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ABSTRACT 

Information on the direction of movement of objects in the visual field is vital for visually 

guided behaviours including prey capture and predator avoidance. The optic tectum is 

important for producing such visually guided behaviours in zebrafish. Understanding the 

functional properties of subtypes of neurons within this tectal circuit is vital to 

understanding the processing responsible. Superficial inhibitory interneurons (SINs) are 

located in the superficial optic tectum and have laminar arborisations; ablation of these 

neurons has been shown to perturb prey capture behaviour. In this thesis, the receptive 

field properties of SINs in the zebrafish optic tectum were characterised. A subset of SINs 

were found to be direction selective, forming three different direction selective (DS) 

populations with preferred directions mirroring those of DS retinal ganglion cell (DSGC) 

inputs to the tectum. Furthermore, the spatial frequency (SF) and temporal frequency (TF) 

tuning properties of SINs were also characterised, finding that these neurons are selective 

for smaller moving objects. Comparing SIN DS responses to those of DSGC and tectal neuron 

populations, SINs have much narrower DS tuning. This narrow DS tuning was insensitive to 

injection of GABA-A receptor antagonists into the tectum, indicating that GABA-A receptor 

mediated inhibition is not involved. The role of GABAergic inhibition in generating the 

properties of DS populations in the tectum was also probed using drug injections, finding 

that both DS tectal neurons and DSGC properties were not significantly altered when GABA 

signalling is perturbed. This characterisation of SIN function has identified a narrowly tuned 

inhibitory interneuron in the tectal circuit, exhibiting band pass filtering for small moving 

objects. This functional characterisation of SIN receptive field properties indicates a possible 

role of these SINs in a size selective circuit, possibly relating to prey capture behaviours.  
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1 INTRODUCTION  

 Visual information: a survival advantage 

 

A key factor for deciding the survival of an organism is its ability to respond to changes in its 

environment with prompt and appropriate behaviours. Throughout evolution, organisms 

have gained survival advantage by evolving different mechanisms to detect changes in the 

environment; the key senses of gustation, olfaction, proprioception, vision, and hearing all 

confer such advantages. Within systems neuroscience there is a growing momentum 

towards understanding the circuitry involved in the perception of external changes, but also 

understanding how this information is processed to lead to different behaviours in response 

to these changes. Since 1898 and the Golgi-staining study of the avian retina (Ramón y Cajal, 

1898) the visual system has been an avidly studied sensory system. Landmark studies, 

including that of Hubel and Wiesel (Hubel and Wiesel, 1959) of neurons within the visual 

system with receptive field (RF) properties including direction and orientation tuning, has 

driven neuroscientists towards understanding the circuitry responsible for such functional 

properties.   

Visual information is used to determine several important survival behaviours. Predator 

avoidance and prey capture are two prime examples of rapid behavioural choices using 

primarily visual information. A key question is: How does the brain integrate the basic units 

of visual information from the external world such as changes in contrast, orientation and 

size to extract more descriptive and survival related perceptions, such as direction of 

movement, background motion, prey or predator? Understanding the processing leading to 

these distinctions first involves understanding what processing visual information 

undergoes.  

In this introduction, I will focus on the organisation and function of neurons in the 

vertebrate visual system, outlining current understanding of both mammalian and non-

mammalian visual neurobiology.  Excitatory cells are numerous within the visual system, 

however, there is growing evidence demonstrating that the diverse response properties of 

neurons in the visual system are generated through interneurons, with a prime example 

being the functionally diverse amacrine cells (ACs) in the retina, many of which are 

inhibitory (reviewed in Masland, 2012). Throughout the visual system, inhibitory neurons 

are responsible for extraction of features from the visual field and the characterisation of 

the function of these inhibitory neurons will provide key insights into the processing of 

visual information in these circuits.  
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  Processing of visual information in vertebrates 

 

The visual system transmits information through parallel channels from the photoreceptors 

in the retina, to the higher processing areas including dorsal lateral geniculate nucleus, 

superior colliculus and visual cortex in mammals or optic tectum in fish, amphibians and 

chicken (Figure 1.1). Whilst the anatomy varies between species, a central concept is that 

increasingly complex visual features are extracted at each synapse of the visual system, the 

mammalian cortex representing the most ‘complex’ extracted information. By 

understanding how the neurons within each area interact, we can begin to understand how 

the processing at each level of the visual system occurs. In the retina, such processing 

results in the extraction of information of visual features, including direction or orientation 

of motion, edges, and colour. 

 

 

Figure 1-1 Comparison of organisation of visual systems of vertebrates 

Illustrative diagrams of visual systems of zebrafish, rodents, and primates, indicating the 

differences in organisation. The largest retinorecipient area of zebrafish brains is the optic 

tectum, however in mammals, this is the dorsal lateral geniculate nucleus (dLGN), followed 

by superior colliculus (SC). Mammals also receive thalamic inputs to visual cortex (V1)  
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 A parallel flow of information in the retina 

 

Whilst many considered the retina to be responsible for very basic processing, it is becoming 

increasingly clear that it carries out complex computations (discussed in Gollisch and 

Meister, 2010). Information extracted from the environment becomes increasingly 

descriptive as information flows through the retina. Thus, the information projected to 

other visual areas via retinal ganglion cells (RGCs) is not merely a pixel representation of 

light levels, but a detailed summary of extracted features at each point in visual space.   

 

The retina is a relatively small structure compared to other brain areas, such as cortex, 

despite this small size, the retina carries out a surprising amount of processing. It is a multi-

laminar structure with precise organisation; separating out into plexiform and nuclear layers 

(Figure 1.2). Dendrites and axons form specific arborisations in the plexiform layers, and 

somata are arranged in mosaics within the nuclear layers. The plexiform layers also form 

fine structures, with cells arborizing in very specific layers such as the inner plexiform layer 

(IPL). There is little variation in gross retinal structure between organisms, surprisingly 

throughout evolution the underlying structure remained largely the same, with only 

differences in the numbers of neuronal subtypes differing between species.   

 

Figure 1-2 Structure of the vertebrate retina 

The retina is formed of several layers of neurons and arborisations, organised into nuclear and 

plexiform layers. Photoreceptors provide information on wavelengths and levels of light; this 

information is relayed and processed by bipolar, horizontal, and amacrine cells to the sole output 

of the retina, the retinal ganglion cells.  
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 Photoreceptors provide information on colour and light intensity  
 

Basic processing first arises in the retina with the specialisation of different photoreceptor 

subtypes for different wavelengths of light; different cone opsins confer different light 

wavelength sensitivities within each cone photoreceptor. In zebrafish retina, there are four 

cone subtypes to detect different wavelengths of light; red and green in the double cone 

pairs, blue in long single cones and UV in short single cones (Branchek, 1984; Hisatomi et al., 

1996; Nawrocki et al., 1985). One primary difference between zebrafish photoreceptors and 

that of other animals is the presence of two ‘green’ opsins within a single cone receptor; 

otherwise, each cone only expresses a single opsin. Mammalian cone subtypes vary, most 

mammals are dichromatic, with only ‘red’ and ‘green’ cones, but higher mammals including 

macaques and primates developed a ‘blue’ cone (for review see Jacobs, 2009). Rods are 

specialised for low light levels and far outnumber cones in the retina, with approximately 20 

times the number of cones in mammals. Photoreceptors are arranged in a mosaic, with 

equal spacing between neurons within a subtype, ensuring equal sampling of visual space.  

 Horizontal cells: a gain control mechanism for the retina 
 

Photoreceptors synapse with two main types of neuron in the outer plexiform layer (OPL) 

the horizontal cells and bipolar cells. Horizontal cells are the first inhibitory cell in the visual 

system. In primates there are two types of horizontal cell (Boycott et al., 1987; Röhrenbeck 

et al., 1989), however mice and rats only have one (Peichl and González-Soriano, 1994), 

whilst in zebrafish three have been observed (Connaughton et al., 2004). These cells 

feedback onto rods and cones, controlling the levels of their outputs. These cells sample 

from a wide range of rods and cones, finding the local average illumination and inhibiting 

the activity of photoreceptors to bring this response down to a level within the retina’s 

working range. This acts as gain control for the retina by preventing saturation.  Whilst this 

inhibition does not play an active role in the extraction of feature information, it is still 

important for survival, allowing adaptation to different levels of illumination within a visual 

scene, preventing saturation where extreme differences in levels of illumination occur.  

 

Contrast adaptation is a decreased sensitivity to temporal contrast after increases in 

variance of light. This is adaptation is mediated primarily by a decrease in excitatory synaptic 

transmission from bipolar cells to RGCs, however in a study using both calcium imaging and 

electrophysiology in zebrafish retina it was also found to be facilitated by depression of 

inhibitory feedback onto bipolar cell terminals from amacrine cells (Nikolaev et al., 2013).   
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 Parallel channels arise at the bipolar cell synapse 
 

Multiple cone bipolar cells sample from the same pool of cone photoreceptors, contacting 

specific patterns of cones to incorporate different types of information from their pool of 

cone inputs. Photoreceptors hyperpolarize in response to light activation, releasing less 

glutamate. Glutamate release can cause either hyperpolarisation or depolarisation in post-

synaptic bipolar cells depending on the glutamate receptor expression in the bipolar cell 

dendrites. Metabotropic glutamate receptors are responsible for the ON response, 

(Morgans et al., 2009), whilst Ionotropic glutamate receptors depolarize the cells and thus 

generate OFF bipolar responses. This difference in receptor expression is what creates the 

divergence of ON- or OFF- responsive bipolar cells from the photoreceptor inputs (DeVries, 

2000; Lindstrom et al., 2014; Puller et al., 2013). At the first synapse of the retinal circuit 

photoreceptor outputs are segregated into either ON and OFF responses, this is reflected in 

the arborisations of bipolar neurons in different lamina within the IPL. ON and OFF bipolar 

cells are present in equal numbers in the retina, but can be further subdivided depending on 

temporal properties of responses. These subdivisions relate to the length or frequency of 

input the cones provide to their bipolar synaptic partners; either transient or sustained 

ON/OFF (DeVries, 2000). These differences in the temporal properties of responses of 

bipolar cells are due to the differences in recovery times of receptor channels from 

desensitisation.  

 

Within the OPL bipolar cells incorporate information from multiple photoreceptors and gain 

control mediated by horizontal cells, providing this information to the next layer of neurons 

in the IPL. The information passed on by bipolar cells divides into 12 channels of different 

types of visual information, corresponding to the 12 different bipolar cell types in mouse 

(Ghosh et al., 2004; Wässle et al., 2009). In zebrafish, 17 bipolar cell subtypes have been 

identified (Connaughton et al., 2004). Here in the IPL, the amacrine cells (ACs) and retinal 

ganglion cells (RGCs) form synapses with bipolar cell dendrites, incorporating information 

from multiple bipolar cells to generate even more diverse and complex channels of 

information from the visual scene. 

 

Low light sensitive rod outputs follow a less direct pathway to ganglion cells. Multiple rod 

photoreceptors converge onto rod bipolar cells.  The ratio of rod photoreceptors to a 

bipolar cell far outnumbers than seen with cone bipolar cells. This is largely to increase 

sensitivity to light. These rod bipolar cells converge onto the cone circuitry via an amacrine 
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cell (AII) that forms synapses onto cone bipolar axon terminals with RGCs (Strettoi et al., 

1994).  

 

 Ganglion cells receive bipolar inputs predominantly through amacrine cell 

synapses 
 

RGCs are the only neuronal outputs from the retina to visual areas of the brain. Receptive 

field properties of these ganglion cells are generated through the selective sampling of 

inputs from bipolar cells, as well as amacrine cell influences. Furthermore, synapses 

between bipolar cells and ganglion cells are modulated by amacrine cells.  Amacrine cells 

outnumber all other cell types in the retina, except photoreceptors. This large number is 

indicative of their crucial role in the shaping of the retina’s responses to light. Diameters of 

RGC dendritic arbors range between 200-1000µm, and yet many functional subtypes of RGC 

respond to stimuli much smaller than their receptive fields. These sub-receptive field 

responses are due to the influence of amacrine cell inputs onto the ganglion cells, many of 

which have arbors less than 100µm in diameter.  

The functional importance of amacrine cells is evident from the sheer diversity of subtypes 

present in the retina. Amacrine cells are the most numerous in cell subtypes, with about 30-

50 subtypes currently known (Macneil et al., 1999), and seven in zebrafish identified by 

morphology alone (Connaughton et al., 2004). These neurons express a diverse range of 

neurotransmitters, but the majority are GABAergic. Another fascinating feature of amacrine 

cells is their ability to produce excitatory outputs onto other neurons through GAP 

junctions, despite expression of inhibitory neurotransmitters.  A key feature of amacrine 

cells is a lack of distinct dendritic or axonal arbors. These arbors can both receive excitatory 

glutamatergic inputs and release inhibitory GABAergic outputs to the same bipolar cell 

synapses. Amacrine also carry out ‘vertical integration’; their arbors can span several layers 

of the IPL, integrating information from many different cell types.  

 

With such a diverse range of subtypes and neurotransmitters it is unsurprising that these 

cells have been implicated in the computation of complex features such as direction 

selectivity (DS), motion detection, size selectivity, and centre surround inhibition. For 

instance: The AII amacrine cell is involved in the integration of rod information into the cone 

circuit (Strettoi et al., 1994), and the VGluT3-expressing AC (Lee et al., 2014) which mediates 

small object motion sensitivity in W3-RGCs (Zhang et al., 2012) via a non-linear spatial 
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integration of information from neurons with smaller receptive fields (approximately 50 

bipolar cells). 

The computation of direction of object motion in the visual field has been under 

investigation since direction-selective ganglion cells (DSGCs) were found to respond strongly 

to stimuli moving in a preferred direction, with much weaker responses to visual stimuli 

moving in the opposite direction. The first attempt to understand this mechanism in RGCs 

presented spatially separated static stimuli with apparent motion in either in preferred or 

null directions, finding that objects presented in the preferred direction produced excitatory 

inputs onto the neuron, and those in null direction received inhibitory inputs (Barlow and 

Levick, 1965).  

Thus, over the next four decades, the roles of both inhibition and excitation in the 

computation of direction selectivity have been intensively studied. Through dual patch 

clamp recordings, starburst amacrine cells (SACs) were pinpointed as the source of 

inhibition onto DSGCs (Fried et al., 2002), providing inhibition when visual stimuli are 

presented in the null direction of motion. This was reinforced by evidence that immunotoxin 

mediated SAC ablation removes DS responses from DSGCs (Yoshida et al., 2001).  

SACs are radially symmetric interneurons, exhibiting both GABA (inhibitory) and 

acetylcholine (ACh, excitatory) release (O’Malley and Masland, 1989). Strikingly, individual 

SAC dendrites are capable of independent computations, producing large calcium transients 

when visual stimuli move in a centrifugal direction along the direction of the arbour, i.e. 

from soma to dendrite, rather than dendrite to soma (Euler et al., 2002). This means radially 

segregated dendrites can respond to different directions of motion, and this direction 

opposes the preferred direction of the DSGC onto which the dendrite synapses. 

Furthermore, SACs dendrites favourably form synapses onto DSGCs with preferred 

directions opposing the direction of dendrite growth, creating a bias of synapse number 

(Briggman et al., 2011). The spatial segregation of SAC inhibition onto DSGCs means that 

inhibition is temporally offset during motion in  preferred direction, delaying inhibition until 

after excitation inputs have commenced, thus too late to prevent excitation of the RGC.   

Previous work pharmacologically blocking GABA mediated inhibition abolished DS responses 

of RGCs (Wyatt and Day, 1976), but the sites of this GABA receptor antagonism were 

unknown, and potentially perturbed inhibition elsewhere in the circuit. Similarly, 

pharmacological blocking of cholinergic signalling in retina whilst presenting drifting gratings 

abolishes direction selectivity in DSGCs (Grzywacz et al., 1998). Both results raise questions 

regarding the specific roles of excitation and inhibition. The generally accepted model for 
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generation of DS in RGCs relies upon a greater level of inhibition from SACs elicited by visual 

motion in the null direction. 

Recent work identified that this model is not strictly accurate; demonstrating that inhibition 

from SACs is merely part of the mechanism. By recording the responses of posterior motion 

selective DSGCs in retinas from a conditional knock out mouse in which Vgat, a GABA 

vesicular transporter is lost only in SACs, Pei et al., (2015) showed that DSGCs retain 

direction selective properties despite a lack of inhibitory inputs. However, whilst the DSGCs 

remain direction selective, their DSI values are much lower than those seen in wild type 

retina. This suggests that SAC mediated inhibition increases DS tuning. Pei et al (2015) also 

demonstrate through the selective blocking of cholinergic receptors, that ACh excitatory 

inputs to the DSGCs are direction selective. These results suggest a mechanism requiring 

two aspects, greater inhibition on null side via SAC GABA release, paired with a directionally 

tuned excitatory input from the same neurons (Figure 1.3).  

Thus, amacrine cells are a prime example of an inhibitory interneuron mediating the 

extraction of different features of visual information. The integration of inputs from these 

different amacrine cells producing the diverse and complex receptive field properties in 

RGCs. 

 

 

Figure 1-3 Overview of the circuitry involved in generation of direction selective responses in DSGCs 

Direction selectivity in DSGCs is mediated through multiple mechanisms. Excitatory inputs from 

starburst amacrine cells (green) tuned to preferred direction, complemented by GABAergic 

inhibition tuned to null motion, as well as inputs from bipolar cells, all contribute towards DS 

tuning in retinal ganglion cells in the retina.  
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 RGCs project feature specific information out from the retina 
 

Precisely organised inputs onto RGCs confer their receptive field properties, with amacrine 

cells providing transformations generating complex receptive field properties. There are 

approximately 20 different subtypes of RGCs known in mammalian retina (for review see 

Sanes and Masland, 2014) and  approximately 15 in zebrafish (Mangrum et al., 2002; Robles 

et al., 2013, 2014). Structural to functional correlations provide a simple way to classify 

these neurons, for example, the location of RGC dendritic arborisations in the IPL can divide 

RGCs into either ON, OFF or ON-OFF RGCs (Famiglietti and Kolb, 1976). Similarly, even tiling 

of neurons across the retina can also be used an indicator of a functional RGC subtype.  

One such functional subtype has centre surround inhibition, identified in one of the earliest 

functional characterisations of visually responsive neurons; these neurons have differential 

receptive fields, and are known as midget cells in primates. Activation of the central area of 

the cell’s receptive field will activate the neuron’s firing, however if this stimulus also 

activates the surround area of the receptive field this creates a suppression of firing of the 

neuron (Hubel and Wiesel, 1959). This receptive field organisation is mediated by small field 

amacrine cells, receiving inputs from bipolar cells with receptive fields in the ‘surround’ of 

the ganglion cells’ neuron (Kolb and Marshak, 2003). In primates, unlike other mammals, 

there is a significant increase in the number of midget cells in the fovea. In terms of 

representation in the retina, these neurons are ~70% of the total neuronal population, and 

produce a large foveal spatial resolution through a 1:1 relationship of cone to ganglion cell 

connections, through a special midget bipolar cell (Perry et al., 1984).  

 Looming response: 
 

One important feature of movement on the visual scene is that of ‘looming’ objects, 

characterised by an increase in an object’s size on the visual field. Identification of looming 

stimuli is key to identifying self–movement towards an object, or the identification of 

objects moving closer to an animal. Looming sensitive neurons have been described in 

several animals (Gabbiani et al., 1999; Hatsopoulos et al., 1995; Yilmaz and Meister, 2013).  

Alpha RGCs are a subtype of RGC in mouse, analogous to Y-cells in cat, parasol cells in 

primate and brisk transient neurons in rabbit, all associated with looming detection. They 

can be separated into three functional subtypes, ON sustained, OFF sustained and OFF 

transient RGCs. The OFF transient RGCs are also known as approach sensitive RGCs (Münch 

et al., 2009) as they respond well when a stimulus increases in size. This is comparable to 

the visual stimulus approaching the animal.  
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 Local edge detectors and object motion sensing ganglion cells: 
 

Object motion is the ability to detect movement of an object across an area of the visual 

field, but not movement of whole visual field. It specifically detects movement on the visual 

field that is not due to shifts generated by eye or animal movement. To make this 

distinction, the neuron must be able to differentiate between differential and global motion. 

This detection of motion should also independent of direction. Local edge detectors (LEDs) 

and object motion sensing (OMS) ganglion cells carry out similar tasks, responding to similar 

stimuli. 

LEDs were found in a range of organisms including frog, guinea pig, cat and primate (Berson 

et al., 1998; Maturana et al., 1960; Rodieck and Watanabe, 1993; Xu et al., 2005; Zeck et al., 

2005). First characterised in mouse and rabbit, this neuron was found to comprise 

approximately 15% of RGCs in the rabbit retina (Levick, 1967). LEDs are most responsive to 

moving stimuli that fall directly within the receptive field centre, which is very small for 

these neurons, as their arbors span only 100µm of the IPL. LEDs are highly tuned to 

differential motion between the receptive field centre and the surround, but are also 

insensitive to the pattern of this moving stimulus. These neurons respond with sustained 

firing when either dark or light moving spots cross the centre of their receptive fields, but 

are unresponsive with full field stimuli (van Wyk et al., 2006).  This lack of response with full 

field stimulation is due to the strong inhibitory surround. In mouse the analogous neurons 

are known as W3B-RGCs (Zhang et al., 2012). Movement occurs simultaneously across both 

the centre and surround of the neuron’s receptive fields when fixational eye movements 

occur, thus this differential motion detection provides a mechanism to determine when 

motion in visual field is not self-generated.  LEDs share many properties with OMS neurons. 

This intersectionality of receptive field properties is characteristic of neurons in the visual 

system, with complexity of preferred stimuli identified, and responses of neurons depending 

on visual stimuli used during experiments, including contrast, spatial and temporal 

frequency.  

Recent work has identified the circuitry involved in generating such response properties in 

OMS ganglion cells. It was found that a combination of many ON and OFF bipolar neurons 

providing excitation to the W3-RGCs, a source of inhibition to the amacrine cells excitation 

from wide-field amacrine cells –VG3-ACs, that produces the OMS properties of W3-ganglion 

cells (Kim et al., 2015).  
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 Orientation Selectivity: 
 

Orientation selectivity (OS) is a type of feature selectivity found vertebrate retinas, present 

in primate (Passaglia et al., 2002), mouse, rabbit (Levick, 1967), cat and zebrafish (Lowe et 

al., 2013; Nikolaou et al., 2012). Orientation selective RGCs respond maximally to objects 

orientated along an axis, and minimally to objects along the orthogonal to this preferred 

axis. These neurons usually have much sharper tuning than seen in DSGCs. In rabbit, only 

two orientations of motion are detected, horizontal and vertical. However, in zebrafish 

retina at least four orientations are represented (Lowe et al., 2013). The mechanism 

generating OS is thought to rely upon presynaptic GABAergic inhibition from amacrine cells 

and the modulation of bipolar cell outputs (Venkataramani and Taylor, 2010) . Recently, a 

wide-field polyaxonal amacrine cell (PAC) has been identified in rabbit retina and was 

proposed to be responsible for generating orientation selectivity in specific OS RGC subtypes 

(Murphy-Baum and Taylor, 2015). 

 Direction selective neurons are present in all vertebrates 
 

One of the most studied feature selective RGCs is the direction selective RGCs (DSGCs).  

DSGCs have been identified in mouse, zebrafish and rabbit (Lipetz and Hill, 1970; Maturana 

et al., 1960; Nikolaou et al., 2012; Ott et al., 2007; Oyster and Barlow, 1967), but to date 

have not been identified in primate retina (see Field and Chichilnisky, 2007). DSGCs can be 

ON (Yonehara et al., 2009), OFF (Kim et al., 2008) and  ON-OFF (Huberman et al., 2009; Kay 

et al., 2011). The mechanism by which direction selectivity is generated involves a 

combination of DS tuned excitatory inputs, and SAC derived GABA inhibition to null direction 

motion, as described earlier in this chapter.  

In rabbit, four ON-OFF DSGCs were identified. These neurons respond to directional 

movement, rather than a particular stationary pattern of stimuli. They respond to four 

cardinal directions of motion: upward, downward, backward and forward relative to the 

animal (Huberman et al., 2009; Oyster and Barlow, 1967; Rivlin-Etzion et al., 2011). They 

show no preference for the contrast of the moving stimulus, and respond to movement of 

sizes much smaller than their receptive fields. ON-OFF DSGCs are bi-stratified, with dendritic 

trees in both ON and OFF lamina of the IPL, their arbors aligned tightly with those of SACs 

(Amthor et al., 1984; Badea and Nathans, 2004).  Within the ON-OFF DSGC populations, 

each cardinal DSGC population forms a separate mosaic on the visual field (DeVries and 

Baylor, 1997).  



22 
 

ON-DSGCs have been identified in rabbit and mouse (Yonehara et al., 2009). These are 

monostratified in the ON layer of the IPL, and consequently only respond to light moving 

edges and spots, and not to dark. ON-DSGCs respond to slower movement than ON-OFF 

DSGCs. These neurons project to accessory optic system (AOS) which is involved in the 

optokinetic reflex; the AOS is responsible for eye movements that reduce movement of the 

visual scene across the retina caused by movement of the animal. There are three different 

directionally tuned ON-DSGCs, sensitive to upward, downward and forward motion relative 

to the animal (Dhande et al., 2013).  

In zebrafish, direction selectivity is centred on the same three axes found in ON-DSGCs, 

responding to upward, downward and forward motion relative to the fish (Nikolaou et al., 

2012). These DS populations had previously been identified in Goldfish tectum (Maximov et 

al., 2005).  

The J-RGC projects to the SC, and is an upward responding OFF-DSGC, unsurprisingly OFF-

bipolar cells arborize in the same lamina as these OFF-DSGCs. J-RGCs have an asymmetric 

arborisation which is thought to contribute to their direction selectivity; the vector of the 

dendritic arborisation matches that of the preferred direction of motion (Kim et al., 2008).  

 Several brain areas receive retinotopic maps of information via RGCs  
 

The output of the retina is a retinotopic map, populated with ’streams’ of different forms of 

information from the visual scene, including direction of motion, contrast, looming, local 

and global motion, as well as colour.  This retinotopic map forms layers of input into 

retinorecipient areas including superior colliculus or optic tectum. There are approximately 

20 brain regions that receive RGC inputs in mammals (Ling et al., 1998).  In zebrafish, there 

are 10 RGC arborisation fields (Figure 1.5B), the largest of which is the optic tectum 

(arborisation field 10, AF-10) (Burrill and Easter, 1994).  

 Dorsal Lateral Geniculate Nucleus: 
 

In mammals, information from the retina projects to dorsal lateral geniculate nucleus 

(dLGN) via RGCs, which then relays this information to the cortex. The dLGN was originally 

thought to only be a relay between retina and cortex; however, recent evidence indicates 

that this is not the case. The dLGN receives cortical feedback (Olsen et al., 2012), which has 

been implicated in processing within the circuit, and interneurons have been identified. The 

majority of neurons in the dLGN are ‘relay neurons’ (~75%) projecting information to the 

cortex, with the remaining 25% being composed of interneurons (Sherman and Guillery, 
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2001). Neurons in the dLGN have a diverse range of response properties, including direction 

selectivity (Marshel et al., 2012), orientation selectivity (Zhao et al., 2013) and ON or OFF 

centre neurons (Grubb and Thompson, 2003) .  

In neurons of the dLGN direction selectivity relies upon inputs from DSGCs that terminate in 

the superficial dLGN (Huberman et al., 2009; Kim et al., 2008). Similarly, orientation 

selectivity in the dLGN is independent of cortical feedback, but rather a consequence of 

inputs to these neurons (Zhao et al., 2013). A particularly interesting GABAergic interneuron 

was identified in cat dLGN, these neurons have dendrites that function independently to 

both the axon, and other dendrites (Hamos et al., 1985), much like Amacrine cells, and are 

likely to be involved in gain control of relay neurons (Sherman, 2004).  

 Optic Tectum/Superior colliculus produces goal directed behaviour from 

retinal inputs 
 

The superior colliculus (SC), or optic tectum (OT) in non-mammalian vertebrates, is 

responsible for body and gaze orientating behaviours . In mouse and rat, the superficial SC is 

one of the largest areas of ganglion cell innervation, and the largest retinorecipient area in 

organisms such as zebrafish and Xenopus. It is here in the optic tectum that goal directed 

behaviours including phototaxis (Chen and Engert, 2014), prey capture (Budick and 

O’Malley, 2000; Gahtan et al., 2005; Smear et al., 2007) and predator avoidance (Bass and 

Gerlai, 2008; Gerlai et al., 2009) are initiated in zebrafish. In higher mammals such as 

primates, it is also implicated in saccades and spatial attention (Carello and Krauzlis, 2004).  

The structure of this brain area is multi-laminar, the number of layers varying by species. 

Innervation from RGCs is retino-topically arranged, forming primarily in the superficial SC 

(Hofbauer and Dräger, 1985). Other sensory maps form in deeper lamina, including those 

relating to motor movements (Deeg et al., 2009). For instance in Xenopus, mechanosensory 

inputs form in deeper layers of the tectum, whilst RGC inputs are in superficial laminae 

(Hiramoto and Cline, 2009). These sensory maps align in retinotopic space, with visual 

auditory or somatic information from a particular area surrounding the organism 

represented in a similar area of SC.  

Whilst the retina has been the subject of extensive work to discern the circuitry, the tectum 

and superior colliculus lack such a high level of description of cell subtypes, connectivity and 

synaptic connectivity. Establishing the circuitry of the tectum is vital, using such techniques 

such as serial EM reconstruction, and combinations of genetic cell subtype labelling and 

electrophysiology. Morphological studies of tectal cell subtypes have been carried out, 
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however, finding approximately 8 morphological subtypes, whilst in goldfish over 14 

subtypes were identified (Figure 1.4 adapted from (Meek and Schellart, 1978; Nevin et al., 

2010).  

Unlike LGN or cortex, there has been relatively little work identifying the receptive field 

properties of specific neuronal subtypes in SC. Golgi studies identified several different 

morphological subtypes, including several interneurons such as horizontal cells, marginal 

cells, and stellate cells (Figure 1.5, adapted from Langer and Lund, 1974). Of particular 

interest are the horizontal cells, which were thought to provide long distance lateral 

inhibition within collicular layers (Langer and Lund, 1974). From characterisations of 

Figure 1-4 Tectal cell types and morphologies in Goldfish and Zebrafish 

A. Figure of morphologies of the 14 neurons identified in Goldfish (from Meek and Schellart, 

1978) B. The organisation of retinal ganglion cell (RGC) outputs in zebrafish. There are 10 visual 

arborisation fields in the brain of larval zebrafish, the largest of which is the optic tectum (AF10). 

RGC axons terminate in different lamina of the optic tectum, with the majority arborizing in 

SFGS. The seven identified tectal cell morphologies are shown in their relative tectal laminae. 

Adapted from (Nevin et al., 2010) 
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horizontal cell receptive fields it was found that these neurons have compact circular 

receptive fields that do not match the size of their arborisations (Wang et al., 2010).  

Functional studies in the superior colliculus identified orientation selective (Cynader and 

Berman, 1972; Girman and Lund, 2007), direction selective (Cynader and Berman, 1972; 

Mooney et al., 1985), and size selective neurons with size preferences varying between 

species (Prévost et al., 2007). GABA expression is dispersed throughout the entire SC 

(reviewed in Mize, 1992), with no apparent bias to any particular lamina, however 

interneurons with morphologies matching those of horizontal cells were found to express 

GABA in superficial superior colliculus (Endo et al., 2003). The inhibitory nature and the wide 

horizontal dendritic field indicates that these neurons are likely to contribute to the 

generation of feature selectivity in neurons within the SC. 

Early electrophysiological studies of tectal neurons indicated that tectal neurons exhibit 

diverse stimulus selectivity, with ON and ON-OFF subtypes, some exhibiting tonic activity, as 

well differences in responses to moving spots versus stationary spots in the RF. Tectal 

neurons also had more complex compound receptive fields, comprised of two or more 

regions in the visual field that elicited responses separated by regions of unresponsiveness 

(Sajovic and Levinthal, 1982a, 1982b).  

Population studies of neurons in the periventricular layer (PVL) of the optic tectum of 

zebrafish identified an emergent functional population of DS tectal neurons in addition to 

the three found in RGCs, sensitive to backward motion relative to the fish (90°, seen in 

Hunter et al., 2013). This direction of motion is not present in DSGC inputs to the tectum, 

indicating that the tectal circuit carries out a computation using its inputs in order to 

Figure 1-5 Morphologies of selected interneurons of the Superior Colliculus 

Adapted from (Langer and Lund, 1974), examples of the morphologies of interneurons found 

in the superior colliculus of rat. A. horizontal cell, B. marginal cell C. stellate cells. 
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generate this emergent DS population. A calcium imaging study in adult zebrafish identified 

both orientation and direction selective neurons in the tectum (Kassing et al., 2013), helping 

to confirm results identifying populations of DS tectal neurons in larval zebrafish, as well as 

four OS populations of tectal neuron along the cardinal axes of the larvae (Hunter et al., 

2013). 

It is likely that within these four populations there are several different morphological and 

functional subclasses of DS neuron. Further refinement of these populations according to 

such properties as neurotransmitter expression, projection or interneuron, size selectivity, 

or excitatory vs inhibitory could be useful for characterisation of the computations within 

the tectal circuit. Furthermore, visually responsive neurons respond to many different 

features: full field or narrow field movement, contrast differences, sinusoidal gratings, edge 

movement, looming stimuli. Ideally, experiments would utilise a barrage of stimuli to 

characterise DS or OS neuronal populations in the tectum, probing all these properties to 

produce a comprehensive functional description as seen in a recent characterisation of 

mouse ganglion cell subtypes (Baden et al., 2016).  

An example of a functional and morphological description of tectal neurons is work in which 

two GABAergic DS subtypes in the larval zebrafish tectum were characterised using GCaMP3 

expression under Oh-3:Gal4 and Oh-4:Gal4 promoters (Gabriel et al., 2012). These neurons 

preferred directions of rostro-caudal or caudal-rostral movement (equivalent to motion at 

30° and 270°) consistent with two populations seen in tectal neuron population data 

(Hunter et al., 2013), as well as DSGC inputs to tectum (Nikolaou et al., 2012). These 

neurons have striking bi-stratified arborisations, with the topmost arbour localising 

predominantly with DSGC axons. These neurons receive excitatory inputs during motion in 

preferred direction, and inhibitory inputs to motion in null direction. This supports the idea 

that DS is not computed within the tectum, but inherited from DS inputs from the retina. 

The authors proposed two theories on where this null direction inhibition arises from, 

wither a superficial inhibitory interneuron (SIN), or inhibition from other tectal neurons 

through their dendritic arborisations in the deeper tectal lamina (Gabriel et al., 2012).  

SINs are the only morphological subtype of tectal neuron with somata located just above 

RGC inputs in the superficial layers of the optic tectum. SINs have radial arborisations 

surrounding their soma, a morphology much like the SACs in the retina, suggesting they too 

may be responsible for feature selectivity. These neurons can be labelled by an enhancer 

trap line, s1156tGal4 (Scott and Baier, 2009). SINs labelled by this line co-labelled for GABA 

expression, indicating that these neurons are inhibitory. Further, changes in SIN GCaMP 
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fluorescence in response to visual stimuli indicated these cells are respond to whole field 

flashes of light, but not small moving bars (Del Bene et al., 2010). This initial characterisation 

of SINs was a step towards understanding these neurons, but lacked the experimental 

design to make useful conclusions on the role of SINs in the tectal circuit. The stimuli used 

did not probe such important properties as direction selectivity, and critically the analysis 

used to determine the SIN properties was not effective for dissecting out the functional 

diversity within the SINs, simply masking the superficial-most third of the neuropil and using 

net fluorescence changes across this entire area as the functional description of these 

neurons.  

Further experiments using an alternative transgenic line to label these neurons, found that 

SINs are size selective (Preuss et al., 2014). This size selectivity may be inherited from size 

selective RGC inputs identified in the same study. Preuss et al (2014) suggest that SINs are 

involved in the decision making process between prey capture and predator avoidance 

based on their size preferences. Whilst this paper provides a better description of SINs, it 

too neglects to characterise the full receptive field properties of these neurons. The 

experiments provide motion along the anterior to posterior or posterior to anterior axis. 

Motion sensitive neurons respond sub-optimally to moving stimuli at non-preferred 

directions, and this may alter the responses to size seen regarding in the SINs.  

Zebrafish Optic tectum is largest but not the site of ganglion cell arborisation. There are nine 

non-tectal arborisation fields in zebrafish brain (Burrill and Easter, 1994). Recent work has 

identified that the important function of prey capture may be mediated not through the 

tectum, as previously described, but through AF7 (Semmelhack et al., 2014). They identified 

RGC axons responsive to small moving dots equivalent in size to prey that they identified as 

innervating both AF7 and the superficial tectum, SO. Through ablation of AF7, they saw a 

reduced level of prey capture in larvae. Similarly, they labelled neurons in the AF7 layer to 

identify potential projection neurons, identifying two subsets, one that projected to tectum, 

and a second that projected to nucleus of the medial longitudinal fasciculus (nMLF) 

indicating a role in generating prey capture swims (Thiele et al., 2014).  

 In visual cortex, inhibitory neurons shape response properties: 
 

In mammals, visual cortex (also referred to as striate cortex, or V1), is involved in perception 

and contextual processing of visual information (Albright and Stoner, 2002). V1 is a structure 

with six lamina, consisting of several morphological subtypes of neuron with specific 

functions, layer IV receives the majority of input from LGN. As with most visual areas of the 
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brain, the cortex receives a retinotopic map of inputs (Schuett et al., 2002; Wagor et al., 

1980). Neurons in visual cortex exhibit many different receptive field properties including 

direction selectivity (De Valois et al., 1982), orientation selectivity (Hubel and Wiesel, 1962), 

contrast sensitivity (Glickfeld et al., 2013), and spatial frequency tuning (Issa et al., 2000).  

Inhibitory neurons are involved in the shaping of response properties of individual neurons 

in cortex (Isaacson and Scanziani, 2011), and these inhibitory neurons have diverse 

functional and morphological specialisations (Markram et al., 2004). Specifically, inhibitory 

interneurons have been implicated in the generation of orientation selectivity of cortical 

neurons, where tuned OS inputs from dLGN are refined with local inhibition in the cortex to 

orthogonal orientations (Bonds, 1989; Pfleger and Bonds, 1995; Shapley et al., 2003). 

Immunological labelling of inhibitory neurons in the cortex identified three main subtypes: 

vasoactive intestinal protein expressing neurons (VIP+), somatostatin-expressing neurons 

(SOM+) and parvalbumin expressing (PV+) neurons (Xu et al., 2010). In V1, these inhibitory 

neurons have broader orientation tuning than neighbouring excitatory neurons (Kerlin et al., 

2010).  

SOM+ interneurons are a located in layer II/III of the visual cortex. These SOMs exhibit 

tuning preference for large objects, with no surround suppression (Adesnik et al., 2012), and 

receive inputs from pyramidal cells (PCs) with tuning preferences for smaller objects.  SOMs 

provide inhibition to neighbouring PCs (Wang et al., 2004) and PV+ inhibitory neurons 

(Cottam et al., 2013). SOMs mediate surround inhibition in excitatory neurons in layer II/III 

by summating excitatory activity from smaller inputs, using this to provide inhibition to the 

rest of the circuit (Adesnik et al., 2012). SINs in the optic tectum and SOMs in the cortex, 

share many similarities, both neurons exhibit size selectivity and provide inhibition to the 

rest of the circuit (see Barker and Baier, 2013).  

 

 Thesis Aims 

 

This thesis aims to contribute to a description of the visual system circuitry by generating a 

description of the function of one subtype of tectal neuron, the SIN. From work carried out 

in the retina, as well as visual cortex, it is clear that there is a theme running throughout the 

visual system of inhibitory interneurons processing visual information before relaying this to 

projection neurons. Inhibition has a key role in refining and extracting complex information 

from a combination of different inputs. The importance of inhibition for shaping of receptive 
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field properties is most evident when looking at the role of such interneurons as the 

amacrine cells in the retina, as well as inhibitory neurons in the visual cortex (see review by 

Isaacson and Scanziani, 2011).  

Traditionally visual physiology has been studied in mammals such as primates (Bredfeldt and 

Ringach, 2010; Ringach et al., 2002; Wurtz and Albano, 1980), cat (Priebe and Ferster, 2005; 

Somers et al., 1995) and more recently mouse (Gonchar et al., 2007; Niell, 2011; Piscopo et 

al., 2013). Previous work on non-mammalian visual physiology involved a range of 

techniques, including electrophysiology, whole population calcium imaging, and single cell 

patching (Baden et al., 2014; Niell and Smith, 2005; Sajovic and Levinthal, 1982a; Scott and 

Baier, 2009; Stuermer, 1988). More recently a greater shift towards using these smaller 

vertebrates has been largely due to the ease with which these organisms are bred, the rise 

in ease with which they can be genetically manipulated, and their significantly smaller sizes, 

making them much easier to image using the latest microscopy techniques (Feierstein et al., 

2014).  

The small scale of larval zebrafish makes them ideal for imaging, as well as the short 

development time needed for their visual systems to reach full maturity (7dpf). The 

zebrafish visual system is easily accessible, without the need for invasive surgery to access 

for microscopy, and can be imaged due to the translucency of the larval zebrafish body 

(Feierstein et al., 2014; Muto et al., 2013; Orger et al., 2008). This allows long-term 

functional imaging without the need for invasive techniques.  Not only this, but visually 

guided behaviours are well studied in zebrafish (Bass and Gerlai, 2008; Bianco and Engert, 

2015; Bianco et al., 2011; Budick and O’Malley, 2000; Chen and Engert, 2014; Gahtan et al., 

2005; Muto and Kawakami, 2013; Orger et al., 2008; Portugues and Engert, 2009).  

While the optic tectum in zebrafish is relatively less characterised than the circuitry of 

mammalian superior colliculus, it is very likely that the processing motifs and strategies are 

conserved. With the relative ease of use of zebrafish larvae as a model organism for 

addressing visual circuitry, and the lab’s experience in using visual stimuli to probe this 

circuitry in vivo, we aimed to look for similar patterns of the extraction of information 

through inhibition within the tectum.  

This project looks at a particular inhibitory tectal neuron, the SIN, with the aim of identifying 

the role the inhibition it provides to the circuit.  Chapter 3 characterises SIN functional 

properties, looking specifically at direction, spatial, and temporal tuning. Chapter 4 follows 

these experiments up by comparing the receptive field properties of these SINs to both the 

inputs to the tectum (RGCs) and other neurons within the tectum (tectal neurons), using 
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pharmacology to determine if GABA-A receptor mediated inhibition is required for SIN DS 

tuning differences when compared to the rest of the DS circuit. Chapter 5 then uses 

pharmacology and genetically driven ablation to determine what happens to DS populations 

in absence of these cells and their inhibition.   

The information these experiments provide alone are not sufficient to draw conclusions as 

to the processing involved in the entire circuit, but they do provide a foundation upon which 

more detailed experiments can be based. By generating functional profiles of each cell 

subtype within the tectal circuitry, and their connectivity within the circuit, a functional map 

can be built. From this information we can begin to understand the transformations that 

occur within a circuit and the processing that is required to utilise visual information to 

guide behaviour.  

In summary, this thesis aims to answer the following questions: 

 Does the s1156tGal4 line used in (REF) label all SINs in the optic tectum? 

 What are the preferred stimuli of SINs, probing specifically: 

o Direction selectivity and Orientation selectivity  

o Spatial frequency tuning 

o Temporal Frequency tuning 

 How do SIN preferred stimuli compare to RGC inputs and Tectal neurons? 

 What role does SIN mediated inhibition play in tectal circuit? 
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2 MATERIALS AND METHODS 

 Materials 

 Plasmids 

Insert Vector 

Backbone 

Vector 

Source 

Fluorescence Source 

UAS:Tdt; 

UAS:Syp:GFP 

pEGFP-N2 Clontech Red, Green (Meyer et al., 

2005) 

Table 2-1  DNA plasmids used for single cell labelling in SINs 

 Antibodies 

Antibody name Recognises Dilution used Supplier 

Anti-GFP (chick) GFP, GCaMP 1:500 (whole mount) Life Technologies, 

Grand Island, USA 

 

 

TO-PRO-3 Nuclear label 1:1000 (whole 

mount) 

Anti-chick Alexa 488 Primary antibodies 

raised in chick  

1:500 (whole mount) 

Table 2-2 Antibodies used for characterising s1156tGal4 line 

 Experimental Solutions 

Paraformaldehyde (PFA): 4% PFA in 3% sucrose, 60mM PIPES, 25mM HEPES, 5mM 

EGTA, 1mM MgCl2 

Danieau: 58mM NaCl, 0.7mM KCl, 0.4mM MgSO4, 0.6 mM Ca(NO3)2, 5.0 mM HEPES 

(pH 7.6) 
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 Transgenic Lines 

Allele Background Source Referred to as: 

Et(-1.5hsp70l:Gal4-

VP16)s1156t; mitfaw2/w2 

Gal4 Enhancer trap 

line labelling SINs, 

with some sparse 

expression in RGCs 

and tectal neurons, 

crossed with mitfa 

pigment line 

ZIRC s1156t:Gal4 

Tg(-17.6isl2b:GAL4-

VP16,myl7:EGFP); 

mitfaw2/w2 

Gal4 attached to isl2b 

promoter region, 

expresses in RGCs 

(Ben Fredj et 

al., 2010) 

Isl2b:Gal4 

Tg(elavl3:GCaMP5G)a4598 

mitfaw2/w2  

Elavl promoter 

driving GCaMP5 

expression in mitfa 

background 

 HuC:GCaMP5 

UAS:GCaMP5; mitfaw2/w2 UAS:GCaMP5 line 

crossed with mitfa 

pigment mutant  

Gift from E. 

Dreosti, UCL 

 

UAS:KillerRed; mitfaw2/w2 UAS:KillerRed line 

crossed with mitfa 

pigment mutant 

Gift from F. del 

Bene, Institute 

Curie, Paris 

 

mitfaw2/w2 Homozygous mutants 

for nacre w2 

mutation 

From Robert 

Kelsh, 

University of 

Bath 

 

Table 2-3 Table of transgenic lines used in experiments, sources, alleles, background 
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 Pharmacological agents 

Chemical Action Final 

concentration 

Diluent Supplier Cat. 

Num.  

Ethyl 3-

aminobenzoate 

methanesulfate 

(MS-222) 

anaesthetic 0.04% ddH2O Sigma-Aldrich, 

St. Louis, MO 

A5040 

SR 95531 

hydrobromide 

(Gabazine) 

Selective, 

competitive 

GABAA receptor 

antagonist. 

10µM Danieau Tocris 

Bioscience, 

Bristol, UK 

1262 

APV NMDA receptor 

antagonist 

50µM Danieau Sigma-Aldrich A5282 

NBQX AMPA receptor 

antagonist 

10µM Danieau Tocris 

Bioscience, 

Bristol, UK 

0373 

(R)- Baclofen selective 

GABAB agonist 

10µM Danieau Tocris 

Bioscience, 

Bristol, UK 

0796 

CGP 54626 

hydrochloride 

Selective 

GABAB receptor 

antagonist  

10µM Danieau Tocris 

Bioscience, 

Bristol, UK 

1088 

Table 2-4 Table of pharmacological agents used  
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 Chemicals 

Chemical Diluent Final concentration Supplier Cat. Num.  

PBS (Phosphate 

Buffered Saline) 

ddH2O NaCl 0.137mol, KCl 

0.003mol, Na2HPO4 

0.008mol, KH2PO4 

0.0015mol 

Oxoid Ltd.  BR0014  

Triton-X100 PBS 1% in PBS Sigma-Aldrich X100  

Blocking reagent  PBS 0.25% in PBS Roche, Nutley, 

NJ 

110961760

01 ROCHE 

Trypsin PBS 0.4% in PBS Sigma-Aldrich T2600000 

Agarose, low 

gelling temperature 

danieau 1% or 2% Sigma-Aldrich A9414  

N-phenylthiourea, 

PTU 

ddH20 0.0045% Sigma-Aldrich P7629  

Table 2-5 Table of chemicals used, diluents, concentrations and supplier catalogue numbers 
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 Methods 

 Zebrafish 

 

All work was approved by the local Animal Care and Use Committee, King’s College London, 

and was performed in accordance with the Animals (Experimental Procedures) Act, 1986, 

under license from the United Kingdom Home Office.  

Functional imaging experiments were carried out on zebrafish in the nacre mutant 

background. These larvae have reduced skin pigmentation due to a loss of neural crest 

derived melanophores (Lister et al., 1999), but retain the pigmented epithelium in retina 

which is necessary for normal vision. Larval zebrafish were kept at 28.5°C on a 14h On/10h 

off light cycle. All larvae were kept in danieau solution.  

 Mosaic labelling of SIN neurons 

 

s1156t:Gal4 embryos were injected at one- to four-cell stages of development with plasmid 

DNA diluted to 50ng/µl in danieau solution. Plasmid DNA was prepared using Qiagen 

miniprep kits (Qiagen). Injected larvae were maintained at 28.5°C in danieau solution with 

PTU to prevent pigmentation from developing. These were then immobilised in 1% low 

melting point agarose (Sigma-Aldrich, UK) on a microscope slide, and imaged with a confocal 

microscope equipped with spectral detection scan head and the W Plan-Apochromatic 

20x/1.0 DIC M27 75mm (Carl Zeiss) objective.  

 Immunocytochemistry 

 

To determine numbers of SINs labelled by the s1156t:Gal4 line crossed with UAS:GCaMP5, a 

nuclear stain (TO-PRO-3, Life Technologies) was used to label all cell nuclei in the transgenic 

line. An anti-GFP antibody (Life Technologies) was used to detect GCaMP expression.  

Seven-day-old (7dpf) larvae were anaesthetised in MS-222 and fixed in 4% PFA in PBS at 

7dpf overnight at 4°C. Following fixation, the larvae were washed thoroughly in phosphate 

buffered solution (PBS) several times. Fixed larvae were then permeabilized in 0.25% trypsin 

(in PBS, Roche) for 30mins on ice, washed again in PBS several times, before blocking for 

several hours at room temperature in 0.4% blocking reagent in PBS-T (Roche, Nutley, NJ). 

Incubation with primary antibodies diluted (1:500) in PBS-T (1%) took 48 hours at 4°C. After 

incubation the larvae were washed thoroughly again in 1% PBS-T before blocking for several 

hours in 0.4% blocking reagent diluted in PBS-T at room temperature. Larvae were then 
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incubated in secondary antibody diluted (1:500) in 0.4% blocking reagent in PBS-T overnight 

at 4°C, with TO-PRO-3 nuclear staining (1:1000, Life Technologies). 

To determine the proportion of SINs labelled by the s1156t:Gal4 line, the number of GFP-

positive cells in s1156t:Gal4;UAS:GCaMP5 was expressed as a percentage of the number of 

nuclei labelled with TO-PRO-3 within the tectal neuropil. SINs are the only identified cell 

type in the neuropil; TO-PRO-3 labelled nuclei within the neuropil are therefor likely to be 

SIN neurons. 

 Live Calcium Imaging 

All imaging was carried out using an LSM 710 confocal microscope equipped with a spectral 

detection scan head and a W Plan-Apochromat 20x/1.0 DIC M27 75mm (Carl Zeiss) 

objective. GCaMP imaging was carried out using an Argon 488nm multi-line laser at low 

power (~5%) to prevent photo bleaching and minimal pinhole (~1 Airy Unit (AU)) to ensure 

signal is recorded only from the desired cells and axons within the imaging plane. All 

experiments were recorded as 12-bit time series to ensure large dynamic range recording of 

signal changes. 

SINs were recorded at 4Hz and 256x256 pixels (170.04 µm x 17.04 µm, pixel size: 0.664 

µm2). To image RGC axonal responses, experiments were recorded at 4.1 Hz, with an image 

size of 256x256 pixels (105.9 µm x 105.9 µm, pixel size: 0.42 µm2). The average presynaptic 

bouton in zebrafish RGCs is ~0.8µm in diameter (Meyer et al., 2005). RGC experiments with 

multiple sections of RGC axons sampled per larvae were carried out 2µm apart to ensure no 

boutons were sampled twice. Tectal neuron experiments were carried recorded at a rate of 

3Hz, with an image size of 256x256 pixels (207.03 µm x 207.03 µm pixel size 0.812 µm2).  

Larvae were screened using a confocal microscope with minimal laser power and exposure 

for expression of GECIs (GCaMP5 in SINs or SyGCaMP3 in RGC axons) prior to experiments. 

Larvae were mounted dorsal side up on a custom slide in 2% low-melting point agarose 

(Sigma, UK) made in danieau solution. This was sufficient to immobilise the larvae whilst 

imaging without the need for anaesthesia. The agarose was removed from in front of the 

right eye facing the projector screen to allow an unobstructed view.   

Larvae were imaged while in a custom made imaging chamber with diffusive filter 3026 

(Rosco Inc., Hollywood, CA) fitted to one side as a projection screen. This was filled with 

danieau and the larva was placed on a platform within this chamber at 30mm from the 

screen (Figure 2.1). The DLP pico projector (Optomota) was calibrated regularly to ensure 

luminance was maintained across experiments.  The projected image covered 
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approximately 97° x 63° degrees of visual field. Stimuli were at a luminance of 25% and 

175% (corresponding to eight cd/m2 – 56cd/m2) of the mean grey luminance of the 

background (32 cd/m2). These were controlled by specially written Matlab (Mathworks) and 

LabVIEW code and driven by ViSaGe (Cambridge research systems, UK) stimulus presenter. 

Neuronal responses in the contralateral (left) tectum were simultaneously imaged with the 

confocal microscope. Time and duration of stimuli were captured using a TTL trigger sent 

from ViSaGe and detected by ZEN software. 

 

Figure 2-1 Experimental set up for visual stimulation of larval zebrafish whilst imaging neuronal 

activity in vivo 

The functional responses of neurons in the visual system were assessed in response to visual 

stimulation. Larval zebrafish mounted in 2% low melting point agarose were immersed in danieau 

in a custom made imaging chamber. The larva is positioned 3cm from a screen with a diffusive 

filter, upon which visual stimuli are presented. The contralateral eye to the tectal hemisphere being 

imaged faces the screen.  
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 Orientation/Direction experiments 

 

For orientation experiments, sinusoidal gratings drifting in 12 different directions were 

presented in a pseudo random order.  The direction of motion was orthogonal to the long 

axis of the gratings. The sinusoidal gratings had a fade time of at least 3 seconds; this 

allowed gratings to fade in or out to mean grey before and after the epoch to ensure that 

fluorescence signal from previous epochs had decayed before the next epoch is presented. 

A spatial frequency of 0.05 cycles/° was used, with a temporal frequency of 1 cycle/second 

for all orientation experiments- stimulus parameters known from previous experiments to 

elicit reliable responses from neurons in the tectum (Nikolaou et al., 2012). A randomly 

placed blank epoch, in which a mean grey background is displayed on the projector screen, 

was also included to aid in baseline fluorescence calculation; this was a minimum of 2 

seconds. 

 Spatial Frequency experiments 

 

For spatial frequency (SF) experiments, sinusoidal gratings were played at the direction 

producing the greatest response during the preceding orientation experiment (manually 

detected from raw fluorescence values obtained during the preceding orientation 

experiment), and a temporal frequency of 1 cycles/second. Initial experiments used a range 

of spatial frequencies from 0.014 to 1 cycles/°, but after analysis of initial experiments, the 

range was lowered to SFs from 0.014 to 0.5 cycles/°. Seven SFs within this range were 

presented in a pseudo-random order, with spatial frequencies equally spaced along a 

logarithmic scale, and a blank epoch of median grey to determine baseline. The fade time 

was 3 seconds to ensure decay of GECI signal between epochs.  

 Temporal frequency experiments 

 

For temporal frequency experiments, the same direction of drifting sinusoidal gratings were 

played at a spatial frequency of 0.05 cycles/°. The temporal frequency was sampled equally 

spaced along a logarithmic scale at seven TFs from 0.15 to 1.5 cycles/second, delivered in a 

pseudo random order with minimum 3-second fade time.  
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 Pharmacological Experiments 

 

Tg (Isl2b:Gal4;UAS:SyGCaMP3), Et (s1156t:Gal4;UAS:GCaMP5), or Elavl:GCaMP5 fish were 

imaged using the same settings as described above for orientation experiments.  Two 

orientation tuning experiments were carried out prior to drug injection as a control. 

Following these controls, immediately prior to imaging, the tectal neuropil contralateral to 

the eye facing the visual stimuli was injected using an Intracel Picospritzer III (injection 

settings: 10 PSI, ~15 second pulse) with freshly prepared drug diluted in danieau. The 

borosilicate needle was cut with a large tip, to dispense a volume of approximately 5.4nl, to 

facilitate flow. Immediately following this injection, another orientation experiment was 

carried out on approximately the same cell/RGC axon plane, judged by markers including 

blood vessels within the neuropil, melanophores in skin around tectum and eyes. A repeat 

experiment was carried out to ensure the drugs had ample time to diffuse and act.  Time 

series of each orientation experiment were discarded if drift induced by removal from 

danieau or drug injection had occurred.  To control for the injection procedure, danieau 

solution alone was injected. 

 Killer Red ablation experiments 

 

Et (s1156t:Gal4;UAS:KillerRed);Elavl:GCaMP5 fish were functionally imaged at 6dpf. Imaging 

was carried out on three planes through the tectum, one central to the neuropil, and one 

either side of this by a 7µm step to ensure a large coverage of the dorsal-ventral axis of the 

tectum. As the average cell body of a tectal cell is approximately 7µm (Sajovic and Levinthal, 

1982b), this ensures we did not sample the same neurons more than once. A single 

orientation experiment was carried out on each plane. Following imaging, the larvae were 

mounted onto a slide, and exposed to wide field fluorescence (Zeiss Axioskop, Prior Lumen 

200, bulb wavelength at 100% strength, wavelength 540-580 nm) for 45 minutes. Larvae 

were left to recover overnight before imaging again. At 7dpf, the larvae were imaged again 

at the same planes, with care being taken to match planes as closely as possible, using blood 

vessels, skin melanophores and distance from central plane of tectal neuropil.   

 Analysis  

 Pre-processing of time series data 

 

All time series experiments were first corrected by realigning using a rigid body algorithm 

(spm8, http://www.fil.ion.ucl.ac.uk/spm/) to remove artefacts from movement of the larvae 
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or drift during recording. Median filtering of a kernel size of one voxel was used to remove 

dark and shot noise. Spatial smoothing with a 2D Gaussian kernel of two voxels to improve 

signal to noise. Low frequency baseline drifts were corrected using a cubic spline algorithm 

extrapolating between knots averaged from 5 seconds of interepoch-interval data. Signal 

intensity changes were calculated at each voxel, and integral responses during the epochs 

calculated to produce a response value for each experiment epoch. To ensure analysis took 

into account the properties of the calcium indicators used, probe decay time was included 

into the pre-processing analysis parameters. 

Direction and Orientation selective indices (DSI and OSI (see equation 2-6 below), Niell & 

Stryker, 2008) were calculated based on fitted von-Mises profiles (Swindale, 1998). DSI and 

OSI are calculated using responses at preferred angle (Rpref), null direction (Rnull), preferred 

orientation (Rpref_ori), and the orthogonal to this orientation (90° from preferred orientation, 

Rorth).  

DSI = (Rpref −Rnull)/(Rpref +Rnull)  

OSI = (Rpref _ori −Rorth)/(Rpref _ori +Rorth) 

1-CV = 𝑽 = 𝟏 − |𝑹|    

Equation 2-6: Equations for calculating DSI and OSI, 1-C.V.  of cell/neuron responses 

An estimate of goodness of fit of the von-Mises curve, R2 , was also calculated. Generally, 

direction selective responses were determined based on stringent criteria; Direction 

selective: DSI > 0.5, OSI <0.5, R2 > 0.7; Orientation selective: DSI < 0.5, OSI >0.5, R2 > 0.7. The 

fitting to integral responses also provides the preferred direction of motion from the centre 

of the fitted curve.    

 SIN analysis 

 

ROIs were limited to GCaMP signal exclusively from SIN cell somas. The mean responses 

within these ROIs were used to create response profiles for each SIN. For DS experiments, 

responses to the visual stimuli across all 12 epochs were used to determine the direction 

selectivity, with a 13th epoch consisting of median grey background.  

To classify SINs as either DS or OS, we used the following criteria: DSI >0.5, OSI<0.5 or CV 

>0.4, R2 >0.7. The 1- Circular variance metric was added to determine if neurons exhibit 

symmetric tuning, where zero indicates responses to all orientations/directions and one 

indicates responses to only one direction (Batschelet, 1981). The DSI and OSI metrics can 

suffer from over-fitting with low signal to noise data as well as limited fitting points that 
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increases contamination between metrics, thus creating situations where a cell may have 

both high DSI and high OSI simultaneously (see also Mazurek, Kager, & Van Hooser, 2014). 

SINs often exhibited both high DSI and OSI values, and the addition of 1-C.V. allowed us to 

identify those neurons that were DS. Mean responses were calculated from all the 

responding voxels within an ROI to ensure that these values were representative of the 

responses of that neuron.  

To derive the number of subtypes of DS or OS SINs, average DS fitted angles were calculated 

for each SIN soma and plotted on a cumulative histogram summarizing the incidence of cells 

over binned preferred angles (0–360°). Multiple von-Mesis curves were fitted to cumulative 

histograms using a multidimensional constrained nonlinear minimization approach, with 

peak-centre, height, concentration as free dimensions. The bandwidth of the curves was 

used to define the preferred angle bounds between which the cells within these populations 

lie. Polar plots were generated of the mean responses of cell’s within each of these 

populations to all 12 angles presented during experiments, with S.D.s also plotted. The 

bandwidth of each cell’s responses was also calculated, this was defined as the full width at 

the half maximum of the cell’s responses to epochs.  

SF and TF experiments were analysed in a similar manner, with time lapse images realigned, 

and ROIs used to determine mean responses across all voxels within a cell soma. Using the 

integral response plots, we then plot normalised response curves for each population.   

 Comparative experiments 

 

Original experiments probing DS populations in RGCs were carried out using synaptically 

localised GCaMP3, and experiments characterising DS tectal neurons used bulk loaded 

Oregon-Green BAPTA-1 AM, a fluorescent calcium indicator. To ensure comparisons 

between SIN and tectal neuron or RGC response profiles are only due to properties of the 

cells themselves rather than the optical reporters used, the Isl2b:Gal4 promoter line was 

crossed with a UAS:GCaMP5 line to express cytoplasmic GCaMP5 in RGC axons, and the 

elavl:GCaMP5 line was used to look at tectal neuron response properties.  

Orientation experiments were carried out to determine the DS and OS populations within 

the RGCs and tectal neurons. Time series experiments were carried out using identical 

parameters to those used to characterise the SIN properties. DS population differences and 

individual differences were then compared. Using modified criteria where R2  threshold was 

dropped slightly to 0.6, data from all larvae were grouped into a pre-drug and post drug, or 
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pre- and post-ablation conditions. A slightly lower R2 threshold was used to ensure that any 

voxels that became marginally less well fitted after drug application were still included in 

results after the criteria were applied. All data was analysed using ΔF and responses were 

normalised to the maximum response size to allow comparison of voxels with different 

levels of GCaMP expression.  

Cumulative histograms of voxel preferred directions were compared between conditions, as 

well as data on DSI values, bandwidth of responses (using FWHM) and preferred angles. This 

was used for both SIN drug injection experiments as well as tectal neuron drug injection 

experiments. 
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3 CHARACTERISATION OF SINS  

 Introduction 

 

At larval stages of development zebrafish larvae exhibit a repertoire of visually-driven 

behaviours such as prey capture (Bianco and Engert, 2015; Bianco et al., 2011; Patterson et 

al., 2013) and predator avoidance (Douglass et al., 2008) and are increasingly being used to 

study the circuitry that underlie these behaviours. Furthermore, because of their small size 

and transparency they are particularly amenable to imaging-based approaches to study 

neural circuit structure and function. Zebrafish are also very amenable to genetic 

manipulation, making them ideal for using genetically-encoded reporters of neural activity, 

such as GCaMPs to study neural circuitry (Feierstein et al., 2014).   

To date most studies have used population functional imaging to describe visually 

responsive neurons (see Hunter et al., 2013; Nikolaou et al., 2012, for example). While 

useful for functional categorisation of neuronal subtypes, such population-based 

approaches cannot be used to describe other aspects of visual circuitry such as the 

morphology of the individual circuit components. Previous work utilising electrophysiology 

to characterise the functional properties of tectal neurons did not usually characterise a 

genetically defined subtype (see Gabriel et al., 2012 for one exception). Furthermore, most 

studies only focus on one aspect of stimulus selectivity, such as direction (Nikolaou et al., 

2012) or size (Preuss et al. 2014, however see Sajovic and Levinthal, 1982b and Bianco and 

Engert 2015). We know from studies in other organisms that response properties of visually 

driven neurons are rarely this simple, as they often demonstrate selectivity for multiple 

attributes of a visual stimulus. (Niell and Stryker, 2008).  

In order to gain more insight into tectal circuitry a more detailed description of the 

individual cell types within the tectum is necessary. This includes neuronal morphologies 

receptive field characteristics and neurotransmitter identity. Receptive field characterisation 

provides insight into what visual features might activate a given cell type (and hence what 

behaviours they might be involved in) while morphology and neurotransmitter identity 

provides clues as to how a cell type interacts within other components of the circuitry within 

which it is embedded.    

A better functional description of individual cell types in the tectum requires the means to 

label the same subtypes of neuron in the tectum repeatedly. Previous work has 

characterised tectal neuron properties using electrophysiology, but these recordings were 
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often of randomly selected neurons and may not have targeted less common neuron types 

(Sajovic and Levinthal, 1982a, 1983; Vanegas et al., 1974). The s1156t:Gal4 line (Scott and 

Baier, 2009) provides the ability to label a subtype of neuron in the tectum, the superficial 

inhibitory interneuron (SIN). These neurons are set apart from other tectal neurons by their 

location; whilst the majority of neurons in the tectum are located at a deeper tectal 

location, within the periventricular layer, SINs have somata located superficially under the 

skin of the tectum.  

I first characterised the numbers of SINs labelled with the s1156tGal4 transgenic line to 

determine if the entire SIN population was labelled, or only a subset. Then, in order to 

describe SIN receptive field properties, this line was crossed with a UAS:GCaMP5 line, to 

express the genetically encoded calcium indicator (GECI) in SINs. Changes in GCaMP5 

fluorescence were imaged on a confocal microscope whilst a drifting sinusoidal grating 

stimulus was simultaneously presented to the contralateral eye. By systematically changing 

the direction, spatial and temporal frequency of the stimulus the direction, spatial and 

temporal frequency tuning properties SINs were described. 

The findings presented here suggest that the s1156tGal4 line labels only a small subset of 

SINs. Consistent with previous findings I show that this subset contains three different 

direction selective populations whose preferred directions match those of the direction-

selective RGCs that target the tectum (Hunter et al., 2013). However, data presented here 

demonstrates that the tuning bandwidth of SINs is significantly narrower than that seen in 

the RGCs. Furthermore, I demonstrate that direction-selective SINs are also selective for 

high spatial frequencies suggesting that the SIN neurons might only be engaged under 

specific stimulus conditions such as those that might be encountered during visually guided 

behaviours reliant upon size discrimination in visual field, such as prey capture, or shoaling. 
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 Results 

 The s1156tGal4 line labels a subset of SINs in the optic tectum 

 

To label SINs the previously published s1156tGal4 enhancer trap line was used (Scott and 

Baier, 2009). To determine the extent of SIN labelling in the s1156t:Gal4 line, it was crossed 

with a transgenic UAS:GCaMP5 line. Double transgenic larvae were fixed at 7dpf and 

antibody labelled with anti-GFP (to label GCaMP5-expressing SINs) and a nuclear stain (TO-

PRO-3, Life Technologies) to visualise cells within the tectal neuropil (SINs are the only 

identified cell type in the neuropil, TO-PRO-3 labelled nuclei within the neuropil are 

therefore likely to be SIN neurons). This allowed us to determine the total number of 

neurons in the superficial neuropil layer in the tectum, and the number of SINs labelled by 

the s1156tGal4 line. We found that the labelling in this line is not specific to SINs (Figure 

3.1). In the example shown tectal cells within the periventricular layer are also labelled 

(indicated by yellow arrow), as well as retinal ganglion cell axons.   

The data also shows that the line does not label the entire population of SINs, with a mean 

number of 26 SINs per tectal hemisphere (n = 4 tecta, in 3 larvae), which represents only 

10% of all the cell bodies labelled by TO-PRO-3 in the superficial tectal neuropil.  
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Figure 3-1 Quantification of the labelling of SINs in the s1156tGal4 line 

The number of SINs labelled in double transgenic larvae (n=4 tecta) was quantified by expressing 

the number of SINs labelled by GCaMP5 (green) as a percentage of total numbers of SINs labelled 

by the nuclear stain TO-PRO-3 (magenta). Scale bar is 20µm. Table average numbers of cells 

labelled per tectum, ±S.D.  
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 SINs produce robust somatic responses to moving stimuli 

 

To characterise the receptive field properties of SIN neurons the s1156t:Gal4 line was 

crossed with the UAS-GCaMP5 transgenic line and confocal imaging of SIN somata was used 

to monitor responses to the drifting grating stimulus. Not all SINs responded to the stimulus. 

This suggests that the SINs may be functionally diverse or that the visual stimulus did not 

intersect the receptive fields of all labelled cells. From the data collected, I found the 

overwhelming majority of visually responsive SINs labelled in this line to be direction 

selective. Of all 190 visually responsive cells imaged, only eight were orientation selective 

(Figure 3.2) and 177 were DS. Consequently, I concentrated on characterising the more 

abundant DS SINs.  

 

Figure 3-2 Histogram of preferred angles of Orientation selective SINs 

n = 8 cells 

DS SINs produced robust somatic changes in fluorescence in response to certain directions 

of moving grating stimuli (Figure 3.3A and B). For each SIN neuron, I determined the 

preferred angle of motion (see Methods). The polar plot (Figure 3.3C) shows that for this SIN 

the direction producing the largest integral response is between 120-150°, which relative to 

the fish corresponds to motion in the ventral/caudal direction with the preferred angle 

being 140° (Figure 3.3C). This example cell is also highly direction selective, with a DSI value 

of 0.95 where the maximum possible value is a DSI of 1.0.  
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Figure 3-3 Response properties of an example direction selective SIN 

A. Raw fluorescence changes of a SIN in response to direction tuning experiment stimuli, arrows 

indicate direction of moving sinusoidal gratings, white dashed line indicates skin covering the 

tectum, scale bar is 25µm. B. ΔF responses of the same example SIN during the entire experiment. 

Duration of epochs are indicated by shaded area of graph. Direction of moving stimulus is indicated 

by red arrow, with null epoch. C. Polar plot indicating the preferred angle of the cell, and DSI value 

as calculated from responses during the experiment 
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The average DSI value across all DS-SINs was 0.856 (n= 177, S.D. ± 0.1060). From the plot of 

the DSI values of every DS SIN imaged we can see that many of the SINs imaged had DSI 

values on the higher end of the DSI scale (Figure 3.4A with error bars indicating ±S.D.). Using 

the full-width half maximum of the integral responses, I found that DS SINs had a mean 

tuning bandwidth of 92° (n=177, S.D. 9.233, Figure 3.4B, with error bars indicating ±S.D.).  

 

Figure 3-4 DSI values and Bandwidths of all DS SINs imaged 

A. DSI values of all DS SINs imaged (n=177, S.D. ± 0.1060, error bars indicate S.D.), all values are 

>0.5 due to criteria applied for classifying neurons as direction selective. B. FWHM bandwidths (°) 

of all DS SINs imaged (n=177, S.D. ± 9.233°, error bars indicate S.D.) 

 

 The s1156tGal4 line contains three populations of direction-selective SINs 

 

By plotting the preferred directions of all the responding SINs as a histogram, I aimed to 

identify from the distribution of preferred directions subtypes of direction-selective SINs. 

Fitting von-Mises curves to the population histogram revealed three normally-distributed, 

non-overlapping populations with population peaks centred at 9°, 157°, and 264° (Figure 

3.5, upward, downward and forward motion relative to larva, respectively). These 

populations are similar in preferred directions to those seen in DSGCs and DS tectal 

neurons.  
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 Tuning properties of direction-selective SIN subtypes 

 

In the above section where DSI and tuning bandwidth of DS SINs were analysed, DS SINs 

were treated as a single population. The finding that there are three subtypes of DS SIN, 

separable by preferred angle, raises the question of whether there are subtype-specific 

differences in DSI and tuning bandwidth. Comparing between the three DS SIN populations 

we see there are indeed differences in DSI values (Figure 3.6A); the upward population has a 

mean DSI of 0.91 (SEM ±0.016, n = 23), downward selective population has a mean DSI of 

0.86 (SEM ±0.01, n=82) and forward population mean DSI of 0.78 (SEM±0.05, n=9). The 

differences in DSI between the populations are significantly different between all 

populations (Figure 3.6A, One-way ANOVA with post-hoc Tukey's multiple comparisons test 

overall p = 0.0011, up vs down adjusted p =0.0332, up vs forward adjusted p = 0.0010, down 

vs forward adjusted p = 0.0421).  

The upwardly tuned SINs, with a population preferred angle of 9° have a mean tuning 

bandwidth of 97.26° (SD ±6.36, n = 23), downward-selective SINs with a population 

preferred angle of 157° have a mean tuning bandwidth of 95° (SD ±6.732, n=83) and 

forward-selective SINS with a population preferred angle of 264° have a mean tuning 

bandwidth of 84° (SD ±10.68, n =10). Comparing bandwidths between SIN populations, we 

see significant differences between the means of all populations (One-way ANOVA with 

post-hoc Tukey's multiple comparisons test, overall p <0.0001, up vs down adjusted p 

=0.3360, up vs forward adjusted p<0.0001, down vs forward adjusted p < 0.0001).  

Figure 3-6 Comparisons of DSI and bandwidth values of DS SINs from each population 

For each population, upward n = 23 cells, downward n = 82 cells, forward n = 9. A. DSI values of 

neurons from each DS population, bars indicate mean ± S.D., with statistical significance 

between populations indicated B. FWHM bandwidths of individual DS SINs split according to 

populations, bars indicate mean ± S.D., statistical significance between populations indicated. 

Comparisons using One-way ANOVA and Tukey’s multiple comparisons tests 
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The tuning of each population can be summarised by generating normalized population 

responses of each DS population, and calculating FWHM based on these responses (Figure 

3.7A, FWHM is dashed line). We see that the upward motion sensitive population is much 

more narrowly tuned than the forward motion sensitive population, and slightly narrower 

than downward motion sensitive SIN responses (FWHM values of 69°, 83°, 125° for upward, 

downward and forward populations respectively). This difference in tuning bandwidth 

between the vertically tuned DS SINs and forward tuned DS SINs is also easily discernible 

when comparing polar plots of mean integral responses for each population (Figure 3.7B, 

dashed lines indicate ±2 S.D. of mean population responses).   

Comparing the three measures (Table 3-1) the outcomes of comparisons of DSI, and FWHM 

of population mean normalized responses seems to contradict that of the bandwidths of 

individual neurons within each population. In general, the upward population is more tuned 

than the other two DS SIN populations, and the forward responsive population is much 

broader in its tuning to preferred direction. This agrees with previous data on DSGC 

responses; however, this data was collected using a synaptically localised GCaMP3. 

 

 Measure  

Comparison DSI 

(p value) 

Bandwidth 

(p value) 

FWHM of 

population 

normalized 

response 

Conclusion: 

Upward vs. 

Downward 

**  

(up>down) 

n.s.  

(up=down) 

69° vs 83° (+14°) 

(down>up) 

Upward more 

tuned 

Upward vs. 

Forward  

*  

(up>forward) 

**  

(up>forward) 

69° vs 125° (+56°) 

(forward>up) 

Upward more 

tuned 

Downward 

vs. Forward  

n.s. 

 

***  

(down>forward) 

83° vs 125° (+42°) 

(forward>down) 

Conflicting 

Table 3-1 Table comparing differences between three measures used to compare DS tuning of SINs 

in each population 
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Figure 3-7 Relative differences in tuning to preferred directions of three DS SIN populations 

A. Plot of mean normalized population responses to directions of motion presented in experiments, 

FWHM of responses indicated by dashed lines. B. Polar plots of mean responses of each population, 

showing distinctly different tuning bandwidths, for reference, 0° corresponds to upwards motion 

relative to larva, with 90° corresponding to backwards motion. 
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 Spatial frequency tuning of DS SINs 

 

In order to characterise the spatial frequency tuning profiles of DS SINs, gratings of various 

spatial frequencies were presented. The direction of the grating was matched to the 

preferred direction of the SIN imaged. This was estimated from the largest response seen 

during an orientation-tuning experiment that preceded every spatial frequency tuning 

experiment (see Figure 3.2 B). Initial SF experiments used seven sizes of sinusoidal gratings 

between 0.014 to 1.5 cycles/° to probe the spatial frequency properties of these neurons. 

After these initial experiments, we found the range of stimulus sizes covered was too broad 

and neurons would not respond to stimuli smaller than 0.25 cycles/°. Thus, subsequent 

experiments covered a smaller range sinusoidal grating sizes (0.5 – 0.014 cycles/°). The 

largest spatial frequency of stimulus presented was constrained by the dimensions of the 

display screen used.  

Figure 3.8 A shows the result of a spatial frequency tuning experiment performed on a SIN 

neuron tuned to motion in the downward direction. This clearly demonstrates responses 

that are selective for certain spatial frequencies.  

Figures 3.9 A-C show normalised responses from spatial frequency tuning experiments for 

each subtype of DS-SIN. These experiments reveal that SINs tuned to upward and downward 

motion exhibit band-pass filtering (Figure 3.9 A-B), responding to spatial frequencies 

between approximately 0.2 and 0.014 cycles/°. The two populations appear to have similar 

spatial frequency tuning profiles, with maximal responses usually between 0.03 and 0.08 

cycles/°. This size of stimulus equates to roughly 6.25-16.7° of visual space. However, the 

upward responding population respond to slightly higher spatial frequencies, equivalent to 

smaller sizes of stimulus, seen in the rightward shift of plotted integral responses. For the 

population tuned to forward motion I was only able to perform a spatial and temporal 

frequency tuning experiment on one neuron. Thus, it is difficult to draw any definitive 

conclusions about the spatial-frequency tuning properties of this subtype. The tuning curve 

for this cell indicated that this population may prefer much larger stimuli than was possible 

to probe using our projector set up (Figure 3.9C).  
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Figure 3-8 Raw responses from example cell to spatial frequency and temporal frequency tuning 

experiments.  

A. Raw responses of example DS SIN from Figure 3.2 to spatial frequency tuning experiment, grey 

shaded areas on axes indicate duration of epochs with illustrative indications of relative sizes of 

each spatial frequency (not to scale). B. Raw responses of previous example cell to temporal 

frequency tuning experiment, grey shaded area indicates duration of epoch.  
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Figure 3-9 DS SIN population spatial and temporal frequency tuning 

A-C DS SIN spatial frequency tuning, with normalized responses for neurons within each 

population plotted, as well as mean responses for entire population (bold plot with error bars, 

error bars indicate ± S.D.), gratings were presented at preferred angles, with TF of 1.0 cycles s-1. 

D-F DS SIN temporal frequency tuning, bold dashed lines indicate mean responses of population, 

presented at preferred angle with SF of 0.05 cycles/° 
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 Temporal frequency (TF) tuning in DS populations of SINs 

Using the same direction determined in the DS experiment we then probed the TF tuning of 

the SINs. From the example cell’s raw ΔF plot (Figure 3.8B); temporal frequency produces 

different amplitudes of calcium increases in response different temporal frequencies of 

stimuli. From the seven temporal frequencies we presented, we found that SINs do not 

greatly favour particular speeds of moving stimulus. The general trend of responses 

indicates that the SINs respond better to higher temporal frequencies, but this is not 

conclusive from the data (Figure 3.9 D-F).  
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 Discussion 

 

This quantification of the labelling of SINs in the s1156tGal4 line shows that this line labels 

approximately 10% of SINs in the tectum, a fraction of those found in the superficial tectum. 

However, the data presented here shows that even within the small fraction of SINs labelled 

in the st1156tGal4 line there is functional heterogeneity- some SINs were orientation 

selective, others were non responsive to a drifting grating stimulus while many were 

direction-selective. It is not clear what exactly is being labelled in this line. It may be that the 

st1156tGal4 line is selective for a few subtypes of SIN and that these are labelled completely 

in the transgenic line. If this is the case then the full functional diversity of SINs is not 

captured in this study because we are simply not labelling all subtypes. Alternatively, the 

st1156tGal4 line may target all subtypes equally but because of mosaicism only a few cells 

are being sampled. In this case, the subtypes described here may reflect the full diversity of 

the SIN population. It would be informative to use as many alternative strategies as possible 

to label SINs so that the full repertoire of subtypes can be captured. 

I found a very small number of orientation selective SINs, which is in line with previously 

published data (Hunter et al., 2013), but I found a strong bias towards DS SINs in the 

s1156tGal4 line. Within this subset of DS SINs we determined that there are three DS 

populations, with population angle centres corresponding to upward (9°) downward (156°) 

and forward (257°) motion relative to the larvae. These preferred directions of DS SINs 

match those of DSGCs described elsewhere (Nikolaou et al 2012) indicating that DS SINs 

receive direct inputs from DSGC axons. 

Labelling with OG-B seems to detect different populations of DS SINs (sensitive to backward 

and upward motion -population centres of 21° and 126°) whilst missing others (the 

downward and forward DS populations, see Hunter et al., 2013). It is possible that with the 

bulk labelling calcium transients from SINs are masked by fluorescence in the neuropil, or in 

the skin, resulting in fewer SINs being detected. Similarly, data from OG-B experiments were 

using bar stimuli, rather than the sinusoidal gratings used here, this grating stimulus may 

elicit higher responses in a more diverse range of SINs than bars. Preliminary data 

comparing individual SIN responses to experiments using bars and gratings did not find a 

difference in preferred angles or DSI values. 

A striking difference between DS SINs and DSGCS is the differences in the relative 

abundance of directionally tuned DS subtypes. DS SINs responsive to upward and downward 

directions of motion are labelled more frequently by the s1156tGal4 line than that forward 
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motion responsive SINs, which is almost completely the opposite to levels of representation 

of the three directions seen in DSRGCs, which has much greater numbers of forward tuned 

neurons than upward and downward motion tuned. A key question is whether this 

difference in representation is real, and thus is because the tectum does not filter 

information on forward motion from the retina, or is this due to poor labelling of SINs in this 

enhancer trap line.  

Most characterisations of functional properties of tectal neurons focus on only one aspect 

of visual stimulus, such as size tuning or present a basic stimulus such as small boxes moving 

along the A-P axis. Our approach, in which preferred direction was used to probe spatial and 

temporal frequency tuning, is a more comprehensive approach to probing receptive field 

properties. Visually responsive neurons are often selective for more than one aspect of 

visual stimulus, and response properties can be different depending on stimuli used 

(Pearson and Kerschensteiner, 2015; Tikidji-Hamburyan et al., 2015). Thus in addition to 

direction-selectivity I also examined spatial and temporal frequency tuning of SINs.  

I found that all three DS SIN populations showed a preference for moving stimuli roughly 

equivalent to 6.5° to 16.7° of visual space. In context, these SINs are probably equivalent to 

‘small’ size selective SINs -responding to stimuli between to 2-8° in size (Preuss et al., 2014). 

Previous studies have found similar sizes of stimulus elicits prey capture (~13.5° moving at 

~30°/s) (Bianco et al., 2011), similar to the size of a paramecium (15° moving at 50°/s), the 

chosen prey of larval zebrafish, when in close proximity to a larva. Because of the extremely 

low frequency of forward motion sensitive SINs, we only encountered one neuron to carry 

out spatial frequency experiments on, thus more experiments would be necessary to 

describe their spatial and temporal frequency properties with sufficient detail.  

The disparity in sizes eliciting prey capture behaviours is problematic. In fact, previous work 

found that moving dark stimuli between the sizes of 1-5° elicit prey capture behaviour; with 

larger 10° spots eliciting predator avoidance movements at a similar success rate (Bianco et 

al., 2011). These experiments did not maintain a constant distance of visual stimulus as the 

stimuli were projected to unrestrained larvae. The distances of objects eliciting successful 

prey capture responses were on average 1.55mm (±0.66mm) away, but ranged between 0.5 

- 3.5mm. The distance of the visual stimulus from the larva could greatly affect the 

perceived size of the object. The same authors later published what seems like 

contradictory results in which large (13.2°) dark fast (30°/s) moving spots elicited prey 

capture behaviour more successfully than small (3.2°) (Bianco and Engert, 2015), these 

experiments used stimuli at a fixed distance from the larvae (7mm). Moreover, screen 
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distance from larva used to determine size selectivity in Preuss et al., (2014) was 20mm, 

where stimuli between 2-8° in size were labelled “small”, and 16-64° were deemed “large”. 

This disparity between sizes seen to elicit prey capture is an ideal example of how 

comparing size selectivity of neurons between experiments is particularly difficult; it 

indicates that the perception of size is dependent on the absolute size (Douglas et al., 1988). 

The distance of the presented stimulus and size of stimulus combined provides information 

on the size of an object to the organism.  A large object in the distance will have the same 

size on the visual field as a smaller object in very close proximity to the animal. As a result, 

studies on prey capture, for instance, may find that size of stimulus eliciting prey capture 

may vary greatly depending on the distance of the stimulus from the animal, despite using 

the same calculation to determine the size of the stimulus on the retina.  

Using the insights of the sizes eliciting prey capture in Bianco et al (2015), which provides a 

link between stimulus size and behaviour, we can make links between the DS SIN stimulus 

size preferences. The change in distance of stimulus from 1mm to 7mm led to an increase in 

the stimulus size eliciting prey capture behaviours. As the visual stimuli in this thesis were 

presented on a screen 30mm from the larvae, with maximal response ranges to visual 

stimuli ranging between the sizes of 6.25° to 16.7° of visual field (depending on DS 

population), we can conclude that these are roughly equivalent to prey sized objects in the 

aforementioned studies.  

Temporal frequency tuning experiments were less conclusive, but this is supported by 

previous work which indicates that responses from neurons selective for stimuli of this size 

are less sensitive to changes in temporal frequency (Bianco et al 2015). Faster TFs were not 

utilised originally as preliminary experiments indicated they did not generate responses 

from DSGCs.  Increasing the range of TFs presented is necessary in order to probe the TF 

tuning of SINs fully.  
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4 TUNING OF DS SINS RELATIVE TO OTHER DS POPULATIONS IN 

RETINOTECTAL CIRCUIT  

 Introduction 

 

The previous chapter describes the characterisation of the functional properties of DS SINs, 

and indicates that SINs provide the tectal circuit with inhibition at specific directions of 

movement, with preference for sizes of small moving objects similar in size to stimuli found 

to elicit prey capture behaviour (Bianco et al., 2015).  

From data collected on the tuning of DS SINs, this subset of neurons appears to have 

narrower tuning around preferred direction than DS tectal and DSGC populations (Hunter et 

al., 2013; Nikolaou et al., 2012). However, previously published data on DSGC populations 

were obtained using Isl2b;SyGCaMP3 expressing larvae in which GCaMP was localised to the 

presynaptic boutons of RGC axons (Nikolaou et al., 2012), and DS tectal data was gathered 

using bolus loading of Oregon Green 488 BAPTA-1 AM into larval tecta . In this chapter, I 

wanted to determine whether the narrower tuning bandwidth of DS SINs is a consequence 

of the different calcium indicators used in each experiment, or other experimental 

procedures used, such as stimulus type.  

To answer this question the differences in DS tuning between SINs, RGC axons and tectal 

cells were compared by collecting data on DS populations using the same experimental 

paradigms, analysis criteria and by expressing the same GECI – cytosolic GCaMP5 - in both 

RGCs and tectal cells. These experiments are detailed in this chapter.  Differences in DS 

populations and their receptive field properties were analysed by comparing the DSI values, 

FWHM bandwidths of individual DS neuron responses, and FWHM of the mean response of 

all neurons in the upward, downward and forward DS populations.  

These comparisons between DS SINs, and DSGCs showed that DS SINs are indeed more 

narrowly tuned to preferred directions than RGCs, finding that DS SINs are more tuned to 

preferred directions than DS tectal cells. These differences were less evident between 

forward motion selective populations. 

Following this, I wanted to explore the possible mechanisms responsible for this narrowing 

of tuning in SINs relative to DSGCs and DS tectal cells. Two theories were proposed on how 

this narrowing is achieved. Either the SINs are intrinsically less excitable neurons, leading all 

neuronal responses to be much smaller, a so-called “ice berg effect”, or SINs receive 

inhibitory inputs to non-preferred stimuli thus sharpening their tuning to preferred direction 



62 
 

and reducing responses to non-preferred directions. Because the techniques and equipment 

to probe the excitability of SINs using electrophysiology were not available, I concentrated 

on using pharmacological manipulations to determine if inhibition had a role in narrowing 

SIN tuning.  

Thus, GABA-A receptor mediated inhibition was blocked using pharmacology whilst probing 

the direction selective properties of SINs. The data suggests that SIN tuning is not affected 

by antagonism of GABA-A receptor mediated inhibition by injection of the drug gabazine.  

There was little to no difference in DSI values, preferred directions, nor the bandwidths of 

SINs before and after drug injection when compared to controls in which danieau was 

injected. Leaving open the possibility that DS SINs have an intrinsic mechanism to reduce 

their excitability.  

 

  



63 
 

 Results 

 Comparing DS SINs to DSGCs  

To determine if there was a significant difference in how tuned the two types of neurons are 

to their preferred directions I compared the tuning properties of DS SINs in each of the 

three populations to their corresponding populations in RGCs. In order to have appropriate 

numbers for statistical analyses it was necessary to take the DSGC population averages per 

larva imaged rather than voxel numbers when comparing to SIN data. (Analysis of voxel 

numbers would have produced an inappropriately large N for statistical analyses, i.e. it may 

have produced statistical significance even when effect sizes are very small). 

Isl2b:Gal4;UAS:GCaMP5 transgenic larvae were imaged at 7dpf and responses to moving 

sinusoidal grating stimulus were used to determine the properties of DSGCs in the tectal 

neuropil. Histograms of DSGC voxel preferred angles indicate three populations with 

preferred angles closely  matching those seen in previous work using SyGCaMP3 and moving 

bar stimuli (Nikolaou et al., 2012), with slight differences in population centres that are in 

line with variability seen between larvae. DSGC population centres at 24°, 131°, and 256° 

(equivalent to upward, downward and forward motion relative to larva, Figure 4.1A , R2 

=0.98646, total n=10114 voxels from 26 larvae). Relative proportions of each DS population 

matched those seen in previous work, the largest DSGC population was the forward motion 

selective 256°, followed by the downward motion sensitive population at 123° and the 

smallest population at 26° degrees sensitive to upward motion (7946, 138 and 39 voxels 

respectively). Thus, using cytosolic expression of GCaMP5 instead of SyGCaMP3 in RGC 

axons does not significantly alter DSGC populations identified in tectum.  

One striking difference between DSGC populations and DS SIN populations is the relative 

numbers of voxels/neurons in each population. The majority of DSGCs are selective to 

forward motion (270°), whereas this is by far the smallest population in DS SINs. Similarly, 

the two other DS populations selective for upward and downward motion are the least 

abundant populations in DSGCs, whereas, proportionally, these are the most common 

subtypes in DS SINs (Figure 4-1B). However, it is not clear if these relative proportions are a 

true reflection of all DS SINS because, as shown in Chapter 3, the s1156tGal4 line used does 

not label all SIN neurons.  
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Figure 4-1 DSGC populations found using GCaMP5 are very similar to those obtained using 

SyGCaMP3 expression 

A Histogram of DSGC voxel preferred directions, total n = 10114 voxels in 29 larvae. Three 

populations with normal distributions are found, with angle centres of 24°, 131° and 256°.  B 

Comparison of DS SIN and DSGC population sizes. DS populations were normalised to total number 

of DS voxels for RGCs and cells for SINs. 
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Three measures of the tuning of DS populations were compared: DSI values; FWHM 

bandwidths of individual neurons; and FWHM of the population mean normalised 

responses.  Plots of the average responses from neurons in each DS population (Figure 4.2 

A-C DS SIN responses, A’-C’ DSGC responses, mean responses with ±2 S.D. in dashed lines) 

shows that SINs exhibit much narrower DS tuning than DSGC counterparts. These polar plots 

show that DSGCs respond to a greater range of non-preferred directions of stimuli than SINs 

do, indicating that SINs have highly tuned DS properties and generate lower responses to 

non-preferred directions.  

 

 

 

 

 

 

 

 

Figure 4-2 Polar plot of mean population responses of DS SINs and DSGCs to each direction of motion 

presented during experiments 

A-C shows each DS SIN population response plot, A’-C’ shows respective DSGC response plots. 

Dashed lines indicate ± S.D. With directions of preferred motion illustrated relative to fish.  
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DS SINs also have significantly higher DSI values in the two larger populations of upward and 

downward motion sensitive neurons than in DSGCs (Figure 4.3 A, p <0.0001, and p=0.005 

respectively, Unpaired t test with Welch's correction, two tailed). Indeed, the mean DSI 

value for upward motion detecting RGCs was 0.5994 (±0.1099 S.D., n=11 larvae), compared 

to that of SINs at 0.9126 (±0.07592 S.D., n=23) and mean DSI value for the downward 

sensitive population was 0.7207 (± 0.1062 S.D., n=13 larvae) in RGCs and 0.8573 (±0.08842 

S.D., n=82) for SINs. The third, forward motion sensitive population was not significantly 

different in DSI values (mean SINs =0.7782 ± 0.1514 S.D., n= 9, mean RGCs =0.7924, 

±0.05596 S.D., n= 26 larvae, p = 0.7900, Unpaired t test with Welch's correction, two tailed).  

Comparing the FWHM bandwidths of individual neurons, only SINs in the upward motion 

sensitive population differ significantly in FWHM bandwidths when compared to RGC 

counterparts (Figure 4.3 B , p= 0.0011, Unpaired t test with Welch's correction, two tailed). 

Both forward and downward motion sensitive DS SINs and RGCs had very similar mean 

FWHM tuning bandwidths (Figure 4.3 B, p=0.8009, RGC n= 11 larvae, SIN n= 23; p=0.2962, 

RGC n=13 larvae, SIN n = 82 respectively, Unpaired t test with Welch's correction, two 

tailed).  

The third measure used to determine differences in tuning to preferred angles was the 

FWHM of the mean normalised responses of neurons in each DS population (Figure 4.4- A-C, 

FWHM indicated with dashed horizontal lines). This comparison gives an indication of the 

tuning of each DS population as a whole (rather than on the cell-by-cell/fish by fish basis as 

above). DS SINs responding to upward motion, for instance, have a FWHM of mean 

normalized responses of 69°, whereas upward motion responding RGCs have a FWHM of 

Figure 4-3 Comparisons of DSI values and FWHM bandwidths of each DSGC and DS SIN population 

A. DSI values of each DS SIN neuron and mean DSGC DSI value per larva, B. FWHM bandwidths of 

each DS SIN neuron and mean DSGC bandwidth per larva imaged. Error bars indicate mean ± S.D, 

two-tailed Unpaired t test with Welch's correction were used for all comparisons. Significance of 

differences are indicated. DS SINs upward n = 23 cells, downward n = 82 cells, forward n = 9 cells, 

DS RGC upward     n = 11 larvae, downward n = 13 larvae, forward n = 26 larvae. 
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107°, a difference of +38°. The downward selective DS SINs showed much larger differences 

in FWHM, with RGCs having a FWHM of 155° compared to only 76° in the DS SINs, a 

difference of +79°. As expected, the forward motion sensitive DSGCs and SINs had larger 

FWHM values, 125° in SINs and 156° in DSGCs, a difference of 31°.     

The population responses to each direction of motion (i.e. each epoch of the stimulus set) 

were also compared between RGCs and SINs to identify if there were significant differences. 

Responses to the epochs between SINs and RGCs in the upward and downward motion 

sensitive populations were significantly different in amplitude (Figure 4.4 A and B, epochs 

with significant differences indicated, multiple t tests using Holm-Sidak method with 

alpha=5.000%, error bars indicate S.D., upward RGCs n = 74, upward SINs n=23, downward 

RGCs n=195, downward SINs n=83).   

 

 

Figure 4-4 Population mean normalized responses of DSGCs and SINs in each of three DS to each 

direction presented in experiments  

Error bars indicate ±S.D., dashed lines indicate FWHM bandwidth for average response of whole 

population. Significant differences in response sizes indicated by p values above each point as 

determined by multiple t tests with Holm-Sidak correction. 
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Summary of tuning bandwidth differences between DSGCs and DS SINs 

I compiled an overview of the tuning differences between DS SINs and DSGCs using all three 

above measures (Table 4-1). When comparing the differences between each of the 

measures, it appears that the FWHM values generated for each individual cell and voxel 

does not agree with the DSI values nor the population FWHM. Both DSI values and FWHM of 

population mean normalised responses appear to agree on the level of tuning of RGCs and 

SINs, indicating that there is a difference in tuning between RGC inputs and SINs.  

Population: 

Measure: 

1: mean FWHM, ° 2: DSI value 
3: FWHM of mean 

population responses, ° 

SINs RGCs 
Difference 

(RGC - SIN) 
SINs RGCs 

Difference 

(RGC – SIN) 
SINs RGCs 

Difference 

(RGC - SIN) 

Upward 97 80 -17 0.91 0.60 -0.31 69° 107° +38° 

Downward 95 94 -1 0.86 0.72 -0.14 76° 155° +79° 

Forward 84 88 +4 0.78 0.79 +0.01 125° 156° +31° 

Table 4-1 Summary table of differences in measures of tuning to preferred angles between DS SINs 

and RGCs 

Red text indicates differences supporting narrower SIN tuning compared to RGCs. 

 Comparing DS SINs and DS tectal neurons 

Having found that SINs exhibit narrower DS tuning than DSGCs, we then compared SIN 

tuning to DS tectal cells expressing GCaMP5, to determine if SINs also exhibit narrower 

tuning than DS tectal cells. As reported previously in Hunter et al., 2013, plotting preferred 

directions of DS cells onto a histogram produces four coherent populations of DS tectal 

neurons form (Figure 4.5 A), three have preferred directions almost matching those of RGCs 

but the fourth tectal population has a preferred direction centred around 90°, equivalent to 

backward motion relative to the larva (Figure 4-5B). This fourth population is also observed 

when using pan neuronal GCaMP5 expression.  
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Polar plots of DS SIN and tectal cell responses show the population responses to each 

direction presented during DS tuning experiments, (Figure 4.6, DS SINs A-C, DS tectal cells 

A’-C’, with D showing responses of the backward motion selective tectal population not 

present in DS SINs, dashed lines indicate ± S.D.). To quantify the differences in tuning, three 

measures were compared.  

 

Figure 4-5 DS tectal neuron populations identified using GCaMP5 are very similar to those identified 

with bulk calcium indicator labelling 

A. Histogram of DS PVN voxel preferred directions, total n = 126 tectal neurons. Four populations 

with normal distributions are present, with angle centres of 27°, 90°, 136° and 268°, R2 of 0.87161. 

B. Comparison of DS SIN and DS tectal neuron population sizes. DS populations were normalised to 

total number of DS neurons  
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Comparing the DSI values of neurons within each tectal and SIN population, SINs have 

higher DSI values compared to tectal cells (Figure 4.7 A). The mean DSI value for SINs in the 

upward population of SINs is 0.9126 (±0.07592 S.D., n=23) whereas in tectal cells of the 

same population it is 0.8218 (± 0.02616 S.D., n=2). The mean DSI value for SINs in the 

downward motion sensitive population is 0.7207 (± 0.1062 S.D., n=13), slightly higher than 

the only tectal cell within the same population with a DSI value of 0.6958. Due to the 

relative scarcity of tectal cells in the upward and downward motion responsive populations, 

the two largest populations of DS SINs, it is impossible to make statistical comparisons. The 

forward motion responsive SINs (mean DSI 0.7782, ± 0.1514 S.D., n= 9) had broadly similar 

DSI values to that of tectal cells (mean DSI 0.8520, ± 0.06941 S.D., n=47) of the same DS 

population, although again the lack of SINs in this population makes statistical tests difficult.  

Figure 4-6 Polar plot of mean population responses to each direction of motion presented during 

experiments  

A-C shows each DS SIN population response plot, A’-D’ shows respective DS tectal neuron response 

plots. Dashed lines indicate ± S.D. Plot D’ shows mean population responses of backward motion 

responsive PVNs not found in DS SINs 

Figure 4-7 Comparisons of DSI values and FWHM bandwidths of each DS SIN and tectal neuron 

population  

A – DSI values of each SIN neuron and mean tectal neuron DSI per larvae. B – FWHM bandwidths 

of each DS SIN neuron and mean tectal neuron bandwidth per larvae imaged. 
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To compliment DSI as a measure of tuning to preferred angles, the FWHM bandwidths of 

responses from DS SINs were compared to their counterparts DS populations in tectal cells. 

As seen with DSGCs, it appears that tectal cells are more narrowly tuned than SINs in all 

three populations (Figure 4.7 B). This difference does not reflect the differences seen in 

tuning from polar plots of average responses (Figure 4.8 A-C, A’- C’), which indicates that DS 

SINs are more narrowly tuned than DS tectal cells.  

In an attempt to bring a consensus on whether tectal cells are less tuned to preferred 

angles, a third measure to quantify tuning to preferred angles was used, FWHM of the mean 

normalized responses of the population. The FWHM of plots of mean normalized responses 

of cells, or voxels, within each DS population were calculated. Using this measure, tectal 

cells have larger FWHM values than SINs in all three DS populations (Figure 4.8 A-C). Upward 

motion responsive tectal cells had a FWHM of 94°, compared to 69° in the corresponding 

SIN population, a difference of +25°. Downward responsive tectal cells had a FWHM of 121°, 

compared to 76° in SINs, a difference of +45°,  and the forward responsive tectal cells had a 

FWHM of 136° compared to 125° in the SINs, a modest difference of +11°. All three indicate 

that SINs have narrower in response tuning to preferred angle than tectal cells.  

Figure 4-8 Population mean normalized responses of DS SINs and PVNs in each of three DS 

populations to each direction presented in experiments 

A. upward motion sensitive B. emergent DS population in tectal neurons responding to backward 

motion, C. downward motion sensitive, D. forward motion sensitive neurons. Error bars indicate 

±S.D., dashed lines indicate FWHM bandwidth. Significant differences in response sizes indicated 

by p values above each direction as determined by multiple t tests with Holm-Sidak correction 
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Summary of differences between DS SINs and DS tectal neurons 

Comparing all three measures used to quantify the level of tuning the SINs and tectal cells 

had to their preferred angles, the DSI values and the differences between FWHM of the 

mean population responses both indicate that DS SINs are more tuned to preferred 

direction than DS tectal cells, with the FWHM bandwidths of individual neurons 

contradicting this (Table 4-2).  

 Effect of antagonising GABA-A Receptor mediated inhibition on SIN tuning 
 

To investigate whether the narrow tuning of SIN DS responses is shaped by inhibition, 

GABA-A receptors were antagonised in the optic tectum by injection of gabazine into the 

neuropil, and differences in SIN DS properties were measured. Because of the relative 

scarcity of labelled SINs in the s1156tGal4 line responses from the same SINs could be 

compared pre- and post-drug injection with confidence.  

To ensure that the injection settings used to disperse drug into the tectum were sufficient to 

diffuse to the superficial layers of the tectal neuropil and act on SINs, APV and NBQX was 

injected into the tectum to block excitatory signalling (NMDA and AMPA receptor 

antagonists). Following injections SINs were not responsive to visual stimuli. 

Danieau was injected into the tectal neuropil to determine what effects the injection 

procedure itself had on DS SIN tuning properties. Preferred direction (p =0.1465, Wilcoxon 

matched-pairs signed rank test, two tailed, n=13), bandwidths (p=0.2087, Wilcoxon 

matched-pairs signed rank test, two tailed, n=13) and mean normalized integral responses 

(p>0.05 for all points, multiple t tests using Holm-Sidak method with alpha=5.000%, n=13) 

Population 

Measure: 

1: mean FWHM, ° 2: DSI value 
3: FWHM of mean of 

normalized responses, ° 

SINs 
tectal 

cells 

Difference 

(tectal - 

SIN) 

SINs 
tectal 

cells 

Difference 

(tectal - 

SIN) 

SINs 
tectal 

cells 

Difference 

(tectal - 

SIN) 

Upward 97 70 -27 0.91 0.82 -0.09 69° 94° +25° 

Downward 95 78 -17 0.86 0.69 -0.17 76° 121° +45° 

Forward 84 72 -12 0.78 0.85 +0.07 125° 136° +11° 

Table 4-2 Summary table of differences in measures of tuning to preferred angles between DS SINs 

and tectal cells 

Red text indicates differences supporting narrower SIN tuning compared to DSGCs 
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are not significantly altered by the process of injection into the tectal neuropil (Figure 4.9 

A,B,D). However, there was a significant increase in DSI values between pre and post 

injection conditions (Figure 4.9 C, p=0.015, Wilcoxon matched-pairs signed rank test, n=13). 

There was also one case in which a SIN ‘flipped’ its preferred direction by approximately 

180°, it is not clear why this may be the case, it is possible that in this one example a SIN in 

very close proximity was mistaken for the original neuron post injection.  

Because SINs were matched pre- and post-injection, the integral responses to different 

directions of motion could be compared directly to determine if danieau injection altered 

the integral response amplitude. Because the downward direction selective population of 

SINs is the most abundant, only the integral responses from neurons in this population were 

compared. The mean integral responses pre and post injection were not altered by injection 

of danieau (Figure 4.9 E, downward direction selective SINs, for all directions p>0.05, 

multiple t tests using Holm-Sidak method with alpha=5.000%, n=7, population mean integral 

responses in bold black and bold red, individual neuronal integral responses in lighter 

shades of grey and red). These data suggest that, for the most part, the injection procedure 

itself had no effect on SIN tuning or response amplitude.  
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Having identified the unwanted effects of microinjection of volumes into the tectal neuropil, 

the GABA-A receptor antagonist Gabazine was injected into the tectum and effects on DS 

SIN tuning properties were recorded. Perturbing GABA-A receptor mediated inhibition did 

not affect the properties of DS SINs significantly. There was slight variation in preferred 

angles, though these differences are not significant (Figure 4.10 A, p= 0.7353, Wilcoxon 

matched-pairs signed rank test, two tailed, n=39), as with control injections, there were four 

cases of ‘flipped’ preferred directions in SINs after drug injection.  

Differences in bandwidth of DS tuning were also not significant (Figure 4.10 B, p = 0.2155, 

Wilcoxon matched-pairs signed rank test, two tailed, n=39), as well any changes in DSI 

values (Figure 4-10 C, p = 0.2357, Wilcoxon matched-pairs signed rank test, two tailed, 

n=39). Interestingly, there was no significant difference in DSI values after gabazine 

injection, which appears to contradict the increase of DSI values seen after control 

injections.  

As expected, the majority of SINs observed were of the two more abundant DS populations, 

responsive to upward and downward motion. Thus, the mean normalized responses of 

neurons in these populations were compared to determine if the tuning of responses was 

altered. No significant changes in the mean normalized response plots of either population 

were found (all p >0.05, multiple t tests using Holm-Sidak method with alpha=5.000%, n=6 

for upward population, n=39 for downward population). The raw integral response plots of 

neurons pre and post drug injection were compared to determine if more subtle changes to 

the amplitude of SIN responses occurred after gabazine injection. There were no significant 

differences in SIN responses in the largest population represented the downward DS 

population, (Figure 4-10 F, p > 0.05, multiple t tests using Holm-Sidak method with 

alpha=5.000%, n=13), nor the upward DS population (Figure 4.10 E, p > 0.05, multiple t tests 

using Holm-Sidak method with alpha=5.000%, n=39). 
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 Discussion 

 

Functional imaging of RGCs and tectal neurons expressing GCaMP5 reproduces DS 

populations seen in Nikolaou et al., (2012) and Hunter et al., (2013), both studies using 

different calcium indicators. DS SINs labelled by the s1156tGal4 line have preferred angles 

almost matching that of DSGCs, indicating that DS properties of SINs are inherited from RGC 

inputs. When compared to tectal cells expressing GCaMP, SINs also have very similar DS 

populations, with the sole exception of the 90° backward motion selective tectal population, 

a DS emergent population in the tectum. SINs seem to have opposing proportions of 

neurons in each DS population compared to tectal cells and RGCs, having very few forward 

motion selective neurons, and larger numbers of upward and downward selective neurons. 

It is difficult to say whether this difference in DS proportions is the actual representation of 

directions of DS SINs, or whether this is a consequence of the sparse labelling in the 

s1156tGal4 line used to characterise these neurons. The pan-neuronal GCaMP5 line, 

HuCGCaMP5, could have been used to determine if this proportion was due to the selective 

labelling in the s1156tGal4 line, however, it was found that SINs are not labelled in this line 

(data not shown). In HuCGCaMP5 larvae, obvious cell-sized areas without GCaMP5 

expression are present in the superficial tectum, where SINs are normally found. Thus to 

determine if this SIN data is representative of SINs as a whole would either involve bulk 

labelling of SINs using Oregon-Green BAPTA-AM, or the use of another transgenic line 

known to label SINs, such as Oh:GCaMP6s (Preuss et al., 2014). 

The comparison of DS SINs and DSGCs responses indicates that DS SINs do exhibit narrower 

tuning of responses and that differences were not due to the type of GECI used to probe 

these responses, nor any differences in experimental protocol. Similarly, DS tectal cells are 

less tuned to preferred direction than DS SINs. This indicates that if SINs do indeed receive 

their input from RGCs then they narrow their tuning relative to their inputs from the retina.  

Two different mechanisms were proposed for this narrow tuning, either SINs receive 

inhibitory inputs tuned to non-preferred angles, thus reducing or preventing responses to 

non-preferred direction excitatory inputs, or that DS SINs have an intrinsically lowered 

excitability, thus only responding to higher levels of excitatory inputs i.e. the preferred 

direction of motion. Determination of excitability of SINs would require the use of 

electrophysiological recording in vivo whilst presenting stimuli, a technique not readily 

available in the lab. Thus, efforts were concentrated on using pharmacological manipulation 

to examine if inhibition causes narrowing of DS SIN tuning compared to putative inputs.  
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The primary source of this inhibition could have been mediated by ionotropic GABA-A 

receptors, so this receptor was pharmacologically perturbed whilst SIN DS tuning properties 

were probed. Injections of Gabazine, a GABA-A receptor antagonist, into larvae expressing 

GCaMP5 in SINs did not alter any of the properties of DS tuning of these SINs. The exception 

was four SINs whose preferred angle appeared to ‘flip’ approximately 180°. Control 

experiments using danieau injections, however, also generated a ‘flipping’ of DS preferred 

angles in one cell. Thus, it is possible that this ‘flipping’ is caused by the injection of volumes 

of liquid into the tectum.  

Whilst it appears that these results support the theory that the narrower DS tuning of SINs is 

not mediated via inhibition from other tectal neurons, there are several problems with this 

experiment. For instance, the use of Gabazine to perturb GABA-A receptor mediated 

inhibition. A particular problem with blocking of GABA-A signalling is that it is known to 

induce seizures in neural tissues, producing large waves of excitation. In an attempt to block 

GABA-A receptor activity whilst maintaining the ability to measure changes to neuronal 

responses with GECIs preliminary experiments were carried out where concentrations of 

Gabazine were titrated to the point at seizures were infrequent in larvae. Consequently, it 

was found that a gabazine concentration of 10µM produced little to no seizure activity in 

larval tecta. In very few larvae this concentration produced seizures in the tectum when 

injected, which I assumed was an indication that the concentration of drug was still 

sufficient to prevent GABA-A mediated inhibition, and that these larvae were slightly more 

prone to seizures than others were. Several other studies have used this concentration to 

mediate GABA-A receptor activity blocking in cell culture (Soiza-Reilly et al., 2013). There 

was no way of quantifying if this concentration of drug was sufficient to prevent GABA-A 

mediated inhibition in whole animal injections, and several other studies injected Gabazine 

into tissues at much higher concentrations (Auferkorte et al., 2012; Tabor et al., 2008). 

Without having the ability to prevent GABAergic signalling without inducing seizures, that 

the concentration of drug used was insufficient cannot be ruled out.  

Ideally, the efficacy of the Gabazine concentration would be tested in a few tectal neurons 

by electrophysiological recording of inhibitory inputs onto neurons. A distinct absence of 

inhibition after injection would indicate the concentration was appropriate. An alternative 

control experiment to indicate if the gabazine concentration was sufficient, would be to 

observe the effects of Gabazine on a direction or orientation selective neuron in the tectum 

whose response properties were known to be in part produced by GABA-A mediated 

inhibition (Grama and Engert, 2012). Several other studies utilised another GABA-A receptor 

antagonist, Bicuculline, at varying concentrations (Del Bene et al., 2010; Ramdya and Engert, 
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2008; Sajovic and Levinthal, 1983), this drug however has reported non GABA receptor 

activity and for this reason was not used in this experiment.  

It is possible that the SINs create an ‘iceberg’ effect with their responses to moving stimuli at 

non-preferred directions being insufficient to bring SINs to their firing threshold, once above 

this threshold of activation SINs are activated strongly. This would also not have been 

reflected in changes in integral responses of SINs after drug injection. Further, the 

differences in DSI values between SINs and DSGCs and tectal cells may be a result of this 

intrinsically higher required level of activation. Ideally, recording responses from SINs using 

electrophysiology whilst presenting visual stimuli would allow the probing of SIN excitability. 

Similarly, this would indicate if SINs receive inhibitory inputs. The potassium ion 

conductance of the SINs could be manipulated to alter resting membrane potential, 

changing the intrinsic excitability of the neuron, thus if SIN tuning changed after 

manipulation this would indicate this narrow tuning could be via an intrinsic mechanism 

rather than derived from inputs.  
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5 THE ROLE OF SIN MEDIATED INHIBITION IN TECTAL CIRCUITRY 

 Introduction 

 

Results described in chapters three and four demonstrate several things, firstly that the 

response the s1156tGal4 line labels a DS SIN subpopulation. These DS SINs have preferred 

angles almost matching those seen in RGC inputs to the tectum and exhibit band pass 

spatial frequency tuning to moving stimuli. Secondly, in chapter Four it was demonstrated 

that SINs are more narrowly tuned to preferred directions than DSGC inputs and DS tectal 

neurons, and that this sharpness of DS SIN tuning is not dependent on GABA-A receptor 

mediated inhibition.  

A key question that remains is what the role of direction selective inhibition has in the tectal 

circuit? Whereas most neurons in the tectum have somata located in the periventricular 

layer (PVL), medially in the larval brain, SINs have very superficial and laterally located 

somas, directly above the tectal neuropil, and DS SIN populations almost mirror DSGC 

populations. In the tectum, information flow occurs from the superficial to the deeper layers 

of the neuropil, with lateral information processing  (Kinoshita et al., 2002). I hypothesised 

that SINs were superficially localised in order to carry out lateral inhibition to shape the 

DSGC outputs in the tectal neuropil.  

In this chapter, I tested the hypothesis that inhibition shapes the tuning of DSGCs, tectal 

neurons or both. In order to address this question DS tuning properties in RGCs and tectal 

neurons were measured before and after pharmacological and genetic perturbation of 

inhibition in the tectum. Inhibition was perturbed by injection of pharmacological blockers 

of GABA receptor function into larvae expressing GCaMP5 whilst RGC DS outputs were 

measured, comparing DS populations, bandwidths, and DSI values before and after addition 

of drug.  

To probe the role of SIN mediated inhibition within the tectal circuitry, GABA inhibition was 

perturbed in two ways. The first was blanket perturbation of GABA mediated inhibition from 

all neurons in the tectum through the injection of drugs that modify GABA receptor function 

the neuropil. These included gabazine (GABA-A receptor antagonist), Baclofen (GABA-B 

receptor antagonist) and CGP-54626 (GABA-B receptor agonist). By injecting these drugs 

directly into the tectum of larvae with pan neuronal expression of GCaMP5 (HuC:GCaMP5) 

and observing the changes to DS tuning, the effect of inhibition could be analysed.  
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As blanket perturbation of inhibition does not provide information on the specific role SIN 

derived inhibition provides in the circuit a more selective method for perturbing inhibition 

was used. SINs were ablated in the tectum using the genetically encoded KillerRed protein 

(Bulina et al., 2006; Teh et al., 2010). Expressing the KillerRed fluorophore under the control 

of the s1156tGal4 promoter line in larvae expressing pan-neuronal GCaMP5. This pan 

neuronal labelling with GCaMP5 allowed us to measure the changes to tectal activity before 

and after ablation of DS SINs, providing a more accurate representation of the role DS SINs 

have in processing in the tectal circuitry. Whilst the numbers of SINs labelled with s156tGal4 

is not the complete population of SINs in the tectum, it labels a subpopulation of DS SINs, 

with the two largest populations responding to upward and downward motion.  

Results suggest that SIN-mediated inhibition does not modulate tuning of DSGC in the tectal 

neuropil, and that the DS response properties of RGCs in tectal neuropil are a result of 

processing undergone in the retina. Similarly, it was also found that inhibition does not have 

a role in the generation of DS tectal neuron responses, as both pharmacological and genetic 

perturbation of inhibition did not significantly alter DS tectal neuron populations and 

response properties.    
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 Results 

 Determining the effect of inhibition on DSGC tuning 

 

The superficial location of SINs indicates that they could be providing pre-synaptic inhibition 

to RGC axons. To determine if presynaptic inhibition is modulating DSGC outputs in the 

tectal neuropil, GABA receptor modulating drugs were injected into 

Isl2b:Gal4;UAS:SyGCaMP3 expressing larval zebrafish and differences in DS responses pre- 

and post-drug injections were compared. Several different drugs were used to modify 

signalling in the tectal neuropil; Gabazine a GABA-A receptor antagonist, CGP-54626 a 

GABA-B receptor antagonist, baclofen a GABA-B receptor agonist, APV/NBQX a drug 

combination inhibiting in AMPA/NMDA receptor activity, and a control danieau injection.  

GABA-A receptor mediated inhibition is ionotropic, whereas GABA-B receptors are 

metabotropic, it was predicted that perturbation of GABA-B receptor mediated inhibition 

would affect RGC response properties if pre-synaptic modulation is involved shaping of their 

responses in the neuropil, as these are the receptors that are usually found in pre-synaptic 

terminals.  

Danieau injections were carried out as a control to determine the effect injection into the 

tectal neuropil had on response properties. The mean number of visually responsive voxels 

per larva did not change significantly after injection (Figure 5.1 A), however the standard 

deviations indicate that there is a great variability in voxel numbers between larvae. The 

slopes of the cumulative frequency plots indicate that there is little difference in DS voxel 

preferred directions (P.D.s) before and after injection. Voxel bandwidths were used as a 

measure of how tuned DS voxels were to preferred angles, and mean DS voxel bandwidths 

were unchanged after danieau injection (Figure 5.1 B). Comparing DSI values for voxels in 

the three DS populations, there is a decrease in upward responsive voxel DSIs, and slight 

increase in forward responsive DSI values (Figure 5.1 C). The mean normalised responses of 

DS voxels in each population before and after drug injection to identify any changes in 

response properties. Normalised responses to the 12 directions of motion presented did not 

change after drug injection (Figures 5.1 D and E).  These results demonstrate that injection 

of danieau injection alone does not significantly alter response properties of DS voxels, 

beyond the variability in DS voxels already present between larvae.  
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Figure 5-1 Responses of DSGC axons after injection of danieau into the tectum 

A. Cumulative frequency histogram showing DSGC voxel preferred directions, pre injection in 

black, post injection in red, error bars indicate ±S.D. B. DSGC voxel bandwidths before and after 

danieau injection, bars indicate mean for each population and ± S.D. C. DSGC voxel DSI values, 

bars indicate mean and ±S.D. D. Plot of upward motion responsive DSGC mean normalized 

population responses before and after injection, error bars indicate ±S.E.M. E. Plot of downward 

motion responsive DSGC mean normalized population responses before and after injection, error 

bars indicate ±S.E.M. F. Plot of forward motion responsive DSGC mean normalized population 

responses before and after injection, error bars indicate ±S.E.M 
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As a further control APV/NBQX was injected, this combination of drugs blocks both NMDA 

and AMPA receptor activity, thus blocking the excitation of neurons in the tectum. Similar to 

danieau control injections no obvious changes to voxel preferred directions and numbers 

(Figure 5.2 A), as well as bandwidths (Figure 5.2 B), DSI values (Figure 5.2 C) and the mean 

normalized responses were found within each DS population (Figures 5.2 D-F). This 

preliminary control result is an interesting, as it is an indirect indication that GABA inhibition 

provided by the tectum is not necessary for producing DSGC voxel response properties, as 

any inhibition provided by the tectum is derived from excitatory RGC inputs into the tectal 

circuitry, which the APV/NBQX drug combination inhibits. 

Figure 5-2 Responses of DSGC axons after injection of APV/NBQX  into the tectum 

A. Cumulative frequency histogram showing DSGC voxel preferred directions, pre injection in black, 

post injection in red, error bars indicate ±S.D. B. DSGC voxel bandwidths before and after danieau 

injection, bars indicate mean for each population and ± S.D. C. DSGC voxel DSI values, bars indicate 

mean and ±S.D. D. plot of upward motion responsive DSGC mean normalized population responses 

before and after injection, error bars indicate ±S.E.M. E. plot of downward motion responsive DSGC 

mean normalized population responses before and after injection, error bars indicate ±S.E.M. F. 

plot of forward motion responsive DSGC mean normalized population responses before and after 

injection, error bars indicate ±S.E.M. 
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Having found that both danieau and APV/NBQX injections didn’t produce changes in DSGC 

properties Gabazine, a GABA-A receptor antagonist, was injected into the neuropil to 

identify the effects of GABA-A receptor mediated inhibition on DSGC axon responses. From 

the cumulative frequency plot of voxel preferred directions (Figure 5.3 A), there is a shift in 

the preferred directions of responsive voxels after gabazine injection, however there is also 

a large overlap of pre and post drug injection variability as indicated by the S.D., showing 

great variability in voxel numbers and preferred directions between larvae. As a result, it is 

not possible to rule out variation between larvae as a cause of this shift in preferred 

directions. The bandwidths of voxels in each DS population are not altered significantly 

(Figure 5.3 B), excluding the upward DS population voxels after injection of Gabazine, this is 

likely to be a result of the increased number of voxels with this preferred direction after 

injection of drug. This difference in upward responsive DS voxels post injection is also seen 

in the mean voxel DSI values (Figure 5.3 C), but again can be a result of increased voxel 

numbers. The normalized integral responses of voxels pre and post injection are also 

unchanged (Figure 5.3 D-F), so blocking GABA-A mediated inhibition has no effect on the 

normalized responses of DSGCs.  

CGP45626, a GABA-B receptor antagonist, was also injected into the tectum. It was 

predicted that perturbing GABA-B receptor mediated inhibition should prevent presynaptic 

inhibition. When comparing changes in DSGC axonal responses in the absence of GABA-B 

receptor mediated inhibition, mean DS voxel preferred directions, and numbers, remain 

very similar after injection of drug (Figure 5.4 A), with changes well within the margin of 

error (error bars indicating S.D.). Not only this, but the mean voxel bandwidths (Figure 5.4 B) 

and DSI values (Figure 5.4 C) are unchanged. The normalised response properties of DS 

voxels within each population also do not change significantly after drug injection (Figures 

5.4 D-F), indicating that these curves are not shaped by presynaptic inhibition. These results 

indicate that GABA-B receptor mediated presynaptic inhibition is not involves in shaping of 

DSGC responses in the tectal neuropil. 
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Figure 5-3 Responses of DSGC axons after injection of Gabazine into the tectum:  

A. Cumulative frequency histogram showing DSGC voxel preferred directions, pre injection in 

black, post injection in red, error bars indicate ±S.D. B. DSGC voxel bandwidths before and after 

danieau injection, bars indicate mean for each population and ± S.D. C. DSGC voxel DSI values, 

bars indicate mean and ±S.D. D. Plot of upward motion responsive DSGC mean normalized 

population responses before and after injection, error bars indicate ±S.E.M. E. Plot of downward 

motion responsive DSGC mean normalized population responses before and after injection, error 

bars indicate ±S.E.M. F. Plot of forward motion responsive DSGC mean normalized population 

responses before and after injection, error bars indicate ±S.E.M. 
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Figure 5-4  Responses of DSGC axons after injection of CGP54626 into the tectum 

 A. Cumulative frequency histogram showing DSGC voxel preferred directions, pre injection in 

black, post injection in red, error bars indicate ±S.D. B. DSGC voxel bandwidths before and after 

danieau injection, bars indicate mean for each population and ± S.D. C. DSGC voxel DSI values, bars 

indicate mean and ±S.D. D. Plot of upward motion responsive DSGC mean normalized population 

responses before and after injection, error bars indicate ±S.E.M. E. Plot of downward motion 

responsive DSGC mean normalized population responses before and after injection, error bars 

indicate ±S.E.M. F. Plot of forward motion responsive DSGC mean normalized population responses 

before and after injection, error bars indicate ±S.E.M. 

Baclofen is a GABA-B receptor agonist, thus it was predicted that if GABA mediated 

presynaptic modulation of DSGC occurs in the tectal neuropil, injection of this drug would 

potentiate its effects on DSGC axonal outputs. Comparing the cumulative frequency 

histograms before and after injection, the responding DS voxel numbers increase after 

injection of drug, but this is accompanied by much larger error bars than seen before 

injection. This indicates that there is a lot of variability between larvae after injection. As 

mentioned previously, this is probably linked to the shortfalls of the drug injection protocol. 

Comparing pre and post drug DS voxel bandwidths, upward and downward motion sensitive 

voxels have different mean voxel bandwidths after injection. Again, this is probably linked to 
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differences in sampled voxels after injection of drug. This alteration in the mean DSI values 

of DSGC voxels also occurs after drug injection. The mean normalized responses of DS voxels 

in each population also do not change significantly after drug injection. The potentiation of 

GABA-B receptor signalling may introduce differences to DSGC voxel properties; however, 

the drug injection protocol may also provide explanations for the differences seen post 

injection.  

 

 

Figure 5-5 Responses of DSGC axons after injection of Baclofen into the tectum  

A. Cumulative frequency histogram showing DSGC voxel preferred directions, pre injection in 

black, post injection in red, error bars indicate ±S.D. B. DSGC voxel bandwidths before and after 

danieau injection, bars indicate mean for each population and ± S.D. C. DSGC voxel DSI values, bars 

indicate mean and ±S.D. D. Plot of upward motion responsive DSGC mean normalized population 

responses before and after injection, error bars indicate ±S.E.M. E. Plot of downward motion 

responsive DSGC mean normalized population responses before and after injection, error bars 

indicate ±S.E.M. F. Plot of forward motion responsive DSGC mean normalized population 

responses before and after injection, error bars indicate ±S.E.M. 
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To determine the variability of voxel preferred directions between larvae, the mean pre-

drug DS voxel preferred directions per fish for each pre-drug condition were plotted on 

cumulative frequency histograms. Histogram bins were set to 10°. The cumulative histogram 

(Figure 5.6) indicates that there is great variability in voxel numbers between fish in each 

pre-drug group, indicated by the large sizes of error bars, and their overlaps between drug 

conditions (error bars indicate ±S.D.). This variability between numbers of DS voxels 

between control fish means comparing differences in voxel numbers pre and post drug 

injection, and sizes of relative DSGC populations impossible to compare. It is likely that this 

variability is a result of experimental procedures. Possible factors introducing this variability 

includes the fact that only one plane through the tectal neuropil was imaged per fish, due to 

the short time scale available before drug activity was sufficient to induce and effect. Not 

only this, but slight differences in the depth through the neuropil, and slight alterations in 

the angle of mounted larvae, or levels of GCaMP expression could produce differences in 

levels of representation of each DSGC population, or the overall responding voxel number.  

 

 

  

Figure 5-6 DSGC voxel numbers and preferred directions are variable between control larvae  

Bars indicate ±S.D, data taken from control experiments before drug injection. 
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 Role of inhibition on shaping DS tectal neuron populations: 

 

Having determined that inhibition does not play a role in pre-synaptically shaping DSGC 

outputs in the neuropil, I then explored a role for inhibition in the shaping of DS tectal 

neuron responses. To test this the differences in DS tectal neuron responses before and 

after injection of GABA-receptor modulating drugs were compared in HuCGCaMP5 

expressing larvae.  

APV/NBQX is a drug combination that prevents NMDA/AMPA receptor activity, and should 

prevent excitation of neurons in the periventricular layer on injection of these drugs DS 

activity in the tectal neurons should cease. However, after injection, tectal cell voxels are 

still visually responsive (Figure 5.7 A). By plotting the average cumulative histograms of 

voxel preferred directions per larva, differences can be identified. The loss of voxels 

responding to upward motion and the slight decrease in overall responding voxel numbers 

post injection, but there were no significant differences between pre and post drug injection 

conditions (Figure 5.7A, multiple t tests with Holm-Sidak correction, p >0.05 all points, total 

pre n = 271, post n =236 voxels, n = 7 larvae) indicates that the drug was still slightly active, 

pointing to the explanation that the drug was degraded in the neuropil before the post-drug 

experiment could be completed, or that concentrations of the drug were insufficient. DSI 

values were unchanged for the largest population, the forward motion direction selective 

voxels, but significantly higher after injection in the smaller backward motion population 

(Figure 5.7 B, Mann Whitney U test, upward population n = 12, backward population pre n 

=22, post n = 58, p <0.0001, forward population pre n = 76, post n = 81, p = 0.0750, bars 

indicate mean ±S.D.), bandwidths did not change for the upward population, but lowered 

significantly in the forward population, (Figure 5.7 C, Mann Whitney U test, upward 

population n = 12, backward population pre n =22, post n = 58, p =0.410, forward 

population pre n = 76, post n = 81, p < 0.0001, bars indicate mean ±S.D).  

Comparing the pre and post drug injection normalized responses, there are no distinct 

changes to response size nor selectivity (Figures 5.8 A-C, error bars show ±S.E.M.) indicating 

that any responding voxels after injection of drug remained DS.  
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Figure 5-7 Responses of DS tectal neuron voxels after injection of APV/NBQX 

A. Cumulative frequency histogram of average DS tectal cell voxel preferred directions per larva, 

pre injection in black, post injection in red, error bars indicate ±S.D., B. DS tectal cell voxel DSI 

values before and after danieau injection, bars indicate mean for each population ± S.D., 

comparisons using Mann Whitney U test, with significance indicated C. DS tectal cell voxel 

bandwidths before and after APV/NBQX injection, bars indicate mean for each population ± S.D, 

comparisons using Mann Whitney U test, with significance indicated. 
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To perturb GABA-A receptor mediated inhibition Gabazine was injected into the tectum. 

Comparing pre and post injection DS tectal cell voxels preferred directions (Figure 5.9 A, 

multiple t tests with Holm-Sidak correction, all points p >0.05, total pre-injection n = 599 

voxels, post injection n = 405 voxels, n = 13 larvae) there is an overall reduction in 

responding voxels, however, there is also variability in voxel numbers between larvae, 

indicated by the large S.D. .  DS voxel bandwidths were not significantly different, except 

between pre and post drug injection in the forward motion sensitive population (Figure 

5.9B, Mann-Whitney U test, upward responding population pre n = 8 voxels, post n = 12 

voxels, p = 0.1147, downward responding population pre n =115 voxels, post n = 43 voxels p 

= 0.5436, forward responding population pre n = 243 voxels, post n = 173 voxels, p = 

0.0003). This significant difference is likely to due to the larger number of voxels skewing 

statistical tests, as the mean bandwidths are very similar (mean bandwidth pre injection = 

80.61°, post injection = 83.68°). DSI was significantly different after drug injection in the 

downward and forward motion sensitive populations (Figure 5.9 C, Mann-Whitney U test, 

upward responding population pre n = 8 voxels, post n = 12 voxels, p = 0.6716, downward 

responding population pre n = 115 voxels, post n = 43 voxels p = 0.0013, forward responding 

population pre n = 243 voxels, post n = 173 voxels, p = 0.0028), but again for forward motion 

sensitive voxels this significance is likely due to the large numbers.  

Figure 5-8 DS tectal neuron voxel responses after APV/NBQX injections 

Plot of DS tectal cell mean normalized population responses before and after injection, A. Upward 

motion responsive B. Backward motion responsive C. Downward motion responsive, all error bars 

indicate ±S.E.M.  
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Comparing population mean responses, there is no statistical difference in response sizes at 

each direction of motion presented (Figures 5.10 A-D, multiple t tests with Holm-Sidak 

correction, p > 0.05 for all points, error bars indicate ± S.E.M.). These results show that 

perturbing GABA-A receptor mediated inhibition produces no dramatic effects on DS tectal 

neuron responses, indicating that DS properties are largely inherited directly from RGC 

inputs. Interestingly, the backward motion sensitive population is still present after drug 

injection, indicating that this emergent DS population may not be reliant upon inhibition. 

However, these findings should be treated with caution, as the results obtained with 

APV/NBQX did not give the expected results suggesting that drug injections are not always 

reliable. 

 

 

  

Figure 5-9 Responses of DS tectal cell voxels after injection of Gabazine  

A. Cumulative frequency histogram showing DS tectal cell voxel preferred directions, pre injection 

in black, post injection in red, error bars indicate ±S.D. B. DS tectal cell voxel bandwidths before 

and after danieau injection, bars indicate mean for each population and ± S.D. C. DS tectal cell 

voxel DSI values, bars indicate mean and ±S.D. 
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Baclofen is a GABA-B receptor agonist, injection of this drug into the tectum caused striking 

differences in DS voxel numbers, with a reduction in average number of direction selective 

voxels after injection (Figure 5.11 A, total pre injection voxel n = 653, post injection voxel n 

=228 , all points p >0.05, multiple t tests with Holm-Sidak correction, n = 9 larvae, error bars 

indicate ±S.D.). DS voxel DSI values remained unchanged in the two smaller tectal neuron 

populations (Figure 5.11 B, upward pre injection n =15  voxels, post injection n =6 voxels, p = 

0.34, and downward pre injection n = 7 voxels, post injection n = 3 voxels, p = 0.3833, two 

tailed Mann-Whitney U test), but changed significantly in the two larger DS populations 

(Figure 5.11 B, backward pre injection n = 125 voxels, post injection n = 97 voxels, p = 0.0007 

and forward pre injection n = 221 voxels, post injection n = 29 voxels, p = 0.0004, two tailed 

Mann-Whitney U). Whilst the means for these two populations are different, comparing 

these values per larva would be more appropriate to ensure statistical significance is real. 

Bandwidths remained the same after drug injection in all populations except the downward 

motion sensitive DS tectal neuron voxels (Figure 5.11 C,  upward pre injection n =15 voxels, 

post injection n =6 voxels, p = 0.7883, and downward pre injection n = 7 voxels, post 

injection n = 3 voxels, p = 0.0.0167, backward pre injection n = 125   voxels, post injection n 

= 97 voxels, p = 0.1412 and forward pre injection n = 221 voxels, post injection n = 29 voxels, 

p = 0.3346, two tailed Mann-Whitney U test).  

 

Figure 5-10 DS tectal voxel responses after Gabazine injection 

Plot of DS tectal cell voxel mean normalized population responses before and after injection A. 

Upward motion responsive B. Backward motion responsive C. Downward motion responsive D. 

Forward motion responsive, all error bars indicate ±S.E.M 
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Comparing mean normalized population responses, DS tectal cell voxel responses remained 

largely similar, however, significant differences after drug injection were found for some 

directions of motion (Figures 5.12 A-D, p <0.05 indicated by asterisks, multiple t tests with 

Holm-Sidak correction, error bars indicate ±SEM).  

 

 

 

 

 

 

 

 

 

Figure 5-11 Responses of DS tectal voxels after injection of Baclofen 

A. Cumulative frequency histogram showing DS tectal cell voxel preferred directions, pre 

injection in black, post injection in red, error bars indicate ±S.D. B. DS tectal cell voxel 

bandwidths before and after danieau injection, bars indicate mean for each population and ± 

S.D. C. DS tectal cell voxel DSI values, bars indicate mean and ±S.D 
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CGP54626 is a GABA-A receptor agonist, when injected it produced a reduction in DS 

responsive voxels (Figure 5.13 A, total pre injection voxels n = 296, post injection voxel n = 

90, all points p >0.05, multiple t tests with Holm-Sidak correction, n = 9 larvae, error bars 

indicate ±S.D.). Bandwidths were not significantly altered after injection except for 

backward responsive voxels (Figure 5.13 B upward pre injection n = 2 voxels, post injection n 

= 0 voxels, downward pre injection n = 3 voxels, post injection n = 1 voxels, backward pre 

injection n = 52 voxels, post injection n = 14 voxels, p = 0.0014 and forward pre injection n = 

83 voxels, post injection n = 13 voxels, p = 0.7604, two tailed Mann-Whitney U test). DSI 

values were also not significantly different after injection of CGP54626 (Figure 5.13 C, 

upward pre injection n = 2 voxels, post injection n = 0 voxels, downward pre injection n = 3 

voxels, post injection n = 1 voxels, backward pre injection n = 52 voxels, post injection n = 14 

voxels, p = 0.1108 and forward pre injection n = 83 voxels, post injection n = 13 voxels, p = 

0.0831, two tailed Mann-Whitney U test).  

 

 

Figure 5-12 DS tectal voxel responses after Baclofen injection 

Plot of DS tectal cell voxel mean normalized population responses before and after injection, A. 

Upward motion responsive B. Backward motion responsive C. Downward motion responsive D. 

Forward motion responsive, all error bars indicate ±S.E.M 
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Figure 5-13 Responses of DS tectal voxels after injection of CGP54626 

A. Cumulative frequency histogram showing DS tectal cell voxel preferred directions, pre 

injection in black, post injection in red, error bars indicate ±S.D. B. DS tectal cell voxel 

bandwidths before and after danieau injection, bars indicate mean for each population and ± 

S.D. C. DS tectal cell voxel DSI values, bars indicate mean and ±S.D.  

Figure 5-14 DS tectal neuron voxel responses after CGP54626 injection 

Plot of DS tectal cell mean normalized population responses before and after injection, A. 

Upward motion responsive B. Backward motion responsive C. Downward motion responsive D. 

Forward motion responsive, all error bars indicate ±S.E.M 
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Comparing the DS voxel mean normalized responses for each DS population, there are no 

striking differences (Figures 5.14 A-D, error bars indicate ± SEM), indicating that the drug has 

no effect on the response properties of the DS neurons.  

To demonstrate the variability in DS tectal cell populations between larvae, the mean 

cumulative frequency histograms for each pre drug injection condition were compared. 

These plots show that there is a great variability in numbers of responding DS voxels 

between larvae, and some variation in the preferred directions of these voxels (Figure 5.15, 

error bars indicate ±S.D.).  

 

 

 

 

 

 

 

 

Figure 5-13 Larvae show great variability in numbers of DS tectal neuron voxels, and their preferred 

direction of motion 

Mean cumulative frequency histograms per larvae for control larvae in each drug condition, error 

bars indicate ± S.D.  
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 Genetically defined DS SIN ablation in the tectum 

 

As a more specific experiment to determine the effects of DS SIN mediated inhibition in the 

tectal circuit, KillerRed was expressed under the control of the s1156tGal4 line in a 

HuCGCaMP5 background. This allowed the selective and temporally controlled ablation of 

SINs, and hence the removal of their activity from the tectal circuit. In order to determine if 

the expression of KillerRed in these neurons was not itself deleterious to the normal 

functioning of the tectal circuit, control experiments were carried out in which the triple 

transgenic larvae (s1156t:Gal4; UAS:KillerRed; HuC:GCaMP5) were not exposed to wide field 

fluorescence after initial direction selective experiments, and were imaged again at 7dpf. As 

there was not a limit on time for these experiments, it was possible to sample from three 

planes in the central tectum to achieve a greater representation of tectal neurons. 

Comparing the cumulative frequencies of DS tectal cell voxels in each condition, the only 

differences found were between 6dpf populations for control and KR ablated larvae (Figure 

5.16, multiple t tests with Holm-Sidak corrections, all comparisons p > 0.05 except for bins 

260-360° between control 6dpf and 6dpf KR populations where p<0.05, 6dpf voxel n =218, 

7dpf voxel n = 153). The curves of the cumulative histograms indicate the variability in DS 

tectal cell voxel numbers and preferred directions, even without the ablation, and between 

the 6dpf and 7dpf time points. This makes comparisons of voxel numbers and directions 

difficult.   
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Comparisons of DS tectal neuron properties in control experiments indicate that the time 

between imaging of tectum on 6dpf and 7dpf creates differences in response properties, 

specifically, it seems that forward motion sensitive voxels with lower DSI values at 6dpf are 

lost by 7dpf (Figure 5.17 A, backward DS population voxels at 6dpf n = 76, voxels at 7dpf n = 

22,  p = 0.9008, upward voxel 6dpf n = 89, 7dpf n = 87, p <0.0001, Mann-Whitney U two 

tailed test, larvae n = 5). This could be due to the refinement of DS tectal neurons, or loss of 

GCaMP expression in these neurons over time. DS tectal neuron voxel bandwidths do not 

change significantly by 7dpf (Figure 5.17 B, backward DS population voxel 6dpf n = 76, 7dpf 

n = 22, p = 0.4641, upward voxel 6dpf n = 89, 7dpf n = 87, p = 0.0324, Mann-Whitney U two 

tailed test, larvae n = 5). Mean normalised response plots for each population indicates that 

between 6 and 7 dpf there is a slight change in normalized response sizes, but the specificity 

of which directions voxels respond to remains the same (Figure 5.17 C-F, multiple t tests 

with Holm Sidak correction, asterisks indicate where p<0.05, n = 15 larvae).  

Ablation of SINs at 6dpf in KillerRed expressing larvae had no detectable effects on DS tectal 

neuron voxel properties. There was a reduction in responding DS voxels compared to 

control experiments at 6dpf (Figure 5.16, n = 15 larvae, 6dpf n =1633 voxels, 7dpf n = 1008 

voxels), however this reduction was also found in non-ablated control larvae, and thus is 

most likely to be due to changes in DS voxel numbers during development or loss of GCaMP 

expression. Direction selective voxel DSI values did not change significantly after ablation, 

Figure 5-14 Numbers of DS tectal cell voxels change between 6 and 7dpf 

Mean cumulative frequency histograms of DS tectal cell voxel preferred directions per larva from 

control experiments at 6 and 7dpf, and ablated conditions at 6 and 7dpf. Bars indicate ±S.D. Grey 

and Black plots indicate control siblings with no KillerRed ablation, Red and pale red plots indicate 

KillerRed ablated experiments. 
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except for the backward population (Figure 5.18 A upward DS population voxels 6dpf n =44, 

7dpf n =35, p = 0.8692, backward voxel 6dpf n =520, 7dpf n =116, p = 0.0046, downward DS 

population voxel 6dpf n =22, 7dpf n =10, p = 0.9521, forward DS population voxel 6dpf n 

=646, 7dpf n =526, p =0.0507, Mann-Whitney U two tailed test, error bars indicate mean 

±S.D., larvae n = 15). Comparing bandwidths, the bandwidth sizes remained largely the 

same, significant differences are likely just an artefact of large n numbers because the effect 

size is relatively small (Figure 5.18 B upward DS population voxels 6dpf n =44, 7dpf n =35, p 

= 0.2437, backward voxel 6dpf n =520, 7dpf n =116, p = p<0.0001, downward DS population 

voxels 6dpf n =22, 7dpf n =10, p = 0.3617, forward DS population voxels 6dpf n =646, 7dpf n 

=526, p <0.0001, Mann-Whitney U two tailed test, error bars indicate mean ± S.D., larvae n = 

15).  Comparing normalized population responses, there are very few significant differences 

in response sizes to direction presented, indicated with asterisks on the plots (Figure 5.18 C-

F, n = 15 larvae). The response plots look strikingly similar before and after ablation 

indicating that there was no effect. 
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Figure 5-15 Comparisons of DS tectal cell voxel properties in 6 and 7dpf control larvae without killer 

red ablation 

A. Changes in DSI values per population (Mann-Whitney U two tailed test, p values indicated, error 

bars indicate mean ±S.D.), B. Changes in bandwidths per population (Mann-Whitney U two tailed 

test, p values indicated, error bars indicate mean ±S.D.), C-F. Mean normalized responses to 

directions of motion by population (multiple t tests with Holm-Sidak correction, asterisks indicate 

p<0.05, error bars show ±SEM) 
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Figure 5-16 Comparisons of DS tectal cell voxel properties at 6dpf and 7dpf larvae after killer red 

ablation 

A. Changes in DSI values per population (Mann-Whitney U two tailed test, p values indicated, error 

bars indicate mean ±S.D.), B. Changes in bandwidths per population (Mann-Whitney U two tailed 

test, p values indicated, error bars indicate mean ±S.D.), C-F. Mean normalized responses to 

directions of motion by population (multiple t tests with Holm-Sidak correction, asterisks indicate 

p<0.05, error bars show ±SEM). 
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 Discussion 

These experiments attempted to determine what effect GABA-mediated inhibition has on 

tectal DS circuitry by perturbing GABA receptor function. The superior location of SINs in the 

tectum provided cause to speculate that they might be involved in pre-synaptic inhibition of 

axonal outputs of RGCs. DSGC response properties did not change significantly after GABA 

receptor perturbation, including DSI, preferred direction or bandwidth. This indicates that 

RGC axonal outputs do not undergo presynaptic modulation via GABA-R mediated 

inhibition. DS tectal neurons also showed little difference in DS response properties after 

perturbation of GABA receptor mediated inhibition by injection of drugs.  

One major problem with these experiments is inter-larval variability in DS voxel numbers 

and population representation. This variability after injection is problematic when analysing 

the effects of modulation with these drugs. There are several ways this variability could be 

introduced during experiments. For instance, only one plane through the tectum could be 

imaged whilst presenting visual stimuli, due to the short window of activity of these drugs, 

and the length of time each orientation experiment took (~6 minutes). As a result, there was 

no guarantee that the position in the tectum imaged post injection was identical to that 

imaged in control pre-drug conditions, despite all efforts to ensure otherwise. In an attempt 

to minimise these differences, imaging was restricted to the central plane of the tectum, 

however as mentioned previously, RGC synaptic boutons in the tectum are only 0.8µm in 

volume, and tectal cells are only 7µm in diameter, leaving a very small margin of error. 

Injection of volumes into the tectum also changed the volume of the area after drug was 

injected, contributing to a difficulty in locating the same tectal plane.  

There was also no way of verifying the activity of the drugs, nor how quickly they were 

washed out or deactivated in tectal tissue. Ideally, this would be verified with the use of 

electrophysiological recording from neurons in the tissue to monitor changes in the 

signalling, however this was not possible. Whilst this is the case, the available tools were not 

sufficient to carry out a better experiment to identify the role of GABA signalling in tectum. 

Thus, multiple control experiments were carried out with the aim of using them as a 

baseline for variability introduced through experimental conditions. This in no way provides 

an indication that the drugs were active, however.  

A second problem with these experiments is that all GABA-receptor mediated inhibition was 

blocked in the tectum after injection. This indiscriminate approach means that SIN mediated 

inhibition was not the only inhibition blocked, so effects seen after drug injection could not 

be attributed to the activity of SINs.  
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Thirdly, these experiments focussed only on the direction selective circuit. This is over-

simplifying a potentially complex circuit. It is immediately clear that SINs are both DS and 

size selective, their role in the circuit could be linked to size discrimination of motion in a 

particular direction. A more appropriate experiment would probe both at once by 

presenting a sequence of directions at multiple spatial frequencies, thus determining if 

inhibition is necessary for size selective DS tectal neurons. Whilst the tools to carry such an 

experiment out were available, the time-sensitive nature of the activity of the drugs was a 

factor in not pursuing this. This experiment would be an ideal step towards discerning what 

inhibition does in the tectal circuit.   

To address the problem of non-specific perturbation of inhibition in the circuit, KillerRed 

was used to ablate SIN neurons in the tectum. Using this technique, no detectable changes 

occurred in DS populations nor DS response properties beyond those seen in controls. Due 

to problems with potential photo-bleaching of photoreceptors in the eye, as well as the 

issues of bleaching GCaMP expression in the tectum, experiments had to be carried out over 

two days. Control larvae were also left overnight to allow recovery of GCaMP expression 

from the initial DS experiments, and it was found that despite no exposure to fluorescence, 

there was a difference in numbers of responsive voxels at 7dpf compared to 6dpf. This could 

be a result of several things, the larvae are still developing at 6dpf, and it is likely that within 

24 hours there are still developmental changes occurring in DS tectal circuitry. Similarly, due 

to limits on time, it was not possible to generate triple transgenic larvae homozygous for 

HuCGCaMP5 expression. Thus, this lower GCaMP5 expression level meant that at 7dpf 

GCaMP5 expression was lower than 6dpf.  

Finally, in a previous chapter I establish that the s1156tGal4 line does not label all SINs, but 

very small subset (~10%), and of this subset, not all are visually responsive to drifting grating 

stimuli. By ablating SINs targeted by this line, it is possible that there are still DS SINs left in 

the tectum that are still providing inhibition to the DS tectal circuit. This could explain why 

no significant differences are identified in the DS populations after ablation.   
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6 DISCUSSION 

 Overview 

 

Systems neuroscience aims to generate a comprehensive description of circuits in the brain, 

the roles of which are involved in a myriad of processes necessary for an organism’s survival, 

ranging from olfaction, to somatosensation. Like a circuit board within a computer, the 

process of understanding this circuitry involves not only describing the individual 

components of the circuit (i.e. the neuronal subtypes), but also how they connect to each 

other (connectome), what inputs they receive and outputs they generate and what 

processing occurs between input and output (neuronal computations).  

The visual system provides an experimentally tractable system to study. Inputs to the circuit 

can be simplified to patterns of light ranging from spots, changes in contrast, changes in 

shape and movement. Hubel and Wiesel, (1959) were one of the first to characterise the 

properties of neurons in the visual system with their work on cat striate cortex, first 

identifying the properties of simple cells, a class of neuron with a centre surround receptive 

field that responds well to bars or edges in a particular orientation. This was one of the first 

identifications of a more complex receptive field - a “feature detector” in the visual system. 

Lettvin et al., (1959) later added to this with their work on properties of frog ganglion cells. 

From their recordings, they proposed a bug perceiver, the ‘convexity detector’ with a 

receptive field detecting small (3°) objects moving within the receptive field of the particular 

neuronal subtype.  This is one of the first links of neuron receptive field preferences to a 

behavioural/survival outcome.  

Much work has focussed on the circuitry within the retina of multiple species, and great 

progress has been made in determining the connectivity as well as the functional properties 

of these neurons. Whilst this direction selective (DS) circuit has a partial description of 

connectivity and cell subtypes, there is still much that is unknown. A prime example of this is 

the mechanism of how direction selectivity is generated in the retina, it is generally agreed 

that this is produced at the synapses of starburst amacrine cells, bipolar cells and DSGCs, 

but the precise mechanism is still under debate (Vaney et al., 2012).  

Due to lack of cell type specific labelling, progress on describing both morphological and 

functional neuronal subtypes within the visual system was slow until relatively recently, due 

to developments in genetic manipulation, and optogenetics.  The availability and increasing 

sensitivity of genetically encoded probes of activity like GCaMP (Akerboom et al., 2012; 
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Dreosti et al., 2009; Mao et al., 2008; Tian et al., 2009) has led to an increase in functional 

descriptions of neurons within the visual system, allowing long-term recording of neuronal 

activity with little invasiveness as well as morphological characterisation. The experiments in 

this thesis utilise genetically encoded calcium indicators (GECIs) to carry out in vivo live 

imaging of a subtype of interneuron in zebrafish larvae. This thesis aims to add to this 

description of the visual system in zebrafish, by characterising the response properties of a 

specific neuron in the optic tectum, the primary retinorecipient area of the brain, using 

GECIs and in vivo live imaging. By comparing the responses of SINs to those of the ganglion 

cell inputs, the processing these neurons may carry out on inputs can be determined. 

Similarly, as Lettvin et al., (1959) did in their seminal paper on frog, we can use the feature 

selectivity of these neurons to speculate what behavioural functions these neurons may be 

involved in.  

 Thesis Findings: 

 Characterisation of SINs 

 

This thesis aimed to generate a characterisation of response properties of a particular 

subtype of neuron within the optic tectum, the superficial inhibitory interneuron. Whilst 

there have been other studies which have looked at the response properties of these 

neurons (Del Bene et al., 2010; Preuss et al., 2014), the approach used in this thesis has two 

advantages. Firstly, the preferred direction of motion of the neurons was determined, 

before then probing spatial and temporal frequency properties.  This is the first examination 

of multiple receptive field properties of this neuronal subtype using spatial frequency and 

directional tuning; this information provides information on what types of behaviours these 

cells may be involved in. 

To carry out such a study, the s1156tGal4 enhancer trap line was used, a line previously 

described as labelling SINs selectively (Scott and Baier, 2009). We determined that this line 

labels a subset of SINs, approximately 10% of the total number of neurons found in the 

tectal neuropil, whilst also labelling some tectal neurons and RGC axons. GCaMP5 was 

expressed in these neurons, and changes in fluorescence at the soma were used as a 

measure of the neuronal responses to visual stimuli, presented to larval zebrafish in vivo.  

This genetically encoded calcium indicator (GECI) approach is a valuable methodology for 

understanding response properties for neurons within the visual system as it allows in vivo 

recording from intact organisms without the necessity of anaesthesia, which may affect 
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response properties of the visual system to stimuli. Using sinusoidal grating stimuli moving 

in 12 different directions we generated DS response profiles for each of our SINs, the 

culmination of which resulted in a finding that SINs labelled in the s1156tGal4 line form 3 DS 

populations mirroring that of the DSGCs.  We now know that there are three population of 

direction selective SINs with size selective receptive field properties. From other work on 

the direction (Nikolaou et al., 2012) and size selectivity (Preuss et al., 2014) of RGC axons in 

the tectal neuropil we can presume that this selectivity is probably inherited from DSGC 

inputs. What is not clear is if this is inherited directly, or via an intermediate tectal 

interneuron.  

Whilst labelling in this line isn’t sufficiently selective to be able to identify where SIN 

processes arborize in the tectal neuropil, the size tuning allows us to infer that these DS cells 

are thus the ‘small’ tuned SINs, with arborisations in the superficial SFGS layers (Preuss et 

al., 2014). Incidentally, DSGCs arborize primarily in the more superficial SFGS layer (Nikolaou 

et al., 2012).  

The integral response plots indicate that these SINs are band-pass filters for spatial 

frequency, responding to movement of objects within a specific range sizes. This implies 

that these neurons respond to particular types of moving object within the visual field, 

perhaps of prey related size. There is debate on what absolute size of stimulus produces 

prey capture and predator avoidance. It is more likely that DS SINs respond to prey sized 

objects, rather than larger predator sized objects.  

Sinusoidal grating stimuli were used to probe temporal frequency tuning properties of the 

SINs. The data collected from these experiments were not conclusive, temporal frequency 

(TF) responses were very variable between neurons and refinement of either the stimuli 

provided, or analysis may be required. However, we did see an increase in response size as 

stimulus size increased.  Results from Bianco and Engert (2015) indicated that prey capture 

behaviour was elicited best at 30°/s this is approximately the highest temporal frequency 

presented in this thesis, 0.05 cycles/° at 1.5 cycle/second, to which DS SINs responded 

maximally. It is likely that the range of temporal frequencies used to probe TF selectivity of 

these neurons was insufficient to identify any bandpass tuning properties, expanding this 

range is probably necessary to generate appropriate tuning curves.  
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 SIN DS tuning is narrower than that of DSGC input to the tectum, an 

inhibition independent property 

 

Although the similarity between directional tuning in SINs and RGCs suggests that SINs receive 

input from RGCs, there were notable differences in tuning properties between these two cells 

types. The most notable of difference is the DSI values and population FWHM bandwidths. DS 

SINs are significantly more tuned when comparing DSI and population response bandwidth 

than their partners in RGCs, across all three populations. Similarly, comparing the DS tuning 

of DS SINs to their respective populations in DS tectal neurons, SINs have much narrower 

tuning. This narrow DS tuning is also seen in the more superficial layers of superior colliculus 

(SC) of mouse, compared to neurons in the deeper layers of the SC (Inayat et al., 2015).  

Two different hypotheses could explain this narrowing of tuning. The first is that SINs have 

non-linear responses to stimuli through intrinsically lower excitability, thus narrowing their 

bandwidths and increasing DSI values, i.e. they respond maximally when their inputs are 

maximally active when motion in the preferred direction is presented. It is possible that only 

the largest changes in membrane potential results in spiking activity, which in this case is 

caused by visual stimuli closest to preferred direction, a so called “iceberg effect” (Rose and 

Blakemore, 1974). An ideal test of this hypothesis would involve electrophysiological 

recordings from SINs. This technique would allow us to examine whether excitatory inputs 

to SINs exhibit broader tuning which would be evident from SIN spike output.  

An alternative hypothesis that might explain the narrower tuning is SINs receive inhibitory 

input tuned to non-preferred directions that narrows their tuning profile. As the majority of 

inhibition in the optic tectum is GABAergic, perturbation of GABA-A receptor signalling using 

pharmacology was carried out whilst imaging SIN responses. As this inhibition is 

indiscriminate, targeting any GABA-A receptors in the tectal neuropil, no assumptions were 

made on which neurons provided this inhibition. The inhibition could either have been SIN-

SIN inhibition, or via inhibitory tectal neurons with somata located in the periventricular 

layer.  

The use of the s1156tGal4 line for this experiment was ideal, it labels predominantly DS SINs 

from three different populations, and this sparse labelling meant that individual SINs were 

imaged before and after drug injection with confidence. SINs do not lose sharp DS tuning 

when GABA-A signalling is blocked, this finding challenges the theory that their DS tuning is 

mediated through inhibition, and suggests that SINs have an intrinsic mechanism to 

generate narrower DS tuning properties compared to DSGC inputs to the tectum. This spike 
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thresholding has been found to sharpen selectivity of direction selective neurons in the 

visual cortex (Jagadeesh et al., 1993; Priebe and Ferster, 2005). This could be due to 

differences in Na+/K+ channel ratios at axon terminals when compared to axons. Blocking of 

a specific voltage gated K+ channel family, Kv-1 (including Kv1.1, Kv1.2 and Kv1.3), with the 

drug OSK-1, results in dramatic changes in membrane conductance at axon terminals in 

Purkinje cells (Kawaguchi and Sakaba, 2015). A similar difference in voltage gated ion 

potassium and sodium channel numbers may be how SINs are less excitable; an increased 

number of K+ ion channels and lower number of Na+ channels means there is less Na+ ion 

membrane conductance, the largest driver of membrane potential change.  

Further, in these pharmacological perturbations, only DS response tuning was tested. 

Ideally, other aspects of the receptive field properties of SINs that were characterised would 

also have been tested. In Preuss et al., (2014) it was hypothesised that SINs are involved in a 

size discriminative circuit, in which two separate size discrimination circuits, one for large 

and one for small moving objects mutually inhibited each other. To test this hypothesis, 

perturbation of GABA signalling while probing size selectivity in the tectum is necessary. 

Unfortunately there was insufficient time to test receptive field properties such as size 

tuning, and the effect of perturbation of inhibition on these properties.  

 Perturbation of inhibition in the tectum does not alter DSRGC or DS tectal 

neuronal properties  

 

In a more surprising result, the injection of pharmacological agents that altered GABA 

signalling did not have significant effects on the DS populations in the tectal neuropil, 

including DSGCs and DS tectal neurons. This has two implications. It implies that DS properties 

are inherited from DSGC inputs, as well as implying that these inputs do not undergo 

presynaptic modulation. Furthermore, the emergent DS population in tectal neurons, the 90° 

or backward motion, are not lost during the drug treatment, indicating that this population is 

likely to be generated from inputs without inhibitory influences.  
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 A Putative role for SINs in the DS tectal circuit 

 

The data described in this thesis indicates that the subset of SINs labelled by the s1156tGal4 

line is DS and size selective for stimuli of “prey” size. Two hypotheses on the role of the size 

selective circuit in the tectum have been proposed previously, either that the two circuits 

provides inhibition to the opposing size selective circuit via the SINs, i.e. neurons in the 

circuit responsive to small stimuli inhibit the large, and vice versa. These two circuits are 

hypothesises to exist at different laminar depths in the tectum. An alternative idea is that 

SIN-mediated inhibition is involved in providing lateral inhibition- inhibiting cells that are 

adjacent in the topographic axes of the tectum.  

The lateral competitive inhibition theory is particularly attractive. The superior colliculus, 

the equivalent brain area in mammals to optic tectum, has been demonstrated to be vital in 

selecting amongst competing visual stimuli. If multiple stimuli of a prey-like size are 

presented to the larva at once, a decision regarding which particular stimulus to pursue 

needs to be made, to ensure successful prey capture.  This thesis presents evidence that 

SINs are direction and size selective, indicating they may have a role in a deciding between 

multiple competitive stimuli. The stimulus producing the largest response in SINs provides 

the largest level of inhibition in the tectal neuropil which is directed towards neighbouring 

areas in the tectal neuropil. As the tectal neuropil is retinotopically mapped, these 

neighbouring areas represent neighbouring areas of the world around the larva. Thus, this 

inhibition prevents excitation of motor circuits caused by moving stimuli activating RGCs in 

these regions of the visual field (Figure 6.1).  

In fact, in lamprey this type of inhibitory circuitry has been identified  (Kardamakis et al., 

2015), however, in this case the inhibitory circuit is involved in gaze control, determining 

which visual stimulus gaze is directed towards. This evidence from lamprey may still 

implicate SIN inhibition in prey capture. Larvae must be able to locate prey visually in order 

to pursue and determine the locomotor transformations required to capture these prey, for 

which gaze control is important.  

Furthermore, a priority map was identified in rat SC, in which GABAA receptor activity was 

biased towards the rostral end of the visuosensory map than rostral (Bayguinov et al., 2015). 

This inhibition mediates the prioritisation of caudal activity over subsequent rostral sites of 

activity in the superior colliculus.  
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Figure 6-1 Schematic of a possible role for SINs in a “winner-takes-all” selective attention circuit  

RGCs selective for prey-sized objects moving in the visual field excite two possible circuits, a SIN, 

which provides inhibition to surrounding areas of the tectal neuropil, which represent surrounding 

areas of the visual field. These RGCs simultaneously excite projection neurons responsible for 

locomotor movements involved in prey capture. The SIN mediated inhibition prevents the 

activation of similar neurons in the tectum by RGCs detecting subsequent, or less optimal, prey like 

objects in the visual field (not to scale).  
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 Future work 

 

This thesis attempted to determine the role of SINs within the visual system, but due to 

constraints on time, availability of techniques and the non-specificity of labelling seen with 

the transgenic lines used, it is by no means a complete description of these neurons. We 

have been left with several key unanswered questions can be addressed with further 

experiments. How do SINs contribute to size tuning in the tectum? What subtypes of SIN are 

present in the entire population? What behaviours do SINs contribute towards? How are 

SINs wired up within the tectum? What inputs do SINs receive? 

How do SINs contribute to size tuning within the tectum? The contribution of SIN mediated 

inhibition to size tuning in the tectum was not explored. It has been established that there 

are size tuned RGC inputs to the tectum, as well as tectal neurons, with preferences for 

“small” or “large” sizes of stimuli (Preuss et al., 2014). A theory that these two size selective 

circuits mutually inhibit each other through size selective SINs was proposed. If this were 

the case, on perturbation of GABA signalling in the tectum, we would expect to see the two 

size selective circuits active simultaneously if both sizes of stimulus is present. Bulk injection 

of GABA receptor antagonists into the tectum, as used in the experiments in this thesis, 

could be suitable. More appropriate experiments would utilise targeted ablation of SINs 

through the use of genetically encoded proteins such as KillerRed (Bulina et al., 2006) under 

the control of a transgenic line in which all SINs are labelled.  

What functional subtype exist in the whole SIN population? The s1156tGal4 line does not 

label the entire SIN population, but a very small portion (~10%), one question that remains 

is what visual stimuli these remaining neurons are responsive to. Previous work using 

Oregon Green BAPTA bulk labelling in the tectum found SINs with both DS and OS receptive 

field properties (Hunter et al., 2013). It is possible that the s1156tGal4 does not label these 

other SINs, but targets a DS sub population. Furthermore, the experiments in this thesis 

used stimuli designed only to probe motion sensitivity, specifically to whole field motion, 

using a greater variety of stimuli that probe more aspects of visual information would be a 

better description of the range of SIN subtypes in the tectum. To determine the properties 

of these neurons, use of a line such as Oh-Gal4 used in Preuss et al., (2014), to label a larger 

proportion of SINs is necessary.  

What behaviours do the DS SINs control? Conditional ablation of SINs in the tectum could 

provide strong evidence towards their involvement in prey capture behaviours. Ablation 

using KillerRed under the control of a Gal4 transgenic line such as the Oh-Gal4 mentioned 
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previously would allow temporally controlled ablation of SINs in the tectum once the tectal 

circuit is developed and larvae have established prey capture behaviour. By recording the 

prey successful prey captures of larvae without ablated SINs to those with ablation, the 

effects of SIN inhibition on the prey capture can be determined. Previous work used whole 

tectal ablation to determine the tectum is necessary in prey capture (Del Bene et al., 2010; 

Gahtan et al., 2005). Prey capture behaviours in larval zebrafish are a complex series of 

different movements. (Budick and O’Malley, 2000). Information on motion in the visual field 

could be used in several ways during prey capture; to select optimally located prey to 

pursue, to control eye movements to maintain tracking of the movement of prey, to 

determine the angle of turning towards the prey required to maintain pursuit, and to 

determine velocity required to pursue. Discerning which aspect of prey capture SIN 

inhibition may be involved in would require specific experiments examining the effects of 

ablation on eye movements, as well as differences in any particular part of the characterised 

locomotor manoeuvres demonstrated to be part of prey capture.  

This proposed role of SINs however neglects other important behaviours in zebrafish that 

are also visually guided, including obstacle avoidance, and general free flowing movement 

behaviour. Whilst the SINs are size selective and it is attractive to assign this property to an 

identifiable behaviour such as prey capture, it is likely that this visual information is also 

involved in multiple types of visually guided behaviours, probing how information from SINs 

is integrated with the rest of the visual circuit is an important factor to consider. Similar 

experiments using ablation and identifying the changes in behavioural responses to visual 

stimuli will also dissect out this role. 

How are SINs embedded within tectal circuits? To determine this, the ideal method to use 

would be transsynaptic viral labelling, a technique used extensively in rodents but only very 

recently developed for use in zebrafish (Mundell et al., 2015). Injection of viral vector into 

our line would help identify direct synaptic partners with little doubt, and could be 

combined with the expression of GCaMP rather than a fluorescent marker of morphology, 

allowing functional characterisation of these connected neurons after identification of their 

connectivity. Electron microscopy (EM) could also provide us with data on connectivity of 

SINs, A prime example of the use of EM to trace synaptic partners in a circuit is the work 

carried out using serial block-face electron microscopy (SBEM) to determine how starburst 

amacrine cells  (SACs) connect to DSGCs in the retina (Briggman et al., 2011). The location of 

the SINs, the tectal neuropil, is also an immensely dense area of synaptic connections thus 

complicating the process of identifying synapses. SBEM, combined with calcium imaging of 

tectum before immunolabeling may provide a solution to such problems, allowing the 
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determination of the functional properties of SINs, labelling them, before reconstruction 

using SBEM.    

What are the inputs to SINs? Electrophysiological recording of the inputs to the SINs in 

presence of our visual stimulation would provide crucial details on the functional properties 

of the neurons. Using electrophysiology, both inhibitory and excitatory inputs can be 

recorded during visual stimulation. Equally, the contributions of inhibition can be dissected 

from excitatory currents through the use of voltage-clamp recordings. Whilst these 

techniques are not in use in our lab, they have been successfully carried out in SINs in other 

labs (for example Preuss et al., 2014) in larvae. Such recordings can also provide information 

on what mechanisms may cause the narrower DS tuning of SINs relative to their RGCs 

inputs. Recordings in the presence of drugs such as OSK-1 a Kv-1 receptor family antagonist, 

or AM 92016 hydrochloride as Nav receptor antagonist, that perturb the activity of specific 

voltage gated ion channels may be particularly useful, providing insights on the ion channel 

contributions to this tuning.  

The visual system of zebrafish is ideal for studying the processing required for goal driven 

behaviours due to the relatively simple structure of the circuitry as well as ease of imaging; 

however, this simplicity has not made understanding the circuitry any less challenging.  The 

characterisation of cell types such as SINs contributes towards a description of how the 

brain processes channels of feature specific information from the retina to drive distinct 

behaviours. To progress further, a better understanding of the functional subtypes of 

neuron in the tectum is required, as well as the outputs of projection neurons from the 

tectum to motor neurons responsible for locomotion. The results in this thesis demonstrate 

that systematic probing of the responses of a subtype of neuron to visual stimuli can provide 

important insights into the functional role of that neuron. With a concerted effort to carry 

out similar studies on other genetically targeted neurons in the visual system, we may yet 

be able to describe a full sensory-motor circuit responsible for a particular behaviour, such 

as prey capture.  
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