8 h), confluent HAoAF were equilibrated in DMEM supplemented 

with 1% fetal calf serum (FCS) 18 h prior to treatment for 4 and 8 h, mRNA was 

extracted  (see Methods section 2.9) at two different time-points and qRT-PCR was 

performed. After treatment with TGF- β1 (2.5 ng/ml) for 4 h, there was no change in 

Nrf2 mRNA levels when compared to untreated control. Treatment with TGF-β1 (5 

ng/ml) resulted in a slight decrease in Nrf2 mRNA levels, however this decrease was 

not significant (Fig 4.1) After 8 h of treatment with TGF- β1 (2.5 and 5 ng/ml) there 

was also little change in Nrf2 mRNA levels when compared to untreated control (Fig 

4.1.1b).  

 

As there was little or no significant change in Nrf2 mRNA levels following treatment of 

HAoAF with TGF- β1, suggesting it is a very mild insult in this cell type, HAoAF were 

also treated with the dietary isothiocyanate, sulforaphane (SFN), as a positive control 

and Nrf2 mRNA levels were examined. At 4 h of treatment with SFN, there was a slight 

but not significant increase in Nrf2 mRNA levels when compared to vehicle treated 

cells (DMSO 0.01 %, Fig 4.2).  Interestingly, at 8 h, vehicle treated cells had higher 

Nrf2 mRNA levels when compared to SFN-treated (2.5 – 5 μM) cells (Fig 4.2) and 

levels were lower than those observed at 4 h.  
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Figure 4.1 Effect of TGF-β1 on Nrf2 mRNA levels in HAoAF  

Confluent HAoAF were equilibrated in phenol red-free DMEM supplemented with 1% FCS and 

subsequently treated with TGF-β1 (0 – 5 ng/ml) for 4 or 8 h. Levels of Nrf2 mRNA in the 

samples were quantified by qRT-PCR and expressed relative to 3 housekeeping genes 

(RPL13A, SDHA and TATABOX). Values denote means ± SEM. n = 6 independent 

experiments.  
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Figure 4.2 Effect of SFN on Nrf2 mRNA levels in HAoAF  

Confluent HAoAF were equilibrated in phenol red-free DMEM supplemented with 1% FCS and 

subsequently treated with vehicle control (DMSO 0.01%) or SFN (2.5 – 5 μM) for 4 or 8 h. 

Levels of Nrf2 mRNA in the samples were quantified by qRT-PCR and expressed relative to 3 

housekeeping genes (RPL13A, SDHA and TATABOX). Values denote means ± SEM. n = 6 

independent experiments.  
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4.2.2 Protein expression of total Nrf2 in HAoAF following treatment with TGF- β1  

         or SFN 

To determine whether treatment of HAoAF with TGF- β1 or SFN elicited changes in 

the levels of Nrf2 protein in cells, confluent HAoAF were equilibrated in DMEM 

supplemented with 1% FCS 18 h prior to treatment with TGF- β1 (0 - 5 ng/ml), vehicle 

control (DMSO 0.01%) or SFN (2.5 – 5 μM) for 4 – 24 h. Subsequently, cells were 

lysed and total cell protein was extracted and assessed using SDS-PAGE and Western 

blot analysis (see Methods section 2.2). In untreated cells, there was basal Nrf2 protein 

expression (Fig 4.3a) at 4 – 24 h. Interestingly, treatment with TGF- β1 (2.5 ng/ml) 

resulted in a decrease in total Nrf2 protein expression when compared with control, with 

total Nrf2 declining after 8 h and then gradually increasing, but remaining below the 

levels observed in untreated control cells. Cells treated with TGF- β1 (5 ng/ml) 

exhibited a further decrease in Nrf2 protein expression at 24 h (Fig 4.1.3b). These 

immunoblot results indicate that TGF- β1 does not significantly alter total Nrf2 protein 

levels in HAoAF when compared with untreated control. 

  

Treatment of cells with SFN (2.5 μM) did not appear to result in an increased protein 

expression of Nrf2 when compared with vehicle control. When treated with a higher 

concentration of SFN (5 μM), cells exhibited increased Nrf2 protein expression after 12 

h which appeared to plateau after 12 h (Fig 4.1.4b). Although protein expression in 

response to SFN (5 μM) was higher than that seen in untreated control, it was not a 

significant increase.  
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Figure 4.3 Nrf2 protein expression in HAoAF after treatment with TGF-β1  

Confluent HAoAF were equilibrated in phenol red-free DMEM supplemented with 1% FCS and 

subsequently treated with TGF-β1 (0 – 5 ng/ml) for 4 - 24 h prior to whole cell protein 

extraction. Total Nrf2 protein levels in these samples were assessed using SDS-PAGE and 

Western blot analysis. Results were analysed by densitometry with Nrf2 corrected for the 

loading control, α-Tubulin. Values denote means ± SEM, n= 3-5 independent experiments.   
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Figure 4.4 Nrf2 protein expression in HAoAF after treatment with SFN  

Confluent HAoAF were equilibrated in phenol red-free DMEM supplemented with 1% FCS and 

subsequently treated with vehicle control (DMSO 0.01%) or SFN (2.5 – 5 μM) for 4 - 24 h prior 

to whole cell protein extraction. Total Nrf2 protein levels in these samples were assessed using 

SDS-PAGE and Western blot analysis. Results were analysed by densitometry with Nrf2 

corrected for the loading control, α-Tubulin. Values denote means ± SEM, n= 3-5 independent 

experiments.   
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4.3 HO-1 expression in HAoAF treated with TGF-β1 or SFN 

4.3.1 HO-1 mRNA levels in HAoAF following treatment with TGF- β1 or SFN 

As HO-1 is an antioxidant enzyme and is transcriptionally regulated by Nrf2, amongst 

other transcription factors (Jadhav et al., 2008; Lin et al., 2007; Morita, 2005), the levels 

of HO-1 mRNA following treatment of HAoAF with TGF- β1 (0 – 5 ng/ml) for 4 and 8 

h were examined. After 4 h of treatment with TGF- β1 (2.5 and 5 ng/ml) there was no 

change in HO-1 mRNA levels when compared to untreated control (Fig 4.5). Similar 

observations were made following exposure of HAoAF to TGF- β1 (2.5 and 5 ng/ml) 

for 8 h, however, interestingly, there was a decrease in HO-1 mRNA levels across all 

treatments after 8 h of treatment (Fig 4.5), although this was not significant. 

 

In cells treated with SFN (2.5 and 5 μM), a dose dependent increase in HO-1 mRNA 

levels was observed when compared with vehicle control (DMSO 0.01%), however this 

increase was non-significant (Fig 4.6). After 8 h, HAoAF treated with vehicle (DMSO 

0.01%) or SFN (2.5 μM) exhibited increased HO-1 mRNA levels when compared to 

cells treated with the same treatments for 4 h. Conversely, treatment of HAoAF with 

SFN (5 μM) for 8 h resulted in a decrease in HO-1 mRNA levels when compared to 4 h 

treatment (Fig 4.6).  
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Figure 4.5 HO-1 mRNA levels in HAoAF after treatment with TGF-β1 

Confluent HAoAF were equilibrated in phenol red-free DMEM supplemented with 1% FCS for 

18 h and subsequently treated with TGF-β1 (0 – 5 ng/ml) for 4 or 8 h. Levels of HO-1 mRNA in 

the samples were quantified by qRT-PCR and expressed relative to 3 housekeeping genes 

(RPL13A, SDHA and TATABOX). Values denote means ± SEM. n = 6 independent 

experiments. 
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Figure 4.6 HO-1 mRNA levels in HAoAF after treatment with SFN 

Confluent HAoAF were equilibrated in phenol red-free DMEM supplemented with 1% FCS and 

subsequently treated with vehicle (DMSO 0.01%) or SFN (2.5 – 5 μM) for 4 or 8 h. Levels of 

HO-1 mRNA in the samples were quantified by qRT-PCR and expressed relative to 3 

housekeeping genes (RPL13A, SDHA and TATABOX). Values denote means ± SEM. n = 6 

independent experiments. 
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4.3.2 Protein expression of HO-1 in HAoAF following treatment with TGF- β1 or     

         SFN 

In addition to assessing the changes in mRNA levels of HO-1 in response to TGF- β1 or 

SFN, HO-1 protein levels were determined in HAoAF cell lysates treated with TGF- β1 

or SFN. Confluent HAoAF were equilibrated in DMEM supplemented with 1% FCS 18 

h prior to treatment with TGF- β1 (0 - 5 ng/ml), vehicle control (DMSO 0.01%) or SFN 

(2.5 – 5 μM) for 4 – 24 h. Subsequently, cells were lysed and total cell protein was 

extracted and assessed using SDS-PAGE and Western blot analysis. Lysates were 

probed for a HO-1 specific antibody (see Methods section 2.2) and expressed relative to 

α-tubulin. 

 

As shown in Fig 4.7, treatment with three different concentrations of TGF- β1 (2.5 - 10 

ng/ml) resulted in the increased protein expression of HO-1 after 8 h when compared 

with untreated control. Results indicate that 4 h following treatment TGF- β1 there was 

little or no increase in HO-1 protein expression when compared with untreated control. 

After 8 h there was a significant increase in HO-1 protein expression (p<0.05) when 

compared with untreated control and this decreased after 24 h. When the three different 

concentrations of TGF- β1 are compared, 5 ng/ml was the concentration at which there 

was the highest induction of HO-1 protein expression (Fig 4.7B), with 8 h being the 

timepoint at which this induction was statistically significant. These results suggest that 

TGF- β1 (5 ng/ml) caused a significant increase in HO-1 protein expression after 8 h in 

HAoAF. 

 

Treatment with three different concentrations of SFN (2.5 – 10 μM) resulted After 8 h 

there was a significant increase in HO-1 protein expression (p<0.05) when compared 

with untreated control and this decreased after 24 h. Peak induction of HO-1 protein 

expression occurred at 8 h for all concentrations of SFN used to treat cells. These results 

suggest that SFN (5 and 10 μM, 8 h) caused a significant increase in HO-1 protein 

expression after 8 h in HAoAF (Fig 4.8A and B). 
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Figure 4.7 HO-1 protein expression in HAoAF after treatment with TGF-β1  
Confluent HAoAF were equilibrated in phenol red-free DMEM supplemented with 1% FCS and 

subsequently treated with TGF-β1 (0 – 10 ng/ml) for 4 - 24 h prior to whole cell protein 

extraction. Total HO-1 protein levels in these samples were assessed using SDS-PAGE and 

Western blot analysis. Results were analysed by densitometry with HO-1 corrected for the 

loading control, α-Tubulin. Values denote means ± SEM, *p<0.05 TGF- β1 (5 ng/ml) vs. 

untreated control using unpaired Student’s t-test. n = 3-5 independent experiments.   
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Figure 4.8 HO-1 protein expression in HAoAF after treatment with SFN  
Confluent HAoAF were equilibrated in phenol red-free DMEM supplemented with 1% FCS and 

subsequently treated with vehicle (DMSO, 0.01%) or SFN (2.5 μM – 10 μM) for 4 - 24 h prior 

to whole cell protein extraction. Total HO-1 protein levels in these samples were assessed using 

SDS-PAGE and western blot analysis. Results were analysed by densitometry with HO-1 

corrected for the loading control, α-Tubulin. Values denote means ± SEM, *p<0.05 SFN (5 and 

10 μM) vs. untreated control using unpaired Student’s t-test. n = 3-5 independent experiments. 
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4.4 NQO1 expression in HAoAF treated with TGF-β1 or SFN 

4.4.1 NQO1 mRNA levels in HAoAF following treatment with TGF- β1 or SFN 

The transcriptional activation of NQO1 is regulated by Nrf2 (Miller et al., 2012; Oh et 

al., 2012), therefore levels of NQO1 mRNA in HAoAF in response to treatment with 

TGF- β1 (0 – 5 ng/ml) and SFN (2.5 and 5 μM) were determined. The same samples 

that were used to determine Nrf2 and HO-1 mRNA levels were also used to determine 

NQO1 mRNA levels. Following treatment with TGF-β1 (2.5 and 5 ng/ml) for 4 h, there 

was no change in levels of NQO1 mRNA when compared to untreated control (Fig 4.9). 

After 8 h, similar observations were made, however treatment with TGF- β1 (2.5 ng/ml) 

resulted in a decrease in NQO1 mRNA levels, although this was not significant (Fig 

4.9). 

 

NQO1 mRNA levels in cells treated with SFN (2.5 and 5 μM) did not change after 4 h 

in comparison with vehicle control (DMSO 0.01%). This was also observed in cells 

treated for 8 h; although all treatment groups displayed a slight increase in NQO1 levels 

after 8 h of exposure to either vehicle control or SFN when compared to 4 h, this 

increase was not statistically significant. Treatment with SFN (2.5 and 5 μM) for 8 h did 

not increase NQO1 mRNA levels in HAoAF in comparison to vehicle control (DMSO 

0.01%) at 8 h (Fig 4.10).  
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Figure 4.9 NQO1 mRNA levels in HAoAF after treatment with TGF-β1 

Confluent HAoAF were equilibrated in phenol red-free DMEM supplemented with 1% FCS and 

subsequently treated with TGF-β1 (0 – 5 ng/ml) for 4 or 8 h. Levels of NQO1 mRNA in the 

samples were quantified by qRT-PCR and expressed relative to 3 housekeeping genes 

(RPL13A, SDHA and TATABOX). Values denote means ± SEM. n = 6 independent 

experiments. 
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Figure 4.10 NQO1 mRNA levels in HAoAF after treatment with SFN 

Confluent HAoAF were equilibrated in phenol red-free DMEM supplemented with 1% FCS and 

subsequently treated with vehicle (DMSO 0.01%) or SFN (2.5 – 5 μM) for 4 or 8 h. Levels of 

NQO1 mRNA in the samples were quantified by qRT-PCR and expressed relative to 3 

housekeeping genes (RPL13A, SDHA and TATABOX). Values denote means ± SEM. n = 6 

independent experiments. 
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4.4.2 Protein expression of NQO1 in HAoAF following treatment with TGF- β1 or  

         SFN 

Expression of NQO1 protein was also determined in HAoAF treated with TGF-β1. 

After 4 and 8 h, treatment of HAoAF with TGF-β1 (2.5 and 5 ng/ml) resulted in a slight 

increase in NQO1 protein expression when compared with untreated control, and these 

levels appeared to decrease after 12 h of treatment (TGF-β1 5 ng/ml). After 24 h, levels 

of NQO1 protein in TGF-β1-treated cells was below that observed in untreated cells 

(Fig 4.11). Changes in NQO1 protein expression in cells following exposure to TGF-β1 

were not statistically significant.  

 

Cells treated with SFN exhibited lower levels of NQO1 protein expression than vehicle 

control (DMSO 0.01%) after 4 and 8 h of treatment (Fig 4.3.4a). This increased after 8 

h and continued to rise after 12 h. After 24 h, SFN-treated cells had higher levels of 

NQO1 protein expression than vehicle control, though this was not statistically 

significant (Fig 4.12). 
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Figure 4.11 NQO1 protein expression in HAoAF after treatment with TGF-β1  

Confluent HAoAF were equilibrated in phenol red-free DMEM supplemented with 1% FCS and 

subsequently treated with TGF-β1 (0 – 5 ng/ml) for 4, 8, 12 or 24 h prior to whole cell protein 

extraction. Total NQO1 protein levels in these samples were assessed using SDS-PAGE and 

Western blot analysis. Results were analysed by densitometry with NQO1 corrected for the 

loading control, α-Tubulin. Values denote means ± SEM, n = 3-5 independent experiments.   
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Figure 4.12 NQO1 protein expression in HAoAF after treatment with SFN  

Confluent HAoAF were equilibrated in phenol red-free DMEM supplemented with 1% FCS and 

subsequently treated with either vehicle control (DMSO 0.01%) or SFN (2.5 – 5 μM) for 4, 8, 

12 or 24 h prior to whole cell protein extraction. Total NQO1 protein levels in these samples 

were assessed using SDS-PAGE and Western blot analysis. Results were analysed by 

densitometry with NQO1 corrected for the loading control, α-Tubulin. Values denote means ± 

SEM, n = 3-5 independent experiments.   
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4.5 Levels of intracellular GSH in HAoAF treated with TGF-β1 or  

SFN 

Intracellular GSH levels are an important indicator of a cell’s redox status and are often 

used as a determinant of whether the cell/tissue has been exposed to oxidative stress. 

Several studies have reported that that TGF-β1 causes a depletion in intracellular GSH 

levels and as a consequence, induces oxidative stress during tissue remodelling or 

fibrotic processes observed in bronchial asthma, chronic pulmonary disease, idiopathic 

pulmonary fibrosis and vascular remodelling (Liu et al., 2012; Sugiura et al., 2009; 

Bakin et al., 2005; White et al., 1992). However, others have reported that TGF-β1 

attenuates glutathione depletion and protects against oxidative stress (Pauly et al., 

2011). Similarly, SFN has also been shown to deplete intracellular GSH levels by 

initially and rapidly conjugating with glutathione-S-transferases (GST; Munday et al., 

2008; Dinkova-Kostova et al., 2007). SFN has also been observed as increasing the 

expression of glutathione reductase by activating the Nrf2/ARE pathway (Xue et al., 

2008) and when administered in the diet, it has been associated with a lower risk of 

myocardial infarction (Cornelis et al., 2007). In order to elucidate the effects of TGF-β1 

and SFN on intracellular GSH levels in HAoAF, cells were treated with TGF-β1 or SFN 

and intracellular GSH levels were measured.  

 

Confluent cultures of HAoAF were equilibrated in DMEM supplemented with 1% FCS 

18 -24 h prior to incubating with TGF-β1 (5 ng/ml), vehicle control (DMSO 0.01%) or 

SFN (5 μM) for a further 0 – 24 h. Intracellular reduced GSH was analysed using a 

fluorescence assay as described in Methods (see Methods section 2.6.1 and 2.6.2). GSH 

levels in cells treated with TGF-β1 remained unchanged when compared to untreated 

control (Fig 4.13).  After 8 h, there was an increase in intracellular GSH levels in both 

untreated control and TGF-β1 treated cells, which returned to baseline after 24 h.  

 

When treated with SFN, there was an initial and significant depletion in intracellular 

GSH levels in SFN-treated cells after 2 – 4 h (p<0.05 SFN vs. control, 2 and 4 h) of 

when compared to control. This initial depletion recovered after 8 h and returned to just 

above baseline after 24 h (Fig 4.14).  
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Figure 4.13 Glutathione levels in HAoAF treated with TGF-β1 

Cells were treated with TGF-β1 (5 ng/ml) for 2, 4, 8, 24 and subsequently incubated with 6.5% 

TCA. Following incubation, the supernatant was removed from cells and total glutathione levels 

were determined using the opthalaldehyde assay. Glutathione was expressed relative to cellular 

protein content. Values denote means ± SEM. n = 3 independent cell cultures. 
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Figure 4.14 Glutathione levels in HAoAF treated with SFN 

Cells were treated with vehicle (DMSO 0.01%), SFN (5 μM) for 2, 4, 8, 24 and subsequently 

incubated with 6.5% TCA. Following incubation the supernatant was removed from cells and 

total glutathione levels were determined using the opthalaldehyde assay. Glutathione was 

expressed relative to cellular protein content. Values denote means ± SEM, *p<0.05 SFN vs. 

vehicle control using unpaired Student’s t-test. n = 3 independent cell cultures. 
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4.6 Nuclear levels of Nrf2 in HAoAF treated with TGF- β1 or SFN 

Activation of the Nrf2 pathway by oxidants and the consequent downstream 

transcription of antioxidant enzymes is a process that is largely dependent on the 

translocation of Nrf2 to the nucleus and its subsequent binding to the ARE in the 

promoter region of target genes. Therefore, changes in the levels of Nrf2 protein in the 

nucleus can be indicative of activation of the Nrf2/ARE signalling pathway.  The 

following set of experiments sought to determine whether treatment of HAoAF with 

either TGF- β1 or SFN resulted in Nrf2/ARE activation and were assessed using 

Western blot and an ELISA-based binding activity assay (TransAM) of nuclear extracts 

from treated HAoAF. Nrf2-specific immunofluorescence was also carried out in order 

to determine Nrf2 subcellular localisation. It has been reported that nuclear import of 

Nrf2 following stimulation with a biological challenge is a rapid process and can occur 

within 15 min of exposure (Kaspar and Jaiswal., 2010). Furthermore, there is evidence 

to suggest that this initial nuclear import of Nrf2 begins to decline 4 hours after 

exposure to the challenge (He at al., 2011). Therefore, nuclear levels of Nrf2 were 

assessed between 1 – 4 hours of exposure to either TGF- β1 or SFN.  

 

4.6.1 Expression of nuclear Nrf2 in HAoAF following treatment with TGF- β1 or  

         SFN 

To determine whether TGF- β1 or SFN elicited an increase in the translocation of Nrf2 

to the nucleus in HAoAF, confluent HAoAF were equilibrated in DMEM supplemented 

with 1% FCS 18 h prior to treatment for 1 – 4 h. Subsequently cells were lysed and cell 

fractionation was carried out using a commercially available kit in order to obtain 

nuclear extracts (see Methods section 2.4) which were then analysed using SDS-PAGE 

and Western blot. Nuclear Nrf2 levels were expressed relative to lamin C. After 1 h, 

there was no increase in the protein expression of nuclear Nrf2 with either TGF- β1 or 

SFN treatment. There was basal protein expression of Nrf2 in the cytoplasm at 1 h and 

this was significantly higher than Nrf2 protein observed in the nucleus (Fig 4.15; 

p<0.05, untreated control, nuclear vs. cytoplasmic fraction; p<0.05, TGF- β1-treated, 

nuclear vs. cytoplasmic fraction; p<0.01, SFN-treated, nuclear vs. cytoplasmic fraction). 

At 2 h, there was an increase in nuclear Nrf2 levels with both TGF- β1 and SFN treated 

cells when compared to cytosolic levels; an effect that was statistically significant (Fig 

4.16; p<0.05, untreated control, nuclear vs. cytoplasmic fraction; p<0.01, TGF- β1-

treated, nuclear vs. cytoplasmic fraction; p<0.001, SFN-treated, nuclear vs. cytoplasmic 
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fraction) as analysed by densitometry. Levels of cytoplasmic Nrf2 appeared to decrease 

when compared to those seen at the 1 h timepoint. After 4 h, levels of nuclear Nrf2 had 

returned to baseline in all groups treated, whilst levels in the cytosol increased 

significantly when compared to nuclear levels (Fig 4.17; p<0.01, untreated control, 

nuclear vs. cytoplasmic fraction; p<0.01, TGF-β1-treated, nuclear vs. cytoplasmic 

fraction; p<0.001, SFN-treated, nuclear vs. cytoplasmic fraction) suggesting that Nrf2 

had transclocated out of the nucleus after 4 h.  
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Figure 4.15 Nuclear and cytosolic Nrf2 levels in HAoAF following TGF-β1 or SFN 

treatment for 1 h. Confluent HAoAF were equilibrated in phenol red-free DMEM 

supplemented with 1% FCS and subsequently treated with either TGF-β1 (5 ng/ml) or SFN (5 

μM) for 1 h. Levels of Nrf2 (66 kDa) in (B) nuclear and (C) cytosolic extracts was determined 

by Western blotting. Results were analysed by densitometric analysis and nuclear Nrf2 was 

corrected for the nuclear reference protein, lamin C (62 kDa). Cytosolic Nrf2 levels were 

corrected for α-Tubulin (52 kDa). Values denote means ± SEM. No significant changes were 

observed in Nrf2 levels in treatment vs. control.  
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Figure 4.16 Nuclear and cytosolic Nrf2 levels in HAoAF following TGF-β1 or SFN 

treatment for 2 h. Confluent HAoAF were equilibrated in phenol red-free DMEM 

supplemented with 1% FCS and subsequently treated with either TGF-β1 (5 ng/ml) or SFN (5 

μM) for 1 h. Levels of Nrf2 (66 kDa) in (B) nuclear and (C) cytosolic extracts was determined 

by Western blotting. Results were analysed by densitometric analysis and nuclear Nrf2 was 

corrected for the nuclear reference protein, lamin C (62 kDa). Cytosolic Nrf2 levels were 

corrected for α-Tubulin (52 kDa). Values denote means ± SEM. *p<0.05, TGF-β1-treated 

nuclear fraction vs. control-treated nuclear fraction; **p<0.01, SFN-treated nuclear fraction vs. 

control-treated nuclear fraction using unpaired Student's t-test. n = 3-5 independent 

experiments. 
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Figure 4.17 Nuclear and cytosolic Nrf2 levels in HAoAF following TGF-β1 or SFN 

treatment for 4 h. Confluent HAoAF were equilibrated in phenol red-free DMEM 

supplemented with 1% FCS and subsequently treated with either TGF-β1 (5 ng/ml) or SFN (5 

μM) for 1 h. Levels of Nrf2 (66 kDa) in (B) nuclear and (C) cytosolic extracts was determined 

by Western blotting. Results were analysed by densitometric analysis and nuclear Nrf2 was 

corrected for the nuclear reference protein, lamin C (62 kDa). Cytosolic Nrf2 levels were 

corrected for α-Tubulin (52 kDa). Values denote means ± SEM. No significant changes were 

observed in Nrf2 levels in treatment vs. control. n = 3-5 independent experiments. 
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4.6.2 Nrf2 immunofluorescence in HAoAF treated with TGF-β1 or SFN 

In addition to Western blot analysis, immunofluorescent staining of Nrf2 was performed 

in HAoAF in order to assess Nrf2 subcellular localisation in response to TGF-β1 (5 

ng/ml) or SFN (5 μM). Immunofluorescence is a widely used technique to determine 

the subcellular localisation of Nrf2 in various cell types (Zhang et al., 2012; Tanaka et 

al., 2011; Papaiahgari et al., 2006; Papaiahgari et al. 2004), which allows the 

simultaneous visualisation of changes within the cytosol and nuclei of cells that have 

been treated with different stimuli. Sub-confluent HAoAF were equilibrated in DMEM 

supplemented with 1% FCS 18 h prior to treatment with TGF-β1 (5 ng/ml) or SFN (5 

μM) for 1, 2 or 4 h and subsequently fixed and incubated with an Nrf2-specific antibody 

(see Methods section 2.4.2). Nuclei were stained with DAPI and F-actin was stained 

with rhodamine-conjugated phalloidin. Nrf2 was localised primarily in the cytosol of 

cells treated with either TGF-β1 (5 ng/ml) or SFN (5 μM) for 1 h and was comparable 

to untreated control (Fig 4.18A, panels G-I). After 2 h of treatment with TGF-β1 (5 

ng/ml), there was an increase in nuclear Nrf2 (Fig 4.4.2b, panel H) when compared to 

that seen in the nuclei of untreated control cells (Fig 4.18B panel G). SFN (5 μM) also 

caused an increase in the nuclear accumulation of Nrf2 after 2 h. After 4 h, in TGF-β1 

(5 ng/ml) treated cells, Nrf2 had moved out of the nucleus and was primarily located in 

the cytosol (Fig 4.18C, panel H); SFN (5 μM) treated cells displayed more diffuse 

staining with Nrf2 located in the cytosol with some remaining in the nucleus (Fig 

4.18C, panel I). This immunofluorescence data is consistent with Western blot analysis 

(Figs. 4.13-4.15) and indicates that Nrf2 nuclear translocation occurs 2 h following 

treatment of HAoAF with TGF-β1 (5 ng/ml) or SFN (5 μM). 
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4.6.3 Nuclear Nrf2-ARE binding activity in HAoAF treated with TGF-β1 or SFN 

Although nuclear translocation of Nrf2 is associated with the induction of downstream 

antioxidant enzymes, it does not necessarily directly correlate with Nrf2-mediated gene 

transcription (Kratschmar et al., 2012). Activation of the Nrf2 pathway requires the 

binding of Nrf2 to the ARE in the promoter region of antioxidant genes in order to elicit  

gene transcription. Nrf2 nuclear accumulation occurs 2 h after treatment with TGF-β1 

or SFN; therefore, the binding of Nrf2 in nuclear lysates obtained from cells treated 

with TGF-β1 (5 ng/ml) or SFN (5 μM) for 2 h was investigated using a commercially 

available ELISA assay (Active Motif, see Methods section 2.4). The kit allows 

measurement of binding of the transcription factor in the nuclear extracts to consensus 

ARE oligonucleotides (Afonyushkin et al., 2010). In nuclear extracts from cells treated 

with TGF-β1 (2.5 ng/ml and 5 ng/ml), there was no significant change in nuclear 

binding of Nrf2 to the ARE when compared to untreated control (Fig 4.19A). In SFN 

(2.5 – 5 μM) treated cells appeared to be an increase in Nrf2 binding activity in a dose 

dependent manner. SFN-treated extracts had a significantly increased Nrf2 binding 

activity (Fig 4.19B; p<0.05, SFN (2.5 μM) vs. vehicle control (DMSO 0.01%), p<0.05, 

SFN (5 μM) vs. vehicle control (DMSO 0.01%)). These results indicate that although 

TGF-β1 may cause an accumulation of Nrf2 in the nuclei of HAoAF, this may not be 

indicative of Nrf2-ARE binding and therefore activation of the Nrf2 signalling pathway, 

however SFN treatment results in the binding of Nrf2 to the ARE and is therefore 

indicative of activation of this pathway.   
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Figure 4.19 ARE-binding activity of nuclear Nrf2 in HAoAF treated with TGF-β1 or SFN  

Confluent HAoAF were equilibrated in phenol red-free DMEM supplemented with 1% FCS and 

subsequently treated with TGF-β1 (2.5 - 5 ng/ml) or SFN (2.5 – 5 μM) for 2 h. Nuclear extracts 

containing active Nrf2 were then collected using the TransAM nuclear extraction kit and 

binding activity of Nrf2 was investigated using an ELISA based assay for duplicate samples. 

Nrf2 that was bound to the immobilized ARE on the ELISA plate was expressed as absorbance 

values read at 450 nm. Values denote means ± SEM. *p<0.05, SFN (2.5 μM) vs. vehicle and 

#p<0.05, SFN (5 μM) vs. vehicle using unpaired Student’s t-test. n = Representative of 3 - 5 

independent experiments. 
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4.7 Induction of HO-1 in HAoAF transfected with Nrf2 siRNA 

In order to determine whether TGF-β1-mediated HO-1 protein expression was as a 

result of the activation of the Nrf2/ARE signalling pathway, siRNA was performed. 

Cells were seeded and maintained in DMEM supplemented with 10 % FCS. Cells were 

allowed to adhere for 24 h and were subsequently transfected with siRNA. Eight hours 

following transfection, the transfection mixture was aspirated from wells and replaced 

with DMEM supplemented with 1% FCS for overnight equilibration. Cells were then 

treated with TGF-β1 (5 ng/ml) or SFN (5 μM) for 8 hours. HAoAF transfected with 

scramble siRNA and then treated with TGF-β1 or SFN, exhibited an increase in Nrf2 

and HO-1 protein expression when compared to untreated control, however this 

increase was not significant. In cells transfected with Nrf2 siRNA and subsequently 

treated with TGF-β1, there was a significant decrease in Nrf2 and HO-1 protein 

expression (p<0.05) when compared to those cells transfected with scramble siRNA 

(Fig 4.20 B and C). A significant decrease in Nrf2 and HO-1 protein expression was 

also observed in cells transfected with Nrf2 siRNA and subsequently treated with SFN 

(p<0.05 vs. scramble and p<0.01 vs. scramble respectively, Fig 4.20 A, B and C). 

Although cells exhibited a significant decrease in HO-1 protein expression, it was not 

completely abrogated suggesting that TGF-β1 and SFN-induced HO-1 protein 

expression may only be partly mediated by Nrf2.  
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Figure 4.20 Effect of Nrf2 siRNA knockdown on TGF-β1 and SFN-mediated HO-1 protein 

expression. HAoAF transfected with Nrf2 or scrambled siRNA were seeded and maintained in 

10% FCS. 24 h after seeding, cells were transfected for 8 h, then equilibrated in 1% FCS for 18 

h prior to treatment with either TGF-β1 (5 ng/ml) and SFN (5 μM) for 8 h. Nrf2 and HO-1 

protein expression levels in whole cell lysates were determined by western blot analysis, (A). 

Representative western blot and quantification of (B) Nrf2 and (C) HO-1 levels were 

determined by densitometry and expressed relative to α-tubulin. Values denote ± SEM, 

$$<p0.01 SFN-treated scramble vs. control-treated scramble, *p<0.05 TGF-β1-treated scramble 

vs. TGF-β1-treated Nrf2 transfected, #p<0.05 SFN-treated scramble vs. SFN-treated Nrf2-

transfected, ##p<0.01 SFN-treated scramble vs. SFN-treated Nrf2-transfected using ANOVA. n 

= 7 independent experiments.  
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4.8 Discussion 

Recent investigations into the pathophysiology of atherosclerosis and restenosis have 

revealed that the previous understanding of the disease processes involved was 

incomplete (Haurani and Pagano, 2007). Early evidence in this area of research 

suggested that the intimal layer and smooth muscle cell (SMC) layer was the main site 

where the inflammatory process was initiated (Schwartz et al., 1997; Ross, 1999; Lusis, 

2000); however, later studies have revealed that the adventitia may in fact be one of the 

sites of the initiation of diseases of the medium and large arteries (Liu et al., 2010; 

Lusis, 2000). The role of growth factors, in particular of TGF-β1 in SMC migration and 

proliferation have been reported in the literature over the past two decades. In particular, 

TGF-β1 has been reported to play a pivotal role in atherogenesis and vascular 

remodelling following angioplasty in humans and models of arterial injury in animals 

(Khan et al., 2007; Chung et al., 2002; Schulick et al., 1998; Nabel et al. 1993) and in 

mediating fibrotic kidney disease as seen during diabetic nephropathy and hypertension 

(Lan and Chung, 2012; Zarjou and Agarwal, 2012). Interestingly, dietary 

supplementation of the isothiocyanate, SFN has been shown to be beneficial in 

increasing basal levels of GSH, glutathione peroxidase (GPx) and glutathione reductase 

(GSR) as well as increasing the protein levels of these Nrf2–regulated antioxidant 

enzymes in vascular SMC (VSMC) from spontaneously hypertensive rats (Juurlink et 

al., 2001). Therefore, this study sought to investigate the effect(s) of both TGF-β1 and 

SFN on HAoAF and the possible role they may play in mediating cellular redox status 

in this cell type.  Results from this study provide novel evidence that TGF-β1 and SFN 

cause the induction of the cytoprotective antioxidant enzyme, HO-1 and nuclear 

translocation of the transcription factor Nrf2 in HAoAF. Furthermore, SFN causes a 

significant increase in Nrf2-ARE binding in HAoAF implicating it in the activation of 

this redox-sensitive antioxidant pathway in this cell type.  

 

4.8.1 Effects of TGF-β1 and SFN on HO-1 and NQO1 induction in HAoAF 

The upregulation of TGF-β1 in atherosclerotic disease has been widely reported with 

the adventitia being implicated as one of the sites of disease initiation (Haurani and 

Pagano, 2007). Dietary SFN has been reported as being beneficial during cardiovascular 

disease, owing to its ability to upregulate several Nrf2-regulated phase II antioxidant 

enzymes. A hallmark of atherosclerotic disease is oxidative stress therefore the purpose 

of this study was to investigate the effect of TGF-β1 and SFN on the redox status of 



Chapter 4                                                                           TGF-β1 activation of redox signalling in HAoAF 

 

 

 

202 

HAoAF. Recently, it has been postulated that ROS are released during the phenotypic 

transformation of fibroblasts to myofibroblasts and are important mediating collagen 

deposition that is widely associated with vascular remodelling following injury (Rocic 

and Lucchesi, 2005). TGF-β1 mediates myofibroblastic transformation but it is not 

known whether induction of antioxidant genes, such as HO-1 and NQO1 via Nrf2 is 

involved in this process. 

 

TGF-β1 is widely implicated in a variety of cardiovascular diseases and is secreted by 

all vascular cell types, including endothelial cells, VSMC, macrophages and 

myofibroblasts (Ruiz-Ortega et al., 2007). In culture, VSMC have been reported to 

produce TGF-β1 for their own growth and proliferation (Majesky et al., 1991) and in 

aortic tissue of hypertensive rats, TGF-β1 mRNA levels have been reported to be 

threefold higher than those seen in normotensive animals (Sarzani et al., 1989). Similar 

observations have been made in a model of carotid artery injury where mRNA levels of 

TGF-β1 increased six hours after injury and remained elevated for two weeks following 

injury. This observation was coupled by an increased production of TGF-β1 by SMC 

found in the neointima (Majesky et al., 1991). 

 

Thus this study provides an important insight into the mechanisms underlying adaptive 

responses to TGF-β1 in HAoAF, a cell type of direct relevance to atherogenesis (Liu 

and Kong, 2010; Haurani and Pagano, 2007). When treated with TGF-β1, HAoAF did 

not exhibit an increase in NQO1 mRNA or protein levels (Fig 4.9) and there was also 

no change in HO-1 mRNA levels after 4 h when compared to untreated control, though 

interestingly, levels decreased after 8 h (Fig 4.5). Despite these observations, a time-

dependent increase in HO-1 protein expression was seen in response to TGF-β1 (5 

ng/ml), which peaked after 8 h and which was a statistically significant effect (p<0.05); 

levels returned to slightly below baseline after 24 h (Fig 4.7). Although these results are 

not entirely consistent with evidence in the literature, similar findings have been 

reported in a study in airway SMC, where cells treated with TGF-β1 (1 ng/ml) exhibited 

significant increases in HO-1 protein expression but with no change in NQO1 protein 

levels and little change in HO-1 and NQO1 mRNA levels at 4 and 8 h (Michaeloudes et 

al., 2011).  
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The underlying mechanisms responsible for the increase in HO-1 protein induction are 

likely to vary between cell-types.  Kutty and colleagues first reported the alteration of 

HO-1 mRNA and protein by TGF-β1 (5 ng/ml) in four different cell types; HeLa cells, 

bovine choroid fibroblasts, bovine corneal fibroblasts and human retinal pigment 

epithelial cells.  A maximal increase in HO-1 protein expression was observed after 8 h 

of treatment in bovine choroid fibroblasts, a finding that is consistent with the present 

study, but which was absent in HELA, bovine corneal fibroblasts and human retinal 

pigment epithelial cells in the same study (Kutty et al., 1994). Other studies have also 

reported a peak increase in HO-1 protein levels after 8 h in response to TGF-β1, for 

example in lung epithelial cells, HO-1 induction in response to a range of TGF-β1 (0-30 

ng/ml) concentrations, peaked at 8 h and was attributed to the activation of the 

transcription factor, NFkB via the PI3K/Akt pathway (Lin et al., 2007).  

 

Although the present study did not observe any significant changes in mRNA levels of 

HO-1, others have shown increases in HO-1 mRNA levels that correlate with a 

concomitant increase in protein. Kapturczak and colleagues have reported that treatment 

with TGF-β1 (2 ng/ml) led to a significant increase in HO-1 mRNA levels after 4 h 

which peaked at 8 h and returned to baseline after 48 h and was accompanied by an 

increase in HO-1 protein expression (Hill-Kapturczak et al., 2000). Although TGF-β1 

elicited increases in HO-1 protein in HAoAF, in contrast to the findings of Hill-

Kapturczak and colleagues, TGF-β1 had no significant effect on HO-1 mRNA levels in 

this present study.  

 

In addition, a study carried out in human aortic smooth muscle cells (HAoSMC), 

Churchman and colleagues reported that in response to treatment with TGF-β1 (2.5 and 

5 ng/ml), there was a significant increase in HO-1 protein expression after 4 h which 

remained elevated for up to 12 h following treatment (Churchman et al., 2009). It was 

also observed that TGF-β1-mediated HO-1 induction was in-part regulated by the Erk 

1/2 and JNK signalling pathways in addition to the classical Smad signalling pathway in 

this cell type. Interestingly, antagonism of TGF-β1 signalling by adenoviral over-

expression of Smad7 (Nakao et al., 1997) resulted in a downregulation of HO-1 protein 

expression, strongly suggesting that there is possible cross-talk between the TGF-β1 

signalling pathway and the induction of HO-1 in HAoSMC (Churchman et al., 2009).  

Similar results have been observed in human proximal tubule cells, where the use of an 
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anti-TGF-β1 antibody resulted in a marked decrease in HO-1 mRNA levels when 

compared to cells treated with TGF-β1 alone (1 ng/ml, 8 h) further suggesting that these 

two signalling pathways may interact (Hill-Kapturczak et al., 2000).  

 

Although the majority of studies investigating the effect of TGF-β1 on HO-1 levels are 

consistent with the results reported here in HAoAF, it has also been reported that TGF-

β1 can decrease levels of HO-1 mRNA and protein. In a rat model of endotoxemia, 

LPS-induced HO-1 mRNA and protein were suppressed after the administration of 

TGF-β1 (Pellacani et al., 1998). The same study also reported that rat aortic SMC 

stimulated with IL-1β and then treated with TGF-β1, exhibited a downregulation of IL-

1β-mediated HO-1 mRNA and protein levels as well as a decrease in HO-1 enzymatic 

activity (Pellacani et al., 1998). The present study in HAoAF has found that although 

TGF-β1 treatment results in an increase in HO-1 protein levels, it had no effect on 

mRNA levels. This may be due to the time-point at which these measurements were 

made as other studies have shown changes in HO-1 mRNA levels after treatment with 

TGF-β1 over 2 – 48 h (Hill-Kapturczak et al., 2000; Kutty et al., 1994). The underlying 

mechanism by which TGF-β1 induces HO-1 protein expression is unclear, however 

measuring the enzymatic activity of HO-1 (Moterlini et al., 1996) in response to TGF-

β1 could provide further useful information and allow elucidation of the pathway and 

mechanism by which this induction occurs. 

  

In this study, use of the isothiocyanate, SFN was used as a positive control as its role as 

an Nrf2-inducer has been characterised in several different cell types (Keum et al., 

2006; Keum et al., 2011; Michaeloudes et al., 2011). However, emerging evidence 

recently reported in the literature highlights the possible effects of SFN on the Smad 

signalling pathways (Oh et al., 2012; Chin et al., 2011) highlighting the potential role of 

SFN as an important therapeutic agent in fibrosis, diabetes, chemoprevention and 

vascular disease (Kaminski et al., 2010, Negi et al., 2011; Oh et al., 2012; Keum et al., 

2011). Therefore, induction of antioxidant enzymes by SFN in myofibroblasts may be a 

way of conferring protection from further and on-going oxidative stress in vascular 

diseases and may even be used as a clinically beneficial means of intervention against 

vascular remodelling. In this study, HAoAF were treated with SFN and HO-1 and 

NQO1 mRNA levels and protein expression were analysed.  
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Observation of NQO1 mRNA (2.5 – 5 µM, 4 – 8 h) and protein (2.5 – 5 µM, 4 – 24 h) 

levels revealed that these did not change in response to SFN in HAoAF (Figs. 4.10 and 

4.12). This finding is in contrast to results previously reported in other cell types, in 

particular, in airway SMC and mouse embryonic fibroblasts where SFN increased 

NQO1 mRNA levels and protein expression (Michaeloudes et al., 2011; Keum et al., 

2006). Analysis of SFN treatment on HO-1 mRNA levels in HAoAF revealed that it 

had no significant effect on these levels (Fig 4.6), however cells exhibited a dose and 

time-dependent increase in HO-1 protein expression, with the highest significant 

increase observed at 8 h after SFN treatment, which returned to basal levels after 24 h 

(Fig 4.8). Similar observations have been made by Keum and colleagues, who reported 

that exposure of mouse embryonic fibroblasts to SFN (5 µM) resulted in an induction of 

HO-1 protein levels 12 h after treatment, which decreased after 24 h. The same study 

showed that treatment of mouse embryonic fibroblasts with SFN was accompanied by a 

significant increase in Nrf2 protein levels and increased ARE-luciferase activity, 

suggesting that HO-1 induction was mediated by the Nrf2-ARE pathway in this cell 

type (Michaeloudes et al., 2011; Keum et al., 2006).  

 

In both TGF-β1 and SFN-treated cells, there was little change in Nrf2 mRNA levels and 

basal expression of Nrf2 protein was unaltered (Figs. 4.1-4.4). This is in-keeping with 

some reports which suggest that Nrf2 is constitutively expressed and whole cell protein 

levels remain unaltered in some cell types (Nguyen et al., 2005). Although this was the 

case, several factors are able to affect the activity of proteins. The quantity of an 

mRNA, its stability or degradation and rates of ribosome initiation all directly impact on 

protein output; degradation of mRNA results in the steady state decrease in the 

expression of the protein (Hargrove and Schmidt, 1989). Without changes at the 

transcription level, mRNA steady-state levels can vary dramatically by small changes in 

mRNA stability, which has recently been shown to be prone to regulation by 

microRNA, which can repress or target degradation resulting in gene silencing (Eades et 

al., 2011). mRNA stability may be a reason for the unchanged levels of Nrf2 in 

response to TGF-β1 and SFN treatment in this study. Other possible post-translational 

modifications include hypermethylation of proteins; hypermethylation of the Keap1 

promoter has been shown to result in Keap1 protein expression and the accumulation of 

nuclear Nrf2 (Kansanen et al., 2013). In addition, the acetylation of Nrf2 by the 

transcription factor CREB, has been observed as increasing it’s binding to its cognate 
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response element in a target gene promoter and increasing Nrf2-dependent transcription 

from target gene promoters (Kawai et al., 2011). Post-translational modifications of 

proteins were not investigated in the current study, however future work regarding these 

may shed further light on the levels of protein expression observed here.    

 

Results from other studies suggest that alternatively, the transcription factor, NFκB, 

may regulate HO-1 protein as opposed to Nrf2, as was reported in a study where human 

gingival fibroblasts were stimulated with cyclosporine A (Chin et al., 2011). Analysis of 

alternative transcription factors was not investigated in the present study, however 

future work focusing on other potential transcription factors that regulate HO-1, and that 

have been reported as being activated by TGF-β1 and SFN, including AP-1 and CREB 

(Kawal et al., 2011; Zhang et al., 2006; Sano et al., 1999) would shed further light on 

the molecular pathway(s) involved in HO-1 induction in HAoAF.  
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4.8.2 Effect of TGF-β1 and SFN on intracellular GSH levels in HAoAF 

The dysregulation of GSH has been reported in aging (Lui et al., 2004) and various 

disease models including diabetes mellitus (Okouchi et al., 2006), cholestasis 

(Serviddio et al., 2004), cancer, drug-resistant tumours (Huang et al., 2001) and fibrosis 

amongst others (Roum et al., 2003; Rahman et al., 1999; Beeh et al., 2002). TGF-β1 has 

been implicated in as being involved in these disease processes and has been found to 

reduce intracellular GSH (Lui et al., 2004) in various cell types, including epithelial 

cells (Bakin et al., 2005), hepatocytes (Fu et al, 2008), endothelial cells (White et al., 

1992) and fibroblasts (Lui et al., 2004) in vitro. Therefore, in order to assess the effects 

of TGF-β1 on GSH levels in HAoAF, a fluorometric assay was performed (Hissin and 

Hilf, 1976). It was found that treatment of cells with TGF-β1 did not elicit any changes 

in intracellular GSH in HAoAF over 24 h. 

 

Previous studies have indicated that TGF-β1 elicits GSH depletion. In NIH3T3, a 

murine embryonic fibroblast cell line, depletion of intracellular GSH as a result of TGF-

β1 exposure was accompanied by an increase in collagen accumulation, an effect which 

was blocked following replenishment of intracellular GSH with exogenous GSH or N-

acetyl cysteine (NAC), indicating that GSH plays a pivotal role in TGF-β1-mediated 

fibrogenesis (Sanchez et al., 1997). A more recent study has postulated a possible cross-

talk between the mechanisms involved in TGF-β1-induced profibrotic responses and 

GSH where treatment of human fetal lung fibroblasts with TGF-β1 resulted in the 

transformation of cells to a pro-fibrotic phenotype whilst also augmenting fibronectin 

production and enhancing gel contraction (Sugiura et al., 2009). However, when co-

treated with NAC, these effects were significantly attenuated suggesting that NAC 

inhibited not only TGF-β1 signalling but also the TGF-β1-mediated wound healing 

process and fibroblast differentiation (Liu et al., 2004). They have also suggested that 

NAC is able to modify TGF-β1, rendering it inactive as well as inhibiting its binding to 

its receptor (Sugiura et al., 2009). This finding suggests a possible mechanism by which 

ROS are involved in TGF-β1-mediated effects in fibroblasts and that use of an 

antioxidant such as NAC may abrogate these effects. Such changes may include the 

activation of certain MAPK phosphatases, leading to the sustained activation of various 

MAPK pathways and subsequent activation of downstream signalling pathways, 

including antioxidant pathways such as Nrf2 and NFκB (Liu and Pravia, 2010).  
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It has been postulated that the mechanism by which TGF-β1 causes the depletion of 

intracellular GSH is via the inhibition of glutamate cysteine ligase catalytic subunit 

(GCLC) gene transcription and the suppression of GCLC promoter activity, with many 

studies suggesting that this may be the process by which TGF-β1 causes intracellular 

GSH depletion in fibrotic diseases. (Jardine et al., 2002). Jardine and colleagues have 

reported this observation as being due to the TGF-β1-mediated activation of the 

activator protein (AP-1) pathway; their study in alveolar epithelial cells has reported an 

increase in the DNA binding activity of both AP-1 and ARE in TGF-β1-treated 

epithelial cells (Jardine et al., 2002). This finding has been further confirmed by a more 

recent one in mammary epithelial cells, which has found that TGF-β1 suppresses of the 

activity of the human GCLC proximal promoter which bears an ARE (Bakin et al., 

2005). Others studies have suggested TGF-β1 is able to cleave the catalytic subunit of 

GCLC and downregulate GCLC gene expression resulting in a reduction in the activity 

of GCL and consequent depletion of intracellular GSH (Franklin et al., 2003). Findings 

from these studies suggest that TGF-β1 may elicit an increase in oxidative stress by 

depleting the antioxidant protection afforded by GSH which plays an important role in 

ROS detoxification. However, in the present study, and in contrast to findings from the 

literature, TGF-β1 treatment did not affect intracellular GSH levels in HAoAF, which 

may indicate a possible adaptive response in cells, similar to that observed by Pauly and 

colleagues who found that TGF-β1 stimulates cysteine uptake leading to the 

maintenance of cellular glutathione (Pauly et al., 2011). This study may also potentially 

explain the increase in intracellular GSH seen 8 h after treatment, and may be indicative 

of normal redox cycling events during GSH synthesis.  

 

Animal studies and several epidemiological studies suggest that regular consumption of 

cruciferous vegetables lower the risk and incidence of diseases including cancer of the 

prostate, lung, breast and colon (Liu et al., 2008; Juge et al., 2007) as well as conferring 

protection against hyperglycaemia, hypertension and myocardial infarction (Xue et al., 

2008; Cornelis et al., 2007; Noyan-Ashraf et al., 2006; Wu et al., 2001). Therefore, in 

order to determine the potential beneficial effects that SFN could confer to the 

adventitial layer, which is known to be involved in atherosclerotic disease progression 

(Ruiz-Ortega et al., 2007), HAoAF were treated with SFN and intracellular GSH levels 

measured. Results revealed that SFN causes an initial depletion in GSH levels after 4 h 

of treatment (see Fig 4.14), which recovered after 8 h and returned to just above 

baseline after 24 h. Several studies have also reported the depletion of GSH in cells 
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treated with SFN. Similar findings in endothelial cells were observed where treatment 

with SFN resulted in a transient depletion of GSH which recovered over 12 h of 

treatment and which was abrogated when cells were pre-incubated with NAC (Liu et al., 

2008). In a study in VSMC from spontaneously hypertensive rats, cells treated with 

SFN (0 – 0.5 μM) displayed an initial decrease in intracellular levels, however cells 

recovered over time and levels of GSH returned to baseline (Wu and Juurlink et al., 

2001). A more recent study carried out in a bronchial epithelial cell line demonstrated 

similar findings to the current study where SFN treatment resulted in the depletion of 

intracellular GSH after 2 h followed by a GSH rebound and elevation of GCL owing to 

an increase in the levels of nuclear Nrf2 after 4 h of SFN treatment (Poerschke et al., 

2012).  

 

The recovery of intracellular GSH levels has been attributed to the ability of SFN to 

induce the expression of the Nrf2/ARE-regulated genes GCLC/GCLM; initial exposure 

to SFN results in the conjugation of SFN with GST resulting in the observed GSH 

depletion, however SFN has also been reported as modifying cysteine residues on 

Keap1, allowing the release of Nrf2, its translocation to the nucleus and consequently 

the increased expression of GST and glutamate cysteine ligase (GCL) which in turn 

results in the synthesis of newly formed GSH, replenishing intracellular levels and 

returning them to baseline (Xue et al., 2008). Interestingly, vehicle-treated cells 

displayed higher levels of GSH than those treated with SFN. NMR studies have 

revealed that GSH is highly flexible in an aqueous solutions and is able to transition to 

the extended, semi-folded and folded states. However, in DMSO, the stronger hydrogen 

bonds and the hydrophobic interactions make GSH stable in the folded state, allowing it 

to accumulate in high levels. In the absence of an agent which causes its depletion, GSH 

may continue to accumulate in the cells in a time-dependent manner, as observed here 

(Fig. 4.14; Zhang et al., 2011). A more accurate gauge of cellular redox state could be 

ascertained with the use of an enzymatic or HPLC assay which would give the 

GSH:GSSG ratio (Rousar et al., 2012). In addition, due to the commencement of 

measurement at 2 h following treatment, measurements were not obtained at time zero 

and so conclusions pertaining to an increase or decrease in the levels of GSH in either 

treatment group, from time zero cannot be drawn. The current study has found that SFN 

treatment results in the initial depletion of intracellular GSH, however this later recovers 
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and returns to baseline at 24 h and may offer potential of SFN as prophylaxis, affording 

protection to cells from ongoing oxidative stress during disease.  

 

The method used to analyse cellular GSH levels in the present study was the 

fluorometric method, first proposed by Hissin and Hilf, 1976 which measures reduced 

glutathione (GSH). However, it has been suggested that this is not an accurate measure 

of the redox state of the cell, especially when the cell is under oxidative stress and that 

the ration of reduced to oxidized glutathione (GSH:GSSG) is a more accurate gauge of 

cellular stress (Floreani et al., 1997). Furthermore, when compared to a variety of other 

glutathione assays, levels measured by the fluorometric method were not comparable 

with those measured by the other assays (Floreani et al., 1997).   

 

Work into the methodology of the original protocol (Hissin and Hilf, 1976) has allowed 

the optimisation of this method to produce a more accurate readout of GSH (Rousar et 

al., 2012). Rousar and colleagues found that adjusting the original wavelengths used for 

excitation from 350 to 340 nm enhanced the intensity of fluorescence by 20% as did 

decreasing the temperature during measurement (Rousar et al., 2012). In the current 

study, the excitation wavelength used was 350 nm and the samples were incubated at 

room temperature before fluorometric reading was commenced, both of which may 

have affected the values obtained of the levels of GSH in HAoAF.     

 

Irrespective of these factors, measurement of the ratio of GSH:GSSG remains a more 

accurate measure of cellular oxidative stress, which is not taken into account when 

using the fluorometric method. Although this method is easy to perform and with the 

potential of a high throughput of samples, it is limited by its inability to determine the 

GSH:GSSG ratio which is important when investigating oxidative stress in a cell 

system. Future work using an enzymatic method or HPLC may provide a more accurate 

readout with regards to the effect of TGF-β1 and SFN on glutathione levels in HAoAF.  
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4.8.3 Effect of TGF-β1 and SFN on Nrf2 nuclear accumulation  

As activation of the Nrf2 pathway requires its translocation to the nucleus and 

subsequent binding to the ARE, the effect of TGF-β1 and SFN treatment on the cellular 

localisation of Nrf2 in HAoAF was investigated. Nrf2 heterodimerizes with Jun and 

small Maf proteins in the nucleus and binds to the ARE in the promoter region of 

antioxidant enzymes to regulate their expression; including the cytoprotective enzyme, 

HO-1 and the phase-II detoxification enzyme NQO1 (Jaiswal, 2004; Jain et al., 2005).  

The distribution and activity of Nrf2 in response to chemical/electrophillic stress is 

variable between different cell types (Nguyen et al., 2009; Watai et al., 2007; Jain et al., 

2005; Velichkova and Hasson, 2005), however in all cell types, its nuclear translocation 

is associated with the transcription of antioxidant genes following binding to the ARE 

of antioxidant genes (Keum, 2011), therefore HAoAF were treated with TGF-β1 (5 

ng/ml) or SFN (5 μM) and nuclear fractions extracted. Immunofluorescence analysis 

revealed that in response to TGF-β1 (5 ng/ml), there was enhanced nuclear 

accumulation of Nrf2, which was also seen in response to SFN (5 μM) after 2 h of 

treatment (Fig. 4.18 B). These results are in agreement with previous data from 

HAoSMC where Nrf2 nuclear accumulation was seen after 2 h of TGF-β1 (5 ng/ml) 

treatment; an accumulation that increased in a dose-dependent manner (Churchman et 

al., 2009). Initially, these results suggest that TGF-β1 and SFN may reduce the Keap1-

directed degradation of Nrf2, therefore allowing its accumulation in the cell. SFN has 

been postulated as activating Nrf2 via an alternative method; Keum and colleagues have 

proposed that it reacts with protein thiols to form thionacyl adducts which affect 

cysteine residues in Keap1, allowing the release of Nrf2, and its translocation to the 

nucleus (Keum et al., 2006). In addition, SFN is thought to affect intracellular kinases to 

phosphorylate Nrf2, thereby affecting its ability to translocate to the nucleus (Keum et 

al., 2011). 

 

However, the nuclear accumulation of a transcription factor is not necessarily an 

indicator of its transcriptional activity. Although Nrf2 nuclear translocation was 

observed in response to TGF-β1 treatment after 2 h, when analysed by 

immunofluorescence, when the TransAM DNA binding ELISA was carried out in order 

to assess Nrf2 transcriptional activity, no change in ARE binding of Nrf2 was observed 

(Fig. 4.19). Baseline levels of nuclear Nrf2 appeared to be higher than levels observed 

in TGF-β1-treated cells, which may indicate that cells were already under some stress 
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and that redox pathways, in particular, the Nrf2 pathway, had been activated perhaps 

due to the experimental procedure. 

 

However, similar findings that suggest that TGF-β1 has little or no effect on Nrf2-ARE 

activation have also been reported in airway SMC, where TGF-β1 caused an initial 

increase in HO-1 mRNA levels after 2 h, however there was no increase in Nrf2-ARE 

driven luciferase activity or a change in whole-cell protein levels of Nrf2 (Michaeloudes 

et al., 2011), observations that are consistent with the current study. Interestingly, the 

same study also reported that treatment of airway SMC with SFN resulted in an increase 

in whole cell Nrf2 levels which was accompanied by a concentration-dependent 

increase in ARE-driven luciferase activity (Michaeloudes et al., 2011). Whilst increases 

in whole-cell Nrf2 were not observed in HAoAF in response to SFN, there was a dose-

dependent (2.5 – 5 μM) increase in Nrf2-DNA binding activity.  The modulation of 

Nrf2 by TGF-β1 may be a more complicated process than simple activation and nuclear 

translocation. Michaeloudes and colleagues argue that although initial increases in the 

mRNA of Nrf2-regulated genes are observed in response to TGF-β1 in airway SMC, 

TGF-β1 may inactivate Nrf2 by inducing the expression of the Nrf2 transcriptional 

repressor, ATF-3 which results in the later decrease of HO-1 mRNA levels after 4 h 

(Michaeloudes et al., 2011). They argue that TGF-β1 increases the mRNA of ATF-3, 

thereby blocking Nrf2-mediated transcription; ATF-3 is postulated to do this by 

displacing the Nrf2 co-activator, CREB binding-protein from the ARE complex 

(Michaeloudes et al., 2011). This may also be a mechanism by which HO-1 mRNA 

levels decrease over time in HAoAF, however, in order to determine this, further work 

to investigate other mechanisms, including ATF-3 activity and possibly other 

transcriptional repressors such as Bach1 and DJ-1(Im et al., 2012; Kang et al., 2011; 

Clements et al., 2006; Shan et al., 2006), would need to be carried out.  The evidence in 

the present study regarding SFN-mediated HO-1 induction suggests that SFN may 

activate the Nrf2/ARE pathway in HAoAF as reported previously (Michaeloudes et al., 

2011; Keum et al., 2011; Keum et al., 2006).  
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4.8.4 Effect of knockdown of Nrf2 on TGF-β1 and SFN induction of antioxidant  

         genes 

To investigate whether Nrf2 regulated HO-1 induction response in HAoAF, knockdown 

of this transcription factor using short interfering RNA transcript was carried out. 

Following transfection, cells were treated with TGF-β1 or SFN. Western blot analyses 

show that HAoAF transfected with Nrf2 siRNA displayed abrogated HO-1 protein 

expression when treated with both TGF-β1 and SFN (Fig 4.20). This further confirms 

that SFN mediated-HO-1 expression in HAoAF is an Nrf2-dependent process. 

However, with regards to TGF-β1, these results do not correlate with those found in the 

Nrf2-DNA binding assay, where it was found that TGF- β1 does not increase Nrf2-ARE 

binding activity, however siRNA studies have demonstrated that in cells transfected 

with Nrf2 siRNA, TGF- β1-induced HO-1 protein expression was abrogated. These data 

suggest that TGF-β1 mediated - HO-1 protein induction may be partly mediated by 

Nrf2. 

 

Previously, Itoh and colleagues reported some of the first evidence that Nrf2 induced 

the expression of phase-II detoxifying enzymes by disrupting the nrf2 gene in vivo. By 

using butylated hydroxyanisole (BHA), a selective phase-II enzyme inducing stress 

agent, in both wild-type (WT) and Nrf2-deficient mice they were able to compare the 

induction of the antioxidant enzymes, HO-1 and NQO1. Findings showed that induction 

of phase-II enzymes in Nrf2-deficient mice was largely eliminated in isolated liver and 

intestinal tissue, whilst WT mice displayed a normal expression pattern of these 

enzymes (Itoh et al., 1997). Similarly another study found a 50-80% reduction in the 

constitutive induction of NQO1 in hepatic and gastric tissue from Nrf2-deficient mice in 

comparison to WT (Ramos-Gomez, 2001).  

 

Interestingly, in the present study, although induction of HO-1 was clearly decreased 

following siRNA knockdown of Nrf2, and Nrf2 protein expression in Nrf2 siRNA-

transfected cells was significantly lower than in non-transfected control cells, some 

Nrf2 protein expression was still detected in transfected cells (Fig. 4.18). This can be 

explained by the ‘Hinge and Latch’ model proposed by Tong and colleagues (see Fig. 

4.17) which postulates that after exposure to electrophillic stress, newly synthesized 

Nrf2 molecules bypass the ‘Keap1 gate’, (which traps Nrf2 and causes its degradation 

via the 26S proteasome) (Tong et al., 2006a; Tong et al., 2006b; Tong et al., 2007; 
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Watai et al., 2007). This newly synthesized Nrf2 then translocates to the nucleus where 

it binds to the ARE of antioxidant genes and causes their transcription (Watai et a., 

2007). In this model, instead of causing disruption of the Keap1-Nrf2 association, 

electrophillic stress simply represses Keap1-mediated ubiquitination of Nrf2, so that 

Nrf2 is still associated with Keap1 but not degraded. In the context of the current study, 

it is possible that Nrf2 siRNA caused the knockdown of any newly synthesized Nrf2, 

which would have otherwise bypassed the Keap1 pathway and resulted in transcription 

of antioxidant enzyme(s), whilst affecting Nrf2 already present in the cell. In addition to 

this, only the induction of antioxidant enzymes is abrogated, however their ubiquitous 

and constitutive activation is still present, albeit at lower levels (Nguyen et al., 2009). 
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Figure 4.21 The ‘Hinge and Latch’ model of Keap1-Nrf2 degradation.  

Under unstressed conditions, Nrf2 is sequestered in the cytoplasm by Keap1 homodimer and 

rapidly degraded via the ubiquitin-proteasome pathway. Upon exposure to oxidants or 

electrophiles, Keap1 is inactivated and becomes ‘stuck’ with the Nrf2 it is associated with, 

allowing de novo synthesized Nrf2 to bypass the cytoplasmic Keap1-proteasome pathway, 

translocate to the nucleus and bind to the ARE of phase-II and antioxidant genes. Taken from 

Watai et al., 2007. 
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Several studies have reported that activation and transcription of HO-1 can be mediated 

by the NFκB pathway. The TGF-β1 gene promoter contains binding sites for NFκB  

(Lee et al., 2006) as does the gene promoter for HO-1 (Jadhav et al., 2008) and this may 

be an alternative pathway in which TGF-β1 mediates HO-1 induction.  

 

An interaction between HO-1, NFκB and TGF-β1 has been proposed by Jadhav and 

colleagues in a rat model of hypertension where the HO system has been postulated to 

critical for the regulation of fibrotic events mediated by TGF-β1 and the available 

binding sites for NFκB in the TGF-β1 promoter as well as in the HO-1 promoter 

suggest an intricate relationship between both TGF-β1 and HO-1 and their regulation by 

NFκB (Jadhav et al., 2008). Upregulation of HO activity as well as the administration of 

hemin reduced hypertension, suppressed oxidative stress and reduced atherosclerotic 

lesion formation as analysed by immunohistochemistry characteristic of cardiac lesions 

(Jadhav et al., 2008). Furthermore, A459 cells, induction of HO-1 by TGF-β1 was 

thought to be dependent on PI3K/Akt and NFκB signalling as use of both a PI3K 

inhibitor and an NFκB inhibitor inhibited TGF-β1-induced HO-1 expression and HO-1-

ARE luciferase activity (Lin et al., 2007). In human hepatoma HepG2 cells transfected 

with a NFκB reporter plasmid, treatment with TGF-β1 led to a 50% increase in NFκB-

luciferase reporter activity. This was mediated by TRAF-6-induced polyubiquitination 

of TGF-β1-associated kinase 1, thereby activating it and inducing a prosurvival pathway 

via NFκB. This may be a potential mechanism by which HO-1 is induced via the TGF-

β1 signalling pathway (Hamidi et al., 2012). In addition, another study using A459 cells 

demonstrated the importance of NFκB and PI3K in TGF-β1-mediated migration; the 

use of inhibitors for both of these resulted in abrogation of cell migration in response to 

TGF-β1 (Fong et al., 2009). 

 

These studies suggest that other alternative pathways such as NFκB may mediate the 

TGF-β1 mediated HO-1 induction in HAoAF. Although other transcription factors such 

as NFκB were not considered in this present study, it would be important to investigate 

these in any future work to shed light upon the mechanisms behind the lack of Nrf2-

DNA binding activity in HAoAF in response to TGF-β1. The cross-talk between SFN 

and the TGF-β1 signalling pathway was not investigated by the current study, however 

an interaction between the two was first reported by Traka and colleagues in a study 

carried out in NIH-3T3 cells where it was found that SFN can indirectly increase TGF-
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β1-mediated activation of the Smad signalling pathway when it is pre-incubated with 

SFN (2 μM) for 30 min. The binding of SFN to TGF-β1 resulted in enhanced Smad-

mediated transcription, inhibiting cell proliferation and the authors went on to propose 

that this was the underlying mechanism by which SFN may act as an anticarcinogenic 

agent (Traka et al., 2008). Similarly, in an adenocarcinoma cell line, pre-incubation of 

cells with SFN (5-50 μM) resulted in an increase in TGF-β1 mRNA levels after 1-3 h 

which was accompanied by an increase in the protein levels of both TGFβ-RI and TGF-

βRII owing to the ability of SFN to suppress ornithine decarboxylase, an enzyme 

required for cell proliferation.  

 

This chapter has provided novel evidence that TGF-β1 causes the induction of HO-1 in 

HAoAF, as well as causing the nuclear translocation of Nrf2, however, it does not 

increase Nrf2-DNA binding activity suggesting that the induction of HO-1 may be via 

an alternative pathway. It has also been demonstrated that SFN also causes the 

induction of HO-1 in HAoAF, GSH depletion and nuclear translocation of Nrf2 as well 

as increasing Nrf2-DNA binding activity, suggesting that SFN is an activator of the 

Nrf2/ARE pathway in HAoAF.  
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CHAPTER 5: Effect of TGF-β1 on HAoAF migration 
 

 

5.1 Introduction 

Cell migration is a critical process during embryonic development as well as during 

tissue repair and immune function (Valster et al., 2005). Migration is usually triggered 

by a signal, often chemotactic, that results in the polarisation and extension of cellular 

protrusions, such as lamellipodia, in the direction of movement and as the cell moves 

forward, the protrusions, containing focal adhesions (FA) adhere to the substrate and the 

trailing edge of the cell retracts (Hurd et al., 2012). Cell motility is a highly regulated 

process and requires timely assembly, disassembly and reorganisation of the actin 

cytoskeleton, a process that is mediated by members of the Rho family of small 

GTPases (Kole et al., 2005). Membrane protrusions and formation of wide lamellipodia, 

which make up membrane ruffles at the leading edge of the cell, are dependent upon the 

activity of the small GTPases, Rac and Cdc42 (Nobes and Hall, 1999).  There is 

increasing evidence to suggest that reactive oxygen species (ROS) play a role in 

directing changes required for cell motility with one study carried out in zebrafish 

suggesting that hydrogen peroxide (H2O2) produced during injury acts as a 

chemoattractant to attract immune cells to the site of the wound (Niethammer et al., 

2009).  

 

Early studies carried out in vitro have suggested that ROS are important during cell 

migration; this was first demonstrated in human fibroblasts where chemotactic response 

to conditioned medium and platelet-derived growth factor (PDGF) was inhibited in the 

presence of superoxide dismutase (SOD), implicating the superoxide anion (O2
.- ) in 

playing a role during migration in this cell type (Wach et al., 1989). Other studies have 

reported similar findings; in human umbilical vein endothelial cells, exposure to 

Angiotensin-I triggered the production of ROS via NAD(P)H oxidase as well as causing 

a threefold increase in cell migration, however overexpression of SOD and catalase 

significantly inhibited this effect (Harfouch et al., 2005). Furthermore, in mouse 

embryonic fibroblasts, exposure of cells to PDGF increased the production of H2O2 and 

subsequently led to an increase in cell migration and proliferation, both of which were 

abrogated in the presence of antioxidants (Choi et al., 2005). In the same study, mice 

lacking PrxII exhibited enhanced neointimal lesion formation as a result of increased 

vascular smooth muscle cell (VSMC) migration (Choi et al., 2005). It has been 
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postulated that the source of O2
-.  and H2O2 are the NAD(P)H oxidase isoforms, Nox2 

and Nox4 (Haurani and Pagano, 2007). In VSMC, knockdown of Nox4 resulted in a 

marked decrease in ROS production, loss of focal adhesions and inhibition of migration, 

implicating this Nox isoform in all of these processes (Lyle et al., 2009). Furthermore, 

inhibition of Nox4 using diphenyleneidonium (DPI) or knockdown using siRNA in a 

fibroblast cell line abolished the ability of these cells to migrate (Tobar et al., 2010). 

 

TGF-β1 has been widely implicated in mediating increases in ROS production, which 

can cause alterations in actin cytoskeleton organisation and fillipodia formation (Hu et 

al., 2005). Treatment of endothelial cells with TGF-β1 induced an increase in ROS 

production, which was attributed to increased Nox4 activity (Hu et al., 2005). Similar 

findings have been reported in VSMC, where TGF-β1 induced the expression of Nox4 

and consequently increased ROS production, which was reduced when cells were 

treated with the flavoprotein inhibitor, DPI (Sturrock et al., 2006). Furthermore, 

stimulating human lung fibroblasts with TGF-β1 led to a transient but rapid increase in 

H2O2 production.  

 
There is much evidence to suggest that ROS are important in mediating cell migration 

and that TGF-β1 is able to drive this process in various cell types, therefore, in this 

chapter, the effect of TGF-β1 on HAoAF migration was examined. Furthermore, the 

ability of TGF-β1 to mediate ROS generation in HAoAF was also investigated and 

finally, the effect of TGF-β1 on the migration of cells with impaired antioxidant 

defences was determined.  
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5.2 Effect of TGF-β1 on HAoAF phenotype during migration 

During cell migration, cells undergo various structural changes, such as actin re-

organisation, which enable them to carry out processes such as establishing spatial 

polarity and extension of membrane protrusions in the direction of movement (Kole et 

al., 2005; Ridley et al., 2001). As discussed in Chapter 3, HAoAF had differentiated 

into myofibroblasts and expressed the cytoskeletal proteins, α-smooth muscle actin and 

vimentin, and had acquired a migratory phenotype. In order to determine whether 

cytoskeletal changes had affected the morphology of cells, sub-confluent HAoAF were 

equilibrated in DMEM supplemented with 1% FCS 18 h prior to treatment with TGF-β1 

(2.5 - 5 ng/ml) or DMEM supplemented with 10% FCS and time-lapse video 

microscopy was carried out.  A frame was captured every 10 min over 8 h and 

phenotypic changes were observed. HAoAF incubated with 1 % FCS appeared less 

confluent and were smaller in size displaying an absence of ruffled edges, a hallmark of 

a migrating cell, and therefore were indicative of a less migratory phenotype (Fig. 5.1, 

panel A). HAoAF incubated with TGF-β1 (2.5 ng/ml; Fig. 5.1, panel B) and TGF-β1 (5 

ng/ml; Fig. 5.1, panel C) appeared more confluent and displayed ruffled leading edges 

indicative of cell motility. Cells were elliptical in shape, exhibited cell spreading and a 

flattened morphology. This indicates that TGF-β1 drives HAoAF migration with some 

effect on cell phenotype and behavior. As a positive control, HAoAF were also 

incubated with DMEM supplemented with 10 % FCS (Fig. 5.1, panel D), a known 

inducer of migration. Cells appeared more confluent and exhibited ruffled leading 

edges, indicative of a migratory phenotype and were visibly more motile than cells 

incubated with DMEM supplemented with 1% FCS. These results indicate that TGF-β1 

affects cell morphology and consequently drives cell migration in HAoAF. 
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5.3 Effect of TGF-β1 on HAoAF migration and velocity 

TGF-β1 is a well known inducer of migration in fibroblasts, with some reports 

suggesting that this process may be driven by enhanced ROS generation, however the 

underlying mechanism by which this occurs has not been fully elucidated (Ren et al., 

2011; Riedy et al., 1999; Shi et al., 1996). In order to determine the effect of TGF-β1 on 

HAoAF migration, sub-confluent HAoAF were equilibrated in DMEM supplemented 

with 1% FCS 18 h prior to treatment with TGF-β1 (5 ng/ml). Some cells were incubated 

with SOD (200 U/ml) 30 min prior to the commencement of imaging in order to 

determine whether ROS mediate TGF-β1-driven migration.  A frame was captured 

every 10 min over an 8 h period and in the presence or absence of SOD (200 U/ml).  

Cells treated with TGF-β1 caused a significant increase in HAoAF migration (p<0.001) 

when compared with untreated control (Fig 5.2A). This increase in migration was 

abrogated when cells were pre-incubated with SOD and subsequently treated with TGF-

β1, indicating that this migration may be driven by ROS. Cells treated with TGF-β1 

alone also migrated with significantly greater velocity when compared to untreated 

control (p<0.01). This was also abrogated in the presence of SOD, which further 

indicates that TGF-β1-driven HAoAF migration may be mediated by ROS (Fig 5.3 and 

Table 5.1). 
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Figure 5.2 Effects of ROS on TGF-β1-mediated HAoAF migration  

HAoAF were seeded at a density of 2 x 104/well in a 12-well culture plate and allowed to 

adhere overnight. 18 h prior to imaging, cells were adapted in phenol red-free DMEM 

supplemented with 1% FCS and subsequently treated with TGF-β1 (5 ng/ml). 30 min prior to 

commencement of imaging, some cells were treated with SOD (200 U/ml). Multifield live cell 

imaging was performed with a single frame being taken every 10 min for 8 h. Cell tracking (A) 

was performed using ImageJ. Migration speed (B) was quantified by importing cell-tracking 

data into Excel. Values denote means ± SEM ***p<0.001 TGF-β1 vs. untreated control and 

TGF-β1 treated vs. TGF-β1 + SOD using unpaired Student’s t-test. n = Representative of 4 

independent experiments. 
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Figure 5.3 Effect of TGF-β1 on velocity of HAoAF migration  

HAoAF were seeded at a density of 2 x 104/well in a 12-well culture plate and allowed to 

adhere overnight. 18 h prior to imaging, cells were adapted in phenol red-free DMEM 

supplemented with 1% FCS and subsequently treated with TGF-β1 (5 ng/ml). 30 min prior to 

commencement of imaging, some cells were treated with SOD (200 U/ml). Multifield live cell 

imaging was performed with a single frame being taken every 10 min for 8 h. Cell tracking was 

performed using ImageJ and migration speed was quantified by importing cell-tracking data 

into Excel. Values denote means ± SEM **p<0.01 TGF-β1 vs. untreated control, *p<0.05 

TGF-β1 vs. TGF-β1  + SOD using unpaired Student’s t-test.  n = Representative of 4 

independent experiments. 
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5.4 Effect of Nrf2 on HAoAF migration and velocity 

To determine whether Nrf2 was involved in TGF-β1-mediated HAoAF migration, sub-

confluent HAoAF were seeded and allowed to adhere overnight. Subsequently cells 

were transfected with scramble or Nrf2 siRNA as validated in Chapter 4 (see Fig 4.20). 

Eight hours following transfection, the transfection mixture was aspirated from wells 

and replaced with DMEM supplemented with 1% FCS for overnight equilibration. Cells 

were treated with TGF-β1 (5 ng/ml) or DMEM supplemented with 10% FCS and live 

imaging was commenced. A frame was captured every 10 min for 8 h. Incubation of 

cells with DMEM supplemented with 10% FCS increased migration, suggesting that 

cells were responsive to a chemotactic stimulus. However, knockdown of Nrf2 had no 

marked effect on migration distance or on the velocity of migration in HAoAF (Fig 

5.4A and B).  
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Figure 5.4 Effects of Nrf2 siRNA on TGF-β1-mediated HAoAF migration  

HAoAF were seeded at 2 x 104/well in a 12-well culture plate and allowed to adhere overnight 

and were subsequently transfected with scramble or Nrf2 siRNA. Eight hours following 

transfection, the transfection mixture was aspirated from wells and replaced with DMEM 

supplemented with 1% FCS for overnight equilibration. Subsequently cells were treated with 

TGF-β1 (5 ng/ml) or DMEM supplemented with 10% FCS. Multifield live cell imaging was 

performed with a single frame being taken every 10 min for 8 h. Cell tracking (A) was 

performed using ImageJ. Migration speed (B) was quantified by importing cell-tracking data 

into Excel. Values denote means ± SEM. n = Representative of 2 independent experiments. 
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5.5 Effect of TGF-β1 on Nox mRNA levels 

As NAD(P)H oxidases have been implicated in mediating the migration of vascular 

smooth muscle cells and adventitial fibroblasts, often in response to TGF-β1 (Hurd et 

al., 2012; Tobar et al., 2010; Lyle et al., 2009; Guzik et al., 2006; Pagano et al., 1998), 

mRNA levels of two Nox isoforms reported to be expressed by adventitial fibroblasts 

(Haurani and Pagano, 2007) were determined. Cells were treated with TGF-β1 (0 – 5 

ng/ml) for 4 and 8 h and levels of Nox2 and Nox4 mRNA were analysed. Treatment 

with TGF-β1 for 4 or 8 h did not alter levels of Nox2 mRNA in HAoAF when 

compared to untreated control (Fig 5.5a). Levels of Nox4 mRNA were also not altered 

in HAoAF in response to treatment with TGF-β1 for 4 or 8 h when compared to 

untreated control (Fig 5.5b). 
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Figure 5.5 Nox2 and Nox4 mRNA levels in HAoAF after treatment with TGF-β1 

Confluent HAoAF were equilibrated in phenol red-free DMEM supplemented with 1% FCS and 

subsequently treated with TGF-β1 (0 - 5 ng/ml) for 4 or 8 h. Levels of Nox2 and Nox4 mRNA 

in the samples were quantified by qRT-PCR and expressed relative to 3 housekeeping genes 

(RPL13A, SDHA and TATABOX). Values denote means ± SEM. n = Representative of 6 

independent experiments. 
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5.6 Effect of TGF-β1 on ROS generation in HAoAF  

In order to determine the effect of TGF-β1 on ROS generation in HAoAF, cells were 

equilibrated in phenol red-free DMEM supplemented with 1% FCS 18-24 h prior to 

pre-treatment with SOD (200 U/ml) or the NAD(P)H oxidase inhibitor, VAS2870 

(VAS; 10 μM) before co-treatment with TGF-β1 (0 - 5 ng/ml) over 40 minutes of ROS 

measurement. The luminol analogue, LO12 (20 μM) was used as a probe for the 

detection of ROS generation. Treatment with TGF-β1 (2.5 and 5 ng/ml) resulted in 

enhanced ROS generation when compared to untreated control (Fig 5.6). In order to 

determine the type of ROS generated in response to TGF-β1, cells were treated with 

extracellular SOD, which catalyses the dismutation of O2
.-  to H2O2. In the presence of 

SOD, ROS generation was significantly abrogated in cells and comparable to basal 

levels seen in untreated control, suggesting that O2
.-  may be the predominant ROS 

generated in response to TGF-β1 treatment (p<0.01 TGF-β1 (2.5 ng/ml) + SOD vs. 

TGF-β1 alone and p<0.001 TGF-β1 (5 ng/ml)+ SOD vs. TGF-β1 alone). Furthermore, 

use of VAS, a NAD(P)H oxidase inhibitor, also resulted in a significant abrogation of 

ROS levels when compared to cells treated with TGF-β1 (2.5 and 5 ng/ml) alone 

suggesting that O2
.-  generation seen in response to TGF-β1 treatment was NAD(P)H-

dependent (p<0.05 TGF-β1 (2.5 ng/ml) + VAS vs. TGF-β1 alone  and p<0.01 TGF-β1 

(5 ng/ml) + VAS  vs. TGF-β1 alone). 
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Figure 5.6 Effect of TGF-β1 treatment on ROS generation in HAoAF 

Confluent HAoAF were equilibrated in phenol red-free DMEM supplemented with 1% FCS and 

subsequently pre-treated with SOD (200 U/ml) or the NAD(P)H oxidase inhibitor, VAS2870 

(VAS; 10 μM) for 30 min prior to co-treatment with TGF-β1 (0 - 5 ng/ml). ROS production was 

determined over 40 min using the luminescence probe, LO12 (20 μM) as described in Methods. 

Representative percentage change from control was determined over 40 min. Values denote 

means ± SEM *p<0.05 Untreated control + VAS vs. untreated control alone, **p<0.01 

Untreated control + SOD vs. untreated control alone; # p<0.05 TGF-β1 (2.5 ng/ml) + VAS vs. 

TGF-β1 alone, ## p<0.01 TGF-β1 (2.5 ng/ml)+ SOD vs. TGF-β1 alone;  $$ p<0.01 TGF-β1 (5 

ng/ml) + VAS vs. TGF-β1 alone, $$$ p<0.001 TGF-β1 (5 ng/ml) + SOD vs. TGF-β1 alone. n = 

Representative of 4 independent experiments. 
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5.7 Discussion 

Inimal thickening and adverse vascular remodelling are key events in advanced vascular 

disease and injury (Pels et al., 1999). Under the autocrine and paracrine actions of TGF-

β1, released in the adventitial layer, adventitial fibroblasts are activated and can migrate 

from the adventitial layer of arteries to the intima, where they subsequently proliferate, 

therefore contributing to this pathology (Zalewski and Shi, 1997). Recent investigation 

into this process has revealed evidence of the pivotal role of adventitia-derived ROS 

with some evidence to suggest that this may be a TGF-β1-mediated event (Csanyi et al., 

2009; Lyle et al., 2009). Understanding the underlying mechanism of this process in 

HAoAF has not been fully elucidated in HAoAF. The following experiments sought to 

explore the mechanisms by which TGF-β1 may cause HAoAF migration in culture.   

 

5.7.1 Effect of TGF-β1 on HAoAF migration  

As discussed in Chapter 3, treatment of HAoAF with TGF-β1 resulted in HAoAF 

proliferation, an event widely reported to occur in vivo in models of vascular injury 

(Ren et al., 2011; Liu et al., 2008; Siow et al., 2003; Shi et al., 1996). As the processes 

of proliferation and migration often occur in parallel in vascular disease (Sivakumar et 

al., 2006), migration of HAoAF in response to TGF-β1 (2.5 - 5 ng/ml, 8 h) treatment 

was analysed using time-lapse video microscopy. Results revealed that the average 

distance of migration was significantly higher in HAoAF treated with TGF-β1 than that 

measured in untreated control (Fig 5.2). These results are in keeping with previous 

studies that have shown that cell migration is a TGF-β1-driven process. It has been 

reported that siRNA against the downstream facilitators of the TGF-β1 signalling 

pathway, phopsho-Smad2 and 3 significantly decrease adventitial fibroblast migration 

in vitro, coupled with a concomitant decrease in proliferation of these cells and a 

decrease in the mRNA levels of the TGF-β1-target genes; α-smooth muscle actin and 

collagens I and II (Ren et al., 2011).  

 

Furthermore, transfection of vessels with an adenovirus coordinating the expression of 

the secreted form of TGF-β type II receptor in order to antagonise TGF-β1 signalling in 

a porcine model of restenosis following angioplasty, revealed a decrease in adventitial 

collagen deposition and decreased constrictive remodelling, suggesting that TGF-β1 

facilitated these pathological events (Kingston et al., 2001). Similarly, TGF-β1 has been 

shown to increase proliferation and migration in the medial layer of the vessel in a rat 

model of carotid balloon injury. Administration of neutralizing anti-TGF-β1 antibodies 
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significantly reduced the size of intimal lesions as well as decreasing cell proliferation 

in the medial layer (Wolf et al 1994). Furthermore, the injection of recombinant soluble 

TGF-β1 type II receptor localised preferentially at the adventitial layer and developing 

neointima in an injured rat carotid artery resulted in a reduction in intimal lesion 

formation of up to 65% and coincided with reduced adventitial fibrosis and collagen 

deposition (Smith et al., 1999). Mallawaarachchi and colleagues reported that gene 

transfer of an adenovirus overexpressing Smad7, an inhibitor of the classical TGF-β1 

signalling pathway, specifically to the adventitial layer, attenuated adventitial cell 

migration to the neointima following balloon injury in rat carotid artery 

(Mallawaarachci et al., 2005). This evidence and results from the current study strongly 

suggest the involvement of TGF-β1 in driving cell migration and in vivo, may be 

implicated in HAoAF-driven migration and consequent vascular remodelling during 

disease. In particular, TGF-β1-mediated adventitial cell migration plays an important 

role in neointima formation and constrictive remodelling, a process, which may be 

attenuated by antagonising TGF-β1 signalling (Kato et al., 2001).  

 

5.7.2 Effect of SOD on TGF-β1–mediated HAoAF migration  

Although it is well established that TGF-β1 causes cell migration during vascular 

disease and injury, the exact mechanisms underlying this process remain to be fully 

elucidated. Redox imbalance is a tenet of the pathogenesis seen during the progression 

of many vascular diseases (Haurani and Pagano, 2007; Rocic and Lucchesi, 2005). This 

imbalance in oxidant-generating vs. oxidant-catalysing systems leads to a build-up of 

ROS, including O2
−. and H2O2. Much of this redox imbalance is first seen in the 

adventitial layer where it has been reported that adventitial NAD(P)H oxidase-derived 

ROS plays a role in neointimal growth and medial hypertrophy by causing cell 

migration (Haurani and Pagano, 2007) and there is mounting evidence to suggest that 

ROS are used to relay signals from activated cell surface receptors to direct changes 

necessary for cell movement (Hurd et al., 2012). Due to existing studies postulating that 

ROS are involved in driving migration of cells from the media and adventitia of injured 

vasculature and that the predominant species implicated is O2
−., the migration of 

HAoAF was investigated in the presence of TGF-β1 with or without the O2
−. 

scavenger, SOD. Findings show that when co-treated with TGF-β1 and SOD, the total 

distance that cells migrated was significantly attenuated and was similar to that 

observed in untreated cells (Fig. 5.2). Furthermore, this was accompanied by a 



Chapter 5                       Effect of TGF-β1 on HAoAF migration 

 

 234 

significant attenuation in the velocity of migration, from 2.451 ± 0.366 μm/h in cells 

treated with TGF-β1 to 1.661 ± 0.382 μm/h in cells treated with TGF-β1 in the presence 

of SOD (Table 5.1). These results suggest that ROS may play a role in TGF-β1-

mediated HAoAF migration.  

The first study to suggest that fibroblast migration may be reduced by administration of 

SOD was carried out by Wach and colleagues. Fibroblasts exhibited increased cell 

proliferation and migration in response to phorbol myristate acetate, an inducer of 

superoxide generation, however, addition of SOD abrogated this response suggesting 

that O2
−., in small amounts, is involved in fibroblast migration and possibly 

proliferation (Wach et al., 1987). An earlier study looking at the effects of SOD on 

neutrophil migration in plasma samples from healthy adults was assessed in the absence 

or presence of SOD and it was reported that SOD inhibited the migratory response of 

neutrophils to sites of inflammatory challenge, suggesting that the process was in part, 

O2
−. dependent. In order to rule out the possibility that H2O2 may be partly responsible 

for neutrophil migration, the enzyme that catalyses the breakdown of H2O2 to water and 

oxygen, catalase, was used in place of SOD. Results showed that catalase did not affect 

neutrophil migration, suggesting that this migration was a H2O2-independent event 

(Petrone et al., 1980). Similarly, a recent study in human lung fibroblasts also reported 

that SOD and not catalase was involved in the regulation of TGF-β1 release and 

subsequent activation of fibroblasts (Qi et al., 2009). The study also demonstrated that a 

chloride channel blocker was able to inhibit the increase in intracellular O2
−.  induced 

by exposure to extracellular O2
−. suggesting that this may be a possible mechanism 

whereby extracellular O2
−. may regulate the release of TGF-β1 and cause the 

subsequent activation of fibroblasts (Qi et al., 2009). The findings from the current 

study support existing evidence in the literature and demonstrate for the first time that 

TGF-β1 may drive HAoAF migration and this may be partly through mediating an 

increase in ROS production in this cell type. In particular, this process may be due to 

TGF-β1-driven generation of O2
−.. 

Several studies have shown that extracellular SOD makes up approximately 50% of 

total SOD activity in the human aorta (Luoma et al., 1998; Stralin et al., 1995), whereas 

in other tissues represents only a small proportion of the total SOD activity (Marklund, 

1984), indicating that extracellular SOD is physiologically relevant and plays a 
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significant role in the redox balance of the vascular wall. In the present study, cells were 

treated with exogenous SOD as opposed to the cell permeable form of SOD typically 

linked with polyethylene glycol (PEG-SOD). This ensured that any attenuation of 

migration that was observed in the presence of SOD was likely to be a result of the 

dismutation of O2
−. released into the extracellular space. Results from HAoAF treated 

with TGF-β1 in the presence of SOD show that these cells have markedly reduced 

distance of migration and decreased velocity, suggesting that migration in this cell type 

is driven by O2
−. released into the extracellular space. However, although these results 

demonstrate a significant abrogation in migration distance and speed, it would be 

interesting to observe the effects of administration of PEG-SOD on migration of 

HAoAF as it has been postulated that intracellular O2
−.  may also be important in 

mediating cell motility as has been demonstrated by a study in VSMC in which 

mitochondrial-derived intracellular O2
−. has been shown to activate the PI3K/Akt 

pathway which in turn was able to drive VSMC migration during neointima formation 

(Artaud-Macari et al., 2013; Wang et al., 2012; Lyle et al., 2009).  

Due to the effect of SOD administration on the migratory behaviour of cells, many 

studies have investigated the effect of this antioxidant on pathophysiological cell 

migration. There is a large body of evidence that postulates that the expression of 

extracellular SOD using gene transfer can reduce neointima formation by decreasing the 

migration of cells from the medial and adventitial layers of the blood vessel towards the 

lumen (Wang et al., 2012). This has been observed in a rabbit model where the 

adenoviral gene transfer of extracellular SOD in the aorta after endothelial denudation 

was shown to result in a decrease in VSMC migration and consequently a decrease in 

intimal thickening as well as an accompanied decrease in O2
−. production as 

determined by the dihydroethidium assay was observed (Laukkenen et al., 2002). 

Another study has reported a decrease in restenosis following angioplasty in rabbit 

atherosclerotic iliac arteries after adenovirus-mediated gene transfer of extracellular 

SOD, with a decrease in collagen accumulation, inflammation and improved endothelial 

function when compared to those arteries injected with adenovirus carrying no 

transgene (Durand et al., 2005). Furthermore, Brasen and colleagues have also 

demonstrated the beneficial effects of the gene transfer of extracellular SOD and 

reported a 61% decrease in neointima formation 28 days after endothelial denudation 

and stent insertion in Watanabe heritable hyperlipidemic rabbits as well as a decrease in 
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observed oxidant production following SOD administration (Brasen et al., 2007). These 

studies demonstrate that extracellular SOD may decrease neointima formation by 

abrogating the proliferation of cells in the medial and adventitial layers of the blood 

vessel and their subsequent migration towards the lumen of the vessel. This correlates 

with findings from this study, which have shown that HAoAF migration induced by 

TGF-β1 is abrogated in the presence of extracellular SOD.  

The potential source of superoxide in response to vascular injury has been postulated to 

be the membrane-bound NAD(P)H oxidase system (Csanyi et al., 2009) which is one of 

the major sources of O2
−.  implicated in compounding vascular injury (Kanellakis et al., 

2004; Jacobson et al., 2003; Szocs et al.,  2002). In one study, measurement of Nox 

homologs after carotid injury showed an increase in p22phox, gp91phox and Nox4 

mRNA levels after 3 days. These levels remained elevated for 15 days with an 

accompanied increase in O2
−. , observed in neointimal smooth muscle and adventitial 

fibroblasts (Szocs et al., 2002).  

The presence of growth factors in and around the neointima has led to investigation into 

whether they contribute to the production of ROS during vascular injury. Initial work in 

VSMC led to the observation that TGF-β1 enhanced O2
−.  production in VSMC with an 

accompanied increase in the protein expression of p22phox (Churchman et al., 2009).  

Previously, Thannickal and colleagues proposed a mechanism whereby TGF-β1 may 

induce the expression of membrane bound NAD(P)H oxidase subunits in human lung 

fibroblasts by protein tyrosine phosphorylation  (Thannickal et al., 1998). Blocking the 

TGF-β1-mediated tyrosine phosphorylation using an inhibitor resulted in the abrogation 

of NAD(P)H oxidase activation and H2O2 production,  suggesting that this was the 

primary method by which TGF-β1 induced ROS production in this cell type 

(Thannickal et al., 1998).  In contrast to findings from Thannickal et al., in fibroblasts 

from the human stroma, TGF-β1 is thought to activate Nox4 as opposed to the 

membrane-bound Nox2 (Sampson et al., 2011). TGF-β1 induction of Nox4 and the 

consequent ROS production is required for downstream cytoskeletal remodelling which 

was postulated to accelerate fibroblast-to-myofibroblast differentiation (Sampson et al., 

2011) and may also be an important mechanism during TGF-β1-mediated cell migration 

(Thannickal et al., 2003). TGF-β1 can also activate several MAPK pathways such as 

PKC, independent of Smad signalling, as previously discussed in Chapter 3. 



Chapter 5                       Effect of TGF-β1 on HAoAF migration 

 

 237 

A possible mechanism for this enhanced O2
−.  production has been suggested by Lyle 

and colleagues who have demonstrated that Nox4 is involved in cell migration of 

VSMC when in complex with p22phox and an accessory protein known as polymerase 

(DNA-directed) delta-interacting protein (Poldip2). Poldip2 has been shown to associate 

with p22phox, Nox1 and Nox4 and co-localises with p22phox at sites of Nox4 

localisation, increasing its enzymatic activity and positively regulating the basal 

production of ROS in VSMCs (Lyle et al., 2009). Interestingly, overexpressing Poldip2 

results in activation of RhoA, which is known to mediate the process of cell migration 

by regulating actin polymerisation and depolymerisation (Ridley, 2001). Proteins of the 

Rho subfamily are well known to regulate the cytoskeleton, cell growth and migration 

(Meyer et al., 2006; Smith et al., 2006) and Rho-stimulated contractility drives stress 

fibre and focal adhesion formation and up-regulation of α-smooth muscle actin in 

fibroblasts (Hinz et al., 2001) and epithelial cells (Zhong et al., 1997).   

The Poldip2/p22phox/Nox4 complex has been reported to regulate focal adhesion 

turnover in VSMC, a process which is pivotal for cell migration to occur (Lyle et al., 

2009). Moreover the small GTPase Rac1 has been shown to play a key role in vascular 

superoxide generation by NAD(P)H oxidase, regulating myofibroblast migration via 

assembly of adhesion complexes and actin re-organisation alongside ROS-mediated Ras 

activity (Parsons et al. 2008; Alexandrova et al., 2006). These results show that changes 

in ROS production and consequent downstream cytoskeletal re-arrangement may result 

in increased or decreased cell migration and may go some way in explaining the 

underlying molecular processes of migration during neointima formation as a function 

of elevated ROS levels typically seen during this stage of the disease process. 
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5.7.3 Effect of TGF-β1 on Nox2 and Nox4 mRNA levels in HAoAF  

Actin cytoskeleton reorganisation is pivotal in promoting cell migration and there is 

much experimental evidence to suggest that during this process both Ras and Rho 

GTPases make an essential contribution (Bar-Sagi and Hall, 2000), possibly in a ROS-

mediated manner (Parsons et al., 2008; Alexandrova et al., 2006). In endothelial cells, 

these ROS-driven changes in migration are thought to be mediated by p21-activated 

kinase-1 (PAK1), the small GTPase Rac1 and NAD(P)H oxidase regulatory subunits 

(Fukai, 2006). In contrast to findings in VSMC where Nox4 is thought to drive 

migration of cells, in endothelial cells, Nox2 is thought to mediate this process by 

colocalising with its regulatory subunit, p47phox at the leading edge of the cells, where it 

associates with actin to promote migration; an effect which is significantly abrogated 

following Nox2 knockdown (Ikeda et al., 2005). Rac1 and PAK1 are equally important 

as dominant negative forms of both of these proteins block ROS production, membrane 

ruffling and as a consequence, cell migration (Wu et al., 2005). 

HAoAF express both Nox2 and Nox4 (Haurani and Pagano, 2007), therefore in order to 

determine which of these NAD(P)H oxidase isoforms were responsible for TGF-β1-

mediated ROS production in HAoAF, levels of Nox2 and Nox4 mRNA in cells treated 

with TGF-β1 were investigated. It was found that cells exhibited no significant changes 

in Nox2 or Nox4 mRNA following treatment with TGF-β1 after 4 or 8 h.  

Assembly of Nox has been reported to occur for up to 24 h after exposure to an oxidant 

(Serrander et al., 2007), however this is largely dependent upon the Nox isoform; Nox4 

is constitutively active isoform and Nox4 mRNA has been reported to increase in the 

absence of a stimulant (Serrander et al., 2007). One study suggests that new protein 

synthesis was not required for TGF-β1 regulated induction of Nox4 in human 

pulmonary SMC (HPSMC) as use of the protein synthesis inhibitor, cycloheximide 

failed to inhibit TGF-β1 induction of Nox4 (Sturrock et al., 2006).  The same study 

reported a significant increase in Nox4 mRNA levels following treatment with TGF-β1 

(2 ng/ml) for 24 h and Nox4 protein levels were also increased after incubation of cells 

with TGF-β1 (1 ng/ml) for 72 h as well as there being a significant increase in O2
-. 

production (Sturrock et al., 2006). Similar results have been reported in endothelial cells 

where acute TGF-β1 (10 ng/ml, 5 min) treatment has been observed to increase the 

production of H2O2, an increase which was abrogated in cells transfected with dominant 

negative Nox4 (Hu et al., 2005). ROS produced by Nox4 is still to be fully elucidated - 

although some argue that Nox4 primarily produces H2O2 (Lyle et al., 2009), others 
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suggest that Nox4 may generate O2
-. which dismutates to the membrane-permeant H2O2 

(Serrander et al., 2007). Although the above evidence suggests that TGF-β1 increases 

Nox4 mRNA in other cell types, the current study was not able to demonstrate this in 

HAoAF where TGF-β1 (2.5 – 5 ng/ml) treatment for 4 or 8 h did not affect levels of 

Nox4 mRNA, however further work looking at the effect of TGF-β1 on Nox4 

expression over longer time-points may provide clearer evidence of the underlying 

source of ROS in this cell type.  

The adventitia has also been widely reported as expressing Nox2, and its component 

parts, p22phox, p47phox and p67phox which make up a multiprotein complex required 

for the activation of this Nox isoform (Haurani and Pagano, 2007; Pagano et al., 1998; 

Pagano et al., 1997).  The role of this isoform in cardiovascular disease progression has 

also been widely reported; Wang and colleagues have shown that AngII infusion into 

mice for 6 days resulted in intimal and adventitial NAD(P)H oxidase-derived 

superoxide production and subsequent aortic medial thickening, however upon deletion 

of Nox2, intimal and adventitial superoxide production was attenuated and there was a 

marked reduction in aortic medial thickening (Wang et al., 2001). These findings were 

confirmed in a more recent study where targeted inhibition of Nox2 to the adventitial 

layer resulted in an attenuation of AngII-induced medial hypertrophy (Liu et al., 2004). 

The ROS primarily implicated as being released by Nox2 is O2
-. the production of 

which has been reported as being significantly attenuated in neointima formation 

following targeted delivery of an adenovirus expressing a specific Nox2 inhibitor, 

nox2ds, to the adventitia (Dourron et al., 2005). The observation that Nox2 is also able 

to contribute to ROS production in the adventitial layer and result in the activation and 

migration of fibroblasts from this layer to contribute to restenosis is widely established 

in the literature. However, in the current study, mRNA levels of this Nox isoform were 

relatively low and did not change significantly in response to treatment with TGF-β1 

(2.5 – 5 ng/ml) treatment for 4 or 8 h when compared with untreated control. It should 

be noted that although this data is interesting, mRNA levels of Nox 2 and 4 are not 

entirely reflective of the activity of these isoforms in a cell system when taken alone and 

that post-translational modifications should also be taken into account in future work.  
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5.7.4 Effect of knockdown of Nrf2 on HAoAF migration  

Cellular redox homeostasis is a highly regulated process and is maintained, in part, by 

the Nrf2/ARE signalling pathway; ROS has been shown to increase cell migration and 

interestingly the Nrf2 inhibitor, Keap1 is an actin binding protein which may play a role 

in mechanosensing (Dai et al., 2007; Hosoya et al., 2005) and cell migration via its 

localisation with focal adhesion complexes (Velichkova and Hasson, 2003). 

Therefore in order to determine whether the Nrf2/ARE signalling pathway was acting as 

a mechano-sensor for oxidative stress, cells were transfected with Nrf2 siRNA. 

Subsequently migration studies were carried out, however, knockdown of Nrf2 had no 

effect on HAoAF migration in response to TGF-β1 (Fig 5.4). Previously, others have 

reported that silencing of Nrf2 results in enhanced cell migration; Rachkonda and 

colleagues found that cell migration was increased in A549 cells transfected with Nrf2 

siRNA or in HepG2 cells in which Keap1 had been overexpressed (Rachkonda et al., 

2010). As cell motility is closely related with TGF-β1 signalling, the same study 

investigated the relationship between Nrf2 and TGF-β1 in HepG2 cells; 

immunprecipitation assays demonstrated that Nrf2 forms a nuclear complex with 

phospho-Smad2/3 and Co-Smad4 and that it suppresses CAGA-directed reporter 

activity. RNAi-mediated suppression of Nrf2 enhanced the expression of the Smad 

target genes, plasminogen activator inhibitor-1 (PAI-1) and E-cadherin. In addition, loss 

of Nrf2 in cells was associated with an increase in Smad-mediated motility suggesting 

that loss or suppression of Nrf2 contributes to increased motility as a result of 

dysregulated Smad signalling (Rachkonda et al., 2010). 

Similar results have been observed in a recent study in mouse lung fibroblasts where 

Nrf2 knockdown resulted in fibroblast differentiation and an increase in TGF-β1-

regulated genes such as α-smooth muscle actin when compared to control cells as well 

as an increase in oxidative stress (Artaud-Macari et al., 2013) suggesting that Nrf2/ARE 

and TGF-β1 signalling may be closely related pathways. Further evidence comes from 

the rat renal fibroblast cell line (NRK-49F) in which over-expression of Nrf2 using an 

adenovirus decreased the expression of TGF-β1-target genes, PAI-1, α-smooth muscle 

actin, fibronectin and type I collagen as well as inhibiting TGF-β1-mediated Smad3 

phosphorylation, which was restored by siRNA-mediated knockdown of Nrf2 (Oh et al., 

2012). This evidence suggests that Nrf2 negatively regulates the TGF-β1-Smad 

pathway and potential therapeutic intervention may be beneficial during neointima 

formation, restenosis and vascular remodelling seen during disease. 
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The present study provides novel evidence that TGF-β1 may mediate cell migration in 

HAoAF by increasing ROS production. There is much evidence in the literature to 

suggest a close relationship between the TGF-β1 signalling pathway and the Nrf2/ARE 

antioxidant pathway exists and therefore the potential cross-talk between these 

pathways may offer a way of mediating pathophysiological cell migration. Evidence 

from this study did not indicate that Nrf2 knockdown had any effect on cell motility in 

HAoAF, although this is not entirely unexpected since Nrf2 does not lie directly 

downstream of the TGF-β1 signalling pathway established in this cell type.  

Nevertheless, in order to generate more conclusive evidence in this cell type, further 

work would need to be carried out. In particular, it would be interesting to investigate 

the effects of TGF-β1 on migration of fibroblasts from Nrf2 knockout animals. Cells 

from knockout animals have the advantage over Nrf2 siRNA transfected cells as the 

transfection can be inefficient and transient and more importantly, the process of 

transfection itself can be toxic enough to activate stress-response pathways within the 

cell (Seth et al., 2012), a factor which is especially relevant to the current study. In vivo 

studies looking specifically at adventitial cell migration into the neointima of an 

atherosclerotic artery or one that has undergone stenting in Nrf2 knockout animals 

would also provide some clarity about the cross-talk between these two signalling 

pathways and their effects on cell migration.  Elucidating the exact mechanism by 

which TGF-β1 causes HAoAF migration may be an important step towards successful 

therapeutic intervention during vascular injury and disease.  

 

5.7.5 Effect of inhibition of NAD(P)H oxidase on TGF-β1-mediated ROS 

generation in HAoAF  

Generation of ROS in response to TGF-β1 has been widely reported in endothelial cells 

(Hu et al., 2005) and cardiac fibroblasts (Cucoranu et al., 2005), however whether this 

growth factor had a similar effect on HAoAF has not been previously elucidated. In 

order to determine whether TGF-β1 treatment resulted in ROS generation in this cell 

type, cells were treated with TGF-β1 and luminescence was measured using the luminol 

analogue, L-012. In addition, to elucidate the type and potential source of ROS, cells 

were also co-treated with SOD, which catalyses the dismutation of O2
−.  to H2O2 and 

VAS2870, a specific NAD(P)H oxidase inhibitor.  
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Results demonstrated that in response to TGF-β1 (2.5 and 5 ng/ml), there was enhanced 

ROS generation when compared to untreated control and that this increase was 

abrogated in the presence of SOD, suggesting that the primary species of ROS detected 

in HAoAF following TGF-β1 treatment was O2
−.. Similar findings have been reported 

in a study in human umbilical vein endothelial cells (HUVEC) in which treatment of 

cells with TGF-β1 (10 ng/mg) led to ROS production as measured by the probe, 

dichlorodihydrofluorescein (DCF), and which was attributed to a NAD(P)H oxidase 

isoform. The observed ROS generation was attenuated in the presence of the 

flavoprotein inhibitor, diphenyl iodinium (DPI, Hu et al., 2005). Interestingly, the same 

study reported cytoskeletal changes in HUVEC in response to TGF-β1 that were 

blocked following transfection of cells with a dominant- negative Nox4 adenovirus 

which suggests that these changes were mediated by ROS production (Hu et al., 2005). 

Similarly, in cardiac fibroblasts, Cucoranu and colleagues have shown that exposure of 

cells to TGF-β1 (10 ng/ml) resulted in O2
−. release from cardiac fibroblast cell 

membranes and further investigation revealed a significant increase in Nox4 mRNA 

levels after 24 h with a concomitant increase in protein levels of Nox4, suggesting that 

this isoform was the source of ROS in this cell type (Cucoranu et al., 2005). Their 

findings also went on to confirm those from the study by Hu et al., that changes in the 

cytoskeleton of cells in response to TGF-β1, in particular in the upregulation of α-

smooth muscle actin, required ROS; treatment of cells with DPI abrogated this effect 

(Cucoranu et al., 2005).  

 

There is much contention surrounding the species of ROS produced by Nox4 with some 

studies suggesting that this isoform generates predominantly H2O2 at low levels as 

opposed to O2
−., largely determined by its third extracytosolic loop which contains an 

extra 28 amino acids more than Nox1 and Nox2, isoforms which generate O2
−. (Takac 

et al., 2011). Indeed, previous studies have postulated that TGF-β1 exposure results in 

the NAD(P)H-dependent production of H2O2 in lung fibroblasts, although the particular 

isoform responsible for this was not elucidated (Thannickal et al., 1998; Thannickal et 

al., 1995). The probe used to detect ROS generation in the current study was the 

luminol analogue, L-012 which, upon its discovery, was proposed as a specific probe 

for O2
−. (Nishinaka et al., 1993) but has since been discovered as detecting various 

species of ROS, including H2O2 and ONOO−. (Dikalov et al., 2007). In addition, 
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although initially reported to not undergo redox cycling, investigation of its structure 

revealed that it has the ability to do so (Dikalov et al., 2007). Therefore, specific 

scavengers were used in order to assess the contribution of various species of ROS, 

including SOD as well as the NAD(P)H specific inhibitor, VAS. Alternative methods of 

measuring ROS production are available, in particular and with regards to O2
−., 

production, electron spin resonance (ESR) is the current ‘gold standard’ of measuring 

ROS  (Wang et al., 2012) and future work using ESR to look at TGF-β1-mediated ROS 

production in HAoAF would be important.  

 

VAS compounds work by inhibiting the assembly of NAD(P)H oxidases and differ 

from the conventionally used pharmacological Nox inhibitors, including DPI and 

apocynin, in that they do not exhibit intrinsic antioxidant activity and do not inhibit 

other flavoproteins such as eNOS and xanthine oxidase (Altenhofer et al., 2012). 

Although widely used, DPI and apocynin often have off-target effects which can affect 

other oxidant-generating systems in the cell (Aldieri et al., 2008). Currently, there is the 

lack of an isoform-specific Nox inhibitor, and VAS compounds are the closest 

alternative as specific-NAD(P)H oxidase inhibitors, however, use of a appropriate 

scavengers in conjunction with these compounds would present a more accurate of the 

Nox isoform responsible for ROS generation in a particular model system. Results from 

the current study suggest that the species of ROS generated in HAoAF in response to 

TGF-β1 treatment is O2
−., however the Nox isoform (Nox2 or 4) responsible for this 

was not determined.  

 

The current chapter has presented novel data which suggests that in HAoAF, TGF-β1 

treatment results in the generation of ROS, in particular O2
−., the source of which is 

NAD(P)H oxidase. Furthermore, TGF-β1-mediated HAoAF migration is a ROS-

dependent mechanism and requires the activity of O2
−.. Therefore, targeting the TGF-

β1 signalling pathway in the adventitia may be a potential avenue of therapeutic 

intervention during the progression of cardiovascular disease, as demonstrated by 

Mallawarachichi and colleagues where Smad7 gene transfer attenuated vascular 

remodelling following balloon injury (Mallawaarachichi et al., 2005). Targeting this 

pathway prophylactically may also offer the opportunity as a potential method of 

preventing the initiation of cardiovascular disease.   
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CHAPTER 6: General Discussion 
 

As described in Chapter 1, atherosclerosis is a progressive vascular disease, which can 

eventually lead to a plethora of cardiovascular complications, including, angina, myocardial 

infarction and stroke. It has been implicated as being one of the most prevalent causes of 

death in the developed world and despite the development of a number of therapies to 

combat this disease, the number of patients reported to have developed atherosclerosis is on 

the rise (World Health Organisation, 2012). Initial studies into the underlying molecular 

mechanisms of this disease led to the ‘response to injury’ hypothesis (Ross, 1999) which 

postulated that the endothelium plays a central role in mediating the inflammatory response 

by modulating monocyte adhesion and playing a pivotal role in the infiltration of oxidized 

lipids and the consequent formation and progression in development of atherosclerotic 

lesions (Diaz et al., 1997). 

An increasing body of evidence now suggests that this ‘inside-out’ hypothesis of 

atherosclerosis does not take into account the outermost adventitial layer of the blood 

vessel, largely consisting of fibroblasts (Maillaro and Taylor, 2007). Termed the ‘outside-

in’ hypothesis (Zalewski and Shi, 1997), it suggests that early in the development of 

vascular disease, the adventitia plays an important role in the initiation and progression of 

vascular inflammation, characterized by a denser vasa vasorum which is responsible for 

delivering oxygen and nutrients to an increasingly hypoxic and nutrient deficient media as 

well as enhancing the delivery of inflammatory cells  (Csanyi et al., 2009; Kuwuhara et al., 

2002). A key player in the ‘outside-in’ hypothesis is the adventitial fibroblast and its 

phenotypic switch to a myofibroblast cell type which is able to subsequently migrate and 

augments the progression of disease by contributing to the formation of a neointima. This 

phenotypic switch has been reported to be a TGF-β1-dependent event (van den Borne et al., 

2009; Mallawaarachchi et al., 2007; Powell, 2000). In particular, one method by which 

TGF-β1 is thought to elicit phenotypic changes and migration of fibroblasts is from the 

generation of reactive oxygen species (ROS), an effect which is counter-balanced by the 

cell’s innate antioxidant defense pathways, and in particular by the Nrf2/ARE signalling 

pathway. 
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There is increasing emphasis on the activation of endogenous antioxidant defense systems 

in order to counteract pathophysiological disease processes since evidence from clinical 

trials in which exogenous antioxidants such as tocopherol, were administered to patients, 

has provided somewhat inconsistent outcomes (Steinhubl, 2008; Kris-Etherton et al., 2004; 

Steinberg, 2000; Steinberg, 1993). One dietary activator of endogenous antioxidant 

pathways and in particular of the Nrf2/ARE antioxidant pathway is the isothiocyanate, 

sulforaphane (SFN). Found in cruciferous vegetables, its bioavailability and rapid 

absorption and metabolism make it an ideal candidate for use as a therapeutic agent in order 

to activate endogenous phase II enzyme detoxification systems (Petri et al., 2003). Its 

ability to decrease oxidative stress has been demonstrated in spontaneously hypertensive 

rats where it was shown to ameliorate oxidative stress and tissue inflammation (Noyan-

Ashraf et al., 2006). Its potential to prevent neointima formation and inflammation during 

atherosclerosis, to which adventitia-derived cells contribute, is therefore a highly promising 

avenue of research.  

It is important to note that all HAoAF used for the duration of the study came from a total 

number of four human donors. Assurance from the manufacturer stated that all individuals 

had passed away suddenly and without any major disease pathology. Despite this, it is 

important to regard the data gathered in this study with caution. Cells were taken from the 

adventitial layer of the aorta of donors, however the manufacturer was not clear about 

whether the donors suffered from any risk factors that would increase the progression or 

contribute to the development of cardiovascular disease. It is well known that all members 

of the general population exhibit atherosclerotic plaque formation to some extent (Ross, 

1999), and it is likely that the donors from whom these cells were taken also exhibited 

some atherosclerotic plaque development. This variability between donors is likely to have 

affected the behaviour of the fibroblasts isolated from their aortas and ultimately the 

outcomes of the current study. Future work using a larger sample size and perhaps with the 

medical history of the donors would help to reduce this variability and provide more 

accurate data with the potential of less variability.  

 

The present study aimed to elucidate whether TGF-β1 modulates phenotype and motility 

due to enhanced ROS generation or altered antioxidant defense gene expression via the 

Nrf2/ARE pathway. The effect of the isothiocyanate, SFN, an inducer of the Nrf2/ARE 



Chapter 6                                                                                                                                 General Discussion 

 

 248 

pathway, on HAoAF was also investigated in order to determine whether it plays a role in 

the induction of phase II enzymes via the activation of the Nrf2/ARE pathway in this cell 

type and therefore be used as a method of intervention in cardiovascular disease. 

 

6.1 Cellular localisation of the Nrf2/Keap1 complex 

This study has investigated the effect of TGF-β1 and SFN treatment on the expression 

pattern of Nrf2 in HAoAF. Immunofluorescence and Western blot analysis suggests that in 

response to exposure to TGF-β1 or SFN, Nrf2 localises to the nucleus after 2 h and by 4 h 

after exposure, Nrf2 is largely localised in the cytoplasm. These results are consistent with 

findings from a previous study carried out in human aortic smooth muscle cells where 

nuclear accumulation of Nrf2 was seen after 2 h in response to TGF-β1 (Churchman et al., 

2009). Another study in a prostate cancer cell line also confirms results found in the present 

study where exposure of cells to SFN resulted in the translocation of newly synthesized 

Nrf2 to the nucleus, whilst its binding protein, Keap1 remained in the cytoplasm (Xu et al., 

2006). The location of the Nrf2 binding protein, Keap1, was not investigated during the 

present study, however the intracellular localisation of the Nrf2-Keap 1 complex has gained 

much interest in recent years and various studies contend with the initial hypotheses, which 

suggested that under basal conditions, the complex resides mainly in the cytoplasm, bound 

to F-actin, under basal conditions. 

The mechanisms by which Keap1 is thought to regulate Nrf2 levels are controversial as is 

the exact subcellular localisation of the Keap1/Nrf2 complex. The majority of evidence 

suggests that Keap1 sequesters Nrf2 in the cytosol where it mediates the proteasomal 

degradation of this transcription factor via the 26S proteasome (Jain et al., 2005). 

According to this model, upon exposure of Keap1 to oxidants and electrophillic stress 

agents, Nrf2 dissociates from Keap1 and is able to localise to the nucleus owing to a 

nuclear localisation signal (NLS) located in its C-terminus which eventually leads to the 

coordinated activation of a number of antioxidant genes (Jain et al., 2005). The NLS 

domain of Nrf2 is thought to be critical in allowing its nuclear accumulation as deletion of 

this domain has been previously shown to result in a complete inhibition of Nrf2 nuclear 

accumulation and diminished transcriptional activity of genes downstream of Nrf2 (Jain et 
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al., 2005). In addition to this, a similar nuclear export signal (NES), also found on Nrf2 is 

thought to be important in the nuclear export and subsequent degradation of Nrf2 

(Velichkova and Hasson, 2005). 

In contrast to this, emerging evidence suggests that the relationship between Keap1/Nrf2 is 

more complicated than originally proposed. Watai and colleagues postulate that the 

Keap1/Nrf2 complex is localised in different locations in the cell. They suggest that 

although the majority of Keap1 resides in the cytoplasm there is also some localisation of 

this complex in the nucleus and in the endoplasmic reticulum (Watai et al., 2007). 

Interestingly, they also suggest that instead of being an inert protein in the cytoplasm, 

Keap1 is able to shuttle in and out of the nucleus in a NES-dependent manner (Watai et al., 

2007). Velichkova and Hasson further explain this by suggesting that oxidative agents can 

directly oxidatively modify several cysteine residues in immediate proximity to the NES. 

Once oxidised, they can participate in the masking of the NES on Keap1, thereby allowing 

an increase in nuclear Nrf2 in the absence of Keap1–mediated export of Nrf2. Eventually 

this results in the transcription of various target genes via Nrf2/ARE, including HO-1 and 

NQO-1 (Velichkova and Hasson 2005). This is supported by findings in the fibroblast cell 

line, NIH3T3 that show that these cysteine residues are critical for the Keap1-mediated 

ubiquitination of Nrf2 (Zhang et al., 2003). 

Further light was shed on the role of the Keap1/Nrf2 complex on ARE-mediated gene 

expression in HeLa cells. Keap1 was found to contain a NES domain, which allowed it to 

confer the nuclear-cytoplasmic shuttling of the Keap1/Nrf2 complex and mediate gene 

transcription (Karapetian et al., 2005). Perhaps the most controversial suggestion comes 

from Nguyen and colleagues who propose that the Keap1/Nrf2 interaction is a very brief 

one, whereby Keap1 transiently enters the nucleus and targets Nrf2 for ubiquitination in 

this compartment under non-stress conditions. However, they also go a step further by 

suggesting that even under stressed conditions, Keap1 is able to enter the nucleus and target 

Nrf2 for degradation once this transcription factor has activated its target genes (Nguyen et 

al., 2009). This supports findings from Jain et al., who found that treatment of cells with the 

stress agent, t-butylhydroquinone (t-BHQ), caused nuclear Nrf2 localisation but that this 

was abrogated between 1 – 4 h after treatment and gained normal localisation status 8 h 

after treatment (Jain et al., 2005). 
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Questions remain about the mechanism of Nrf2 nuclear localisation and activation by such 

diverse stimulants as TGF-β1 and SFN and it is likely that it involves cross-talk between 

several signalling pathways depending upon the stimulus, the cell and the tissue type. In the 

current study, Western blot analysis revealed several kinase pathways were activated in 

HAoAF in response to TGF-β1 and SFN, including PI3K/Akt, Erk and p38MAPK (see 

Chapter 3). Other studies have proposed the importance of kinases in the regulation of the 

ARE in an Nrf2-dependent manner; Erk has been reported as upregulating the ARE and 

p38MAPK has been shown to suppress this effect (Yu et al., 2000). Others have shown that 

the PI3K pathway results in Nrf2 nuclear translocation upon exposure to tBHQ-induced 

oxidative stress, an effect that is accompanied by actin rearrangement (Kang et al., 2002) 

whilst in HepG2 cells, phosphorylation of Ser40 on Nrf2 by protein kinase C was observed 

as being required for ARE-driven transcription (Huang et al., 2002).  

 

More recently, Xu and colleagues have reported that treatment of a prostate carcinoma cell 

line with phenethyl isothiocyanate (PEITC) activated Erk and Jnk, which phosphorylated 

Nrf2, inducing its translocation to the nucleus and subsequent transcriptional activation of 

the ARE (Xu et al., 2006). In contrast, others have reported that phosphorylation of Nrf2 is 

not a requirement for its activation; Dinkova-Kostova and colleagues have proposed a 

model which suggests that oxidative insults that result in the induction of phase II enzymes 

directly modify cysteine residues on Keap1 allowing Nrf2 nuclear translocation (Dinkova-

Kostova et al., 2002). This is further confirmed by work in mouse embryonic fibroblasts 

that proposed that Cys273 and 288 were the critical residues on Keap1 that were modified 

by electrophiles and required for Nrf2 release from Keap1 and its subsequent nuclear 

translocation (Wakabayashi et al., 2004). Although the current study did not investigate 

phosphorylation of Nrf2 following exposure to TGF-β1 or SFN, it has been shown 

previously that post-translational modification events, including acetylation of several 

lysine residues in the DNA binding domain of Nrf2 (Sun et al., 2009) are important in 

modulating the Nrf2-dependent antioxidant response (Sun et al., 2000) and therefore 

investigating such events would be important for future work in order to elucidate the 

mechanism by which TGF-β1 or SFN cause Nrf2 nuclear translocation, and in the case of 

SFN, its binding to the ARE of target genes in HAoAF.  
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6.2 Mechanisms of TGF-β1-mediated HAoAF migration  

In this study, exposure of HAoAF to TGF-β1 caused changes in the Nrf2/ARE pathway, 

possibly affecting changes in the differentiation, migration and proliferation of these cells 

through altered redox status. These TGF-β1-mediated changes may contribute to adventitial 

activation, atherosclerotic disease progression, neointima formation and restenosis.  

 

The differentiation and migration of adventitial fibroblasts in the setting of cardiovascular 

disease has recently been an area of intensive research. The role of the adventitia has only 

recently been given importance in the context of disease (Ruiz-Ortega et al., 2007) and the 

ability of adventitial fibroblasts to differentiate, proliferate and migrate into the intima and 

contribute to vascular remodelling in response to TGF-β1 can affect the outcome of disease 

progression (Ruiz-Ortega et al., 2007; Birukov, 2009).    

TGF-β1 is a known activator of cell migration, with studies showing that this is due to its 

ability to activate integrins (Asnao et al., 2006). TGF-β1-modulated fibroblast migration 

and differentiation is a critical event during atherosclerotic disease progression and is likely 

to play a large role in the neointima formation and restenosis observed during advanced 

cardiovascular disease (Liu et al., 2010). The current study demonstrated a significant 

increase in migration of HAoAF treated with TGF-β1, an effect that was attenuated in the 

presence of the O2
-. scavenger, superoxide dismutase (SOD; Fig 5.2). However, 

investigation of the levels of Nox2 or Nox4 mRNA in response to treatment with TGF-β1 

revealed that there was no significant increase in the level of these NAD(P)H isoforms, 

though mRNA levels of these Nox isoforms are not indicative of their activity since 

assembly and activity of both Nox2 an Nox4 are subject to post-translational modification 

(Martin-Garrido et al., 2011; Fig. 5.5). The underlying mechanisms of this were not 

investigated here, however, changes in the actin cytoskeleton, to which the Nrf2 inhibitory 

protein, Keap1 is bound may result in the nuclear accumulation of Nrf2 and the consequent 

induction of cytoprotective antioxidant genes that may counteract ROS generation, and 

therefore attenuate migration of these cells. 

Recent evidence from in vitro studies has implicated Nox1 and Nox4-derived ROS in cell 

migration as a reduction in the levels of these NAD(P)H oxidase catalytic subunits resulted 

in the abrogation of TGF-β1-mediated migration of VSMC, with an increase in migration 
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observed when these were overexpressed (Lyle et al., 2009; Schroder et al., 2007) and 

others have shown that ROS produced by Nox1 and Nox4 promotes matrix 

metalloproteinase (MMP) secretion from VSMC (Schroder et al., 2010). In particular, 

Rac1, which regulates cell growth, cellular transformation and especially cell migration, 

has been reported as being essential for the assembly of plasma membrane NAD(P)H 

oxidase (Dikalov et al., 2007). The mechanism by which Rac1 is able to facilitate these 

cellular processes is by controlling the production of ROS, which in turn can increase cell 

migration via the activation of stress-induced responses such as the activation of several 

MAPKs and subsequent downstream activation of several integrins and actin reorganization 

in order to drive the forward movement of the cell (Lassegue et al., 2010; see Fig 6.1). The 

initial  assembly of these NAD(P)H oxidase isoforms may be in response to TGF-β1 

production as a result of its autocrine and paracrine release and may explain the increase in 

the migration of HAoAF in response to this growth factor, an increase which was abrogated 

in the presence of SOD.  

It is thought that the interaction between TGF-β1 receptors and integrins elicits a signalling 

cascade through FAK, subsequent integrin clustering and cellular migration (Margadant 

and Sonnenberg, 2010). Furthermore, TGF-β1 activation and its crosstalk with the integrin 

cluster, αvβ8 has been shown to induce the differentiation of airway fibroblasts into 

myofibroblasts and their subsequent migration (Araya et al., 2007). In the current study, 

TGF-β1 treatment resulted in an acute but significant increased protein expression of pAkt 

(Chapter 3, Fig 3.14) and other studies have purported that this may be a Smad-independent 

pathway by which TGF-β1 can stimulate migration via FAK; FAK has been proposed to 

bind the PI3K p85 regulatory subunit following TGF-β1 treatment in fibroblasts resulting 

in TGF-β1-mediated migration (Hong et al., 2011). Similarly, in monocytes, TGF-β1 has 

been reported as mediating motility in a Smad-independent manner as knockdown of these 

proteins did not affect migration, and it was observed that migration was dependent upon 

PI3K activation (Olieslagers et al., 2011). Results from the current study did not address the 

downstream functional effect of Akt phosphorylation in HAoAF upon treatment with TGF-

β1, but as increased migration was observed in these cells, the phosphorylation of Akt may 

be a mechanism by which TGF-β1 modulates cell motility in HAoAF, however further 

work would need to be carried out to determine this.  
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Given the interactions reported between the Keap1/Nrf2 complex and focal adhesions 

(Velichkova and Hasson, 2005), which contain integrins and the proposed interaction 

between TGF-β1 and integrins as well as between TGF-β1 and Nrf2, further investigation 

of the mechanisms of signalling and activity between these various different pathways 

would need to be carried out in adventitial fibroblasts. One way in which this could be 

investigated in real-time is by using fluorescence resonance energy transfer (FRET) 

microscopy. Fluorescence resonance energy transfer (FRET) allows visualisation of 

individual proteins and allows the quantification of biochemical interactions (Worth and 

Parson, 2008). Based on the evidence that the Keap1/Nrf2 complex localises to the 

cytoskeleton at focal adhesions (Velichkova and Hasson, 2005), the use of FRET to assess 

Nrf2/Keap1 and adhesion complex interactions could clarify the crosstalk of migration 

machinery with this antioxidant pathway. Specific antibody/fluorophore probes would need 

to be generated to facilitate FRET imaging of possible TGF-β1-induced associations 

between Keap1/Nrf2 and focal adhesions.  

A further method of determining cell motility behavior is to measure cell traction force 

(CTF), which is the force generated by actomyosin cross-bridges inside semi-sarcomeres 

containing actin-bundles (Wang and Lin, 2007). Adherent cells generate contractile forces 

by using the cell’s contractile machinery, forces that are transmitted to the extracellular 

matrix (ECM) through focal adhesions which can be in the range of tens of nano-Newtons 

(Wang and Lin, 2007). CTF is essential for cell migration, cell shape maintenance and 

signal transduction and analysis of this force can offer critical understanding of 

physiological and pathophysiological events in cells and tissues. In the case of the current 

study, such information would provide an insight into the mechanisms by which TGF-β1 

regulates cell migration in HAoAF.  
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Figure 6.1 Possible mechanisms by which TGF-β1 may drive fibroblast migration in a ROS-

dependent manner. In response to TGF-β1 Nox2/Nox4 produces reactive oxygen species that can 

cause the reorganization of the cytoskeleton and possible activation of integrins. This can lead to  

enhanced cell migration.  
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6.3 The Nrf2/ARE pathway as a mechanosensor 

The localisation of the Nrf2-Keap1 complex is of particular relevance to the current study 

due to the reported association of Keap1 with the actin cytoskeleton, which may have 

further implications for cell phenotype, proliferation and migration.  

 

It has been shown that Keap1 binds to the actin cytoskeleton and that the interaction 

between the two proteins contributes to its regulatory activity (Kang et al., 2004). In 

particular, the association between Keap1 and the actin cytoskeleton is thought to be 

through focal adhesions (see Fig 6.2). These sites of attachment of the cell membrane to the 

ECM and are formed by groups of cytoskeletal proteins clustered around a transmembrane 

integrin. Integrins consist of an α and a β subunit and constitute a family of transmembrane 

receptors which bind extracellularly to the ECM and intracellularly to the cytoskeleton to 

transduce signals between the extracellular and intracellular environment in order to 

regulate cell adhesion, spreading, proliferation and differentiation (Worth and Parsons, 

2008). Actin remodelling, such as that seen during cell migration, is known to play a 

critical role in transforming a mechanical signal to a biological response (Velichkova and 

Hasson, 2003).  

Previous work by Papaiahgari et al. has demonstrated the importance of the PI3k/Akt 

pathway in mediating ROS-dependent, hyperoxia-induced Nrf2 activation and similar work 

by Kang and colleagues has shown the importance of the PI3K/Akt pathway in regulating 

Nrf2 nuclear translocation via actin rearrangement, suggesting that actin plays a pivotal role 

in, and is closely related to the activation of the Nrf2/ARE pathway (Papaiahgari et al., 

2006; Kang et al., 2002). More recently, immunoprecipitation and immmunocytochemical 

studies have found that disruption of the actin cytoskeleton promotes nuclear entry of Nrf2 

suggesting a role for it in providing a scaffold essential for the function of Keap1 as a 

binding protein for Nrf2 as well as a sensor for oxidative and electrophilic stress (Kang et 

al., 2004). These findings were further confirmed in a study in epithelial and endothelial 

cells where it was found that blocking actin polymerization with the use of a 

pharmacological agent blocked cyclic-stretch induced ARE-mediated gene transcription in 

these cells (Papaiahgari et al., 2007). As a result of these studies, it has been postulated that 

actin plays an important role in enabling the Nrf2/ARE pathway to act as a 
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‘mechanosensor’ for oxidative stress and increased actin-polymerisation may result in a 

higher proportion of Keap1 within the cytoplasm where it also sequesters Nrf2, thereby 

preventing Nrf2 nuclear accumulation and subsequent ARE-mediated gene transcription.  

Studies carried out in endothelial cells have suggested a ‘mechanosensing’ role for the 

Nrf2/ARE pathway, allowing this pathway to differentially regulate the redox status of 

cells. Investigation of the effect of laminar (atheroprotective) shear stress in human 

umbilical vein endothelial cells (HUVEC) dramatically increased intracellular ROS 

generation whilst also activating the Nrf2/ARE pathway and consequently the coordinated 

induction of downstream antioxidant enzymes such as HO-1 and NQO1 (Dai et al., 2007). 

Similarly, a separate study, also in HUVEC, found that laminar shear stress activated the 

Nrf2/ARE pathway and protected cells from external insults, however in cells exposed to 

oscillatory shear stress, Nrf2-regulated atheroprotective gene expression was suppressed, 

predisposing these areas of the blood vessel to the development of atherosclerosis (Hosoya 

et al., 2005). These studies highlight the importance of mechanical stress as a mediator of 

redox signalling in cardiovascular disease where biomechanical forces play a pivotal role 

during disease progression.  

Further investigation of mechanical stress on the activation of Nrf2 in HAoAF is of 

particular relevance as the adventitial layer is exposed to cyclic stretch during normal 

vessel contraction and relaxation, which is enhanced during cardiovascular disease, 

particularly during hypertension (Stenmark et al., 2012; Li et al., 2011). Previous studies 

have reported increases in TGF-β1-dependent activation of NAD(P)H oxidase and 

consequently enhanced generation of ROS during cyclic stretch (Mata-Greenwood et al., 

2005), a possible mechanism by which the Nrf2/ARE pathway may be activated during 

mechanical stress.  

The expression pattern of Nrf2 in HAoAF was investigated in the present study, however 

the cellular localisation of Keap1 was not. Future work pertaining to the cellular 

localisation of Keap1 would help to elucidate the mechanism underlying the possible TGF-

β1 or SFN-induced association between Nrf2/Keap1, focal adhesions and the cytoskeleton 

and may clarify whether this antioxidant pathway is responsible for ‘mechanosensing’ 

during exposure to mechanical stress in the adventitia during hypertension or adverse 

vascular remodelling. 
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Figure 6.2 Model for the proposed association of Keap1 with the cytoskeleton and its 

regulation of Nrf2. Under basal conditions, Keap1 is observed in the cytoplasm, at focal adhesions 

and is involved in the targeted, ubiquitin-mediated degradation of Nrf2 via the 26S proteasome. 

Small amounts of the Keap1/Nrf2 complex are shuttled to the nucleus for basal levels of ARE-

regulated gene expression. Chemical/mechanical stress modifies cysteine residues found within 

Keap1, resulting in the release of Keap1 from the cytoskeleton and from the degradation machinery. 

Pools of Keap1/Nrf2 accumulate within the nucleus which results in the Nrf2 mediated activation of 

ARE-genes. Adapted from Velichkova and Hasson., 2005. 
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The mechanisms of ROS generation and subsequent effect on activating ‘mechanosensing’ 

pathways remains to be fully elucidated, however it is thought that the binding of growth 

factors and chemoattractants to their cell surface receptors causes NAD(P)H oxidases to 

generate ROS (Hurd et al., 2012). The subsequent generation of ROS following ligand 

binding is thought to be mediated by p21-activated kinase-1 (PAK1) and the small GTPase 

Rac1 and an assortment of NAD(P)H regulatory subunits (Hurd et al., 2012). The 

generation of ROS can then direct cellular changes for migration by modifying the activity 

of several proteins, including Keap1 and actin, thereby setting in motion a series of 

signalling cascades, including the activation of cellular defense pathways such as the 

Nrf2/ARE pathway (see Fig 6.1).  

 

6.4 Mechanisms of TGF-β1-mediated ROS generation in the adventitia 

In the current study, the effect of TGF-β1 on ROS generation was investigated in HAoAF 

using the luminescent probe L-O12 and it was observed that TGF-β1 was able to elicit an 

increase in ROS production in HAoAF. Use of a NAD(P)H oxidase inhibitor revealed that 

the ROS was partially NAD(P)H oxidase-derived.  Results from a recent study in rat kidney 

fibroblasts showed that TGF-β1 elicited an increase in ROS generation by increasing the 

activity of NAD(P)H oxidase and the expression of Nox2 and Nox4, whilst also causing an 

increase in the expression of α-smooth muscle actin, a marker of fibroblast differentiation. 

Knockdown of Nox4 was seen to markedly inhibit the TGF-β1-induced stimulation of 

NAD(P)H oxidase activity and reduced α-smooth muscle actin expression (Bondi et al., 

2010). These findings demonstrate that TGF-β1 not only elicits ROS production in 

fibroblasts but in doing so, it also causes activation and differentiation of fibroblasts to 

myofibroblasts. In another study, TGF-β1 caused an increase in the levels of superoxide in 

aortic tissue from ApoE -/- mice, which was produced via NAD(P)H oxidase and which 

was inhibited in the presence of SOD (Buday et al., 2010). TGF-β1-mediated ROS 

production also caused endothelial dysfunction and accelerated atherosclerosis and 

hypertension (Buday et al., 2010). Similarly, TGF-β1 increased cellular ROS levels in 

fibroblasts in an ovarian cancer cell-fibroblast co-culture model, which caused an increase 

in the expression of α-smooth muscle actin and led to fibroblast transdifferentiation to 

myofibroblasts (Yao et al., 2009). Alveolar-epithelial cells also respond to TGF-β1 in a 
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similar way; exposure of these cells to TGF-β1 in the presence of hypoxia led to enhanced 

ROS production which was abrogated by the inhibition of a type I receptor kinase (Zhou et 

al., 2009), suggesting that in this cell type, TGF-β1 plays a pivotal role in ROS generation. 

Interestingly, TGF-β1 has been implicated in eliciting the generation of ROS via various 

sources within the cell, including the mitochondria, where it is thought to generate ROS 

through complex III, ROS, which in-turn, affect TGF-β1-mediated gene expression in lung 

fibroblasts (Jain et al., 2013). It should be noted that during mechanical stress, such as that 

seen during hypertension, TGF-β1 may mediate ROS production, particularly as it is seen 

in high concentration at the site of injury during the pathogenesis of atherosclerosis (Wang 

et al., 2007). Release of TGF-β1 from fibroblasts, SMC and endothelial cells may mediate 

the generation of ROS in the vessel wall, during mechanical stress in a similar way to that 

seen in the current study (see Table 1.1). 

‘Leakage’ of immune cells from the vasa vasorum can also contribute to excessive local 

ROS production in the adventitial and medial layers of a blood vessel (Csanyi et al., 2009). 

One of the hallmarks of the ‘outside-in’ hypothesis is increased vasa vasorum angiogenesis 

and the coupling of this with enhanced ROS production in this outer layer of the blood 

vessel results in an increase in the delivery of inflammatory cells and further ROS 

production (Csanyi et al., 2009). The increased density of the vasa vasorum has been 

postulated as being due to decreased oxygen at the core of the neointima and hyperplastic 

media and consequent increase in the expression of transcription factors including hypoxia-

inducible factor (HIF-1α, Kuwuhara et al., 2002). In addition to the increase in adhesion 

molecule expression along the endothelial lining of the vasa vasorum, this results in a 

positive feed back loop leading to the accumulation of leukocytes in the adventitia and 

consequent inflammatory cell-derived ROS, further compounding local ROS production, 

medial hypertrophy and neointima formation (Csanyi et al., 2009). Enhanced ROS at the 

endothelial layer has been reported to upregulate NFκB, which in turn leads to the release 

of proinflammatory cytokines such as IL-1, IL-6 and TNFα and the increased expression of 

endothelial adhesion molecules (Park et al., 2006). Cross-talk between leukocyte-derived 

and adventitia-derived ROS has also been implicated in further driving NFκB activation 

and increased adhesion molecule expression in the vasa vasorum (Stenmark et al., 2006). 

This positive association between adventitial ROS and adhesion molecule expression in the 

vasa vasorum has been demonstrated in the rat aorta where AngII infusion for 1 week 
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increased NAD(P)H oxidase-derived ROS and was accompanied by enhanced ICAM-1 

expression and adventitial macrophage infiltration (Liu et al., 2003). In addition, the same 

study showed that adventitial ROS served as a direct chemotactic signal for leukocytes 

which were able to penetrate the vessel wall, thereby resulting in increased inflammation in 

the adventitia (Liu et al., 2003).  

Use of an NAD(P)H oxidase inhibitor in the current study revealed that NAD(P)H oxidase 

was a partial source of ROS in HAoAF treated with TGF-β1. However, although the 

inhibitor used is specific for Nox (Altenhofer et al., 2012), there is currently no available 

pharmacological inhibitor that is able to inhibit specific Nox isoforms, and therefore it was 

not determined whether the source of ROS in HAoAF was Nox2 or Nox4-derived, both of 

which have been reported to be expressed by adventitial fibroblasts (Haurani and Pagano, 

2007). Due to the lack of specific, freely available and validated antibodies for Nox4/Nox2, 

the protein expression of these isoforms was not determined in HAoAF. siRNA knockdown 

of either of these isoforms in order to observe differences in ROS production in TGF-β1-

treated cells would also be important for future work, however due to lack of validated 

siRNAs in addition to lack of available antibodies to confirm knock-down, this approach 

would be technically difficult (Altenhofer et al., 2012).  

 

6.5 Future Work  

6.5.1 Investigation of miRNA regulation of TGF-β1 signalling  

Interest in the regulation of gene expression by microRNA (miRNAs) in the context of 

cardiovascular disease (CVD) is currently a highly topical area of research. miRNAs are 

strands of short non-coding  RNAs that regulate gene expression by modulating the 

translation and/or stability of target mRNAs (Boyd, 2008; see Introduction section 1.3.5a).  

Preliminary data from the current study investigated the effect of TGF-β1 and two common 

inflammatory mediators observed in atherosclerosis, the lipid peroxidation product, 4-

Hydroxynonenol (HNE; Abiko et al., 2011), and the H2O2 generator, glucose oxidase 

(GOx; Churchman et al., 2009), on the expression of several miRNAs in HAoAF.  

Studies have found that TGF-β1-mediated expression of contractile smooth muscle genes is 
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in part mediated by miRNAs miR-21, miR-26a, miR-143 and miR-145. As one of the 

objectives of this study was to determine the effect of TGF-β1 on HAoAF differentiation, 

the expression of these mRNAs in response to treatment with this growth factor was 

investigated (Fig 6.3). It is widely known that in VSMC, TGF-β1 induces the expression of 

contractile proteins, however, potential mechanisms by which this occurs have not been 

fully elucidated. Recent studies have reported that several miRNAs, regulated by TGF-β1, 

may be involved in the differentiation process. In one study, miR-21 has been shown to 

mediate the expression of programmed cell death protein-4 (PDCD4) which is rapidly 

induced by TGF-β1 in VSMC and results in the expression of contractile proteins (Hata and 

Davis, 2009). The same study found that TGF-β1 could increase the expression of pre and 

mature miR-21 by facilitating the Drosha step (Hata and Davis, 2009). In addition, miR-21 

has also been implicated in regulating the Erk-MAPK pathway in cardiac fibroblasts and 

the in vivo silencing of miR-21 by a specific antagomir in a mouse pressure-overload-

induced disease model has been shown to inhibit interstitial fibrosis and attenuate cardiac 

dysfunction (Thum et al., 2008). In the current study, increased activation of the Erk-

MAPK pathway by TGF-β1, though not statistically significant, was observed (see Chapter 

3, Fig. 3.15) and investigation of miR-21 revealed that its expression was decreased in 

TGF-β1-treated cells. These two observations may be linked and it is possible that TGF-β1 

regulation of the Erk-MAPK pathway is via miR-21 in HAoAF, but further work would be 

needed in order to determine this. Interestingly, the pro-inflammatory compounds, HNE 

and GOx were both shown to increase the expression of miR-21 in HAoAF, however this 

increase was non-significant (Fig 6.3, A). This observation may suggest a possible 

regulatory mechanism between miR-21 and HNE and GOx, though a link between these 

remains to be elucidated. 
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Figure 6.3 The effect of TGF-β1 on microRNA levels in HAoAF. Confluent HAoAF were 

equilibrated in phenol red-free DMEM supplemented with 1% FCS and subsequently treated with 

TGF-β1 (5 ng/ml), HNE (10 μM) or glucose oxidase (GOx; 2.5 U/ml) for 6 h. Micro-RNA levels in 

the samples were quantified by qRT-PCR and expressed relative to 3 housekeeping genes. Data was 

analysed using geNorm software and Graphpad Prism 5. Values denote means ± SEM. n = 3 

independent experiments. 
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Similarly, in VSMC and fibroblasts, miR-143 and 145 have been reported as being direct 

transcriptional targets of serum response factor (SRF) and its co-factor myocardin and in 

response to these factors, both miRNAs were downregulated in atherosclerotic vessels 

resulting in a less differentiated cell population (Cordes et al., 2009). Another study in 

mesenchymal stem cells has reported that TGF-β1 led to a rapid and sustained up-

regulation of miR-145, an effect that resulted in a decrease in Disabled-2 (Dab2), a protein 

that has a critical role in stem cell specification. After acute myocardial infarction, Dab2 

levels were rapidly upregulated in cardiac myocytes in the border zone leading to fibrotic 

remodelling with a concomitant decrease in myocardial pri-miR-145 expression (Mayorga 

et al., 2012). These findings are in contrast to preliminary data in the current study that 

suggests that TGF- β1 downregulates the expression of both miR-143 and 145 in HAoAF 

after 6 h and conversely, may decrease the expression of characteristic markers of 

differentiation (Fig 6.3, C and D). Further work looking at the effect of long-term TGF-β1 

treatment on the expression of these miRNAs would provide better insight into their 

regulation by TGF-β1 and the possible effects of this on HAoAF differentiation. 

The role of Smad proteins, which are involved in facilitating TGF-β1 signalling, in the 

Drosha complex has also been studied; study of the nuclear factor Smad nuclear interacting 

protein1 (SNIP1), a nuclear protein partner of Smads, is found in complex with Drosha (Yu 

et al., 2008) suggesting a Smad-dependent regulation of miRNA biosynthesis could be 

modulated independently of TGF-β1 (Hata and Davis, 2009, Fig 6.4) and thereby be 

involved in many signalling pathways and as a result, a number of physiological processes.  

Investigating the possible differential regulation of the Nrf2/ARE pathway by TGF-β1 

would also be an interesting avenue of study. There is emerging evidence that has 

implicated several miRNAs in the regulation of Nrf2, particularly post-

transcriptionally/translationally. One study has identified a miRNA targeting seed sequence 

within Nrf2 3’ UTR in neuronal SH-SY5Y cells which has been postulated as being a 

possible target of miR153/miR27a/miR142-5p/miR144 (Narasimhan et al., 2012). Ectopic 

expression of these miRNAs resulted in diminished transactivation of Nrf2 with diminished 

GCLC and GSR expression, suggesting that alteration in the level of these miRNAs affects 

levels of Nrf2 and could be important in its regulation in disease (Narasimhan et al., 2012). 

As well as the direct regulation of Nrf2, regulation of Keap1 can also influence 
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transcriptional activity of Nrf2 and in breast cancer cells. miR200a has been reported as 

negatively regulating Keap1 via mRNA destabilization, thereby leading to an increase in 

Nrf2 levels and the phase II enzyme, NQO1 (Eades et al., 2011; Loignes et al., 2009). 

Although these miRNAs were not investigated in the current study, investigation into the 

overlap between TGF-β1 or SFN and miRNAs that regulate Nrf2/ARE signalling would be 

of interest, particularly because Nrf2 is known to be post-translationally/transcriptionally 

regulated, at least by SFN, (Negi et al., 2011; Zhang et al., 2003) and the potential 

mechanism by which this occurs may be via the alteration in the levels of several miRNAs.  

 

 

 

 

Figure 6.4 Regulation of miRNA maturation by TGF-β superfamily signalling. TGF-β 

signalling promotes the nuclear localisation of R-Smad proteins which stimulates the Drosha-

mediated production of pre-miRNAs. Thus Smads regulate gene expression in two distinct manners 

(i) transcriptional regulation by DNA binding and (ii) regulation of miRNA maturation by 

associating with the Drosha complex.  Taken from Hata and Davis, 2009. 
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6.5.2 The TGF-β1 signalling pathway: A therapeutic target? 

As a result of the increasing evidence demonstrating the role of TGF-β1 in remodelling 

during vascular disease, it is not surprising that this signalling pathway has been a target for 

therapeutic intervention and a number of strategies have been employed in order to 

antagonise TGF-β1 signalling in the hope that it would confer clinical benefit in disease 

progression. Initial studies employed neutralizing anti- TGF-β1 antibodies to inhibit TGF-

β1-mediated signalling. An in vivo study in a rat carotid artery injury model demonstrated 

that administration of neutralizing anti-TGF-β1 antibodies significantly reduced the size of 

the intimal lesions that developed after balloon injury when compared to untreated animals 

as well as an observed decrease in the extracellular matrix components, EDA and 

fibronectin (Wolf et al., 1994). This study not only confirmed that TGF-β1 was upregulated 

in the media of injured arteries, but was also one of the first to suggest that it was causally 

involved in the development of intimal hyperplasia (Wolf et al., 1994).  

Similarly, Smith and colleagues also found that inhibiting the action of TGF-β1 by 

administering a recombinant TβR-II, which competes with cell-surface receptors for the 

binding of active TGF-β1, markedly attenuated adventitial myofibroblast migration and 

adverse remodelling in a rat model of balloon catheter carotid denudation (Smith et al., 

1999). Intimal thickening was also reduced by up to 65% when compared with control 

animals (Smith et al., 1999). Ryan and colleagues showed that inhibition of TGF-β1 by 

antagonizing signalling also using a recombinant TβR-II prevented injury-induced 

reduction in lumen area by promoting vessel enlargement (Ryan et al., 2003). These studies 

demonstrate the potential therapeutic benefits of antagonizing TGF-β1 signalling either 

prophylactically or following vascular injury.  

Use of ribozymes, which catalyse the cleavage of mRNA and therefore inhibit gene 

expression, is a technique that has been used to target TGF-β1 mRNA expression in 

vascular SMC from spontaneously hypertensive rats and have been found to inhibit cellular 

proliferation in this model (Teng et al., 2000). Transfection of FITC-labeled ribozymes in 

vivo to target TGF-β1 signalling has also shown similar results and as a consequence, 

prevented characteristic neointima formation in animals after balloon injury when the 

transfected vessel was examined 2 weeks after transfection (Yamamoto et al., 2000). 

Alternatively, inhibition of downstream TGF-β1 signalling using adenoviral over-
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expression of Smad7, an inhibitor of Smad2 phosphorylation, has been shown to attenuate 

adventitial cell migration and remodelling in a rat model of balloon injury whilst also 

abrogating adventitial fibroblast contribution to neointimal formation (Mallawaarachichi et 

al., 2005). 

Although these methods have proven efficacious in animal models and offer the possibility 

of preventing in-stent restenosis, further work in human studies would be essential in order 

to determine whether inhibiting TGF-β1 locally, perhaps using a drug-eluting stent at sites 

of angioplasty, would be clinically beneficial (Kotsar et al., 2010). One of the major factors 

that may influence the potential beneficial effects of antagonizing TGF-β1 signalling is the 

timepoint of administration. Several studies carried out in mice have reported that 

disruption of TGF-β1 signalling causes the formation of unstable plaques by abrogating the 

profibrogenic ability of TGF-β1 (Gojova et al., 2003; Mallat et al., 2001). In addition, 

inhibiting TGF-β1 has also been shown to result in an increase in the number of pro-

inflammatory T-cells that populate atherosclerotic lesions (Tse and Ley, 2012; 

Ovchinnikova et al., 2009; Robertson et al., 2003; Lutgens et al., 2002). One study in which 

in-stent restenosis was investigated has also reported that adenoviral transfection of TβR-II 

to the coronary arterial segment of a pig, although decreased ECM accumulation, did not 

reduce stent-induced neointima formation and in fact induced vascular inflammation and 

aggravated lesion progression (Chung et al., 2010). Due to the diverse range of 

physiological process in which TGF-β1 is involved, the complete inhibition of this 

signalling pathway may potentially be detrimental in long-term recovery from vascular 

injury. Maximal therapeutic benefit may only be attained if the correct timepoint and 

mechanism of intervention are elucidated, both of which would need further investigation.  

An alternative strategy by which TGF-β1 signalling could be modulated to confer 

protective effects would be via its ability to target and activate the Nrf2 pathway. In the 

current study it was observed that TGF-β1 increases the nuclear translocation of Nrf2 as 

well as causing the induction of HO-1. In human aortic SMC, Churchman and colleagues 

have also reported Nrf2 as being a target of TGF-β1, findings which may explain the 

‘protective cytokine’ hypothesis of TGF-β1 (Churchman et al., 2009). Crosstalk between 

the TGF-β1 and Nrf2/ARE pathways has been demonstrated in the same study, where 

antagonism of TGF-β1 signalling using adenoviral overexpression of Smad7 resulted in a 
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decrease in the protein expression of HO-1 in response to electrophilic stress (Churchman 

et al., 2009). Although the underlying mechanisms of this remain unclear, it has been 

postulated that this interaction may be as a result of crosstalk between Smad and MAPK 

signalling pathways that contribute to Nrf2/ARE activation. Therefore, augmenting the 

activation of the Nrf2 pathway by TGF-β1, may be anti-atherogenic and a possible method 

by which neointima formation and restenosis can be attenuated.  

 

6.5.3 Sulforaphane as a therapeutic agent in cardiovascular disease 

Previous studies investigating the therapeutic potential of antioxidant supplementation have 

delivered inconsistent results in clinical trials (Kris-Etherton et al., 2004; Biondo-Zoccai; 

2002; Steinberg, 2000) and focus has now shifted towards employing methods that activate 

endogenous antioxidant pathways to confer protection against oxidative stress during 

disease, such as the use of novel compounds like SFN that activate the cells own 

antioxidant defense systems against electrophilic stress.  

There has been much interest in the prophylactic capacity of SFN and whether it can indeed 

be considered as a therapeutic option for the prevention of CVD. Pharmacokinetic studies 

have revealed that following the consumption broccoli (200g), volunteers displayed a peak 

plasma concentration of SFN of around 100 nM 1.5 h following ingestion of raw brocolli 

and 6 h following ingestion of cooked broccoli (Hanlon et al., 2009; Vermeulen et al., 

2008). Bioavailabity of SFN based on the processing of glucoraphanin by myrosinase in 

broccoli has been reported as being between 3.4-10% and 32-37% for raw and cooked 

respectively (Vermeulen et al., 2008; Conaway et al., 2000). The absorption of SFN was 

more efficient for raw than cooked broccoli and plasma clearance was also reported as 

being faster for raw than cooked broccoli (Vermeulen et al., 2008; Conaway et al., 2000). 

Concentrations of SFN used in the current study (2.5 – 5 μM) were significantly higher 

than those observed in pharmacokinetic studies and therefore its metabolism, 

bioavailability and excretion would be expected to be different than that reported in those 

studies, especially since it is being used in its pure form as opposed to its precursor, 

glucaphoranin and within a cell culture model. These concentrations were able to activate 

the Nrf2/ARE pathway in HAoAF, however the amount available from the consumption of 

cruciferous vegetables in pharmacokinetic studies would not be sufficient enough to reach 
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plasma levels of 2.5 – 5 μM SFN and therefore further work investigating the effects of 

lower concentrations of SFN in HAoAF would need to be carried out to determine whether 

they would also be sufficient enough to elicit a similar activation of the Nrf2/ARE pathway 

in vivo.        

Epidemiological evidence has highlighted the chemopreventative effectiveness of SFN in 

various cancers. One study has examined the effect of broccoli consumption on gene 

expression in human prostate biopsy tissue before, during and after a 12-month broccoli-

rich diet and a 12-month pea-rich diet (Traka et al., 2008). Individuals with glutathione S-

transferase mu 1 (GSTM1) positive and null genotypes were randomly assigned to either 

the broccoli or pea-rich diet and comparison of biopsies obtained pre- and post-intervention 

revealed more changes in gene expression had occurred in individuals on the broccoli-rich 

diet. The authors of the study suggest that this indicates the interaction of SFN with the 

GSTM1 genotype to result in complex changes in signalling pathways associated with 

inflammation and carcinogenesis in the prostate, including TGF-β1, epidermal growth 

factor and insulin signalling pathways, with direct chemical interaction of isothiocyanates 

with these signalling peptides (Traka et al., 2008). 

The ability of SFN to acts as a tumor suppressor is dependent upon its activity as a histone 

deacetylase (HDAC) inhibitor; in mice a single dose of SFN (10 μM) resulted in a 

significant inhibition of HDAC activity in the colonic mucosa with a concomitant increase 

in acetylated histones and suppression of tumour development in the mucosa of these mice  

(Kaminski et al., 2010; Myazak et al., 2006). Further work in humans revealed that a single 

dose of broccoli (68 g) inhibited HDAC activity significantly in peripheral blood 

mononuclear cells (Myazak et al., 2007). The same study reported suppression of human 

PC-3 prostate cancer cells by 40% in male nude mice with a significant decrease in HDAC 

activity in xenografts (Myazak et al., 2007). These studies demonstrate the potential of SFN 

to be used as a preventative measure for carcinogenesis and as therapy during the disease 

process as a tumour suppressor.  

The therapeutic benefits of SFN have also been highlighted in the context of cardiovascular 

disease models. Spontaneously hypertensive stroke-prone rats were fed dried broccoli 

sprouts (200 mg/day; 5 days/week for 24 weeks), after 14 weeks, animals on the broccoli-

rich diet had significantly decreased oxidative stress levels in cardiovascular and kidney 
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tissues as demonstrated by increased GSH content and reduced oxidized GSH which 

correlated with improved endothelial-dependent relaxation of the aorta and significantly 

lower blood pressure (Wu et al., 2004). In this study, the beneficial effects of SFN were 

attributed to its ability to induce phase II antioxidant enzymes (Wu et al., 2004). Although 

this study did not clarify plasma levels of SFN following consumption of broccoli, they 

proposed that broccoli extracts contained the equivalent of 27.3 μM SFN, a concentration 

that is far above the physiological level of SFN in plasma following broccoli consumption.  

Interestingly local delivery of SFN in a carotid artery injury model has been shown to 

inhibit the mRNA and protein expression of VCAM-1 by blocking the expression of the 

transcription factor GATA6 and preventing its binding to the promoter region of VCAM-1 

whilst significantly reducing neointima formation 14 days after injury (Kwon et al., 2012). 

As well as this, SFN was also able to inhibit the proliferation and migration of VSMC 

highlighting its use as a potential therapeutic agent for the prevention of restenosis after 

vascular injury (Kwon et al., 2012). Currently there is a paucity of evidence about the 

beneficial effects of SFN in the adventitial layer, however results from this study suggest 

that it may be clinically beneficial during atherosclerotic disease progression as it is able to 

activate the Nrf2/ARE antioxidant defense pathway, and thereby induce downstream 

antioxidant gene expression.  

The bioavailability of SFN and the promise it has shown as a beneficial therapeutic agent in 

cardiovascular disease and as a chemopreventative agent offers this dietary isothiocyanate 

as an ideal mode of prevention during these disease processes. However, due to its 

interaction and effect on diverse signalling pathways, the underlying mechanisms of SFN’s 

beneficial effects will need to be fully elucidated in order to harness its true potential and to 

prevent any adverse off target effects.  

 

6.5.4 Interactions between SFN and the TGF-β1/Smad signaling pathway 

Recent evidence suggests that SFN is able to interact with the TGF-β1/Smad signalling 

pathway with varying effects on TGF-β1-mediated gene expression and activity. The first 

study to report an interaction was carried out in a heterogenous human epithelial colorectal 

adenocarcinoma cell line, Caco-2 cells where exposure of cells to different concentrations 
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of SFN (0 – 25.5 μM) resulted in a perturbation of TGF-β1 signalling; analysis of pSmad2 

protein expression revealed that TGF-β1 increased the expression of pSmad2, however 

treatment of cells with broccoli extracts containing SFN resulted in a decrease in pSmad2 

expression (Furniss et al., 2008). Interestingly, the same study found that treatment of cells 

with broccoli extract containing 25.5 μM SFN resulted in enhanced pSmad2 expression, 

although to a lesser extent than in cells treated with TGF-β1 alone (Furniss et al., 2008). 

The perturbation of TGF-β1 signalling, which is known to be involved in cell proliferation 

and cancer metastasis (Padua and Massague, 2009) may go some way in explaining the 

ability of SFN to act as a chemopreventative agent. 

A study in NIH3T3 cells, quantified TGF-β1-induced Smad-mediated transcription by 

using a CAGA-luciferase plasmid in which luciferase activity can be measured upon 

activation of Smad proteins, found that exposure of cells to TGF-β1 that had been pre-

incubated with SFN (2 μM) for 30 min resulted in an increase in Smad-mediated 

transcription compared to exposure of cells to TGF-β1 alone (Traka et al., 2008). The 

authors proposed that SFN is able to directly bind to and modify TGF-β1, thereby altering 

TGF-β1-mediated signalling (Traka et al., 2008). Other studies have reported an increase in 

TGF-β1 levels in response to SFN treatment. In colorectal cancer cells, incubation with 

SFN for 1 and 3 h resulted in an increase in the levels of TGF-β1 mRNA as well as mRNA 

of TβRI and TβRII suggesting a possible transcriptional regulation of the components of 

this signalling pathway by SFN, postulated as being as a result of SFN’s ability to inhibit 

histone deacetylases (HDAC; Kaminski et al., 2010). Histone deacetylase inhibitors have 

been reported as being able to induce the expression of several tumour suppressive genes as 

well as the expression of TGF-β1 and its receptors (Kaminski et al., 2010). 

Recently there has been some evidence to suggest that SFN is able to attenuate TGF-β1-

mediated fibrosis via the Nrf2/ARE pathway. A study examining hepatic fibrosis in a 

HepG2 cell culture model has reported the ability of SFN to suppress TGF- β1-mediated 

fibrosis. Suppression of TGF-β1/Smad signalling by SFN is thought to be indirect and via 

its activation of Nrf2, which itself is thought to physically interact with Smad3 proteins (Oh 

et al., 2012). The authors postulate that this physical interaction may impede 

phosphorylation of Smad proteins either by masking their phosphorylation sites or by 

rendering them resistant to phosphorylation, preventing their nuclear accumulation and the 
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downstream transcription of Smad-regulated genes, which include plasminogen activator 

inhibitor-1 (PAI-1), α-smooth muscle actin and fibronectin, all of which are involved in 

tissue fibrosis (Oh et al., 2012). The ability of SFN to suppress hepatic stellate cell 

activation and fibrogenic gene expression in this model may provide some therapeutic 

benefit to individuals suffering from fibrotic conditions by simply incorporating SFN-rich 

foods into their diet, however further work, including pharamcokinetc studies, would need 

to be carried out in order to determine exact dietary amount required in order to reach a 

therapeutically beneficial concentration of SFN in plasma in these patients.  

In the current study, the expression of fibrogenic proteins expressed by HAoAF in response 

to TGF-β1 was examined however cells were not treated with TGF-β1 and SFN together. It 

would be interesting to assess the effect of SFN pre-treatment on the expression of 

fibrogenic proteins including α-smooth muscle actin and vimentin in the presence of TGF-

β1 and before they have become fully differentiated into myofibroblasts in order to assess 

its ability to attenuate the expression of these proteins in HAoAF. The interaction between 

SFN and TGF-β1/Smad signalling and the Nrf2 pathway is quite likely to be more complex 

than has been reported in the literature. Interaction of SFN with TGF-β1 signalling, which 

is involved in a diverse range of cellular processes is likely to have many targeted effects 

including the activation of other antioxidant pathways, including NFκB and AP-1 (Greco et 

al., 2011). In particular, a very recent study carried out in pulmonary fibroblasts has 

revealed that SFN reduces myofibroblastic dedifferentiation and inhibits the pro-fibrotic 

effects of TGF-β1 in this cell type, an inhibition which is abolished following Nrf2 

knockdown suggesting that SFN mediated these effects via the Nrf2 pathway (Artaud-

Macari et al, 2013).  Therefore further work to fully elucidate the various pathways SFN 

may activate and the mechanism of its interaction with the TGF-β1 signalling pathway is 

important in order to take full advantage of its therapeutic benefit in relation to the disease 

processes that arise during the perturbation of TGF-β1 signalling and during impaired 

activation of antioxidant defense systems.  
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Effect in HAoAF TGF-β1 SFN 

Differentiation There was basal expression of α-

smooth muscle actin and vimentin. 

TGF-β1 treatment had no effect on 

the expression of these proteins in 

HAoAF.  

- 

Mitochondrial 

dehydrogenase activity 

No effect. No effect. 

Smad phosphorylation Increased. 

 

- 

Proliferation Increased. 

 

- 

Effect on Smad-

independent pathways 

Significant increase in Akt 

phosphorylation at 1, 2 and 4 h. No 

effect on Erk or p38MAPK. 

 

Significant increase in Akt 

phosphorylation at 1, 2 and 4 h. 

No effect on Erk or p38MAPK. 

Nrf2 mRNA and protein No effect on mRNA levels or total 

Nrf2 protein expression. 

No effect on mRNA levels or 

total Nrf2 protein expression. 

 

HO-1 mRNA and protein No effect on mRNA levels. 

Significant increase in HO-1 

protein at 8 h. 

No effect on mRNA levels. 

Significant increase in HO-1 

protein at 8 h. 

 

NQO1 mRNA and 

protein 

No effect on mRNA levels or total 

NQO1 protein expression. 

No effect on mRNA levels or 

total NQO1 protein expression. 

 

GSH levels No effect. GSH depletion.  

 

Nrf2 nuclear 

translocation 

Nuclear translocation observed at 2 

h.  

Nuclear translocation observed at 

2 h. 

 

Nrf2-ARE binding 

activity 

No effect. Significant increase.  

Effect of Nrf2 siRNA on 

HO-1 protein expression 

Significant decrease.  Significant decrease.  

Migration Significant increase in migration 

and velocity of HAoAF.  

 

- 

Nox2 and Nox4 mRNA No effect 

 

- 

ROS generation Significant increase.  

 

Significant increase 

 

Table 6.1 A summary of the results obtained in HAoAF treated with TGF-β1 and SFN. (-) 

indicates that these experiments were not performed with SFN.  
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6.6 Conclusions 

Taken together, results from the current study are the first to suggest that TGF-β1 is able to 

induce the expression of HO-1 protein expression in HAoAF, however the underlying 

mechanism of this increase may be independent of the Nrf2/ARE pathway. In addition, this 

study has demonstrated for the first time that TGF-β1-driven migration of HAoAF is a 

ROS-dependent mechanism as abrogation of ROS results in the attenuation of migration in 

this cell type. Investigation into TGF-β1-driven ROS generation found that it was partially 

NAD(P)H oxidase-derived. The current study has also investigated the effect of the 

isothiocyanate, SFN on redox signalling in HAoAF. It has been found that SFN is able to 

activate the Nrf2/ARE pathway and as a consequence, induce HO-1 protein expression in 

this cell type. This study has provided novel data on the effects of TGF-β1 on the 

Nrf2/ARE pathway in HAoAF, its effect on potential modulation of HAoAF phenotype and 

migration and its effects on ROS-generation, all of which may provide an insight into the 

role of this growth factor on the adventitia during the progression of atherosclerotic disease. 

The modulation of endogenous antioxidant defense genes by SFN via the activation of the 

Nrf2/ARE pathway may offer potential therapeutic benefit against the progression of 

atherosclerotic disease. Future work to modulate TGF-β1 signalling and ROS generation 

and the relationship between TGF-β1 and SFN may help to establish clinically beneficial 

and possibly, adventitia-targeted interventions against the progression of atherosclerosis.  
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Appendices 

Appendix I – Media composition 

Table AI.1 Dulbecco’s Phosphate Buffered Saline-10 x (D1408) 

Inorganic salts g/L Molecular weight  mM 
CaCl2●2H2O ____   

MgCl●6H20 ____   

KCl 2.0  74.55 26.83 

KH2PO4 2.0 136.07 14.70 

NaCl 80 58.44 368.9 

Na2HPO4 11.5 142 81.4  

 

Other g/L Molecular weight  mM 

D-Glucose ___   

Kanamyein Sulfate  ___   

Penicillin G (sulfate) ___   

Pyruvic Acid●Na ___   

Streptomycin Sulfate  ___   

 

REFERENCE  

1. Dulbecco, R. And Vogt, M, (1957). Plaque Formation and Isolation of Pure Lines with Poliomyelitis 

Viruses. J. Exp.Med 106, 167-169.  

 

Table AI.2 Dulbecco’s Modified Eagle’s Medium – low glucose (D5921) 

Inorganic salts g/L Molecular weight  mM 

CaCl2●2H20 0.265 147 1.803 

Fe(NO3)3●9H2O 0.0001 403.8 0.00025 

MgSO2 0.09767 120.4 0.8112 

KCl 0.4 74.55 5.3655 

NaHCO3 3.7 84 44.048 

NaCl 6.4 58.44 109.51 

NaH2PO4 0.109 120 0.9083 

Succinic Acid  ___   

Sodium Succinate  ___   

 

Amino acids   g/L Molecular weight  mM 

L-Arginine●HCl 0.084 210.7 0.3986 

L-Cystine●2HCl 0.0626 313.2 0.1998 

L-Glutamine  ___   

Glycine 0.030 75.05 0.3997 

L-Histidine●HCl●H20 0.042 209.6 0.2004 

L-Isoleucine  0.105 131.2 0.8003 

L-Leucine  0.105 131.2 0.8003 

L-Lysine ●HCl 0.146 182.6 0.7996 

L-Methionine  0.030 149.2 0.2011 

L-Phenylalamine  0.066 165.2 0.3995 

L-Serine 0.042 105.1 0.3996 

L-Threonine  0.095 119.1 0.7976 

L-Tryptophan  0.016 204.2 0.0784  

L-Tyrosine (free base ___   

L-Tyrosine●2Na●2H20 0.10379 261.2 0.3973 

L-Valine  0.094 117.1 0.8027 
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Vitamins g/L Molecular weight  mM 

Choline Bitartrate  ___   

Choline Chloride  0.004 139.6 0.0287 

Folic Acid  0.004 441.4 0.00907 

myo-Inositol  0.0072 180.2 0.03996 

Niacinamide  0.004 122.1 0.03276 

D-Pantothenic Acid●½ Ca 0.004   

Pyridoxal●HCl ___   

Pyridoxine●HCl 0.004 205.6 0.01946 

Riboflavin 0.0004 376.4 0.00106 

Thiamine●HCl  0.004 337.3 0.01186 

 

Other  g/L Molecular weight mM 

D-Glucose  1.0 180.16 5.5506 

HEPES  ___   

Phenol Red●Na ___   

Pyruvic Acid●Na  ___   

 

Add g/L  Molecular weight  mM 

Glucose  ___   

L-Glutamine  0.584 146.15 3.996 

L-Cystine●2HCl ___   

L-Leucine ___   

L-Lysine●HCl ___   

L-Methionine  ___   

NaHC02 ___   

NaH2P04  ___   

Phenol Red●Na ___   

Pyruvic Acid●Na ___   

 

Appendix II – Composition of SDS lysis buffer 

Components (Sigma Aldrich, UK) Concentration (%) 
Tris base (pH 6.8)  50 mM 

Glycerol  10% 

SDS 2% 

Protease Inhibitor Cocktails  1:1000 dilution  

 

Appendix III – Composition of tank buffer for SDS-PAGE 

Components (Sigma Aldrich, UK) Conconcentration (%) 

Tris base 0.3 

Glycine  1.44 

SDS 0.1 

 

Appendix IV – Composition of transfer buffer for Western blotting 

Components  Concentration 

Tris base 25mM 

Glycine  192mM 

Methanol  20% 
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Appendix V - Composition of Resolving Gel for SDS-PAGE 

Components  Concentration 

4 x Tris-SDS (pH 8.8) 1 X (375 mM Tris-base 0.1% SDS) 

Acrylamide 8, 10 or 12% 

ddH20 ___ 

Ammonium persulfate (APS) 0.04% 

Tetramethylethylenediamine (TEMED) 0.08% 

 

Appendix VI - Composition of Stacking Gel for SDS-PAGE 

Components  Concentration 

4 x Tris-SDS (pH 6.8) 1 x (125mM Tris-base 0.1% SDS) 

Acrylamide  4% 

ddH20 ___ 

Ammonium persulfate (APS) 0.05% 

Tetramethylethylenediamine (TEMED) 0.06% 

 

Appendix VII - Source of antibodies 

Primary Antibody  Origin  Source  

HO-1 Mouse monoclonal Transduction Laboratories  

NQO1 Goat polyclonal Santa Cruz  

CD36 Mouse monoclonal  Santa Cruz 

Nrf2 Rabbit polyclonal Spring Biosciences 

pan-Akt Rabbit polyclonal Cell Signalling 

Phospho-Akt Rabbit polyclonal Cell Signlling 

p38MAPK  Rabbit polyclonal Cell Signalling 

pan-Erk 1/2 Rabbit polyclonal Cell Signalling 

Phospho-Erk Rabbit polyclonal Cell Signalling 

pan-JNK Rabbit polyclonal Cell Signaling 

Phospho-JNK Rabbit polyclonal Cell Signalling 

Phospho-smad2 Rabbit monoclonal Millipore 

α-Tubulin Rat polyclonal Chemicon 

Lamin A/C Goat polyclonal Santa Cruz 

Vimentin Rabbit monoclonal Abcam 

α-Smooth muscle actin  Mouse monoclonal  Santa Cruz 

 

Secondary Antibody  Origin Source 

Goat anti-mouse-HRP Goat  Santa Cruz  

Donkey anti-mouse-HRP Donkey  Santa Cruz 

Goat anti-rabbit-HRP Goat  Santa Cruz 

Goat anti-rat-HRP Goat Santa Cruz 

Alexa Flour 488 anti-rabbit  Goat Molecular Probes  

Alexa Flour 488 anti-mouse Goat Molecular Probes 

Alexa Flour 468 anti-rabbit Goat Molecular Probes 

 

Appendix VIII – Composition of Krebs buffer 

 Components (Sigma Aldrich, UK) Concentration (mM) 

NaCl  136 

KCl 2.6 

Na2HPO4 3.2 

KH2PO4 1.46 

HEPES 5 

D-Glucose 5 
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Appendix IX – Addresses of suppliers  

Agar Scientific Ltd 

66A Cambridge Road 

Stanstead, Essex 

CM24 8DA 

UK  

Alexis Biochemicals  

San Diego 

California 

USA 

Amersham Life Sciences  

GE Healthcare UK Ltd 

Amersham Place 

Little Chalfont 

Buckinghamshire 

HP7 9NA 

UK 

Biomol International, L.P.  

Palatine House  

Matford Court 

Exeter EX2 8NL 

UK 

Cell Signalling Technology 

Inc. 3 Trask LaneDanvers 

MA 01923 

UK 

Chemicon Europe Ltd 

The Sciences Centre 

Eagle Close 

Chandlers Close  

Hampshire 

S053 4NF 

UK 

Molecular Probes 

Invitrogen Ltd 

3 Fountain Drive 

Inchiman Business Park 

Paisley 

PA4 9RF 

UK 

 

National Diagnostics Ltd 

Unit 4 Fleet Business Park 

Itlings Lane 

Hessle 

East Riding of Yorkshire 

Hull 

HUI39LX 

UK 

Pierce Perbio 

USA 

Promega  

Delta House 

Southampton Science Park  

Southampton  

SO16 7NS 

UK  

Sigma-Aldrich Company Ltd 

Fancy Road 

Poole 

Dorset 

BH12 4QH 

Santa Cruz Biotechnology Inc. 

2145 Delaware Avenue  

Santa Cruz CA, 95060 

USA 

Signal Transduction Laboratories 

21 Between Towns Road 

Cowley  

Oxford 

OX4 3LY 

UK   

  

   

 

Components (Sigma Aldrich, UK) Concentration (mM) 

Adjust to pH 7.4 

CaCl2 2.5 

MgCl2  1 

L-arginine  0.1 
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List of Publications 

 

Published Abstracts 

T. Mughal, GE. Mann and RC Siow (2010) Transforming growth factor- β1enhances 

expression of oxidative stress proteins in human aortic adventitial fibroblasts. Proc Physiol Soc. 

19, PC188. 

 

T. Mughal, J. Wong, GE. Mann, M. Parsons & RC. Siow (2011) Sulforaphane modulates 

antioxidant redox signalling in human aortic adventitial fibroblasts Proc Physiol Soc. 38, PC75. 

T Mughal, GE. Mann, M. Parsons & RC. Siow (2011) Transforming growth factor-β1 induces 

antioxidant defense pathways via activation of Nrf2 and Akt pathways. Society for Free Radical 

Research Europe 12, 650. 

T Mughal, M. Parsons & RC. Siow (2012) Transforming growth factor- β1 mediates redox 

signalling via activation of the Nrf2 and Akt pathways and mediates adventitial fibroblast 

migration in human aortic adventitial fibroblasts. British Microcirlculation Society 565P, C73. 

T Mughal, M. Parsons & RC. Siow (2012) Transforming growth factor- β1 mediates adventitial 

fibroblast migration and redox signalling in human aortic adventitial fibroblasts. Society for 

Free Radical Research International. 
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