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Abstract

The growth in large number of users and data exchange in cellular networks,

has led to an urgent improvement of the power efficiency in cellular networks.

The capacity and coverage are of main concern due to the fast growing appli-

cations and demand in different areas of use. The scarcity of the traditional

communications resources like time and spectrum and the safety limits on

transmit power from the base stations antennas as well as the mobile termi-

nals demand the use of new additional resources such as spatial dimensions

and cooperation for the realisation of the future cellular networks. Different

distributively overlaid wireless cellular network systems are being deployed

to meet demand for high data rates. However, these distributively overlaid

wireless cellular networks can cause higher inter-cell interference if the signals

from the source antennas are not combined and coordinated. Therefore, the

solution to eliminating interference is considered as the benchmark for reduc-

ing the power consumption in the network. This thesis aims to address these

concerns by proposing different algorithm techniques based on beamform-

ing for Multi-Cell Processing (MCP) addressed across multiple coordinating

multi-antenna base stations.

First, a distributed optimization problem in a standard semidefnite relax-

ation (SDR) is introduced that minimizes a combination of the sum-power,

used by each base station (BS) to transmit data to its local users, and the

worst-case of the resulting overall interference induced on the other users

of the adjacent cells in the presence of imperfect channel state information

(CSI). The aim is to ensure that the worst-cases of the signal-to-interference-

plus-noise ratio (SINR) at each user remains above the required level. The

feasibility solutions are achieved for certain sets of SINRs only due to re-

laxation of optimal beamforming. To avoid relaxation and achieve higher

SINRS, a second-order cone programming (SOCP), is introduced which



is solved efficiently and achieve higher SINRs. Not only for its power

efficiency improvement, but, also SOCP algorithm reduces the complexity of

the extra signalling overhead.



0.1 Abbreviations

AoD Angle of departure

BS Base station

CSI Channel state information

CBF Coordinated beamforming

CoMP Coordinated multi point

CR Cognitive radio

DAS Distributed antenna system

DBF Decentralised beamforming

dB Decibel

DDA Distributed-array antenna

DL Downlink

ECG Energy Consumption Gain

FDD Frequency division duplexing

GPS Global Positioning System

ICI Inter-cell interference

IEEE Institute of Electrical and Electronics Engineers

IMT International mobile telecommunications

JP Joint processing

KKT Karush-Kuhn-Tucker

LMI Linear matrix inequality

LTE Long term evolution

LTE-A Long term evolution-Advanced

MAC Multiple access channel

MS Mobile station

MCP Multi-cell processing

MANET Mobile Ad hoc NETwork

MBR Maximum bit rate
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ME Mobile equipment

MSC Mobile switching centre

MU-MIMO Multiple user MIMO

MBF Multi-cell beamforming

MIMO Multiple input multiple output

MISO Multiple input single output

MMSE Minimum mean squared error

NC Network coding

OFDM Orthogonal frequency division multiplexing

OFDMA Orthogonal frequency division multiplexing access

OTBF Orthogonal Transmit BeamForming

PACR Power Aware Cooperative Routing

PHY Physical

QoS Quality of service

RS Relay station

SINR Signal-to-interference-plus-noise ratio

SDP semidefinite programming

SDR Semidefnite relaxation

SC Small cell

SC-BS Small cell base station

SOCP Second-order cone programming

SU-MIMO Single user MIMO

SNR signal-to-noise ratio

UE User equipment

UHF Ultra high frequency

UL Uplink

ULA Uniform Linear Array
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UMTS Universal Mobile Telecommunications System

UWB Ultra Wide Band

UPA user position aware

WAHN Wireless Ad hoc Network

WiFi Wireless-Fidelity

WiMax Worldwide interoperability for Microwave access

WMN Wireless Mesh Network

WLAN Wireless Local Area Network

WSN Wireless Sensor Network

ZF Zero forcing

ZMCSCG Zero mean circularly symmetric complex Gaussian
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0.2 Symbols

a vector a

a scaler a

A matrix A

C The set of complex numbers

Cn n-dimensional complex Cn

R The set of real numbers

Rn real vectors Rn

Hn complex Hermitian matrices Hn

A � B A - B is a positive semidefinite matrix

(A)T transpose of A

(A)H conjugate transpose of A

Tr(A) trace of matrix of A

A � 0 matrix A is positive semidefinite

E(.) the expectation of a random variable

0 Vector with all elements equal to zero

1 Vector with all elements equal to one

dom Domain of a function

diag(.) Square diagonal matrix with elements of input

vector placed on main diagonal

Pr(.) Probability operator

exp(.) Exponential operator

log(.) Natural logarithm

log2(.) Base 2 logarithm

rank(.) Matrix rank
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∥∥.∥∥ the Euclidean norm∥∥A∥∥
F

Frobenius norm of A

<a,=a real and imaginary parts of a

[A]i,j (i, j)th entry of A

|a| magnitude of a

a � 0 all elements of a are positive

a � 0 all elements of a are nonnegative

a � b element-wise greater than or equal to

a � b element-wise greater than

ei column unit vector with a suitable size

which contains all zeros

A ∗B = B ∗A Scalar (dot) product of two vectors

A×B = −(B×A) Vector (cross) product of two vectors

IN×N N ×N identity matrix with a suitable size[
a

a

]
�K 0 a ≥

∥∥a∥∥
A = [a1 a2 · · · an] is m× n
vec(A) = [aT1 aT2 · · · aTn ]T is mn× 1

vec(A) stacks A into a vector columnwise1

hi Channel vector of user i

Ĥ = [ĥ1, ...ĥU ] set of complex channel of locally active users

Ĝ = [ĝ1, ...ĝN ] set of complex channel of the users in the adjacent cells

wi beamforming vector of user i

W Matrix of all the beamforming vectors
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Chapter 1

Introduction

1.1 Motivation

The rapid population growth and the increased demand for mobile devices

has alarmed the field of mobile communication and brought it to the forefront

more than ever before. Developing the new network requires careful consid-

eration in terms of power consumption, latency and reliability of the network.

One of the key challenges in wireless communication is to cut down the power

consumption, whilst at the same time maintaining an acceptable quality of

service. The focus is to enhance new techniques to improve the energy effi-

ciency throughout the network, particularly at the base stations. It has been

suggested that telecommunication sector contribute about 2% of the global

carbon dioxide (CO2) emissions but, this could rise to 4% by 2020 based on

the current growth in mobile communications. With the growth in mobile

communications, operators are increasingly concerned regarding the total en-

ergy consumption in cellular network [2]. Different technologies are being put

in place by many network operators for energy efficient measures. This in-

cludes, the installation of a single RAN technology by Vodafone, which allows

multiple network radio technologies, 2G, 3G and 4G to be run from a single

base station [3], [4]. The IET has reported that a typical 3G base station

1



CHAPTER 1. INTRODUCTION

uses about 500W of input power to produce only about 40W of output RF

power [5]. The heat generated by inefficient operation must also be removed,

typically by air conditioning, which adds further to the base station’s overall

power consumption. It has been concluded that a typical average annual

energy consumption of a radio technology, 3G base station is approximately

4.5MWh. Hence for a 3G mobile network covering an area such as the entire

country of UK, which has around 12,000 base stations, the total energy con-

sumed will be more than 50GWh per year. This causes a large amount of

CO2 emission as well as contributing to the network’s operating costs. The

strategy taken by Vodafone by including activating new energy-saving soft-

ware features such as transceivers that switch-off automatically in periods of

low traffic, has played a major part in reducing the energy consumption at

the base station by up to 10%. Whoever, in commercial cellular networks,the

basis for measuring the efficiency and effectiveness of a service is whether it

is cost effective. Therefore, BSs are densely deployed by the providers of ser-

vice in order to guarantee a minimum service-level agreement in line with the

users needs during peak traffic periods. Also, a great consideration is needed

at the planning stage to determine which base stations can be safely turned

off, and what adjustments are needed from one or more neighbouring base

stations to ensure complete coverage. To completely turn off a group of base

stations could lead to the reconfiguration of the entire wireless communica-

tions network. Different approaches have been suggested such as the traffic

transfer concept between neighbouring cells during the dynamic operation of

BSs. When a set of BSs is switched off,the other set of active BSs instead

serves traffic demands that were previously associated with the switched-off

BSs utilizing coverage compromising techniques, e.g., [6] - [7]. The energy

consumption of BSs is further split into two different categories: fixed energy

consumption and traffic-proportional energy consumption. The fixed energy

consumption, resulting from power amplifier operations and cooling systems,

is unavoidable when a BS remains powered on even if the BS is in an idle state

2



CHAPTER 1. INTRODUCTION

handling no traffic [8]. The former category is dependent on the size limit

of the cell. This shows that, the proportion of the fixed energy consumption

increases as the BS dimensions increase, in which the BS dimension has a

limited capacity, which is the maximum combined data rate of all the users

in the cell. The limits lead to the existence of the order of cells, femtocells,

picocells, microcells, and macro-class BSs. Different operators and telecom-

munication business leaders are looking at different ways to complement the

current macrocellular networks in order to meet the traffic demand and the

unstoppable demand for mobile data. This is growing rapidly and the growth

could further increase in the future. Different strategies for developments in

technology and network topology have been identified to satisfy this demand.

These include [9]:

1. Spectrum sharing[10] [11]:

It appears almost the entire cellular network is designed for and operate in the

dedicated licensed spectrum. The majority of spectrums suitable for wireless

communications are occupied and have already been allocated. Neighbouring

cells need to have different frequency bands in order to combat the intercell

interference for the users of the adjacent cells. At the same time there are

other spectrum usage authorization models for wireless communication, such

as unlicensed spectrum or, as widely discussed currently but not yet imple-

mented in practice, various forms of licensed shared spectrum. Operators

share their licensed spectrum, such as dynamic shared access, when the net-

work capacity varies, enable more efficient re-use of spectrum based on user

access where and when it is needed. This is an example of two operators A

and B with different users. If one lacks spectral resources and the other has,

the insufficient operator can borrow spectrum from the sufficient operator for

a short period of time. This allows a better utilization of the spectrum and

gives operators the ability to accommodate many users within its network.

The main concern to this type of sharing is cooperation between operators.

3



CHAPTER 1. INTRODUCTION

A lack of cooperation could cause a high intercell interference to each oth-

ers users. This could lead to a total degradation of performance, especially

the users on the edges of the cell and thereby causing a degradation of the

Signal-to-Interference-plus-Noise-Ratio (SINR) at the intended receivers.

2. Support for wider channel bandwidth[12]:

The use of spectrum aggregation technology becomes most important, where

the aggregation of multiple component carriers is important and allows flexi-

ble expansion of bandwidth through simultaneous utilization of multiple car-

riers to fulfill the high data rate requirement in Long Term Evolution(LTE)-

Advanced. However, this technology fails to provide significant enhancements

as they are reaching the theoretical limits. Such techniques may not be opti-

mal either, especially under low signal-to-interference plus noise ratio (SINR)

conditions[13].

3. Millimeter Wave[14]:

Mm-wave spectrum has been suggested to be one of the pontential to provide

an increased bandwidth, data rate up to multi gigabit-per-second, while the

latency needed by the backhaul is greatly reduced. It has also been suggest-

ed that Mm-wave frequency could exploit new spatial processing techniques,

such as massive MIMO due to its smaller wavelength. With these capabil-

ities, it means that MmWave massive MIMO needs dense BS deployment.

One drawback of this, is that power consumption may be high with MmWave.

Therefore, the design of low power devices at the BS are needed from the

MmWave in order to combat the implications of power consumption.

4. Advanced Antenna Techniques[15]:

Recent advanced radio transmission technologies, which includes single-user

multi-input multi-output(MIMO), multi-user MIMO and beamforming based

on massive MIMO antenna techniques may have allowed the exploitation of

4



CHAPTER 1. INTRODUCTION

higher frequency bands and achieve both the diversity and multiplexing gain.

5. Technologies with traffic asymmetry(uplink and donwlink) [16][17]:

Technologies based on Time-division duplex (TDD) can provide efficient and

flexible splitting of the common wireless cellular resources between uplink

(UL) and downlink (DL) users. By using these techniques, the uplink and

downlink capacity can be easily adjusted and match the demand.

6. Co-ordination between base stations[18]: Using advanced Coordi-

nated Multipoint (CoMP) Transmission, the cell edge throughput can sig-

nificantly be improved and improves energy efficiency by joint transmission

among cooperative base stations(BSs). Also, in cellular networks coordina-

tion among base stations(BSs) has been recognized as an important solution

to reduction of inter-cell interference and increase spectral efficiency, but dra-

matic signaling overhead and high computational complexity are inherent in

this advanced co-ordination technology. Types of CoMP:

Centralized coordinated multi-point (CoMP)-BSs share real-time data

and CSI within a centralized unit (CU), requires strict synchronisation and

intensive backhaul overhead(limits scalability).

Decentralized coordinated multi-point (CoMP)-Each BS transmits da-

ta to its local user (no real-time data sharing - relaxed synchronisation and

backhaul overhead), relaxed CSI requirement at each BS.

7. Small cells[19]:

Small cell consists of a number of low power nodes such as micro/pico/femto

base stations (BSs) deployed in a macrocell shown in Figure 1.1, and the in-

tegrated architecture is called a heterogeneous network (HetNet)[13]. It has

been suggested and known that the densification of macrocellular network-

s requires a high transmit power for the base stations. Small cell BSs are

low-cost low-power BSs, which have similar functionalities as macrocell BSs

5
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but with a much smaller form factor. They are mainly deployed to provide

localised coverage and capacity at households or in hot-spot areas such as

city centres and transport hubs. These small cells can be deployed in any

frequency band, and due to low power, the small cell could take advantage

of higher frequency bands. These are:

Picocells[20] - considered as a low-power operator base stations with a uni-

form backhaul and access features as macrocells. They can be deployed in a

centralized form that serves tens of users within a radio range of 300 m or

less. Typical transmit power range from 23 to 30 dBm. Picocells are most

used for capacity and outdoor or indoor coverage.

Femtocells[20] - These are low-cost low-power user also known as home BSs

or home eNBs. They can serve a dozen active users in homes or enterprises.

The femtocell radio range is less than 50 m. Typical transmit power less

than 23 dBm. They operate in open or restricted access.

Base station densification is a promised method that improves spectral and

energy efficiency through enhanced control over coverage. The densification

is made possible by dense deployment of small cells. Now, we most know

that, in certain cases the base stations are connected to the mobile switch

with fibre. In other cases, the base station is connected to another base s-

tation using a point-to-point microwave link with a fibre link to the mobile

switch. We call the later case backhaul. We see that the densification brings

another set of challenges based on the cost of high volume between the radio

access and core network needed for connections, which are limited by latency

problems. Another main issue with the dense deployment strategy is that, it

will bring in interference problems due to the fact that small cells have a rel-

atively small coverage and therefore, there is a limitation in terms of distance

between cells. Also the mix of small cell sizes that generate a heterogeneous

network will only bring complexity and will also have to operate with full

spectrum reuse across all base stations. The sharing of spectrum and the

deployment of small cells due to increased demand for transmission capacity

6
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Figure 1.1: Small cell base stations deployed in a macrocell.

will further create a vacuum for increased intercell interference on the users

located at the edge region. Therefore, proper mitigation is needed to con-

trol the interference in heterogeneous networks with small cells. To mitigate

the inter-cell interference in cellular network, transmit beamforming can be

used to control the interference, while keeping the desired link quality under

control.

7
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1.2 Thesis Overview

We briefly give an outline of the thesis in the following.

Chapter 1 introduces the motivation, overview and the contributions of

the thesis.

Chapter 2 provides a background review of the basic properties of con-

vex sets in the multidimensional case: i.e. Unit balls of norms, Ellipsoid.

Quadratic optimisation: Semidefinite Relaxation and The S-procedure. The

standard conic programs, i.e. second order cone programming (SOCP) and

semidefinite programming (SDP). This chapter concludes with antenna tech-

niques aim to build an overview of the spatial multiplexing and the linear

antenna array.

Chapter 3 inter-cell alignment is tackled by applying limited cooperation

amongst the base stations. The BS independently design their own beam-

forming using the channel state information at the base station. The base

station minimises the combination of its total transmit power and the re-

sulting interference power of the users of the other cell. The formulated

semidefinite and relaxation algorithm is compared against the robust CBF

with imperfect channel information.

Chapter 4 discusses the complexity analysis and the power efficieny. To

reduce the extra signalling, the downlink multicell processing is studied. The

objective of this scheme is also to minimise the total combination transmit

power across coordinating BSs subject to user SINR constraints. Then a

comparison is made between the two proposed methods.

Chapter 5 the time-division duplex (TDD) systems is considered in order

to exploit channel reciprocity. The objective is to minimize the worst-case of

8
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the resulting overall interference induced on the other users of the adjacent

cells in the presence of imperfect channel state information (CSI), the aim to

ensure that the data rate at the cell edge users for any given transmit power

remains above the required level.

The thesis concludes with Chapter 6 deals with conclusions and the pos-

sible future research directions.

9
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1.3 Contributions

The concepts in Chapter 2 build the contributions of the thesis and are

outlined in following the three different chapters.

Chapter 3 presents a decentralized algorithm to tackle inter-cell inter-

ference. The base station within a cell only transmit to its local users. The

proposed scheme is referred as robust beamforming with imperfect channel

state information. The main objective is to design a set of beamformers for

a number of active users such as the combination of the total transmitted

power and its aggregate interference induced on the users of the other cells

at the base station is minimised, while maintaining a certain level of quality

of service within the corresponding cell. The channel state information at

the transmitter is assumed to be confined within the ellipsoidal sets. The ba-

sic properties of convex sets and the quadratic optimisation reformulate the

problem in robust convex semidefinite programing form with linear matrix

inequality. The proposed strategy is compared against the conventional and

the centralized beamforming. The computer simulations are performed by

combining a signal processing tool, i.e., MATLAB and optimization packages.

Chapter 4 a spherical uncertainty set is considered to model the chan-

nel state information. To acquire the reduction in signalling overhead, we

propose a robust multicell downlink beamforming that minimizes a combi-

nation of the sum-power, used by each base station (BS) to transmit data

to its local users, and the worst-case of the resulting overall interference in-

duced on the other users of the adjacent cells in the presence of imperfect

channel state information, whilst also guaranteeing that the worst-cases of

the signal-to-interference-plus-noise ratio (SINR) remains above the required

level. The problem is reformulated as second order cone programming, and

then reformulate the problem into a LMI. For comparison, we reformulated

the CBF into a semidefinite relaxation. Then, both schemes are evaluated.

10
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Chapter 5 an optimum multicell downlink beamforming is proposed that

minimizes the worst-case of the resulting overall interference induced on the

other users of the adjacent cells in the presence of imperfect channel state

information (CSI). The objective is to ensure the data rates of the users at

the cell edge, remains above a certain level.

11
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Chapter 2

Background study

2.1 Introduction

2.2 Convex Optimization

Recently, novel convex optimization techniques have become one of the key

solving powerful tool for cutting edge wireless communication applications.

Many of the approaches in communication problems can either be cast as

or be converted into convex optimization problem [21]. Convex optimization

enfold two important parts. The convex objective and convex constraints.

By convention, a minimization of a convex objective function subject to con-

vex constraints. The key advantages to casting communication problems into

convex optimization are:

• Any local minimum in a convex optimisation problem is also the glob-

al minimum. Therefore, algorithms written to solve a convex problem are

much more efficient, faster and reliable.

• Numerical methods are sufficient to solve a convex problem even when

a closed form does not exist.
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• Can have large number of constraints and can be easily added to the

problem

Mostly, a more recent approach to optimization under uncertainty, in which

uncertainty is considered as deterministic and set-based. The development

of fast interior point methods for convex optimization [1], particularly for

semidefinite optimization has brought big interest into the field. Some of the

central issue addressed in [22] for the optimization under uncertainty that

guarantee the feasibility of the optimal solutions for all realizations of the

uncertain data is:

1. Tractability. In general, some of the robust optimization problem may

not itself be tractable. The tractability depend on the structure of the nom-

inal problem as well as the class of uncertainty set. Many well-known classes

of optimization problems, including the two standard conic programs such

as second order cone programming(SOCP) and semidefinite programming

(SDP), have a robust optimization formulation that can be transformed into

tractable. A formulation is needed to ensure that tractability is preserved

[23], [24].

2. Conservativeness and probability guarantees. This approach is

used when the parameter uncertainty is not stochastic, or if distributional

information is not readily available. But even if there is an underlying dis-

tribution, the tractability benefits of the robust optimization approach may

make it more attractive than alternative approaches from stochastic opti-

mization [25].

3. Flexibility. Here the robust optimization is used as a tool to imbue

the solution with desirable properties, like sparsity, stability, or statistical

consistency.
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The overall aim of this chapter is based on the developments of beamforming

schemes and main aspects of robust , with an emphasis on its tractability,

which are used to formulate the algorithms used in chapter 3 and 4. In ad-

dition to tractability, a central question in the robust optimization design

has been probability guarantees on feasibility under particular distributional

assumptions for the disturbance vectors. With this question in mind: what

is the smallest value that will satisfy the uncertainty?

Ben-Tal and Nemirovski [26], as well as El Ghaoui et al. [27], have con-

sidered the spherical and ellipsoidal uncertainty sets. Controlling the size of

these spherical and ellipsoidal sets, as in the next section of convex set, has

the interpretation of a budget of uncertainty that the decision-maker selects

in order to easily trade off robustness and performance
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Figure 2.1: Convex and non-convex sets. Left. The hexagon which in-
cludes its boundary is convex. Middle. The kidney shaped set is not convex.
Right. The square contains some boundary points but not others hence is
not convex. The graph is reproduced from [1]

2.2.1 Convex Set

A set C is convex, if and only if a line segment between any two points lie in

C. The mathematical representation of the given definition can be written as

θx1 + (1− θ)x2 ε C (2.1)

for any x1, x2 ε C and 0 ≤ θ ≤ 1. Examples of convex and non-convex

sets are shown in Fig. 2.1. Lines and line segments also form convex sets.
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Figure 2.2: The graph is reproduced from [1]

2.2.2 Cone

Definition. A cone C is a subset of the Euclidean space with the prop-

erty that for all vectors, if x ε C and all the nonegative scalars θ ≥
0 θx ε C. If the set C is convex and a cone then it is called a convex

cone [1]. Convex cones satisfy the following condition

θx1 + θx2 ε C (2.2)

for any x1, x2 ε C and θ1, θ2 ≥ 0.

For C to be a convex cone, it needs to satisfy the following properties:

1. C is closed

2. C has no empty space

3. if x ε C and −x ε C then x = 0.

Figure 2.2 Example of a convex cone with apex 0 and edges passing through

x1 and x2.
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2.2.3 Euclidean Balls and Ellipsoids

Euclidean balls forms convex set[1]. For a given x ∈ Rn with a center xc and

a radius r > 0, a closed euclidean ball B(xc, r) is the set of point in Rn and

is given as

B(xc, r) = {x |
∥∥x− xc

∥∥
2
≤ r}, (2.3)

Ellipsoids form convex set and has the following form [1]:

ε = {xc + Au |
∥∥u∥∥

2
≤ 1}. (2.4)

where xc is the center of the ellipsoid and P is a symmetric and positive

definite matrix. For an A square and nonsingular, the ellipsoid can also be

represented in another form as

ε = {x | (x− xc)
TP−1(x− xc) ≤ 1}, (2.5)

2.2.4 Norm balls and Norm Cones

Norm balls and norm cones form convex sets [1]. A norm ball of radius r and

center at xc is given by

B(xc, r) = {x |
∥∥x− xc

∥∥ ≤ r}, (2.6)

where
∥∥.∥∥ is any norm on Rn. The norm cone associated with the norm

∥∥.∥∥
is the set
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C = {(x, t) |
∥∥x∥∥ ≤ t} ⊆ Rn+1, (2.7)

where t > 0. The second-order cone is the norm cone for the Euclidean norm.

It is also known as the Lorentz cone or ice-cream cone.

2.2.5 Positive Semidefinite Cone

Positive semidefinite matrices form a convex cone, hence a convex set [1].

This can be proven using 2.1 and the definition of positive semidefiniteness

as follows. for any θ1, θ2 ≥ 0 A,B ∈ Sn and x ∈ Rn, we have

xT (θ1A + θ2B)x = θ1x
TAx + θ2x

TAx ≥ 0. (2.8)

Hence θ1A + θ2B ∈ Sn+, which proves that the set of positive semidefinite

matrices form a convex cone.
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2.2.6 Convex functions

A function [28]-[29]

f : Rn −→ R (2.9)

is called convex if for any pair of of non-equal x1, x2 in the domain of f and

any pair of real positive numbers θ1, θ2, such that θ1 + θ2 = 1, one has

f(θ1x1 + θ2x2) ≤ θ1fx1 + θ2fx2 (2.10)

We say f is strictly convex, if and only if, the above inequality is always

strict; f is called (strictly) concave iff −f is (strictly) convex. Visually, it

means that on the graph (x, y) ε Rn+1 : y = f(x) of f , for any x lying on

the line segment, connecting a pair of chosen points x1 and x2 in the domain

of f , the point (x, f(x)) lies below a chord, connecting the pair of points

(x1, f(x1)) and (x2, f(x2)), for all the possible choices of the pair x1, x2 (the

height being measured in terms of the y-coordinate). This makes the major-

ity of the convexity issues essentially one-dimensional: for instance f(x) is

convex if and only if for any chosen pair of points x1 and x2 in the domain

of f, the function

f(t) = f(tx1 + (1− t)x2) of one variable t ε R is convex.

Examples of convex functions

exp(ax) is convex on R

log(x) is concave on R

xlog(x) is convex on R++ or on R+

Every norm on Rn is convex
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2.2.7 Convex Optimization Problem

An optimization problem is a mathematical problem of the form [1], [30]

min
x

f0(x)

subject to fi(x) ≤ 0, i = 1 · · ·m (2.11)

hi(x) = 0, i = 1 · · · p

f0(x) is the objective function

fi(x) ≤ 0 and hi(x) = 0 are the inequality and equality constraint

functions.

x is the optimization variable.

The domain D of the optimisation problem is the set of points for which

the objective and constraint functions are defined. A point x ∈ D is called

a feasible point if all constraints are satisfied. The optimisation problem is

feasible if there is at least one feasible point.

A feasible solution x∗ is called a globally optimum solution if f0(x∗) ≤ f0(x)

for all feasible x. A feasible solution x is called a locally optimum solution if

there exists an ε > 0 such that f0(x∗) ≤ f0(x) for all feasible x that satisfies∥∥x− x
∥∥

2
≤ ε An optimisation problem is convex if and only if all of the

following conditions are satisfied.

? The objective function is convex.

? The inequality constraint functions are convex.

? The equality constraint functions are affine, i.e., have the form hi(x) =

aTi x + bi

? The domain of the optimisation problem is convex.
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2.2.8 Semidefinite Programming

Semidefinite program (SDP) refers to an optimisation problem with linear

objective and affine constraints includes equalities, inequalities. Here, we

minimize a linear function subject to the constraint that an affine combina-

tion of symmetric matrices is positive semidefinite [1], [31], [32] [33].

Semidefinite programming is the exact implementation of conic program-

ming with the positive semidefinite cone, so we can write the general cone

program in the form

min
x

cT (x)

subject to F (x) + g �C 0 (2.12)

A(x) = b,

Where c,g,b are the vector parameters of the problem and F,A are ma-

trices and C is a proper cone. The case, where C = Sn+, then the above

equation is called semidefinite program(SDP). The SDP can be represent in

the form

min
x

cT (x)

subject to x0F0 + x1F1 + · · ·xn−1Fn−1 +G � 0 (2.13)

A(x) = b,

where G,F1 · · · Fn ε Sk, and A ∈ Rp×n. The inequality of the above

problem is called linear matrix inequality and the semidefinite program truly

seen as a generalized of the linear program.
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2.2.9 Schur Complements

Suppose R and S are Hermitian, it means that if it is equal to its conjugate.

That is,

R = R∗

S = S∗

or in terms of components

rij = r∗ji

sij = s∗ji

Then, the following conditions are equivalent:

R ≺ 0, Q = S−GTR−1G ≺ 0;

and

P =

[
S GT

GH
0 R

]
≺ 0.

Schur complement lemmas

P � 0 if and only if S � 0 and Q � 0.

if S � 0,then P � 0 if and only if S � 0.

2.2.10 Semidefinite Relaxation (SDR)

Consider a non-convex QCQP of the following form

min
x

xTP0x+ qT0 x+ r0

subject to xTPix + qTi x + ri ≤ 0, i = 0, 1, · · ·,m (2.14)

where c, x ∈ Rn,Pi ∈ Sn i = 0, 1, ···,m, qi ∈ Rn and ri ∈ R
A ∈ Rp×n and b ∈ Rp. Problem 2.14 is non-convex when at least

one of the Pi is not positive semidefinite. The SDR makes use of the following

properties, X = xxT , in order to linearise problem 2.14. The definition of X
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implies that rank(X) = 1. This definition also implies that xTPix = tr(PiX),

hence, problem 2.14 can be rewritten as

min
x,X

Tr(P0X) + qT0 x+ r0

subject to Tr(PiX) + qTi x + ri ≤ 0i = 0, 1, · · ·,m

X = xxT . (2.15)

The constraint X = xxT is non-convex constraint; however, it can be

relaxed by replacing it with the looser positive semidefinite constraint X =

xxT � 0 . With this relaxation, the relaxed problem can be stated as the

following SDP

min
x,X

Tr(P0X) + qT0 x+ r0

subject to Tr(PiX) + qTi x + ri ≤ 0i = 0, 1, · · ·,m

X = xxT � 0. (2.16)

Utilising the Schur complement in 2.2.9 to represent the last constraint,

problem 2.16 can then be rewritten as

min
x,X

Tr(P0X) + qT0 x+ r0

subject to Tr(PiX) + qTi x + ri ≤ 0i = 0, 1, · · ·,m[
X x

xT 1

]
� 0. (2.17)

Problem 2.17 is called the SDP relaxation of the original non-convex problem

2.14. The optimal value of the relaxed problem gives the lower bound on the

optimal value of the original non-convex QCQP.

When the objective and constraints of the original problem 2.14 are homo-
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geneous, i.e., there are no linear terms qTi x, then a simpler relaxed problem

can be obtained. The definition, X = xxT , is again used to linearise the

QCQP. In this case, this definition implies that X � 0 and Rank(X) = 1.

Problem 2.14 can then be rewritten as

min
X

Tr(P0X) + r0

subject to Tr(PiX) + ri ≤ 0i = 0, 1, · · ·,m

X � 0.

Rank(X) = 1. (2.18)

The rank constraint is the only non-convex constraint in problem 2.18 and

the problem can be relaxed by dropping this rank constraint. The resulting

SDP is stated as

min
X

Tr(P0X) + r0

subject to Tr(PiX) + ri ≤ 0i = 0, 1, · · ·,m

X � 0. (2.19)

Some of the relaxation techniques can be found [34].

2.2.11 Linear Programs

A linear program (LP) has the following structure

min cT (x)

subject to Ax � b (2.20)

where c,x ∈ Rn and b ∈ Rm and A ∈ Rm×n. Now, given the

standard form LP, the duality of the (2.20) can be found as
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max −bT (y)

subject to AT (y) + c = 0

y � 0 (2.21)

That y � 0 means that all the components of the vector y is nonnegative.

2.2.12 Linear Matrix Inequality

A linear matrix inequality(LMI) [35] has the following form

F (x) , F0 +
m∑
i=1

xiFi > 0, (2.22)

where

? F (x) is a positive definite, i.e., uTF (x)u > 0 for all nonzero u ∈ Rn.

? x ∈ Rm is the variable and

? F i = F T
i ∈ Rn×n, i = 0, · · ··,m are the symmetric matrices.

Convex inequalities are converted to LMI form using Schur complements.

2.2.13 Cauchy-Schwarz inequality

Theorem[36]: Let us consider V to be some vector space that contains a

norm and inner product, then for all a,b ∈ V the following inequality holds:

| a.b | ≤
∥∥a∥∥∥∥b∥∥

The inequality holds if a = 0 or b = 0.

In the case where a 6= 0 or b 6= 0, then the expansion of the norm is possible,
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i.e. Let consider the following function

f(t) =
∥∥a + tb

∥∥2
, (2.23)

where t is a scalar.Thus, f(t) ≥ 0 for all t, since f(t) is a sum of squares.

Before expanding, it is important to know the following euclidean norms,

inner products and the four properties.

The Euclideam norm of a vector a, denoted
∥∥a∥∥, is the square root of the

sum of the squares if its elements.

∥∥a∥∥ =
√

a2
1 + a2

2 + · · ·+ a2
n (2.24)

The Euclideam norm in terms of the inner product of a is:

∥∥a∥∥ =
√

aTa (2.25)

The four properties:

Homogeneity.
∥∥εa∥∥ =| ε |

∥∥a∥∥.

Triangle inequality.
∥∥a + b

∥∥ ≤ ∥∥a∥∥+
∥∥b∥∥.

Nonnegativity.
∥∥a∥∥ ≥ 0.

Definiteness.
∥∥a∥∥ = 0 only if x = 0.

Now, the function (2.23) can now be expanded as
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f(t) = (a + tb)T (a + tb)

= aaT + tbTa + taTb + t2bTb

=
∥∥a∥∥2

+ 2taTb + t2
∥∥b∥∥2

Therefore, the Cauchy-Schwarz inequality

(aTb) ≤
∥∥a∥∥∥∥b∥∥∥∥a + b

∥∥2 ≤
∥∥a∥∥2

+ 2
∥∥a∥∥∥∥b∥∥+

∥∥b∥∥2∥∥a + b
∥∥ ≤

∥∥a∥∥+
∥∥b∥∥ (2.26)

These is a very important property and it has been applied in the contribution

chapters.
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2.3 Second-order Cone Programming (SOCP)

A second order cone programming (SOCP) is a generalization of linear and

quadratic programming which allows for affine combination of variables to

be constrained inside second-order cone. This cone is the set of vectors of

Rn such that the euclidian norm of the (n− 1) first components is less than

or equal to the n− th components. Linear programs, convex quadratic pro-

grams and quadratically constrained convex quadratic programs can all be

formulated as SOCP problems.

Let us consider the second-order cone KL

KL = x = (x0; x) ∈ RL : x0 ≥
∥∥x∥∥ (2.27)

Definition 2 The standard form Second-Order Cone Programming (SOCP)

problem is

min c1
Tx1 + · · ·+ cr

Txr

s.t A1x1 + · · ·+ Arxr = b

xi �Q 0, fori = 1, · · ·, r (2.28)

The second-order cone dual problem is

max bTy

s.t ATi y + zi = cifori = 1, · · ·, r

xi �Q 0, i = 1, · · ·, r (2.29)

The second-order constraint of this problem is usually encountered in the

following form
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min
x

R{fHx}

s.t
∥∥AH

i x + bi
∥∥ ≤ cHi x + di, fori = 1, · · ·, r

F (x) = g, (2.30)

where f ∈ Rn, Ai ∈ Rn×n, bi ∈ Rni , ci ∈ Rn, di ∈ R, with x being the

optimizing variable. F (x) is a linear function of x. When Ai = 0 for i =

1, ···, r SOCP is reduced to a general linear program. When ci = 0 for i =

1, · · ·, r SOCP is equivalent to a convex quadratically constrained quadrat-

ic programming (QCQP). Therefore, SOCP falls between linear (LP) and

quadratic (QP) programming and SDP. The SOCP constraints can be ex-

pressed in the LMI form, then recast the problem as a semidefinite program-

ming.

The second order cone of the first constraint in (2.30),i.e.,∥∥AH
i x + bi

∥∥ ≤ ci
Hx + di

is equivalent to the following LMI constraint:[
cHi x + di xHAi + bHi

AH
i x + bi (cHi x + di)I

]
� 0.

We can cast problem (2.30) into a standard SDP form as:

min
x

R{fHx}

s.t

[
cHi x + di xHAi + bHi

AH
i x + bi (cHi x + di)I

]
� 0. (2.31)

There are several software packages available that can handle SOCP problem.

The recasted SDP can be solved using the numerical optimization packages,

e.g., the SeDumi solver [37].
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2.4 Robust Optimization

Most practical wireless systems try to learn the channel conditions but this

raises issues of imperfection. Different optimization techniques are being

modelled mathematically in order to formalise real world problems. This

includes: assumptions and reduction of complexity. A small variation in the

input can cause explosive effect in the output. Therefore, error handling

methodology is required to deal with uncertainty. Ben-Tal et al. [38],[39]

has suggested three errors for most reasons for data uncertainty. These are:

Prediction, measurement and implementation. The most common error cor-

responds to the contribution of this thesis is the prediction. Prediction: The

system has inaccurate knowledge about the parameters, therefore forecasts,

often based on historical data, are used instead.

2.4.1 Uncertainty Models

Given a convex mathematical program in the following general formulation

[40]:

min f0(x)

subject to fi(x, ui) ≤ 0, i = 1, · · ·, n,

x ∈ D (2.32)

Where f0, f1, ···, fn are convex functions, D ⊆ Rn is a convex set in Euclidean

space, and u = (u1, · · ·un) is a fixed parameter vector. The general bounded

uncertainty based robust counterpart of this formulation is given by

min f0(x)

subject to fi(x, ui) ≤ 0,∀ui ∈ U , i = 1, · · ·, n,

x ∈ D (2.33)
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where the parameter vector u is constrained to be in a set U = U × · ·
· × U = Un called the uncertainty set. The main aim of (2.33) is to find

u∗ that minimises f0 for all realisations of ui within U . The geometrical

representation of U leads to the best tractability solutions and these include:

ellipsoidal uncertainty mode set.

2.4.2 Ellipsoidal Uncertainty

By considering the LP problem in (2.20) and rewrite as follow:

min cT (x)

subject to aTi x � b,∀ai ∈ Uai,∀bi ∈ Ubi, i = 1, · · ·,m, (2.34)

where Ubi ⊆ R. The uncertainty U is the direct product of the partial

uncertainty sets Uai and this can be expressed as

Uai = ai + Piu|
∥∥u∥∥ ≤ 1, i = 1, · · ·,m, (2.35)

where Pi ∈ Rn×n and ai ∈ Rn, i = 1, · · ·,m are given. The model has the

following advantages:

? The ellipsoid is a simple mathematical representation as shown in (2.35)

? If Pi = I, then the uncertainty sets are exactly spheres.

? If Pi = 0, then ai is fixed, and there is no uncertainty.

? In some of the cases where the uncertain data has an underlying stochastic

model, the stochastic uncertainty can be replaced by a deterministic ellip-

soidal uncertainty where the ellipsoid is represented using the mean and

covariance matrix of the uncertain data [38]
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2.5 The S-procedure

Different quadratic functions have different forms. Some quadratic functions

can be negative whenever some other quadratic functions are all negative. In

some cases, this constraint can be expressed as an LMI in the data defining

the quadratic functions or forms; in other cases, we can form an LMI that is

a conservative but often useful approximation of the constraint.

Let F0, · · ·, Fp be quadratic functions of the variables ζ ∈ Rn:

Lemma 1 (S-procedure [1], [41]): Let Fi(ζ)=ζHTiζ +2uTi ζ+ vi ≥ 0, for i

= 0, 1, where Ti ∈ HM×M be complex Hermitian matrices, bi ∈ CM and ci

∈ R.

Suppose that there exist an ζ ∈ CM such that Fi(ζ) < 0.

Then the following two conditions are equivalent:

1. F0(ζ) ≥ 0 for all ζ that satisfy F1(ζ) ≤ 0;

Obviously if

there exist τ1 ≥ 0, · · ·τp ≥ 0 such that

for all ζ, F0(ζ) +
∑p

i=1 τiFi(ζ) ≥ 0,

we then write,

[
T0 u0

uH0 v0

]
+ τ

[
T1 u1

uH1 v1

]
� 0.

The S-procedure is mostly used in system theory to obtain stability and per-

formance results for nonlinear and under an appropriate uncertain systems.

The S-procedure could also be applied in cases when it is not exact. The

reason is that it can be used to obtain sufficient conditions in terms of Lin-

ear Matrix Inequalities (LMI) for a large number of nonconvex problems in

systems analysis [42].
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2.6 A fundamental to Multiple Antennas Tech-

niques and Radio Channel

The implementation of multiple antennas in the last few decades have re-

ceived extensive attention due to its capabilities to improve the overall wire-

less communication systems performance. Multiple antennas techniques (s-

mart antennas) are able to reduce the interference in both downlink and

uplink transmission modes.

Today, the base station can use multiple antennas techniques for radio trans-

mission and reception. The implementation of these techniques at trans-

mitter can provide diversity processing, which increases the received signal

power and reduces the amount of fading. By implementing these techniques

at both transmitter and receiver can provide multiplexing gain, so as to in-

crease the data rate.

For beamforming, these techniques are aimed to increase the coverage of the

cell. The thesis focus most on beamforming, and therefore, smart antenna

techniques needs to be addressed in this contest.

The smart antenna techniques in MISO system have two fundamental prin-

ciples of beamforming in a static network

1. Main beam pointing towards the desired user.

2. Null beam pointing towards the interfering user.

In a multi-users intra-system, where the users are randomly generated or

multiple mobile users in a cellular network, these can cause challenges of di-

recting the beam to a specific users. This becomes tedious and challenging.

Different antennas techniques are most used to overcome these challenges.

These include the following:

1. Directional antenna techniques

2. Adaptive antenna techniques
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Figure 2.3: Parabolic and Flat antenna at the focal point.

2.6.1 Directional antenna techniques

Switched-beam antennas This is a simplified form of antenna techniques.

Different directive antennas are used to generate a limited number of beams

that point to a desired directions. This type of antenna is easy to be im-

plemented, but it gives a limited improvement.Tracking at beam switching

rate with a disadvantage of a very low gain between beams, limited interfer-

ence suppression, false locking with shadowing, interference and wide angular

spread [43]. Figure 2.3 show a simplified form of a mechanical switched an-

tenna. Steer-beam antennas( or dynamically phased arrays) These

antennas are arranged with a predefined patterns and the beam can be s-

teered in any direction. The phase can be shifted using different set of angles

i.e. The discrete transformation techniques, to allow the conversion from

curved devices into flat devices as shown in Figure 2.4, then the transformed

curve is used to steer the directional beam of the antenna at a desired angle

and this is shown in Figure Figure 2.5 and 2.6.
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Figure 2.4: Conventional Lens
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2.6.2 Adaptive antenna techniques

Adaptive antenna arrays, or smart antenna is a composition of N element

arrays of equally spaced that produce desirable antenna patterns of the same

amplitude in order to achieve improved performance over that of a single

antenna. Such patterns have high gain in the direction of desired signals and

nulls in the direction of interferencing signals. The other importance to the

structure of the antenna patterns, provides degrees of freedom in the spatial

domain compared to a single antenna. The most familiar concept in the

21st centure is the advanced in signal processing, which different algorithm-

s are being developed and exploited for a very wide range of use, such as

signal enhancement, interference suppression. The interference suppression

is a very important topic if the wireless community wish to meet the strin-

gent demands of the next-generation wireless systems and beyond. A wide

range of applications such as satellite navigation, biomedical engineering and

wireless communications are becoming more concerned of the significant in-

crease in mobile data traffic and the effect of energy efficiency. Therefore,

beamforming and direction of arrival estimation based on antenna arrays will

play an important role in fulfilling the increased demands of various mobile

communication services.

2.6.3 Linear antenna array

Smart antennas are the structure of two or more antennas placed along a s-

traight line to work in harmony and create a unique radiation pattern, which

depends on certain factors, such as geometrical configuration of the array and

this can be linear, circular, spherical, and conformal arrays. Also, depends

on the distance, phase, amplitude and the relative pattern between the indi-

vidual elements. The antenna elements are allowed to work in harmony by

means of the array element phasing, which is performed with hardware or is

carried out digitally [44]. In this section, a concept of a linear antenna array
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Figure 2.7: Schematic of a wavefront impinging across an antenna array.
Under the narrowband assumption the antenna outputs are identical except
for a complex scalar

in [45] is reviewed. Thorough treatments for all arrays of antennas can be

found in [46] and [47].

Consider a signal wavefront, z(t), impinging on an antenna array comprising

M antennas spaced d apart each other at angle θ, shown in Figure. 2.7. It

is assumed that the wavefront has a bandwidth B and is expressed as:

z(t) = β(t)ξie
j2Πvct (2.36)

where β(t) is the complex envelope representation of the signal and vc is the

carrier frequency. ξi captures both effects of channel fading, i.e. fast and slow

fading, and pathloss. Let Tz be the traveling time of the wavefront across

any two adjacent antennas. It is clear that

Tz =
dsin θ

c
(2.37)
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where c is the speed of light.

The maximum time of the wavefront traveling along one array is assumed

to be much smaller than the reciprocal of the bandwidth of all transmitted

signals, i.e.,

B � 1

(M − 1)Tz
(2.38)

Assuming that antenna element patterns are identical. Provided the received

signal at the first antenna is

z(t) = β(t)ξie
j2Πvct (2.39)

If the signal of the first antenna if z(t). Then the signal of the second antenna

will be transmitted after z(t−Tz). Then, the signal at the second antenna is

z(t− Tz) = β(t− Tz)ξiej2Πvc(t−Tz) (2.40)

Under the narrowband assumption in 2.38, B � 1/Tz. It can be stated that

β(t− Tz) ≈ β(t). (2.41)

Using the relationship, vc/c = 1/λc . It is clear that 2.37 can be rewritten as

vcTz = sin θ
d

λc
(2.42)

where λc is the wavelength of the signal information. The equation 2.40 can
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be rewritten as

z(t− Tz) = β(t)ej2πvctξie
−j2Π sin θ d

λc (2.43)

z(t− Tz) = z(t)ξie
−j2Π sin θ d

λc (2.44)

Similarly, the signal at the kth antenna, i.e., k = 1, 2, · · ·,M is given as

zk(t− Tz) = zk(t)ξie
−j2Π sin θ d

λc
(k−1) (2.45)

From 2.39,2.43 and 2.45 , it can be seen that the signals at any two array

elements are identical except for a phase shift which depends on the angle of

arrival and the array geometry.

Consider a free field environment, i.e., neither scatterers and nor multipath.

A planar continuous-wave wavefront of frequency vc arriving from an angle

θ will introduce a spatial signature across the antenna array. This spatial

signature is a function of angle of arrival, antenna element patterns and

antenna array geometry. The complex

M × 1 vector, a(θ) = [a1(θ) a2(θ) · · · aM(θ)]T is called the array

response vector. For the linear antenna array with identical element patterns,

the array response vector is given as

a(θ) =



1

e−j2Π sin θ d
λc

·
·
·

e−j2Π(M−1) sin θ d
λc
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Similarly, it is possible to write the array response vector for a transmit

linear antenna array with identical element patterns as

a(θ) =
[
1 e−j2Π sin θ d

λc · · · e−j2Π(M−1) sin θ d
λc

]
(2.46)

Hence, the MISO channel between the antenna array and a user i can be

written as

hi = ξia(θi) (2.47)

where θi is the angle of departure, with respect to the broadside of the an-

tenna array, of the user i.

Using antenna arrays opens up a spatial dimension to improve capacities

of wireless communication systems. This improvement is due to the fact that

smart beam patterns can be shaped by controlling the phases of individual

antennas of the array. Hence power-efficient beams can be steered towards

intended users while minimum/non interference are imposed on unintended

users. Smart beam patterns are performed via algorithms based on certain

criteria. These algorithms can be implemented using hardware. However, it

is more easily performed using software, i.e., using digital signal processing

[44]. These criteria could be either minimising transmit power with con-

straints on users SINRs or maximising users sum rate with constraints on

transmit power to name a few. In the following section, the first strategy,

i.e., minimising transmit power under constraint of users SINR, is reviewed.

2.6.4 Multiuser downlink Beamforming

Let us consider a BS equipped with M antennas, and K single antenna users.

The BS communicates with its K associated users using power-efficient beams

to deliver their desired levels of SINR. Without loss of generality, the set of
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its locally active users are denoted Sl =
{

1, · · · , U
}

in cell q. Let hi ∈ CM×1

contains the channel coefficients between the BS q and the users i ∈ Sl. The

received signal at user i is given by

yi = hHi wisi +
U∑

j=1,j 6=i

hHi wjsj + ni, (2.48)

where wi ∈ CM×1 and si are, respectively, the beamforming vector and the

data symbol associated to user i, ni ∼ CN(0, σ2) is zero mean circularly

symmetric complex Gaussian noise at user i. Letting the average energy in

transmitting the ith symbol si be normalized to unity, i.e., Esi(| si |2) = 1,

one can express the SINR at any local user i ∈ Sl as

SINRi =
| hHi wi |2∑

j 6=i | hHi wj |2 +σ2
, (2.49)

A common class of optimal transmit downlink beamforming for multiple

users is to calculate or find the optimum downlink beamforming vectors wi

that minimises the total transmit power while guaranteing all users SINR

requirements and this is given for BS q, as

min
wi

∑
i∈sl

wH
i wi

s.t SINRi ≥ γi,∀i ∈ Sl, (2.50)

where γi is the SINR level and in (2.50) it is assumed to be feasible. It

can be verified that the SINR constraints in (2.50) are non-convex. In the

next section, a technique to reformulate (2.50) in SOCP and SDP forms is

presented.
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2.6.5 SOCP and SDP algorithms

In this section, the two standard conic programs of SOCP and SDP developed

in [48] are used to cast (2.50) in convex form. These are reviewed. Let

H =



h1

h2

·
·
·

hU


and W = [w1 w2 · · ·wU ]

In introducing a real slack variable P0, (2.50) can be rewritten as [48]:

min
W,P0

Po

s.t
| [HW]i,i |2∑U

j=1j 6=i | [HW]i,j |2 +σ2
≥ γi, ∀i ∈ Sl

Tr
(
WWH

)
≤ P0 (2.51)

where [X]i,j represents the (i, j)-th entry of matrix X. Taking this in-

to account, the i-th SINR constraints can now be recast in standard form.

Rearranging the constraints and using matrix notations, the constraints yield

1

γi
| [HW]i,i |

2≥
U∑

j=1j 6=i

| [HW]i,j |
2 +σ2, ∀i ∈ Sl

(2.52)

Adding | [HW]i,i |2 to both sides results in
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(
1 +

1

γi

)
| [HW]i,i |

2≥
U∑
j=1

| [HW]i,j |
2 +σ2, ∀i ∈ Sl

(2.53)

Equivalently,

(
1 +

1

γi

)
| [HW]i,i |

2≥
∥∥∥ [ HHWHei

σ2

] ∥∥∥2

(2.54)

One can verify the fact that an arbitrary phase rotation can be added

to the beamformers without affecting the SINR constraints and objective of

2.51. In other words, if W is optimal solution to 2.51 then WDiage{jφ} where

φ for i = 1, · · ·,U are arbitrary phases, is also an optimal solution. Therefore

W can be selected in such a manner that [HW]i,i > 0, i.e., [HW]i,i can be

chosen to be real, for all i without the loss of generality. Since [HW]i,i > 0,

∀i, taking the square root of the equation 2.54 leads to

√(
1 +

1

γi

)
| [HW]i,i |≥

∥∥∥ [ HHWHei

σ2

] ∥∥∥ (2.55)

Using vec(.) operator, one can cast the power constraint of 2.51 as

p ≥
∥∥Vec (W)

∥∥ (2.56)

where p =
√
P0. Therefore, problem 2.51 can be reformulated in a SOCP
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form as

min
W,p

p

s.t
∥∥∥ [ HHWHei

σ2

] ∥∥∥ ≤√(1 +
1

γi

)
[HW]i,i ,∀1 ≤ i ≤ U (2.57)∥∥Vec (W)

∥∥ ≤ p. (2.58)

By applying the concept in 2.31, the SOCP in 2.58 can be written in a SDP

form as

min
W,p

p

s.t


√(

1 + 1
γi

)
[HW]i,i

[
eTi HW σ2

]
[

HHWHei

σ2

] √(
1 + 1

γi

)
[HW]i,i I

 � 0 (2.59)

[
p vecH(W)

vec(W) pI

]
� 0. (2.60)

Solving 2.58 or 2.59 provides the optimal beamforming matrix W and the

optimal downlink power as p2. Beamformer for user i can be obtained as the

ith column of W.

2.6.6 Semidefinite relaxation algorithm

Since its introduction in the early years of 2000, the semidefinite relaxation

has become an effective approximation technique that relaxes some of the

constraints of the optimization problem such that the relaxed problem is

easier to solve than the original problem and many practical experiences

have suggested and indicated the accuracy of the approximation [49], [50],

[51] and references therein. This section outlines a method to cast 2.50 in a

convex form using SDR technique. Let Ri = hHi hi and Fi = wiw
H
i . It is clear
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that Fi,∀1 ≤ i ≤ U is a positive semidefinite and Hermitian matrix. Further

more the rank of the matrix is one. The multiuser downlink beamforming

problem in 2.50 can be expressed as

min
wi

U∑
i∈sl

wH
i wi

s.t
wH
i Riwi∑U

j=1,j 6=i w
H
j Riwj + σ2

,∀1 ≤ i ≤ U. (2.61)

Recall the following equality

xHAx = Tr(AxxH) (2.62)

If A = I then

xHx = Tr(xxH). (2.63)

Rearrange the ith SINR constraints of 2.61, one can arrive at(
1 +

1

γi

)
Tr(RiFi)−

∑
j=1,j 6=i

Tr(RiFj)− σ2 ≥ 0. (2.64)

The problem 2.61 can be posed as

min
Fi

U∑
i=l

TrFi

s.t
1

γi
Tr(RiFi)−

∑
j=1,j 6=i

Tr(RiFj)− σ2 ≥ 0.

Fi = FH
i � 0

Rank(Fi) = 1,∀1 ≤ i ≤ U (2.65)
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The second constraints in 2.66 is to guarantee that Fi, ∀1 ≤ i ≤ U , is a

positive semidefinite and Hermitian matrix. Dropping the last constraints in

2.66, i.e., rank(Fi) = 1, results in a SDP form, i.e.,

min
Fi

U∑
i=l

TrFi

s.t
1

γi
Tr(RiFi)−

∑
j=1,j 6=i

Tr(RiFj)− σ2 ≥ 0.

Fi = FH
i � 0,∀1 ≤ i ≤ U

Dropping these rank one constraints not only enlarges the feasible set of

the problem 2.66 but also leads to a relaxed SDP problem.This relaxation

is referred to as semidefinite relaxation technique. For general nonconvex

quadratic problems, solving a SDR problem usually gives an optimal solution

with rank of larger than one. In such cases, SDR can only provide a lower

bound on the optimal objective function and possibly attain an approximate

solution to the original problem [52].When using SDR results in Fi solutions

with ranks higher than one, a randomization procedure, e.g., [53], [54], [55],

[56], [57] and references therein, can be used to find approximate rank-one

solutions.

2.6.7 Robust Downlink Beamforming

The imperfection is estimated of the covariance matrice Ri and the uncer-

tainty matrice ∆i represents its associated estimation error. Letting the

average energy in transmitting the ith symbol si be normalized to unity, i.e.,

Esi(| si |2) = 1, one can express the SINR at any local user i ∈ Sl in 2.61 as

SINRi =
wH
i (Ri + ∆i)wi∑

j 6=i w
H
j (Ri + ∆i)wj + σ2

i

, (2.66)
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where the uncertainty in the estimation of channel covariance matrices is

confined in a spherical set defined as

∥∥∆i

∥∥
F
≤ εi,∀i ∈ Sl, (2.67)

where εi is the non-negative value indicating the radii of the spherical uncer-

tainty region. The optimization problem that ensures that the data rate of

the cell edge users, remains above the required level is introduced as

max
wi

min
‖∆i‖≤εi

log2(1 + SINRi) (2.68)

s.t.
∑
i∈sl

wH
i wi ≤ Pi.

The constraint in (2.68) is the total power constraint of P at BS q. By

introducing a slack variable k, one can rewrite problem (2.68) as

min
wi,k

k (2.69)

s.t. −( min
‖∆i‖F≤εi

log2(1 + SINRi)) ≤ k∑
i∈sl

wH
i wi ≤ Pi,

Using the equality in (2.62),then (2.66) can be rewritten as

SINRi =
Tr[(Ri + ∆i)Fi]∑

j 6=i Tr[(Ri + ∆i)Fj] + σ2
i

. (2.70)

Since, the diagonal entries of Fi are non-negative and the Frobenious norm

is sub-multiplicative, i.e., ρ(∆i) ≤ ‖∆i‖F ≤ εi, where ρ(∆i) is the spectral

radius of ∆i, we can write

Tr(∆iFi) ≤ εiTr(Fi). (2.71)
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Hence, the first constraint in problem (2.69) can be rewritten as

Tr[(Ri − εiI)Fi]∑
j 6=i Tr[(Ri + εiI)Fj] + σ2

i

≥ (2−k − 1), (2.72)

Tr[(Ri − εiI)Fi]

(2−k − 1)
≥
∑
j 6=i

Tr[(Ri + εiI)Fj] + σ2
i , (2.73)

which can be expanded as

Tr[(Ri − εiI)Fi]

(2−k − 1)
+ Tr[(Ri + εiI)Fi] ≥∑

j∈i

Tr[(Ri + εiI)Fj] + σ2
i , (2.74)

(1 +
1

2−k − 1
)Tr(RiFi) + (1− 1

2−k − 1
)Tr(εiIFi) ≥∑

j∈i

Tr[(Ri + εiI)Fj] + σ2
i .. (2.75)

The optimization problem in (2.68) can now be formed as

min
Fi,k

k (2.76)

s.t 2−kTr(RiFi) ≥
∑
j∈sl

Tr(RiFj)(2
−k − 1) + q,∑

i∈sl

Tr(Fi) ≤ Pi,

Fi = FH
i � 0,

Rank(Fi) = 1,
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where

q = (
∑
j∈sl

Tr(εiIFj) + σ2
i )(2

−k − 1) +

Tr((εiI− εiI(2−k − 1))Fi).

The relaxed SDP problem is obtained by dropping the rank one constraint

and enlarges the feasible set of the problem in (2.76).

min
Fi,k

k (2.77)

s.t 2−kTr(RiFi) ≥
∑
j∈sl

Tr(RiFj)(2
−k − 1) + q,∑

i∈sl

Tr(Fi) ≤ Pi,

Fi = FH
i � 0,

where

q = (
∑
j∈sl

Tr(εiIFj) + σ2
i )(2

−k − 1) +

Tr((εiI− εiI(2−k − 1))Fi).

Therefore, (2.77) is exactly equivalent to the original problem (2.68). This

fact has been confirmed in [58]. The authors of [58] noticed that the solution

to (2.77) always admits rank-one matrices Fi, ∀i, which directly yields the

solution to (2.68) using Fi = wiw
H
i .
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2.6.8 Conclusion

Convex optimisation theory and techniques used in the majority of this the-

sis has been presented. The concepts of convex set, cone, convex functions,

semidefinite programming, linear programs, linear matrix inequality, schur

complements, cauchy-schwarz inequality, second-order cone programming,

robust optimization and the S-procedure have been introduced. An optimi-

sation problem to calculate transmit beamformers for multiple active users

in a single-cell scenario is sketched and principles of beamforming via lin-

ear antenna array along with concepts of second order cone programming

and semidefinite programming are oultlined. A powerful technique known

as convex relaxation, which allows non-convex problems to be relaxed into

convex problems was reviewed. Finally, a robust downlink beamforming in

the presence of uncertainty has been demonstrated and discussed.
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Chapter 3

Robust Downlink Beamforming

With Imperfect CSI

The cooperation of base stations at beamforming level lead to the best effi-

cient use of the resources and improve the performance of the wireless cellular

network. This chapter covers an optimum multicell downlink beamforming

that minimizes a combination of the sum-power, used by each base station

(BS) to transmit data to its local users, and the worst-case of the result-

ing overall interference induced on the other users of the adjacent cells in

the presence of imperfect channel state information (CSI). The aim is to en-

sure that the worst-cases of the signal-to-interference-plus-noise ratio (SINR)

at each user remains above the required level. The imperfection in CSI is

modeled to be bound within an ellipsoidal set, which is used to model the

uncertainty between the true and the estimated channel coefficients. The o-

riginal non-convex optimization problem is formulated using the S-procedure,

then cast the original non-convex problem into a tractable formulation with

convex constraints in linear matrix inequality (LMI) form and solve it using

the standard semidefinite relaxation (SDR). The results confirm the effec-

tiveness of the proposed robust scheme, in terms of power efficiency at BSs,

compared with the conventional method in the presence of imperfect CSI.
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3.1 Introduction

Coordinated multi-point (CoMP) communications has been envisaged to be

used in the LTE-advanced as an effective mean of confronting the intercell

interference [59]. It is aimed to deliver uniformly very high data rates with

significantly improved spectral efficiency to the user terminals irrespective

of their locations within the cellular network. In a perfect CoMP, the base

stations (BSs) share their data and the global channel state information (C-

SI) in a central unit to transmit jointly to the users [60]. However, such a

centralized processing requires an additional resources of an ideal backhaul,

which is prohibited in practical systems as it limits the scalability of the net-

work. Recently, the research interests have been shifted towards as much as

possible decentralization of the CoMP systems to relax the backhaul over-

head [61].

Furthermore, using multiple antenna at BSs for spatial multiplexing in CoM-

P demands the provision of CSI at the transmitter, i.e., CSIT, for effective

downlink beamforming towards the user terminals. However, the estimation

of CSIT, i.e., CSI at a BS as the transmitter in the downlink, is imperfect

due to several reasons, such as estimation error, delay and the quantization

error, e.g., as a result of limited feedback from a user terminal. Hence, in

addition to decentralization, robust design methodologies against channel

uncertainties is another key factor in achieving the promised gains of CoM-

P in practical scenarios. In robust formulation of a cellular beamforming

problem, the true CSIT is considered to be confined within an uncertainty

region and the beamforming vectors are designed such that they remain fea-

sible despite the imperfections in the estimated CSIT [62]. Such problems

typically lead to optimization problems with infinite number of constraints

and reformulating them to tractable equivalent forms is a challenging task.

Some robust design techniques for cellular networks have been developed in

[63], [64], [65], [62] to cite a few. Authors in [63] minimize the transmit-

ted power subject to the worst-case quality-of-service (QoS) constraints per
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user. The worst-case solution is achieved using lagrange duality, which ex-

plicitly takes into account the positive-semidefinite property of the downlink

covariance matrices. It has been assumed that the transmitter has erroneous

covariance based channel state information. In [64], a robust beamforming

design problem for a MISO downlink channel is proposed. In that scheme,

the aim is to minimize the weighted sum power of the BSs under imperfect

channel state information subject to SINR constraints in a downlink mul-

tiuser MISO system. A semidefinite programming (SDP) relaxation method

[66] is considered to be tight under norm-constrained CSIT errors when base

station is equipped with two antennas provided that the size of channel er-

rors is sufficiently small. Moreover, the approach in [63] and [64] ignore the

overall interference power on the outer-cell users due to transmissions to the

locally active users within a cell.

The chapter aims to address the issues of distributiveness and robustness

in cellular networks. A distributed optimization problem is formulated that

minimizes a combination of total transmitted power at a BS, used to maintain

a certain level of quality of service within the corresponding cell, and its ag-

gregate interference induced on the users of the other cells. The algorithmic

solution to this problem can be concurrently used at individual BSs of a mul-

ticell network over a shared bandwidth to significantly improve the network

spectral efficiency. The proposed formulation can be considered as decentral-

ized in a sense that each BS within a cell only transmits data towards the

users within the same cell. However, in order to control the induced intercell

interference, the BS obtains the CSI between itself and the other vulnera-

ble users of the other cells through feedback channels. As such a feedback

may require message passing between the BSs, the proposed scheme may be

considered as a partially decenteralised solution. Further, the proposed for-

mulation involves robustness against CSIT uncertainties which are assumed

to be confined within the ellipsoidal sets. As the original robust counterpart

is intractable, use the S-Procedure and the standard semidefinite relaxation
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to reformulate the problem in robust convex semidefinite programing form

with linear matrix inequality (LMI) constraints [1]. The rest of this chapter

is organised as follows: Section 3.2 introduces system model and problem

formulation. Section 3.3 presents robust downlink beamforming. Simulation

results are presented in section 3.4. Finally, section 3.5 concludes the chapter.

3.2 System model and problem formulation

Consider a cellular scenario of Nc cells. It is assumed that each BS of each

cell is equipped with M antennas, and K single antenna users. Within the

network, it is assumed that the same carrier frequency is used by the adjacent

base stations to support their intracell users. Each BS communicates with

its K associated users using power-efficient beams to deliver their desired

levels of SINR and restricts the resulting interference on the other users of

the adjacent cells. Without loss of generality, denote the set of locally active

users as Sl =
{

1, · · · , U
}

in cell q and the set of the other users, who are

present in the adjacent cells and might be subjected to inter-cell interference

because of the transmission by the q-th BS, as So =
{

1, · · · , N
}

. Let hi ∈
CM×1 contains the channel coefficients between the BS q and the users i ∈
Sl. Let gt ∈ CM×1 contains the channel coefficients between the BS q and

user t ∈ So. The received signal at user i ∈ Sl is given by

yi = hHi wisi +
U∑

j=1,j 6=i

hHi wjsj + vi + ni, (3.1)

where wi ∈ CM×1 and si are, respectively, the beamforming vector and the

data symbol associated to user i, ni ∼ CN(0, σ2) is zero mean circularly

symmetric complex Gaussian noise at user i and vi is the resulting intercell

interference seen by user i due to the transmissions of the BSs in the adjacent

cells i.e., other than cell q. Letting the average energy in transmitting the

ith symbol si be normalized to unity, i.e., Esi(| si |2) = 1, one can express
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the SINR at any local user i ∈ Sl as

SINRi =
| hHi wi |2∑

j 6=i | hHi wj |2 +ξi + σ2
, (3.2)

where ξi = E[|vi|2] is the imposed total intercell interference power on user i.

Furthermore, it is assumed that any i-th local user, i.e., i ∈ Sl, can measure

the arrived outer-cell interference power ξi and report it to its local BS.

The resulting optimization problem that calculate the optimum downlink

beamforming vectors at any given BS q, can be written as

min
wi

∑
t∈so

∑
i∈sl

µtw
H
i gtg

H
t wi +

∑
i∈sl

ηiw
H
i wi

s.t SINRi ≥ γi,∀i ∈ Sl, (3.3)

where γi and ηi are, respectively, the SINR level and the (cost) weighting

factor required by an active local user i ∈ Sl and µt is the weighting factor

considered for the neighboring outer-cell user t by the BS q. The scheduler

uses these coefficients to set the priority levels that depends on the quality

(cost) of requested services by different users or to proportionally maintain

fairness among the users. The first of the objective function in (3.3) indicates

the overall interference power on the outer-cell users due to the transmission

of BS q to its locally active users, while the second term is the total signal

power transmitted by the BS q.

3.3 Robust downlink beamforming

Let ĝt ∈ CM×1 and ĥi ∈ CM×1be the estimated CSIs at the BSs. Then the

true CSI can be expressed as

gt = ĝt + et, ∀t ∈ So, (3.4)

hi = ĥi + ei, ∀i ∈ Sl,
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where et ∈ CM and ei ∈ CM represent the CSI error vectors. It is assumed

that these error vectors are bound within the ellipsoidal sets defined as

eHt Qtet ≤ 1, ∀t ∈ So, (3.5)

eHi Qiei ≤ 1, ∀i ∈ Sl, (3.6)

where Qt ∈ CM×M and Qi ∈ CM×M are a positive definite matrix and char-

acterizes the shape and size of the ellipsoid. Substituting for ht from (3.4)

in (3.3), we can write

min
wi

max
eHt Qtet≤1

∑
t∈so

∑
i∈sl

µtw
H
i (ĝt + et)(ĝ

H
t + eHt )wi +∑

i∈sl

ηiw
H
i wi

s.t min
eHi Qiei≤1

| (ĥHi + eHi )wi |2∑
j∈slj 6=i | (ĥ

H
i + eHi )wj |2 +ξi + σ2

≥ γi, ∀i ∈ Sl. (3.7)

By introducing a slack variable k, one can rewrite (3.7) as

min
wi,k

k +
∑
i∈sl

ηiw
H
i wi (3.8)

s.t
| (ĥHi + eHi )wi |2∑

j∈slj 6=i | (ĥ
H
i + eHi )wj |2 +ξi + σ2

≥ γi,

eHi Qiei ≤ 1, ∀i ∈ Sl, (3.9)∑
t∈so

∑
i∈sl

µtw
H
i (ĝt + et)(ĝ

H
t + eHt )wi ≤ k,

eHt Qtet ≤ 1, ∀t ∈ So. (3.10)
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The first constraint in (3.8) can be expanded according to (3.11), where Wi

= wiw
H
i is a positive semidefinite matrix with unit rank.

(ĥHi + eHi )wiw
H
i (ĥi + ei)

γi
−
∑

j∈slj 6=i

(ĥHi + eHi )wjw
H
j (ĥi + ei) ≥ ξi + σ2,

(
ĥHi + eHi

)(Wi

γi
−
∑

j∈slj 6=i

Wj

)(
ĥi + ei

)
≥ ξi + σ2, ∀i ∈ Sl,

(3.11)

Using the expansion in (3.11), the objective function and its constraints in

(3.8) can be written as

min
Wi,k

k +
∑
i∈sl

ηiTr(Wi) (3.12)

s.t (ĥHi + eHi )Ui(ĥi + ei) ≥ ξi + σ2,

eHi Qiei ≤ 1,

−
∑
t∈so

∑
i∈sl

µt(ĝ
H
t + eHt )Wi(ĝt + et) + k ≥ 0,

eHt Qtet ≤ 1, ∀t ∈ So,

Rank(Wi) = 1, ∀i ∈ Sl,

Wi � 0, i = 1 . . . , U,

where

Ui =

(
Wi

γi
−
∑

j∈slj 6=i

Wj

)
. (3.13)

In the sequel, use the S-Procedure, to rewrite the constraints in (3.12) that

involve quadratic inequalities in error vectors in the LMI forms. Lemma 1

(S-procedure [1], [41]): Let Φi(e) = eHAie + bHi e + eHbi + ci ≥ 0, for i =

0, 1, where Ai ∈ HM×M be complex Hermitian matrices, bi ∈ CM and ci ∈
R.

Suppose that there exist an e ∈ CM such that Φi(e) < 0.

Then the following two conditions are equivalent:
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1. Φ0(e) ≥ 0 for all e that satisfy Φ1(e) ≤ 0;

2. There exist a λ ≥ 0 such that[
A0 b0

bH0 c0

]
+ λ

[
A1 b1

bH1 c1

]
� 0.

By applying Lemma 1, the constraints in (3.12) can be expressed as

eHi Uiei + ĥHi Uiei + eHi Uiĥi + ĥHi Uiĥi − ξi − σ2

≥ 0,

eHi Qiei ≤ 1, ∀i ∈ Sl,

(3.14)

−
∑
t∈so

∑
i∈sl

µte
H
t Wiêt −

∑
t∈so

∑
i∈sl

µtĝHt Wiet

−
∑
t∈so

∑
i∈sl

µte
H
t Wiĝt −

∑
t∈so

∑
i∈sl

µtĝHt Wiĝt + k ≥ 0,

eHt Qtet ≤ 1, ∀t ∈ So.

(3.15)

Hence, recast (3.14) and (3.15) as a linear matrix inequality (LMI) and this

is shown as,

Υi =

[
Ui + λiQi Uiĥi

ĥHi Ui ĥHi Uiĥi − ξi − σ2 − λi

]
� 0,

∀i ∈ Sl,

(3.16)

Υt =

[
−
∑

t∈so
∑

i∈sl µtWi + λtQt −
∑

t∈so
∑

i∈sl µtWiĝt

−
∑

t∈so
∑

i∈sl µtĝ
H
t Wi −

∑
t∈so

∑
i∈sl µtĝ

H
t Wiĝt + k − λt

]
� 0, ∀t ∈ So,
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where λi and λt are the slack variable for all i = 1 . . . U ∈ Sl, and t = 1 . . .N

∈ So. Replace the constraints in (3.12) with (3.16) and taking into account

the slackness conditions with λi ≥ 0. Problem (3.12) can then be written as

min
Wi,k

k +
∑
i∈sl

ηiTr(Wi)

s.t Υi � 0, ∀i ∈ Sl,

Υt � 0, ∀t ∈ So,

λi ≥, λt ≥ 0, ∀i,t
Rank(Wi) = 1,

Wi � 0, i = 1 . . . , U.

(3.17)

The key point to (3.17) is the fourth constraint, which is a non-convex. It

is not easy to solve such a constraint. Therefore, if the obtained optimal

solution is rank one, as it is in this case and is the solution to (3.17). Other-

wise the general rank is relaxed for some wi and we apply the same optimal

conditions that were proved in [41]. The optimization problem in (3.17) is

in the standard semidefinite programming form and it is in fact convex, and

then using the numerical optimization packages, e.g., the SeDumi solver [37],

the resulting convex problem can be solved efficiently. For comparison pur-

poses, the robust coordinated beamforming (CBF) is computed using the

coordinated beamforming developed in [67] for instantaneous channel. The

conventional robust beamforming is obtained by setting µt = 0, ∀t ∈ So,

and problem (3.3) is reduced to a general form of the nominal optimization

problem but with the error in the estimation of the instantaneous channel.
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3.4 Simulation results

3.4.1 Simulation setup

This section presents some graphical examples illustrating the performance

of the proposed formulation against the centralized robust coordinated beam-

forming approach and the conventional robust approach. The users are dis-

tributively generated on the verge of the 3 adjacent cells named critical areas

of the neighbouring base stations. Fig. 3.1 illustrates an example of one user

distribution with 3 users. Monte Carlo simulations are carried out over 50

users distribution with 10000 channel realizations. Generate 10000 sets of

CSI errors satisfying the error bound,
∥∥et∥∥2 ≤ ε2 until a fine stable averaged

transmitted power is achieved. To simulate the channel, it is recommended

to try to separate the distance between the base stations and indeed for the

users in order to avoid other user from receiving a null signal. Not only the

simulation setup consider the effect of small-scale fading caused by two an-

tennas separated by a fractional of a meter but also, it considers large-scale

fading caused by shadowing conditions. Therefore, the following channel

model setup in [41] is used and it is given as

gt = 10−(128.1+37.6 log10(l))/20.ψt.ϕt.(ĝt + et), (3.18)

where l is the distance between the t BS and t user, ψt is the shadowing,

ϕt is the antenna gain, ĥt and et denote the estimated CSI channel and the

CSI error respectively. A spherical error as in [41] is considered, with Qt =

ε−2
t Imt for all t where the CSI error satisfy bounds εt > 0. If not mentioned

specifically, all error radii εt are the same and equal to ε. The rest of the

parameters, which are based on the LTE standard are shown in the table

3.4.1.
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Figure 3.1: An example of user distributions used in Monte-Carlo simula-
tions.
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Figure 3.2: Total transmit power versus targeted SINR for N = 3, M = 6,
K = 3.
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Figure 3.3: Total transmit power versus targeted SINR for N = 2, M = 6,
K = 4.
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Table 3.1: Simulation parameters

Parameter Value
Number of cells (N) 3
Number of users per cell (K) 1 or 2
Number of antennas per cell (M) 6
Antenna spacing λ/2
Array antenna gain 15 dBi
Downlink carrier frequency 2 GHz
Noise power spectral density (all users) -174 dBm/Hz
Noise figure at user receiver 5 dB
BS-to-BS’s distance 3 km
Path loss model (l in km ) 128.1 + 37.6log10(l)
Angular offset’s standard deviation 2◦

Log-normal shadowing’s standard deviation 8 dB
Number of scatterers per user 5
Subchannel bandwidth’s wide 15 kHz

3.4.2 Performance evaluation

In this section, the performance of the robust downlink beamforming with

imperfect CSI is analysed and compared with the conventional robust down-

link and the robust coordinated beamforming. The problem is formulated

into a tractable formulation in a linear matrix inequality (LMI). Then recast

the formulated LMI in a semidefinite program [1]. The SeDuMi solver [37]

is used to compute the optimal solution. BSs are equipped with multiple

antennas and a single antenna per user. For different beamforming tech-

niques in Fig. 3.2 and 3.3, the performance is measured of the change in

result of the sum-transmit power as a function of SINR levels at the cel-

l user terminals. Performance evaluation and comparison of Fig. 3.2 with

Fig. 3.3 are carried out for the same error bound, ε = 0.1 in achieving the

same SINR level. it can be observed that the formulated robust downlink

for the 3 users in three cells in Fig. 3.2 is more power efficient than the
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4 users in two cells in Fig. 3.3. It can be observed from Fig. 3.2 for the

target SINR γ = 10 dB consumes approximately 6 dBm while in Fig. 3.3,

32 dBm. Now each Figure is evaluated separately. The results obtained in

Fig. 3.2 showed that from 0 to 8 dB of the SINR target, the conventional,

CBF and robust downlink beamforming with imperfect CSI were almost in-

distinguishable in terms of transmit power. There is a slight change from 8

to 12 dB, where the robust downlink and robust CBF-centralized continue

to have the same performance but there is a 18.85 % increase in terms of

transmission power for the conventional beamforming. Therefore, using the

robust downlink beamforming with imperfect CSI is recommended instead

of the conventional beamforming when CSI error is taken into account in the

case of one user per cell. Finally, in Fig. 3.3 it can be observed that the con-

ventional downlink requires higher transmit power than the proposed robust

downlink with imperfect CSI and the CBF-centralized in every point of the

SINR level. When γ = 10 dB for the error bound, ε = 0.1, the formulated

robust downlink with imperfect CSI design failed beyond the 10 dB SINR

level. By decreasing the error bound to 0.05, there was an improvement in

terms of transmit power for the proposed robust downlink. As observed, the

target SINR of robust downlink beamforming with imperfect CSI degrades

rapidly with the channel estimation error. To compare the performance, the

formulated robust downlink with imperfect CSI outperform the conventional

design. With an average transmit power of 10.45 dBm for the error bound,

ε = 0.05, the design can attain 12 dB.

3.5 Conclusion

This chapter presented an overview of robust downlink beamforming with

imperfect CSI. The goal was to minimize a combination of the sum power

of each BS across the network subject to the worst-case of the SINR level

of individual users. The method showed that the proposed robust downlink
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beamforming with imperfect CSI can be reformulated into a tractable formu-

lation using S-procedure and linear matrix inequality (LMI). It is shown that

when accounting for the CSI errors at both the overall intercell interference

power in the subject function and the SINR constraints, a feasible solution

for certain sets of SINR and the optimal solution were achieved. Simulation

results have confirmed that our proposed robust downlink with imperfect

CSI outperform the conventional in terms of transmit power even when CSI

errors are taken into account. In addition, it is also observed that applying

different values of the error bound improved the transmitted power. On the

other hand, the increase in error bound reduces the SINR level of the users

but at a cost of increased transmit power at the base station.
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Chapter 4

SOCP Robust Downlink

Beamforming

4.1 Second-Order Cone Programming For Ro-

bust Downlink Beamforming With Im-

perfect CSI

This chapter addresses the problem of downlink multicell processing (MCP)

when a channel state information is used to design transmit beamforming.

This kind of design entails the complexity that requires extra signalling over-

head. However, the channel state information (CSI) may be subjected to

estimation and quantization errors. To acquire reduction in signalling over-

head, the study proposes a robust multicell downlink beamforming that min-

imizes a combination of the sum-power, used by each base station (BS) to

transmit data to its local users, and the worst-case of the resulting overall

interference induced on the other users of the adjacent cells in the presence of

imperfect channel state information, whilst also guaranteeing that the worst-

cases of the signal-to-interference-plus-noise ratio (SINR) remains above the

required level. A spherical uncertainty set is used to model the imperfection
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in CSI between the true and the estimated channel coefficients. The origi-

nal non-convex problem is formulated as the second-order cone programming

(SOCP) and then recast the convex constraints in linear matrix inequality

(LMI) form. Also, a coordinated beamforming with imperfect instantaneous

CSI is reformulated based on spherical uncertainty set using the standard

semidefinite relaxation (SDR). Simulation results confirm the efficiency of

the proposed method at BSs, compared with the conventional method in the

presence of imperfect CSI to validate the theoretical analysis.

4.2 Introduction

The use of channel state information in the downlink multicell processing has

brought a burden on signalling overhead between base stations (BSs) and

their user terminals, when the number of cooperative transmissions increas-

es. It has been reported that to avoid the extra overhead outweighing the

cooperative gain, a method that independently allows users to have a choice

over transmission mode between coherent coordinated multi-point (CoMP)

and non-CoMP [68]. It aimed to mitigate the adverse effect of training over-

head on the downlink throughput of the CoMP system through the use of the

transmission mode selection based on the attained statistical channel infor-

mation at the user side. In a perfect CoMP, the BSs share their data and the

global channel state information (CSI) in a central unit to transmit jointly to

the users [60], [69]. However, such a centralized processing requires an addi-

tional resource of an ideal backhaul, which is prohibited in practical systems

as it limits the scalability of the network. Recently, the research interests

have been shifted towards as much as possible decentralization of the CoMP

systems to relax the backhaul overhead [61], [70], [71]. Furthermore, in the

centralized CoMP all signal processing tasks are carried out by a central unit

which requires the exchange of information and control signals among the

coordinated base stations. The exchanged information should contain full
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CSI and message signals, for effective downlink beamforming towards the

user terminals. However, the acquisition of CSI at the transmitter, i.e., at a

BS, (CSIT) is imperfect due to a number of factors such as estimation error,

delay in channel and the quantization error, e.g., caused by limited feedback

from a user terminal to the BS. Hence, in addition to decentralization, ro-

bust design against channel uncertainties is another key factor in achieving

the promised gains of CoMP in practical scenarios. In robust formulation of

a cellular beamforming problem, the true CSIT is considered to be confined

within an uncertainty region and the beamforming vectors are designed such

that they remain feasible despite the imperfections in the estimated CSIT

[62]. Such problems typically lead to optimization problems with infinite

number of constraints and reformulating them in tractable equivalent forms

is a challenging task. Recently, different approaches have been developed

for robust multiple-input single-output (MISO) transmit beamforming. In

[72], authors study multi-group multicasting using trace bounds on the co-

variance mismatches and minimize the total transmitted power subject to

the worst-case user quality-of service constraint. In this section, semidefinite

relaxation (SDR) is used to approximate the original non-convex worst-case

beam-forming problem. A conservative version of robust beamforming prob-

lem based on semi-infinite second-order cone program is studied in [73] and

[74] using Lorentz-Positive Maps and Quadratic Matrix Inequalities.

In [75] and [76], the authors minimize the transmit power in the presence

of imperfect CSI, with confined uncertainty within a Euclidean ball, sub-

ject to achieving a lower bound on the received signal-to-interference-plus

noise ratio at user terminals. Most of the above studies are based on ro-

bust optimization and in [77] have concluded that for a given optimization

problem, the design for robust counterpart may significantly suffer from two

major difficulties: (i) cast the original non-convex problem into a tractable

formulation using approximations, and, (ii) once the tractable formulation is

obtained an increase in the complexity of the robust counterpart is seen as

71



CHAPTER 4. SOCP ROBUST DOWNLINK BEAMFORMING

compared to the original problem. Due to the two major difficulties, finding

an effective method to design a beamforming to obtain an efficient transmit

power can be very challenging due to computational cost and efficiency. From

the above challenges, only few authors have proposed different approaches in

the study of the comparison between the SDP and SOCP. For i.e., the au-

thor in [77] study the signal-to-interference-noise-ratio balancing in multicell

multiple-input single-output (MISO) downlink and assumed that there is an

imperfection in the CSI. The authors first solved the non-convex problem in

semidefinite relaxation method, then proposed SOCP based design method

and then offered comparison performance between the two methods.

However, these approaches ignore the overall interference power on the outer-

cell users due to transmissions to the locally active users within a cell.

This chapter considers a robust distributed approach where each BS within

a cell only sends data to its local users, while controlling the induced inter-

ference on the other users of the other cells. This approach can significantly

reduce the signaling overhead in comparison with its fully centralized coun-

terpart.

To achieve this goal, a robust multicell downlink beamforming is proposed

that minimizes a combination of the sum-power, used by each base station

(BS) to transmit data to its local users, and the worst-case of the result-

ing overall interference, induced on the other users of the adjacent cells in

the presence of imperfect channel state information, subject to guaranteeing

the worst-cases of the signal-to-interference-plus-noise ratio (SINR) remain

above a prescribed threshold. It is assumed that the imperfection in CSI

between the true and the estimated channel coefficients is confined within

a spherical uncertainty set. The original non-convex robust problem is re-

formulated as a second-order cone programming (SOCP), then, the SOCP

convex constraints are transformed into linear matrix inequality (LMI) form-

s. The proposed scheme is then compared against a centralized scheme. To

achieve this, a coordinated beamforming scheme proposed in [67] is refor-
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mulated, with imperfect instantaneous CSI using the standard semidefinite

relaxation [66].

This chapter is organized as follows: Section 4.3 presents second order

cone programming formulation and coordinated beamforming with imperfect

instantaneous CSI . Simulation results are presented in section 4.5. Finally,

subsection 4.6 concludes the section.

4.3 Second-Order Cone Programming For Ro-

bust Downlink Beamforming With Im-

perfect CSI

In the following, the formulation of the original problem to SOCP is present-

ed. Firstly, the overall interference power on the outer-cell users of problem

(3.7) is considered and this can be expressed as follows

Problem in (3.7) can be equivalently rewritten as

min
wi

q(wi, et) +
∑
i∈sl

ηiw
H
i wi

s.t
| (ĥHi + eHi )wi |2∑

j∈slj 6=i | (ĥ
H
i + eHi )wj |2 +ξi + σ2

≥ γi, ∀i ∈ Sl. (4.1)

where

q(wi, et) = max∥∥et

∥∥≤εt
∑
t∈so

∑
i∈sl

| (ĝHt wi + eHt wi) |
2

(4.2)

We assume that Qt is given as Qt = ε−2
t IM . The maximization term,

eHt Qtet ≤ 1, can be reexpressed as
∥∥et∥∥ ≤ εt, where εt represents the size
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of the sphere. The upper-bound in (4.2) is satisfied when et lies within the

maximum bound when
∥∥et∥∥ = εt. Therefore, we write the function that

maximizes over et as follow

q(et) = max∥∥et

∥∥≤εt
∑
t∈so

∑
i∈sl

| (ĝHt wi + eHt wi) |
2

(4.3)

Therefore, for Qt = ε−2
t IM for all t where the CSI error satisfy bounds εt > 0,

problem (3.5) and (3.6) are reduced to be spherically bounded. We reexpress

(3.5) and (3.6) as
∥∥ei∥∥2

≤ εi and
∥∥et∥∥2

≤ εt, where εi and εt are the nonneg-

ative values of the uncertainty region. Using the triangle inequality and the

Cauchy-Schwarz inequality, and the fact that max‖et‖2≤εt | e
H
t wt |= εt

∥∥wt

∥∥
2
,

one can write problem (4.3)

∑
t∈so

∑
i∈sl

µt | (ĝHt + eHt )wi |2

≤
∑
t∈so

∑
i∈sl

µt(| ĝHt wi | +εt
∥∥wi

∥∥
2
)2. (4.4)
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The right hand side (RHS) of (4.4) can be expanded as∑
t∈so

∑
i∈sl

µt(| ĝHt wi | +εt
∥∥wi

∥∥
2
)2

=
∑
t∈so

∑
i∈sl

µt(| ĝHt wi |2 +ε2
t

∥∥wi

∥∥2

2
+

2εt | ĝHt wi |
∥∥wi

∥∥
2
)

≤
∑
t∈so

∑
i∈sl

µt(| ĝHt wi |2 +εt(εt + 2
∥∥ĝt∥∥2

)
∥∥wi

∥∥2

2
) (4.5)

=
∑
t∈so

∑
i∈sl

µt(| ĝHt wi |2 +εt(εt + 2
√

ĝHt ĝt)w
H
i wi)

=
∑
t∈so

∑
i∈sl

µt | ĝHt wi |2 +
∑
t∈so

∑
i∈sl

µtw
H
i mtwi,

where mt = εt
2 + 2εt

√
ĝHt ĝt and the inequality in (4.5) is due to the appli-

cation of Cauchy-Schwarz inequality, i.e., | eHt wi | ≤
∥∥et∥∥∥∥wi

∥∥ ≤ εt
∥∥wi

∥∥.

Furthermore, one can write

| (ĥHi + eHi )wi |2

≥ (| ĥHi wi | − | eHi wi |)2

≥| ĥHi wi |2 +wH
i (ε2

i − 2εi

√
ĥHi ĥi)wi (4.6)

and

| (ĥHi + eHi )wj |2

≤ (| ĥHi wj | + | eHi wj |)2

≤| ĥHi wj |2 +wH
j (ε2

i + 2εi

√
ĥHi ĥi)wj. (4.7)

Apply the lower bound and the upper bound derived in (4.6) and (4.7), re-

spectively, in the constraints of the optimization problem introduced in (4.1)

to account for the worst case of SINR constraints in terms of uncertainties in

CSI. Using the upper bound derived in (4.5) in the objective function, one

75



CHAPTER 4. SOCP ROBUST DOWNLINK BEAMFORMING

can rewrite the problem in (4.1) as

min
wi

∑
t∈so

∑
i∈sl

µt| ĝHt wi |
2

+
∑
t∈so

∑
i∈sl

µtw
H
i mtwi +∑

i∈sl

ηiw
H
i wi (4.8)

s.t
| ĥHi wi |2 +wH

i miwi∑
j 6=i | ĥHi wj |2 +

∑
j 6=iw

H
j miiwj + ξi + σ2

≥ γi, ∀i ∈ Sl,

where

mi = εi
2 − 2εi

√
ĥHi ĥi,

mii = εi
2 + 2εi

√
ĥHi ĥi.

Furthermore, one can expand the constraint in (4.8) as(
1 +

1

γ

)
| ĥHi wi |

2
≥
∑
j∈sl

| ĥHi wj |
2

+ qi, (4.9)

where

qi =
∑
j∈sl

wH
j miiwj −wH

i

(
mii +

mi

γ

)
wi + ξi + σ2.

Let us define W = [w1, ...,wU ], W s = WDiag[
√
η1, · · · ,

√
ηU ], the indica-

tor vectors xi as a U × 1 vector with unity at the ith dimension and zeros

elsewhere and xt as a N ×1 vector with unity at the tth dimension and zeros

elsewhere, whereN = (Nc−1)U . Then,
∑

i∈sl w
H
i wi = Tr(WHW) =

∥∥W∥∥2

F

and
∑

i∈sl ηiw
H
i wi =

∥∥Ws

∥∥2

F
. Hence, using (4.9), one can restate the prob-
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lem in (4.8) as

min
wi

∑
t∈so

∑
i∈sl

µt| xTt ĜHWxi |
2

+ (4.10)∑
t∈so

µtmt

∥∥W∥∥2

F
+
∥∥Ws

∥∥2

F

s.t

(
1 +

1

γ

)
| xTi ĤHWxi |

2
≥
∑
j∈sl

| xTi ĤHWxj |
2

+

qi,

where

mt = εt
2 + 2εt

√
xTt ĜHĜxt,

mi = εi
2 − 2εi

√
xTi ĤHĤxi,

mii = εi
2 + 2εi

√
xTi ĤHĤxi,

qi = −
(
mii +

mi

γ

)
xTi WHWxi +

mii

∥∥W∥∥2

F
+ ξi + σ2,

where Ĥ = [ĥ1, ...ĥU ] and Ĝ = [ĝ1, ...ĝN ] denote the set of complex channel

of locally active users and a set of complex channel of the users in the ad-

jacent cells. It is observed that for an optimal W satisfying problem (4.10),

Wdiag[xjψ1 , ...xjψU ], where ψi is an arbitrary phase, is also an optimal so-

lution. Therefore, one can design the beamforming matrix W up to an

arbitrary phase scaling and the scalar xTi ĤHWxi is non-negative and real.

By introducing a slack nonnegative variable Po. Problem (4.10) can be recast
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as

min
wi,Po

Po (4.11)

s.t

(
1 +

1

γ

)
| xTi ĤHWxi |

2
≥
∑
j∈sl

| xTi ĤHWxj |
2

+

qi,∑
t∈so

∑
i∈sl

µt| xTt ĜHWxi |
2

+∑
t∈so

µtmt

∥∥W∥∥2

F
+
∥∥Ws

∥∥2

F
≤ Po.

The constraints in (4.11) can be expressed as(
1 +

1

γ

)
| xTi ĤHWxi |

2
≥
∥∥(xTi ĤHW

)∥∥2

+ qi (4.12)

∥∥Vec
(
PĜHW

)∥∥2

+
∑
t∈so

µtmt

∥∥W∥∥2

F
+
∥∥Ws

∥∥2

F
≤ Po (4.13)

where P = Diag[
√
µ1, · · · ,

√
µN ] is a N × N diagonal weighting matrix. It

can be easily verified that (4.12) and (4.13) can be equivalently rewritten in

the second order cone forms or SOCP constraints as

∥∥∥ (ĤHW)Txi
√
qi

∥∥∥2

≤
(

1 +
1

γ

)
| xTi ĤHWxi |2, (4.14)

∥∥∥ vec
(
PĜHW

)√∑
t∈so µtmt

∥∥W∥∥2

F
+
∥∥Ws

∥∥∥2

F

∥∥∥2

≤ P0 (4.15)

Finally according to Schur complement, (4.14) and (4.15) are equivalent to

the following linear matrix inequalities, i.e.,
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S =


√

1 + 1
γ
xTi ĤHWxi

[
xi
T
(
ĤHW

) √
qi

][
(ĤHW)Txi
√
qi

] √
1 + 1

γ
xTi ĤHWxiI

 , (4.16)

and (4.17), respectively.

L =


√
Po

[
vecT

(
PĜHW

) √∑
t∈so µtmt

∥∥W∥∥2

F
+
∥∥Ws

∥∥∥2

F

]
 vec

(
PĜHW

)√∑
t∈so µtmt

∥∥W∥∥2

F
+
∥∥Ws

∥∥∥2

F

 √
PoI

 .
(4.17)

Hence, the optimization problem in (4.11) can be equivalently restated as

min
W,Po

Po (4.18)

s.t S � 0,

L � 0.

The convex problem in (4.18) can be solved using the numerical optimization

packages, e.g., the SeDumi solver [37].
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4.4 A Robust Coordinated Beamforming For-

mulation with Imperfect Instantaneous C-

SI

In [67], a centralized coordinated beamforming (CBF) problem has been

proposed and formulated with imperfect second order statistical CSI. In the

sequel and for the purpose of comparison, one can reformulate this problem

with imperfect instantaneous CSI. Although, this reformulation is straight-

forward, it requires some considerations in terms of characterization of un-

certainty region for fair comparison with the proposed method in (4.18). The

centralized CBF can be rewritten as

min
wi(q)

Nc∑
q=1

U∑
i=1

wH
i(q)wi(q) (4.19)

s.t SINRi(q) ≥ γi(q),∀i ∈ Sl, 1 ≤ q ≤ Nc

where the notation i(q) indicates user i in cell q. Notice that for our dis-

tributed formulation in (4.18), The cell index q has been dropped for the

simplicity of notations, but, hereafter, the centralized CBF formulation is

considered. The intercell interference on user i(q), i.e., ξi(q), is given by

ξi(q) =
N∑

t=1,t6=q

U∑
m=1

| (ĝHi(q),t + eHi(q),t)wm(t) |2, (4.20)

where ĝi(q),t is the channel vector between user i(q) and any BS t, t 6= q, and

ei(q),t is the corresponding uncertainty.

| (ĥi(q) + ei(q))
Hwi(q) |2= wH

i(q)Ĥi(q)wi(q), (4.21)

| (ĝi(q),t + ei(q),t)
Hwm(t) |2= wH

m(t)Ĝi(q),twm(t), (4.22)
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where ĥi(q) is the direct channel between user i(q) and its local BS in cell q

and ei(q) indicates the corresponding uncertainty. We can write

Ĥi(q) = ĥi(q)ĥ
H
i(q) + ∆i(q),

Ĝi(q),t = ĝi(q),tĝ
H
i(q),t + ∆i(q),t,

where

∆i(q) = ĥi(q)ê
H
i(q) + êi(q)ĥ

H
i(q) + êi(q)ê

H
i(q), (4.23)

∆i(q),t = ĝi(q),tê
H
i(q),t + êi(q),tĝ

H
i(q),t + êi(q),tê

H
i(q),t, (4.24)

such that, [76],

δi(q) = ‖∆i(q)‖F 6 ε2
i(q) + 2εi(q)‖ĥi(q)‖, (4.25)

δi(q),t = ‖∆i(q),t‖F 6 ε2
i(q),t + 2εi(q),t‖ĝi(q),t‖. (4.26)

Note that δi(q), δi(q),t indicate the error bounds on the direct channel vector

of user i(q) and the indirect channel vector of user i(q) as seen by BS t,

respectively. Following similar steps in [67], The centralized robust CBF

with instantaneous CSI can be formulated as

min
Wi(q),K

K (4.27)

s.t Ti(q) ≥ 0,

K −
Nc∑
q=1

U∑
i=1

Tr(Wi(q)) ≥ 0,

Wi(q) = WH
i(q) � 0, ∀i ∈ Sl, 1 ≤ q ≤ Nc

Rank(Wi(q)) = 1,

where Wi(q)=wi(q)w
H
i(q) is a positive semidefinite matrix with unit rank and

Ti(q) =
(

1 + 1
γi(q)

)
Tr(ĥi(q)ĥ

H
i(q)Wi(q)) −

∑Nc
t=1

∑U
m=1 Tr(ĝi(q),tĝ

H
i(q),tWm(t)) −
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σ2
i(q) −

∑Nc
t=1

∑U
m=1 δi(q),tTr(Wm(t)) + δi(q)

(
1− 1

γi(q)

)
Tr(Wi(q)) > 0. In this

formulation, the approximation of ∆i(q) = δi(q)IM and ∆i(q),t = δi(q),tIM

have been considered. In the above derivation, the following notation has

been considered that ĝi(q),q = ĥi(q). The problem in (4.27) can be solved using

the convex optimization packages by first relaxing the rank one constraint,

which is the only non-convex constraint and then selecting the rank one

solutions as the feasible ones [67]. Note also that in simulations, it has been

assumed that δ = δi(q) = δi(q),t.

4.4.1 Convergence algorithm

To arrive at a tractable solution, let consider the channel vector and its

corresponding uncertainty in (4.21) and (4.22), respectively.

Then, the problem in (4.1) can be rewritten as

min
wi,ri

q(wi, et) +
∑
i∈sl

ηiw
H
i wi

s.t
| rHi Ĥiwi |2∑

j∈slj 6=i | r
H
i Ĥiwj |2 +

∥∥ri∥∥2
ξi +

∥∥ri∥∥2
σ2

≥ γi, ∀i ∈ Sl. (4.28)

where

q(wi, et) = max∥∥et

∥∥≤εt
∑
t∈so

∑
i∈sl

| rHi Ĝtwi) |
2
, (4.29)

where ri ∈ CM×1 denotes the received antenna vector that is used to retrieve

the data symbol sj.

It is observed that for an optimal wi to be a solution, then wie
jψ1 , where ψi

is an arbitrary phase, is also an optimal solution. The phase of wi, such that
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rHi Ĥiwi is non-negative and real. Problem (4.28) can be rewritten

min
wi,ri,Po

Po (4.30)

s.t | rHi Ĥiwi |2≥
∑

j∈slj 6=i

| γirHi Ĥiwj |2 +γi
∥∥ri∥∥2

ξi + γi
∥∥ri∥∥2

σ2

max∥∥et

∥∥≤εt
∑
t∈so

∑
i∈sl

| rHi Ĝtwi) |
2

+
∑
i∈sl

ηiw
H
i wi ≤ Po ∀i ∈ Sl.

For a given receive vector ri, problem (4.30) can be reformulated as a SOCP.

This can be done using the same steps taken in section (4.3) of this thesis.

The minimum-mean-square-error (MMSE) receiver ri, and its proof are given

in [78] and the references therein. This is expressed as

ri =
[
Ĥi(wiw

H
i )ĤH

i + ξiI + σ2I
]−1

Ĥiwi (4.31)

The steps of the proposed Convergence algorithm is summarized in Algo-

rithm (1). Regarding the estimation of the intercell interference at step 7

of Algorithm (1), interested readers are referred to [79], where the details of

MMSE intercell interference estimation approaches are described.

4.5 Simulation results

4.5.1 Simulation setup

In this section, the performance of the proposed approach is compared against

the conventional approach within 3 adjacent sectors of 3 neighboring cells, as

shown in Fig (3.1). In particular, 1 user per sector is randomly distributed

such that, the user of each cell is located within the 3 adjacent sectors of

3 neighbouring cells. Monte Carlo simulations are carried out over 50 users

distribution and generate 10000 sets of uncertainty channel realizations per

user satisfying
∥∥ei∥∥2 ≤ εi

2. The channel model used in [41] is applied to this
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Algorithm 1 Convergence algorithm implemented at the BS of each cell l

1: Define a set of locally active users Sl with their corresponding SINR
requirements and a stopping point Γ of the algorithm

2: Inputs: Γ, ĥ,ĝ,b, ε, σ2;
3: Initialize: receiver vectors (r1, r2, · · ·, rM), n = 1, ξi(n) ≥ 0, ∀i ∈ Sl ;
4: Repeat
5: Solve the SOCP of (4.30) to find W(n) and extract wi(n), ∀i ∈ Sl.

This gives a feasible solutions as {w1(n),w2(n) · ··,wM(n), r1(n), r2(n) ·
· · rM(n)} , at the nth iteration.

6: Transmit with wi(n), ∀i ∈ Sl;
7: Update the user r1 with the MMSE solution in (4.31) and each user i

estimates its received intercell interference as ξi(n + 1), e.g., using the
technique in [79], and reports the updated ξi(n) = ξi(n + 1) back to its
local BS. For the next iteration, we denote as {r1(n + 1), r2(n + 1) · · ·
rM(n+ 1), ξi(n+ 1)}

8: n = n+ 1;

9: Repeat lines 5 and 8 Until
∑

i∈Sl

∥∥∥wi(n)
∥∥∥2

≥
∑

i∈Sl

∥∥∥wi(n+ 1)
∥∥∥2

≤ Γ;

and SINR of (4.28) are satisfied, then it is said to have converged.
10: If the SINR of (4.28) is satisfied for all i, then
11: go to line 15
12: Else if condition in 9 is not satisfied for a user i then
13: go to line 4
14: End if
15: Output: wi(n), ∀i ∈ Sl.
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Figure 4.1: Total transmit power versus targeted SINR values in a 3-cell
scenario with one user per cell and 6 antenna elements per BS for the SOCP
Robust Downlink Beamforming with imperfect CSI.

proposed method and is expressed as

hi = 10−(128.1+37.6 log10(l))/20.ψi.ϕi.(ĥi + ei), (4.32)

where l is the distance between the i BS and i user, ψi is the shadowing, ϕi

is the antenna gain, ĥi and ei denote the estimated CSI channel and the CSI

error respectively. The rest of the parameters as shown in the table of the

section (3.4.1).

4.5.2 Performance evaluation

Fig. 4.1 shows a plot of total transmit power in a 3-cell cellular scenario

versus the SINR target per user for the conventional, the nominal central-
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Figure 4.2: Total transmit power versus targeted SINR values in a 3-cell sce-
nario with one user per cell and 6 antenna elements per BS for the centralized
robust CBF with instantaneous CSI.
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Figure 4.3: Convergence and transient behavior of transmit power at target
SINR 26dB and the error radii of 0.1 and 0.02 with one user per cell and 6
antenna elements per BS
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ized coordinated beamforming (CBF) [67] with instantaneous CSI and the

proposed robust and distributed approach in problem (4.1) for different val-

ues of the error radii, i.e. ε = 0.0, 0.02, 0.1, 0.3 and 0.4. The conventional

approach is obtained by inserting µt = 0, ∀t ∈ So in problem (4.1) to remove

the intercell interference controlling term from the objective function of the

proposed optimization problem. A comparison of the performance differences

between the conventional approach and the proposed scheme with different

levels of uncertainties in Fig. 4.1 shows the effectiveness of the proposed ro-

bust formulations in (4.8) and finally in (4.18) in terms of energy efficiency.

Furthermore, the performance results of the proposed scheme with different

uncertainty levels in Fig. 4.1 show a nearly perfect match with the nominal

CBF at low and average target SINR levels. A very intimate match between

the no error, i.e., ε = 0.0, performance and the nominal CBF in Fig. 4.1

reveals a negligible cost of robustness in terms of energy consumption at low

and the average SINR values of up to 20 dB. It should be noted that the

nominal CBF is formulated using the SOCP approach and without semidef-

inite relaxation (i.e., the similar approach used to formulate the proposed

scheme) in a centralized way. By the centralized design, it means that the

beamforming vectors of all BSs are jointly designed in a centralized unit and,

then, sent to the individual BSs to serve their corresponding local (intracell)

users, only. The results in Fig. 4.2 for the robust CBF, as reformulated in

section (4.4) using semidefinite relaxation, shows a consistently increasing

power gap between the nominal CBF and the robust CBF formulation with

δ = 0.0 as the SINR targets increasing. This observation is as a result of

using two different formulation techniques of SOCP and the semidefinite re-

laxation. Comparing the results in Figs. 4.1 and 4.2 with the corresponding

no-error performances, it can be observed that a high sensitivity of the robust

formulation in section (4.4) to different levels of errors, i.e., the values of δ

parameters in Fig. 4.2. For instance, for the uncertainty level of δ = 0.1, at

SINR=14 dB in Fig. 4.2, the required transmitted power is 13.76 dBm and
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the design fails to function efficiently beyond 14 dB of SINR, as it requires a

very high power consumption. Whereas the proposed SOCP robust formu-

lation in section (4.3) shows a closer match with the no error performance

over the low and average SINR levels as illustrated in Fig. (4.1).

4.5.3 Convergence analysis

Fig.4.3 illustrates the convergence behaviour summarized in algorithm 1 for

different values of the error radii for the proposed SOCP robust beamform-

ing with imperfect CSI. These results were achieved by solving (4.30) using

algorithm 1 over 1000 channel realizations, for a target SINR of 26dB and

error radii of 0.1 and 0.02. One can see that the algorithm converges to an

optimal point for the given conditions in step 9 of the algorithm (1). For the

error radii, ε = 0.1, the convergence is faster compared to the ε = 0.02. The

reason is that, for every feasibility solution wi(n) also produces another fea-

sibility solution of wi(n+ 1). As a result, the transmit power monotonically

decreasing as the iterations increases.
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Table 4.1: Complexity analysis for SDP and SOCP

Methods Number of Variables
SDP N=12
Methods Complexity
SDP O(123.5)
Methods Number of Variables
SOCP N=9
Methods Complexity
SOCP O(93.5)

4.5.4 Complexity analysis of SDP and SOCP robust

beamforming with imperfect CSI

Table 4.1, shows the comparison of both schemes. The complexity analysis

is defined in terms of the number of optimization variables, equality and

inequality constraints. This gives an estimate of the computational time.

This thesis follows the worst case computational complexity for SDP and

SOCP developed in [80] and this is approximated as O(N3.5), where N is the

number of variables. For the SDP, the variable Wi defined in (3.8) consist of

A×A,U matrices, where A = 6 and U = 1 are the number of antennas and

user respectively. Giving the total of N= 12, this includes other variables

such as slack variables in the simulations declaration of the optimization.

For the SOCP, the number of variables, N=8. This showed that, the SOCP

yield lower complexity than the SDP, and this can be seen from the number

of constraints in chapter (3) compared to chapter (4) from their simulations

problem (3.17) and (4.18) respectively.
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4.5.5 Performance evaluation for SDP and SOCP ro-

bust beamforming with imperfect CSI

This section evaluates the performance between chapter (3) and chapter (4).

In chapter (3), the original non-convex problem (3.3) is formulated as a stan-

dard semidefinite relaxation (SDR). Then in chapter (4), the same original

non-convex problem (3.3) is reformulated as a second-order cone program-

ming (SOCP).Then, the fidelity of both schemes is compared against the

coordinated centralized beamforming. The simulation results are provided,

in order to compare the effectiveness and efficiency of the SDR in the pres-

ence of imperfect CSI with respective of the proposed SOCP robust schemes,

in terms of transmitting power at BSs.

In Fig. 4.4 shows a plot of total transmit power in a 3-cell cellular scenario

versus the SINR target per user for the conventional, the nominal centralized

coordinated beamforming and the proposed robust and distributed approach

in problem (3.3) for the sdp and socp in chapter (3) and (4) respectively. For

the same values of the error radii, i.e. ε = 0.02 and 0.1. It can be seen that,

the sdp and socp their performance at low SINR values up to a target of 10

dB are similar and coincide with the performance of the nominal CBF, but

the sdp approach in terms of power efficient support of higher SINR targets,

improves as a result of a decreased error radius. The socp continue similar

performance with the nominal CBF up to a target of 22 dB, which is almost

twice as that of the sdp. This is clearly shows that the socp is more power

efficient. Not only for its power efficiency is compared against the standard

semidefinite relaxation, also the socp formulation is less complex due to its

low number of variables. Therefore, performance loss in the SDR can also be

caused by the second order method SeDuMi [37] used, because the method

is unable to handle problem with large dimension as the computational com-

plexity is limited.
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Figure 4.4: Total transmit power versus targeted SINR values in a 3-cell
scenario with one user per cell and 6 antenna elements per BS.
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4.6 Conclusion

This chapter provides a solution to the problem of downlink multicell pro-

cessing with imperfect channel state information and distributed beamform-

ing. The goal is to minimize a combination of the sum power of each BS

across the network subject to the worst-case of the SINR level of individual

users. The optimization problem has been formulated as the second-order

cone programming (SOCP) and then recast the convex constraints in linear

matrix inequality (LMI) form in the presence of imperfect channel state in-

formation. The reformulated centralized coordinated beamforming was used

to compare and evaluate the efficiency of the proposed formulated scheme.

The simulation results showed that the proposed SOCP for robust downlink

beamforming with imperfect CSI formulation outperforms the conventional

method and shows a close fidelity to a nominal centralized coordinated beam-

forming design. The second-order cone programming (SOCP)outperformed

the SDP in terms of performance and complexity.
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Chapter 5

Intercell Interference

Management For Downlink

Beamforming With Imperfect

CSI

This chapter considers an optimum multicell downlink beamforming that

minimizes the worst-case of the resulting overall interference induced on the

other users of the adjacent cells in the presence of imperfect channel state

information (CSI). Users on the cell edge mostly suffer from severe interfer-

ence, which result in low data rate. The aim is to ensure that the data rate at

the cell edge users for any given transmit power remains above the required

level. A spherical uncertainty set is considered to model the imperfection

in CSI between the true and the estimated channel coefficients. The origi-

nal non-convex problem is formulated as the second-order cone programming

(SOCP) and then recast the convex constraints into a tractable formulation

in linear matrix inequality (LMI) form.
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5.1 Introduction

In current cellular networks, inter-cell interference presents severe limitations

to achieving high data rates. This is due to the aggressive frequency reuse

among neighbouring cells. Most users located at the cell edge suffer from

multiple channel conditions effects and severe inter-cell interference problems

which result in very low data rates. As a result, to improve their performance,

different techniques have been studied to mitigate inter-cell interference in

recent literatures, [81], [82], [83]. However, it has been reported that, they

require high computational complexity and extensive backhaul signaling and

present no fairness guarantees [84]. Coordinated multi-point (CoMP) com-

munications is a solution to the problem. A potential drawback is that the

CoMP requires the provision of full CSI at the transmitter, i.e., CSIT, in

order to effectively design downlink beamforming towards the end user ter-

minals. Yet, the CSI at the transmitter might not be perfect, and to establish

an ideal backhaul link is not affordable due to the limitations in scalability of

communications resources. Recently, achieving the promised gains of CoMP

in practical scenarios has motivated the use of robust design methodologies

against channel uncertainties. In order to tackle the challenges of such real

practical scenarios in downlink beamforming, many authors have suggested

different design techniques to the above problem, e.g., [85], [41], [86]. In [85]

a robust multi-cell coordinated beamforming (MCBF) is considered, the au-

thors use semidefinite relaxation to handle the worst case, that minimizes the

weighted sum transmission power of the base stations (BSs) subject to some

worst-case SINR constraints on MSs. In [41], the authors adopt an elliptical

uncertainty set to model the channel parameters to devise a distributed opti-

mization problem that minimizes the weighted sum power of BSs subject to

worst-case signal-to-interference-plus-noise ratio (SINR) constraints on the

MSs. A balancing approach is introduced in [86] that maximizes the sum

rate of intra-cell users and minimizes the resulting interference on users of

the other cells, with an assumption of the availability of perfect CSI. How-
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ever, none of the above considered minimizing the interference power on the

outer-cell users due to transmissions to the locally active users within a cell.

In this chapter, the strategic aim is to minimize the aggregated interference

power induced on the users of the other cells by any individual base station.

The time-division duplex (TDD) systems is taken into consideration in order

to exploit channel reciprocity, which can then be exploited to reduce feedback

overhead and the possibility of CSI reporting accuracy [87]. The proposed

scheme is considered as decentralized in a manner that each base station de-

signs its beamforming independently. In real scenario, no CSI is considered

to be perfect and is limited by the capacity of the transmission, and there-

fore, uncertainty modelling is of interest. In order to solve the problem, one

can expect to minimize the worst-case of the resulting overall interference

induced on the other users of the adjacent cells in the presence of imperfect

CSI. The aim is to ensure that the data rate at the cell edge users, for any

given transmit power remains above the required level. The proposed formu-

lation involves robustness against CSIT uncertainties which are assumed to

be confined within the spherical uncertainty sets. The original non-convex

problem is formulated as the second-order cone programming (SOCP) and

then recast to a final optimization problem with the constraints in linear ma-

trix inequality (LMI) form [1]. The rest of the chapter is organized as follows:

Subsection II introduces system model and problem formulation. Subsection

III presents Intercell Interference Problem robust downlink beamforming.

Simulation results are presented in subsection IV. Finally, subsection V con-

cludes the section.

96



CHAPTER 5. INTERCELL INTERFERENCE MANAGEMENT FOR
DOWNLINK BEAMFORMING WITH IMPERFECT CSI

5.2 System model and problem formulation

An optimization problem that calculate the optimum downlink beamforming

vectors at any given BS q, can be written as

min
wi

∑
t∈So

∑
i∈Sq

wH
i gtg

H
t wi

s.t log(1 + SINRi) ≥ b,∑
i∈Sq

wH
i wi ≤ P, ∀i ∈ Sq. (5.1)

The objective function in (5.1) indicates the overall interference power on

the outer-cell users due to the transmission of BS q to its locally active users.

The first and the second constraints in (5.1) are to ensure that the required

number of b, b/sec/Hz, is delivered to an active user under a given total

power constraint of P at BS q and the SINR of problem (3.2) is considered.

5.3 Intercell Interference Management For Down-

link Beamforming With Imperfect CSI

Let consider the true CSI defined in (3.4). It is assumed that these error

vectors are bound within a spherical uncertainty set defined in (4.2). Sub-

stituting for hi and gt from (3.4) in (5.1), it can be written as

min
wi

max
‖et‖2≤εt

∑
t∈So

∑
i∈Sq

| (ĝHt + eHt )wi |2 (5.2)

s.t. min
‖et‖2≤εt

log
(

1 +
| (ĥHi + eHi )wi |2∑

j∈Sq
j 6=i
| (ĥHi + eHi )wj |2 +ξi + σ2

)
≥ b,∑
i∈Sq

wH
i wi ≤ P, ∀i ∈ Sq.
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By introducing a slack variable k, one can rewrite (5.2) as

min
wi,k

k (5.3)

s.t. min
‖et‖2≤εt

log
(

1 +
| (ĥHi + eHi )wi |2∑

j∈Sq
j 6=i
| (ĥHi + eHi )wj |2 +ξi + σ2

)
≥ b, ∀i ∈ Sq
max
‖et‖2≤εt

∑
t∈So

∑
i∈Sq

| (ĝHt + eHt )wi |2≤ k

∑
i∈Sq

wH
i wi ≤ P.

Using the Cauchy-Schwarz inequality, i.e., | eHt wi | ≤
∥∥et∥∥∥∥wi

∥∥ ≤ εt
∥∥wi

∥∥,

and applying the triangle inequality, one can rewrite the second constraint

in problem (5.3) as

max
‖et‖2≤εt

∑
t∈So

∑
i∈Sq

| (ĝHt + eHt )wi |2

≤
∑
t∈So

∑
i∈Sq

(| ĝHt wi | +εt
∥∥wi

∥∥
2
)2. (5.4)

The right-hand-side (RHS) of (5.4) can be written as∑
t∈So

∑
i∈Sq

(
| ĝHt wi |2 +εt(εt + 2

∥∥ĝt∥∥2
)
∥∥wi

∥∥2

2

)
=
∑
t∈So

∑
i∈Sq

| ĝHt wi |2 +
∑
t∈So

∑
i∈Sq

wH
i mtwi, (5.5)

where mt = εt
2 + 2εt

√
ĝHt ĝt. Similarly, by applying the Cauchy-Schwarz

inequality and the triangular inequality, the numerator of the SINR can be
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shown as

| (ĥHi + eHi )wi |2

≥
(
| ĥHi wi |2 +wH

i (ε2
i − 2εi

√
ĥHi ĥi)wi

)
(5.6)

and

| (ĥHi + eHi )wj |2

≤
∑

j∈Sqj 6=i

| ĥHi wj |2 +
∑

j∈Sqj 6=i

wH
j

(
ε2
i + 2εi

√
ĥHi ĥi

)
wj.

(5.7)

The left-hand-side (LHS) of the first constraint in (5.2), i.e., the rate con-

straint in the worst case, is calculated by substituting the lower and the upper

bounds in (5.6) and (5.7) in the SINR expression in (5.1). Using the upper

bound expression in (5.5) for the LHS of the second constraint in (5.3), one

can express the problem in (5.3) as

min
wi,k

k

s.t log(1 + SINRi) ≥ b,∀i ∈ Sq,∑
t∈So

∑
i∈Sq

| ĝHt wi |
2

+
∑
t∈So

∑
i∈Sq

wH
i mtwi ≤ k

∑
i∈Sq

wH
i wi ≤ P, (5.8)

where

SINRi =
| ĥHi wi |2 +wH

i miwi∑
j 6=i | ĥHi wj |2 +

∑
j 6=iw

H
j miiwj + ξi + σ2

,

mi = εi
2 − 2εi

√
ĥHi ĥi,

mii = εi
2 + 2εi

√
ĥHi ĥi.
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Furthermore, the first constraint in (5.8) can be rewritten as

| ĥHi wi |2 +wH
i miwi∑

j 6=i | ĥHi wj |2 +
∑

j 6=iw
H
j miiwj + ξi + σ2

≥ (2b − 1), (5.9)

which can be expanded as (5.10).

| ĥHi wi |2 +wH
i miwi ≥ (

∑
j 6=i

| ĥHi wj |2 +
∑
j 6=i

wH
j miiwj + ξi + σ2)(2b − 1)

2b | ĥHi wi |2≥
∑
j∈Sq

| ĥHi wj |2 (2b − 1) + (
∑
j∈Sq

wH
j miiwj + ξi + σ2)(2b − 1)

−wH
i (mi +mii(2

b − 1))wi (5.10)

By plugging (5.10) into the first constraint in (5.8), the optimization problem

in (5.8) can be rewritten

min
wi,k

k

s.t 2b | ĥHi wi |2≥
∑
j∈Sq

| ĥHi wj |2 (2b − 1) + qi,∑
t∈So

∑
i∈Sq

| ĝHt wi |
2

+
∑
t∈So

∑
i∈Sq

wH
i mtwi ≤ k

∑
i∈Sq

wH
i wi ≤ P (5.11)

where

qi =
(∑
j∈Sq

wH
j miiwj + ξi + σ2

)
(2b − 1)−wH

i Lwi,
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and L = mi+mii(2
b−1). Let denote W = [w1, ...,wK ]. Then,

∑
i∈Sq wH

i wi =

Tr(WHW) =
∥∥W∥∥2

, and its can restate the problem in (5.11) as

min
wi,k

k

s.t 2b | xTi ĤH
i Wxi |2≥

∑
i∈Sq

| xTt ĤH
i Wxi |2 (2b − 1)

+qi,∑
t∈So

∑
i∈Sq

| xTt ĜH
t Wxi |

2
+
∑
t∈So

mt

∥∥W∥∥2 ≤ k

∥∥W∥∥2 ≤ P (5.12)

here

mt = εt
2 + 2εt

√
xTt ĜHĜxt,

mi = εi
2 − 2εi

√
xTi ĤHĤxi,

mii = εi
2 + 2εi

√
xTi ĤHĤxi,

qi =
(
mii

∥∥W∥∥2
+ ξi + σ2

)
(2b − 1)− L

∥∥W∥∥2
,

where Ĥ = [ĥ1, ...ĥK ] and Ĝ = [ĝ1, ...ĝN ] denote the set of complex channel of

locally active users and a set of complex channel of the users in the adjacent

cells. The indicator vectors xi as a K × 1 vector with unity at the ith

dimension and zeros elsewhere and xt as a N × 1 vector with unity at the

tth dimension and zeros elsewhere, where N = (Nc − 1)K . It is observed

that for an optimal W satisfying problem (5.12), Wdiag[ejψ1 , ...ejψK ], where

ψi is an arbitrary phase, is also an optimal solution. Therefore, one can

design the beamforming matrix W up to an arbitrary phase scaling and the

scalar xTi ĤHWxi is non-negative and real. The constraints in (5.12) can be

expressed as

2b| xTi ĤHWxi |
2
≥
(

2b − 1
)∥∥∥(xTi ĤHW

)∥∥∥2

+ qi (5.13)

101



CHAPTER 5. INTERCELL INTERFERENCE MANAGEMENT FOR
DOWNLINK BEAMFORMING WITH IMPERFECT CSI∥∥∥Vec

(
ĜHW

)∥∥∥2

+
∑
t∈So

mt

∥∥∥W∥∥∥2

≤ k (5.14)

It can be easily verified that (5.13) and (5.14) can be equivalently rewritten

in the second order cone forms or SOCP constraints as

∥∥∥ (ĤHW)Txi√
qi(

2b−1

) ∥∥∥2

≤ 2b(
2b − 1

) | xTi ĤHWxi |2, (5.15)

∥∥∥ vec
(
ĜHW

)√∑
t∈Somt

∥∥∥W∥∥∥2

∥∥∥2

≤ k (5.16)

√
P ≥

∥∥∥ vec (W)
∥∥∥

2
(5.17)

Finally according to Schur complement, (5.15), (5.16) and (5.17) are equiv-

alent to the following linear matrix inequalities, i.e.,

Z =

[ √
P vecT (W)

vec (W)
√
P I

]
(5.18)

(5.19) and (5.20), respectively.

S =



2b(
2b−1

)xTi ĤHWxi

[
xi
T
(
ĤHW

) √
qi(

2b−1

)]
 (ĤHW)Txi√

qi(
2b−1

)
 2b(

2b−1

)xTi ĤHWxiI


(5.19)

L =


√
k

[
vecT

(
ĜHW

) √∑
t∈Somt

∥∥W∥∥2
]

 vec
(
ĜHW

)√∑
t∈Somt

∥∥W∥∥2

 √
kI

(5.20)

102



CHAPTER 5. INTERCELL INTERFERENCE MANAGEMENT FOR
DOWNLINK BEAMFORMING WITH IMPERFECT CSI

Hence, the optimization problem in (5.12) can be equivalently restated as

min
W,k

k (5.21)

s.t S � 0, L � 0, Z � 0.

The convex problem in (5.21) can be solved using numerical optimization

packages, e.g., the SeDumi solver [37]. the non-robust approach is developed

by setting mt = mi = mii = 0, and problem (5.3) can now be rewritten as

min
wi,k

k

s.t.
| ĥHi wi |2∑

j∈Sq
j 6=i
| ĥHi wj |2 +ξi + σ2

≥ 2b − 1, ∀i ∈ Sq

∑
t∈So

∑
i∈Sq

| ĝHt wi |2≤ k,
∑
i∈Sq

wH
i wi ≤ P. (5.22)

After some manipulations to problem (5.22), the following linear matrix in-

equalities are obtained, i.e.,

L2 =

 √k vecT
(
ĜHW

)
vec
(
ĜHW

) √
kI

 (5.23)

Z2 =

[ √
P vecT (W)

vec (W)
√
P I

]
(5.24)

and (5.25). Its equivalent SOCP can be stated as

S2 =


2b(

2b−1

)xTi ĤHWxi

[
xi
T
(
ĤHW

) √
ξi + σ2

]
[

(ĤHW)Txi√
ξi + σ2

]
2b(

2b−1

)xTi ĤHWxiI

 (5.25)
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min
W,k

k (5.26)

s.t S2 � 0, L2 � 0, Z2 � 0.

The convex problem in (5.26) can be solved using the same numerical op-

timization packages stated in (5.21). The steps of the proposed robust al-

gorithm is summarized in Algorithm 2, where Γ and n are, respectively the

stopping threshold and the execution iteration number of the algorithm. Re-

garding the estimation of the intercell interference at step 6 of Algorithm 2,

interested readers are referred to [79], where the details of MMSE intercell

interference estimation approaches are described.

Algorithm 2 The proposed algorithm implemented at the BS of each cell q

Inputs: Γ, ĥ,ĝ,b, ε, σ2;
2: Initialize: n = 1, ξi(n) ≥ 0, ∀i ∈ Sq ;

Repeat
4: Solve (5.21) to find W(n) and extract wi(n), ∀i ∈ Sq;

Transmit with wi(n), ∀i ∈ Sq;
6: Each user i estimates its received intercell interference as ξi(n+ 1), e.g.,

using the technique in [79], and reports the updated ξi(n) = ξi(n + 1)
back to its local BS;
n = n+ 1;

8: Until
∑

i∈Sq

(∥∥∥ (wi(n− 2))
∥∥∥2

−
∥∥∥wi(n− 1)

∥∥∥2
)
≤ Γ;

Output: wi(n), ∀i ∈ Sq.
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5.4 SIMULATION RESULTS

5.4.1 Simulation setup

In this section, the simulations are used to study the effectiveness of the

proposed method and evaluate the results using different values of the error

radii and compared against the conventional and non-robust scheme. Fig.

3.1 illustrates an example of one user distribution with K = 3 users that are

distributively generated on the verge of the 3 adjacent cells named critical

areas of the neighbouring base stations. Monte Carlo simulations are carried

out over 50 users distribution with 10000 channel realizations. Generate

10000 sets of CSI errors satisfying the error bound,
∥∥et∥∥2 ≤ ε2 until a fine

stable averaged transmitted power is achieved. To simulate the channel,

the distance between the base stations is an important factor. The distri-

bution of users are also taken into account in order to avoid other user from

receiving a null signal. Eminent consideration of large-scale fading caused by

shadowing conditions. Therefore, the model setup used in [41] can be used

and it is given as

gt = 10−(128.1+37.6 log10(l))/20.ψt.ϕt.(ĝt + et), (5.27)

where l is the distance between the t BS and K user, ψt is the shadowing

gain, ϕt is the antenna gain, ĥt and et denote the estimated CSI channel and

the CSI error respectively. The rest of the parameters, which are based on

the LTE standard as shown in the table of the section 3.4.1.
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5.4.2 Performance evaluation for Intercell Interference

Problem for Downlink Beamforming With Im-

perfect CSI

Fig. 5.1 shows a plot of total transmit power (in dBm) of each BS versus

user data rate (in b/s/Hz) per user of the conventional, non-robust and the

proposed approach for different values of the error radii, i.e., ε = 0.1, 0.2,

0.3, and 0.4. The base station is equipped with 6 antennas. it is noticed that

for the data rate below 5 b/s/Hz, the sensitivity to error is very low, and the

proposed scheme closely follow the non-robust scheme. For the data rate ≥
5 b/s/Hz, it has been observed that the variation of the transmitted power

is proportional to the error radii. Fig 5.2, shows a plot of total transmit

power versus the SINR target per user for any given value of b/s/Hz. Fig

5.2 indicates the effectiveness of the proposed intercell interference problem

for downlink beamforming with imperfect CSI in (5.8) and substantially in

(5.21) in terms of energy efficiency. Fig. 5.3, shows a plot of total intercell

power versus user data rate per user. It is noticed that for a given user data

rate, i.e., 4 b/s/Hz, the intercell power is considerable, increasing as the error

radii increases. For instance, at 5 b/s/Hz with the error radii of ε = 0.2, the

intercell power is 11.2 dBm, while for the same b/s/Hz but with different ε

= 0.4, the intercell power is 13.22 dBm. This is an increase of 2.02 dBm.

Fig. 5.4, shows a plot of total intercell power versus the SINR target per user

for any given value of the user data rate in Fig. 5.3. It is observed that as

the error radii increases, the intercell power also increases. For both Fig 5.2

and Fig. 5.4, that at a very low error radii, i.e., 0.1, the proposed approach

maintain similar performance for i.e., 18 db, the design achieved the total

transmit of 18 dBm and the proposed is more resilient to channel estimate for

low b/sec/Hz. Finally, the simulations showed that the non-robust scheme

outperforms the proposed scheme at higher rate in b/s/Hz and nearly perfect

match with the proposed at low and moderate rate in b/s/Hz.
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Figure 5.1: Total transmit power versus Userate values in a 3-cell scenario
with one user per cell and 6 antenna elements per BS.
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Figure 5.2: Total transmit power versus targeted SINR values in a 3-cell
scenario with one user per cell and 6 antenna elements per BS.
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Figure 5.3: Total Intercell power versus Userate values in a 3-cell scenario
with one user per cell and 6 antenna elements per BS.

109



CHAPTER 5. INTERCELL INTERFERENCE MANAGEMENT FOR
DOWNLINK BEAMFORMING WITH IMPERFECT CSI

0 5 10 15 20
0

5

10

15

20

Target SINR[dB]

T
ot

al
 In

te
rf

er
en

ce
 P

ow
er

 [d
B

m
]

 

 

Proposed SOCP, ε =0.1
Proposed SOCP, ε =0.2
Proposed SOCP, ε =0.3
Proposed SOCP, ε =0.4
Non−robust, ε =0
Conventional

Figure 5.4: Total Intercell power versus targeted SINR values in a 3-cell
scenario with one user per cell and 6 antenna elements per BS.
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5.5 Conclusion

In this chapter, an interference management scheme in multicell networks

has been introduced, where each BS primarily minimizes its total interfer-

ence on the users of the other cells while delivering certain data rates to

its intracell users. The scheme is formulated under a robust optimization

problem that accounts for the uncertainties in channel state information at

base stations. As the original problem is intractable due to the presence

of robust constraints, the first concept is to reformulate the constraints in

the deterministic forms by assuming that the uncertainties are bound with-

in a hypersphere. Finally, the problem is restated in the second order cone

programming (SOCP) form. The results indicate that the proposed scheme

shows more resilience against channel estimation error at moderate and low

rates in b/sec/Hz and outperformed the conventional approach, but showed

a close fidelity to non-robust at a low and moderate rates in b/sec/Hz.
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Conclusion and future work

Convex optimization has recently been recognized as a powerful tool by the

signal processing community. The main advantage of a convex formulation

of a problem is that the optimisation problem has only one local optimum,

which is also a global optimum and a rigorous optimality condition and du-

ality theory exist to prove the optimal solution. Hence, convex optimisation

problems can always be solved, either analytically or numerically, to obtain

the optimum solution. This thesis exploited these tools of optimisation to

reduce the combination of the total transmitted power and its aggregated

interference induced on the users of the other cells of the cellular network

while ensuring required levels of signal to-interference-plus-noise ratios for

all active user terminals. A decentralised approach was developed at beam-

forming cooperative level, where the base station can independently perform

signal processing tasks using the locally attained CSI between itself and the

other vulnerable users of the other cells through feedback channels. The

thesis focus has been on the robust formulation of these problems in convex

form, with the assumption that the transmitter has erroneous channel state

information. In this thesis, it is generally believed, mitigating co-channel in-

terference is the main factor that led to the reduction of the transmit power.

The challenges faced in decentralized are the infinite number of constraints
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and this needed to be reformulated to a tractable form. The provided solu-

tion tend to provide robustness against imperfect CSI at the cost of increased

power but, with an improved reduction in signaling overhead. Finally, an al-

gorithm is proposed that improved the data rate of the users at the edge

of the cells. The outcome proved to show more resilience against channel

estimation error at moderate and low level, but a close fidelity match to the

non-robust design at low and moderate rates.

6.1 Thesis summary

6.1.1 Summary of Chapter 1

The introductory chapter outlined the motivation of this thesis and highlight-

ed the importance of the proposed research topic in context of interference

management in multi-cell networks. Further, the contributions of this thesis

were also oultlined.

6.1.2 Summary of Chapter 2

This chapter provided a review of convex optimisation theory and techniques.

A fundamental to multiple antennas techniques and radio channel were dis-

cussed along the adaptive antenna techniques and the configurations used

for this thesis. An optimisation problem was presented to calculate trans-

mit beamformers for multiple active users in a single-cell scenario along with

concepts of second order cone programming and semidefinite programming.

Finally, a robust downlink beamforming in the presence of uncertainty for

multiple active users in a single-cell was briefed step by step.
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6.1.3 Summary of Chapter 3

In this chapter, an inter-cell alignment is tackled by applying limited coop-

eration amongst the base stations. The BS independently design their own

beamforming using the channel state information at the base station. The

base station minimises the combination of its total transmit power and the

resulting interference power of the users of the other cell. The tractable for-

mulation is achieved using the S-procedure and the linear matrix inequality.

The formulated semidefinite and relaxation algorithm is compared against

the robust CBF with imperfect channel information. It is shown that when

accounting for the CSI errors at both the overall intercell interference pow-

er in the subject function and the SINR constraints, a feasible solution for

certain sets of SINR and the optimal solution were achieved. It was demon-

strated that, different values of the error bounds improved the transmitted

power.

6.1.4 Summary of Chapter 4

This chapter discusses extra signalling over-head issue. To reduce the extra

signalling, the downlink multicell processing is studied. A robust multicell

downlink beamforming that minimizes a combination of the sum-power, used

by each base station (BS) to transmit data to its local users, and the worst-

case of the resulting overall interference, induced on the other users of the

adjacent cells in the presence of imperfect channel state information, subject

to guaranteeing the worst-cases of the signal-to-interference-plus-noise ratio

(SINR) remain above a prescribed threshold. we assume that the imperfec-

tion in CSI between the true and the estimated channel coefficients is confined

within a spherical uncertainty set. It was shown that this problem can be

cast into a convex SOCP and reformulate the problem into a linear matrix

inequality form. The simulation results showed that the proposed SOCP for

robust downlink beamforming with imperfect CSI formulation outperformed
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the conventional and the non-robust, and it is the most efficient compared

to the SDR.

6.1.5 Summary of Chapter 5

In this chapter, An algorithm is designed at each base station to minimise the

worst-case of the resulting overall interference power, then the time-division

duplex (TDD) systems is considered in order to exploit channel reciprocity.

Then, the data rates of the users at the cell edge are analyzed. The sim-

ulation results indicated that the proposed scheme showed more resilience

against channel estimation error at moderate and low rates in b/sec/Hz and

outperformed the conventional approach, but showed a close fidelity to non-

robust at a low and moderate rates in b/sec/Hz.

6.2 Future research directions

6.2.1 A green Coordinated beamforming method

A coordinated beamforming method to minimize the sum of intercell inter-

ference and transmit power under minimum SINR constraints are shown in

Chapter 3 and 4. Power saving and minimization have the in communica-

tion networks while ensuring reliable, secure data transmission across the

network. Many of the wireless systems could benefit from the cost saving of

the energy. Various algorithms could be run and handle the amount of data

in a short period of time. Therefore, the computational complexity to obtain

beamforming weight using SDP and SOCP relaxation based methods could

also be proposed to see the difference in terms of performance and power

saving between the SDP and SOCP method. Also the time its takes for

both schemes to converge could be verified and the results would give a clear

view of the efficient method that can be used for greener energy optimization

performances.
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6.2.2 Cognitive Radio Coordinated beamforming method

The power minimization in chapter 3 and 4 could be extended to cellular CR

system because interference management has become an important topic in

cognitive radio in order to manage and fulfill the regulatory constraints. Here,

the CR is used as a spectrum sharing with other licence users to check for

availability and only use the spectrum when it is deemed to be free. This

is achieved by controlling the transmit and the interference power. Other

type of performance metrics such as sum rate, outage probability, required

feedback overhead are desirable for this method.

6.2.3 Robust Beamforming With Imperfect CSI using

Gauss-Markov autoregressive

A significant contribution could be made by developing a distributed opti-

mization problem that minimizes the sum of intercell interference and trans-

mit power in heterogeneous networks with small cells. The imperfection in

CSI in this thesis is modeled to be bound within an ellipsoidal set, which is

used to model the uncertainty between the true and the estimated channel

coefficients. There are many other models than can accurately model the

CSI uncertainty, e.g., Gauss-Markov autoregressive model, which generate a

range of errors. This is a very efficient methods to achieve the actual measure-

ment and accurately capture the characteristics of realistic user movements

in wireless networks.

6.2.4 Iterative MIMO Robust Beamforming With Im-

perfect CSI

In chapter 3 and 4, the user terminals are equipped with single antenna. if

both the user terminals and base stations have multiple antennas, the design

of the global optimum can be efficiently achieved and duality theory could

116



CHAPTER 6. CONCLUSION AND FUTURE WORK

be used to prove the optimal solution. An iteratively optimising transmit

and receive beamforming can achieve the best global optimum value. The

statistical correlation of the channel matrices to estimate intercell interfer-

ence and tradeoff between optimality and complexity are open problems for

research

6.2.5 5G Heterogeneous networks/small

One of the implications of using MmWave for massive MIMO is the need of

dense BS deployment. However, network densification comes with multiple

challenges in terms of interference, higher backhaul cost and mobility traffic

volumes. It has been suggested that, the generation of 5G radio access net-

work (RAN) could be a true worldwide wireless web (wwww)[88]. However

different issues of the 5G RAN such as scalability, spectrum backward flex-

ibility, the extent of interference and battery lifetime especially in machine-

type communications (MTCs) and device-to-device (D2D)communications.

Therefore, spectrum allocation could be arranged dynamically in conjunc-

tion with various levels of cooperation between the network nodes. This is

achievable if the total network frequency resource is shared, but with the

consequences of increased interference. These alight the need to reduce the

interference in the 5G Heterogeneous networks. Therefore, in chapter 3 to

obtain the optimal beamforming vectors wi ,i = 1 · · ·U , one is mainly inter-

ested in Wi solution of (3.17) that are rank 1. If the optimal wi is not rank

1, the solution can be obtained using Gaussian randomization that could find

the suboptimal rank 1 solution. Then, extracting the eigenvector associated

to the only nonzero eigenvalue, through the eigen decomposition of result-

ing w?
i . Then, the projected stochastic gradient method could be used to

solve the problem, where the final approximate solution w?
i is the weighted

average.
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