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ABSTRACT 

Epilepsy is a major source of disability amongst all age groups. Most epilepsies 

are well controlled on antiepileptic drugs. However, significant proportions of 

patients are not controlled on medical treatment and may be successfully treated 

with resective surgery. Unfortunately, as many as 30% of patients remain with 

disabling seizures after resective surgery. In the present thesis I aim at 

identifying seizure onset patterns on intracranial EEG that are predictors of 

surgical outcome.  

 

Methods: I have studied all patients operated after intracranial recordings 

implantation between 1999 and 2010 with a follow up period longer than 1 year. 

I identified the first, the second ictal patterns and the presence of preceding 

epileptiform discharges, and correlated their presence with surgical outcome. As 

the initial pattern was bilateral in 33% of patients, I used single pulse electrical 

stimulation (SPES) to identify bilateral connections that could be responsible for 

bilateral changes at seizure onset.  

 

Results: Focal fast activity as first ictal pattern was associated with favourable 

outcome. Diffuse electrodecremental event as first ictal pattern was associated 

with poor outcome. A preceding focal, widespread or bilateral epileptiform 

discharge was not associated with neither favourable nor poor outcome. As 

second ictal pattern, fast activity was associated with poor outcome whereas 

diffuse electrodecremental event with good outcome. Delayed second ictal 

patterns (≥10sec) appear to be associated with good outcome in temporal lobe 
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epilepsy. Hippocampus and amygdala have a low incidence of contralateral 

connections (5.0%). Fusiform gyrus showed the highest incidence of 

contralateral functional connections (≤7.1%). Bi-temporal connectivity is related 

neither to bilateral seizure onset nor postsurgical outcome. 

 

Conclusion: The prognostic value of ictal patterns depends where they occur 

during seizure evolution. Early bilateral changes at seizure onset cannot solely 

be explained by functional bilateral connections.  
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1. CHAPTER ONE 

 Introduction 

Epilepsy is a frequent chronic neurological disease, which is characterized by 

propensity to suffer paroxysmal events called epileptic seizures. The 

International League Against Epilepsy (ILAE) defines an epileptic seizure as a 

“transient occurrence of signs and/or symptoms due to abnormal excessive or 

synchronous neuronal activity in the brain” (Fisher et al., 2005). Epilepsy is a 

disorder of the brain characterized by an enduring predisposition to generate 

epileptic seizures, and by the neurobiological, cognitive, psychological, and social 

consequences of this condition. The definition of epilepsy requires the 

occurrence of at least one epileptic seizure. Seizures have been broadly classified 

based on their clinical and electroencephalographic manifestations into two 

main groups: 

• Generalized seizures that involve both cerebral hemispheres from onset, 

typically involving most of the cerebral cortex. 

• Focal seizures, which have their origin in a restricted region of the 

cerebral cortex within one hemisphere (Alarcon, 2009b, Fisher et al., 2005). 

 

Epileptic seizures can be associated with other signs and symptoms, constituting 

the specific epilepsy syndromes (Alarcon, 2009b). Each epilepsy syndrome has a 

specific age of onset, seizure types, source for seizures, aetiology and prognosis. 
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A syndrome may present more than one type of epileptic seizures (Alarcon, 

2009b).   

 

Approximately 65 million people around the world are diagnosed with epilepsy 

(Ngugi et al., 2010). The occurrence of this condition varies according to the 

socioeconomic background. The incidence of epilepsy in developed countries is 

50/100,000 per year and the prevalence is estimated to be 7 per 1,000 

(Thurman et al., 2011). By contrast, in developing countries the incidence is 122-

190/100,000 and the prevalence is 6.7 – 8/1,000 (Placencia et al., 1992).  

 

Nearly 30% of the patients diagnosed with epilepsy have poor seizure control 

despite the use of an appropriate antiepileptic therapy (Tellez-Zenteno et al., 

2014). This scenario is described as drug-resistant epilepsy (Kwan et al., 2010), a 

condition which has a negative impact on patient’s quality of life. Epilepsy 

surgery is an alternative to manage drug-resistant epilepsy which has proved to 

be a safe, presenting low rates of mortality and morbidity (0.1%-0.5%) (Engel et 

al., 2010, Health Quality, 2012).  

 

Epilepsy surgery is an effective treatment in those patients diagnosed with drug 

resistant epilepsy (Engel and Pedley, 1998).  When the surgical treatment is 

successful, it considerably improves patient’s quality of life through improving 

behavioural, cognitive and social spheres (Dreifuss, 1987). Additionally, epilepsy 

surgery diminishes drug toxicity, which may have been caused by high doses of 

antiepileptic medication (Gumnit, 1988). Furthermore, epilepsy surgery has 

contributed to understanding the pathophysiology of the different epileptic 
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syndromes that are amenable to surgery, which has promoted development in 

neurophysiology and surgical techniques.  

 

Epilepsy surgery aims at destroying and removing those regions of the brain that 

trigger seizures, i.e. epileptogenic zone (Luders et al., 2006). Unfortunately, as 

many as 30% of patients remain with disabling seizures after resective surgery 

(Kumar et al., 2013). Before undertaking surgery, it is crucial to ensure that the 

epileptogenic zone is well identified and to prevent any functional or cognitive 

deficits. Identifying the zone that causes seizures is a complex and 

multidisciplinary task, which may involve two stages, invasive and non-invasive 

presurgical assessment (Alarcon, 2009a).  

 

Non-invasive methods include neuropsychological, neuroimaging and 

electroencephalographic scalp recordings (EEG), which initially allow the 

identification of the epileptogenic zone. Some patterns seen on scalp EEG 

recordings are predictors of good postsurgical outcome: presence of unitemporal 

interictal spikes, no bilateralization of seizure onset, and delayed spreading of 

seizure onset (Alarcon et al., 2001a). 

 

The use of intracranial electroencephalography (iEEG) can provide recordings 

from deep structures of the brain, with greater amplitude and less muscle 

artefacts. Interictal patterns seen on iEEG are of limited value for localizing and 

lateralizing the epileptogenic zone. Consequently, iEEG recordings still need to 

rely on identification of seizure onset to identify the epileptogenic zone precisely 

(Alarcon, 2012, Kumar et al., 2013).  
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To date, the following intracranial seizure onset patterns have been described: 

1) electrodecremental event, 2) high frequency activity, 3) irregular sharp waves 

intermixed with slow activity, 4) spike-wave activity and 5) rhythmic ictal 

transformation (Alarcon et al., 1995). Several seizure onset patterns previously 

described have been correlated with surgical outcome largely (Alarcon et al., 

1995, Dolezalova et al., 2013, Holtkamp et al., 2012, Lee et al., 2000, Yuan et al., 

2012, Spencer et al., 1992a, Kutsy et al., 1999). Authors found that fast activity is 

predictor of favourable surgical outcome and the presence of diffuse flattening 

was not correlated with poor surgical outcome (Alarcon et al., 1995, Yuan et al., 

2012, Kutsy et al., 1999, Holtkamp et al., 2012). However, previous studies did 

not include temporal and extratemporal epilepsies in their series and patients 

sample were reduced.  

 

At ictal onset, seizures may spread unilaterally, bilaterally, subcortically or 

cortically to areas, which are anatomically connected (Spencer, 2002a). It has 

been suggested that the areas recruited during the seizure may not be part of the 

epileptic network but supports and preserves the seizures (Spencer, 2002a). In 

view of such multifaceted seizure onset types, presurgical assessment can 

become complicated. Defining the seizure onset zone may be challenging and 

surgical outcome uncertain. Consequently, predicting surgical outcome based on 

seizure onset patterns is desirable.  

 

In the current thesis, I will present three studies published in peer review 

journals that seek to clarify some aspects of the pathophysiology of focal seizure 



 20 

onset and its relevance to epilepsy surgery. In the first publication, “Prognostic 

value of intracranial seizure onset patterns for surgical outcome of the treatment 

of epilepsy”, the prognostic value with regard to seizure control of different 

intracranial seizure onset patterns were reported in a series of 69 consecutive 

patients undergoing resective surgery for the treatment of epilepsy. This is the 

largest study published to date, which includes temporal and extratemporal 

patients (Jimenez-Jimenez et al., 2015b). In the second study, “Prognostic value 

of the second ictal intracranial pattern for the outcome of epilepsy surgery”, I 

analysed the prognostic value of the type, latency and extent of the second ictal 

pattern, in 63 patients, a unique study to date (Jiménez-Jiménez et al., 2016). In 

the third study, “Incidence of functional bi-temporal connections in the human 

brain in vivo and their relevance to epilepsy surgery”, I estimated the incidence 

and latencies of human functional contralateral temporo-temporal connections 

in-vivo and whether the presence of such connections is related to presence of 

bilateral changes at seizure onset and postsurgical seizure control (Jimenez-

Jimenez et al., 2015a). 

 

 History of epilepsy surgery 

The origins of epilepsy surgery can be traced back to ancient times. Some 

evidence suggests that in Pre-Columbian America and Egypt, skull trepanning 

was performed with the objective of relieving evil humours and spirits (Lüders, 

2008). In the 19th century, Benjamin Dudley published five post-traumatic 

epilepsy patients treated with trepanning. He found that after surgery, three of 

these patients become seizure free and two presented a significant reduction in 

seizure frequency (Patchell et al., 1987). Other surgeons documented the use of 
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the same technique with variable results, with infection being the most common 

complication (Meador et al., 1989). In London during the 19th century, Sir Victor 

Alexander Haden Horsley carried out the first brain resection to alleviate focal 

seizures (Vilensky, 2002). Surgery was a success and Victor Horsley completed 

more operations on post-traumatic epilepsy with favourable outcome (Vilensky, 

2002).  

 

In 1933, Hans Berger introduced the EEG. Years later, Altenburger and Foerster 

applied the EEG for the first time to use in epilepsy surgery in Germany (Lüders, 

2008). In Canada, by the 1937, Wilder Penfield founded the Montreal 

Neurological Institute, and generated the modern concept of the epilepsy 

surgery, which included presurgical assessment with EEG, cortical stimulation, 

neuroradiology and neuropsychology (Magiorkinis et al., 2014). Using modern 

techniques, epilepsy surgery gradually become a routine treatment for epilepsy 

syndromes. In Paris Bickford and Cairns introduced depth-electrode insertions 

technique. Talairach established techniques for the stereotactic implantation of 

intracranial electrodes (Lüders, 2008, Magiorkinis et al., 2014). Falconer, at the 

Maudsley Hospital in London, standardized temporal en bloc excisions and 

started epilepsy surgery in the paediatric population (Magiorkinis et al., 2014). 

 

Currently, epilepsy surgery is a safe technique used worldwide. It plays an 

important role in the management of drug resistant epilepsy. Additionally, 

invasive assessment and intracranial electrode implantation has an important 

function in epilepsy surgery for clinical and research purposes.  New advances in 

digital EEG recording, neuroimaging and intracranial recordings, have generated 
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new avenues allowing the study of the brain and the pathophysiology of 

epilepsy. 

 

 Drug resistant epilepsy 

Commonly, epilepsy syndromes are treated with antiepileptic drugs (AEDs), 

which are chosen according to the syndrome type.  Treatment with AEDs is 

individualized in each patient. The goal of the treatment is to achieve seizure 

control or seizure remission by using the smallest AEDs dosage possible; 

therefore minimising drug related side effects (Kwan et al., 2010). 

 

Unfortunately, neither seizure remission nor seizure control is always possible 

and the reasons for therapeutic failure remain unknown (Remy and Beck, 2006). 

The International League Against Epilepsy proposed and standardized and 

unified definition for this condition, which is called drug resistant epilepsy 

(Kwan et al., 2010). To be diagnosed as having drug resistant epilepsy, patients 

must have failed adequate trials of two antiepileptic drug regimens, correctly 

chosen, used and well tolerated, whether as single or combination therapies 

(Kwan et al., 2010). Drug resistant epilepsy patients have their seizures under 

poor control, and they are more susceptible to serious injuries, poor quality of 

life and sudden death (Nashef et al., 2007, Tellez-Zenteno et al., 2014).  
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 Presurgical assessment  

Presurgical assessment aims at identifying the brain region where seizures arise 

and the volume of tissue that is involved in generating them. Prior to surgery all 

candidates are exhaustively assessed in order to: 

- 1) Ratify that the patient indeed has epileptic seizures. 

- 2) Decide if the severity of epilepsy deserves surgery.  

- 3) Decide the type of surgical procedure: resection of a lesion 

(lesionectomy), wider resection, multiple subpial transection, callosotomy, hemi-

spherectomy, hemispherotomy, vagus nerve stimulation, and deep brain 

stimulation. 

- 5) Classify the possible risks of surgery: particularly the function of the 

area that the surgeon plans to resect 

- 6) Identify any contraindications for surgery.  

- 7) Identify the source of the patient’s seizures. 

 

The common admission criteria for patients to enter pre-surgical assessment of 

epilepsy are the following: 

- Consistent diagnosis of drug resistant epilepsy.  

- Attacks must be incapacitating: seizures should affect patient’s lifestyle, 

because of their frequency or nature. 

- Patient should have the resources to handle the assessment: patients be 

must able to tolerate the procedures and also to accept surgical failure. 

- Patient must not have any contraindications to neurosurgery. 
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Six conceptual cortical zones can been defined during presurgical assessment, 1) 

the symptomatogenic zone, 2) the irritative zone, 3) the seizure onset zone, 4) 

the epileptogenic lesion, 5) the functional deficit zone and 6) the epileptogenic 

zone (Rosenow and Luders, 2001, Alarcon, 2012).  

 

4.1.1 Symptomatogenic zone 

The symptomatogenic zone is defined as the cortical area which, when invaded 

by an ictal discharge produces symptoms. Thus, symptoms might arise from 

symptomatogenic zone or may be the result of spreading of electrical activity 

from its initial focus (Luders et al., 2006, Rosenow and Luders, 2001). It is 

thought that this zone is larger than the epileptogenic zone, determining the 

seizure symptomatology (Rosenow and Luders, 2001, Luders et al., 2006).  

 

4.1.2 Irritative zone 

The irritative zone is delineated as the cortical area that produces the 

characteristic interictal epileptiform discharges seen on the EEG. Invasive EEG, 

scalp EEG, magnetoencephalography (MEG), and functional magnetic resonance 

(fMRI) are used to identify the irritative zone (Luders et al., 2006, Rosenow and 

Luders, 2001). It has been postulated that clinical symptoms are manifested if 

the irritative zone is comprised within functional cortex (Rosenow and Luders, 

2001).  
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4.1.3 Seizure onset zone 

The seizure onset zone is defined as the cortical area where a seizure is initiated 

(Rosenow and Luders, 2001). Scalp and invasive EEG can localize this zone. Scalp 

EEG has low sensitivity to detect seizure onset, as the electrodes are placed at a 

distance from the cortex. Intracranial electrodes have excellent sensitivity but 

restricted to a limited region of the cortex (Luders et al., 2006). When described 

the seizure onset zone, it is assumed that by localizing the seizure onset would 

by sufficient to determine the epileptogenic zone. Unfortunately, the later 

statement it is not always certain. There is evidence that the epileptogenic zone 

can be more widespread than the seizure onset zone (Luders et al., 2006). 

Consequently, resection of the seizure onset zone does not necessarily result in 

seizure freedom. To date there is not a unified method that enables identification 

of the seizure onset zone.  

 

4.1.4 Epileptogenic lesion  

The epileptogenic lesion is any structural abnormality, which is detectable by 

neuroimaging techniques and is attributed to be the location of seizure origin. 

Video scalp EEG and Magnetic Resonance Imaging (MRI) are able to aid with the 

identification of this zone, since not every lesion identified in patients with 

epilepsy is epileptogenic (Luders et al., 2006). The most common abnormalities 

seen in epileptic patients with MRI are traumatic scars, hippocampal sclerosis, 

vascular tumours, and cortical development malformations (Cascino and Jack, 

1996).  
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4.1.5 Functional deficit zone 

This zone includes those areas with an abnormal performance during the 

interictal state which lead to disruption of normal synapse network (Luders et 

al., 2006). The most effective procedures used to identify this zone are a detailed 

physical examination with neuropsychological assessment, neuroimaging 

techniques such as PET and SPECT (Luders et al., 2006).  

4.1.6 The epileptogenic zone 

The epileptogenic zone is the minimal area of cortex whose resection is 

necessary and sufficient to render seizure freedom (Luders et al., 2006). The 

epileptogenic zone should include the seizure onset zone. Presently, there is not 

a single standard method to define the epileptogenic zone before surgery. 

Consequently, the presence of this zone must be assumed by inferring the 

presence of the other zones mentioned above (Luders et al., 2006).  

 

To investigate and delineate the above cortical zones, two types of methods are 

used: non-invasive and invasive (Alarcon, 2012). 

 

4.1.7 Non-invasive presurgical assessment 

Non-invasive assessment includes different procedures, which are performed in 

stages starting with the least invasive. The methods used include clinical history, 

physical examination, scalp EEG, scalp video EEG, neuroimaging and 

neuropsychology (Alarcon, 2012, Rosenow and Luders, 2001).  
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4.1.7.1 Electroencephalogram (EEG) 

The EEG is a clinical and research method, which allows recording of time 

variations in electrical activity from the brain. The EEG represents the compound 

electrical field generated by neuronal function. EEG recordings mainly represent 

postsynaptic potentials in the cerebral cortex. Usually, EEG recordings in clinical 

practice are largely obtained with electrodes placed on the scalp, the so called 

“scalp EEG”. It has been postulated that the scalp EEG mainly records activity 

from the cortical gyri, as the cortex in gyri is closer to the scalp than cortex in 

sulci. In patients undergoing presurgical assessment of epilepsy, intracranial 

electrodes can be implanted inside the skull. Electrical activity from deep brain 

structures, such as basal ganglia, hippocampus, and amygdala, is hardly 

detectable on the scalp because electrical fields rapidly attenuate with distance 

(Alarcon et al., 1994). Recordings with scalp EEG can be obtained during preictal, 

ictal and post ictal period. 

 

4.1.8 Ictal scalp EEG 

EEG recorded during a seizure is called “ictal EEG”. The ictal scalp EEG shows 

different patterns such as: a) flattening of the EEG, b) low amplitude fast activity 

(10–20Hz), c) rhythmic sharp waves or spikes, or slowing in the delta or theta 

ranges (Alarcon et al., 2001a, Pelliccia et al., 2013). Ictal EEG changes are less 

commonly seen during frontal seizures. Additionally, ictal changes can be absent 

during focal seizures, particularly during simple partial seizures.  
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Ictal patterns seen on scalp EEG can be unilateral or bilateral (Alarcon et al., 

2001a). Unilateral focal patterns have a 95% lateralizing value (Alarcon et al., 

2001a). Bilateral scalp EEG patterns are very common (70 %) in focal temporal 

lobe seizures, and consequently a bilateral seizure onset pattern on the scalp 

should not discourage surgery, since EEG patterns may be seen on the scalp only 

after bilateral propagation has occurred (Alarcon et al., 2001a). Intracranial 

recordings may be necessary to demonstrate a focal onset. Analysis of delayed 

rhythmic ictal EEG has been associated with predictive value of up to 79% for 

determining the side (laterality) of the seizure zone (Alarcon, 2012). Video 

telemetry is necessary to consistently obtain recordings during seizures, as 

seizures are not usually seen during standard EEG recordings.  

 

Figure 1. Focal seizure onset observed on scalp EEG recordings. Note a diffuse 
flattening of the EEG (electrodecremental event) followed by onset of fast activity 
showing largest amplitude at the left mid-temporal (A1) and Sylvian (T3) regions 
(arrow). 
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4.1.9 Neuroimaging 

Neuroimaging methods have also enabled the identification of brain 

abnormalities and these may also assist in locating and lateralizing the 

epileptogenic zone. It has been suggested that MRI could detect abnormalities in 

around 80-90% of temporal epilepsy and 20 to 40% of extra temporal epilepsies 

(Duncan, 2010, Rosenow and Luders, 2001). Single-photon emission computed 

tomography (SPECT) and Positron Emission Tomography (PET) have began to 

be used routinely during recent years. PET measures brain glucose metabolism 

and the epileptogenic zone is seen as a hypometabolic region on the image. 

SPECT measures cerebral blood flow and exhibits an area of hyperperfusion 

within the epileptogenic zone (Cascino and Jack, 1996).  

4.1.10 Invasive presurgical assessment  

The invasive assessment is indicated when non-invasive procedures cannot 

identify accurately the site in the cortex where seizures arise from or when 

findings are inconsistent. As many as 25% of assessed patients will require 

invasive approach, which includes the use for intracranial electrodes of 

identifying the epileptogenic zone and carry out functional mapping (Alarcon et 

al., 2006, Alarcon, 2012). Once implanted, intracranial electrodes allow direct 

EEG recording from the potential epileptic zone.  

 

4.1.11 Intracranial electrodes 

The main types of intracranial electrodes are depth, subdural, foramen ovale and 

epidural electrodes (Alarcon, 2012). Intracranial EEG is the gold standard in the 
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evaluation of patients when non-invasive techniques are inconclusive. 

Intracranial EEG recordings show 3 to 5 times greater amplitude than the scalp 

EEG recordings. Moreover, since intracranial EEG electrodes are implanted 

inside the skull, recordings are free of muscle artefacts (Yuan et al., 2012, 

Alarcon, 2012).  

 

The general indication for the use of intracranial electrodes is in those epilepsies 

where a response to resection is likely and there is ambiguous localization of the 

epileptogenic zone by non-invasive assessment modalities (Yuan et al., 2012, 

Alarcon, 2012, Rosenow and Luders, 2001). Therefore, the main purpose of the 

intracranial electrode implantation is to record neuronal electrical activity from 

brain structures that are not accessible to the surface scalp EEG. Protocols for the 

implantation of intracranial electrodes vary across centres (Alarcon, 2012). At 

King’s College Hospital, intracranial electrodes are also useD to identify the 

epileptogenic zone by stimulating specific regions of the cortex, to identify the 

topography and extent of hyperexcitable areas, which might be potentially 

epileptogenic (Valentin et al., 2002, Flanagan et al., 2009, Valentin et al., 2005).  

4.1.12 Subdural Electrodes 

Subdural electrodes are assembled as strips or mats (Alarcon, 2012, Nair et al., 

2008a).  Electrodes are informally called “contacts”. They are embedded in 

Silastic or Teflon (Alarcon, 2012). Strips are orientated as linear contacts, 

typically formed of 4 to 8 contacts. Mats are orientated as a rectangle and can 

contain up to 64 contacts (Lesser et al., 2010, Nair et al., 2008a, Alarcon, 2012). 

In both types of electrodes, each contact has a diameter of 5mm and are 
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separated 1cm of each one (Alarcon, 2012). Strips can be implanted via a burr 

hole in the skull whereas mats are placed under the dura through a craniotomy 

(Alarcon, 2012, Lesser et al., 2010, Nair et al., 2008a).  

 

 

 

 

 

 

 

 

 

 

 

 

Subdural strips are used to define the extent of the epileptogenic zone and its 

relationship to functional cortex prior to surgery delineation (Nair et al., 2008a). 

Benefits of subdural strips include ease of implantation, coverage of greater 

cortical areas including the parahippocampal gyrus (Nair et al., 2008a, Lesser et 

al., 2010, Alarcon, 2012). The most frequent complications are subdural and 

epidural bleeding which in a few cases can lead brain compression (Wellmer et 

al., 2012). Moreover, cerebrospinal fluid leakage can be induced by chronic 

implantation (Alarcon, 2012).  

 

Figure 2. Subdural strips and mat (grid) electrodes. 
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A mat is commonly used to record seizure onset, especially on the convexity of 

the hemispheres, and also for functional mapping (Alarcon, 2012). Postoperative 

MRI or X-ray can confirm its precise location (Alarcon, 2012). Risk of 

complications increase with the size and number of the implanted electrodes, as 

well as the implanted duration. The most frequent complication after 

implantation of these electrodes is infection, that can be reduced with the use of 

prophylactic antibiotics, removing the connecting cables through an incision 

distant from the main incision, and minimizing the duration of implantation 

(Yuan et al., 2012). 

 

4.1.13 Intracerebral electrodes  

The main purpose of the intracranial electrode implantation in epilepsy is to 

record neuronal electrical activity from brain structures that are not accessible 

to the surface scalp EEG.   Protocols for implantation of intracranial electrodes 

are different in every epilepsy centre. At King’s College Hospital, intracranial 

electrode implantation mainly involves both subdural electrodes and 

stereoelectroencephalography (SEEG). Once the patient recovers from electrode 

implantation, standard video telemetry is carried out with the intracranial 

electrodes to record the EEG until sufficient number of seizures occur. At King’s 

College Hospital, intracranial electrodes are used to identify the epileptogenic 

zone by recording ictal and interictal activity and by stimulating the cortex with 

single electrical pulses in order to identify the topography and extent of 

hyperexcitable areas, which might be potentially epileptogenic. The latter 
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technique has been coined single pulse electrical stimulation (SPES) (Valentin et 

al., 2002, Flanagan et al., 2009, Valentin et al., 2005).  

 

In this section, I will cover the characteristics, methodology and complications of 

the intracranial electrodes used for EEG recordings and data analysis in the 

present thesis.   

4.1.14 Indications for implantation of intracranial electrodes 

Intracranial electrodes are indicated in patients where resection is a likely 

therapeutic option but there is unclear localization of the epileptogenic zone by 

non-invasive assessment modalities (Yuan et al., 2012, Alarcon, 2012, Rosenow 

and Luders, 2001). The following two resections can be performed without 

studies with intracranial electrodes:  

 

A) Lesionectomy, this procedure can be performed in those patients with a 

discrete cerebral non-atrophic lesion, which must be demonstrated by 

neuroimaging and is located in a non-functionally eloquent site. This location 

should be concordant with seizure semiology, with the topography of interictal 

discharges seen on scalp EEG, the topography of ictal onset on the scalp EEG if 

present, the distribution of background abnormalities in the interictal EEG, and 

with neuropsychological findings.  

 

B) Temporal lobectomy, this technique could be carried out in those patients 

with a steady, single and temporal seizure onset on scalp EEG telemetry. This 

pattern should match seizure semiology, the distribution of background 
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abnormalities in the interictal scalp EEG, and neuroimaging and 

neuropsychological findings. 

 

All patients in whom these criteria are not fulfilled can be considered for 

assessment with intracranial electrodes. These are patients with non-

convergence of evidence from different techniques. The choice and placement of 

intracranial electrodes depends on the presumed site of seizure onset. As 

intracerebral (depth) electrodes are perceived to be more invasive that subdural 

recordings (Spencer, 1989), the latter are generally preferred when possible. 

When temporal lobe seizures are suspected, but laterality is uncertain, 

recordings with bilateral 8-contact subtemporal strips inserted through fronto-

temporal burr holes can be carried out (Spencer, 1989). In patients with 

bitemporal pathology or in those where assessment with subtemporal strips is 

unsuccessful, recordings with bitemporal depth electrodes is recommended. 

When seizures are thought to arise from the frontal lobes, but laterality is 

uncertain, bilateral intracerebral electrodes can be used. When the seizures are 

thought to arise from the cerebral convexity, from peri-central regions or from 

the supplementary motor area, mats or strips can be used, usually implanted 

unilaterally. 

4.1.15 Types of intracranial electrodes 

The use of intracranial electrodes in epilepsy dates back to the late 30s, when 

Penfiled performed trephination over both temporal regions and placed 

electrodes on the dura for lateralizing the source of seizures in a patient with 

presumed bitemporal epilepsy (Almeida et al., 2005). Although, Penfield and 
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collaborators studied several patients with intracranial electrodes, their use did 

not become part of routine care until mid-1970s. In those days, electrodes were 

mainly designed and elaborated in the clinical institutions. Since then, several 

types of electrodes have been developed, and presently their elaboration and 

design has been taken over by industry manufactures. Following electrode 

implantation, video telemetry recordings are generally performed in a video-

monitoring unit. After electrodes insertion, patients are allowed to recover for a 

period of around 24 h and then are transferred to the video-monitoring unit. 

Intracranial electrodes are useful for recording interictal and ictal activity and 

allow the study seizure onset and propagation patterns. 

 

4.1.16 Foramen ovale electrodes 

Foramen ovale electrodes are multicontact electrode bundles that can be 

inserted through the foramen ovale under fluoroscopic control and under 

general anaesthesia. The deepest contacts lay close to medial temporal 

structures (Fernandez Torre et al., 1999, Alarcon et al., 2001b, Kissani et al., 

2001). Removal does not require general anaesthesia. Because no craniotomy or 

burr holes are required for their implantation, they are often considered less 

invasive than subdural or depth electrodes. 

 

4.1.17 Subdural electrodes 

Electrodes are placed directly on the cortical surface of the brain.  These 

electrodes have larger resolution than scalp electrodes, have less muscle 
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artefacts and provide an opportunity for functional mapping and for the use of 

electrical stimulation to map epileptogenic tissue.  

 

The main advantages of using subdural electrodes when compared to scalp 

electrodes is that subdural are closer to the source of electrical activity and there 

are no interposed brain coverings. Consequently, EEG signals is are recorded 

with higher amplitude (Alarcon et al., 1994).  

 

Numerous materials have been used to elaborate the subdural electrodes, 

including platinum and silver. Subdural electrodes can be elaborated as groups 

of electrodes arranged in either mats (grids) or strips. A considerable number of 

improvements have been achieved over the past decades, such as 

biocompability, biostability, adequate flexibility and insolubility (Lesser et al., 

2010, Nair et al., 2008b).  Commonly, each electrode within a mat or strip is 

called a contact. Mats are arrays of contacts. Strips are single rows of contacts. At 

our centre, most subdural electrodes are embedded in SilasticR or TeflonR 

sheets. Each contact typically has 5 mm diameter and contact centres are located 

1 cm away. Mats need to be introduced through a craniotomy, and can be placed 

under the dura over the cerebral convexity, or carefully slipped (at some risk of 

venous bleeding) between brain and dura. Mats are suitable for functional 

mapping with electrical stimulation or with evoked responses to sensory 

stimulation.  

 

Strips came in single rows, typically with 4 or 8 contacts, and several can be 

inserted through a burr hole. If inserted through a burr hole anterior to the ear, 
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an 8 contact strip can be slipped under the temporal lobe and provide excellent 

recording from the parahippocampal gyrus. Used in this way, they can serve 

similar purpose to foramen ovale electrodes. General anaesthesia is required for 

insertion and removal. Strips can be combined with mats to cover the cerebral 

convexity and, if inserted parasagittally, the medial aspect of the cerebral 

hemispheres.  

 

The main complications are infection and cerebral haemorrhage. Less than 2% 

risk of permanent neurological deficits have been reported (Kumar et al., 2013). 

Transitory deficits and complications are more common, present in up to 5% of 

patients. Transmission of Creutzfeldt-Jakob disease has been reported but can be 

avoided by disposing of used electrodes. Chronic implantation of mats can be 

associated with leakage of cerebrospinal fluid, which can be improved by 

keeping the head high and changing the head bandage regularly. Mat recordings 

appear to have a 0.85% risk of infection, which can be reduced by prophylactic 

antibiotics, minimising the duration of implantation and passing the cables 

through the scalp at a point far from the craniotomy. 

4.1.18 Depth Electrodes 

The stereo-encephalography (SEEG) method was created by Jean Talairach and 

Jean Bancaud during the 1950s in France. This technique has been mostly used 

in France and Italy for invasive localization in drug resistant focal epilepsy. 

Depth electrodes are often implanted via a stereotactic frame (therefore the term 

stereotactic EEG or SEEG). Electrodes penetrate into the brain and continue 

further to deep structures.  
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These electrodes are able to record from deep structures such as the 

hippocampus, and orbital and medial frontal cortices where subdural electrodes 

may provide less appropriate cover. Depth electrodes can also be used to record 

activity from the neocortex, but their spacial sampling frequency is lower and 

less regular than that of subdural mats. In our centre, these electrodes have been 

used to record from single unit cells, in order to study neuronal behaviour during 

interictal activity and SPES responses (Alarcon et al., 2012a).  

 

Since its first development, back on the 50s, depth electrodes have evolved 

significantly. When first described, these electrodes were rigid, whereas current 

electrodes are flexible. Usually they come attached to a semi-rigid stylet giving 

them rigidity for avoiding errant placement. Commonly, depth electrodes are 

implanted through a guide cannula to further improve the accuracy of 

implantation. They are multicontact electrode bundles that can be 

stereotactically inserted through the brain under neuroimaging control. The 

most common material used for the contacts design is platinum, though stainless 

steel, nickel-chromium and gold have all been used.  

 

When the temporal lobe is assessed, depth electrodes can be implanted either 

longitudinally or orthogonally. Longitudinal electrodes are implanted posteriorly 

to anteriorly, starting from a paramedian occipital start point and traversing the 

long axis of the hippocampus. When implanted orthogonally, depth electrodes 

are inserted perpendicularly to the cortical surface via the middle or inferior 
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temporal gyrus into the mesial structures. Either of these techniques can be 

combined with subdural strip or grid electrodes. 

 

Currently, there are several viable techniques for implanting depth electrodes 

such as, framed stereotaxis, freehand passage, endoscopically assisted and 

frameless neuronavigation. Framed stereotaxis is the standard technique in our 

centre. Implantation are performed under general anaesthesia.  

 

The main complications are infection and cerebral haemorrhage. The likelihood 

of complications from intracranial recordings is roughly proportional to the 

number of electrodes implanted. Frank meningitis or encephalitis are rare. 

Depth electrodes have a very low risk of infection, a 1.9% risk of haemorrhage 

with transitory deficits and a 0.8% risk of haemorrhage with permanent deficits 

(Kumar et al., 2013). 

 

4.1.19 Interpretation of intracranial electrodes 

Epileptiform discharges recorded interictally with intracranial electrodes are 

larger, sharper and occur more frequently than those seen on the scalp. Each 

patient usually exhibits several patterns of epileptiform discharges occurring 

independently at different sites, often including the hemisphere opposite to 

seizure onset. For this reason, interictal activity recorded with intracranial 

electrodes should be interpreted cautiously. Ictal changes can consist on 

flattening of the on-going EEG (electrodecremental event), low amplitude fast 

activity (10-30 Hz), rhythmic sharp waves or spikes, or slowing in the delta or 
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theta ranges. Generalised electrodecremental events (diffuse flattening of the 

EEG) are common at seizure onset and it has been suggested that they should not 

discourage surgery, since they do not seem to be associated with worse outcome 

(Alarcon et al., 1995). However, changes occurring diffusely at seizure onset 

would suggest that the seizure is generalised or, more commonly, electrodes are 

not placed at the site that originate seizures. Therefore, one of the objectives of 

this thesis is to investigate if widespread changes at seizure onset in focal 

epilepsy are associated in poor surgical outcome. 

 

  

Figure 3. Different types and positions of intracranial electrodes. A) Drawing of a lateral brain view of 9-
contacts subdural electrodes in subtemporal and frontal structures. B) Drawing of a lateral view of a 64-
contact mat over the parieto-posterior temporal region. C) Lateral X-ray from a patient with a 64-contact 
mat and four 8-contact subdural electrodes. D) Drawing of a lateral view with depth electrodes over 
orbito-frontal, and one electrode at the hippocampus with a posterior entry. E) Drawing of an anterior 
posterior view with depth electrodes over frontal and temporal structures. F) Anterior posterior X-ray 
from a patient with frontal and orbito-frontal depth electrodes. Figure kindly provided by Dr David 
Martín-López, King’s College London. 
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 Electrical cortical stimulation during presurgical 

assessment  

The use of intracranial electrodes provides a unique opportunity to directly 

measure cortical excitability with electrical stimulation, which can provide an 

indication of cortical epiletogenicity.  

5.1.1 Cortical responses to electrical stimulation 

The morphology of the evoked responses after cortical stimulation was first 

described in animals by Adrian back in 1936 (Adrian, 1936). He documented the 

presence of low amplitude superficially-generated and high amplitude deeply-

generated responses originated in the body of pyramidal cells within the area of 

stimulation and neighbouring electrodes. These responses showed variable 

morphology attributed to intra-neuronal gradient shifts and slower time 

variations in cortical neurons. Nowadays most authors recognise the existence of 

at least three types of responses: N1, P1 and N2. N1 and N2 responses can be 

recorded simultaneously and independently after single pulse electrical 

stimulation (SPES). This fact was already observed by other authors (Matsumoto 

et al., 2007, Matsumoto et al., 2004, Enatsu et al., 2012, Matsumoto et al., 2012) 

who suggested a different generation mechanism for different deflections. 

Anodal stimulus delivered to the cortical surface directly induces depolarisation 

of the initial segment of the first axonal node of pyramidal neurons while 

cathodal stimulus indirectly activates them by activating chains of interneurons 

(Amassian et al., 1990). Cortical electrical stimulation is able to generate both 

types of responses by means of direct cortico-cortical and indirect subcortical 

pathways (Matsumoto et al., 2004). Direct monosynaptic-mediated responses 
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are masked by current injection artefact (Matsumoto et al., 2004, Enatsu et al., 

2013, Keller et al., 2014), which usually lasts for 5-10 ms. Therefore, an 

oligosynaptic or polysynaptic mechanism mediated by small subcortical fibres 

and recurrent pyramidal axon collaterals has been proposed for the generation 

of N1 and N2 components (Keller et al., 2014, Barth et al., 1989). Simultaneously 

with N1 and P1 responses, multi-unit activity recordings in IV-VI cortical layers 

have suggested an increase in pyramidal activation and an excitatory response 

has been observed in single neuron studies within N1 time frames (Barth et al., 

1989, Sutherling et al., 1988). Consistently with these findings, our group also 

evidenced the presence of bursts of high frequency firing action potentials 

during first 100 ms after SPES (Alarcon et al., 2012a). Conversely, the generation 

of N2 responses seems to be different and independent to N1 responses. N2 have 

shown larger distribution than N1 (Matsumoto et al., 2004). During N2 there is a 

decrease in multi-unit activity and a long-lasting inhibitory period with 

suppression of action potential firing (Barth et al., 1989). Interestingly, N2 

responses show similar features to K-complexes in terms of multi-unit findings 

(Matsumoto et al., 2004) which is also consistent with our group findings 

regarding the similarity between spontaneous K-complexes and reponses to 

SPES after stimulation at the cingulate gyrus (Voysey et al., 2015). The observed 

blunted morphology of  peaks in responses to SPES is thought to be related to the 

influence of orthodromic and antidromic excitation due to the profuse 

arborisation of the pre-synaptic terminals causing a variable jitter of <20ms in 

the pyramidal neuronal firing (Matsumoto et al., 2007, Keller et al., 2014). 

Variations in stimulus intensities lead to significant changes in evoked responses 
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amplitude (Adrian, 1936, Enatsu et al., 2012, Iwasaki et al., 2010, Stephani and 

Koubeissi, 2015) and morphology (Wilson et al., 1990). 

 

5.1.2 Single Pulse Electrical Stimulation 

Single pulse electrical stimulation (SPES) has become an alternative method for 

localizing epileptogenic cortex during interictal period (Valentin et al., 2002, 

Valentin et al., 2005, Flanagan et al., 2009). SPES consists in applying a brief (1 

ms) electrical stimulus through electrodes during intracranial recordings. Two 

main types of responses to SPES have been described: 1) Early responses, which 

are thought to be normal cortical responses to stimulus, consisting of one or 

more sharp and slow transients, usually starting immediately after the stimulus. 

2) Delayed responses, which are thought to be abnormal responses. Delayed 

responses, resemble spikes commencing more than 100 ms after the stimulus, 

usually seen at the areas which originate seizure onset. Delayed responses often 

resemble in morphology and topography the patient’s spontaneous interictal 

discharges (Nayak et al., 2014).  

 

An important finding is that delayed responses to SPES are mainly seen at 

seizure onset areas. Valentin and colleagues studied 40 consecutive operated 

patients with a follow-up period of at least 12 months (Valentin et al., 2005). 

They found that good surgical outcome was significantly better when resected 

areas responsible for late responses. In fact, when delayed responses to SPES 

were exclusively located in resected regions, 96% of the patients had a 

favourable outcome, and none of the 3 patients who had late responses to SPES 
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exclusively outside the resected region had a good outcome. Another important 

finding is that among the 29 patients who had delayed responses to SPES, 26 had 

pathological abnormalities in the areas responsible for late responses, even 

though 9 had normal MRI. Thus, SPES appears to be able to identify 

epileptogenicity in the interictal period, independently of seizure onset (Valentin 

et al., 2005).  

 

SPES has offered the possibility to understand new insights into the 

pathophysiology of human focal epilepsies (Valentin et al., 2005, Valentin et al., 

2002, Flanagan et al., 2009). Additionally, SPES has been widely used in 

neuroscience research studying topics such as, memory process, sleep 

phenomena and cortical functional connectivity (Lacruz et al., 2007, Lacruz et al., 

2010a, Voysey et al., 2015).  

 

Currently, single pulse electrical stimulation is part of routine presurgical 

assessment at King’s College Hospital. SPES has demonstrated to be a reliable 

technique for identifying the epileptogenic zone, as evidenced by the close 

relationship between the topography of areas responsible for delayed responses 

location of seizure onset, surgical outcome and pathology.  

 

 

 Epilepsy syndromes suitable for surgery 

Only certain syndromes are considered to be surgically treatable, by resective 

surgery:  
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a) Temporal lobe epilepsy, including mesial temporal lobe epilepsy, and any 

tumours and congenital malformations. 

 

b) Extra-temporal epilepsies, that have resectable structural lesions including 

tumours or congenital malformations, catastrophic infantile seizures containing 

pathologies such as hemimegalencephaly, diffuse cortical dysplasias (Alarcon, 

2009a).  

 
 

6.1.1 Temporal lobe and mesial temporal lobe epilepsy syndromes 

6.1.2 Anatomy of Temporal Lobe 

The temporal lobes are situated below the Sylvian fissure of the cerebral 

hemisphere. Temporal cortex includes areas that are part of audition, olfaction, 

and vision. Additionally, the temporal cortex is involved in perception of both 

spoken and written language. The temporal lobes are divided into lateral, medial, 

superior and inferior surfaces (Kucukyuruk et al., 2012). 

6.1.3 Medial temporal lobe structures  

There are three main structures that form the medial temporal lobe. These are 

the hippocampal formation, amygdala and parahippocampal cortices (Van 

Hoesen, 1995). 

 

The hippocampus consists of two parts: a) hippocampus proper and b) gyrus 

dentatus (Hayman et al., 1998). The hippocampus is an important structure 

involved in the formation and recall of episodic memories. It is also implicated in 

mesial temporal lobe epilepsy (MTLE), which shows characteristic hippocampal 
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atrophy. The hippocampus proper consists of cornu ammonis areas 1 to 4 (CA1 - 

CA4). It has 6 layers of cells, which are the stratum pyramidalae, stratum 

radiatum, stratum luconosum, stratum moleculare, stratum oriens and the 

alveus (Takano and Coulter, 2012). The alveus and stratum lacunosum contain 

efferent fibres whereas the rest of the 4 layers consist of pyramidal neurons, 

dendrites and collateral axons (Tien et al., 1992). The hippocampus formation 

composes the structure and consists of the dentate gyrus, subiculum, entorhinal 

cortex and pre and para subiculum (Wright, 1997). It is involved in memory 

formation, spatial navigation and attention (Hayman et al., 1998, Kiernan, 2012).  

 

The amygdala lies anterior to the head of the hippocampus and contains several 

nuclei (Hayman et al., 1998, Kiernan, 2012). It is associated with mediating 

emotional responses, most notably fear. Electrical stimulation of the amygdala in 

pre surgical patients with temporal lobe epilepsy leads to a sensation of déjà vu, 

suggesting that the amygdala in addition to the hippocampus is involved in 

memory function (Lacruz et al., 2010a, Kiernan, 2012). The parahippocampal 

cortices lie below the medial temporal lobe structures and cover them 

superficially (Van Hoesen, 1995). 

6.1.4 Hippocampal circuitry and properties of pathways 

The hippocampus possesses a trisynaptic unilateral circuit, (Stafstrom, 2005). 

Signals flow through the hippocampal circuit forming a loop. The main input 

source is also the output target (Hayman et al., 1998). The hippocampus receives 

the majority of its input from layers 1 and 2 of the entorhinal cortex, and sends 

its output to layer 5 and the subiculum (Buzsáki, 2006). Incoming signals are 
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transmitted via the perforant pathway to the dendrites of the granular cells in 

the dentate gyrus. Perforant fibres that arise in the lateral aspect of the 

entorhinal cortex project to the superficial layers of the dentate gyrus (Hayman 

et al., 1998). Fibres arising from the medial aspect project to the deeper aspect of 

the dentate gyrus (Hayman et al., 1998).  

 

The axons of the dentate gyrus form the mossy fibre pathway which relays to 

pyramidal neurons in the CA3 area of the hippocampus proper (Stafstrom, 

2005). Other projections include the hilus of the dentate gyrus and stratum 

lucidum (Amaral et al., 2007).  Thereon, CA3 axons synapse onto pyramidal 

neurons in the stratum radiatum of the CA1 region via the Schaffer collateral 

pathway (Amaral et al., 2007). Subsequently, output from CA1 is directed back to 

layer of the entorhinal cortex and subiculum (Stafstrom, 2005). Additionally CA1 

and CA3 axons exit the hippocampus via the fornix and anterior commissure to 

the thalamus, mammilary bodies of the hypothalamus and frontal cortex to the 

dentate gyrus, therefore, forming another circuit (Amaral et al., 2007). 

6.1.5 Properties of pathways in the hippocampus 

The perforant pathway which arises in the entorhinal cortex consists of two 

types, lateral and medial perforant pathways depending on their site of origin 

within the entorhinal cortex (Johnston and Amaral, 2004). These pathways 

produce gluatamatergic excitatory post synaptic potentials (EPSP) (Johnston and 

Amaral, 2004). Furthermore, the mossy fibre pathway between the dentate 

gyrus and CA3 forms the largest synapses in the mammalian central nervous 

system (Johnston and Amaral, 2004). These too produce gluatamatergic EPSPs in 
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target CA1 neurons (Johnston and Amaral, 2004). The Schaffer collateral 

pathway consists of axons from both the ipsilateral and contralateral 

hippocampus, with the latter called commissural fibres (Johnston and Amaral, 

2004).  

 

Electrical stimulation increases excitation in CA1 as some CA1 axons synapse 

back onto CA1 neurons (Johnston and Amaral, 2004). Recurrent pathways in the 

hippocampus arise from recurrent excitatory connections amongst CA3 

pyramidal neurons (Johnston and Amaral, 2004). Recurrent excitation leads to a 

positive feedback loop, which is what makes CA3 neurons inherently unstable 

(Johnston and Amaral, 2004). This may explain the high sensibility of the 

hippocampus to become epileptogenic. In addition, recurrent pathways are 

thought to increase overall excitability in relation to inhibition thereby resulting 

in excessive hypersynchronous firing as in epileptiform activity (Johnston and 

Amaral, 2004).  Epileptiform activity can then spread to its neighbouring CA1 

region (Johnston and Amaral, 2004). 

6.1.6 Temporal Lobe Epilepsy: definition  

Temporal Lobe Epilepsy (TLE) is a group of varied disorders sharing the same 

anatomical origin for seizure onset (Alarcon, 2009b). It accounts for 

approximately 40% of all epilepsies (de Moura et al., 2012).   The ILAE divides 

TLE into two main categories:  

 

1) Mesial temporal lobe epilepsy (MTLE) when the seizures arise from 

structures located within the deep temporal lobe structures such as the 
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hippocampus, amygdala and parahippocampal gyrus. MTLE with seizures arising 

from the hippocampus account for nearly 80% of all temporal lobe seizures 

(Tatum, 2011). Hippocampal sclerosis is the most common cause of MTLE 

(Tatum, 2011). 

2) Lateral temporal lobe epilepsy (LTLE), where seizures start in the lateral 

neocortex.  

6.1.7 Temporal Lobe Epilepsy Semiology 

Seizures that originate in the temporal lobe are classified as focal and secondary 

generalized seizures (Fisher et al., 2005). Focal seizures are denoted by 

preservation of consciousness. In TLE, these types of auras occur in about 50 – 

70 % of TLE patients (Tatum, 2011). Nevertheless, epigastric sensation is the 

most commonly mentioned aura by patients (Tatum, 2011). Secondary 

generalized seizures are denoted by loss of consciousness either at the onset of 

the seizure or through its evolution.  

6.1.8 Mesial Temporal Lobe Epilepsy Characteristics  

Of all temporal lobe epilepsies, MTLE is the most frequent accounting for 75% of 

all cases (Tatum, 2011). The most frequent pathologic substrate of mesial 

temporal lobe epilepsy is hippocampal sclerosis which, accounts for 

approximately 60 - 65% of all causes of DRE (Panayiotopoulos, 2005).  MTLE 

with hippocampal sclerosis (mTLE - HS) has been classified as a distinct clinical 

syndrome, as it has its own clinical features and pathology (Marusic et al., 2007). 

Some sources of MTLE include viral infections, cerebrovascular disease, cortical 

malformations tumours, head trauma (Panayiotopoulos, 2005). The age of onset 
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is dependent with the aetiology however, most typically MTLE debuts during the 

second or third decade (Panayiotopoulos, 2005).   

 

6.1.9 Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis Clinical Features  

History of febrile seizures is frequently associated with mTLE-HS 

(Panayiotopoulos, 2005). During the first 5 years of life, history of hypoxia is 

commonly observed and cerebral infections (Spano and Mikulis, 2011). ILAE 

commission (2004) concluded that there might be a genetic predisposition to 

mTLE based on the observation that the genetic inclination to febrile seizures 

may cause hippocampal sclerosis thereby precipitating mTLE (Wieser and Hane, 

2004).  

 

A latency period between the acquisition of underlying pathology and debut of 

clinical seizures has been reported (Panayiotopoulos, 2005). Nevertheless, this is 

not always the case and seizures can start soon after the initial triggering events. 

Seizures consist of auras that typically last for several seconds (Panayiotopoulos, 

2005). Auras are characteristic of mTLE-HS and occur in as many as 90% of 

patients (Panayiotopoulos, 2005). Epigastric sensation is the most common aura 

(Panayiotopoulos, 2005), followed by ictal fear, which occurs in to 80% of 

patients  (Panayiotopoulos, 2005). Epigastric sensation is often accompanied by 

other auras such as déjà vu, fear or olfactory and gustatory sensations 

(Panayiotopoulos, 2005). These auras are then followed by generalized seizures 

where the patient has a fixed gaze (staring) and motor arrest (Alarcon, 2009b). 

This clinical feature is commonly followed by automatism such as: oro-
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alimentary automatisms, restlessness, fidgeting or lip smacking. Seizures 

normally last for 1- 2 minutes and frequently occur in clusters of 2-3 seizures 

approximately once or twice a week (Panayiotopoulos, 2005). The post ictal 

stage includes event specific amnesia, disorientation, and dysphasia if seizure 

onset occurs in the dominant hemisphere (Panayiotopoulos, 2005).  

 

6.1.10 Mesial Temporal Lobe Epilepsy – Hippocampal Sclerosis 

Electroencephalographic features  

Scalp EEG in combination with neuroimaging offers information about the 

lateralization of epileptogenic foci (Javidan, 2012). Scalp EEG is an essential test 

during the pre-surgery assessment (Dworetzky and Reinsberger, 2011). EEG 

findings can be observed during the interictal, ictal and post ictal (Wieser and 

Hane, 2004) Epileptiform discharges are seen over the anterior temporal region 

with maximal polarity over basal (F7, F8, T1 and T2) and sphenoidal electrodes. 

Around 70% of patients show slow wave activity in the anterior temporal 

regions and unilateral/bilateral interictal spike (Williamson et al., 1993). 

Sphenoidal spikes are often associated with seizure focus within the 

hippocampus (Javidan, 2012). Interictal epileptiform discharges (IEDs) increase 

during sleep (Alarcon et al., 2001a). When IEDs are concordant with unilateral 

hippocampal sclerosis, they are associated with good outcome (Dworetzky and 

Reinsberger, 2011). It is important to note that unilateral scalp IEDs may lead to 

false lateralization. Therefore ictal recordings are required (Javidan, 2012).  
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The ictal EEG is characterized by rhythmic activity at the temporal electrodes or 

focal slowing followed by 5-9 Hz activity (Pelliccia et al., 2013). Ictal EEG is 

compromised with delta, theta and alpha activity (Ebner and Hoppe, 1995). In a 

majority of cases rhythmic alpha, theta and delta activity is seen within 30 

seconds of seizure onset (Javidan, 2012). Rhythmic alpha/theta activity 

generates a pattern that is characterized by crescendo/sinusoidal waveforms 

with an increase in frequency and decrease in amplitude (Wieser and Hane, 

2004). As noted above, this pattern has maximal amplitude over anterior 

temporal regions (Wieser and Hane, 2004).  

 

Ictal discharges may be unilateral, contralateral or bilateral (Tezer et al., 2011). 

Patients with unilateral interictal epileptiform discharges and approximately 

more than 90% discharges from the ipsilateral lobe are associated with good 

post surgical outcome (Tezer et al., 2011). Ictal discharges may also be noted in 

the contralateral temporal lobe, this is especially observed in mTLE when the 

underlying pathology is not hippocampal atrophy (Tezer et al., 2011). In most 

cases, intracranial electrodes are also used to further define seizure focus 

(Javidan, 2012).  
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6.1.11 Extra-temporal lobe epilepsy syndromes 

Roughly 20% of patients have extra-temporal epilepsy, and among this group, 

frontal lobe epilepsy is the most common (Zentner et al., 1996). In fact, surgical 

treatment in patients with extra-temporal surgery is complicated, especially if an 

unclear lesion is evident on structural imaging studies (Cascino, 2004). 

Consequently, many of these patients will require the use of additional tests, 

such as SPECT, PET or MEG and are potential candidates for intracranial 

electrode implantation (Kumar et al., 2013).  It is recognised that extratemporal 

epilepsy has lower successful outcome rates compared to the temporal lobe 

epilepsy (Kutsy et al., 1999, Tellez-Zenteno and Wiebe, 2008).  

6.1.12 Semiology  

The semiology of extra-temporal seizures is very varied. Frontal lobe epilepsy 

deserves special mention because, as stated previously, it is the most common 

Figure 4. Scalp EEG showing right anterior temporal epileptiform discharges in a patient with mesial 
temporal sclerosis. 
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extra-temporal focal epilepsy undergoing surgery. Thus, there are some typical 

clinical features within patients presenting frontal lobe epilepsy, which might 

help in distinguishing this epilepsy type (Alarcon, 2009b).  

 

Patients presenting seizures from the supplementary motor cortex usually 

present auras, followed by unilateral tonic postures, accompanied by face muscle 

contractions, language disorders, sensory complex bipedal automatisms, 

laughter, kicking, language disorders and pelvic movements (Alarcon, 2009b). 

On the other hand, patients with seizures arising from the primary motor cortex 

present focal seizures, with tonic movements, generally followed by secondary 

generalization, abnormal contralateral dystonic postures, and language 

disturbances (Alarcon, 2009b). Seizures arising from the occipital cortex 

generally involve more visual components associated to simple or complex 

partial seizures or secondarily generalized seizures (Alarcon, 2009b). Visual 

symptoms are associated with occipital onset. Thus, visual components might be 

scotomas, hemianopsia or amaurosis, phosphenes, flashes, and sparks (Alarcon, 

2009b).  Other symptoms may include changes in perception, such as 

macropsias, micropsias, or matamorfopsia; and changes of location in the spatial 

plane, or image distortion (Alarcon, 2009b).  

 

6.1.13 Presurgical assessment and surgical intervention 

The identification of the cortical areas causing seizures is very important in 

extra-temporal lobe epilepsy because more of the epileptogenic region 

surrounds sensible brain tissue. Thus, more effort is needed for evaluating 
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potential candidates for epilepsy surgery (Cascino, 2004). In only a few patients, 

especially in patients who have a lesion as substrate, are surgical procedures 

possible without the use of intracranial (Cascino, 2004). 

 

For surgical proposes, it is important to be aware that the electrical discharge 

may suddenly spreads to the temporal parietal lobes, or even to the frontal lobe, 

presenting signs and symptoms related to these sites, and might obscure the real 

seizure origin (Cascino et al., 1994). 

6.1.14 Electroencephalographic features  

The presence of spikes, sharp waves or focal slowing are important features in 

the diagnosis of extra-temporal epilepsy as these patterns where in identifying 

the potential ictal onset and will aid during the presurgical assessment (Mihara, 

2005, Centeno et al., 2006). It is important to state that in most of patients, a 

routine interictal EEG does not present any change, consequently the video EEG 

is mandatory. Thus, it is of paramount importance to identify interictal 

abnormalities during video EEG and the most common extratemporal features 

seen are fast activity. However, in patients with frontal or parietal epilepsy in 

whom seizures start from basal or medial cortical areas, ictal changes may be 

minimal or non-specific.  
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 Mechanisms involved in the generation of EEG 

patterns seen at seizure onset 

 

 Epilepsy is characterized by a long-lasting predisposition of the cortex to 

generate paroxystic events called epileptic seizures. The transition from a 

seizure-free period (interictal) into a seizure (ictal) has been coined as 

ictogenesis. To understand ictogenesis, a variety of in vitro and in vivo 

techniques have been developed throughout the years by developing seizure-like 

models. Several mechanisms underlying the generation of epileptic seizures have 

been proposed. 

Figure 5. Frontal seizure onset seen on scalp EEG. 
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Throughout the interictal period, the epileptic brain is able to generate abnormal 

discharges with particular morphology and distribution, which are detectable on 

the EEG. Such discharges are often called interictal epileptiform discharges, have 

short duration and have been classified into spikes, spike wave activity, or sharp 

waves (Noachtar et al., 1999). Clinically, interictal epileptiform discharges are 

widely used as a disease biomarker for epilepsy (Noachtar et al., 1999).  

 

At a neuronal network level, an interictal spike is characterized by a sequence of 

fast action potentials, superimposed to a slow depolarizing potential (Uva et al., 

2015). The depolarizing potential triggers a burst of action potentials lasting for 

50–100ms. This is followed by a second burst of action potentials, which is 

presumably caused by cessation of the recurrent inhibition initiated by the first 

burst (Schwartzkroin and Prince, 1980, de Curtis and Avanzini, 2001). In 

humans, four different neuronal firing patterns have been described during 

interictal epileptiform discharges in patients assessed for epilepsy surgery: a) 

burst of high frequency firing lasting less than 100; (b) a period of suppression in 

firing lasting around 100–1300 ms; (c) a burst followed by suppression and (d) 

no-change. (Alarcon et al., 2012a, Keller et al., 2010). These findings suggest that 

interictal discharges involve a brief synchronised burst firing in some cells 

followed by longer recurrent lateral inhibition (Alarcon et al., 2012a).  

 

The onset of focal seizures seems to be associated with longer dynamic changes 

than those seen in interictal discharges. Ictal changes are visually detectable on 

the EEG over longer periods of several seconds, much longer than those EEG 
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changes seen during interictal discharges. It has been reported that focal 

seizures are initiated by an aberrant firing rate of action potentials, affecting a 

large population of neurons. The increased firing rate, progressively recruits 

neighbouring neurons within synchronized discharges, leading to a seizure 

(Yaari and Beck, 2002). A focal or diffuse slow wave deflection can immediately 

precede ictal activity, which is followed by a variety of patterns that might be 

focal or widespread (Jiruska et al., 2014, Jimenez-Jimenez et al., 2015b). When 

recorded with intracranial electrodes, seizure onset is characterised by 

numerous patterns such as: high-frequency activity, (Alarcon et al., 1995, Pacia 

and Ebersole, 1999, Jung et al., 1999), bursts of irregular sharp and slow waves, 

spike-wave activity (Alarcon et al., 1995, Pacia and Ebersole, 1999), rhythmic 

sinusoidal activity (Alarcon et al., 1995, Pacia and Ebersole, 1999), focal or 

widespread flattening of the EEG (Alarcon et al., 1995, Arroyo et al., 1994).  

 

Important issues have been raised by ictogenesis research. There is still a 

dispute on the role of interictal epileptiform discharges as a protective factor 

against seizures (de Curtis and Avanzini, 2001) or as a seizure contributor (Litt 

and Lehnertz, 2002). The nature of the various patterns seen at the onset of 

human seizures remains unclear. In the present thesis, seizure onset patterns 

have been investigated as prognostic factors of seizure outcome. Presently, 

numerous studies in humans and animals and in vitro have been carried out to 

improve the current understanding of the mechanisms underlying the focal 

ictogenesis. New concepts have been proposed, which are reviewed below. 
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7.1.1 In-vivo seizure onset pattern models 

Numerous in-vivo seizure models have been developed in order to study the 

origin of focal ictal patterns. These studies mainly attempted to reconstruct 

those patterns seen in patients with mesial temporal lobe epilepsy (MTLE).  To 

recreate electrical activity seen on EEG of MTLE in rodents, focal cortical 

penicillin (Matsumoto and Marsan, 1964), injection of γ-aminobutyric acid A 

(GABAA) receptor antagonist bicuculline methiodide (BMI) glutamate agonist 

kainic acid, into the coronu ammonis area 3 (CA3) area of hippocampus (Bragin 

et al., 2009) have been administrated by several groups. During the transition 

from preictal to ictal period, two main seizure onset patterns were observed: a) 

hypersynchronous high frequency oscillations (HFOs) in the frequency range of 

80 – 600 Hz, which were seen accompanied by sharp waves and b) low voltage 

fast firing pattern in the beta-gamma range (Bragin et al., 2007). These patterns 

were followed by generalized ictal EEG discharges and clinical manifestations. A 

recent study was conducted in male Spregue-Dawley rats (250–300g) with 

electrodes implanted in the hippocampus, the entorhinal cortex, and the 

subiculum. Seizures were provoked by local application of 4-aminopyridine 

(4AP, 4–5 mg/kg ip) and picrotoxin (3–5 mg/kg ip) (Salami et al., 2015). Low-

voltage fast patterns occurred at seizure onset in 82% of 4AP-induced seizures. 

On the other hand, in animals where seizures were induced by picrotoxin, the 

seizure onset pattern was always hypersynchronous. 4AP-induced seizures were 

more frequently associated with ripples than fast ripples, whereas picrotoxin-

induced seizures were more frequently associated with fast ripples than ripples. 

(Salami et al., 2015).  
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It has been proposed that ripples reflect a summation of inhibitory postsynaptic 

potentials, which are generated by pyramidal cells in response to inhibitory 

interneuron firing. Fast ripples would represent the hypersynchronous bursting 

of glutamatergic cells. Therefore, these results support the hypothesis which 

states that the two distinct patterns at seizure onset result from different 

pathophysiological mechanisms (Bragin et al., 2009).  

 

7.1.2 In-vivo seizure onset patterns models  

Numerous in-vivo seizure models have been developed in order to study the 

origin of focal ictal patterns. These studies mainly attempted to reconstruct 

those patterns seen in patients with mesial temporal lobe epilepsy (MTLE).  To 

recreate electrical activity seen on EEG of MTLE in rodents, focal cortical 

penicillin (Matsumoto and Marsan, 1964), injection of γ-aminobutyric acid A 

(GABAA) receptor antagonist bicuculline methiodide (BMI) glutamate agonist 

kainic acid, into the coronu ammonis area 3 (CA3) area of hippocampus (Bragin 

et al., 2009) have been administrated by several groups. During the transition 

from preictal to ictal period, two main seizure onset patterns were observed: a) 

hypersynchronous high frequency oscillations (HFOs) in the frequency range of 

80 – 600 Hz, which were seen accompanied by sharp waves and b) low voltage 

fast firing pattern in the beta-gamma range (Bragin et al., 2007). These patterns 

were followed by generalized ictal EEG discharges and clinical manifestations. A 

recent study was conducted in male Spregue-Dawley rats (250–300g) with 

electrodes implanted in the hippocampus, the entorhinal cortex, and the 

subiculum. Seizures were provoked by local application of 4-aminopyridine 
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(4AP, 4–5 mg/kg ip) and picrotoxin (3–5 mg/kg ip) (Salami et al., 2015). Low-

voltage fast patterns occurred at seizure onset in 82% of 4AP-induced seizures. 

On the other hand, in animals where seizures were induced by picrotoxin, the 

seizure onset pattern was always hypersynchronous. 4AP-induced seizures were 

more frequently associated with ripples than fast ripples, whereas picrotoxin-

induced seizures were more frequently associated with fast ripples than ripples. 

(Salami et al., 2015).  

 

It has been proposed that ripples reflect a summation of inhibitory postsynaptic 

potentials, which are generated by pyramidal cells in response to inhibitory 

interneuron firing. Fast ripples would represent the hypersynchronous bursting 

of glutamatergic cells. Therefore, these results support the hypothesis which 

states that the two distinct patterns at seizure onset result from different 

pathophysiological mechanisms (Bragin et al., 2009).  

 

7.1.3 In vitro seizure onset patterns models  

In addition to in vivo models, in vitro models have also been used in 

experimental studies of epilepsy. As in in vivo seizure models, ictal patterns vary 

depending on how seizures are induced and the region studied. Spontaneous 

recurrent seizures can be induced by perfusing the brain tissue with several 

convulsant agents such as high potassium concentrations (5mM), cobalt (He et 

al., 2009) low Magnesium concetrations (0.25 mM) (Derchansky et al., 2004), 4-

aminopyridine (Ziburkus et al., 2006). Furthermore, GABA receptor antagonists 

such as penicillin, bicuculline, and picrotoxin have also been used (Uva et al., 
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2009). In these models, ictal patterns in the field potential are characterized by 

progressive recruiting activity, where ictal discharges progressively become 

greater and more synchronous with time. Seizure propagation is then followed 

by a decremental pattern during postictal depression where the amplitude and 

neuronal firing rate progressively decrease (de Curtis and Gnatkovsky, 2009). It 

has been proposed that factors such as synaptic efficacy, intrinsic membrane 

properties, and neuromodulators may affect membrane currents through second 

messenger pathways (Dichter and Ayala, 1987).  

 

Other authors have developed seizure models in isolated hippocampus from 

embryonic and neonatal rat hippocampal formation and surrounding limbic 

structures perfused with 4-aminopyridine (4-AP), kainate, or low Mg2+ artificial 

cerebrospinal fluid (ACSF) (Derchansky et al., 2004, Khalilov et al., 1997). Both 

seizure-like events and interictal events can be recorded with low magnesium. 

Interestingly, the transition from interictal epileptiform discharges to seizure 

like events occurred quickly and high frequency activity was present during this 

transition. In addition, during seizure like events, the amplitude of ictal activity 

increased and their frequency decreased over time. This study demonstrated 

that high frequency oscillations are present during the transition from interictal 

activity to the ictal state. This has been recently corroborated in humans, where 

widespread HFO were present during this transition (Perucca et al., 2013).  
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7.1.4 Theta rhythm 

In vivo recordings carried out in awake rats, demonstrated that neuronal firing is 

temporally correlated with both gamma and theta activity (Bragin et al., 2005). 

Fast excitatory postsynaptic potentials (EPSPs) in interneurons are important 

for network activity during inhibition-based brain rhythms by controlling spike 

timing (Bragin et al., 2005). EPSPs on hippocampal interneurons have faster 

kinetic properties than excitatory inputs on principal neurons. This can be 

explained by interneurons having active dendritic conductance, a low membrane 

time constant, and fast EPSP kinetics mediated by the molecular composition of 

interneuronal AMPA receptors. Together, these factors accelerate spiking in 

interneurons. Additionally, perisomatic-targeting interneurons with widespread 

divergence of axons can synchronize hippocampal population activity by phase-

locking subthreshold oscillations. Repetitive inhibitory postsynaptic potential 

(IPSPs) originating from a few presynaptic interneurons are effective in pacing 

and synchronizing spontaneous action potential in postsynaptic pyramidal 

neurons (Jiruska et al., 2014). Furthermore, pyramidal cells and GABAergic 

interneurons in CA3 are communicated. Interconnected neurons allow rapid and 

reliable synchronization of network activity. A small proportion of EPSPs are 

sufficiently strong to trigger action potentials in any postsynaptic neuron. 

Reciprocally connected GABAergic interneurons are important in generating 

gamma frequency network oscillations. It has been proposed that basket cells 

are synaptically interconnected and also coupled with other interneuronal 

classes. Therefore, the output from basket cells to their target neurons is likely to 

occur synchronously, which seems to be an important property in hippocampal 

rhythmogenesis (Jiruska et al., 2014). 
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7.1.5 Fast rhythms  

Presurgical intracranial recordings are used to identify the epileptogenic zone in 

patients with epilepsy assessed for surgery. In patients as well as in animal 

models of mesial temporal lobe epilepsy, two predominant patterns were 

observed during the transition to seizures: low – voltage fast activity and high 

frequency oscillations (HFOs)  (Bragin et al., 2005). It has been proposed that the 

generation of different EEG patterns depends on specific disruptions to the 

existing balance between excitatory and inhibitory components of the neuronal 

network (Bragin et al., 2009). Preictal patterns, which normally precede fast 

activities at seizure onset, may be mediated by either reinforcement or reduction 

of interictal/preictal discharges (de Curtis and Avanzini, 2001, Avoli et al., 1996). 

It has been hypothesized that local inhibitory networks in CA1 are responsible 

for the generation of ripple oscillations (Beenhakker and Huguenard, 2009). 

Excitation from CA3 activates CA1 inhibitory neurons. At the trough of the 

rhythmic local field potential, the activity of CA1 inhibitory neurons is low and 

increases progressively in response to the CA3 excitation. At the peak of the 

rhythmic local field potentials, inhibitory neuron activity is strengthened 

through recurrent inhibition and overpowers CA3 excitatory drive. This 

powerful surge of inhibition results an overall decrease in the population firing 

rate. The rhythmic oscillation observed in local field potential is defined by the 

synaptic delays and rise times associated with inhibitory events (Beenhakker 

and Huguenard, 2009). 
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Several network mechanisms have been proposed for ictogenesis, but the exact 

underlying mechanism remains largely unclear. Using intracranial EEG 

recordings, it has been proposed that hippocampal seizure onset might be the 

result of a development of low-voltage fast activity of 15-40 Hz, which often 

begins regionally and then involves extrahippocampal structures in seizure 

generation (Spencer et al., 1992a). The underlying neuronal mechanisms of low-

voltage fast activity may involve disinhibition, in addition to enhanced excitation, 

resulting in hypersynchrony. A more recent study suggested that low-voltage 

fast activity at seizure onset is associated with reinforcement and 

synchronization of inhibitory networks (de Curtis and Gnatkovsky, 2009). Other 

authors have also observed a spatial correlation of signals during ictal low-

voltage fast activity, suggesting that these discharges were mediated by a 

synchronization of cortical networks established by recruitment of inhibition 

(Bartolomei et al., 2001, Wendling et al., 2003). 

 

Low-amplitude fast activity at seizure onset was seen in the entorhinal cortex 

from isolated guinea pig brain. This pattern was generated by arterial perfusion 

of bicuculline-methiodide (Gnatkovsky et al., 2008). This pattern was correlated 

with blockade of activity in the deeper layer of principal neurons. In addition, a 

marked increase in firing rates was seen among interneurons (Gnatkovsky et al., 

2008). The authors suggested that seizure onset is mediated by inhibitory 

circuits by blocking neuronal firing in principal neurons, such that a transient 

enhancement of interneuronal network activity is responsible for excitability 

changes that precede seizure onset. Low-voltage fast rhythms on the EEG is 
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useful to identify seizure onset (Gotman et al., 1995, Fisher et al., 1992, Alarcon 

et al., 1995), which is during presurgical evaluation.  

 

7.1.6 Fast ripple generation 

Another interictal pattern have been observed during transition to seizure, 

characterized by brief runs of ultrafast activity (250–600 Hz), coined fast ripples 

(Jacobs et al., 2008a). Fast ripples mainly occur at seizure onset in both, animal 

epilepsy models (Bragin et al., 2004) and human patients (Jacobs et al., 2008b, 

Jirsch et al., 2006).  Because fast ripples are restricted to the epileptogenic focus, 

they are considered as markers of eileptogenesis and also suggest that seizures 

are driven by the emergence of a hypersynchronous neuronal subnetwork 

(Bragin et al., 2005, Jirsch et al., 2006, Lasztoczi et al., 2004). According to in vivo 

studies in chronic animal models and in human temporal lobe epilepsy, it has 

been proposed that the underlying mechanism of the HFOs generation could be a 

synchronous activation of clusters of highly interconnected GABA neurons that 

overcome a feedback inhibition (Bragin et al., 2004, Bragin et al., 2005, Van 

Quyen et al., 2003). 

 

Under pathological conditions, such as in mesial temporal lobe epilepsy, fast 

ripples were recorded near seizure onset, reflecting the hypersynchronous 

discharges of pyramidal neurons within in the epileptogenic region (Bragin et al., 

1999). The CA3 region is the key structure for driving epileptogenesis and 

hyperexcitability in the low Mg2+ seizure model, leading CA1 during the preictal 

and ictal states. Neurons found in CA3a have more complex dendritic arbours, 
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probably acting as pacemaker cells by firing early and recruiting other cells into 

firing (Wittner and Miles, 2007). However, the exact mechanisms underlying fast 

ripple oscillations still remain unknown. Because many studies have shown that 

ripples and fast ripples appear to be coupled, (Beenhakker and Huguenard, 

2009) hypothesized that these oscillations rely on similar brain states for 

expression. (Dzhala and Staley, 2004) and (Foffani et al., 2007) have studied the 

mechanisms underlying fast ripples in the CA3 region using the high K+ bath 

perfusion model and the pilocarpine-treated epileptic animal model, 

respectively. They concluded that fast ripple generation is promoted by elevated 

synaptic activity, as suggested by hypersynchronous bursts among CA3 

pyramidal neurons, and their oscillation frequency dependency on the precision 

of spike-timing.  

 

The highly synchronized discharge of CA3 pyramidal cells has been shown to 

initiate sharp waves (Buzsaki and Gage, 1992, Traub et al., 2001). This has been 

supported by the finding that blocking adenosine receptors induces the 

spontaneously occurring CA3 sharp waves in hippocampal slices (Wu et al., 

2002). In addition, local circuitry in the hippocampal CA3 region is capable of 

exhibiting spontaneous synchronous GABAergic activities in vitro (Wu et al., 

2002). Spontaneous rhythmic field potentials from whole hippocampal isolates 

and thick slices from young and adult mice are correlated with intracellular 

synchronous GABAa-IPSPs in pyramidal neurons and repeated discharges in 

inhibitory interneurons. Thus, (Wu et al., 2002) hypothesized that a population 

of glutamatergic neurons arising from the hippocampal CA3 recurrent circuitry 

in vitro is capable of triggering discharges in a group of GABAergic inhibitory 
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interneurons, which in turn generate IPSP-based spontaneous rhythmic field 

potentials. In addition to the GABAA-mediated oscillations, synergistic excitatory 

activity from the depolarizing GABA and glutamate NMDA receptors generates 

giant depolarizing potentials (GDPs) at CA3 region in postnatal day 0-10 in mice 

(Sipila et al., 2007).  

 

7.1.7 Sharp wave patterns 

The hippocampus is characterized by strong oscillatory network activity. Under 

physiological conditions, input arrives in the hippocampus via the dentate gyrus, 

from where information travels to CA3, then to CA1, and finally reaches the 

subiculum. It has been proposed that a synchronized burst of many CA3 

pyramidal cells is responsible for generating the sharp wave pattern seen on the 

EEG (Ylinen et al., 1995). The excitation mediated by CA3 pyramidal cells is then 

spread to CA1 where subsequent ripple activity at around 200 Hz is developed. 

This oscillation is known as the sharp-wave ripple complex, which is associated 

with both normal and epileptic brain (Ylinen et al., 1995). Complex 

interconnections between GABAergic interneurons and pyramidal cells have 

been found to underlie the cellular basis for establishing and maintaining large 

scale network oscillations in the hippocampus (Buzsaki and Gage, 1992). 

Horizontal interneurones in CA1 and CA3 regions have been shown to burst 

synchronously with pyramidal cells in an acute model of epilepsy (Aradi and 

Maccaferri, 2004). Hippocampal interneurons may synchronize large neuronal 

populations via their abundant connections to pyramidal neurons and other 

interneurons (Buhl et al., 1994, Sik et al., 1995). 
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7.1.8 Electrodecremental event pattern 

An electrodecremental event (EDE) is one of the most frequent patterns seen at 

seizure onset on intracranial EEG (Alarcon et al., 1995, Arroyo et al., 1994, 

Dolezalova et al., 2013, Jimenez-Jimenez et al., 2015b).  This pattern is defined as 

a flattening of the EEG, usually diffuse or widespread. EDE may coexist or be 

followed by focal changes in the EEG, such as low-voltage fast activity, which 

subsequently increase in voltage and decreases in frequency (Alarcon et al., 

1995, Arroyo et al., 1994, Ikeda et al., 1996, Dolezalova et al., 2013, Alarcon et al., 

2012b) 

 

When present at seizure onset, EDE can be focal or diffuse. A diffuse 

electrodecremental pattern (Alarcon et al., 1995, Fariello et al., 1979, Faulconer 

and Bickford, 1960) has been considered as part of a generalized onset seizure 

pattern, arising from brainstem (Gastaut et al., 1963). The diffuse pattern has 

been described as a common feature in infantile spasms (Druckman and Chao, 

1955, Kellaway et al., 1979), in atonic seizures (Hooshmand et al., 1980), and in 

tonic seizures (Fariello et al., 1979). It has been noted that EDE is especially 

prevalent in tonic and atonic of the Lennox-Gastaut syndrome (Donat and 

Wright, 1991, Yaqub, 1993, Gastaut et al., 1963). A study conducted in 7 patients 

assessed with intracranial electrodes during epilepsy surgery evaluation showed 

that patients having diffuse EDE as seizure onset pattern tended to suffer 

learning difficulties, very frequent multiple type seizures, and early onset of 

epilepsy (Arroyo et al., 1994). More than one third of these patients had 
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electroclinical characteristics of the Lennox Gastuat Syndrome and almost half 

these patients presented a gross hemispheric lesion and hemiparesis (Arroyo, 

1994). The most common structure where diffuse electrodecremental event was 

arising from was frontal lobe. These findings are in concordance with previous 

reports (Fariello et al., 1979, Gastaut et al., 1963). In focal epilepsy, when a 

diffuse electrodecremental event seen at seizure onset on the intracranial EEG, 

rhythmic high-frequency activity that subsequently decreased in frequency and 

increased in voltage was seen on scalp EEG(Arroyo et al., 1994). Though EDE has 

been extensively studied in generalized epilepsy, little research has been carried 

out in focal epilepsy, as such diffuse pattern would not be expected in this 

epilepsy type.  

 

 Temporal connectivity and seizures propagation in 

Temporal Lobe Epilepsy 

 
Seizures in focal temporal lobe epilepsy are thought to have a localised seizure 

onset. Once the seizure has started, more tissue in the cortex tends to be 

recruited, leading to clinical and EEG changes. The term spreading has been used 

for many years, to describe seizure evolution into regions of the cortex, which is 

reflected on the EEG. The nature of seizure spreading is not well understood and 

has been matter of study since the EEG was used to study epilepsy. It is assumed 

that the brain is very well interconnected and physiological pathways are needed 

to process information (Spencer, 2002b). Extensive research has been 

performed in terms of inter-hemispheric seizure propagation, and there is still 

much debate regarding the different pathways used for seizure spreading. The 
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controversy still relies on the role of the different commissures found in the 

human brain: corpus callosum, hippocampal commissure and anterior 

commissure. In epileptic patients, some circuitry abnormalities such as, axon 

sprouting and pruning of dendritic branches have been showed (Sutula et al., 

1989), which would suggest that epileptic patients would have modified brain 

networks.  

 

In this section, findings from neuroimaging and intracranial recordings are 

reviewed with regard to seizure spreading. 

 

8.1.1 Neuroimaging studies  

Neuroimaging studies have been linked to medicine since X-ray invention in 

1895. Since then, imaging techniques have evolved to become easier to manage 

and largely harmless.  Positron Emission Tomography (PET) measures 

metabolism of substances such as glucose in the brain by binding radiotracers 

such as   fluorodeoxyglucose (FDG). After a trace of FDG has been injected to a 

subject, it accumulates in different metabolic organs and tissues. FDG will 

determine metabolic rates of glucose in different tissues. Software is used to 

reconstruct where in the brain the concentration of radiotracer is increased or 

decreased. PET is ideal for studies aimed at evaluating metabolic changes during 

a task or behaviour, including seizures. It is expected that increased neuronal 

activity will be seen during and immediately following a seizure. 
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In temporal lobe epilepsy, interictal PET usually shows hypometabolism in the 

epileptogenic temporal lobe, or bitemporal hypometabolism with more severe 

hypometabolism on one side (Alarcon, 2009). The pathophysiological reason of 

the regional hypometabolism in epileptic patients is still unclear. However, it is 

known that the volume of hypometabolism is much greater than volume related 

to structural damage. The hypometabolic region extends beyond the 

epileptogenic zone.  

 

Single-photon emission computed tomography (SPECT) measures cerebral blood 

flow with 99mTc-ethyl cysteinate dimer (ECD) or 

99mTchexamthylpropyleneamine oxime (HMPAO). Due to its pharmacokinetics, 

the tracer provides a portrait of the metabolic activity in the brain at the time of 

injection. If injected during the seizure, the method has the potential to show the 

areas of seizure onset and/or propagation. It has been reported that blood flow 

is increased in the temporal lobe during a seizure, unlike the interictal period 

during which blood flow is decreased. Therefore, making both images are 

complementary. The regions with increased blood flow correlate well with the 

epileptogenic zone identified by EEG. In mesial temporal lobe epilepsy, 

secondarily generalized seizures, are associated with hyperperfusion in the 

ipsilateral temporal lobe, middle frontal and precentral gyrus, bilateral occipital 

lobes, and the contralateral postcentral gyrus, while hypoperfusion is observed 

in both frontal lobes and the contralateral cerebellum (Van Paesschen et al., 

2003).  
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In addition to PET, functional magnetic resonance imaging (fMRI) can be used 

for measuring neuronal activity changes during epileptogenesis. fMRI is based on 

hemodynamic response, as increased neuronal activity requires more oxygen, 

thus altering the proportion between oxygenated and de-oxygenated 

haemoglobin which have different magnetic properties. The signal measured has 

been coined BOLD (Blood- Oxygen-Level Dependence), where changes in the 

ratio of paramagnetic deoxyhemoglobin and diamagnetic oxyhemoglobin are 

measured. A recent project employing resting state functional MRI (fMRI) in 

patients with MTLE revealed increased hippocampal connectivity in similar 

regions (Laufs et al., 2014). However, there are some technical limitations to 

perform this technique, which has imitated to use it widely.  

 

DTI-based tractography allows a computer-reconstruction of WM pathways by 

using fraction anisotropy. Anisotropy is quantified in each voxel using an index 

of fractional anisotropy. Values of fractional anisotropy range from 0 (equal 

diffusion in all directions) to 1 (fully isotropic, where diffusion is favoured in one 

axis and hindered in the remaining two) (Basser and Pierpaoli, 1996). In normal 

tracts, water diffusion is isotropic, whereas in pathological tracts, fractional 

isotropy decreases substantially (Beaulieu et al., 1996). 

 

 In temporal lobe and extra-temporal resections, DTI offers valuable anatomical 

information, to avoid damage of functional areas. In addition, DTI may have 

potential capacity to increase the identification of the epileptogenic focus. In 

subjects with epilepsy, DTI can display acute and subacute changes in the peri-

and postictal state. These changes have been reported to be essentially similar to 
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those seen in cerebral ischemia, with early decrease, followed by normalization 

of the apparent diffusion coefficient. Chronic changes are seen during the 

interictal state (Farina et al., 2004). DTI has also been used for tracking seizure 

spreading through the epileptic circuitry resulting in chronic epilepsy (Luat and 

Chugani, 2008).  

 

In this section, I will review how neuroimaging has given us a better 

understanding of epilepsy networks in animal models and humans.   

8.1.2 Animal Models 

Several neuroimaging research projects have been carried out in small animals 

in order to have a better understanding of epileptogenesis in focal temporal lobe 

epilepsy. A major advantage of using small animals for neuroimaging is that 

studies can be controlled allowing researchers to examine the living brain in the 

animal before, during, and after the disease onset and disease treatment. The aim 

is to translate findings into humans. Results can also be compared to data 

collected on human patients to investigate the mechanisms of epileptogenesis.  

 

A pilocarpine-induced seizure model in C57Bl/6 mice attempted to determine 

changes in metabolic activity after seizures in order to identify the areas of the 

brain involved in seizure spreading by using microPET R4 tomograph (Mirrione 

et al., 2006). FDG injection was performed while animals were awake (C57BL/6 

mice, 25–30 g, n ¼ 8). Mice were then anesthetized with a ketamine / xylazine 

cocktail (10% xylazine, 90% ketamine) 60 min after injection of radiotracer. 

Before and after every scan, plasma glucose measures were obtained from each 
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animal. The same mice were scanned after 7 days. TLE was induced by 

pilocarpine injection (280 mg/kg i.p.). After 10 min, animals were given 500 Ci of 

18FDG, i.p. All animals then were monitored during 18FDG uptake, using video 

recording. A marked increase of 18FDG uptake was observed in the hippocampus 

(33.2%) as compared to baseline scans, which was associated with duration of 

status epilepticus. Smaller differences were measured in thalamus (9.4%), 

striatum (5.5%), frontal cortex (6.1%), parietal cortex (10.4%), and cerebellum 

(6.5%). This study in mice, demonstrated that 18FDG is sensitive to metabolic 

changes associated with seizure severity. 

 

It has been proposed that drug resistant epilepsy causes inflammation and 

neurodegeneration. Accordingly, seizure spreading has been studied by using 

18FDG uptake in wild type and serine protease tissue plasminogen activator mice 

(tPA-/-) (Mirrione et al., 2007). In this study authors aimed at investigating 

patterns of 18FDG uptake in different mice models (wild type and tPA-/-) and 

their correlation to seizure severity. Mice, aged 2-5 months, 24-34 grams were 

all imaged twice 7 days apart. Seizures were induced by using 100mg/kg of a 

10% xylazine, 90% ketamine anaesthesia 10-min prior scan. In tPA-/- mice, 

there was a positive correlation between 18FDG uptake and seizure activity in the 

hippocampus, septum, thalamus, midbrain, olfactory bulb, and cerebellum. These 

regional metabolic changes may represent the effect of seizure spreading 

whereas the hippocampus, septum, and thalamus are initially required for 

seizure generation (Mirrione et al., 2007).  
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SPECT has also been studied in kindled mesial temporal lobe seizures in non-

humans primates to understand the pathways of seizure spreading. Electrical 

kindling is a method in which, repeated administration of electrical stimulation 

results in a progressive state of long term susceptibility to seizure activity. A 

recent study was carried out in two male rhesus monkeys (Macaca mulatta; adult 

monkey K: 9 kg, juvenile monkey S: 6 kg). Electrodes were chronically implanted 

in both monkeys in the right amygdala and white matter of frontal and occipital 

lobes (Cleeren et al., 2015). Daily electrical stimulation of the amygdala was 

performed in both monkeys, 8 weeks and 13 weeks after electrodes 

implantation.  The amygdala was stimulated in over 340 sessions Video 

recordings and neuroimaging were obtained from both animals, using ictal 

SPECT co-registered with MRI (SISCOM). A baseline scan was taken 4-8 weeks 

after electrode implantation and before kindling started. Ictal SPECT was carried 

out using injection of 99mTc-ECD in the saphenous vein 10 seconds after the 

seizure was provoked. During the post ictal state, monkeys were sedated using 

ketamine and medetomidine. Kindled seizures were evaluated by the 

measurement of afterdischarge duration, clinical seizure severity ranging from I 

(visual searching behavior) to IV (seizure generalization), and duration of post 

ictal state (Cleeren et al., 2015). Over the time of kindling stimulation, 

afterdischarges become larger in amplitude and longer in duration in both 

animals. Regarding brain perfusion, in seizure stage I, the individual SISCOM 

images showed a distributed network of hyperperfused and hypoperfused 

regions throughout the cortex and in many subcortical structures. Such brain 

perfusion patterns remained similar in seizure stages II to IV. When investigating 

seizure spreading, a large hyperperfusion cluster in the contralateral hemisphere 
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(temporal, parietal and occipital cortices) was related to seizure severity. 

Extratemporal clusters were also found, showing a gradual increase in perfusion 

of around 50%, which was more prominent at stages III and IV. SISCOM imaging 

showed extensive changes in perfusion throughout the brain as seizure severity 

progressed during the course of amygdala kindling. One of the most surprising 

findings from this study was that perfusion changes were common to all seizure 

stages and not restricted to the stimulation location (Cleeren et al., 2015). This 

research showed the existence of a distributed common network involved in 

seizure spreading, which was different depending on seizure severity (Cleeren et 

al., 2015). 

8.1.3 Studies in Humans 

Temporal lobe epilepsy has a diversity of underlying pathologies, which has been 

suggested to reflect the variety of seizure onset patterns seen on the EEG 

(Spencer et al., 1987).  In principle, focal temporal lobe epilepsy should not 

present widespread changes at seizure onset. If present it may confirm that the 

physiological network has become aberrant, allowing rapid spreading of seizures 

(Alarcon et al., 1995). The extension of the network appears to be reflected by 

the intracranial EEG (iEEG) ictal onset pattern. The presence of widespread iEEG 

changes in focal seizures questions the traditional view of a localised 

epileptogenic zone, and suggests that seizures may arise from a large or 

widespread network. Recent connectivity studies with neuroimaging seem to 

support the concept of an aberrant network found in mesial temporal sclerosis 

epileptic patients (Miro et al., 2015). Diffusion tensor imaging (DTI) and resting 

state functional MRI indicate that patients with temporal lobe epilepsy exhibit 
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changes in connectivity to ipsilateral and contralateral structures, and that the 

degree of changes is related to surgical outcome (Maccotta et al., 2013a, Bonilha 

et al., 2013a). Techniques, such as PET and SPECT have allowed us to better 

understand how seizure onset propagates to neighbourhood structures.  

8.1.4 SPECT AND PET 

Seizure spreading in patients diagnosed with temporal epilepsy has been a 

subject of debate for several years. Metabolic and blood changes have been used 

to solve this controversy. It has been reported that ictal SPECT has an excellent 

sensitivity for localizing seizure activity (Wieser and Epilepsy, 2004, Theodore, 

1988). On the other hand, PET shows abnormalities in metabolism, that are 

bilateral in around 10 – 40 % of patients with mesial temporal lobe epilepsy 

(MTLE), more pronounced on the side where hippocampal sclerosis is present 

(Wieser and Epilepsy, 2004).  A study has correlated interictal PET metabolism 

with ictal hyperperfusion in MTLE and hippocampal sclerosis patients (Nelissen 

et al., 2006).  The authors studied 11 patients who had been diagnosed with 

MTLE and hippocampal sclerosis. In addition, 11 healthy volunteers were also 

studied. All patients having MTLE underwent inter-ictal and ictal SPECT. 

Technetium-99m-ethyl cysteinate dimer (99mTc-ECD) was used as tracer. Ictal 

SPECT injection was performed during complex partial seizures at a median of 

27 seconds after seizure onset during video recording for clinical purposes. PET 

images were obtained by using FDG after injection of 150 MBq FDG. All images 

were flipped for aligning the seizure onset zone over the same side (Nelissen et 

al., 2006).   Analysis was carried out with statistical parametric mapping (SPM) 

for comparing SPECT and PET between healthy and MTLE patients. When 
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comparing ictal and interictal perfusion, hyperperfusion was higher during ictal 

state in temporal lobe when hippocampal sclerosis was present. The areas with 

hyperperfusion were on the seizure onset, ipsilateral inferior frontal lobe and 

contralateral anterior cerebellum. Furthermore, slight degrees of hyperperfusion 

were seen in the ipsilateral insula and parietal lobe, and in parts of the 

cerebellum. Ictal hyper-perfusion was seen in all patients in the ipsilateral 

temporal lobe and insula. Bilateral occipital hyperperfusion was present in 90% 

of the patients and 50% presented ipsilateral hyperperfusion. Ictal SPECT 

hypoperfusion was seen in the ipsilateral frontal lobes and in a small region of 

the contralateral temporal lobe. PET images were asymmetrical in the temporal 

lobes. Interestingly, the epileptic temporal lobe was the most hypometabolic 

region of the brain in all patients (Nelissen et al., 2006). Frontal hypometabolism 

was clearer patients than in controls. This may suggest that seizure state may 

represent an inter-dynamic metabolic change, which may result from seizures 

disrupting functional pathways (Nelissen et al., 2006).  

 

8.1.5 EEG fMRI 

Tracing seizure spreading in TLE patients has been performed using EEG-fMRI, 

which allows to simultaneously measure hemodynamic and EEG changes. A 

recent study using EEG-fMRI was performed to investigate functional 

connectivity changes immediately prior to the appearance of interictal spikes on 

the EEG in patients with MTLE (Faizo et al., 2014). Fifteen patients diagnosed 

with MTLE and 15 healthy control subjects were assessed. For MTLE patients, all 

EEG-fMRI recordings were interictal. For volunteers, scans were conducted 
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while awake. The analysis of EEG-fMRI was conducted in 4 stages. First, 

identification of event-related potentials to recognize the activation of the mesial 

temporal lobe in the ipsilateral hippocampus. Second, time course of interictal 

activity within the hippocampal region. Third, functional connectivity was 

analysed through peak voxel to display large scale networks during spike and 

rest periods. Fourth, functional connectivity was correlated with seizure activity 

based on recordings from the last seizure (Faizo et al., 2014). Authors found that 

spike activation was seen in the ipsilateral hippocampus and was accompanied 

by increased activity in the ipsilateral parahipocampal gyrus, middle temporal 

gyrus, precuneus, contralateral middle temporal gyrus and insula. Activity in the 

ipsilateral medial frontal gyrus and the right inferior and superior frontal gyri 

was decreased during interictal spikes. At rest, the ipsilateral hippocampus was 

functionally connected with the contralateral hippocampus, the parahipocampal 

gyri, fusiform gyri, amygdala and cerebral cortex bilaterally.  The strongest 

connectivity was demonstrated with the contralateral hippocampus and the 

parahipocampal gyrus, amygdala and cerebellar cortices bilaterally. During the 

pre-spike state, the ipsilateral hippocampus demonstrated connectivity to the 

ipsilateral parahipocampal gyrus, bilateral cerebellar cortices, ipsilateral insula, 

bilateral lentiform nuclei and contralateral nucleus. During the spikes the 

ipsilateral hippocampus showed an increased connectivity to the contralateral 

insula and negative correlations with both superior frontal gyri. During the pre-

spike period, the connectivity of the ipsilateral hippocampus to the contralateral 

hippocampus, both parahipocampal gyri were significantly reduced (Faizo et al., 

2014).  
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These findings demonstrated that reduced ipsilateral hippocampal activity and 

loss of bilateral hippocampal functional connectivity just prior to the 

manifestation of spikes on the EEG. Also, authors showed that the presence of 

pre-spike connectivity was related to recent seizures. This suggests that 

functional connectivity was influenced by the last seizure (Faizo et al., 2014). 

One of the most interesting findings was the loss of connectivity between both 

hippocampi seconds after the appearance of spikes on the EEG (Faizo et al., 

2014). These results were similar to previous studies using EEG-fMRI, in which 

authors found reduced functional connectivity between both hippocampi in 

patients with unilateral MTLE compared to healthy controls (Pittau et al., 2012). 

These findings suggest that the brain in patients with MTLE has different 

behaviour during the pre-ictal and ictal periods, where hippocampal connectivity 

seems to be reduced.  

8.1.6 DTI 

Tractography is becoming part of routine clinical and research techniques in 

some epileptic centres. DTI is applied when assessing MTLE candidates for 

surgery due to its suitability for detecting white matter tracts. Recently, DTI has 

questioned the traditional theory with regards the functional pathways between 

both temporal lobes which postulates only the dorsal commissure of the 

hippocampus is functional in humans.   

 

A study using DTI and statistical parametric mapping conducted in 35 MTLE 

patients and in 36 healthy volunteers revealed that in MTLE patients show 

increased median diffusivity which was observed in hippocampal, 
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parahippocampal region and it extended more laterally from the temporal pole 

to the temporo-occipital junction (Thivard et al., 2005). Additionally, decreased 

mean diffusivity was found contralateral to the seizure onset zone, which 

involved the amygdala, the temporal pole and hippocampal/parahippocampal 

region. Authors also found a decreased fraction of anisotropy in four different 

brain regions located in the hemisphere ipsilateral to the seizure onset zone. 

These regions included the temporal stem, laterally extending from the temporal 

pole to the temporo-occipital junction, the arcuate fasciculus, involving frontal 

and parietal regions with an extension to the parieto-occipital junction in the 

cingulum and the corpus callosum (Thivard et al., 2005). Surprisingly, when 

regression analysis was performed between mean diffusivity, fraction 

anisotropy, seizure onset age, duration of epilepsy and the frequency of seizures, 

no significant differences were found (Thivard et al., 2005). Overall, this study 

demonstrated that diffusion abnormalities in MTLE patients are not restricted to 

the seizure onset zone but more zones are involved within an epileptic network, 

such as the contralateral hippocampus and extratemporal structures (Thivard et 

al., 2005). Unfortunately, this study did not incluce intracranial EEG data, which 

could have traced seizure spreading to the structures studied.  

 

The limbic system has been the subject of research with modern neuroimaging 

methods in patients with MTLR. The fimbria-fornix and the cingulum are limbic 

white matter bundles containing afferent and efferent connections fromand to 

the hippocampus. It is assumed that in MTLE patients, this circuitry is corrupted. 

Loss of neuronal cell and glisosis has been shown together with granule cell 

reorganization and alterations of interneuronal populations, neuropeptide fibre 
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networks and mossy fibre sprouting (Blumcke et al., 2013). It seems that 

previous histological changes may play a crucial role in altering the physiology of 

the limbic network. Concha et al. investigating the limbic system with DTI in 8 

patients with unilateral drug resistant MTLE and 9 healthy volunteers (Concha et 

al., 2005). Fractional anisotropy in the fornix ipsilateral to MTS was less than the 

two standard deviations in 7 of 8 patients and in 5 of 8 patients on the 

contralateral hemisphere when compared to controls. When measuring the 

cingulum, the fraction of anisotropy was less than 2 standard deviations of 

control subjects in 4 out of 8 patients ipsilateral MTS and in 1 out of 8 patients 

contralateral to MTS (Concha et al., 2005).  This result suggests that the limbic 

system is altered in patients with MTS, which may cause aberrant pathways for 

seizure spreading.  

 

Recently, a study examined grey and white matter tracts in patients with TLE 

and bilateral hippocampus sclerosis by using DTI analysed by voxel-based 

morphometry focusing on commissural pathways and their role in seizure 

spreading (Miro et al., 2015).  The study included 7 patients with drug resistant 

TLE who ahad bi-temporal hippocampus sclerosis, 14 patients with drug left TLE 

resistant epilepsy and 15 healthy control subjects. All epileptic patients 

underwent video EEG telemetry as part of their routine clinical care. All 

participants underwent whole brain structural MRI scans using a 3.0 Tesla MRI 

and a DTI sequence, which was carried out using diffusion tensor spin-echo 

planar imaging with coverage of the whole head. By voxel-wise analysis of the 

T1-weighted images, authors found widespread damage on the left hemisphere 

in all patients who had bi-temporal hippocampus disease when compared to 
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control subjects. A reduction in white matter pathways was also found, which 

was seen bilaterally in the parahipocampal gyrus, fornix, and the hippocampal 

commissure. Furthermore, there was a significant reduction in grey matter in the 

left hippocampus, thalamus and parahippocampal areas. Numerous pathways 

with decreased fraction of anisotropy were seen including the limbic pathways, 

which connects intra- and interhemispheric brain regions i.e. bilateral fornix, 

internal capsule, cingulum, uncinate fasciculus and the anterior commissure. An 

increased mean diffusion interhemispheric pathways of the body and genu of 

corpus callosum was seen in those patients with bi-temporal hippocampus. 

Additionally, limbic pathways (fornix, internal capsule and uncinate fasciculus) 

and extra-temporal white matter tracts close to the hippocampus, such as the 

inferior longitudinal fasciculus, showed an increased mean diffusion when 

compared to control subjects. Analysis of the limbic pathways between bi-

temporal lobes and left TLE patients showed that the extent of mean diffusivity 

was seen only in bi-temporal patients (Miro et al., 2015). Interesting, the extent 

of the damage in white and grey matter was most prominent on the left 

hemisphere (Miro et al., 2015).  

8.1.7 ELECTRICAL CORTICAL STIMULATION FOR STUDYING TEMPORAL LOBE 

CONNECTIVITY  

In patients assessed for epilepsy surgery, intracranial electrodes are implanted 

to determine the location and distribution of the epileptogenic zone. In these 

patients, different techniques, such as Single Pulse Electrical Stimulation (SPES), 

has been applied for evaluating cortex connectivity and cognitive functions 

(Lacruz et al., 2007, Lacruz et al., 2010b). 
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8.1.8 Studies in animals 

A model of an isolated brain of Guinea Pig has been elaborated to trace seizure 

spreading using imaging and electrophysiological techniques (Federico and 

MacVicar, 1996). Authors examined the role of GABA and glutamate receptor 

subtypes in controlling the spread of seizure activity across the olfactory cortex 

in isolated whole brain of young Hartley guinea pigs weighing 150-250 g. 

Animals were operated under sodium pentobarbital anesthesia (Somnotol; 30 

mg/kg ip). After decapitation, the overlying skull was removed, exposing the 

brain. The isolated brain was then transferred to an incubation-recording 

chamber, which contained warm dextran free artificial cerebrospinal fluid at 12. 

Extracellular and intra cellular recordings were implanted. Spontaneous field 

potentials produced their maximal response in the upper layer of the olfactory, 

peri-rhinal, and insular cortices (I-III) or in the ventral hippocampus near its 

temporal pole. Electrographic seizures, if evoked, were recorded at these 

locations. Bipolar concentric stimulating electrodes (Rhodes) were used to 

stimulate the lateral entorhinal cortex unilaterally. In most trails, the duration of 

each stimulation pulse was 0.1 ms at an intensity that evoked field potentials 

with the greatest magnitude. Stimulation frequency was typically 5 Hz, with 

stimulations lasting for 5 – 10 seconds. The brain was free of stimulation for 25 

min between trials if no afterdischarges were observed, or 15 min if 

afterdischarges or seizure activity were observed. Brain viability was tested 

constantly throughout the experiment by observing the amplitude of shapes and 

evoked field potentials (Federico and MacVicar, 1996). Imaging trails were 

acquired by using an Imaging Technology 151 image processor. At least 10 

digitized images were obtained after each experimental trail. Two different 
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images were scanned prior to electrical stimulation. Spontaneous seizures were 

also scanned in this study. Antagonists of GABAA receptor (bicuculline 

methiodide), antagonists of GABAB (CGP 35348), antagonists of NMDA 

recerptors (MK-801), 2-amino-5-phosphonopentanoic acid (AP5), 2-amino-7-

phosphonoheptanoic acid (AP7) and K/A receptors [6-cyano-7-nitroquinoxaline-

2,3-dione (CNQX ) were used to evaluate the association of these receptors 

during seizure induction and  spreading. All drugs were applied via perfusion 

into the artificial cerebro spinal fluid.  

 

After 10 trails of electrical stimulation (15V, 0.1ms 5 – 10s, 5Hz every 5 – 10 

min) at the lateral entorhinal cortex of seven brains, seizure activity was 

provoked in all seven brains. Seizure onset was first seen in the 

entorhinal/hippocampus cortex, which then spread to the posteromedial cortical 

amygdaloid nucleous ipsilateral and then bilaterally. When bicuculline was 

applied to the brain (20 µM), spontaneous seizure activity was seen more 

diffusely throughout the cortex. Spontaneous seizures spread from the 

entorhinal cortex to the posteromedial cortical amygdaloid nucleus faster than 

those seizures evoked by electrical stimulation. Also, seizure spread was more 

widespread when bibiculline was present, involving the posterior perirhineal 

cortex and larger areas of the amygdala. At higher doses of bibiculline (100 uM), 

seizure spreading was even more widespread when compared to lower 

concentrations. In the presence of bicuculline, the amplitude of electrographic 

patterns at seizure onset was larger, and clinical seizures were longer when 

compared to those brains not exposed to bicuculline. On the contrary, when a 
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glutamate agonist was applied to the brain perfusion, both spontaneous and 

electrical induced seizures were supressed.  

 

These results demonstrate that GABAA mediated transmission is functionally 

present and may play an important role within epileptic tissue in limiting the 

spread of seizure activity from entorhinal cortex to the posteromedial cortical 

amygdaloid nucleus and in creating functional pathways or preferential routes of 

seizure spread. GABAB mediated postsynaptic inhibition played no significant 

role in the induction or spread of seizure activity in this study. K/A receptors, but 

not NMDA receptors, are necessary for the induction and subsequent spread of 

seizure activity originating in the entorhinal cortex/hippocampus. Metabotropic 

glutamate receptors can depress the induction and subsequent spread of seizure 

activity in the isolated brain, suggesting that metabotropic glutamate agonists 

might have potential as clinical anticonvulsants. 

8.1.9 Studies in humans 

Seizures may spread unilaterally or bilaterally to areas that are anatomically 

connected (Spencer, 2002a). Reproducible patterns of seizure propagation can 

be correlated with known anatomical pathways and advocate for a working 

human hippocampal commissure (Spencer et al., 1987). The dorsal hippocampal 

commissure has traditionally been considered to be functional in humans (Lieb 

et al., 1991, Wennberg et al., 2002, Gloor et al., 1993). Within the temporal lobe, 

seizures can propagate as follows: 1) spreading from seizure onset zone in the 

hippocampus to ipsilateral neocortex 2) spreading to the contralateral 

hippocampus; and 3) simultaneous propagation to the contralateral 
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hippocampus and ipsilateral neocortex (Spencer et al., 1987, Wennberg et al., 

2002). Approximately 3/4th of seizures with hippocampal seizure onset had 

initial spreading to the ipsilateral temporal neocortex; the remaining 1/4th 

showed initially contralateral spreading (Spencer et al., 1987). The most 

prominent seizure spreading pattern for hippocampal seizures appears to be to 

ipsilateral temporal neocortex or to contralateral temporal hippocampus (Gloor 

et al., 1993).  The contralateral temporal neocortex may also be implicated, 

mainly after contralateral hippocampal spreading (Spencer et al., 1992b).  

 

It has been suggested that phylogenetic involution has rendered the ventral 

hippocampal commissure non-functional and reduced in humans and primates 

(Eross et al., 2009).  In contrast, in lower primates and humans there is evidence 

for an intact dorsal hippocampal commissure (Wilson et al., 1990, Gloor et al., 

1993). The dorsal hippocampal commissure is formed by fibres typically 

provided by the pre-subiculum and posterior parahippocampal gyrus (Velasco et 

al., 2000).  In monkeys, the dorsal hippocampal commissure bilaterally connects 

the entorhinal, parahipocampal and subicular cortices (Eross et al., 2009).  This 

tract is also present in humans (Eross et al., 2009). This might explain why loss 

of CA1 neurons, which projects to the parahippocampal gyrus and presubiculum, 

lead to lack of propagation of hypersynchronous discharges (Velasco et al., 

2000).  

 

However, electrical stimulation of mesiotemporal structures did not 

demonstrate the presence of a functional hippocampal commissure (Inoue et al., 

1999). Instead, data from SPES responses suggest that seizure propagation 
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occurs via multisynaptic pathway from the temporal neocortex to contralateral 

hippocampi (Wilson et al., 1990). This also explains the long interhemispheric 

propagation time for hippocampal onset seizures (Wilson et al., 1990, Lacruz et 

al., 2007). Gloor found that a small proportion of seizures propagated to 

ipsilateral neocortex and then to the frontal lobe, followed by contralateral 

hippocampus (Gloor et al., 1993). The later suggests that seizure spreading may 

have occurred via the anterior commissure or corpus callosum (Eross et al., 

2009). Additionally, Lieb has found that there was frontal lobe involvement prior 

to contralateral hippocampi (Lieb et al., 1991), advocating the corpus callosum 

as a seizure propagation pathway (Eross et al., 2009).  In contrast, Spencer found 

that contralateral neocortex was only implicated after contralateral 

hippocampus (Eross et al., 2009). The ipsilateral and contralateral frontal lobes 

are also implicated in temporal lobe seizure propagation (Adam et al., 1994). It 

has been suggested that ipsilateral temporo-frontal propagation may occur via 

the amygdala-cingulate or parahippocampal projections to the ipsilateral frontal 

lobe from where corpus callosum projections may contribute to contralateral 

frontal lobe ictal spreading (Lacruz et al., 2007).  

 

Recently, in a study undertaken by Jennssen, a total of 112 temporal and extra-

temporal seizures were studied using subdural grids and depth electrodes 

(Jenssen et al., 2011). Out of the 28 medial temporal seizures, 15 propagated to 

the ipsilateral temporal lobe, and only 9 spread to the contralateral medial 

temporal lobe and 4 to the contralateral orbital lobe (Jenssen et al., 2011). The 

authors also studied seizure onset patterns and their relation to seizure 

propagation. Ictal onset consisted of beta or faster activity in 80 seizures 
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(71.4%), alpha activity in 15 seizures (13.4%), theta activity in 5 seizures (4.5%) 

and delta activity in 12 seizures (10.7%). In addition, the ictal pattern existing at 

the time of propagation was beta activity (or faster) in 66 seizures (58.8%), 

alpha activity in 20 seizures (17.9%), theta activity in 18 seizures (16.1%) and 

delta activity in 8 seizures (7.1%). Thirty seizures had fast activity only at the 

onset and 8 only at the time of propagation. These findings suggest that the 

routes of propagation depend fundamentally on the area of seizure onset and its 

anatomical connections. 

 

These studies provided significant understanding of seizure spreading in focal 

epilepsy. However, it is still uncertain if the presence of bilateral connections is 

related to: a) Bilateral changes seen at seizure onset; b) Postsurgical seizure 

control; or c) Pathways for seizure propagation. 

 

 

  Outcome from surgery 

Outcome from epilepsy surgery is based on the comparison of seizure control 

before and after epilepsy surgery. Additionally, to reduction in seizures, 

neuropsychiatric and neurological deficits should be also considered. 

Importantly, the effects on patient’s daily activities and well-being should 

determine the success or failure of surgery.  

 

It is recommended that after surgery, the degree of seizure control should be 

evaluated regularly, initially twice a year and following once in a year. These 

follow ups are determined by patient’s response to treatment. It is also common 
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that patients become seizure free after surgery; nevertheless seizures can re-

emerge in the future. The following variables can be assessed in order to obtain a 

consistent degree in seizure control: ictal incontinence seizure, seizure 

frequency severity and duration, presence of an aura, which offers an 

opportunity to avoid injury.   

 

Engel proposed a scale of outcome with respect to epileptic seizures. This scale 

quantifies the benefits of post-surgical seizure control. This scale has proven to 

be relatively easy to use and has a good degree of assertiveness with respect to 

seizure control, therefore is broadly used (Table 1). Additionally, this scale has 

the advantage of combining seizure control with a degree of impact on quality of 

life (Engel, 1993). In 2001, The ILAE proposed another postsurgical outcome 

scale (Wieser et al., 2001). ILAE scale measures outcome based on frequency of 

postoperative seizure days (Table 2). In this scale, subjective classification of 

seizure control or quality of life is not included (Wieser et al., 2001). Engel and 

ILAE classifications were compared and demonstrated good inter-rater 

reliability (Durnford et al., 2011).   
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9.1.1 Table 1 Post surgical outcome scale proposed by Engel (Engel et al., 1993). 

Engel Outcome Scale (1993) 

 

Outcome Definition 

Group Subgroup 

I 

Free of disabling seizuresa 

a Completely seizure free since surgery 

b Non-disabling simple partial seizures only since surgery 

c Some disabling seizures since surgery but free of disabling seizures 

for two years 

d Generalized convulsion with anti-epileptic drug withdrawal only 

II 

Rare disabling seizures 

a Initially free of disabling seizures but rare disabling seizures now 

b Rare disabling seizures since surgery 

c More than rare disabling seizures after surgery but rare disabling 

seizures for at least two years 

d Nocturnal seizures only 

III 

Worthwhile improvement 

a Worthwhile seizure reduction 

b Prolonged seizure-free intervals amounting to greater than half the 

follow-up period but not less than two years. 

IV 

No worthwhile improvement 

a Significant seizure reduction 

b No appreciable change 

c Worse 

 

a – excludes early post-operative seizures, ie first few weeks. 
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9.1.2 Table 2. Post surgical outcome scale proposed by ILAE (Wieser et al., 2001) 

ILAE outcome Scale 2001  

Outcome 

class 

Definition 

1  Completely seizure free, no auras 

2 Only auras, no other seizures 

3 1 - 3 seizure days per year ± auras 

4 4 seizure days per year to 50% reduction in baseline ± auras 

5 more than 50% reduction to 100% increase in baseline ± auras 

6 more than 100% increase in baseline ± auras 
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2. CHAPTER TWO 

 Prognostic value of intracranial seizure onset patterns 

for surgical outcome of the treatment of epilepsy.  
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Epub 2014 Jun 23. 
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3. CHAPTER THREE 

 Prognostic value of the of the second ictal intracranial 

pattern for the outcome of epilepsy surgery.  
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Epub 2015 Jul 9 
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 ON-LINE SUPPLEMENTARY DATA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S1. Number of patients with each outcome grade according to resection 

lobe. 

Engel Class I II III IV Total 

 
N % N % N % N % N % 

Frontal 4 30.8 0 0.0 7 53.8 2 15.4 13 100 

Insula 0 0.0 0 0.0 1 100 0 0.0 1 100 

Occipital 2 100 0 0.0 0 0.0 0 0.0 2 100 

Parietal 1 50 0 0.0 1 50 0 0.0 2 100 

Temporal 23 51.1 9 20.0 11 24.4 2 4.4 45 100 

Total 30 47.6 9 14.3 20 31.7 4 6.3% 63 100.0 
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 ON-LINE SUPPLEMENTARY DATA 

 

 

 

 

 

Table S2. Relation between SIP and surgical outcome in all and in temporal 
resections. 

ALL RESECTIONS I II III IV 

SIP % % SIP % 

Alpha (N=5) 80.0 0.0 20.0 0.0 

Decrement (N=26) 57.7 15.4 23.1 3.8 

Delta (N=2) 50.0 0.0 50.0 0.0 

Fast (N=12) 16.7 16.7 50.0 16.7 

Sharp-wave (N=5) 40.0 20.0 40.0 0.0 

Spike-wave (N=11) 36.4 18.2 36.4 9.1 

Spikes (N=1) 100 0.0 0.0 0.0 

Theta (N-1) 100 0.0 0.0 0.0 

Total (N=63) 47.6 14.3 31.7 6.3 

  

TEMPORAL 
RESECTIONS 

I II III IV 

SIP % % % % 

Alpha (N=4) 100 0.0 0.0 0.0 

Decrement (N=18) 55.6 22.2 22.2 0.0 

Delta (N=2) 50.0 0.0 50.0 0.0 

Fast (N=6) 16.7 33.3 33.3 16.7 

Sharp-wave (N=4) 50.0 25.0 25.0 0.0 

Spike-wave (N=9) 33.3 22.2 33.3 11.1 

Spikes (N=1) 100 0.0 0.0 0.0 

Theta (N=1) 100 0.0 0.0 0.0 

Total (N=45) 51.1 20.0 24.4 4.4 
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 ON-LINE SUPPLEMENTARY DATA 

 

 

 

 

 

Table S3. Relation between SIP and surgical outcome. χ2 = two tailed Chi squared 
test with Yates correction (1 degree of freedom); * =  significant difference 

 

SIP COMPARED Good Poor Statistic P 

ALL PATIENTS 

FA  
Any other SIP 

2 
28 

10 
23 

χ2=4.264 0.0389 * 

FA 
EDE  

2 
15 

10 
11 

χ2= 4.053 0.0044* 

EDE  
Any other SIP 

15 
15 

11 
22 

χ2= 1.179 0.2779 

Spike-wave 
Any other SIP 

4 
26 

7 
26 

χ2=0.241 0.6238 

TEMPORAL PATIENTS 
FA 
Any other SIP 

1 
22 

5 
17 

χ2= 1.889 0.1693 

FA 
EDE 

1 
10 

5 
8 

χ2= 1.399 0.2370 

EDE  
Any other SIP 

10 
13 

8 
14 

χ2= 0.033 0.8551 

Spike-wave 
Any other SIP 

3 
20 

6 
16 

χ2=0.673 0.4122 

EXTRATEMPORAL PATIENTS 
FA 
Any other SIP 

1 
6 

5 
6 

χ2= 0.731 0.3927 

FA 
EDE 

1 
5 

5 
3 

χ2= 1.367 0.2423 

EDE  
Any other SIP 

5 
2 

3 
7 

χ2= 1.418 0.2338 

Spike-wave 
Any other SIP 

1 
6 

1 
10 

χ2=0.117 0.7324 

Good = good surgical outcome (grade I of Engel classification) 
Poor = poor surgical outcome (grades II, III or IV of Engel classification) 
FA = fast activity 
DEE = diffuse electrodecremental event   
SIP = second ictal pattern 
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 ON-LINE SUPPLEMENTARY DATA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE S4. Seizure pattern evolution. Number of time and proportion of times that each SIP patterns occurs after each FIP pattern. 

  

                 SIP              
FIP 

Alpha EDE Delta FA Sharp-Wave Spike-wave Spikes Theta Total 

N=5 N=26 N=2 N=12 N=5 N=11 N=1 N=1 N=63 

Alpha 0.0% 3.8% 0.0% 0.0% 0.0% 18.2% 0.0% 0.0% 4.8% 

EDE 20.0% 0.0% 0.0% 75.0% 20.0% 9.1% 100% 0.0% 20.6% 

Delta 0.0% 3.8% 0.0% 0.0% 20.0% 9.1% 0.0% 0.0% 4.8% 

FA 20.0% 23.1% 50.0% 0.0% 60.0% 54.5% 0.0% 100% 28.6% 

FA-DEE 0.0% 53.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 22.2% 

Sharp-wave 20.0% 3.8% 0.0% 0.0% 0.0% 9.1% 0.0% 0.0% 4.8% 

Spike-wave 40.0% 11.5 0.0% 25.0% 0.0% 0.0% 0.0% 0.0% 12.7% 

Spikes 0.0% 0.0% 50.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.6% 
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4. CHAPTER FOUR 

 Incidence of functional bi-temporal connections in the 

human brain in vivo and their relevance to epilepsy 

surgery. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cortex. 2015 Apr;65:208-18. doi: 10.1016/j.cortex.2015.01.011. Epub 2015 Feb 

7. 
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5. CHAPTER FIVE 

 Discussion 

The present thesis has sought to elucidate some aspects of the pathophysiology 

of seizure onset in focal seizures recorded with intracranial electrodes and its 

significance to epilepsy surgery.  

 

In the present thesis, I described the different patterns seen at seizure onset and 

its relation with surgical outcome in a large series (Jimenez-Jimenez et al., 

2015b). I found that focal fast activity seen as the first ictal pattern was 

associated with good surgical outcome. As first ictal pattern, focal fast activity 

was related to favourable seizure control after surgery whereas diffuse flattening 

of the EEG was related with poor post-surgical outcome (Jimenez-Jimenez et al., 

2015b). Seizures starting with simultaneous fast activity and EEG flattening were 

correlated to good outcome more weekly than those starting with fast activity. In 

addition, I have described a discharge that often precedes seizure onset called 

preceding epileptiform discharge (PED) (Jimenez-Jimenez et al., 2015b). PED can 

have different spatial extent: focal, lobar and widespread/bilateral. Interesting, 

PED presence and extent does not seem to affect surgical outcome (Jimenez-

Jimenez et al., 2015b). I found that there is no relation between different seizure 

onset patterns and underlying pathology.  

 

After seizure onset, most seizures comprise a complex constellation of evolving 

patterns occurring simultaneously or concatenate. Consequently, in addition to 
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the study of first ictal onset pattern, I also investigated the prognostic value of 

the second ictal pattern for surgical outcome (Jiménez-Jiménez et al., 2016). 

When fast activity was seen as the second ictal pattern, it was associated with 

poor surgical outcome. In contrast diffuse electrodecremental event as second 

ictal pattern was associated with favourable surgical outcome (Jiménez-Jiménez 

et al., 2016). In addition, delayed second ictal patterns (≥10sec) appear to be 

associated with good outcome in temporal lobe epilepsy (Jiménez-Jiménez et al., 

2016).  

 

It is difficult to understand the mechanisms for the bilateral EEG patterns 

(diffuse flattening, preceding epileptiform discharge) seen at seizure onset in 

focal seizures. In an attempt to establish if such diffuse changes are due to 

cortical connections, I used single pulse electrical stimulation SPES to study 

contralateral functional connections of the temporal lobe and their association 

with bilateral seizure onset patterns and surgical outcome (Jimenez-Jimenez et 

al., 2015a). Functional connectivity between medial temporal lobe structures 

was scarce. The highest incidence of contralateral temporal connections was 

between fusiform gyri. No difference was found in the proportion of patients 

showing bilateral seizure onset patterns among patients with or without 

contralateral temporal projections. In addition, there were no statistical 

difference in the proportion of patients showing Engel Class I between patients 

with and without contralateral temporal connections (Jimenez-Jimenez et al., 

2015a). 
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In my studies, diffuse electro decremental event was one of the most mystifying 

ictal patterns, since widespread changes are not expected in focal seizures. 

Indeed widespread ictal changes can also be recorded during the preictal period 

(Perucca et al., 2013). The mechanisms of widespread pre ictal and early ictal 

changes remain unknown.  

 

The presence of widespread iEEG patterns at seizure onset in focal seizures 

opens a debate for the classical view of a well-defined epileptogenic zone. The 

later suggests that seizures may arise from a large or widespread network. 

Neuronal hyperexcitability may reverberate within the network culminating in 

the onset of overt ictal EEG patterns in particular regions (Alarcon et al., 1995). 

Moreover, the extension of the network appears to be reflected on the EEG ictal 

onset pattern. Furthermore, some widespread EEG patterns at seizure onset are 

associated with worse post-surgical seizure control, suggesting that 

identification of the network components and their disconnection may be 

relevant to improve surgical results. If widespread EEG changes result from 

axonal-synaptic connections, their association with poor outcome would suggest 

that targeting such connections could improve surgical outcome.  

 

An attempt to explain the flattening seen on the EEG has been provided by 

spreading depolarization (Leao, 1947). In 1944, Leao induced epilepsy in rabbits 

by intraperitoneal injection of dial-urethane solution in doses of 0,55 to 0,75cc 

per kg. Nembutal was used occasionally.  He found that minimal electrical 

stimulation was associated with flattening of the EEG (Leao, 1947). Spreading 

depression has been defined, as a self-propagating depolarization wave involving 
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both, neuronal and astroglial mechanisms (Dreier et al., 2012, Leao, 1947, 

Broberg et al., 2014, Hablitz and Heinemann, 1989). Spreading depression shows 

an initial depolarization followed by EEG flattening (Broberg et al., 2014, Dreier 

et al., 2012, Leao, 1947, Hablitz and Heinemann, 1989). Spreading depression 

has been implicated in the pathophysiology of several neurological disorders, 

including migraine with aura, epilepsy, and the progression of acute brain injury 

(Broberg et al., 2014, Dreier et al., 2012).  

 

A recent study in adult Sprague Dawley rats (315–450 g), spreading depression 

was induced by mechanical (pipette insertion and/or intracranial solute 

injection) and metabolic (fluorocitrate) factors (Broberg et al., 2014). This study 

suggested that cortical spreading depression might be involved in generating the 

electrodecremental events seen on the EEG (Broberg et al., 2014). Thirty 

minutes after inducing epilepsy in rats, the authors proceeded to record 

intracranial EEG and described 5 phases on the EEG. First, there was neuronal 

depolarization during which ripples were observed close to the injection site for 

the epileptogenic agent. Second, depression of cortical electrical activity was 

seen which appeared as flattening on the EEG. This depression lasted for 1–2 

min. During this phase, the frequency band of suppressed activity was 25–100 

Hz. This is then followed by a mixed third phase just after the flattening has 

recovered, when an abundance of irregular local low frequency spiking appears 

even though higher frequencies are still suppressed. Fourth, depression of 

activity was still seen but frequencies started to recover slowly. Fifth, an 

excitatory process appeared and the EEG started to recover from depression. 
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This last phase occurred approximately 8 min after a single mechanical stimulus 

(micropipette injection) (Broberg et al., 2014).  

 

This report is in concordance with the study conducted by Hablitz and 

Heinemann in rats rendered epileptic by Picrotoxin (50 microM) (Hablitz and 

Heinemann, 1989). The authors found spike activity and electrodecremental 

events on intracranial EEG recordings, and concluded that decrement was due to 

depressed neuronal activity, during which cells repolarize and extracellular 

potassium levels are restored (Hablitz and Heinemann, 1989). The cortical 

spreading theory seems to be an interesting concept, which may help solve the 

present knowledge gap with regards to electrodecremental events. These studies 

have been conducted in animal models of epilepsy. It remains uncertain whether 

the same explanation may be responsible for human findings.  

 

Another mystifying pattern is the preceding epileptiform discharge (PED). PEDs 

were present in 75.4% of patients, and among these, PEDs were widespread or 

bilateral in 63% (Jimenez-Jimenez et al., 2015b). Interestingly, the presence of 

widespread or bilateral PED was not correlated with surgical outcome. The 

physiological and clinical significance of PEDs are unclear, and widespread PEDs 

are often disregarded in clinical practice. Yet, their association to seizures is 

obvious, as they occur immediately preceding the EEG onset of nearly every 

seizure in the same patient. The absence of relation between bilateral PEDs and 

surgical outcome suggests that PEDs may not be part of the seizures but PEDs 

may be a condition facilitating seizure occurrence. Single pulse electrical 

stimulation (SPES) may constitute a novel approach to the study of PEDs. 
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Responses to SPES can resemble other related physiological waveforms such as 

interictal epileptiform discharges and K complex (Voysey et al., 2015, Nayak et 

al., 2014). It would be expected that in areas close to seizure onset, SPES would 

be able to induce responses similar to PEDs. SPES responses resembling PEDs 

could confirm whether PEDs are part of the seizure. 

 

Approximately 33% of temporal lobe patients assessed for surgery with 

intracranial electrodes show bilateral changes at seizure onset (Jimenez-Jimenez 

et al., 2015b). As stated above, the nature of such changes remains unknown. We 

hypothesized that if the incidence of bilateral changes at seizure onset is due to 

synaptic transmission through anatomical pathways, they should be related to 

the presence of functional bilateral connections. Additionally, removal of such 

connections should be related with surgical outcome. Recent connectivity 

studies with neuroimaging seem to support this interpretation. Diffusion tensor 

imaging (DTI) suggests that patients with mesial temporal lobe epilepsy exhibit 

decreased connectivity to ipsilateral thalamocortical regions and increased 

connectivity to ipsilateral medial temporal lobe, insular, and frontal connectivity 

(Bonilha et al., 2013b). Furthermore, those remaining with seizures after surgery 

exhibited higher connectivity between structures. However, a study of resting 

state with functional MRI in temporal lobe epilepsy suggests decreased local and 

inter-hemispheric functional connectivity and increased intra-hemispheric 

connectivity compared to normal controls (Maccotta et al., 2013b).  

 

Seizure onset is a complex phenomenon with several patterns that may arise 

focal in around 31.9%, lobar in around 47.8% and widespread in 20.3%, 
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frequently involving more than one pattern type at onset (Jimenez-Jimenez et al., 

2015b). Identifying a specific pattern in the clinical scenario with such complex 

features at seizure onset can be challenging. Therefore, we hypothesize that the 

second ictal pattern that follows the first ictal patter at seizure onset has a 

prognostic value for surgical outcome. I have shown that the nature of the 

seizure onset pattern has different prognostic value with regards to surgery. For 

instance, when diffuse electrodecremental event was present as the second ictal 

pattern, it was associated with good surgical outcome (Jiménez-Jiménez et al., 

2016). The opposite is exhibited when fast activity appears as second ictal 

pattern (Jimenez-Jimenez et al., 2015b). This surprising finding can be explained 

by the fact that decrement tend to occur after fast activity, and consequently 

would be associated with good outcome if occurring as a second ictal pattern. 

 

 A recent study using scalp EEG pursued to elucidate the prognostic value of ictal 

patterns and surgical outcome in 111 seizures from 47 diagnosed with temporal 

lobe epilepsy (Pelliccia et al., 2013).  Authors found that flattening of the EEG 

was the most common pattern, which was present in 48% of patients, followed 

by fast activity seen in 22% of patients. Other patterns were less commonly seen 

(Pelliccia et al., 2013). Unexpectedly, good surgical outcome was seen in 74.4% 

when flattening of the EEG was the ictal pattern. Good surgical outcome 

observed with flattening of the EEG may be the result of seizure onset evolution, 

as fast activity is difficult to record on the scalp. 
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6. CHAPTER SIX 

 Conclusion 

 

The prognostic value of ictal patterns depends on where in the seizure they 

occur. Pathology was not correlated to any specific pattern. Additionally, the 

present findings corroborate that the functionality of bilateral temporal 

connections in humans is limited and does not affect the surgical outcome. In 

addition, we found better postsurgical outcome in temporal patients with longer 

SIP latencies. In temporal lobe patients, we found better postsurgical outcome in 

patients with longer SIP latencies. These findings suggest that those patients 

where the FIP remains focal for longer would have better outcome.   
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