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Abstract 

The survival of complex organisms depends on their ability to interact with their environment 

through precise control of motor behaviours. This is achieved via specialised synapses called 

neuromuscular junctions (NMJs) found between motor neurons (MNs), projecting from the 

hindbrain and spinal cord, and skeletal muscle in the periphery. Current evidence suggests that 

pathological changes at the NMJ precede many neuromuscular disorders. Studying 

neuromuscular circuits is therefore critical to improving our understanding of this system and 

advancing therapies for many currently incurable diseases. One key strategy for discovering new 

treatments are pharmacological screens, however performing these on NMJs in vivo is 

challenging, with limited opportunities for experimental manipulation or long-term observation. 

Recent advances in stem cell biology present an exciting opportunity to produce in vitro models 

of neuromuscular circuits, with improved accessibility, reproducibility and scalability. This thesis 

describes and validates a model for neuromuscular circuit development and NMJ formation and 

maturation. Mouse ESC lines were generated to enable the production of spinal MNs and 

skeletal muscle.  Patch-clamp experiments revealed that murine embryonic stem cell-derived 

motor neurons (ESC-MNs) mature electrically over a period of 3 weeks, progressing from an 

immature, non-spiking character to a mature phenotype capable of firing high frequency trains 

of action potentials. This behaviour was recapitulated via photostimulation using a stably 

integrated Channelrhodopsin-2 (ChR2) transgene. 

To investigate the functional properties of ESC-MNs, an ESC line was established expressing a 

doxycycline-inducible Myod1 transgene. Following Myod1 induction these cells form 

multinucleated skeletal myotubes in vitro. Co-cultures of ESC-MNs and myotubes show 

immature but functional synapses, with contractile activity directed by light stimulation via 

ChR2. Long-term in vitro culture was assessed using an alternative muscle target from the chick 

model system. Co-culture of ESC-MNs with chick primary skeletal muscle leads to maturation of 

NMJs, and spontaneous as well as light-evoked muscle contractions. These co-cultures represent 

an accessible model for studying NMJ development and function, as well as providing a potential 

assay to screen genetic or pharmacological therapies for muscular and MN diseases. 
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Chapter I 

Introduction 

 

One of the most consistent and important features of the animal kingdom is the ability to 

interact with and respond to the external environment. Current thinking suggests that the 

nervous system initially arose for this purpose, allowing gradually more complex behaviours to 

evolve that conferred a survival advantage on the organism (Ghysen, 2003). Potentially the 

earliest and most important behaviour to arise was that of movement, driven by the action of 

motor neurons on contractile muscle cells via a specialised synaptic connection called the 

neuromuscular junction (NMJ) (Miller, 2009). This neuromuscular circuitry is responsible in 

humans for everything from locomotion to breathing, and dysfunction of this system can lead 

to devastating and often lethal disorders. Understanding the development and function of 

neuromuscular circuits is therefore of vital importance to both basic science and modern 

medicine.  

This thesis describes the development of mouse embryonic stem cell lines used to generate 

spinal motor neurons and skeletal muscle in order to model neuromuscular circuit development 

and neuromuscular junction formation. As directed differentiation of stem cells into desired 

terminally differentiated cells typically requires recapitulation of the signalling events that occur 

in vivo during development, a good understanding of the developmental genetics of the tissue(s) 

being studied is necessary. This introduction will cover the developmental biology of spinal 

motor neurons and skeletal muscle before discussing basic stem cell biology and some of the 

strategies used in this study to model and analyse neuromuscular circuits and synapse 

formation. 
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1.1 Motor Neurons 

A motor neuron is defined as a CNS neuron which projects its axon out of the CNS where it 

synapses onto peripheral targets. Motor neurons (MNs) are extremely important for animal life, 

as all behaviour relies on efficient and precise MN activity and connectivity with muscle tissue 

and other peripheral targets; these behaviours range from basic reflexes to avoid damage to the 

body through to essential life functions such as breathing and swallowing. 

While often referred to as a single group, there is actually vast diversity among “motor neurons”, 

with distinct gene expression profiles, molecular signatures and muscle targets. This diversity is 

required to enable the independent innervation of the large number of distinct muscle groups 

found in most animals; humans for example have over 300 bilateral paired muscles, while a 

typical vertebrate limb contains up to 50 individual muscles (Dasen and Jessell, 2009; Kanning 

et al., 2010). The precise control of inputs to MNs and their outputs to their target muscle is 

essential for the fine, coordinated motor control seen in complex behaviour, and much evidence 

suggests that the developmental subtype identity of a MN determines its innervation pattern 

and connectivity (Landmesser, 2001; Milner and Landmesser, 1999). Understanding the 

specification of MN subtypes is therefore vital to understanding motor networks and function. 

 

1.1.1 Subtype diversity 

The first major distinction between MNs is that of branchial, visceral and somatic MNs (Stifani, 

2014). Branchial MNs are located in the brainstem, and innervate the head and neck 

musculature via the cranial nerves (Chandrasekhar, 2004). Visceral MNs comprise a component 

of the autonomic nervous system (ANS), which is further subdivided into the sympathetic and 

parasympathetic systems. Sympathetic MNs are located in the preganglionic column of the 

spinal cord, and innervate the sympathetic chain ganglia and the adrenal medulla. 

Parasympathetic MNs on the other hand are located mainly in the brain stem and sacral spinal 

cord, and innervate peripheral ganglia found near major organs including the heart, lungs, 
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kidneys, bladder and pancreas. Somatic MNs are found in the ventral horn of the spinal cord and 

in hindbrain nuclei, and their axons project out of the central nervous system (CNS) into the 

periphery along the spinal nerves, where they form specialised synapses called neuromuscular 

junctions (NMJs) with skeletal muscles (Wu et al., 2010).  

Somatic MNs can be further subdivided into four groups called motor columns, identified by 

their position within the spinal cord. Each column innervates a set group of muscle targets. The 

medial motor column (MMC) runs along the entire length of the spinal cord, and MMC MNs 

innervate dorsal axial muscles of the back and torso (Agalliu et al., 2009; Fetcho, 1987). The 

lateral motor columns (LMC) meanwhile are only found at limb levels, with brachial LMC MNs 

innervating the forelimbs and lumbar LMC MNs innervating the hindlimbs (Landmesser, 1978). 

The hypaxial motor columns (HMC) are only present at cervical and thoracic levels and innervate 

the ventral axial muscles including the intercostal and abdominal wall muscles (Gutman et al., 

1993). The final group, the preganglionic column (PGC), are found at thoracic levels, and 

innervate sympathetic chain ganglia of the peripheral nervous system (PNS) (Prasad and 

Hollyday, 1991). This rostrocaudal organisation is shown below in figure 1.1. 

 

The LMC, which has been studied most extensively, is further subdivided into medial and lateral 

divisions which innervate ventral (typically flexor) and dorsal (typically extensor) limb muscles 

(Kania and Jessell, 2003; Tosney and Landmesser, 1985). These divisions are themselves 

Figure 1.1 The organisation of spinal motor columns. Columnar identity dictates the general muscle 

target of a motor neuron and the location of its cell body. Medial motor column (MMC) neurons 

innervate dorsal axial muscles, hypaxial motor columns (HMC) innervate intercostal and abdominal 

wall muscles, lateral motor columns (LMC) innervate the muscles of the limbs and preganglionic 

column (PGC) motor neurons innervate sympathetic ganglia. (Adapted from Peljto and Wichterle, 

2011.) 
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segregated into motor pools, and all MNs within one motor pool project to a single target 

muscle. The motor pools form a rough topographic map of the limb, with rostral and proximal 

muscles innervated by rostral pools, while caudal and distal muscles are innervated by caudal 

pools (Hollyday and Jacobson, 1990; Landmesser, 1978). 

Individual MNs can also be grouped in three classes dependent on their muscle fibre targets, 

morphology and function: alpha (α), beta (β) and gamma (γ) (Kanning et al., 2010). The largest 

and most common MN subtype are αMNs, which synapse onto the contractile extrafusal skeletal 

muscle fibres and are responsible for eliciting muscle contraction. Gamma MNs are smaller, and 

synapse onto the proprioceptive intrafusal muscle fibres of the muscle spindle, where they can 

modulate the sensitivity of the sensory neurons innervating the spindle to stretch forces (Hunt 

and Kuffler, 1951; Proske and Gandevia, 2009). Beta MNs remain poorly characterised, and 

despite innervating both intrafusal and extrafusal muscle fibres (via axon collaterals), their 

function remains unclear (Kanning et al., 2010; Manuel and Zytnicki, 2011). The final level of MN 

subtype diversity is seen within αMNs, which can be subdivided based on the functional 

properties of the motor unit they form with their muscle target into slow-twitch fatigue resistant 

(αS), fast-twitch fatigue-resistant (αFR) and fast-twitch fatigable (αFF). The functional properties 

of these motor units are largely determined by the metabolic and molecular characteristics of 

their muscle target, which will be discussed in section 1.2.1. Most motor pools contain a mixture 

of all these MN subtypes and while the final contractile properties of the muscle are determined 

by the ratio of these different classes, transitions from one fibre type to another have been 

observed in vivo due to changes in neuronal activity, physical demand or hormonal signals 

(Friese et al., 2009; Pette and Staron, 2000; Staron, 1997).  

 

1.1.2 Subtype specification  

While αMNs can transition between fast-twitch and slow-twitch identities as a result of external 

influences throughout adult life, the specification of spinal motor columns and pools is 
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genetically determined during development and the factors that regulate this process have been 

well characterised. As stem cell differentiation often closely recapitulates signalling cascades 

and genetic programmes that drive development in the embryo, understanding the 

developmental biology of spinal MNs is vital to advancing the field of regenerative medicine and 

enabling the creation of better cellular models of MNs for research. 

The spinal cord is patterned by the combined actions of diffusible morphogens that establish 

concentration gradients along the dorsoventral and rostrocaudal axes of the embryo. MN 

progenitors, like all cells of early neural tube, establish a specific positional identity determined 

by these signals, restricting them to a specific motor column and pool, thereby also defining 

their axonal projection pattern and muscle target.  

1.1.2.1 Dorsoventral patterning 

Dorsoventral (DV) patterning of the neural tube is largely driven by a counter-gradient of sonic 

hedgehog (Shh) and bone morphogenic proteins (BMPs). Shh is initially secreted by the 

notochord, a mesodermal structure running ventral to the neural tube. Shh from the notochord 

diffuses dorsally into the ventral neural tube, where it establishes a new Shh producing region 

termed the floor plate (Echelard et al., 1993). BMP proteins are initially secreted by the dorsal 

epidermis lying adjacent to the neural tube, and as with Shh, this signalling results in the 

formation of the roof plate in the dorsal neural tube, which itself produces the TFG-β family 

members BMP4 and BMP7 (Wilson and Maden, 2005). These BMP proteins drive the expression 

of other TFG-β proteins in the dorsal neural tube, including Dorsalin and Activin (Liem et al., 

1997). Concurrent to these opposing morphogen gradients, the somites and paraxial mesoderm 

lateral to the neural tube secrete fibroblast growth factors (FGFs) and retinoic acid, which have 

important roles in promoting neural progenitor proliferation (Ulloa and Briscoe, 2007). This early 

patterning is summarised in figure 1.2. 
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The gradients of Shh and BMP signalling on cells within the developing neural tube results in a 

dorsoventral gradient of Gli activity, a zinc finger protein family which induces the expression of 

multiple basic helix-loop-helix (bHLH) and homeodomain transcription factors (TFs) (Dessaud et 

al., 2008; Jacob and Briscoe, 2003). Downstream TFs can be divided into class I and class II genes, 

which are repressed by Shh signalling or require it respectively (Briscoe and Ericson, 2001). 

These homeodomain TFs work in mutually antagonistic pairs that are induced or repressed by 

Shh activity, and each pair has different response thresholds. Together, these properties result 

in the ventral or dorsal expression boundaries of each TF delineating specific TF expression 

regions, converting the initially smooth gradient of Shh/BMP and Gli acitivity into restricted 

progenitor zones spread along the DV axis. Each progenitor zone therefore expresses a specific 

subset of genes, ultimately determining the fate of cells in that zone (Briscoe et al., 2000). The 

boundaries between progenitor zones are further refined and sharpened due to the mutually 

antagonistic activity of Shh and the BMPs themselves, improving the contrast of progenitor zone 

patterning (Liem et al., 2000). 

Figure 1.2 Early patterning of the neural tube. (a) The notochord secretes Shh which diffuses to the 

ventral neural tube, while the dorsal ectoderm secretes BMP 4 and 7 which diffuse to the dorsal neural 

tube. (b) The floor plate is induced in the ventral neural tube by Shh, while the roof plate is induced 

in the dorsal neural tube by BMP proteins. (c) The floor and roof plates secrete Shh and TGF-β proteins 

respectively, setting up two morphogen gradients to pattern the neural tube along the dorsoventral 

axis. (Adapted from Gilbert et al., 2006). 

(a) (b) (c) 
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The motor neuron progenitor zone (pMN) is established in the ventral neural tube, and is 

characterised by the expression of the bHLH protein Olig2, the class I TFs Nkx6.1 and Nkx6.2, 

and the class II TF Pax6 (Novitch et al., 2001; Vallstedt et al., 2001). Following a period of 

progenitor proliferation, these cells exit the cell cycle and initiate MN differentiation driven by 

the expression of downstream homeodomain TFs including Hb9, Isl1/2 and Lhx3, as shown in 

figure 1.3. These proteins define the generic MN identity prior to subdivision into specific motor 

columns and pools (Arber et al., 1999; Pfaff et al., 1996; Sharma et al., 1998).  

1.1.2.2 Rostrocaudal patterning 

Rostrocaudal (RC) patterning of the spinal cord occurs alongside DV patterning and 

establishment of MN identity, and is responsible for segregating post-mitotic MNs into motor 

columns, and also influences motor pool organisation later in development (Dasen et al., 2003). 

As with DV patterning, RC patterning is also mediated by the differential expression of 

homeodomain proteins in response to gradients of diffusible signalling molecules. In the case of 

RC patterning, it is the Hox proteins that direct cell fates, and their expression is induced in 

Figure 1.3 Specifying generic motor neuron identity A gradient of Shh along the dorsoventral axis of 

the spinal cord induces the expression of specific transcription factors in neural progenitors. Class I 

(repressed by Shh) and class II (require Shh) transcription factors are mutually repressive, refining and 

delineating particular differentiation fate zones. The stable expression of Nkx6, Olig2 and Pax6 in 

motor neuron progenitors leads to the expression of Hb9, Isl1/2 and Lhx3/4, which define motor 

neuron identity. (Adapted from Dasen et al., 2009). 
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response to varying levels of fibroblast growth factor (FGF), retinoic acid, Wnt and TGF-β family 

signalling (Bel-Vialar et al., 2002; Diez del Corral and Storey, 2004; Nordström et al., 2006). 

The initial inductive factor for Hox gene expression is FGF signalling, and the main source of FGFs 

in the spinal cord is the node (Henson’s node in the chick), a key signalling structure at the caudal 

end of the neural tube. As development proceeds, the body grows via extension of the tail bud 

(and node) caudally. This growth results in the caudal neural tube being exposed to high levels 

of FGFs for extended periods of time, while more rostral regions receive weaker and shorter FGF 

signalling, creating a gradient along the RC axis (Dubrulle and Pourquié, 2004; Liu et al., 2001). 

Previous work has shown that while all Hox genes can be induced by FGF signalling, they have 

varying response thresholds, resulting in the expression of high-threshold Hox genes at caudal 

levels and low-threshold Hox genes at rostral levels (Bel-Vialar et al., 2002; Dasen et al., 2003). 

Interestingly, this results in the expression of Hox genes along the RC axis that is co-linear to 

their chromosomal arrangement, with genes at the 3’ end of the cluster being expressed at 

rostral levels and 5’ genes expressed at caudal levels (Kmita and Duboule, 2003; Lemons and 

McGinnis, 2006). This process establishes Hox gene expression ranging from 3’ Hox5 paralogs 

found at brachial levels, Hox8 and 9 paralogs at thoracic levels and 5’ Hox10 paralogs at lumbar 

levels (Fig. 1.4). 

 

 

Figure 1.4 Patterning the rostrocaudal axis. An FGF gradient along the rostrocaudal axis induces the 

co-linear expression of Hox genes in the spinal cord. Retinoic acid (RA) acts at rostral levels (r) and 

Gdf11 acts at caudal levels (c) to further regulate Hox expression (Adapted from Dasen et al., 2009). 
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The TGF-β family member Gdf11 is also expressed caudally, and appears to synergise with FGF 

signalling in lumbar and thoracic levels to promote expression of Hox8-10 paralogs (Liu, 2006; 

McPherron et al., 1999). Retinoic acid on the other hand, expressed by the somites and paraxial 

mesoderm, is found at high levels in the rostral neural tube, and antagonises FGF signalling. As 

with DV patterning, this counter-gradient leads to better defined fate zones with sharper 

boundaries at brachial levels (Diez del Corral and Storey, 2004). Further distinction between 

expression zones is generated by the cross-repressive interactions of the Hox proteins 

themselves, as Hoxc9 has been shown to represses more anterior (or 3’) Hox genes, while 

posterior Hox genes are epigenetically silenced by recruitment of Polycomb Group (PcG) 

complexes (Dasen and Jessell, 2009; Dasen et al., 2003; Jung et al., 2010). This is reminiscent of 

the mutual antagonism of class I and class II TFs in DV patterning discussed previously, and 

reveals a general mechanism of gradient patterning to define fate zones during development. 

The expression of Hox genes instructs MN columnar identity, so that the limb-innervating 

brachial and lumbar LMCs are associated with Hox6 and Hox10 paralogs respectively, while 

thoracic PGC MNs express Hox9 paralogs (Choe et al., 2006; Dasen et al., 2003; Liu et al., 2001). 

This is supported by experiments manipulating Hox gene expression; for example, ectopic 

expression of Hoxc9 at brachial levels converts presumptive LMC MNs to a PGC fate, while 

ectopic expression of Hoxc6 or Hoxd10 in the thoracic neural tube converts presumptive PGC 

and HMC MNs to an LMC fate (Dasen et al., 2003; Shah et al., 2004). This fate conversion can 

also be induced by addition of exogenous FGFs at the rostral end of the neural tube during 

development, leading to ectopic Hoxc9 expression and PGC MN identity (Dasen et al., 2003). 

Interestingly, this fate conversion results in altered axonal projection patterns, in addition to 

changes in gene expression and molecular profiles. For example, brachial MNs converted to a 

PGC fate project to the sympathetic chain ganglia rather than limb musculature, while thoracic 

MNs converted to an LMC fate project to the limbs (Dasen et al., 2003; Shah et al., 2004). This 

finding indicates that motor axon guidance is initially intrinsically specified by Hox gene 
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expression. The Hox genes also influence motor pool organisation, discussed in the following 

section. 

1.1.2.3 Motor pool specification 

Most work on motor pool specification has been carried out on brachial LMC neurons that 

project into the forelimbs. While ectopic expression of Hox proteins can cause a motor column 

identity switch that results in axonal projection to the new target, transposition of LMC MNs to 

ectopic locations results in accurate axonal pathfinding to the limb musculature, indicating that 

motor pool identity is at least partially intrinsically specified (Landmesser, 2001). A key candidate 

for this intrinsic specification is again the Hox family of transcription factors, as expression of 

Hox4-8 paralogs is seen in the developing brachial LMC in a rostral to caudal pattern, similar to 

the expression found in the neural tube earlier in development (Dasen et al., 2005). Due to the 

mutually repressive interaction between Hox5 and Hox8 paralogs, defined Hox expression zones 

are established, with rostral motor pools expressing Hoxa5 and Hoxc5, while more caudal pools 

express Hoxc8.  

This rostrocaudal organisation is reflected in the axonal projection of LMC motor pools, as rostral 

motor pools innervate anterior and proximal muscles, while caudal motor pools innervate 

posterior and distal muscles (Hollyday and Jacobson, 1990; Landmesser, 1978). This pool-

specific identity is driven by the expression of downstream TFs, such Runx1, which is dependent 

on Hox5 activity and is expressed in rostral motor pools, and Pea3 and Scip, expressed in caudal 

motor pools requiring Hox8 activity (Dasen and Jessell, 2009; Dasen et al., 2005).  

However, unlike spinal motor columns, which are generally arranged end-to-end along the 

rostrocaudal axis with little overlap, as many as ten distinct motor pools can occupy the same 

RC level within the spinal cord (Dasen and Jessell, 2009). This arrangement reveals that Hox gene 

expression alone cannot account for motor pool identity, as MNs from distinct motor pools 

would be exposed to the same gradient of signalling factors and express the same initial Hox 
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proteins. Work on the brachial LMC has revealed that motor pool specification actually occurs 

in two phases; initial competency to adopt a rostral or caudal motor pool fate is established by 

Hox gene expression, followed by local or peripheral target-derived signalling refining motor 

pool identities (Haase et al., 2002; Livet et al., 2002; Machado et al., 2014).  

The best characterised peripheral signal in motor pool specification is glial-cell line derived 

neurotrophic factor (GNDF), which is expressed at various points along the LMC trajectory, 

including the plexuses, the mesoderm and skeletal muscles of the limb, particularly the 

cutaneous maximus (CM) and latissimus dorsi (LD) (Dudanova et al., 2010; Haase et al., 2002; 

Kramer et al., 2006; Lin et al., 1998; Livet et al., 2002). In mutant mice lacking functional GDNF 

signalling, the motor pools that would innervate these two muscles are disorganised, with the 

MNs malpositioned in the spinal cord and a dramatic decrease in innervation and axon 

branching at both the CM and LD. Supporting the role of GDNF in establishing these motor pool 

identities, Pea3 expression is greatly reduced in the absence of GDNF signalling, and the 

phenotype of these mice is indistinguishable from Pea3 KO mice (Haase et al., 2002; Lin et al., 

1998; Livet et al., 2002).  

GDNF influences motor pool differentiation by inducing Pea3 expression in competent MNs via 

the Ret receptor present on the axons of MNs innervating the CM and LD muscles (Kanning et 

al., 2010). The Pea3 TF then influences MN clustering in the spinal cord via regulation of type II 

cadherin expression, as well other functions including final muscle target selection, dendrite 

morphology and connectivity with the CNS (Haase et al., 2002; Livet et al., 2002; Pecho-

Vrieseling et al., 2009; Price et al., 2002; Vrieseling and Arber, 2006).  

MN differentiation and development is therefore a complex, multi-stage process requiring a 

combination of varied extrinsic and intrinsic factors interacting in a precise spatiotemporal 

sequence to produce the diversity of neuronal subtypes necessary for precise control of refined 

motor behaviours. While gradients of signalling molecules in the early embryo establish 
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homeodomain protein expression that confers basic MN identity to cells in the ventral neural 

tube, complete differentiation relies on interactions with peripheral tissues, including the final 

skeletal muscle targets. Certain features of skeletal muscle maturation are also dependent on 

functional innervation by MNs, therefore understanding the development of both these tissues 

is crucial to the development of in vitro models of the neuromuscular system.  

1.2 Muscle 

1.2.1 Subtype diversity  

The purpose and function of MNs is tightly bound to that of muscle, and effective 

communication between these two highly specialised tissues. Muscle tissue is vital to survival in 

virtually all extant animal species, with rare exceptions in evolutionarily primordial animals such 

as sponges and larval stages of Cnidaria and Ctenophora (Burton, 2008; Seipel and Schmid, 2005, 

2006). To achieve the multiple and varied roles that muscle serves, there is substantial subtype 

diversity, parallel to MN diversity. The largest division in muscle subtypes is determined by their 

mode of activity and function; skeletal muscle, cardiac muscle and smooth muscle. Cardiac and 

smooth muscle are involuntary, requiring no conscious control for their activity, while skeletal 

muscle is predominantly voluntary (with some exceptions e.g. respiratory muscles), requiring 

conscious behaviour to contract. Cardiac muscle contracts continuously and rhythmically even 

in the absence of neuronal input, and is completely fatigue resistant, providing the ideal 

properties required for heart function, driving the systemic and pulmonary circulatory systems 

(Sonnenblick and Stam, 1969). To achieve the synchronous contractility necessary for a 

ventricular or atrial systole, cardiomyocytes are physically joined by intercalated disks to form 

large syncytia, providing mechanical support and rapid transmission of electrical activity 

between cells via gap junctions (Sarantitis et al., 2012).  

Smooth muscle also forms syncytia, however without the presence of intercalated disks which 

give cardiac muscle its branched structure. Smooth muscle also does not display sarcomeres, 

the repeating units of myosin and actin filaments which give the distinctive banding seen in both 
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cardiac and skeletal muscle (Cooke et al., 1987; Small, 1995). Smooth muscle is responsible for 

the control of the vascular system, being found in the walls of arteries and veins, and is also 

found in the bladder, skin and gastrointestinal, reproductive and respiratory tracts, among 

others. Smooth muscle typically contracts in a tonic fashion, with slow sustained activity, which 

can produce waves of contraction as seen in peristaltic waves in the oesophagus during 

swallowing or the intestines during digestion (Diamant, 1997; Huizinga and Lammers, 2009).   

Skeletal muscle, the subtype investigated in this study, is mainly responsible for locomotion and 

posture, and makes up most of the muscles of the body wall and limbs, accounting for around 

40% of the body mass of an average adult male human, or 35% for a female (Marieb and Hoehn, 

2010). It carries out its function by attachment to the skeleton via tendons, enabling movement 

of the limbs and spinal cord via voluntary contraction. Individual skeletal myoblasts fuse 

together during development to form long, multinucleated myofibres, which are then 

innervated by a single motor neuron (which may also innervated multiple other myofibres), to 

form a functional motor unit. Many muscle fibres align with each other, joined by connective 

tissue including a basement membrane, to form a complete muscle, containing multiple motor 

units (Sanes, 2003).  

Skeletal muscle is also called striated muscle, due to the presence of regularly arranged 

myofibrils containing units made of opposing myosin and actin filaments, called sarcomeres, 

which are visible as bands on the surface of myofibres (Clark et al., 2002). A schematic showing 

the basic sarcomere structure is shown in figure 1.5.  Skeletal muscle is further subdivided based 

on the isotypes of myosin heavy chain expressed by the myofibre, which also determine its 

functional properties (Burke et al., 1973; Pette and Staron, 2000). At least seven myofibre types 

can be identified in humans, however four main groups predominate (Staron, 1997). Type I 

fibres, also called slow-twitch, express myosin heavy chain 1β, have an oxidative metabolism 

and are highly resistant to fatigue but contract slowly with relatively little force. Type I fibres are 

innervated by slow-twitch fatigue resistant alpha MNs (αS).  
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Fast-twitch fibres can be type IIa or type IIb/x. Type IIa fibres express myosin heavy chain IIa, are 

similarly resistant to fatigue with a mixed glycolytic/oxidative metabolism, but are capable of 

contracting quickly with medium force and synapse with αFR MNs. Type IIb/x myofibres express 

myosin heavy chain IIx, and have a mostly glycolytic metabolism during activity resulting in a 

motor unit capable of fast contractions that produce a large force, while having low resistance 

to fatigue. These fibres are innervated by αFF MNs. Finally, intrafusal fibres, innervated by 

gamma MNs, are proprioceptors, providing feedback on limb position and stretch forces rather 

than generating contractile force (Burke et al., 1973; Hunt and Kuffler, 1951; MacIntosh et al., 

2006). These relationships are shown below in figure 1.6. While this categorisation is useful, 

there are in fact multiple hybrid fibre types, and even transitions from one fibre type to another 

are possible in vivo due to changes in neuronal activity, physical demand or hormonal changes 

(Pette and Staron, 2000; Staron, 1997). Most skeletal muscles contain a continuum of fibre 

subtypes, and variations in the relative number of each class of motor unit determine the final 

contractile properties of the muscle (Friese et al., 2009). 

Figure 1.5 Basic sarcomere structure. Skeletal myofibrils have a banded appearance due to the 

parallel alignment of multiple protein fibres, arranged into repeating units called sarcomeres. A 

sarcomere consists of parallel arrays of actin thin filaments opposed to myosin thick filaments, which 

slide past each other during contraction. The edges of a sarcomere are defined by the Z-line, in which 

actin and titin fibres are anchored. The M-line defines the centre of a sarcomere. The visible bands 

observed under a microscope have been named according to their light-polarising properties, as the 

I-band is isotropic, while the A-band is anisotropic. (Clark et al., 2002). 



30 
 

1.2.2 Myogenesis 

1.2.2.1 Somitogenesis and homeoproteins 

While the metabolic and functional properties of skeletal myofibres may not be genetically 

determined, the specification and generation of muscle tissue during development – 

myogenesis – is under highly regulated multi-level genetic control. All skeletal muscle in 

vertebrates is derived from mesodermal progenitors, with the vast majority of trunk and limb 

muscle tracing its origin back to the somites, regions of segmented paraxial mesoderm found 

either side of the embryonic neural tube (Tajbakhsh and Buckingham, 2000). The somites are 

initially composed of two compartments; the sclerotome which generates the vertebrae and 

ribcage, and the dermomyotome which produces myogenic and endothelial progenitors and 

contributes to the dermis and connective tissue of the trunk (Ben-Yair et al., 2003; Olivera-

Martinez et al., 2000; Wilting et al., 2000). As development progresses, the dermomyotome 

undergoes further segmentation, whereby myogenic progenitors collect at the epithelium of the 

dermomotome and begin to delaminate from the edges (“lips”) of this structure to form the 

myotome, which is situated ventral to the dermomyotome (Gros et al., 2004). These 

delaminating cells give rise to the primary myotome and are post-mitotic, expressing Mrf4 and 

Myf5, the first muscle regulatory factors (MRFs) to be expressed, key genes involved in driving 

Figure 1.6 Muscle fibre diversity. Muscle fibres are divided according to their myosin heavy chain 

isotype expression and metabolism. Type IIb/x muscle fibres are innervated by fast-twitch fatigable 

(αFF) alpha neurons, type IIa fibres are innervated by fast-twitch fatigue-resistant (αFR) MNs, and type 

I muscle fibres are innervated by slow-twitch fatigue resistant (αS) MNs. (Adapted from Kanning et 

al., 2010) 
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myogenic differentiation. Subsequent waves of myogenic progenitors from the dermomyotome 

contribute to the growth of the myotome, and unlike the primary myotome, continue to 

proliferate and generate the majority of fetal and postnatal muscle as well as derived 

populations such as satellite cells, the adult stem cell population of skeletal muscle (Gros et al., 

2005; Kahane et al., 2007; Relaix et al., 2005). 

The specification of cells in the dermomyotome to the myotome or other mesodermal fates 

appears to be strongly influenced by the expression of the paired domain and homeodomain-

containing transcription factors Pax3 and Pax7 (Bober et al., 1994; Tremblay and Gruss, 1994). 

Pax3 positive cells are found in the central dermomyotome, and lineage tracing studies have 

shown this population gives rise to the proliferative myogenic progenitors of the myotome. 

Mouse splotch mutants, lacking functional Pax3, show impaired muscle development, lacking 

limb and some trunk musculature (Bajard et al., 2006). While Pax7 knockouts (KOs) have a much 

more subtle defect mainly affecting the somatic muscle progenitor cells (satellite cells), Pax3/7 

double KO mice lack all trunk and limb musculature, with the only skeletal muscle present being 

derived from the post-mitotic primary myotome (Relaix et al., 2005; Seale et al., 2000). While 

Pax3 directly influences the expression of downstream MRFs, it is also vital for muscle progenitor 

delamination from the dermomyotome and later migration from the myotome into the limb 

buds (Bajard et al., 2006; Bober et al., 1994). The control of delamination from the 

dermomyotome is regulated by the tyrosine kinase receptor Met and its ligand, scatter 

factor/hepatocyte growth factor (SF/HGF). The gene encoding Met, c-met, is a known target of 

Pax3, and mouse mutants for c-met also display muscle-less limbs similar to Splotch mutants, 

due to failure of the dermomyotome to delaminate (Bladt et al., 1995; Dietrich et al., 1999; 

Epstein et al., 1996). Also important in the formation of the myotome is asymmetric cell division 

in the dermomyotome, where asymmetric cellular distribution of N-cadherin is implicated in 

distinction between myogenic (high N-cadherin) and dermal cell fate, and asymmetric 

distribution of the Notch antagonist Numb is associated with delaminating myogenic 
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progenitors (high Notch) versus cells of the dermomyotome (Cinnamon et al., 2006; Holowacz 

et al., 2006).  

The expression of the Pax genes is in turn dependent on homeoproteins genetically upstream in 

somitogenesis, the Six proteins and their co-factors Eya and Dach (Grifone et al., 2007). 

Overexpression of combinations of Six1, Eya2 and Dach2 lead to upregulation of Pax3, while Six1 

or Six1/Six4 double KOs die at birth with multiple muscle defects (Grifone et al., 2005; Heanue 

et al., 2002). These mutants display apoptosis of myogenic progenitors from the somites 

combined with aberrant migration and reductions in downstream MRFs including Mrf4, Myod1 

and Myogenin, possibly as a result of downregulation of Pax3 (Buckingham, 2006). Another 

factor involved in progenitor migration especially in the limbs is the chemokine stromal-derived 

growth factor 1 (SDF-1) and its G-protein-coupled transmembrane receptor CXCR4 (Yusuf et al., 

2006). The receptor is expressed in migrating myogenic progenitors, while SDF-1 is found in the 

limb bud mesenchyme, and mutants display defects in limb muscle formation (Vasyutina et al., 

2005; Yusuf et al., 2005). Both SDF-1 and SF/HGF also appear to suppress further progenitor 

differentiation during this migratory phase to the limb buds, and continued myogenic 

differentiation requires the down-regulation of Pax proteins and is dictated by downstream 

MRFs, including most importantly Myod1 and Mrf4. 

1.2.2.2 Myogenic regulatory factors 

Myod1 was first identified over 20 years ago for its ability to convert cultured fibroblasts to a 

myogenic fate in vitro, and was also found to cause myogenic conversion in multiple primary cell 

types (Choi et al., 1990; Lassar et al., 1986; Weintraub et al., 1989). Three related genes were 

soon discovered, Mrf4, Myf5 and Myogenin, and together they make up the myogenic 

regulatory factor (MRF) gene family that is critical for muscle development (Weintraub et al., 

1991). While some functional redundancy is observed between these factors, careful dissection 

of the regulatory network controlling myogenesis has revealed distinct roles for these genes, 
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often related to temporal or spatial expression patterns as much as protein sequence (Berkes 

and Tapscott, 2005).  

The MRFs belong to the basic helix-loop-helix (bHLH) family of transcription factors (TFs), due to 

their tertiary protein structure, and each contains a conserved basic DNA binding domain which 

recognises the DNA sequence CANNTG, called the E box (Blackwell and Weintraub, 1990). The E 

box DNA motif is found in the promoters and enhancers of many muscle specific genes, giving 

the MRFs their myogenic activity (Lassar et al., 1989). While sharing this common mechanism, 

differences in spatial and temporal expression in vivo, as well as association with multiple 

different co-factors and regulators, result in slightly different activities. Myf5 is first expressed 

in the dorso-medial region of the somites, which give rise to epaxial (trunk) muscles, while 

Myod1 is expressed slightly later in the dorso-medial somite, giving rise to hypaxial muscles 

(Kablar et al., 1998). Mutation of one of these TFs alone does not result in loss of any major 

muscle groups, with compensatory upregulation in the remaining MRF indicating a large degree 

of redundancy (Braun et al., 1992; Rudnicki et al., 1992). However, homozygous loss of both 

Myod1 and Myf5 results in loss of all skeletal muscle, and while double KO mice are born alive, 

they are immobile and die shortly after birth (Rudnicki et al., 1993). Myogenin on the other hand 

appears to be more important for terminal myoblast differentiation, both due to its later onset 

of expression and as murine Myogenin KOs do have myoblasts, but have poorly developed 

skeletal muscle (Hasty et al., 1993; Nabeshima et al., 1993). The final member of the MRF family, 

Mrf4, appears to be involved in both early myogenic specification and later terminal 

differentiation. This role is supported by early (E9) and later (E16) periods of Mrf4 expression in 

mice corresponding to muscle specification and terminal differentiation phases, as well as 

rescue of Myogenin KOs by Mrf4 expression at the Myogenin promoter and rescue of muscle 

loss in Myf5:Myod1 double KOs in which Mrf4 is unaffected (Kassar-Duchossoy et al., 2004; Zhu 

and Miller, 1997). A schematic summarising the core myogenic regulatory factor network is 

presented in figure 1.7 below. 
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Some of the difference in functional effects of the MRFs is dependent on their interactions with 

co-factors. MRFs are capable of forming homodimers and heterodimers with other factors, and 

one group of bHLH transcription factors called the E proteins appear particularly important for 

promoting myogenesis. E proteins efficiently bind E box sites found at myogenic promoters, and 

studies have shown members of the E protein family including E2-2, HEB and E12/E47 can form 

heterodimers with any of the MRFs; however preference for certain pairings is apparent even in 

vitro (Blackwell and Weintraub, 1990). Similar to the MRFs, E proteins also show significant 

redundancy, as single KOs of each of the E proteins does not result in loss of skeletal muscle 

(Berkes and Tapscott, 2005).  

1.2.2.3 Myogenic co-factors 

Another important class of myogenic transcription factors are the myocyte enhancer factor 2 

(Mef2) proteins (Black and Olson, 1998). There are four alternatively spliced Mef2 gene products 

in vertebrates, Mef2A-D, and they are generally expressed very widely during development, with 

the exception of Mef2C, which is found only in muscle, brain and spleen tissue (Martin et al., 

1993, 1994). These TFs belong to the MADS (MCM1, agamous, deficiens, serum response factor) 

box containing family, and bind a DNA motif found in many muscle-specific gene promoters 

(Gossett et al., 1989). The Mef2 binding site is often situated close to an E box in myogenic 

Figure 1.7 The myogenic regulatory factor network. 

Myogenesis is initiated in the developing somites by 

expression of the homeodomain proteins Six 1 and 4, 

which in turn induce expression of Pax 3. Pax 3 induces 

expression of key MRFs including Myf5 and MyoD. At 

later stages of myogenesis, Myogenin expression is 

induced by the upstream MRFs, enabling terminal 

differentiation. Solid black arrows indicate known 

interactions at the transcriptional level, while dashed 

arrows indicate indirect genetic interactions. (Adapted 

from Bismuth and Relaix, 2010). 
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promoters and enhancer regions, and indeed Myod1 and Mef2 have been shown to interact 

directly in vitro to synergistically activate transcription of downstream targets (Molkentin et al., 

1995; Wasserman and Fickett, 1998). Additionally, Mef2A overexpression in cultured cells can 

cause conversion to the myogenic lineage via interaction with Myod1 (Kaushal et al., 1994). Like 

the other myogenic factors mentioned, there appears to be some functional redundancy 

between Mef2 members, as skeletal myogenesis appears normal in the absence of Mef2B, C and 

D, while the role of the Mef2 TFs is thought to be in mediating terminal myogenic differentiation, 

as expression of these proteins occurs following Myogenin expression (Edmondson et al., 1994; 

Estrella et al., 2015; Lin et al., 1997).   

The MRFs are also negatively regulated by other bHLH TFs, including most notably the Id family 

as well as Twist, MyoR and Mist-1. The Id (Inhibitor of DNA binding) family is expressed by four 

different genes in mice and humans, Id1, Id2, Id3 and Id4 (Benezra et al., 1990; Lasorella et al., 

2014; Riechmann et al., 1994). Id proteins inhibit myogenesis in a dominant negative manner by 

forming heterodimers with E proteins, sequestering them from interacting with the MRFs. As Id 

proteins do not contain a basic region, they cannot bind DNA, and thus prevent E protein binding 

to myogenic promoters, inhibiting myogenesis (Norton et al., 1998). Like Id proteins, Twist 

inhibits myogenesis by binding E proteins and sequestering them from the MRFs, however Twist 

also contains a basic region, which allows it to also form heterodimers with Mef2 TFs (Spicer et 

al., 1996). Unlike Id and Twist, MyoR and Mist-1 bind MRFs directly via interactions at their basic 

region. While MRF/MyoR and MRF/Mist-1 heterodimers are capable of binding E boxes at gene 

promoters, these complexes are unable to initiate transcription, thereby dominantly negatively 

regulating the MRFs and myogenic differentiation (Lemercier et al., 1998; Lu et al., 1999).  

Further control of myogenesis is provided by epigenetic regulators including histone acetylases 

(HATs), histone deacetylases (HDACs) and chromatin remodelling agents such as the SWI/SNF 

complexes (Berkes and Tapscott, 2005). For example, the HAT p300 is found in complexes with 

Myod1 in differentiating C2C12 myotubes, and p300 is necessary for muscle-specific gene 
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expression (Puri et al., 1997). While HATs typically promote gene expression, HDACs tend to 

repress transcription, and indeed interactions between HDAC4 and HDAC5 with Mef2 proteins 

inhibit expression of myogenic genes containing Mef2 promoters (Lu et al., 2000; McKinsey et 

al., 2001). The involvement of SWI/SNF complexes in myogenesis is demonstrated by the 

requirement of BRG1 and BRM for Myod1-mediated gene expression, and it is likely that these 

SWI/SNF factors are recruited to myogenic loci by Myod1, as supported by co-

immunoprecipitation of Myod1, P300 and BRG1 from C2C12 myotubes, a well-established 

myoblast cell line (de la Serna et al., 2001; Simone et al., 2004; Yaffe and Saxel, 1977). 

Additionally, the SWI/SNF protein BAF60 appears instrumental to Myod1 function, as inhibition 

of this subunit by preventing p38 signalling prevents recruitment of SWI/SNF to myogenic 

promoters, inhibiting Myod1 activity (Simone et al., 2004). Indeed recent attempts to generate 

skeletal muscle from human embryonic stem cells have reconfirmed the importance of BAF60, 

as forced expression of BAF60C with Myod1 commits human ES cells to the myogenic lineage, 

without the need for mesodermal directed differentiation (Albini et al., 2013). 

Finally, an emerging theme in control of differentiation across multiple cell lineages in 

development is regulation by micro RNAs (Ambros, 2004; Bartel, 2004). Micro RNAs (miRNAs) 

are typically ~22 nucleotide single-stranded RNA molecules produced via cleavage of pre-miRNA 

transcripts by the cytoplasmic processing enzyme Dicer (Lund and Dahlberg, 2006). They 

function via complementary binding to specific mRNA sequences, thereby negatively regulating 

that mRNA by targeting it for degradation or inhibiting translation. As with other lineages, 

miRNAs are emerging as a major regulator of myogenesis, with three miRNAs in particular, 

miRNA-206, miRNA-1 and miRNA-133, being key to skeletal muscle development and having 

muscle-specific expression patterns (Luo et al., 2013). While a detailed explanation of the 

function of specific miRNAs is beyond the scope of this introduction, miRNAs have been 

implicated in regulating multiple stages of myogenesis, from initial cell fate commitment and 
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exit of the cell cycle to MRF and Mef2 regulation and even in myoblast fusion and fibre sub-type 

decisions (Chen et al., 2010; Hirai et al., 2010; Naya and Olson, 1999; van Rooij et al., 2009).  

1.2.3 Functional maturation of the neuromuscular system 

Once motor neurons and muscle are formed in the developing embryo, and motor axons have 

been correctly guided to their specific muscle targets, the next stage in development of the 

neuromuscular system is the formation and maturation of the specialised synapse between 

these cells, the neuromuscular junction (NMJ). This process occurs around E12-E13.5 in rodents, 

and requires signalling and activity from both the presynaptic motor axon terminal and the post-

synaptic muscle end plate (Sanes and Lichtman, 1999). There is also increasing evidence that 

perisynaptic Schwann cells (PSCs) or terminal Schwann cells, a PNS glial-cell type found 

associated with NMJs, are important regulators of NMJ function and maturation, revealing this 

to be a complex and dynamic process (Darabid et al., 2013; Reddy et al., 2003).  

Prior to arrival of motor axons at skeletal muscles, muscle fibres show some level of pre-

patterning, with clusters of ionotropic acetylcholine receptors (AChRs) forming at the centre of 

myofibres (Yang et al., 2001). This neuron-independent pre-patterning has been shown to 

influence the location of mature NMJs in vivo, and while it is independent of neurally derived 

factors including agrin, it is dependent on the Muscle specific tyrosine kinase (MuSK) (Kim and 

Burden, 2008; Vock et al., 2008; Yang et al., 2001). Once motor axons reach these pre-patterned 

sites, poly-innervated NMJs are formed, with many MNs competing to synapse with the same 

muscle fibres at the same synapses (Tapia et al., 2012; Wyatt and Balice-Gordon, 2003). While 

functional signalling can occur at these immature NMJs, maturation of both the pre- and post-

synaptic compartments is necessary for controlled and efficient muscle activity (Darabid et al., 

2014).  
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1.2.3.1 Post-synaptic maturation 

Post-synaptic maturation is characterised by an increase in the number and clustering of AChRs 

on muscle fibres, and this is largely driven by interactions between the proteoglycan agrin and 

its receptor MuSK. Genetic studies on agrin and MuSK have revealed the importance of these 

factors to NMJ formation and maturation, as defects in NMJ synaptogenesis are seen in KO mice 

of both genes. MuSK is a transmembrane tyrosine kinase receptor that is concentrated at the 

post-synaptic endplate and co-localises with AChRs, while agrin is secreted into the extracellular 

space by motor axon terminals (as well as other sources) where binding triggers MuSK 

autophosphorylation, leading to increased AChR clustering at the endplate (Burgess et al., 1999; 

DeChiara et al., 1996; Valenzuela et al., 1995). Agrin KO mice show multiple defects in NMJ 

development, particularly after neuronal innervation, with AChRs failing to cluster and instead 

being uniformly spread out across the sarcolemma, as well as impaired arborisation and 

overgrowth of MN axons (Gautam et al., 1996). MuSK KO mice show a similar impairment in 

AChR clustering, however this is even more severe than in agrin KOs, with loss of even the 

neuronal-independent AChR pre-patterning (DeChiara et al., 1996).  

Another transmembrane protein, low-density lipoprotein receptor-related protein 4 (LRP4), is 

also important to AChR clustering both before and after innervation. LRP4 serves as an agrin co-

receptor for MuSK, and mice lacking LRP4 have a similar phenotype to MuSK KOs (Weatherbee 

et al., 2006). Additionally, LRP4 association with MuSK appears to be the critical step in MuSK 

activation, as this can cause AChR pre-patterning and clustering even in the absence of agrin 

(Kim et al., 2008).  

The downstream activity of MuSK is mediated partly by its recruitment of proteins of the post-

synaptic density (PSD), including neuregulin receptors and rapsyn. Rapsyn is capable of 

clustering AChRs at the post-synaptic endplate, and rapsyn KOs show a lack of AChR clustering, 

instead having AChRs uniformly spread across their muscle fibres, similar to MuSK KOs (Gautam 

et al., 1995). Neuregulin receptors on the other hand are not directly involved in AChR clustering, 
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but instead influence AChR gene transcription and protein production (Jo et al., 1995; Sandrock 

et al., 1997). This is of particular interest, as the nuclei of syncytial myofibres display differential 

gene expression profiles, with sub-synaptic nuclei transcribing much higher levels of AChR mRNA 

than non-synaptic nuclei (Burden, 1993). Supporting this hypothesis, mice lacking the 

neuregulin-1 protein or its tyrosine kinase receptors ErbB2 or ErbB3 show aberrant development 

of NMJs, and overexpression of ErbB2 in murine muscle in vivo causes impaired synaptogenesis 

and a diffuse distribution of AChRs reminiscent of agrin KOs (Ponomareva et al., 2006; 

Riethmacher et al., 1997; Wolpowitz et al., 2000). While neuregulin signalling has a clear 

influence on NMJ formation and maturation, it is not clear if this is a direct effect, or possibly 

mediated via PSCs, as these glia are absent in mice lacking neuregulin-1, ErbB2 or ErbB3, and a 

further study showed that MN or muscle derived neuregulin-1 is not required for AChR 

clustering (Jaworski and Burden, 2006; Riethmacher et al., 1997; Wolpowitz et al., 2000).  

Other important influences on post-synaptic maturation include the effect of matrix 

metalloproteinases (MMPs) and even acetylcholine itself. Interestingly, acetylcholine signalling 

appears to negatively regulate AChR clustering in an activity-dependent negative feedback loop, 

opposing the clustering effects of agrin/MuSK and rapsyn while reducing AChR expression 

(Misgeld et al., 2005). This effect is even strong enough to partially rescue agrin KO mice, as 

double KOs for both choline acetyl-transferase (CHaT) and agrin show relatively normal AChR 

clustering (Misgeld et al., 2005). This activity is thought to prevent or disassemble ectopically 

located AChR clusters that do not oppose a MN terminal that also supplies clustering signals 

such as agrin (Darabid et al., 2014). MMPs influence synaptic maturation via controlling levels 

of agrin in the extracellular matrix. MMP3 has been shown to cleave agrin, and MMP3 KO mice 

have increased levels of agrin at NMJs and a higher density of AChRs (VanSaun and Werle, 2000; 

VanSaun et al., 2003). MMP3 activity may be mediated by PSCs, as it has a perisynaptic 

localisation, co-localising with PSC processes in vivo (VanSaun and Werle, 2000; VanSaun et al., 

2003).  
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1.2.3.2 Pre-synaptic maturation 

Pre-synaptic maturation is characterised not only by synapse elimination at multiply-innervated 

NMJs, but also increased neurotransmitter vesicle clustering at the active zone, more active 

zones per synapse and changes in calcium channel subtype and distribution. Many factors 

influencing these changes have been identified, and can largely be split into two main groups: 

extracellular matrix (ECM) proteins and secreted growth factors. 

ECM proteins important to pre-synaptic maturation include laminin and collagen family 

members, which are vital to early and later NMJ maturation respectively. Laminins are 

multidomain heterotrimeric glycoproteins produced by muscle that contain one α, one β and 

one γ chain to form a single functional unit (Aumailley et al., 2005). There are multiple isoforms 

of each laminin chain, and laminin β2 seems particularly important for NMJ maturation, as it is 

included in all synaptically-localised laminins, and mice lacking this subunit have fewer and 

smaller active zones with poorly clustered neurotransmitter vesicles and impaired functional 

properties (Knight et al., 2003; Noakes et al., 1995). This influence is mediated by laminin β2 

binding to pre-synaptic calcium channels, which clusters calcium channels at the active zone, in 

turn leading to recruitment of other active zone components such as bassoon (Chen et al., 2011; 

Nishimune et al., 2004; Singhal and Martin, 2011). Type IV collagen α subunits are also important 

for pre-synaptic vesicle clustering, with α2 chains contributing to embryonic development, while 

α3 and α6 chains are predominantly involved in postnatal maturation (Fox et al., 2007). Muscle 

derived collagen XIII appears vital for both pre- and post-synaptic maturation, as mice deficient 

for this protein show reduced AChR clustering, incomplete adhesion of pre- and post-synaptic 

sites, and invasion of PSC processes into the synaptic cleft (Latvanlehto et al., 2010).  

Fibroblast growth factor (FGF) signalling is also important to early stages of NMJ development, 

as revealed by mice lacking the presynaptic FgfR 2B receptor, which show reduced vesicle 

clustering in MN terminals and poor NMJ maturation (Fox et al., 2007). The main FGFs 

responsible for this signalling are muscle-derived Fgf7, 10 and 22 (Chen et al., 2011; Fox et al., 
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2007). Other muscle-derived growth factors important for NMJ maturation include GDNF (Glial-

cell-derived neurotrophic growth factor) and BDNF (Brain-derived neurotrophic growth factor), 

however these factors influence MN survival and synapse elimination rather than subcellular 

changes and specialisations. GDNF promotes MN survival, and overexpression of the muscle 

isoform delays synapse elimination resulting in NMJs innervated by multiple axons (Henderson 

et al., 1994; Nguyen et al., 1998). While mature BDNF (mBDNF) has similar effects to GDNF, 

BDNF is first produced as pro-BDNF, which has been shown to promote synapse elimination (Je 

et al., 2013). The proteolytic cleavage of pro-BDNF to form mBDNF may be carried out by MMPs 

including MMP3 which is localised to the perisynapse along with PSCs, indicating that this may 

be another mechanism through which PSCs influence NMJ maturation (Darabid et al., 2014; Je 

et al., 2013).  

1.2.3.3 Activity dependent maturation 

Once the pre- and post-synaptic specialisations necessary to form a synapse are established, 

further maturation to form a mature NMJ is necessary, and a major contributing factor to this 

process is neuronal activity at the synapse. As mentioned previously, synapses initially form with 

multiple MN terminals making contact with a single post-synaptic end plate, however precise 

and controlled motor activity requires each muscle fibre to be innervated by a single MN (Wyatt 

and Balice-Gordon, 2003). During post-natal development, presumptive axon terminals 

compete to occupy the synapse in a highly dynamic, activity-dependent fashion that results in a 

single MN innervating each muscle fibre (Walsh and Lichtman, 2003). This competition between 

axon terminals appears to be based on strength or efficacy of activity, as MNs lacking choline 

acetyl-transferase (ChAT), the enzyme responsible for acetylcholine synthesis, cannot compete 

with MNs possessing the enzyme for synaptic connections, and are preferentially eliminated 

(Buffelli et al., 2003).  

While the strength of activity is important for synapse elimination, the pattern of activity also 

influences this competition. MN activity measured by electrophysiology in vivo reveals a gradual 
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shift from initially synchronous firing at early post-natal stages (P0-P4) to more and more 

asynchronous activity at later stages during the synapse competition phase (P4-P10), and finally 

complete asynchrony by the end of synapse elimination (P14) (Buffelli et al., 2002; Personius 

and Balice-Gordon, 2001). This is supported by experiments showing that artificially imposing 

asynchronous activity on competing terminals promotes synapse elimination, while imposing 

synchronous activity delays or prevents elimination (Favero et al., 2012). Terminals that have 

more activity also fire out of synchrony with weaker terminals more often, strengthening the 

selection of the active terminal over its competitors (Favero et al., 2012). Differences in firing 

rate or strength may be detected by the muscle end plate or potentially by PSCs, which have 

been shown to compete with MN axons for contacts on the synapse, can detect different firing 

activity from separate axonal inputs, and are responsible for removing retraction bulbs (the 

“losing” axon terminal) from the proximity of the muscle (Bishop et al., 2004; Darabid et al., 

2013; Smith et al., 2013). The activity of PSCs at the maturing NMJ have also been linked to 

morphological changes in the structure of the synapse from an immature oval shape to a 

characteristic “pretzel shape” seen in mature NMJs, due to their association with MMP3 

expression and the change in morphology of these cells to a highly branched structure in a 

timeframe corresponding to NMJ maturation (Brill et al., 2011). It is also likely that this 

morphological change is activity-dependent, as it occurs during the synaptic competition phase 

of development, and a key driver of this transformation is the loss of AChRs from the post-

synaptic membrane, which may result from acetylcholine signalling from the terminal bouton 

(Marques et al., 2000; Misgeld et al., 2005). This may be mediated muscle-expressed laminins 

acting in an autocrine role, as topological maturation fails to proceed in murine double mutants 

of laminin α4 and α5, and are delayed in mice lacking laminin α4 (Nishimune et al., 2008). This 

role of laminin appears to be mediated by laminin-dependent clustering of dystroglycan on the 

post-synaptic muscle membrane, revealing the complex bi-directional signalling and 
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interdependent mechanisms occurring at both pre- and post-synaptic partners to coordinate 

NMJ formation and maturation (Nishimune et al., 2008). 

1.3 Stem Cells 

Stem cells are characterised by two key properties; they are capable of indefinite self-renewal, 

and they can differentiate into one or more specialised cell types of the organism in response to 

the right stimuli. There are four broad categories of stem cells, which include embryonic stem 

cells (ESCs), adult or somatic stem cells (SSCs), induced pluripotent stem cells (iPSCs) and cancer 

stem cells (CSCs) (Alvarez et al., 2012). While all stem cells are capable of differentiation into 

specialised cell types, the potency of each type of stem cell differs, ranging from totipotent to 

unipotent. A totipotent stem cell is capable of producing every cell type found in the body, as 

well as all extra-embryonic tissues such as the placental trophectoderm, and is represented by 

the zygote post-fertilisation of an egg (Rossant and Cross, 2001). Pluripotent stem cells, which 

includes ESCs, embryonic germ cells and iPSCs, are capable of producing all cells of the body, but 

cannot produce extra-embryonic tissues. Multipotent, oligopotent and unipotent stem cells are 

typically restricted to one cell lineage, or even a single cell type as in the case of unipotent stem 

cells. This last category includes most SSCs, including muscle satellite cells, neural stem cells and 

mesenchymal stem cells. 

The majority of work using stem cells has traditionally been carried out with murine ESCs 

(mESCs) due to their well-defined culture conditions and relatively fast cell cycle; however the 

medical potential and ethical advantages of human iPSCs has rapidly expanded research on this 

stem cell subtype in recent years. While all of the work detailed in this thesis utilises mESCs, an 

understanding of the defining features of each type of stem cell is valuable, particularly as future 

extensions to this work could incorporate the use of human stem cells, especially human iPSCs. 
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1.3.1 Stem cell subtypes 

1.3.1.1 Embryonic stem cells 

Embryonic stem cells (ESCs) are obtained by enzymatic dispersion of the inner cell mass of a pre-

implantation blastocyst, and are capable of indefinite self-renewal as well as differentiating into 

any cell from all three germ layers of the body, excluding extra-embryonic tissues. Mouse ESCs 

grow in culture as round, compact colonies that are dependent on leukaemia inhibitory factor 

(LIF) to maintain pluripotency independent of FGF signalling (Pera and Tam, 2010). LIF, produced 

by the endometrium during implantation in vivo, maintains pluripotency and self-renewal by 

phosphorylating STAT3 via its receptor, Gp130, expressed on the surface of ESCs (Niwa et al., 

1998; Stewart et al., 1992; Williams et al., 1988).  

The first ESCs were obtained from murine blastocysts, and were initially cultured on layers of 

chemically arrested mouse embryonic fibroblasts (MEFs) to maintain pluripotency (Evans and 

Kaufman, 1981; Martin, 1981). The first human ESCs were successfully cultured from human 

blastocysts in 1998, yet efficient generation of hESCs wasn’t achieved until 2004 (Cowan et al., 

2004; Thomson et al., 1998). However, while these hESCs appear pluripotent and capable of self-

renewal, they require stimulation of FGF/activing pathway for growth, are LIF independent, have 

a flatter colony morphology, and cannot be passaged by enzymatic dissociation into single cells. 

These features more closely resemble mouse peri-implantation epiblast-derived SCs, which are 

partially primed to differentiate into particular lineages, rather than true “naïve”, LIF-dependent 

ESCs (Brons et al., 2007; Nichols and Smith, 2009; Tesar et al., 2007). Recent advances in defining 

precise cultures conditions has led to the identification of small molecules that inhibit MEK and 

FGFR/GSK3 that are able to revert hESCs to a more naïve state. This protocol, called 2i or 3i 

conditions in reference to the number of inhibitors used, enables culture of hESCs independent 

of FGF signalling, while requiring LIF, resulting in round compact colonies as seen with mESCs 

(Ying et al., 2008).  
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The switch from naïve ESCs to primed epiblast-like stem cells (EpiSCs) appears to be dictated by 

epigenetic changes normally occurring during early blastocyst development (Nichols and Smith, 

2009). Significant differences in DNA methylation, X chromosome inactivation, histone 

modification and chromatin structure between EpiSCs and ESCs have been identified which 

prime the cells to specific lineages while altering responses to external signalling (Bibikova et al., 

2008; Guenther et al., 2010). Changes in miRNA expression and alternative splicing of key genes 

such as at the Dlk1-Dio3 locus have also been identified between ESCs and EpiSCs, and are 

known to be important in lineage commitment (Liu et al., 2010; Ng and Surani, 2011; da Rocha 

et al., 2008). Another major difference is that while both ESCs and EpiSCs are capable of 

teratoma (a tumour containing cells from all three germ layers) formation when injected into an 

adult animal, only ESCs are capable of generating chimeras with germ line transmission after 

integration into the blastocyst, a trait of vital importance in creating transgenic animals (Buehr 

et al., 2008; Pera and Tam, 2010). The establishment of naïve SCs from multiple species presents 

many opportunities both for efficient genetic engineering and research of developmental 

biology as well as generating specific differentiated cell types in vitro for surgical grafting or cell 

based assays. 

1.3.1.2 Induced pluripotent stem cells 

While mESCs have several advantages over hESCs for basic research, including faster 

differentiation and a shorter cell cycle, hESCs are by definition more relevant to human 

development and disease. However, hESCs are suffer from multiple ethical concerns, in some 

regions preventing their use in research entirely, mainly due to the creation of these cell lines 

resulting in the destruction of potentially viable human embryos. The development of induced 

pluripotent stem cells has resolved this issue, allowing the production of fully pluripotent human 

SCs from human somatic cells, by “reprogramming” differentiated cells back to a pluripotent 

state. 
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The first advances towards this goal were made with somatic cell nuclear transfer (SCNT), a 

technique where a donor somatic cell nucleus is injected into an enucleated recipient oocyte, 

resulting in the reprogramming of the donor nucleus to a pluripotent state. This technique 

famously allowed the creation of the first cloned animal, Dolly the sheep, however many draw 

backs including low efficiency, poor reproducibility and the inheritance of the mitochondria from 

the oocyte limited its uptake (Wilmut et al., 1997).  

The next major breakthrough in induced pluripotency came in 2006, with the transfection of 

four key pluripotency genes, Oct4, Klf4, Sox2 and cMyc, into mouse fibroblasts, causing 

reprogramming into induced pluripotent stem cells (iPSCs) (Takahashi and Yamanaka, 2006). 

This was quickly replicated with human fibroblasts to generate human iPSCs, providing a source 

of pluripotent human SCs free from ethical complications (Takahashi et al., 2007). These cells 

were shown to have pluripotency equal to ESCs initially via the generation of chimeric mice 

containing iPSC derived cells in all three germ layers (Okita et al., 2007). Following this, fully iPSC 

derived mice were generated in a tetraploid complementation paradigm, where a tetraploid 

blastocyst, normally incapable of producing a viable embryo, is “rescued” by injection of 

pluripotent stem cells. While tetraploid cells can produce the extraembryonic tissues, only the 

iPSCs can contribute to the embryo, proving their pluripotency (Zhao et al., 2009).  

Improvements on the original technique including the use of non-integrating plasmids as 

opposed to viral integration of the reprogramming factors (which can have unpredictable 

integration site related effects), and removal of cMyc (which can lead to increased tumour 

formation), have improved the safety and reliability of iPSC technology in recent years (Okita et 

al., 2008; Si-Tayeb et al., 2010). An additional advantage of iPSCs is the opportunity to produce 

patient-derived cell lines, carrying disease-specific mutations, accelerating the generation of in 

vitro models of the disease and opening the door to personalised medicine based on results 

from each patient’s own iPSC lines (Burkhardt et al., 2013; Chamberlain et al., 2010; Moretti et 

al., 2010). 
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1.3.1.3 Somatic and cancer stem cells 

Somatic stem cells (SSCs) are uni- or multipotent stem cells found in all postnatal tissues of the 

body. Like ESCs, they are capable of indefinite self-renewal as well as differentiation into 

specialised cell types that comprise the tissue they are resident in. The function of these cells is 

to maintain tissue homeostasis, as well as responding to signals elicited by damage to enable 

repair and regeneration of a tissue following injury (Voog and Jones, 2010).  

All SSCs express some common stem cell markers, including Oct4, Klf4 and Sox2, and each type 

of SSC also expresses markers specific to its lineage, such as CD271 in bone marrow SCs and 

CD105 in subcutaneous fat SCs (Zapata, 2013). Most somatic stem cells described to date are 

regulated by a specialised microenvironment called the stem cell niche, which comprises 

specialised cell types that regulate the proliferation of the SSCs in response to external signalling 

events, typically via close proximity to a vascular supply. Stem cell niches have been described 

in many tissues, including the intestinal epithelium, skin, bone marrow, brain and muscle 

(Gómez-Gaviro et al., 2012; Moore and Lemischka, 2006; Yin et al., 2013). Most SSCs are 

maintained in a quiescent state in the niche, with periodic phases of proliferation and 

differentiation induced to maintain tissue homeostasis, particularly in high-turnover tissues such 

as the intestinal epithelium or skin.  

While SSCs can be cultured and expanded in vitro, and have been successfully differentiated, for 

example from pancreatic SCs into insulin-producing β cells, these cultures are often time-

consuming and differentiation has a low efficiency (Ramiya et al., 2000). These drawbacks, 

possibly related to the normally quiescent nature of these cells in vivo, in addition to issues in 

harvesting sufficient numbers of cells from adult tissues, limit the use of these SCs in 

regenerative medicine applications or disease modelling. New approaches aimed at 

manipulating the niche itself with small molecules, biologics or biomaterials may enable 

endogenous SSC amplification and regeneration, and could represent a viable alternative 

regenerative strategy for some diseases (Lane et al., 2014).  
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Cancer stem cells are cells found within tumours or leukaemias that display traits characteristic 

of physiological SCs including expression of telomerase and pluripotency markers like Sox2, a 

relatively slow rate of division, and lack of differentiation markers (Alvarez et al., 2012). While 

initially suspected to be SSCs that accumulated mutations leading to uncontrolled proliferation, 

a more recent hypothesis is that these cells are cancer cells that have acquired these SC 

characteristics later, providing increased resistance to radio- or chemotherapy treatments that 

efficiently kill more rapidly proliferating cancer cells (Borovski et al., 2011).  

While all these stem cell types represent areas of active research today, further discussion of 

their properties is beyond the scope of this introduction. All the work presented in this thesis 

was carried out using murine ESCs, as the culture of these cells has been well established, and 

the faster proliferation and differentiation rates compared to human SCs is a significant 

advantage for proof of principle studies such as this. Another advantage offered by use of ESCs 

is the relative ease of genetic modification and clonal selection to create stable transgenic cell 

lines carrying genes of interest. This strategy can be used to introduce anything from fluorescent 

reporter proteins to known disease mutations, or even inducible transcription factors, enabling 

greater control over developmental and functional processes in ESC-derived cells. As ESCs are 

capable of producing cells from all three germ layers, directing their differentiation towards the 

desired cell type(s) is an important consideration for their use in in vitro modelling. A discussion 

of the directed differentiation and genetic modifications used in this study is presented in the 

following section.  

1.3.2 Directed differentiation  

Initial efforts to culture stem cells in vitro were focused on establishing media and conditions 

that were capable of maintaining stem cells (ESCs) in an undifferentiated, proliferative state. 

This is due to the fact that ESCs will undergo spontaneous differentiation if they do not receive 

specific signals maintaining them in the undifferentiated state. If cultured in suspension in vitro, 

ESCs will form embryoid bodies (EBs), spherical three-dimensional aggregates that recapitulate 
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aspects of early embryogenesis, and can express markers of all three germ layers (Itskovitz-Eldor 

et al., 2000; Kurosawa, 2007). If injected into immune-deficient mice, pluripotent stem cells will 

form a teratoma, a tumour composed of cell derivatives from all three germ layers, and in fact 

teratoma formation is often used as a test or benchmark for the pluripotency of stem cell lines 

(Aleckovic and Simón, 2008; Przyborski, 2005). 

Once ESCs could be maintained in an undifferentiated state in vitro, the next challenge was to 

control their differentiation into specific cell lineages of interest for use in research and 

potentially cell therapy and regenerative medicine. Much progress has been made in this area, 

with protocols developed to produce cells including contractile cardiomyocytes, various 

hematopoetic cell types, hepatocytes, pancreatic beta cells that secrete insulin and various cells 

of the neural lineage including dopamine and motor neurons as well as astrocytes and 

oligodendrocytes (Irion et al., 2008; Murry and Keller, 2008). For this work, we developed and 

optimised protocols for the production of motor neurons and their supporting glia, as well as 

their target tissue, skeletal muscle. The production of these cell lineages are discussed below.  

1.3.2.1 Motor neurons 

One of the first and most reproducible protocols for directed differentiation is that for motor 

neurons, first developed in the Jessel lab for mESCs and later adapted to work for hESCs (Li et 

al., 2005; Wichterle et al., 2002). Directing differentiation towards a spinal motor neuron fate 

relies on similar signalling pathways to those found in vivo during spinal cord development, with 

the key factors being retinoic acid (RA; produced by the somites and paraxial mesoderm in vivo) 

and sonic hedgehog (Shh; produced by the notochord and floorplate in vivo). As the spinal cord 

is patterned along the dorsoventral and rostrocaudal axes in response to gradients of Shh and 

RA respectively, supplying these signalling molecules to differentiating ESCs in vitro at specific 

concentrations results in a ventral spinal cord identity that gives rise to spinal motor neurons. 

For mouse ESCs, differentiation is initiated with chemical dissociation of ESC colonies followed 

by EB suspension culture. Activation of RA and Shh signalling for three days during EB 
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development results in roughly 30% of cells acquiring a MN identity, as determined by 

expression of Hb9 and Islet1, characteristic markers of post-mitotic MNs (Wichterle et al., 2002).  

While RA is relatively simple to synthesise, Shh is a protein, and preparations of purified Shh are 

relatively expensive and can have varying bioactivity. This potential variability can be avoided by 

use of small molecule agonists such as sonic hedgehog agonist (SAG), also reducing the cost of 

differentiation, an important factor to be considered in the case of scaling-up production for 

clinical purposes (Wichterle et al., 2002). Additionally, while up to 30% of cells may become post-

mitotic MNs, many contaminating and proliferative cells remain in the EB after differentiation. 

MNs must therefore be sorted from contaminating cell types if a pure MN population is desired, 

and proliferative cells must be eliminated, especially for clinical use, as these could pose a 

serious risk of tumour formation if grafted in vivo. 

1.3.2.2 Glia 

Some of the “contaminating” cells in EBs subjected to the MN differentiation protocol are likely 

to be CNS glia, as the same signalling molecules and pathways give rise to glia in regions 

overlapping the MN progenitor zone (pMN) at later time points in the developing spinal cord in 

vivo (Rowitch and Kriegstein, 2010). As glial cell production typically occurs after neurogenesis 

in vivo, and astrocytes are known to be produced in ventral neural tube overlapping the pMN 

domain, continued culture of EBs subjected to the MN differentiation should lead to the 

production of ventral spinal astrocytes (Kessaris et al., 2001). Indeed, immunostaining EBs 

subjected to MN differentiation for glial fibrillary acidic protein (GFAP), a key glial cell marker 

particularly prominent in astrocytes, reveals the presence of substantial numbers of astrocytes 

generated by these conditions (Bryson et al., 2014). 

In addition to astrocytes, spinal oligodendrocytes are also produced in high quantities from the 

pMN zone at later developmental time points in vivo (Rowitch and Kriegstein, 2010). While 

astrocyte production does not appear to require further factors, oligodendrocyte precursor 
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proliferation and maturation in vivo relies on FGF and platelet derived growth factor (PDGF) 

(Baron et al., 2000; Rogister et al., 1999). Efforts to produce oligodendrocytes from ESCs have 

recapitulated this signalling in vitro, resulting in relatively efficient production of 

oligodendrocyte precursors that express PDGFR-α and NG2, markers of this lineage, and 

subsequent removal of PDGF and FGF stimulation facilitates maturation into oligodendrocytes 

that express high levels of myelin basic protein (MBP), a marker of mature oligodendrocytes 

(Glaser et al., 2005; Izrael et al., 2007; Nishiyama et al., 2009). 

1.3.2.3 Muscle 

While the differentiation of ESCs into multiple ectodermal and endodermal lineages has been 

well characterised, including protocols to generate spinal MNs and glia documented in this 

study, the generation of mesodermal tissue, and particularly skeletal muscle, has remained 

elusive. This may be partly explained by the lack of paraxial mesoderm formation during EB 

differentiation, the major developmental source of skeletal muscle in vivo. Some success has 

been achieved using RA signalling to expand the myogenic progenitor population by 

recapitulating elements of in vivo myogenesis, or post-EB differentiation cell sorting by flow 

cytometry for PDGFRα and vascular endothelial growth factor receptor-2 (VEGFR-2) to enrich 

for paraxial mesoderm progenitors (Ryan et al., 2012; Sakurai et al., 2008). However, these 

approaches have low efficiency and do not produce defined cell populations. While attempts to 

induce skeletal muscle differentiation using external signalling factors have had limited success, 

alternative strategies driving myogenic differentiation using transgenic approaches have 

produced more encouraging results. 

The forced expression of Pax3 and/or Pax7 in mouse and human pluripotent SCs has been shown 

to enhance paraxial mesoderm formation during differentiation, and generates a population of 

cells that are capable of engraftment into host skeletal muscle fibres, restoring muscle 

functionality in dystrophic mice (Darabi et al., 2008a, 2011a, 2012). An alternative approach has 

been to drive ectopic expression of MRFs, with particular focus on Myod1, due to its ability to 
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induce myoblast formation in multiple cell types, and even to force conversion of primary 

fibroblasts, chondroblasts and retinal pigmented epithelium to the myogenic lineage (Choi et 

al., 1990; Iacovino et al., 2011). Inducible Myod1 transgene expression in pluripotent SCs results 

in the efficient production of skeletal myoblasts, and engraftment of induced cells into 

dystrophic mice revealed functional incorporation into host musculature with graft derived 

dystrophin expression evident (Ozasa et al., 2007; Tanaka et al., 2013).  

In this study we took a similar approach to those described above, generating a mESC line 

containing a Myod1 transgene under an inducible tetracycline response element (TRE). This cell 

line allows inducible Myod1 expression, driving induced cells towards a skeletal myogenic fate 

during EB differentiation.  

1.3.3 Stem cells in research 

The stem cell field has great potential for revolutionising the future of both basic research and 

clinical medicine, and the discovery of iPSCs has circumvented initial ethical concerns 

surrounding the use of ESCs. While exciting, it is the combination of stem cell technology with 

other disciplines and techniques, such as development, genetics, pharmacology and surgery that 

will ultimately provide the greatest benefits. For example, many successful differentiation 

protocols rely on a thorough understanding of in vivo development, recapitulating signalling 

pathways driving endogenous gene expression. Some of the techniques and applications of stem 

cells most relevant to this study are presented below. 

1.3.3.1 Genetic modification 

One of the greatest strengths of pluripotent SCs is the ability to introduce stable genetic 

modifications relatively quickly and easily to create transgenic cell lines. As ESCs or iPSCs can be 

expanded from single clonal colonies that can be screened for a desired mutation/insertion, the 

reproducibility of experiments using genetically modified cell lines is much higher than transient 

transfection into primary or cultured cell lines. Stable transfection also enables long-term 
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studies of gene function or cell development, whereas transient transfection can only be used 

to observe short-term effects. 

Genetic modification can be used in multiple scenarios, with possibly the most common being 

introduction of a reporter construct for a certain cell fate or lineage, or fluorescent proteins to 

facilitate imaging or lineage tracing studies. An example of this use in this study is the 

introduction of a GFP gene under the control of an Hb9 promoter in mESCs, enabling visual 

identification of MN differentiation. Creation of transgenic animals with ESCs containing these 

modifications allows visualisation of the in vivo development of the lineage or cell type of 

interest, while also helping visualise the effects of experimental manipulations pertinent to that 

cell type (Wichterle et al., 2002). Fusing a fluorescent protein to a protein of interest can also be 

used to visualise protein or organelle sub-cellular localisation, for example generation of 

transgenic animals containing an AChR-GFP fusion protein has been used to visualise NMJ 

formation and development in vivo, giving novel insights into this dynamic process (Gensler et 

al., 2001; Yampolsky et al., 2010). Fusing other short peptide sequences to target proteins can 

enable immunocytochemistry or modify protein expression, for example using a short myc-tag 

to facilitate labelling using anti-myc antibodies, or addition of a nuclear localisation sequence 

(NLS) or membrane trafficking sequence to force nuclear or membrane localisation respectively. 

Genetic modification can also be used to insert genes with a specific function either in normal 

physiology or development, or alternatively with a disease related phenotype or mutation. In 

the case of pluripotent SCs, this can be used to direct cellular differentiation, as in the case of 

skeletal muscle differentiation presented here, where an inserted TRE::Myod1 construct enables 

inducible expression of Myod1, driving myogenesis without the need for further external 

signalling factors. Another example from this study that demonstrates the value of stable 

genetic modification is the introduction of an optogenetic channel into ESCs, resulting in stable 

expression of Channelrhodopsin-2 (ChR2) in ESC-derived MNs (Nagel et al., 2003). This 

modification enables non-invasive control of ESC-derived MN activity via blue-light stimulation 
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of ChR2, leading to membrane depolarisation and action potential firing (Boyden et al., 2005). 

Optogenetics combined with reporters of activity such as genetically encoded calcium indicators 

(GECIs) should allow the non-invasive stimulation and reporting of neuronal activity in ESC-

derived populations, facilitating studies of network dynamics, activity driven behaviours such as 

muscle contraction, or even enabling external control of grafted ESC-derived neurons in vivo. 

Gene targeting and editing technologies, such as homologous recombination (HR) and zinc-

finger nucleases (ZFNs), or the more recently developed techniques of TAL effector nucleases 

(TALENs) and CRISPR, provide opportunities for more precise and refined genomic modification 

(Fontes and Lakshmipathy, 2013; Li et al., 2014). These techniques can be used to create cell 

lines with gene KO’s, insert known disease-causing mutations into endogenous genes to develop 

accurate pluripotent SC based models of disease, or even correcting patient-specific mutations 

in iPS cell lines in rescue experiments to investigate the influence of individual mutations. Using 

gene targeting to insert transgenes into a known genomic locus can also reduce variability and 

improve the reliability of experiments using modified cell lines. 

1.3.3.2 Stem cell therapy 

As pluripotent SCs are capable of indefinite self-renewal as well as having the potential to 

differentiate into any cell type, they present a great opportunity for treatment of otherwise 

incurable diseases by transplantation of healthy SC-derived cells into a patient. Degenerative 

diseases that result in gradual loss of specific cell types over time, or disease or injury resulting 

in damage to a particular organ could be treated by replacement of endogenous tissue(s) with 

grafted stem cell-derived tissue, fulfilling the endogenous role in the patient.  

The transplantation of pluripotent SCs differentiated into the hematopoietic lineage will provide 

a reliable source of blood products for transfusion as well as enabling treatment of many blood-

related diseases, such as immune deficiencies or reestablishment of hematopoietic SC niches 

following irradiation in the case of radiotherapy. Application of genetic modification could allow 
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the treatment of genetic diseases also, such as sickle cell anaemia (Hanna et al., 2007; Rideout 

et al., 2002). Generation of pancreatic beta cells provides an alternative, scalable source of 

transplant material for treatment of diabetes, and PSC-derived hepatocytes could be used in 

treating liver disease or injury, and even genetically modified to correct enzyme deficiencies or 

specific metabolic disorders (Asgari et al., 2013; Schulz et al., 2012). 

The differentiation of PSCs into multiple neural and glial lineages also presents an opportunity 

to treat CNS disorders, including potential treatments for currently incurable degenerative 

conditions such as multiple sclerosis, Parkinson’s disease and Huntington’s disease (Benraiss and 

Goldman, 2011; Lindvall, 2012; Wang et al., 2013). Motor neuron diseases present a more 

difficult target for cell-based therapies due to the precise connectivity required between CNS 

and peripheral targets, however multidisciplinary approaches using technologies including 

optogenetics may present an alternative method to drive motor activity, and our lab recently 

presented an encouraging proof-of-principle of this approach (Bryson et al., 2014).  

PSCs also represent an opportunity to treat muscular disease and injury, including the currently 

incurable muscular dystrophies. While muscle satellite cells represent the best target population 

for muscle regeneration, myogenic progenitors derived from human iPSCs have been shown to 

successfully integrate into mouse host muscle tissue, and restore dystrophin immunoreactivity 

and muscle function in dystrophic mice (Arpke et al., 2013; Darabi et al., 2012). Genetic 

correction of murine and human patient derived iPS cells to introduce a functional dystrophin 

gene has also been demonstrated, with successful transplantation of corrected cell after 

differentiation to restore muscle function (Filareto et al., 2013; Tedesco et al., 2012).  

1.3.3.3 Disease modelling 

While stem cell based therapies involving transplantation offer an alternative strategy for 

treating many difficult or incurable disorders, stem cell technology also presents another 

valuable opportunity; in vitro disease modelling, which is the focus of this thesis. The in vitro 
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differentiation of large numbers of defined, terminally differentiated cells facilitates the scalable 

production of cell—based assays for research, with the added benefits of fast and efficient 

genetic modification. The inherent scalability of PSCs makes them particularly applicable to 

large-scale pharmacological screening assays, as large quantities of differentiated cells can be 

produced. In addition, the potential for using patient-derived cells allows the generation of 

reliably faithful models of in vivo disorders, opening the door to personalised medicine while 

also increasing the confidence in the results obtained using these cultures. 

One area this may be particularly useful is in modelling neuromuscular circuits, including the 

development and maturation of the NMJ. Multiple recent studies into both amyotrophic lateral 

sclerosis (ALS) and spinal muscular atrophy (SMA), the two most common motor neuron 

diseases, have shown that distinct pathological changes are observed at the NMJ, often before 

the appearance of clinical symptoms (Fischer et al., 2004; Frey et al., 2000; Gould et al., 2006a; 

Kong et al., 2009; Murray et al., 2008). In fact, complete rescue of motor neuron death in a 

mouse model of ALS by deletion of the pro-apoptotic gene Bax did not prevent NMJ breakdown, 

and only slightly affected the progression of the disease (Gould et al., 2006a). These findings 

suggest that it is in fact the pathophysiology at the NMJ that is important for understanding the 

disease, rather than the later and possibly consequent events on the motor neurons themselves, 

highlighting the importance of understanding this structure. However, studying NMJs in vivo is 

technically difficult, requiring invasive biopsies only allowing observation of fixed points in time, 

and with extremely limited experimental manipulation (Thomson et al., 2012). These factors 

reveal the value of a defined, reproducible and expandable in vitro model of NMJs for functional 

analysis, disease modelling and pharmacological screening. 
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1.4 Aims and Objectives 

The aim of this study was to establish a reproducible in vitro model of neuromuscular circuit 

formation and neuromuscular junction development using murine embryonic stem cells, to 

enable functional characterisation of ESC-derived optogenetic MNs and skeletal myoblasts and 

provide a potential assay for pharmacological screening and investigation of neuromuscular 

disease mechanisms.  

To this end, I developed and characterised a MACS-sortable murine ESC line containing a stably 

expressed channelrhodopsin-2 transgene. A MACS-sortable murine ESC line containing an 

inducible Myod1 transgene was also generated to enable production of skeletal myoblasts, and 

these cell lines were functionally characterised in vitro. Co-cultures of ESC-derived MNs with 

ESC-derived and primary chick skeletal muscle were optimised and assessed for functional 

activity and morphological maturation, with particular emphasis on neuromuscular junction 

formation. 
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Chapter II 

Materials and Methods 

2.1 Materials 

2.1.1 Standard reagents for molecular biology 

 Lysogeny Broth (LB):    (Sigma) 

 LB Agar:     (Sigma) 

 Ampicillin:     (Sigma) Working concentration of 50µg/ml. 

 Kanamycin:     (Sigma) Working concentration of 50µg/ml. 

 Hygromycin:     (Sigma) Working concentration of 50µg/ml. 

 1% Agarose gel:    (Sigma) 500mg agarose in 50ml 1x TAE buffer. 

 TAE buffer:     40mM Tris-Acetate, 1mM EDTA 

 

2.1.2 DNA Constructs 

Plasmid Vector ES Cell Line 

CAGs::Myod1 pTol2 Yes 

p2Lox-Myod1 p2Lox Yes 

Myogenin::CD14 pTol2 Yes 

p2Lox-Myf5 p2Lox - 

 

Figure 2.1 Table of DNA 
constructs. Constructs 
were designed by 
I.Lieberam and produced 
by M.Crossley. 
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2.1.3 Cell Culture Media and Reagents 

Sterile PBS:      (Sigma) Phosphate buffered saline, pH 7.3 

HBSS:  (Life Technologies) Hank’s Balanced Salt 

Solution 

Trypsin:      (Life Technologies) 0.25% Trypsin 

AccuMax dissociation buffer:    (Millipore) 

Recovery™ Cell Culture Freezing Medium: (Life Technologies) 

Matrigel:     (BD Biosciences) 

5-Fluoro-2’-deoxyuridine (FDU):  (Sigma) 

Lipofectamine 2000:     (Life Technologies) 

Opti-MEM:     (Life Technologies) 

Paraformaldehyde:    4% in PBS, with 15% Sucrose (Sigma) 

VectorShield:     (Vector Laboratories) 

 

Mouse Embryonic Fibroblast Cell Media: DMEM (Life Technologies) 

10% Fetal Bovine Serum (Hyclone) 

      1% Penicillin/Streptomycin (Life Technologies) 
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Mouse Embryonic Stem Cell Media:  DMEM (Life Technologies) 

15% Fetal Bovine Serum (Hyclone) 

      1% Penicillin/Streptomycin (Life Technologies) 

1% Non-essential amino acids (Life 

Technologies) 

      1% Nucleosides (Chemicon) 

      2mM L-Glutamine (Life Technologies) 

0.1 mM 2-mercaptoethanol (Sigma) 

1000 u/ml LIF (Chemicon) 

0.01% FGFR inhibitor (1:10,000, Stemolecule) 

0.2% Plasmocin (1:500, InvivoGen) 

 

Motor Neuron Media (ADFNK):  Advanced DMEM/F12 (Life Technologies) in a 

1:1 ratio with Neurobasal medium (Life 

Technologies)  

10% Knock-out serum replacement (Life 

Technologies) 

      1% Penicillin/Streptomycin (Life Technologies) 

      2mM L-Glutamine (Life Technologies) 

      0.1mM 2-mercaptoethanol (Sigma) 
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Primary Hippocampal Media:   Neurobasal media (Life Technologies)  

2% B27 (Life Technologies) 

1% Glutamax (Life Technologies) 

1% Penicillin/Streptomycin (Life Technologies) 

[2% Foetal Calf Serum {Attachment} (Life 

Technologies)] 

 

Myoblast Media:     DMEM (Life Technologies) 

      10% Fetal Bovine Serum (Hyclone) 

      1% Penicillin/Streptomycin (Life Technologies) 

      2mM L-Glutamine (Life Technologies) 

 

Myotube fusion Media:    DMEM (Life Technologies) 

      2% Fetal Bovine Serum (Hyclone) 

      1% Penicillin/Streptomycin (Life Technologies) 

      2mM L-Glutamine (Life Technologies) 

 

Chick Primary Muscle Media (CPMM):  DMEM (Life Technologies) 

      10% Horse Serum 

      5% Chick Embryo Extract 



62 
 

      1% Penicillin/Streptomycin (Life Technologies) 

 

MACS Buffer:     D-PBS without calcium (Life Technologies) 

      0.5% BSA (Life Technologies) 

      5U/ml trypsin-free DNase I (Sigma) 

Hybridoma Media:    IMDM (Life Technologies) 

      10% Fetal Bovine Serum (Hyclone) 

1% Penicillin/Streptomycin (Life Technologies) 

      1% L-Glutamine 
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2.2 Methods 

2.2.1 Molecular biology 

2.2.1.1 DNA Restriction Endonuclease Digestion  

Roughly 1µg of plasmid DNA was mixed with the relevant 10x restriction endonuclease buffer 

(New England BioLabs; NEB) to a final concentration of 1x in nuclease-free water. Bovine serum 

albumin (NEB) was added as necessary dependant on the enzymes used (see NEB catalogue). 

The reaction was incubated at 37°C for 1-2 hours, and products where then run on an 

electrophoresis gel. 

2.2.1.2 DNA Electrophoresis and Extraction 

All DNA samples were run in a 1% agarose gel in TAE Buffer containing 0.5µg/ml ethidium 

bromide to visualise the DNA under ultraviolet illumination. Samples were diluted in 6x Orange 

loading dye to a final concentration of 1x, and run at 100V alongside a 2-Log DNA ladder (New 

England Biolabs). Images of the final gel were taken using a digital camera and UV illuminator. 

Desired products were cut from the gel with a surgical blade, and DNA was extracted using a 

“Gel Extraction Kit” (Qiagen) following the manufacturer’s instructions. 

2.2.1.3 Plasmid ligation 

Linearised products were mixed with linearised vector DNA in a 3:1 molar ratio, to a final volume 

of 5µl with 1µl T4 DNA ligase (Promega). This reaction was mixed with 5µl of 2x Rapid ligation 

buffer (Promega), and incubated at room temperature for 1 hour. Ligated DNA was either used 

immediately for transformation or stored at -20°C for future transformation. 

2.2.1.4 Bacterial Transformation, Selection and Plasmid Purification 

The 10µl ligation product was added to 100µl chemically competent DH5α bacteria, prepared in 

advance using the Zymo Research Transformation Kit according to manufacturer’s instructions, 
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on ice for 1 hour. The bacteria were then heat shocked at 42°C for 45 seconds in a pre-heated 

water bath, and allowed to recover on ice for 2 minutes. After recovery, 1ml of warmed LB was 

added, and incubated in a bacterial shaker at 37°C for 1 hour. The sample was then spread on 

10cm LB agar plates containing relevant antibiotics and incubated overnight at 37°C to allow 

selection of transformed clonal colonies. 

Selected colonies were further cultured in 5ml LB suspension with antibiotics at 37°C overnight 

in a bacterial shaker. Plasmid DNA was purified using Qiagen Mini Prep kits as per 

manufacturer’s instructions. Clones containing the desired product were often further cultured 

in 50ml LB overnight at 37°C and purified using a Qiagen Midi Prep kit to achieve a higher 

concentration and purity of DNA plasmid. Concentrations were determined using a Nanodrop 

spectrophotometer.   

2.2.1.5 Polymerase Chain Reaction (PCR) 

25µl of 2x PCR Ready Mix (Thermo Scientific) was mixed with 1µg of template DNA and 5µM of 

forward and reverse primers, made up to a final volume of 50µl with nuclease-free water. This 

reaction mixture was loaded into a PCR thermocycler with the following settings: 

1. Denaturing  - 95°C 1 minute 

2. Denaturing  - 95°C 1 minute 

3. Annealing  - 60°C 1 minute 

4. Extension  - 72°C 1 minute 

5. Final Extension - 72°C 5 minutes 

2.2.1.6 Inverse PCR Mapping 

Genomic DNA was harvested from 1 million ESCs using the DirectPCR Lysis Reagent for 

cells (Viagen Biotech) following the manufacturer’s instructions. Briefly, cell samples 

were centrifuged at 3000 RCF for 5 minutes. The supernatant was discarded, while the 

 Repeated x30 
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pellet was resuspended in 200μl of DirectPCR Lysis Reagent supplemented with 

0.2mg/ml Proteinase K (Sigma), and then incubated at 55°C for 5 hours. 

Lysed samples were then heated to 85°C for 15 minutes and then stored at -20°C. 

Genomic DNA was obtained from lysates by addition of NaCl to a concentration of 

250nM, with 0.7 volume isopropanol to promote precipitation. Samples were then 

centrifuged at 3000 RCF at 4°C for 2 minutes, and the opaque pellets were washed once 

in 70% ethanol prior to resuspension in 50μl water and concentration determined by 

nanodrop. 

For inverse PCR, 500ng of genomic DNA was digested with AluI or DPNII using 

appropriate buffers in a volume of 20µl at 37°C for 1 hour, and then 430µl of water was 

added and the sample heat inactivated at 70°C for 15 minutes. This was allowed to cool to 16°C 

before adding 50µl 10x T4 DNA Ligase buffer and 2µl T4 DNA ligase and incubated overnight at 

4°C to allow self-ligation. DNA was precipitated by adding 50µl 3M sodium acetate, 350µl 100% 

ethanol and 1µl glycogen and centrifuging at 3000 RCF for 10 minutes at 4°C. Precipitated DNA 

was washed with 70% ethanol and resuspended in 20µl water. 

10µl of this sample was used for the primary PCR reaction with 25µl of 2x PCR Ready Mix 

(Thermo Scientific), 5µM of forward and reverse primers (see table 2.1), made up to a final 

volume of 50µl with nuclease-free water. This reaction mixture was loaded into a PCR 

thermocycler with the following settings: 

1. Denaturing  - 95°C 1 minute 

2. Denaturing  - 95°C 30 seconds 

3. Annealing  - 57°C 30 seconds 

4. Extension  - 72°C 1 minute 

5. Final Extension - 72°C 5 minutes 

 
Repeated x30 
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2µl of this PCR reaction was used for the secondary PCR reaction with 1µM of the nested 

forward and reverse primers (see table 2.1), using the same conditions as for the first 

PCR. A 1% agarose gel was used to analyse 10µl of the second PCR reaction, and bands 

were excised, extracted and purified (see Chapter 2.2.1.2). These were then cloned into 

the pGEM-T easy vector for amplification in competent. DNA extraction from 

transformed DH5α was carried out using a Qiagen Miniprep kit following the 

manufacturer’s instructions (see Chapter 2.2.1.4). Plasmid DNA was then sent for 

sequencing using the M13F and M13R primers (Source Bioscience). Analysis of 

sequences was performed using the MacVector software. 

Tol2 (small construct) 

Tol2L_in1 DpnII GATGCGGGAAGAGGTGTATTAGTC 

Tol2L_in2 CGTGAGCAGAGACTCCCTGGTG 

Tol2L_out CTGTGAGAGGCTTTTCAGCACTG 

Tol2R_in AluI TTGGTAATAGCAAGGGAAAATAGAATG 

Tol2R_out1 ACAGTCAATCAGTGGAAGAAAATGG 

Tol2R_out2 TGGAAGAAAATGGAGGAAGTATGTG 

 

  

Figure 2.2 Table of inverse PCR primers. Primers were designed against sequences at the 
ends of the tol2 recognition sequence, to minimise integrated DNA sequencing and enable 
use of the same primers across multiple cell lines. A nested primer approach was taken to 
reduce non-specific product amplification. 
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2.2.2 Cell Culture and Transfection 

2.2.2.1 Creation of Stable Embryonic Stem Cell Lines 

All DNA constructs were introduced into embryonic stem cells (ESCs) via electroporation. 

Approximately 5x106 ES cells were electroporated with 20µg DNA (3:1 transposase:transgene) 

in a Biorad X-cell Gene Pulser (240V, 500µF, infinite resistance, in a 4mm cuvette) and then 

cultured on mouse embryonic fibroblasts. After 24 hours of recovery relevant antibiotics were 

added, and surviving clones were picked for screening and expansion after 7-10 days under 

selection. The inducible Myod1 lines were selected based on a spindle-shaped morphology and 

expression of muscle specific genes, such as myosin heavy chain. Final lines were selected for 

high expression of the desired transgene in a specific and uniform manner, in addition to good 

morphology and continued antibiotic resistance.  

2.2.2.2 COS-7 Cell Transfection 

COS-7 cells were cultured in DMEM (Life Technologies) with 15% FBS (HyClone), 1x 

Penicillin/Streptomycin (Life Technologies) and 2mM L-Glutamine (Life Technologies) in T-75 

culture flasks (Corning). Before transfection, the cells were dissociated with 0.25% trypsin 

(Sigma) for 15 minutes at 37°C, counted with a haemocytometer, and plated on permanox slides 

(Nunc Lab-Tek) at a density of 100,000 cells per well and incubated at 37°C overnight. 

Immediately prior to transfection, 2µg of the required construct was mixed with 0.5µg of pEGFP-

C1 (provided by Dr. I.Lieberam) as a transfection reporter, alongside a transfection control of 

2.5µg of pEGFP-C1. These mixtures were then mixed 1:1 with 2% lipofectamine-2000 (Life 

Technologies) in Opti-MEM (Life Technologies) for 15 minutes at room temperature, and 200µl 

of the lipofectamine-2000/DNA mix was then applied to the appropriate wells overnight at 37°C. 

COS cells transfected with optogenetic constructs were dissociated with 0.25% trypsin (Sigma) 

and plated on 18mm coverslips 24 hours post-transfection for patch clamping. 
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2.2.2.3 Mouse Embryonic Fibroblasts  

Non-mitotically inactivated mouse embryonic fibroblasts were purchased from Millipore. One 

vial containing 5-6x106 cells was removed from liquid nitrogen, thawed in a 37°C water bath and 

resuspended in 5ml of mouse embryonic fibroblast (MEF) medium. After centrifugation the cells 

were evenly distributed between 6x 90mm Nunc™ tissue culture plates and cultured in a tissue 

culture incubator at 37°C in MEF medium until confluent.  

2.2.2.4 Mitotic inactivation and Freezing of MEFs 

Once the MEFs were confluent, the MEF media was replaced with MEF media + 10μg/ml 

Mitomycin C (Sigma) for 2 hours at 37°C to mitotically arrest the cells. The MEFs were then 

washed with sterile PBS three times before being dissociated with 0.25% trypsin at 37°C for 10 

minutes. Dissociated cells were collected in sterile 50ml Falcon tubes (Fischer Scientific) and the 

trypsin was inactivated with MEF media prior to centrifugation. The cell pellet was then 

resuspended in Recovery™ Cell Culture Freezing Medium (Life Technologies) and quickly 

aliquoted into freezing vials (Star Labs) in various volumes according to future experimental 

requirements. These vials were put into a Mr. Frosty™ Freezing Container (Thermo Scientific) 

and stored at -80°C overnight. The following day the vials were transferred to liquid nitrogen 

storage for future use. 

2.2.2.5 Embryonic Stem Cell Culture 

Embryonic stem cells (ESCs) were grown on Mitomycin C-inactivated mouse embryonic 

fibroblasts in ES media in Nunc™ tissue culture plates. Stem cells were passaged onto new plates 

with fresh mouse embryonic fibroblasts when 80-90% confluent. 

2.2.2.6 Freezing 

ES cell cultures for expansion and freezing were cultured in a 6-well Nunc™ tissue culture 

plate to 80-90% confluency before being washed three times with sterile PBS and 
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dissociated with 0.25% trypsin at 37°C for 10 minutes. Dissociated cells were collected in 

sterile 15ml Falcon tubes (Fischer Scientific) and the trypsin was inactivated with MEF media 

prior to centrifugation. The cell pellet was then resuspended in Recovery™ Cell Culture Freezing 

Medium and quickly aliquoted into freezing vials each containing ¼ of the original cell number. 

These vials were put into a Mr. Frosty™ Freezing Container (Thermo Scientific) and stored at -

80°C overnight. The following day the vials were transferred to liquid nitrogen storage for future 

use. 

2.2.2.7 Motor Neuron Differentiation 

ES cell colonies were dissociated after reaching 80-90% confluency in culture on mouse 

embryonic fibroblasts (“Day 0”), and cultured as embryoid bodies (EBs) in suspension culture in 

motor neuron media (ADFNK). After 2 more days (“Day 2”), the media was replaced and 

supplemented with 1μM retinoic acid (Sigma) and 0.5μM Sonic Hedgehog Agonist (HhAg1.3, 

Curis Inc.) to induce a ventral cervical spinal motor neuron fate (as in Wichterle et al., 2002), and 

cultured for an additional 3 days before Magnetic Activated Cell Sorting (MACS) to obtain 

purified ESC-derived motor neurons (“Day 2+3”). 

2.2.2.8 Astrocyte Differentiation 

To obtain astrocytes the protocol for differentiating motor neurons was followed until “Day 

2+3”, at which point the EBs were dissociated, counted using a haemocytometer and plated on 

Matrigel-coated 90mm Nunc™ tissue culture plates at 1x106 cells per plate in 10ml ADFNK. These 

cells were maintained in this format for 7 days (“Day 2+10”), only replacing the ADFNK every 2 

days. The adherent cultures were then dissociated for MACS on “Day 2+10” to obtain purified 

ESC-derived astrocytes. 
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2.2.2.9 Induced Myoblast Differentiation 

“iMyoD C4” ES cell colonies were dissociated after reaching 80-90% confluency in culture on 

mouse embryonic fibroblasts (“Day 0”), and cultured as embryoid bodies in Myoblast media. 

After 2 days (“Day 2”), the EBs were collected and transferred to matrigel-coated tissue culture 

plates, where 10ug/ml Doxycycline was added to fresh Myoblast media to induce the expression 

of the Myod1 transgene under the control of the tetracycline response element (TRE). The cells 

were cultured in this medium for 4 days (“Day 2+4”), with a full media exchange after 2 days, 

before dissociation with 0.25% trypsin and either plating or MACS. 

2.2.2.10 Primary Muscle Preparation 

Fertilised chick eggs were incubated at 37°C for 10 days before the surface of the eggs was 

sprayed with 70% ethanol, a window was opened using surgical scissors and the embryos were 

decapitated using forceps. The torso was placed in sterile DMEM in a 90mm Nunc™ tissue 

culture plate and the skin along the ventral surface of the trunk was cut along the midline, blunt 

dissected and pealed back to the limbs using forceps. A single vertical cut through the abdominal 

muscles and ribcage was made in a caudal-rostral direction, and then the pectoralis major 

muscles were excised using forceps and transferred to a fresh tissue culture plate. Large pieces 

of muscle were diced using forceps to achieve relatively uniform small chunks, which were then 

transferred to an empty tissue culture dish and dissociated in 3ml of 0.25% trypsin at 37°C for 

30 minutes. The trypsin was inactivated with 5ml MEF media and the suspension was 

centrifuged and passed through a 40µm filter. The cells were then cultured on a fresh 90mm 

Nunc™ tissue culture plate 37°C for 30 minutes to allow fibroblasts to adhere to the plastic. Cells 

remaining in suspension were collected, centrifuged and resuspended in 1ml Chick Primary 

Muscle Media (CPMM) for counting via haemocytometer prior to further culture. Roughly 1x106 

cells were obtained per chick embryo. 
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2.2.2.11 Production of Chick Embryo Extract 

Fertilised chick eggs were incubated at 37°C for 10 days before the surface of the eggs was 

sprayed with 70% ethanol, a window was opened using surgical scissors, the embryos were 

decapitated using forceps and the torsos were placed in a 50ml falcon tube containing 20ml 

DMEM. Once all embryos were collected, they were transferred to a 10ml syringe and forcefully 

pushed through using the plunger into a fresh 50ml falcon tube. The macerated mass was left 

on a roller table at room temperature for 1 hour to allow natural degradation of the tissue, and 

then centrifuged for 30 minutes (at 3000 RCF). The liquid fraction was collected, passed through 

a 40µm filter, and stored at -80°C until required. 

2.2.2.12 Motor Neuron/Astrocyte Co-Cultures 

To form aggregated cellular clusters of sorted ESC-derived MNs and astrocytes (Astroneural 

aggregates, AsNAs), purified motor neurons were mixed with astrocytes overnight in a hanging 

drop culture, in a 1:1 ratio of MNs to astrocytes, with 20,000 cells per 20µl drop. MN-astrocyte 

aggregates were then collected and plated on matrigel-coated 18mm coverslips in 12-well plates 

(BD Falcon) in ADFNK medium supplemented with 10ng/ml GDNF (R&D Systems) for in vitro 

electrophysiological characterisation, or directly on top of pre-plated muscle cultures for the 

NMJ model. 

Alternatively, 100,000 purified astrocytes were plated on 18mm coverslips in 12-well plates in 

ADFNK to create a uniform monolayer. The following day, ESC-derived MNs were purified by 

MACS, and plated on top of the astrocyte monolayer at 10,000 cells per 18mm coverslip. All 

cultures were fed every 2 days, with supplementary 10ng/ml GDNF added if required, and 

treated with 1µM 5-Fluoro-2’-deoxyuridine (FDU) from day 2-5 to kill contaminating 

proliferative cells. 
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2.2.2.13 Muscle/Motor Neuron Co-Cultures 

In all muscle/MN co-cultures, the muscle cells were plated 1 day prior to the addition of 

MNs, with various culture conditions and cell densities tested. For the ESC-derived 

myoblasts, unsorted “Day 2+3” MN-EBs were added directly on top of the pre-plated 

muscle in a 1:1 mix of Myoblast media and ADFNK supplemented with 10ng/ml GDNF. 

Both MN-EBs and AsNAs were co-cultured with chick primary muscle, again added the day after 

preparation and plating of the muscle. For these experiments, a 1:1 mix of CPMM and ADFNK 

was used. All cultures were fed every 2 days and treated with 1µM 5-Fluoro-2’-deoxyuridine 

(FDU) from day 2-5 to kill contaminating proliferative cells. 

For chronic photostimulation experiments using AsNAs, 6-well culture plates were placed on top 

of a custom-built heat sink and LED assembly after 1 day in vitro. Cultures were then alternated 

between stimulation and rest cycles every 48 hours. The blue LEDs (Royal-Blue, 447.5 nm Rebel 

LED) were topped with collimators, powered by a DC/DC LED driver (Recom) and controlled by 

a digital I/O device (USB-6501, National Instruments) and custom-written software (Andrew 

Lowe). The culture medium was supplemented with a cocktail of antioxidants (110 μM vitamin 

C, 100 μM Trolox, 77 nM superoxide dismutase; all from Sigma and 3.2 μM glutathione from 

Fisher). Flashes were delivered at 40% LED intensity for 20 ms in bursts of 5 at 20 Hz, every 5 s. 

The light intensity of the LEDs was adjusted so as to cause reliable activation of ChR2 whilst 

limiting any potential damage caused by long-term exposure to high-energy light. 

2.2.2.14 Hybridoma Cell Culture 

Hybridoma cell lines for antibodies of interest (MF20 and F5D) were ordered from the 

Developmental Studies Hybridoma Bank (DSHB). Frozen vials were thawed upon arrival in 

hybridoma media (IMDM) and centrifuged for 4 minutes at 3200 RCF to obtain a cell pellet. They 

were then resuspended in 1ml IMDM, counted using a haemocytometer and transferred to a 
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sterile T-75 tissue culture flask in 20ml IMDM for culture at an initial concentration of 1 million 

cells per ml. These cultures were monitored by visual observation and split 1:4 into new T-75 

flasks every 2 days with fresh IMDM. For the production of antibody supernatant, the cultures 

were allowed to overgrow for 4 days, at which point the cells were centrifuged and discarded 

and the supernatant was frozen at -80°C for testing via immunocytochemistry. To maintain 

viable stocks of the hybridomas, cultures were centrifuged before becoming confluent, counted 

and resuspended in Recovery™ Cell Culture Freezing Medium and quickly aliquoted into freezing 

vials at 4x106 cells per ml. 

2.2.3 Magnetic Activated Cell Sorting 

ES cell-derived embryoid bodies (EBs) were collected by sedimentation, washed twice with L-15 

media (Life Technologies), and then dissociated in 2ml AccuMax dissociation buffer (Millipore). 

Adherent cultures were washed twice with PBS before dissociation with 5ml Accumax. 

Dissociated cells were then washed three times in ADFN media (Advanced DMEM/F12 [Life 

Technologies] in a 1:1 ratio with Neurobasal medium [Life Technologies]) and taken up in 2ml 

MACS buffer, passed through a 40μm nylon cell strainer (BD Falcon), and taken up in 200μl MACS 

buffer with 1:100 α-hCD14 antibody (26ic) and incubated for 15 minutes at 4°C. Following this, 

the cells were centrifuged and taken up in 400μl MACS buffer with 1:10 α-mIgG MACS beads 

(Milteny) and incubated for 15 minutes at 4°C. A MS-column (Milteny) was inserted into a 

MiniMACS magnet (Milteny) and pre-washed with 500μl MACS buffer. After centrifugation, cells 

were taken up in 1ml MACS buffer and applied to the column, which was then washed three 

times with 500μl MACS buffer. The column was then removed from the magnet, and cells were 

eluted with 1ml MACS buffer, and eluted cells were counted with a haemocytometer.  

2.2.4 Flow Cytometry  

Flow cytometry analysis was carried out on a BD Accuri™ C6 flow cytometer (BD Biosciences) 

according to the manufacturer’s instructions. Samples of 100,000 cells were collected from 
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dissociated pre—sorted cells, flow-through and eluate throughout the MACS procedure, and 

labelled with directly Phycoerythrin (PE)-conjugated anti-CD14 (26ic) primary antibody for 15 

minutes on ice. A sample of unlabelled cells was run first at high flow rate for 10,000 events to 

establish the size and granulosity of the cell samples and define the “P1” thresholds. The labelled 

samples were then run at medium flow rate for 10,000 events within P1.  

2.2.5 Preparation of Sterile Glass Coverslips 

Glass coverslips were first placed in a glass beaker containing 1M HCl acid and heated at 

50°C overnight. This was replaced with fresh 1M HCl the following day and left at room 

temperature overnight. The coverslips were then washed 3x with ddH20 followed by 100% 

ethanol at room temperature for 2 hours. Again, the coverslips were washed 1x with ddH20 

followed by 70% ethanol at room temperature overnight. Finally, the coverslips were washed 3x 

with ddH20, dried on filter paper in a sterile fume hood and autoclaved prior to use. 

2.2.6 Immunocytochemistry 

Cells were fixed with 4% paraformaldehyde in 15% sucrose for 30 minutes at room temperature, 

and then washed with PBS three times and left in PBS overnight at 4°C. Samples were then 

blocked with PBS + 0.1% Triton X-100 (PBST) + 3% BSA for 1 hour at room temperature, followed 

by overnight incubation at 4°C with primary antibodies at 1:500 dilution (see table 2.1). Samples 

were then washed three times with PBS, and secondary antibodies applied at 1:1000 dilution at 

room temperature for 1 hour (see table 2.2). If used, TOPRO-3 was applied at a 1:5000 dilution 

alongside secondary antibodies. Samples on slides were then washed three times with PBST, 

VectorShield (Vector Laboratories) was applied and a coverslip placed over the cells for imaging. 

For coverslips, a drop of Vectorshield was applied to imaging slides and the coverslips were 

inverted onto the drop, while preventing bubble formation.  
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Primary Antibodies Catalogue Reference, Supplier 

Rabbit anti-GFP A11122, Life technologies 

Chick anti-GFP Ab13970, Abcam 

Mouse anti-CD14 Hybridoma 26ic, ATCC 

Rabbit anti-CD14 Ab133503, Abcam 

Rabbit anti-GFAP Z0334, DAKO 

Mouse anti-myosin heavy chain (Mf20) Hybridoma MF20, DSHB 

Mouse anti-myosin heavy chain (My32) 18-0105, Life technologies 

Mouse anti-myogenin (F5d) Hybridoma F5D, DSHB 

Mouse anti-Myod1 16148, Abcam 

Mouse anti-MCadherin 611100, BD Biosciences 

Mouse anti-Synaptophysin Ab8049, Abcam 

Goat anti-Choline acetyltransferase Ab144, Millipore 

Mouse anti-ankyrin-G 2b N106/65, 75-147, NeuroMab 

Rabbit anti-pikbα 14D4, Cell signalling technology 

 

  

Figure 2.3 Table of primary antibodies used. All primary antibodies were used at 1/500 
concentration from stock. Small aliquots were made from stock solution to reduce freeze-thaw 
cycles. 



76 
 

Secondary Antibodies/Fluorescent labels Catalogue Reference, Supplier 

α-Bungarotoxin Alexa Fluor 555 conjugate B35451, Life technologies 

Phalloidin Alexa Fluor 555 conjugate A34055, Life technologies 

Donkey anti-mouse Alexa Fluor 488 A21202, Life technologies 

Donkey anti-mouse Alexa Fluor 568 A10037, Life technologies 

Donkey anti-rabbit Alexa Fluor 488 A21206, Life technologies 

Donkey anti-rabbit Alexa Fluor 568 A10042, Life technologies 

Goat anti-Chicken Alexa Fluor 488  A11039, Life technologies 

Donkey anti-Goat Alexa Fluor 568488 A11057, Life technologies 

Topro-3 T3605, Life technologies 

 

  

Figure 2.4 Table of secondary antibodies and fluorescently conjugated labels used. All 
secondary antibodies were used at 1/1000 concentration from stock, while Bungarotoxin-555 
and Phalloidin-555 were used at 1/50, and topro-3 was used at 1/5000. Small aliquots were 
made to reduce freeze-thaw cycles, and both stock and aliquoted samples were kept in darkness 
to prevent photobleaching.  



77 
 

2.2.7 In Vitro Electrophysiology 

All electrophysiology data was obtained from visually targeted whole-cell patch-clamp 

recordings of ES cells, ES cell-derived motor neurons or COS-7 cells. The cultures were 

maintained for the duration of the patching protocol in an HBS extracellular solution (pH 7.4, 

~280 mOsm) at room temperature that also contained (in mM): 136 NaCl, 2.5 KCl, 10 HEPES, 10 

D-glucose, 2 CaCl2 and 1.3 MgCl2. Pipettes were pulled from borosilicate glass (out diameter 1.5 

mm, inner diameter 1.17 mm, Harvard Apparatus), with a resistance of 3-6 MΩ, and were filled 

with an internal solution containing (in mM): 130 K-gluconate, 10 NaCl, 1 EGTA, 0.133 CaCl2, 2 

MgCl2, 10 HEPES, 3.5 MgATP, 1 NaGTP. Recordings were acquired with the Pulse software linked 

to a HEKA EPC10/2 amplifier. Signals were Bessel filtered at 10 kHz (filter 1), and 2.9 kHz (filter 

2), digitized and sampled at 25-50 kHz (20-40 µs sample interval). Fast capacitance was 

compensated for in the on-cell configuration.  

Electrophysiological parameters were analysed using custom functions written in Matlab. The 

resting membrane potential was estimated immediately following membrane patch rupture in 

current clamp mode with zero holding current and was adjusted for an estimated liquid junction 

potential of +10mV. With slow capacitance compensation inactive in voltage-clamp mode, I used 

responses to a 10mV hyperpolarisation step to estimate the cell’s membrane resistance (Rm; 

from the steady holding current at the new voltage) and membrane capacitance (Cm; from the 

area under the exponentially-decaying current from peak to holding). 

Analysis of action potential characteristics was carried out in current clamp mode. A baseline 

current was injected to hold the cell at -60 mV, simulating a normal resting potential (Vhold). In 

this condition, 10ms duration current steps of increasing amplitude (increments of 2, 5 or 10pA) 

were injected into the neuronal soma until it reliably fired an action potential (Vm > 0mV).  

For evaluation of firing behaviour and maturation, cells were held at -60mV in current clamp 

mode and subjected to either 500ms duration current steps of increasing amplitude (increments 
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of 10 or 20pA) or a 500ms duration blue (~488nm at 170mW/mm2) light exposure provided by 

a shutter-controlled Xenon-arc lamp (Lambda-LS, Sutter Instruments, UK) with appropriate 

excitation filters (Chroma Tech. Corp., USA) but no neutral density filtering. 

Analysis of electrophysiological data was performed using custom-written functions in Matlab 

(Mathworks), as in Grubb and Burrone, 2010. 

2.2.8 Image analysis 

Imaging was performed using a Carl Zeiss LSM 710 confocal microscope or an Inverted 

Microscope with a 20x/0.8 or 10x/0.25 numerical aperture air objective. Zen 2008 acquisition 

software (Carl Zeiss) or Metamorph was used to obtain and export most images as .lsm files or 

TIFF files respectively. Images of patch clamp experiments were obtained using an Olympus 

100X oil immersion objective and a CCD camera (CoolSnap HQ, Photometrics). The Slidebook 

software was used to acquire these images (1,392 X 1,040 pixels with 2X2 pixel binning; 0.5 µm 

z-axis steps). Image stacks were converted into single maximum intensity z-axis projections, and 

exported as raw 16-bit TIFF files. 

2.2.9 Statistical Analysis 

All statistical analysis was carried out in Prism (GraphPad). Where data was found to have a 

normal distribution (using the D'Agostino & Pearson omnibus normality test), parametric tests 

were used including students T-Test and one-way ANOVA followed by Tukeys multiple 

comparisons test to determine individual differences between treatments.  Where data did not 

have a normal distribution, or normality testing was not possible due to low n numbers, the non-

parametric Mann-Whitney U or Kruskal-Wallis test with Dunn’s multiple comparisons test were 

used. All tests were two-tailed, with the confidence level set at 0.05. 
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Chapter III 

Establishing and Characterising Optogenetic Motor Neurons 

3.1 Introduction and Aims 

Motor neurons (MNs) are responsible for eliciting motor behaviour, by controlling muscle 

contraction. As with other neuronal subtypes, the functional output of MNs is determined by 

their electrophysiology. When a mature MN is sufficiently depolarised, for example by excitatory 

post-synaptic potentials (EPSPs) driven by neurotransmitters binding membrane receptors on 

its dendritic arbour, it will typically fire an action potential (AP) along its axon. APs are the 

primary means of information transfer in neuronal networks, and generally result in 

neurotransmitter release at the axon terminal(s). In the case of a vertebrate spinal motor 

neuron, an AP will result in the release of acetylcholine at the axon terminal, which is a 

specialised synapse with skeletal muscle called a neuromuscular junction (NMJ). 

An AP can be measured as a rapid change in the membrane potential (voltage) of the neuron, 

and indeed MNs have served as an extensively studied model system in electrophysiology (Wen 

and Brehm, 2010; Zhang et al., 2010, 2009). Recent advances in molecular biology and genetics 

have given rise to the field of optogenetics, allowing researchers to not only record from 

neurons, but to dictate their activity non-invasively using light stimulation (Boyden et al., 2005; 

Fenno et al., 2011; Nagel et al., 2003). While transient transfection of primary MNs does allow 

expression of optogenetic components in vitro, transfection efficiencies are low and often 

temporary. To better utilise the tools offered by optogenetics to both study and manipulate 

MNs, we took the approach of creating stable transgenic murine embryonic stem cell (ESC) lines. 

Using ESCs allows the production of large quantities of cellular material to work with, and clonal 

selection of cell lines ensures a homogenous genotype among studied cells. The differentiation 
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of ESCs into MNs has been well established (Li et al., 2005; Wichterle et al., 2002), and a reliable 

yield of 30% is achievable. Combining stem cell technology with optogenetics should allow the 

characterisation and optimisation of optogenetic motor neurons, which can then studied and 

manipulated in vitro or in vivo as a source of graft material. These developments could greatly 

enhance our understanding of basic developmental and cellular biology, electrophysiology, 

disease modelling and even potentially contribute to regenerative medicine strategies for motor 

neuron diseases. 

3.2 Establishing Optogenetic Motor Neurons 

3.2.1 Hb9::CD14-IRES-GFP Embryonic Stem Cells 

A previously generated ESC line used in our lab was taken as a starting point for the generation 

of all following cell lines due to its utility in identifying and purifying motor neurons during in 

vitro differentiation. This cell line contains a stably integrated transgene consisting of the motor 

neuron specific Hb9 promoter driving a CD14-IRES-GFP construct (see figure 3.1, (Machado et 

al., 2014)). The internal ribosome entry site (IRES) is a nucleotide sequence that enables 

independent translation of a second protein from a single mRNA molecule ((Filbin and Kieft, 

2009)(Komar et al., 2012)). This construct therefore results expression of a human Cd14 

transgene in cells committed to a MN fate which is driven by the MN-specific Hb9 promoter, 

and this cell surface marker can be used to selectively purify the desired cell type (in this case, 

MNs) by magnetic activated cell sorting (MACS). In addition, translation initiated by the IRES 

element results in GFP expression, allowing visual confirmation of successful differentiation.  

Figure 3.1 Transgene integrated into the parental cell line, Hb9::CD14-IRES-GFP. The motor 
neuron specific promoter Hb9 drives the expression of CD14 and enhanced GFP in 
differentiating motor neurons. This transgene was inserted into the genome by tol2-
mediated transposition using tol2 transposase. (Adapted from Machado et al., 2014) 
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Using well established protocols to drive differentiation of spinal MNs using this cell line results 

in embryoid bodies (EBs) containing immature GFP-positive MNs, as shown in figure 3.2 below. 

Dissociating these EBs and purifying the MNs results in relatively pure cultures of ESC-derived 

MNs that extend multiple neurites within a few days of plating, and readily cluster together into 

aggregates as seen in figure 3.2c.  

 

3.2.2 Channelrhodopsin-2 Expression 

Channelrhodopsin-2 (ChR2) is probably the best characterised and most widely used 

optogenetic tool, and although it is a microbial type 1 opsin, it is ideally suited to manipulating 

animal neurons due to its unitary nature (light-gating and ion conductance in one protein) and 

good kinetic properties allowing millisecond control of neuronal activity (Boyden et al., 2005; 

Fenno et al., 2011; Nagel et al., 2003).  

The first strategy our lab adopted was to introduce ChR2 into the previously published A2.lox 

murine ES cell line, which contains a tetracycline response element (TRE) at the Rosa26 gene 

Figure 3.2 Differentiation of ESCs containing the Hb9::GFP-IRES-CD14 transgene. (a) ES cell 
colonies are dissociated and cultured in suspension to form EBs for 2 days, followed by 3 
days of differentiation in the presence of retinoic acid (RA) and a sonic hedgehog agonist 
(Shh). (b) Resulting EBs contain GFP-positive MNs which can be dissociated and sorted to 
give relatively pure cultures of ESC-derived MNs as shown in (c). 

(a) 

RA 

Embryonic Stem 

cells 

Shh 

Embryoid Bodies Motor Neurons 

 

(b) (c) (a) 



82 
 

locus followed by a floxed Cre gene, allowing a similarly loxP flanked DNA sequence to be 

inserted downstream of the TRE by cre-mediated recombination (Iacovino et al., 2011). This 

results in a single-copy doxycycline inducible ChR2 transgene expressed from a known genomic 

locus (Fig. 3.3a). While this strategy did result in motor neurons that were sensitive to blue light 

stimulation following overnight doxycycline induction of the ChR2 as shown in figure 3.4b, this 

phenotype was relatively short-lived, with expression of the ChR2 transgene rapidly diminishing 

over 3-4 days in culture and light-responses similarly diminished and eventually lost entirely 

(data not shown). 

The next approach we adopted was to drive the expression of a myc-tagged ChR2 using the 

endogenous microtubule-associated protein tau (Mapt) promoter via gene targeting (Fig. 3.3b). 

Mapt is a well characterised gene expressed predominantly in neural lineages associated with 

the specialised cytoskeleton of the axon (Binder et al., 1985; Weingarten et al., 1975). Using this 

promoter should therefore result in long-term stable expression of the transgene in neurons 

(Tucker et al., 2001). 

 

 

 

 

  

Figure 3.3 Strategies for expression of ChR2 in murine embryonic stem cells. (a) Using 
A2.lox embryonic stem cells and taking advantage of the inducible cassette exchange 
method, ChR2 was introduced into the Rosa26 locus under the control of a tetracycline 
response element (TRE). (b) A myc-tagged ChR2 was put downstream of the endogenous 
Mapt promoter to drive pan-neuronal expression. The construct was introduced into 
Hb9::GFP-IRES-CD14 ES cells via electroporation. 

TRE ChR2-myc Neo 

Mapt ChR2-myc Neo 

(a) 

(b) 
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(a) Parental ESC-
Derived MNs 
(ChR2-) 

(d) ESC-Derived 
MNs: 
Mapt::ChR2-
myc 

(b) iDox ESC-
Derived MNs 
(ChR2+) 

(c) COS7 Cells: 
CMV::ChR2-
myc 

Figure 3.4 Representative Voltage-clamp responses during blue light photostimulation of 
ESC-derived MNs using two different ChR2 expression strategies (a) Motor neurons derived 
from the parental Hb9::GFP-IRES-CD14 cell line display no current response to a 100ms blue 
light stimulus. (b) A blue light stimulus elicits a clear depolarising current in MNs 
differentiated from TRE::ChR2 ES cells 1 day after doxycycline induction. (c) Transient 
expression of the Mapt::ChR2-myc construct in COS-7 cells confers sensitivity to blue light 
stimulation and results in inward currents of over 100pA. (d) ES cells stably transfected with 
the ChR2-myc construct under the control of the Mapt promoter show no current respsonse 
to blue light stimulation.  
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The myc-tag is a commonly used amino acid motif allowing detection of a tagged protein by 

immunocytochemistry with antibodies against the myc peptide sequence. A CMV::ChR2-myc 

construct was first tested by transient transfection into COS-7 cells, a transformed cell line 

derived from simian kidney tissue (Gluzman, 1981). These cells serve as a fast and simple 

mammalian cell line to test expression of transfected DNA. Patch clamp experiments carried out 

one day after transfection via lipofectamine-2000 revealed clear inward currents in transfected 

COS-7 cells in response to blue light stimulation (Fig. 3.4c). Following this result, a ChR2-myc 

construct was introduced into Hb9::GFP-IRES-CD14 ES cells by electroporation, and stably 

integrated into the genome downstream of the Mapt promoter by gene targeting. Patch clamp 

recording of MNs derived from this ES cell line however showed no response to a 100ms blue 

light stimulus. As no commercial antibody currently exists for ChR2, immunostaining for the 

myc-tag would be carried out to confirm expression of the ChR2 transgene, however we 

determined from previous experiments that the myc-tag used in this construct was mutated 

prior to transfection (unpublished observations). Instead, semi-quantitative PCR was used to 

analyse and confirm expression of ChR2 mRNA in MNs derived from this ES cell line (Fig. 3.5). 

 

 

 

 

Parental Line 

Mapt::ChR2-myc 

Channelrhodopsin-2 

Channelrhodopsin-2 

TB

P 

TB

P 

Figure 3.5 Mapt::ChR2-myc motor neurons express channelrhodopsin-2 mRNA. Motor 
neurons derived from the parental line show expression of the TATA box binding protein 
(TBP) positive control, but no channelrhodopsin-2 expression. Mapt::ChR2-myc motor 
neurons show relatively high levels of channelrhodopsin-2 expression. The 4 lanes shown in 
each condition represent serial dilutions of the RT-PCR product corresponding to 1:25, 1:125, 
1:625 and 1:3125 respectively.  
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While the Hb9::GFP-IRES-CD14 parental line MNs show no expression of ChR2 mRNA, somewhat 

surprisingly the Mapt::ChR2-myc motor neurons do express ChR2 mRNA as shown in figure 3.5. 

This suggests the lack of sensitivity to blue light stimulation seen in the Mapt::ChR2-myc MNs is 

not due to lack of expression of the transgene, and may instead represent a problem in post-

translational modification or trafficking of the protein.  

3.2.3 Channelrhodopsin-2-YFP Transgene 

The next strategy adopted to generate optogenetic ESC-derived MNs was to stably integrate a 

ChR2-YFP transgene under the control of the ubiquitous CAG promoter into the genome of the 

Hb9::GFP-IRES-CD14 parental ES cell line using tol2-mediated transposition (Kawakami et al., 

2000). The DNA construct shown in figure 3.6 was made and transiently transfected into COS-7 

cells (as described previously) to validate it.  

 

Expression of this construct in COS-7 cells confers sensitivity to blue-light as demonstrated by 

the large inward current in response to optical stimulation (Fig. 3.7a). Following this result, the 

construct was electroporated into Hb9::GFP-IRES-CD14 ES cells along with the a plasmid 

containing the tol2 transposase to drive tol2-mediated transposition events and stable 

integration of the transgene into the genome. Electroporated ES cells were plated on a mouse 

embryonic feeder cell layer, allowed to recover for 2 days, and then subjected to zeocin 

Figure 3.6 Ubiquitous ChR2-YFP expression transgene. The ubiquitous CAG promoter drives 
the expression of a ChR2-YFP fusion protein in all cells containing the construct. Tol2-
mediated transposition is utilised to enable stable integration into the genome of the 
parental Hb9::CD14-IRES-GFP ES cell line. 
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selection. Resistant colonies with clear fluorescence in the YFP emission frequency were 

selected for expansion and then further screened by patch clamp electrophysiology. A 

representative trace from an ES cell line expressing the ChR2-YFP transgene is shown in figure 

3.7b. A clear inward current is seen in response to blue-light stimulation, similar to expression 

in COS-7 cells. Importantly, motor neurons derived from this ES cell line and patched one day 

after MACS retain this optogenetic phenotype, also displaying clear depolarising currents in 

response to blue light, as shown in figure 3.7c. 

 

 

 

 

 

 

 

  

Figure 3.7 Blue light photostimulation of cells expressing ChR2-YFP (a) Transient expression 
of the CAG::ChR2-YFP construct in COS-7 cells confers sensitivity to blue light stimulation and 
results in inward currents of over 100pA. (b) ES cells stably transfected with the ChR2-YFP 
construct also display a clear current response to a 100ms blue light stimulation. (c) A 100ms 
blue light stimulus elicits a clear depolarising current in MNs differentiated from ES cells 
expressing the CAG::ChR2-YFP construct 1 day after magnetic activated cell sorting. 

100pA 
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ESC-Derived MNs: 

CAGS::ChR2-YFP 

COS7 Cells: 

CAGS::ChR2-YFP 
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3.3 Optimising In Vitro Culture of ES Cell-Derived Motor Neurons  

3.3.1 MACS Sorted Motor Neurons 

After successfully screening and selecting an ES cell line that stably expresses the ChR2-YFP 

transgene in differentiated MNs, the next priority was to achieve reliable long-term in vitro 

culture of MACS-sorted MNs to allow functional analysis and characterisation. MACS-sorted 

ChR2-YFP MNs were plated at a density of 100k cells per 18mm matrigel-coated glass coverslip, 

and cultured in standard tissue culture conditions, with full media replacements every 2 days. 

Patch clamp experiments in both voltage and current clamp modalities revealed the gradual 

developmental maturation of the MNs, and confirmed stable expression and function of the 

ChR2-YFP transgene (Fig. 3.8). Live imaging of these cultures in phase contrast at 100x 

magnification reveals that ES cell-derived MNs rapidly extend neurites (clearly visible after 1 day 

in culture; Fig.3.8 a), and initially dispersed and separate neurons quickly aggregate together 

into large clusters (Fig.3.8 b + c). Current clamp recordings shown in figure 3.8 g-i show the 

development of electrophysiological properties resembling adult motor neurons, however by 7 

days in vitro (DIV) ESC-derived MNs still do not display a fully mature functional phenotype, with 

successive action potentials displaying reduced amplitude and frequency during a 500ms 

current injection, and eventually failing to generate spikes, rather than sustaining AP amplitude 

and frequency (Carlin et al., 2000). While in vitro culture beyond 1 week should allow the 

complete maturation of these MNs, this was not possible to test in this format, as cultures of 

purified ESC-derived MNs rapidly deteriorated after only a few days in culture, and almost all 

MNs were dead after 1 week.  

One explanation for the premature death of purified MNs in vitro could be the lack of supporting 

cell types, most notably glia. Astrocytes have been shown to be particularly important for MN 

survival, contributing to metabolic and trophic support, supplying survival signalling factors and 

regulating the extracellular environment (Blackburn et al., 2009; Ransom and Ransom, 2012). 
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To achieve long-term in vitro survival of ESC-derived MNs it may therefore be necessary to co-

culture them with astrocytes. 

 

 

 

 

  

3 DIV 

Figure 3.8 Representative images and patch clamp responses from in vitro culture of MACS 
sorted ChR2-YFP positive ESC-derived MNs (a-c) Phase contrast images of ESC-derived MNS 
cultured on glass coverslips in standard conditions; day 1, 3 and 7 respectively. (d-f) 
Representative current responses to a 100ms blue light stimulus; day 1, 3 and 7 respectively. 
(g-i) Representative maximum voltage responses to a 500ms stepped current pulse; day 1, 3 
and 7 respectively. Scale bar = 100μm. 
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3.3.2 Dissociated EB Cultures 

To address the issue of poor long-term survival of pure MN cultures, ESC-derived MNs were 

cultured from dissociated EBs, without MACS sorting. Previous studies have shown that the 

same conditions used to differentiate spinal MNs from ES cells also generate astrocytes, which 

typically arise later during the differentiation (Kessaris et al., 2001). Un-sorted, dissociated EBs 

should therefore contain MNs and supporting glia, in addition to other uncharacterised cell 

types. While the presence of other contaminating cell types in these cultures complicates 

interpretation of the data, it may improve the long-term survival of MNs cultured in vitro.  

Figure 3.9 shows the results of in vitro culture of dissociated ChR2-YFP positive EBs. MN 

clustering is not as obvious in this condition, and neurite development is also obscured by the 

presence of many contaminating cell types (Fig. 3.9 a-c). Visually guided patch clamp of MNs 

determined by GFP expression and morphology reveal maintenance of sensitivity to blue-light 

stimulation (fig. 3.9 d-f), as well reliable voltage responses to a 500ms stepped current pulse 

(Fig. 3.9 g-h). While MN survival does appear to be improved in this condition, analysis and 

characterisation of MNs beyond 7 days in vitro remained impossible, due to overgrowth of 

contaminating proliferative cells.  

One interesting observation from patch clamp experiments of MNs in the dissociated EB cultures 

was that they displayed increased spontaneous activity, never observed in cultures of MACS 

sorted MNs (Fig. 3.10). This activity may be due to the presence of other neuronal subtypes 

present in the dissociated cultures, such as spinal interneurons, which share a similar 

developmental origin to spinal MNs, and have been observed in ES cell-derived cultures 

previously (Miles et al., 2004). 
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Figure 3.9 Representative images and patch clamp responses from in vitro culture of 
dissociated ChR2-YFP positive EBs (a-c) Phase contrast images of dissociated EBs cultured 
on glass coverslips in standard conditions; day 1, 3 and 7 respectively. (d-f) Representative 
current responses to a 100ms blue light stimulus; day 1, 3 and 7 respectively. (g-i) 
Representative maximum voltage responses to a 500ms stepped current pulse; day 1, 3 and 
7 respectively. 
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  Dissociated EBs MACS-Sorted MNs 

Figure 3.10 Spontaneous activity observed in MNs from dissociated EBs is not seen in pure 
(MACS sorted) MN cultures Voltage clamp recordings from MACS sorted MNs (left) and from 
MNs in dissociated EB cultures (right).  

1 DIV 
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7 DIV 
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3.3.3 Astrocyte/Motor Neuron Co-culture (Astro-Neural Aggregates) 

In order to achieve stable, long-term in vitro culture of ESC-derived MNs, it appears to be 

necessary to combine the advantages of MACS-sorting the desired cell population(s) to remove 

contaminating proliferative cells, and co-culture of MNs with astrocytes to provide trophic 

support and survival signals. This requires the independent differentiation and MACS-sorting of 

ESC-derived astrocytes to produce two separate cellular populations that can be combined in in 

vitro culture. 

As mentioned previously, the differentiation of ESC-derived astrocytes is initially identical to that 

of ESC-derived MNs. However, similar to in vivo development, astrocytes are formed later in the 

differentiation (Kessaris et al., 2001). To produce high numbers of terminally differentiated 

astrocytes it is therefore necessary to dissociate EBs and culture the cells for a further 7 days in 

an adherent culture system (see Chapter 2.2.2).   

To enable MACS purification of terminally differentiated astrocytes, a new tol2-based construct 

was designed and made using the same cell surface sortable marker CD14, but this time under 

the control of a short 2.2Kb Glial Fibrillary Acidic Protein (Gfap) promoter (see figure 3.11; 

(Brenner et al., 1994)). Gfap encodes a type III intermediate filament, and while its expression 

has been found in multiple cell types, it is most commonly associated with astrocytes in the CNS, 

and is not expressed by neurons (Baba et al., 1997). Using a short promoter of this gene 

therefore drives expression of the CD14 MACS-sortable surface marker in cells committed to an 

astrocyte fate, allowing purification of ESC-derived astrocytes. 

Following differentiation, ESC-derived astrocytes were mixed with ESC-derived MNs in a 1:1 

ratio and cultured for one night in hanging drop culture (see Chapter 2.2.2.12). This resulted in 

relatively small clusters of mixed astrocytes and MNs (Astro-neural aggregates; AsNAs) that 

were then plated on matrigel-coated glass coverslips. Culture of AsNAs in standard tissue culture 
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conditions enabled long-term survival of ESC-derived MNs in vitro, not seen in cultures of pure 

ESC-derived MNs.  

 

Patch clamp recordings of these cultures in current clamp mode revealed a clear 

electrophysiological maturation of the MNs, which progressed from an immature, non-spiking 

phenotype at 3 days in vitro (DIV) to MNs capable of firing long trains of high frequency action 

potentials (APs) at 21 DIV (Fig 3.12). Current clamp recordings in response to stepped 10ms 

current injections also revealed the changing properties of the APs generated by the MNs, which 

became faster over time and gradually increased in voltage (Fig. 3.12).  

Voltage clamp recordings of these cultures revealed the stable long-term expression and 

function of the ChR2-YFP transgene in the MNs, with blue-light stimulation eliciting strong 

depolarising currents in all MNs tested (Fig. 3.13). In addition, a 500ms blue light stimulus 

presented during current clamp of the ESC-derived MNs resulted in a similar activity and 

maturation profile as seen with current injection (Fig. 3.13). Blue-light stimulation of MNs in 6 

DIV AsNAs cultures resulted in a clear voltage response with a low-frequency train of APs, while 

the same stimulation applied to 21 DIV MNs elicited a long train of relatively high frequency APs 

(Fig. 3.13).  

     

Figure 3.11 A short Glial Fibrillary Acidic Protein (Gfap) promoter allows specific expression 
of CD14 in ESC-derived astrocytes. Tol2-mediated transposition was used to enable stable 
integration into the genome of the parental Hb9 embryonic stem cell line. Astrocyte 
differentiation (see Chapter 2.2.2) results in specific expression of the CD14 transgene in 
presumptive astrocytes. 
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Figure 3.12 Current clamp recordings of ESC-derived MNs in astro-neural aggregate culture 
reveal electrophysiological maturation of firing properties Representative peak voltage 
responses of MNs from multiple time points in vitro to injection of 10ms stepped current 
pulse are shown in the left column, while peak responses to a 500ms stepped current pulse 
are shown in the right column. 
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Figure 3.13 Blue-light stimulation of ESC-derived MNs in astro-neural aggregate culture 
reveals long term functional expression of a ChR2-YFP transgene and robust control of ESC-
derived MN activity in vitro Representative current responses of MNs from multiple time 
points in vitro to a 10ms blue-light stimulation are shown in the left column, while voltage 
respsonses to a 500ms blue-light pulse are shown in the right column. 
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Epifluorescence imaging of the AsNAs cultures also provided insights into the maturation of MNs 

in these cultures (Fig. 3.14). At early time points, MNs remain tightly clustered in the AsNAs 

aggregates, and while clear neurites are visible, individual cell bodies are hard to distinguish (Fig. 

3.14 a + a’). After 1 week of culture, the MNs have begun to migrate out of the AsNAs’, and MN 

somas are more easily visible. Throughout the in vitro culture of ESC-derived MNs, the cell somas 

appear to grow in size, and the complexity of the neurite network continues to increase (Fig. 

3.14). Both these observations indicate the continued growth and maturation of the MNs in 

vitro.  

3.3.4 ESC-derived motor neurons have an axon initial segment 

One possible explanation for the observed electrophysiological maturation of ESC-derived MNs 

seen in Chapter 3.3.3 is the concurrent assembly and development of the axon initial segment 

(AIS) in the immature MNs. The AIS is a specialised region of the proximal axon found in most 

neurons that serves a number of functions. The initial recruitment of scaffolding proteins 

associated with the AIS in one neurite shortly after symmetry-breaking helps define that process 

as the axon, and consequently all other processes as dendrites (Barnes and Polleux, 2009). 

Additionally, the AIS maintains this functional distinction by acting as a selective diffusion barrier 

for cytoskeletal transport of proteins in developing and mature neurons, essentially restricting 

axonal proteins to the axon and dendritic proteins to the dendrites or soma (Song et al., 2009). 

Perhaps the most important role of the AIS however is the fact that it functions as the initiation 

point for action potential firing (Grubb and Burrone, 2010a). The AIS contains a very high density 

of both voltage-gated potassium (Kv) and sodium channels (Nav), with up to 50 times more 

sodium channels found in this region compared to the dendrites or soma (Duflocq et al., 2011; 

Kole et al., 2008). This density of voltage gated channels gives the AIS the lowest threshold for 

AP firing of any subcellular area of the neuron, and so it is here that incoming currents from the 

dendrites and soma are summed to give the classic “all-or-nothing” output of an AP.  
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As the AIS is so key to AP initiation, modulation and duration, the observed electrophysiological 

development of ESC-derived MNs in vitro may be directly related to the assembly and function 

of the AIS (Ogawa and Rasband, 2008). To investigate this possibility, I analysed the ESC-derived 

MNs for the presence of a key component of the AIS, Ankyrin G, by immunocytochemistry. 

Ankyrin G is a cytoskeletal scaffolding protein that is thought to be the principle organiser of the 

AIS. Many other AIS-related proteins, including the cell adhesion molecules NF-186 and NrCAM, 

βIV spectrin, and even Nav and Kv channels have Ankyrin G binding motifs present, that when 

mutated prevent the recruitment of the respective protein to the AIS (Garrido et al., 2003; 

Garver et al., 1997; Lemaillet et al., 2003; Pan et al., 2006; Yang et al., 2007). Further, knockdown 

of Ankyrin G expression by shRNA prevented the clustering of most other AIS components, 

confirming its importance to AIS assembly and structure (Hedstrom et al., 2007).  

Immunocytochemistry using an anti-Ankyrin G monoclonal antibody did not reveal the presence 

of an AIS in ESC-derived MNs at any time point investigated, as shown in figure 3.15. Parallel 

control experiments using primary rat hippocampal neuronal cultures however did label the AIS 

successfully with this antibody, suggesting either that the antibody did not work in the ESC-

derived MNs possibly due to species differences in the epitope structure, or that ESC-derived 

MNs do not possess an AIS. This finding is in contrast to recent literature reporting the presence 

and characterisation of an AIS in somatic mouse MNs in vivo (Duflocq et al., 2011; Le Bras et al., 

2014; Molofsky et al., 2014). To further investigate the development of an AIS in vitro in ESC-

derived MNs I therefore tested an alternative marker of the AIS, phosphorylated I kappaB alpha 

(pIκBα). 
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Figure 3.14 Epifluorescence imaging of ESC-derived MNs in astro-neural aggregate culture 
reveals morphological changes and continued growth in vitro Representative images of 
MNs cultured in astro-neural aggregates and patched at multiple time points in vitro. All 
images captured at 100x magnification, with phase contrast on the left column, and 488nm-
epifluorescence on the right. Scale bar = 10μm. 
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Based on reports from the literature showing specific enrichment of pIκBα at the AIS, I 

investigated an antibody against pIκBα as an alternative marker of the AIS in primary 

hippocampal cells (Sanchez-Ponce et al., 2008). Comparing the labelling of pIκBα to ankyrin G 

revealed strong co-localisation of the two antibodies. This finding supports pIκBα as a good 

marker of the AIS, despite being unnecessary for AIS assembly, and the labelling likely being due 

to cross-reactivity with a phosphorylated epitope of a protein associated with the AIS 

cytoskeleton (Fig. 3.16; (Buffington et al., 2012)). While The pIκBα antibody also displayed 

relatively strong labelling of the cell soma, which may be explained due to the role of IκBα in 

regulating the nuclear localisation of NK-kappaB, and the ubiquitin-mediated degradation of 

pIκBα in the cytosol (Kanarek and Ben-Neriah, 2012). 

Immunostaining ESC-derived MNs with the pIκBα antibody did label a small region of a single 

neurite proximal to the soma in all cells imaged, indicating that ESC-derived MNs do possess an 

AIS (Fig. 3.17). This result is in contrast to immunostaining with the Ankyrin G antibody 

performed on the same sample, which again did not label the AIS in ESC-derived MNs (Fig. 3.17). 

pIκBα labelling at multiple time points in vitro revealed the presence of an AIS-like structure in 

the proximal axon of all MNs as early as 3 DIV, although the intensity of staining did increase 

with time in culture (Fig. 3.18 and Fig. 3.19).  
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3 DIV 

7 DIV 

6 DIV 

9 DIV 

Figure 3.15 Immunostaining does not reveal an ankyrin G positive AIS in ESC-derived MNs 
(a’) Immunolabelling using an antibody against ankyrin G reveals a clearly defined AIS (white 
arrow) in 7 DIV dissociated rat hippocampal neurons, and only a faint non-specific signal to 
a GFP antibody seen in the cell soma (a). (b-d) While GFP signal is seen thoughout the MN 
soma and neurites, no specific labelling of an AIS is seen with the ankyrin G antibody (b’-d’). 
Scale bar = 10μm. 
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(b) (b’) 

(c) (c’) 

(d) (d’) 
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Figure 3.16 An antibody against phosphorylated IκB α (pIκBα) specifically labels the AIS in 
dissociated rat hippocampal neurons. Immunolabelling with pIkBα co-localises directly with 
ankyrin G labelling in 7 DIV rat hippocampal neurons. Scale bar = 100μm. 

Figure 3.17 Immunostaining 6 DIV ESC-derived MNs in astro-neural aggregate culture with 
the pIκBα antibody reveals clear AIS’ localised adjacent to the soma in the axon. While no 
ankyrin G signal is observed in ESC-derived MNs, the pIκBα antibody specifically labels the 
AIS of these neurons in the proximal axon. Scale Bar = 100μm. 

         AnkG   pIkBα        Merge 

          GFP   AnkG       pIkB 
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Figure 3.18 ESC-derived MNs possess an AIS in the proximal axon from as early as 3 DIV. 
pIκBα antibody labelling reveals the AIS of ESC-derived MNs throughout a 3-week in vitro 
culture period. Note the development from aggregated clusters of neurons to a more 
dispersed format with elaboration of complex dendritic arbours. Scale Bar = 100μm. 
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Figure 3.19 ESC-derived MNs possess an AIS in the proximal axon up to three weeks in 
culture. pIκBα antibody labelling reveals the AIS of ESC-derived MNs throughout a 3-week in 
vitro culture period. Note the presence of a single axon/AIS in each neuron, and the complex 
branched dendrites. Scale Bar = 100μm. 
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Figure 3.20 ESC-derived MNs plated on a monolayer of ESC-derived astrocytes develop a 
mature morphology more rapidly than MNs cultured in aggregates. ESC-derived MNs 
(green) after 3 DIV of culture on an ESC-derived astrocyte monolayer (red). Extensive MN 
neurite extension and elaboration is revealed by the GFP labelling, not previously seen in 
aggregated cultures by this time point. Scale bar = 100μm. 
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3.3.5 Astrocyte/Motor Neuron Co-culture (Astrocyte Monolayers) 

While the hanging-drop based AsNAs culture described previously allows long-term survival of 

ESC-derived MNs in vitro, it has some drawbacks that limit the reproducibility and reliability of 

the system. The distribution of both astrocytes and MNs from AsNAs on a 2D-surface such as a 

glass coverslip hard to control, especially at the beginning of a culture. In addition, MNs in AsNAs 

first migrate out of the aggregate before extending neurites (see Fig. 3.18), leading to 

discrepancies in the developmental morphology and potentially electrophysiological maturity of 

individual MNs within the same culture, due to initial positions within an astro-neural aggregate. 

In order to develop an in vitro culture protocol more reliable than the AsNAs method described 

previously, I first plated a monolayer of MACS-sorted ESC-derived astrocytes on glass coverslips, 

and allowed them to attach and stabilise overnight. The following day, MACS-sorted ESC-derived 

MNs were plated on top of the astrocytes, in known densities (10,000 per 18mm coverslip, see 

Chapter 2.2.2.12). These conditions resulted in more reproducible cultures, and the morphology 

of ESC-derived MNs developed more quickly in this format, as shown in figure 3.20, where day 

3 MNs have extensive neurite extension more closely resembling day 6 MNs from the AsNAs 

cultures. 

In vitro patch clamp analysis of the electrophysiological properties of ESC-derived MNs in these 

cultures revealed a similar maturation phenotype as seen with AsNAs culture (Fig. 3.21). 

However, when cultured on astrocyte monolayers, the functional maturation of ESC-derived 

MNs appears to be accelerated, with day 7 MNs able to fire trains of APs in response to direct 

current stimulation, similar to day 12 MNs in AsNAs culture (Fig. 3.21). This advanced maturation 

was also seen in response to blue-light stimulation, progressing from a single AP at 3DIV to train 

of APs at 35DIV, with a frequency of 50-60 Hz (Fig. 3.21). 
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D3 

D7 

D21 

D35 

Figure 3.21 ESC-derived MNs cultured on astrocyte monolayers show an accelerated 
functional maturation compared to aggregate cultures, and photostimulation closely 
mimics responses to direct current injection. Representative peak voltage responses to a 
500ms stepped current pulse over a 4 week time course are shown in the left column, while 
voltage responses to a 500ms blue-light pulse are shown in the right column. 
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Detailed analysis of the properties of single APs elicited by a 10ms current pulse from multiple 

experiments similarly reveals the electrophysiological maturation of the ESC-derived MNs over 

time in culture (Fig. 3.22). Both the AP voltage threshold (Fig. 3.22 a) and the width at half height 

(Fig. 3.22 c) decreased over time in culture, indicating the depolarisation required to elicit an AP 

reduced, and the speed of resulting APs increased. The membrane capacitance (Fig. 3.22 e) and 

current threshold (Fig. 3.22 d) of the MNs both increased over time in culture. An increase in 

membrane capacitance is associated with an increase in the surface area of the plasma 

membrane, revealing the continued growth of MNs and particularly extension and elaboration 

of axonal and dendritic processes. The maximum voltage (Fig. 3.22 b) of recorded APs showed a 

tendency to increase over time, although this increase was not significant (beyond day 3). The 

resting membrane potential (Fig. 3.22 g) of ESC-derived MNs was fairly consistent throughout 

the culture, although a small (but significant) drop was seen at both 3 DIV and 35 DIV. 

Analysis of the input current density against AP firing frequency is shown in figure 3.23. This 

reveals the classic sigmoidal curve associated with electrophysiological maturation of neurons, 

with more mature neurons initially requiring more current to elicit a response (due to their 

increased membrane resistance/size), but then able to achieve higher firing rates at higher 

current densities (Fig. 3.23). Less mature neurons require a smaller current density to fire APs, 

but then are unable to sustain firing activity beyond a certain current density, at which point 

they revert to a non-spiking response. 
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Figure 3.22 Analysis of single action potentials elicited in ESC-derived MNs by a 10ms 
current pulse across the time series investigated. The average voltage threshold (a), 
maximum voltage reached (b), speed of AP (c), current threshold (d), membrane capacitance 
(e), holding voltage (f), and resting membrane potential of ESC-derived MNs at various time 
points in astrocyte monolayer culture. Results of one-way ANOVA; * = p <0.05, ** = p <0.01, 
*** = p <0.001. N number for each time point is: Day 1 = 6, Day 3 = 6, Day 7 = 4, Day 21 = 8, 
Day 35 = 10. 

(a) 

(d) (c) 

(b) 

(f) (e) 

(g) 

Membrane Capacitance 
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Figure 3.23 Input/output curve of ESC-derived MNs cultured on astrocyte monolayers. 
Analysis of ESC-derived MNs stimulated with a steadily increasing 500ms current injection in 
current clamp mode. Note the progression over time from low-firing low-threshold 
responses to high-threshold high-frequency activity at later time points. 
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Chapter IV 

Establishing and Characterising In Vitro Muscle Culture 

4.1 Introduction and Aims 

While successful differentiation, optogenetic control and long-term survival and maturation of 

ESC-derived MNs both in vitro and in vivo are important steps towards using these cells for 

motor neuron disease modelling, they are not sufficient for a reliable and thorough model in 

themselves. For a more complete model it is necessary to include the relevant post-synaptic 

target of the MNs, skeletal muscle. Having both MNs and muscle gives a more complete 

neuromuscular “circuit”, and should allow for a better analysis of the functional viability of the 

MNs, enabling muscle contraction to be analysed in addition to AP firing within the MNs. 

Perhaps more importantly, many recent studies have highlighted the degeneration of the distal 

axon and the specialised synapse between MNs and muscle, the neuromuscular junction (NMJ), 

as one of the earliest markers of motor neuron disease (Dupuis and Loeffler, 2009; Fischer et al., 

2004; Frey et al., 2000). Indeed, in mouse models of ALS even complete rescue of MN cell soma 

death has only marginal effects on disease progression and does not affect survival rates, 

implicating NMJ breakdown and dysfunction as the key pathological events in the disease (Dewil 

et al., 2007; Gould et al., 2006b; Rouaux et al., 2007).  

For these reasons, I aimed to produce, characterise and optimise in vitro skeletal muscle 

cultures, to facilitate the generation of a better in vitro neuromuscular disease model.   
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4.2 Establishing ESC-Derived Muscle 

4.2.1 Creation of doxycycline-inducible Myod1 ES cells 

A great strength of stem cell based technologies is the ability to generate transgenic cell lines 

relatively quickly and efficiently, while maintaining clonal populations that can be expanded to 

generate as much experimental material as necessary. Having taken advantage of these 

attributes for the MN component in introducing cell-sorting markers and channelrhodopsin-2, 

my first strategy to develop an in vitro muscle culture was also based on differentiating 

embryonic stem cells. In addition to high reproducibility and scalability, this approach has the 

added advantage of enabling fast and efficient generation of transgenic cell lines, without 

resorting to the generation of transgenic animals or transient methods to overexpress or 

knockdown or knockout candidate genes. Both the neuromuscular channelopathies including 

non-dystrophic myotonia (NDM), periodic paralysis (PP), and congenital myasthenic syndrome 

(CMS) and the muscular dystrophies including Duchenne muscular dystrophy and Becker 

muscular dystrophy among others are caused by gene mutations effective in the muscle, and 

might be best studied and subjected to high-throughput screening efforts in stem cell derived 

muscle containing the relevant mutations (Sharp and Trivedi, 2014; Shieh, 2013; Suetterlin et 

al., 2014). Indeed, even in ALS and spinal muscular atrophy (SMA), typically thought of as defects 

of the motor neurons, recent evidence suggests that muscle plays an important role in 

contributing to the disease progression, and the muscle genotype may be an important factor 

to dissect and analyse to fully understand the disease mechanisms (Anderson et al., 2003; 

Dobrowolny et al., 2008; Jokic et al., 2005). 

While the in vitro differentiation of embryonic stem cells into MNs by small molecules has been 

well characterised, the generation of skeletal myoblasts from ESCs by exogenous factors has 

remained elusive. The in vivo development of skeletal muscle has been intensely studied, 

progressing from the generation of the paraxial mesoderm, through somitogenesis to migration 
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of myoblasts out of the myotome to their final destinations in the body, (Buckingham, 2006; 

Gros et al., 2005). The genetic program that directs myogenesis has also been determined, with 

Pax3 and Pax7 being expressed in myogenic progenitors as well as satellite cells, and Myod1 and 

Myf5 being important in commitment to myoblast fate and terminal differentiation. However, 

the molecular signals involved in directing this process are less well understood, hindering in 

vitro myogenesis from stem cells (Bajard et al., 2006; Kassar-Duchossoy et al., 2004; Lagha et al., 

2008; Relaix et al., 2005; Tapscott, 2005).  

To achieve reliable differentiation of murine ESCs into skeletal myoblasts, I therefore decided to 

take an inducible transgenic approach, rather than induction via exogenous signalling. 

Expression of myogenic transgenes in ESCs has been reported previously to lead to enrichment 

of myogenic progenitor populations of Pax3/Pax7 positive cells, as well as committed myoblasts 

that express markers of terminal muscle differentiation (Albini et al., 2013; Darabi et al., 2008b, 

2011b; Tanaka et al., 2013). Indeed, one of these, Myod1, has been shown to cause fate 

conversion to skeletal myoblasts in many different primary cell types including dermal 

fibroblasts, chondroblasts, smooth muscle, and retinal pigmented epithelial cells, as well as ES 

cells (Choi et al., 1990; Tanaka et al., 2013). For these reasons, Myod1 was an ideal candidate to 

drive muscle differentiation in murine ES cells. 

To introduce an inducible Myod1 transgene stably into a ES cell line, I took advantage of a 

technique reported previously called inducible cassette exchange (Iacovino et al., 2011). This 

technique involves replacing a floxed cre transgene in a previously generated ES cell line 

(A2Lox.cre) with a transgene of interest that must be floxed itself. The floxed cre allele is located 

in the Hprt locus, downstream of a tetracycline response element (TRE), enabling directed 

integration of the transgene at this genomic site, and chemically inducible expression of the 

transgene. To take advantage of this relatively fast and efficient method for generating 

transgenic cell lines, I generated a floxed Myod1 construct on a p2Lox vector, and co-transfected 

it into A2Lox.cre ES cells with CAG::Cre, to ensure recombination. The Myod1 vector also 
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contained a neomycin resistance gene, to allow screening of positive transfectants by neomycin. 

A successful transfection and recombination event would produce ES cells with the transgenes 

shown in figure 4.1 in the genome at the Hprt locus. 

ES colonies that survived the antibiotic selection were picked, expanded and split for further 

analysis. To test functional expression of the inducible Myod1 transgene, selected clones were 

exposed to doxycycline in the culture media. To facilitate myogenic differentiation, ESCs were 

first subjected to embryoid body culture, which initiates ESC differentiation and can promote 

mesodermal progenitor differentiation (Darabi et al., 2012; Hosoyama et al., 2014; Hwang et al., 

2013; Iacovino et al., 2011). Upon addition of doxycycline, positive clones were observed to 

change morphology over the course of 3-4 days, with individual cells elongating to acquire a 

spindle shape morphology, reminiscent of in vivo myoblasts (Fig. 4.2) (Chen and Quinn, 1992). 

Immunocytochemistry revealed expression of myosin heavy chain (MHC) in the spindle shaped 

cells, a terminal marker of myogenic differentiation. Comparison of these cultures to controls 

without doxycycline induction revealed no change in morphology or expression of MHC, 

indicating specific induction of the Myod1 transgene in response to doxycycline signalling. These 

results confirm the successful generation of an inducible-Myod1 ES cell line (“iMyoD”), and 

reliable differentiation to a myogenic lineage in response to doxycycline induction. 
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Figure 4.1 Transgenes integrated into the Hprt locus of A2Lox.cre ES cells to produce 
doxycycline-inducible Myod1 ES cells. The muscle differentiation factor Myod1 is driven by 
a tetracycline response element (TRE) to allow inducible expression of Myod1. A neomycin 
resistance gene allows selection of positive clones. 

Figure 4.2 Doxycycline-induced Myod1 transgene expression results in a spindle-shaped 
morphology and myosin heavy chain expression in murine ES cells. ES cells containing a 
doxycycline inducible Myod1 transgene express myosin heavy chain (MHC; green) and 
assume an elongated, spindle shape after exposure to doxycycline in vitro. Control cells 
retain a round morphology and do no express MHC.  

MHC DNA 

+Dox -Dox 
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4.2.2 Producing MACS-sortable ESC-derived muscle 

Although the induction of the Myod1 transgene does drive a subset of ES cells to a myogenic 

fate, not all cells respond similarly to doxycycline induction, and in fact many do not express 

MHC, do not change morphology and do not exit the cell cycle, as is typical for differentiating 

myoblasts. These proliferative contaminating cells are not committed to a myogenic lineage, 

and rapidly overgrow in vitro cultures of induced myoblasts, preventing stable long-term culture.  

Purification of the myoblast population following differentiation should remove the 

contaminating cells, and allow pure, long-term cultures of ES cell-derived myoblasts. To allow 

sorting of the myogenic population from contaminating cells, I generated a tol2 transposon 

based construct to enable MACS-sorting, similar to the strategy used for ES cell-derived MNs. 

Expression of a mouse CD14 transgene was again used as a cell surface marker, this time under 

the control of a small promoter region from the Myogenin gene, a muscle specific nuclear 

transcription factor downstream of Myod1 in the muscle differentiation program (Fig. 4.3) 

(Brennan and Olson, 1990; Yee and Rigby, 1993). A hygromycin resistance gene was inserted 

downstream of the CD14 poly-A sequence to enable selection of positive colonies by antibiotic 

resistance.  

iMyoD ES cells were co-transfected with the Myogenin::CD14 construct and tol2-transposase to 

drive tol2-mediated transposition events enabling stable insertion into the genome. Following 

colony picking after Hygromycin selection, candidate clones were subjected to doxycycline-

induced myogenic differentiation and screened for CD14 expression by immunocytochemistry. 

Multiple clones were clearly positive for CD14 expression, as shown in figure 4.4, however 

significant differences were observed in expression levels and specificity. Clone C4 (“iMyoD C4”) 

was selected for expansion and further analysis due to its relatively high expression of CD14 

specifically in spindle-shaped cells, with no expression observed in rounded, undifferentiated 

cells (Fig. 4.4). 
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Figure 4.3 Tol2-based construct used to drive specific expression of the MACS-sortable 
marker CD14 in myogenic cells using a promoter from the Myogenin gene. The muscle 
specific nuclear transcription factor Myogenin drives specific expression of CD14 in 
committed myoblasts. This construct was stably integrated in the genome of iMyoD ES cells 
via tol2-mediated transposition. A hygromycin resistance gene allowed selection of positive 
clones using antibiotic resistance. 

Figure 4.4 Screening for CD14 expression during myogenic differentiation of iMyoD ES 
cells. Representative images from the immunostaining for CD14 in clones selected after 
transfection with the tol2-based Myogenin::CD14 construct. Varying levels of CD14 
expression were observed between clones, with clone “C4” showing the most specific, high-
level expression in spindle-shaped myoblasts. Scale bar = 100µm. 

Clone 
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4.2.3 Genomic integration site mapping of iMyoD “C4” 

Variation in the expression levels and profile of the Myogenin::CD14 transgene in different 

clones may be a result of integration into different regions of the genome. The epigenetic 

landscape of the surrounding DNA, including methylation status and histone modification, can 

influence the expression level of transgenes, and could result in poor or absent expression 

(Baum et al., 2006; Fontes and Lakshmipathy, 2013). Additionally, if the transgene were to insert 

into the sequence of an endogenous gene, it may lead to altered expression or function of that 

gene, ultimately leading to unpredictable and undesirable effects in the cell line, potentially 

invalidating the use of the cells in experiments. For these reasons, and to better characterise the 

candidate MACS-sortable clone C4, I carried out inverse PCR mapping of the integration site of 

the sortable transgene. This technique relies on cutting out a small stretch of the tol2 

transposable element sequences at either end of the transgene along with a short section of the 

surrounding genomic DNA using restriction endonucleases. These excised DNA fragments are 

then self-ligated and amplified by sequential PCR reactions using nested inverted primers 

designed to amplify part of the tol2 sequence and the genomic DNA. The products of the second 

PCR reaction are then inserted into a pGEM plasmid and sequenced. This procedure is depicted 

schematically in figure 4.5 below. The genomic sequence can then be compared to genomic 

sequence databases to identify where the transgene has inserted into the genome.  

While multiple samples were obtained from the inverse PCR reactions against both the left and 

right Tol2 insertion sequences, only one sample from the Tol2 R group (MA2ii) gave reliable 

results, having both primer sites intact along with the Tol2 sequence and a stretch of genomic 

DNA (Fig. 4.6 a). The genomic sequence recovered in this sample was analysed using the 

nucleotide BLAST application on the NCBI webpage (http://blast.ncbi.nlm.nih.gov/Blast.cgi). 

This search revealed sequence homology to chromosome 2, in the middle of a gene called Tanc1 

(Fig. 4.6b). One sample against the Tol2 L side also contained genomic DNA that matched to a 

sequence 5’ of the Cacna1a gene on chromosome 8, however no primer binding sites were 

http://blast.ncbi.nlm.nih.gov/Blast.cgi


118 
 

found, making this result unreliable (data not shown). 

 

 

 

Figure 4.5 Schematic outlining the steps involved in inverse PCR mapping. (a) Nested, 
inverted PCR primers are designed against the ends of the flanking Tol2 insertion sequences. 
A restriction endonuclease that recognises a 4-base pair sequence upstream of the reverse 
primers (e.g. Alu1) is used to digest the genomic DNA, cutting at unknown point in the 
genomic DNA downstream of the Tol2 site, releasing a fragment with the primers and some 
genomic DNA. (b) The digest products are self-ligated, and subjected to two PCR reactions 
using the nested primers. The predicted product of the first reaction is shown in (c), and the 
second reaction is shown in (d). This product can then be inserted into a p-GEM vector for 
sequencing (see Fig. 4.6). 
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(b) 

CGGCCGCCATGGCGGCCGCGGGAATTCGATTTGGAAGAA

AATGGAGGAAGTATGTGATTCATCAGCAGCTAGGACGCC

AGGGATGAGGACAGGAAGGGCCTTCCTCACATCTGAATC

CCCAGAGGTATAAAGTACTTGAGTAATTTTACTTGATTACT

GTACTTAAGTATTATTTTTGGGGATTTTTACTTTACTTGAG

TACAATTAAAAATCAATACTTTTACTTTTACTTAATTACATT

TTTTTAGAAAAAAAAGTACTTTTTACTCCTCACAATTTTATT

TACAGTCAAAAAGTACTTATTTTTTGGAGATCACTTCATTC

TATTTTCCCTTGCTATTACCAAAATCACTAGTGAATTCGCG

GCCGCCTGCAGGTCG 

Figure 4.6 Inverse PCR mapping of the genomic integration site of Myogenin::CD14 tol2 
transgene into the iMyoD cell line. (a) Sequence alignment results from a successful inverse 
PCR (iPCR) reaction using primers and restriction endonucleases against the tol2R element. 
Un-highlighted text is pGem sequence, red highlights indicate Tol2R sequence, and grey 
highlights indicate genomic DNA. White text shows primer binding sites. (b)  The amplified 
sequence matched the tol2R sequence and included the primer binding sites. A small 
sequence of genomic DNA was amplified, which was found to match a region inside the 
Tanc1 gene on chromosome 2 (c). 

(a) 

(c) 
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4.2.4 Analysis of MACS efficiency 

While immunocytochemistry revealed strong, specific expression of the CD14 transgene in 

presumptive myoblasts (Fig. 4.4), it was still unknown whether this would allow reliable MACS-

sorting of the muscle fraction following differentiation. To analyse the efficiency of MACS 

utilising the CD14 surface tag, I carried out multiple repeats of the differentiation and MACS sort 

and analysed the pre-sort, flow-through and eluate by immunocytochemistry. As shown in figure 

4.7, there was a significant enrichment for myoblast-like cells in the eluted fraction compared 

to both the pre-sort and the flow-through. There was a clear depletion of cells expressing MHC 

in the flow-through, as would be predicted for a successful purification. Analysis of multiple 

(n=3) MACS-sorts performed on different days revealed an average enrichment to 90.7% ± 4.6% 

MHC positive cells in the eluate, from 23% ± 3.6% MHC positive cells in the pre-sort (Fig. 4.7e). 

The flow-through was depleted to 11% ± 4.2% MHC positive cells. These results confirm the 

reliable and reproducible purification of the myogenic cell fraction from the initially mixed 

population of differentiating cells in vitro, and validate the use of the Myogenin::CD14 transgene 

to allow sorting of ESC-derived myoblasts. 

To strengthen the evidence showing functional purification of the myogenic cell fraction, I 

analysed multiple MACS samples by flow cytometry immediately after sorting. Using a directly 

conjugated phycoerythrin (PE) antibody against CD14 revealed an enrichment of labelled cells 

in the eluate fraction compared to both the pre-sort and the flow-through (Fig. 4.9). Unlabelled 

cells from the pre-sort sample were used to set the gate “P1”, based on size and granularity 

using the forward and side scatter values respectively. P1 was set to capture all single cells, while 

cell debris and aggregates were not counted. The percentage of cells counted in the primary 

gate “P1” was equivalent in all three samples, with 60.8% in the pre-sort, 60% in the flow-

through and 63.6% in the eluate (Fig. 4.9). The percentage of cells that had relatively high levels 

of PE-staining in each sample was higher than the observed MHC expression in 

immunocytochemistry analysis, however this could be due to non-specific or background 
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staining due to the fast labelling protocol used for flow cytometry. Alternatively, it is possible 

that many more non-MHC expressing cells do express CD14 on their surface than first thought, 

leading to the higher PE-staining observed in flow cytometry, although these cells do not appear 

in the eluate fraction as shown in figure 4.6, and therefore should not contaminate the purified 

myoblast-like population.    
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Figure 4.7 MACS sorting iMyoD C4 results in a reproducible, purified myoblast population. 
Representative immunostains from the pre-sort (a), flow-through (b) and eluate (c) fractions 
from MACS-sorting iMyoD C4. (c’) The eluate fraction showing only myosin heavy chain 
(green) and DNA (blue) labelling, revealing the high purity of mononuclear myogenic cells. 
(d) Bar graph showing average sorting efficiency over 3 MACS sorts. Scale bar = 100μm; One 
way ANOVA * = p <0.05, ** = p <0.01, *** = p <0.001. 

(a) (b) (c) 

(c’) 

(d) 
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Figure 4.8 Gating and sample distribution for flow cytometry. Scatter plots from a 
representative MACS sort of iMyoD C4 showing the size and granulosity of cells in the pre-
sort (a), flow-through (b) and eluate (c) respectively [arbitrary units]. (d-f) Histograms 
showing the distribution of PE fluorescence in the sample populations from (a-c) [arbitrary 
units]. 

(a) 

(b) 

(d) 

(c) 

(e) 

(f) 
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Figure 4.9 Flow cytometric analysis of MACS-sorted iMyoD C4. (a) Combined histogram plot 
showing the PE fluorescence distribution in the pre-sort (green), flow-through (red) and 
eluate (blue) respectively. Control unlabelled cells from the pre-sort sample are shown in 
black [arbitrary units]. (b) Table indicating percentages of cells in each sample found above 
or below an arbitrary fluorescence threshold set at the upper limit of unlabelled cell 
autofluorescence [purple line in (a)]. 

(a) 

(b) 
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4.2.5 Characterisation and optimisation of ESC-derived muscle 

Comparison of doxycycline-induced iMyoD C4 cultures to non-induced cultures immediately 

after differentiation in vitro revealed the expression of multiple myogenic markers in the 

doxycycline-induced cells (Fig. 4.10). Myosin heavy chain was observed in the cytoplasm of 

induced myoblasts, but was completely absent in uninduced cells (Fig. 4.10 a + a’). Myogenin, a 

nuclear transcription factor downstream of Myf5 and Myod1, was also observed in in the nuclei 

of induced cells, but again was not detected in uninduced cells (Fig. 4.10 b + b’). MCadherin, a 

muscle specific cell adhesion molecule, was also observed in doxycycline-induced conditions, 

found predominantly along the plasma membrane of spindle shaped myoblasts (Fig. 4.10 c). Not 

only was MCadherin expression not found in uninduced cells, but the morphology of the cells 

was also noticeably different, with a more rounded appearance (Fig. 4.10 c’). An antibody 

against a fast skeletal muscle specific epitope, My32, revealed clear expression in induced cells 

in a cytoskeletal arrangement, with no staining present in the uninduced population (Fig. 4.10 d 

+ d’). Finally, Myod1 is clearly visible in the nuclei of cells exposed to doxycycline, but again 

absent from the control population (Fig. 4.10 e + e’). Myod1 expression would be predicted in 

the induced condition regardless of myogenic differentiation however, as the expression of the 

protein is being directly driven via the Myod1 transgene under the control of the tetracycline 

response element. 

Analysis of muscle marker expression in doxycycline-induced cultures after one week in vitro 

shows continued expression of muscle-specific proteins, and the initiation of cell fusion to form 

immature myotubes (Fig. 4.11). Myogenin expression remains clear in the nuclei, while 

MCadherin expression is also found surrounding the presumptive myotubes (Fig. 4.11 a + a’, b + 

b’). These results confirm the myogenic commitment of doxycycline-induced iMyoD C4 cells in 

vitro, with multiple muscle specific proteins expressed and correctly localised. 
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Figure 4.10 Doxycycline induced iMyoD C4-derived myoblasts express multiple muscle-
specific proteins. (a-e) Antibody labelling against muscle-specific proteins expressed by day 
1 doxycycline induced iMyoD C4 myoblasts. Mf20 labels an embryonic isoform of myosin 
heavy chain (myHC), while My32 labels a fast skeletal muscle specific isoform of MHC. (a’-e’) 
Merged images of muscle markers shown in (a-e) with a nuclear DNA marker and phalloidin, 
which stains f-actin. (a’’-e’’) Uninduced control cells show no expression of any of the muscle 
markers, and have a different morphology as shown by phalloidin labelling (green). DNA 
labelled with topro-3 is shown in blue. Scale bar = 100 μm. 

(a) 

(b) 

(c) 

(d) 

(e) 

(a’) 

(b’) 

(c’) 

(d’) 

(e’) 
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(d’’) 

(e’’) 
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Figure 4.11 iMyoD C4-derived myoblasts maintain expression of muscle-specific proteins 
after 1 week in culture. (a+a’) Nuclear Myogenin labelling remains visible in day 7 cultures 
of ESC-derived muscle. Not all nuclei are Myogenin positive, indicating substantial 
proliferation of contaminating cell types and possible termination of Myogenin expression in 
maturing myotubes. Fusion of myoblasts to form multinucleated myotubes is evident from 
the close proximity of many Myogenin labelled nuclei. (b+b’) M-Cadherin expression is seen 
in day 7 ESC-muscle cultures, localised to the plasma membrane. DNA counterstaining with 
Topro-3 reveals aggregations of DNA, possibly indicative of cell death, especially when not 
associated within an F-actin/M-Cadherin labelled cell. Scale bar = 100 μm. 

(a) (a’) 

(b) (b’) 
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To establish the optimal conditions for in vitro culture of MACS-sorted iMyoD C4 muscle, purified 

myoblasts were plated at multiple densities on different matrigel-coated cell culture substrates 

with various culture conditions changed. The viability of ESC-derived muscle culture was 

assessed on 8 well permanox slides (Fig. 4.12), 24 well plastic Nunc™ tissue culture plates (Fig. 

4.13) and in 24 well tissue culture plates in co-culture with mouse embryonic fibroblasts (Fig. 

4.14).  

ESC-derived myoblasts were plated on permanox slides at either 100,000 or 200,000 cells per 

well, based on previous experience using these slides. One day after plating, the wells with 100k 

cells were roughly 50% confluent, mono-nuclear, and had the characteristic spindle-shaped 

morphology of myoblasts (Fig. 4.12). Wells with 200k cells were almost confluent, and had the 

same single-celled myoblast morphology. Detached, rounded cells were observed at both 

densities, indicating a failure of some cells to attach to the substrate. There were no obvious 

differences between the cells plated in the standard myoblast media versus cells cultured in 

myoblast media plus chick embryo extract (CEE), used to culture primary skeletal myoblasts in 

vitro.  

Five days after initial plating, much cell death was apparent in all the permanox conditions, 

although survival appeared slightly better in the more confluent wells (Fig. 4.12). Cells in the 

100k wells were extremely sparse, with multiple detached and rounded clusters of cells 

indicative of death and detachment. More cells remained attached in the 200k wells, however 

the confluency had also decreased from initial plating. Many more clusters of round, dead cells 

were observed in the higher density conditions, perhaps as a result of detachment from the 

substrate and subsequent cell death, as spontaneous contractile activity was observed as early 

as 3 days in vitro. Cells that remained attached at day 5 maintained the elongated spindle shape, 

and some evidence of alignment and fusion was observed in the 200k wells, although myotubes 

were short and thin. In both conditions, more cells remained attached around the edges of the 

well, close to the wall, although by day 12 all cells plated on permanox slides had died. 
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Figure 4.12 In vitro culture of iMyoD C4 myoblasts on 8 well Permanox slides. (a-d) MyoG 
C4 cultures imaged after 1 day in vitro, in media supplemented with chick embryo extract (a 
+ b) or without (c + d). After 5 days of in vitro on permanox slides much cell death was 
observed in all conditions (a’-d’).  Scale bar = 100µm. 

(a) 

(b) 

(c) 

(d) 

(a’) 

(b’) 

(c’) 

(d’) 
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Due to the larger surface area of 24 well Nunc™ tissue culture plates, MACS-purified myoblasts 

were plated on matrigel at 200k or 400k per well. Again, cells were generally sparser in the 200k 

condition compared to the 400k wells, and all attached cells had an elongated spindle shape 

morphology (Fig. 4.13). Some myoblasts displayed slight branching morphology in cultures 

plated on the tissue culture plates, particularly in the lower density conditions. In contrast to the 

8 well permanox slides, there were very few rounded or dead cells observed on the Nunc™ 

plates after 1 day in vitro, suggesting better initial attachment and survival. There were no clear 

differences between cells cultured in standard myoblast media or myoblast media with CEE on 

tissue culture plates at day 1 (Fig. 4.13). 

Significant cell death was observed in cultures on Nunc™ tissue culture plates in all conditions 

after 5 days in vitro (Fig. 4.13). The wells plated with 200k cells were noticeable sparser by day 

5, with many round dead cells and cell debris visible. Remaining myoblasts in the 200k conditions 

displayed blebbing of the plasma membrane, and were often slightly branched, extending 

multiple short membrane processes, not typical of healthy myoblasts. While wells plated with 

400k cell remained fairly confluent, multiple dead or rounded cells were visible in both myoblast 

media and myoblast media supplemented with CEE, indicating detachment from the substrate 

possibly as a result of spontaneous contractile activity. Cells that remained attached in the 400k 

wells retained the bipolar spindle shaped morphology, and some evidence of fusion was 

observed. Multiple large, flat cells were seen in wells cultured with CEE by 5 DIV on tissue culture 

plates, possibly due to contamination with proliferative fibroblast-like cells, however these cells 

also displayed membrane blebbing, disrupted nuclei and a granular cytoplasm, possibly due to 

cell death by apoptosis (Wyllie, 1997). Compared to permanox slides, myoblast survival was in 

general better after 5 DIV on Nunc™ tissue culture plastic. 
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Analysis of cultures on Nunc™ tissue culture plates at 12 DIV revealed almost complete cell death 

in all conditions (Fig. 4.13). Very few myoblasts remained attached in the 200k wells, with only 

detached dead cells and debris evident in most areas. The same was true for wells plated with 

400k cells, however a few more spindle-shaped myoblasts remained attached in the wells 

supplemented with CEE. 

  

Figure 4.13 In vitro culture of iMyoD C4 myoblasts on 24 well Nunc™ tissue culture plates. 
MyoG C4 cultures imaged after 1 day in vitro, in media supplemented with chick embryo 
extract (a + b) or without (c + d). After 5 days on tissue culture plates, cell death was observed 
in all conditions, but most prominently in lower density wells (a’-d’). After 12 DIV very few 
cells remained attached and alive in any condition (a’’-d’’). Scale bar = 100µm. 

(a) 

(b) 

(c) 

(d) 

(a’) 

(b’) 

(c’) 

(d’) 

(a’’) 

(b’’) 

(c’’) 

(d’’) 
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As a method to improve the survival of ESC-derived myoblasts in vitro, I co-cultured MACS-

sorted iMyoD C4 derived myoblasts with mitotically inactivated mouse embryonic fibroblasts 

(MEFs), to act as a mechanical and trophic support, in order to reduce detachment from the 

culture substrate and promote long-term culture. A monolayer of MEFs was plated on matrigel-

coated 24 well Nunc™ tissue culture plates one day prior to MACS-sorting and plating of iMyoD 

C4 derived myoblasts. One day after plating the myoblasts, long, thin, spindle-shaped myoblasts 

were clearly visible above a confluent layer of fibroblasts (Fig. 4.14). Some round cells and cell 

debris was visible in all conditions, indicating a failure of some cells to attach, as seen in cultures 

without MEFs. By day 5, a clear decrease in the number of myoblasts was observed in all 

conditions. This decrease was most notable in wells plated with 200k myoblasts, and slight 

branching of remaining myoblasts was evident, similar to 5 DIV myoblasts plated on Nunc™ 

tissue culture plates without MEFs (Fig. 4.13). Wells seeded with 400k myoblasts showed some 

evidence of fusion, and occasionally spontaneous contractile activity was seen, however the 

majority of cells remained mononuclear and unaligned. Significant granulation in the nucleus 

and cytoplasm of the MEFs was also observed on day 5, suggesting decreasing viability in the 

MEF population. Both MEFs and myoblasts appeared slightly more confluent in wells 

supplemented with CEE. 

By 12 days in vitro, massive cell death was evident in all conditions. Multiple round cells were 

observed in suspension in most wells, and very few elongated myoblast-like cells remained 

attached, particularly in wells not supplemented with CEE (Fig. 4.14). A few fused, 

multinucleated, myotubes remained in the 400k wells supplemented with CEE, however they 

had fragmented nuclei and a granular cytoplasm, and very little spontaneous contractile activity 

was observed. While a majority of fibroblasts were still present, many had died, disrupting the 

initially confluent monolayer.  
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Figure 4.14 In vitro co-culture of iMyoD C4 myoblasts with mouse embryonic feeder cells 
on 24 well Nunc™ tissue culture plates. (a) MyoG C4 derived myoblasts co-cultured with 
mouse embryonic fibroblasts (MEFs) imaged after 1 day in vitro, in media supplemented with 
chick embryo (CEE) extract (a + b) or without (c + d). After 5 days on tissue culture plates, 
myoblast cell death was observed in all conditions, and granulation was seen in the 
cytoplasm of many MEFs (a’-d’). After 12 DIV long, fused myotubes were observed in wells 
plated with CEE and MEFs, however much cell death was also apparent (b’’). Very few 
myoblasts remained in the other conditions, and significant loss of MEFs was also observed 
(a’’, c’’ and d’’). Scale bar = 100µm. 
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In general, iMyoD C4 ESC-derived muscle cultures did not survive beyond 2 weeks in vitro in any 

of the conditions tested, and while fusion to form contractile myotubes was observed, only a 

minority of myoblasts were able to develop to this maturity. One notable exception to this trend 

is shown in figure 4.15 below. In this experiment, large clusters of myoblasts did not adhere to 

the cell culture substrate, and instead formed free-floating aggregates reminiscent of embryoid 

bodies formed during ES cell differentiation into motor neurons (Wichterle et al., 2002). These 

aggregates survived long-term in vitro, and clear spontaneous contractile activity was observed 

after 1 week in culture. Analysis of aggregates by immunohistochemistry on cryosections cut 

through an aggregate after 6 weeks of culture revealed long, multinucleated myofibrils with 

clear F-actin striations characteristic of mature striated skeletal muscle sarcomeres (Berendse 

et al., 2003; Goulding et al., 1997). While promising, unfortunately attempts to repeat this 

suspension aggregate culture were unsuccessful, resulting in cell death within the first week, as 

seen in adherent cultures. Further testing and optimisation is therefore required to repeat the 

mature differentiation shown in figure 4.15, and better understand in vitro ESC-derived skeletal 

muscle culture.  

  1 Week 6 Weeks 

Figure 4.15 Long-term in vitro culture of iMyoD C4 myoblasts as aggregates enabled 
maturation to contractile, multinucleated myotubes with visible sarcomeric structure. (a) 
After 7 DIV, ESC-derived myoblasts formed multinucleated myotubes, however labelling of 
F-actin with phalloidin reveals no clear cytoskeletal structure. (b) After 6 weeks in vitro, 
iMyoD C4 derived cells formed long, multinucleated myotubes with characteristic sarcomeric 
structure revealed by F-actin staining. Scale bar = 100µm. 

(a) (b) 
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4.2.6 Analysis of ESC-derived muscle contractile activity  

Spontaneous contraction of myotubes was frequently observed in iMyoD C4 derived muscle 

cultures, with activity noted as early as 3 days in vitro. This activity was present in the absence 

of neuronal innervation or external stimulation, and was fairly sporadic in nature, with no 

obvious pattern or consistency. Movies of live iMyoD C4 derived muscle cultures taken using an 

optical microscope allowed recording of this phenotype, enabling frame-by-frame analysis of 

muscle contraction using imaging software (ImageJ). The methodology used to analyse the 

movies is summarised in figure 4.16 below. 

 

 

 

 

 

 

 

 

 

Analysis of day 4 monolayer cultures of iMyoD C4 derived muscle revealed relatively strong, 

synchronised contractions occurring across the culture, with a fairly low frequency (Fig. 4.17). In 

Figure 4.16 Frame-by-frame analysis of iMyoD C4 spontaneous contractile activity. 
Sequential frames from a time-lapse movie of an iMyoD C4 culture are shown. Persistent 
visual landmarks are chosen on an active myocyte, and a line is drawn between them [shown 
in red] (a). These landmarks are identified in all frames of the movie, and a line is generated 
for each frame (b). (c) The length of the red line in all frames is then measured, and the 
difference between the length of the line in each frame from the baseline (longest length 
measured) is calculated to give the displacement of the visual landmarks (muscle 
contraction), expressed as μm. 

Frame 30 Frame 31 

Difference between lengths expressed as μm = Displacement 
 

(a) (b) 

(c) 
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two of the movies (Fig. 4.17 a+b), contractions causing a displacement of around 15μm were 

recorded, occurring in bursts. The maximum displacement measured during a contraction in this 

format was 17.5μm (Fig. 4.17 a). When contractions occurred in quick succession, a full recovery 

to baseline was not seen, indicating residual tension between contractions. In the third movie 

analysed only one small contraction was recorded, happening in isolation, with the end of a 

previous contraction captured at the start of the movie (Fig. 4.17 c). Of the 6 time-lapse movies 

recorded of these cultures, contraction events were only observed in 3, highlighting the sporadic 

nature of this phenotype at 4 DIV. While observing these cultures, particularly powerful 

contractions were seen to cause tearing of the monolayer, and detachment from the culture 

substrate. This effect likely contributes to the difficulty of maintaining these cultures long-term 

in vitro. 

Small contractions were also noted in some mononuclear myoblasts that had not fused at 4 DIV 

(Fig. 4.18). Contractile activity in individual myoblasts was much weaker, causing a displacement 

of less than 5μm in all measured examples. While not all mononuclear myoblasts showed 

contractile activity, the frequency of these contractions in active myoblasts was much higher 

than that seen in fused cultures. The difference in contraction strength between fused cultures 

and individual myoblasts is shown in figure 4.19 below, which also indicates the variation 

between samples recorded in each condition. The average displacement measured in fused 

monolayer cultures was 14.1μm ± 0.5 while in single myoblasts it was 1.17μm ± 0.04 (± S.E.M). 

The standard deviation within each sample group as shown on figure 4.19 was relatively large, 

indicating the high variability between contraction events, even within the same culture. While 

more work needs to be done to better characterise the spontaneous activity of iMyoD C4 

derived muscle and allow more detailed analysis, this preliminary study reveals the development 

of a functional muscle phenotype, and shows the maturation of this phenotype in conjunction 

with the progressive maturation of myocyte morphology. 
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Figure 4.17 Analysis of fused iMyoD C4 monolayers after 4 DIV reveals sporadic, 
spontaneous contractile activity. Six time-lapse movies recorded on an optical microscope 
were analysed frame-by-frame as summarised in figure 4.16. In three movies, clear 
contractile events were observed (a, b + c). Although displacement was observed across most 
of the imaged area in all movies, one representative region was selected for analysis in each 
sample. 
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(a) 
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Figure 4.18 Analysis of individual iMyoD C4 myoblasts after 4 DIV reveals weak but 
frequent spontaneous contractile activity. Time-lapse movies recorded on an optical 
microscope were analysed frame-by-frame as summarised in figure 4.16. Weak contractile 
events were observed in some myoblasts in the absence of fusion (a + b). 
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Figure 4.19 Analysis of iMyoD C4 spontaneous contractile activity after 4 DIV. Average displacement 
caused by contractile events in fused monolayer cultures (n=3) against mononuclear myoblasts (n=3). 
Average displacement was 14.1 ± 0.5 and 1.17 ± 0.04 (± S.E.M) in monolayers and myoblasts respectively. 
Error bars show the standard deviation. Two-tailed T-test * = p <0.05, ** = p <0.01, *** = p <0.001. 

*** 
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4.3 Establishing Chick Primary Skeletal Muscle Culture 

4.3.1 Optimisation of primary skeletal muscle culture  

Due to the difficulties experienced in maintaining long-term in vitro cultures of ESC-derived, 

MACS-sorted muscle, an alternative functional target tissue for ESC-derived MNs was sought. 

Primary chick skeletal muscle was identified as an ideal substitute, primarily due to the existence 

of well-established protocols for its culture, as well as its relative ease of accessibility and 

availability (Caplan, 1976; Gerstenfeld et al., 1984). Embryonic chick skeletal muscle was 

obtained by dissection of E10 chick pectoral muscles (as described in Chapter 2.2.2), providing a 

large quantity of muscle tissue. Mechanical and chemical dissociation of this tissue results in a 

single-celled suspension containing skeletal myoblasts as well as contaminating cells including 

fibroblasts and endothelial cells. Short incubation of this cell suspension in a 90cm Nunc™ tissue 

culture plate allowed adhesion of the majority of contaminating cells to the plate, while 

myoblasts remained in suspension, enabling a reduction in contaminating cell contribution to 

the final experimental material. Treatment of cultures with 5-fluoro-2'-deoxyuridine (FDU), an 

antimetabolite that prevents DNA replication via inhibiting thymidine synthesis, for 2 days at 2 

DIV further reduced the contaminating cell population, allowing more stable long-term culture 

(Longley et al., 2003). This adapted and optimised method for chick skeletal muscle culture is 

outlined in figure 4.20 below. 

To determine the ideal culture parameters for primary chick skeletal muscle, optimisation 

experiments on multiple cell culture substrates in various conditions were tested, similar to 

experiments conducted with ESC-derived myoblasts previously. Hemin, a porphyrin iron 

chelating agent similar to heme, was tested as an alternative to chick embryo extract (CEE) in 

promoting myogenic differentiation and survival, as it has been reported to improve myotube 

maturation, growth and function in vitro (Funanage et al., 1989; Schroedl et al., 1988). Different 

concentrations of matrigel coating and cell density were also assessed.  
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Figure 4.20 Schematic of the preparation of chick primary skeletal muscle for in vitro 
culture. (a) Day 10 eggs are sprayed with 70% ethanol prior to opening a “window” using 
surgical scissors. (b) The embryo is removed and placed in a dish of sterile DMEM, and 
decapitated using forceps (solid line). The skin along the ventral surface (dashed line) is cut 
and pealed back to the limbs. A single vertical cut through the abdominal muscles and ribcage 
is made, and the pectoralis major muscles are excised and enzymatically dissociated in 3ml 
of 0.25% trypsin at 37°C for 30 minutes. (c) Following inactivation of trypsin, cells are passed 
through a 40µm filter to a 90mm tissue culture plate, where incubation at 37°C for 30 
minutes allows contaminating cells such as fibroblasts to adhere to the plastic. Myoblasts 
remaining in suspension are collected for culture plating. (D10 Chick image adapted from 
flikr.) 

Figure 4.21 Media supplemented with chick embryo extract promotes primary chick 
skeletal myoblast attachment and survival on 24 well Nunc™ tissue culture plates. (a-d) 
Chick Primary Myoblasts imaged after 3 DIV on a 24w tissue culture plate. Cells cultured in 
media supplemented with chick embryo extract (CEE) formed confluent monolayers of 
spindle shaped myoblasts (a+b), while cells cultured in media with hemin generally detached 
and died (c+d). Matrigel concentration did not appear to have a major influence in either 
condition. Scale bar = 100µm. 
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30 mins, 37°C 
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Primary chick skeletal myoblasts plated on 24 well Nunc™ tissue culture plates in standard 

muscle media supplemented with CEE at 100k cells per well formed confluent monolayers of 

elongated cells at 3 DIV (Fig. 4.21 a+b). Cultures in these conditions did not appear to be affected 

by matrigel concentration, with cells on 1:30 matrigel closely resembling cells plated on 1:90 

matrigel. Some cell fusion was already apparent after 3 DIV, with small myotubes observed 

throughout the cultures. Clear alignment between adjacent myoblasts was seen, however 

alignment was not consistent across the cells within each well, with different areas of the 

cultures aligned in different polarities. Very few dead cells or cell debris was observed in these 

conditions at day 3. Conversely, cultures of 100k cells on 24 well tissue culture plates fed with 

media containing hemin showed significant cell death, and failed to form a confluent monolayer 

(Fig. 4.21 c+d). Many rounded detached cells were observed suspended in the media, and debris 

from dead cells was apparent across the cultures. Cells that remained attached in these 

conditions rarely had the characteristic elongated spindle-shaped morphology of myoblasts, and 

instead extended multiple short membrane processes resembling fibroblasts. There was no 

evidence of fusion or alignment in cultures fed with hemin. Similar to cultures fed with CEE, 

matrigel concentration did not seem to influence these results. 

Tissue culture plates seeded with 200k cells displayed similar results to those seen with 100k 

cells (Fig. 4.22). Myoblasts cultured in medium containing 5% CEE formed a confluent, ordered 

monolayer of spindle-shaped cells at both matrigel concentrations tested (Fig. 4.22 a+b). Wells 

fed with media containing hemin did appear more confluent than equivalent conditions using 

100k cells, however the morphology of the myoblasts remained poor, and multiple dead cells 

and cell debris was observed (Fig. 4.22 c+d).  Again, matrigel concentration appeared to have 

little influence over the condition of cultures plated on 24 well Nunc™ tissue culture plates. 
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Figure 4.22 Matrigel concentration does not appear to influence primary chick skeletal 
myoblasts culture on 24 well Nunc™ tissue culture plates. (a-d) Chick Primary Myoblasts 
imaged after 3DIV on a 24w tissue culture plate at 200k per well. The higher seeding density 
did not appear to influence cells culture with CEE (a+b), and did not improve cultures with 
hemin (c+d). Matrigel concentration did not appear to have a major influence in either 
condition. Scale bar = 100µm. 
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Figure 4.23 Culture of primary chick skeletal myoblasts on 8 well permanox slides with CEE- 
or hemin-supplemented media. (a-d) Chick Primary Myoblasts imaged after 3DIV on an 8w 
permanox slide at 100k per well. Myoblasts cultured in media supplemented with chick 
embryo extract (CEE) formed monolayers of spindle shaped myoblasts (a+b), while cells 
cultured in media with hemin detached over most of the slide, and formed large aggregates 
(c+d). Matrigel concentration did not appear to have a major influence in either condition, 
with perhaps fewer myoblasts attaching to wells with 1:90 matrigel (b). Scale bar = 100µm. 
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8 well permanox slides were tested due to their ease of use in multiple imaging paradigms, as 

well as their small sample size allowing multiple conditions to be tested in parallel. Primary chick 

skeletal myoblasts plated on 8 well permanox slides with media supplemented with CEE had a 

relatively good morphology, and evidence of cell fusion and partial alignment was observed (Fig. 

4.23 a+b). Cultures plated on 1:30 matrigel appeared slightly more confluent than cultures on 

1:90 matrigel, indicating possible failure of or loss of attachment to the substrate in the lower 

concentration matrigel condition. Cell debris was observed at both concentrations of matrigel, 

indicative of cell death, with slightly more seen in the 1:90 matrigel wells. This difference may 

be due to the aforementioned failure to attach to the substrate of the lower concentration 

matrigel, also leading to the increased debris and less confluent culture. 

Similar to results with hemin on 24 well tissue culture plates, primary myoblasts fed with hemin 

media on 8 well permanox slides had a fibroblast-like morphology, and significant cell death and 

debris was evident (Fig. 4.23 c+d). Aggregates of dead cells were observed in both matrigel 

concentrations. There was no evidence of alignment or fusion of myotubes, and matrigel 

concentration again appeared to have no significant effect on cell survival, attachment or 

morphology.  

The final substrate tested for chick skeletal myoblast culture was 18mm glass coverslips, which, 

while requiring larger numbers of cells due to their larger surface area, allow epifluorescent and 

confocal microscopy as well as electrophysiological manipulation of the samples. Coverslips 

plated with 300k cells showed characteristic spindle shaped morphology and partial alignment 

in media with CEE and 1:30 matrigel at 3 DIV (Fig. 4.25 a+b). Some gaps in the myoblast 

monolayer were present however, suggesting non-confluence at this cell density. Unlike the 

previous substrates, the matrigel concentration did appear to influence cultures plated on glass 

coverslips, as the 1:90 matrigel condition had a less clearly defined morphology and a less 

confluent monolayer, with large bare patches visible adjacent to aggregates of detached cells. 
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Figure 4.24 Culture of primary chick skeletal myoblasts on glass coverslips with CEE- or 
hemin-supplemented media. (a-d) Chick Primary Myoblasts imaged after 3 DIV on a glass 
coverslips. Myoblasts cultured in media supplemented with chick embryo extract (CEE) 
attached and had a spindle shaped morphology, with gaps in the monolayer visible (a+b), 
while cells cultured in media with hemin generally detached and died (c+d). Matrigel 
concentration had little effect in either condition. Scale bar = 100µm. 
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Figure 4.25 Culture of high density primary chick myoblasts on tissue culture plates or glass 
coverslips improves survival and enables fusion of multinucleated myotubes. (a) 100k chick 
primary myoblasts imaged after 3 DIV on a 24 well tissue culture plate, with the characteristic 
spindle-shaped morphology. (b) 1 million chick myoblasts cultured on a glass coverslip after 
3 DIV. (a’+b’), After 5 DIV, chick myoblast cultures on tissue culture plates and glass coverslips 
look very similar, with partial alignment of long, contractile, multinucleated myotubes 
formed by fusion of myoblasts. Note the improvement in (b+b’) from cultures of 300k chick 
myoblasts on glass coverslips shown in figure 4.20. Scale bar = 100µm. 
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Chick skeletal myoblasts plated on coverslips fed with media containing hemin did not survive 

to 3 DIV, with only aggregates of dead cells and cell debris remaining (Fig. 4.24 c+d). Unlike the 

previous substrates, no cells remained by 3 DIV, with even fibroblast-like cells not observed. 

Matrigel concentration did not influence survival or attachment in this condition, with total cell 

death observed in both matrigel concentrations. 

From these results, the best substrates for in vitro culture of primary chick skeletal myoblasts 

were determined to be Nunc™ tissue culture plates and glass coverslips, coated with matrigel at 

a 1:30 dilution. Both of these materials allow attachment of large, confluent monolayers of 

myoblasts, which then adopt the characteristic spindle-shape morphology and partial alignment 

necessary for myotube fusion and further differentiation. Media supplemented with chick 

embryo extract allows robust survival and differentiation of myoblasts, while hemin appeared 

to be insufficient for both attachment and survival in the conditions tested here. 

To further improve primary muscle culture on 18mm glass coverslips, a larger quantity of cells 

is required to ensure a confluent monolayer. To assess the impact of this optimisation and 

directly compare this condition to tissue culture plates in terms of survival and functional 

differentiation, 18mm glass coverslips were plated with 1 million primary cells, and imaged at 3 

and 5 DIV (Fig. 4.25). 

Coverslips plated with 1 million primary cells did form a complete monolayer, however 

individual cell morphologies were hard to distinguish, possibly due to over-confluence (Fig. 4.25 

b). Thin, elongated cells resembling embryonic myoblasts were observed in these cultures, 

however the majority of cells were impossible to identify under phase contrast imaging. Cells 

plated on the tissue culture plate had the same pattern and morphology as shown in figure 

4.21a, with a confluent monolayer of clearly resolved spindle-shaped myoblasts partially 

aligning in patches (Fig. 4.25 a). Very few dead or detached cells were seen in either condition. 

After 5 DIV, fused, multinucleated myotubes were observed in both cultures, generally running 

in parallel to nearby myotubes. Some cell death was observed on both glass coverslips and 
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plastic tissue culture plates, however this was fairly minimal, with little debris present. Cultures 

of 1 million cells on glass coverslips were generally very similar in appearance and development 

to cultures of 100k cells on Nunc™ tissue culture plates. As glass coverslips allow 

electrophysiological analysis and confocal imaging, and conferred no disadvantage in culture 

development or survival, this condition was chosen for future experiments using chick primary 

muscle. 

4.3.2 Characterisation of primary chick skeletal muscle  

Immunocytochemistry of chick primary muscle cultures on glass coverslips allowed investigation 

of skeletal muscle specific protein expression and clearly revealed the development of 

multinucleated myotubes (Fig. 4.26 + 4.27). Primary chick myoblasts after 1 day in vitro are 

mononuclear, with the characteristic spindle-shape morphology seen previously. Nuclear 

staining using topro-3, a DNA intercalating dye, revealed that the majority of cells in the culture 

were indeed myoblasts, as determined by nuclei contained within elongated cells, however 

significant numbers of nuclei were observed in cells with a more fibroblast-like appearance (Fig. 

4.26). While some immunoreactivity was observed using the MCadherin antibody, this was very 

weak, and possibly only due to background staining (Fig. 4.26 a). Both antibodies against myosin 

heavy chain (MF20 + My32) labelled myoblasts, however again this labelling was very weak, 

particularly in the case of My32 (Fig. 4.26 b+c). The intensity of antibody labelling was variable 

between individual myoblasts within the same culture, which was particularly noticeable with 

MF20 (Fig. 4.26 b). Bright puncta were visible in samples labelled with MF20, however this is 

most likely an artefact cause by aggregation of antibody and non-specific binding. 

After one week in culture, long, multinucleated myotubes were observed in all samples (Fig. 

4.27). Very few mononuclear myoblasts remained by this time point, indicating that the 

termination of proliferation and concurrent fusion of myoblasts to form myotubes had occurred. 

Again the MCadherin antibody showed only very weak, non-specific labelling, which is likely due 



148 
 

to bleed-through or background labelling (Fig. 4.27 a). The MF20 antibody showed clear, specific 

labelling of myotubes, with some puncta artefacts (Fig. 4.27 b). While multiple nuclei were 

observed within each myotube, many nuclei were seen outside the F-actin and MHC labelled 

myotubes, indicating continued proliferation of contaminating cells (Fig. 4.27 b’). My32 also 

clearly labelled chick primary myotubes in a specific manner (Fig. 4.27 c). As My32 is selective 

for a fast skeletal myosin heavy chain isotype, this labelling confirms that the cultured muscle is 

of this type. Again, many nuclei were observed not contained in the myotubes, revealing the 

presence of many contaminating cells (Fig. 4.27 c’). Encouragingly, both MF20 and My32 

labelling was absent from the nuclei within the myotubes, which is expected due to the cytosolic 

localisation of the epitope. Some fluorescent puncta were seen in day 7 My32 immunostains, 

but again these are likely artefacts caused by aggregation of antibody or debris. Myogenin 

expression was also investigated, however the antibody used did not bind chick myogenin, and 

the immunostains failed (data not shown).  
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Figure 4.26 Chick primary myoblasts express muscle-specific proteins at 1 day in vitro. (a-
c) Antibody labelling against muscle-specific proteins expressed by day 1 chick primary 
myoblasts. Mf20 and My32 labelling confirm the muscle phenotype, and indicate fast skeletal 
muscle due to My32 binding only a fast skeletal specific isoform of MyHC. MCadherin 
labelling (a) is less reliable, and may possibly be due to non-specific background staining. (a’-
c’) F-actin labelling (phalloidin; red) and DNA labelling (Topro-3; blue) reveal the spindle 
shaped morphology of the myoblasts, and the presence of many contaminating cells in these 
cultures. Scale bar = 100 μm. 
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Figure 4.27 Multinucleated myotube formation and expression of fast-skeletal muscle 
specific proteins by chick primary myoblasts after 1 week of culture. (a-c) Antibody labelling 
against muscle-specific proteins expressed by day 7 chick primary myoblasts. My32 labelling 
is now stronger, while Mf20 labelling appears weaker, suggesting further differentiation to 
a fast skeletal phenotype. MCadherin labelling (a) is again very weak, and may possibly be 
due to non-specific background staining. (a’-c’) F-actin labelling (phalloidin; red) and DNA 
labelling (Topro-3; blue) reveal long, multinucleated myotubes surrounded by many 
proliferative contaminating cells. No clear sarcomeric structure was visible in these images. 
Scale bar = 100 μm. 
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Chapter V 

Modelling Neuromuscular Junctions In Vitro 

5.1 Introduction and Aims 

Having tested and established various conditions for the in vitro culture of both ESC-derived and 

chick primary skeletal muscle, the next aim was to combine these cultures with the ESC-derived 

motor neurons previously described in this thesis to create an in vitro neuromuscular model 

system. Co-culture of ESC-derived MNs with skeletal muscle should allow investigation of 

synapse formation and maturation, and may influence functional phenotypes such as muscle 

contraction. An additional advantage of using the ESC-derived MNs described here is the 

incorporation of optogenetics, enabling non-invasive manipulation of neuronal activity via 

Channelrhodopsin-2. By exposing co-cultures of skeletal muscle and ESC-derived MNs to blue 

light, activity can be induced in the neuronal population without directly influencing the muscle 

tissue. As populations of MACS-sorted ESC-MNs have little spontaneous acitivity, this light-

evoked activity may be important for NMJ formation and stabilisation in vitro. Additionally, if 

functional synapses are present between optogenetic MNs and mature skeletal muscle, this 

activity should result in light-evoked contractile events.  

As mentioned previously, a successful in vitro MN-muscle co-culture could serve as a useful 

model system for investigating neuromuscular disease, and a key requisite of such a model 

would be the development of neuromuscular junctions (NMJs). This is due to the central 

importance of the NMJ in neuromuscular circuit function and dysfunction, especially as recent 

studies have shown that NMJ destabilisation is one of the earliest detectable signs in ALS and 

other MN diseases, and is perhaps more relevant to disease progression than MN cell death 

(Fischer et al., 2004; Gould et al., 2006a; Murray et al., 2008). While in vitro MN-muscle co-

cultures have been generated previously, the accuracy with which they model the in vivo system 
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is questionable, particularly with reference to the morphology of the NMJ (Guo et al., 2010; 

Kubo et al., 2009; Umbach et al., 2012).  

The aims of this chapter therefore were to develop and optimise co-culture of ESC-derived MNs 

with both ESC-derived and chick primary skeletal muscle, and to assess these cultures for their 

utility in modelling neuromuscular circuits in vitro, with particular reference to NMJs.  

5.2 ESC-Derived Muscle/Embryoid Body Co-Culture 

5.2.1 Spontaneous contractions in EB/muscle co-culture 

Neuromuscular junction (NMJ) formation in vivo is a dynamic process requiring input from both 

the presynaptic motor neuron terminal and the post-synaptic muscle end plate in order to 

develop and stabilise a mature synapse, as discussed previously (Chapter 1.2.3). While pure 

cultures of MACS sorted ESC-derived MNs appear to have little to no spontaneous activity (Fig. 

3.10), unsorted EB cultures have higher levels of spontaneous activity (Fig 3.10), possibly driven 

by ventral-type spinal interneurons generated during the differentiation of MNs from ES cells 

using retinoic acid and sonic hedgehog. For this reason, initial co-culture experiments were 

performed with un-sorted embryoid bodies (EBs), as NMJ formation could be hindered in co-

cultures with purified MNs due to a lack of presynaptic activity and acetylcholine release. EBs 

generated from ES cells containing the ChR2-YFP transgene on the Hb9::GFP-IRES-CD14 

background were collected at the same developmental time point as the MNs would normally 

Figure 5.1 Time frame for EB/iMyoD 
C4 Co-Culture. Culture of iMyoD C4 
ES cells is started first (red arrow), as 
they take longer to differentiate and 
are plated as a monolayer before 
addition of EBs. MN culture (blue 
arrow) is started 2 days after iMyoD 
C4, allowing harvesting of mature 
EBs and addition to the co-culture 
(blue and red arrow) 1 day after 
muscle monolayer plating. Black 
bars represent 1 day in culture.  
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be purified by MACS sorting, and plated on monolayers of 1 DIV MACS sorted ESC-derived 

myoblast monolayers. Once both the MN and muscle lineages were combined in vitro, the media 

was changed to a 50:50 mix of ADFNK and Myoblast media (see Chapter 2.1.3). A summary of 

the co-culture protocol used is presented in figure 5.1 below.  

Spontaneous contractile activity was observed in these cultures as early as 3 DIV, similar to 

cultures of pure ESC-derived muscle (see Fig. 4.17 + 4.18). As with pure ESC-derived muscle 

cultures, this activity was sporadic in nature, and there was much variation in activity observed 

between cells within the same culture. Extensive myoblast fusion to form multinucleated 

myotubes was observed by 3 DIV, with fewer mononuclear myoblasts remaining than seen in 

myoblast only cultures. The EBs attached to the surface of the myoblast monolayer 24 hours 

after plating, and small round cells could be seen spreading away from each central cluster by 2 

DIV (Fig. 5.2). Long, thin processes were observed extending out from each EB and growing 

through the surrounding cells, indicative of neurite growth into the muscle tissue, as can be seen 

in figure 5.2 below. 

Figure 5.2 Embryoid bodies containing ESC-derived MNs extend neurites in co-culture with 
ESC-derived skeletal muscle. A representative bright-field image of an EB/ESC-muscle co-
culture at 4 DIV. Notice the small, round cells spreading out from the EB at the bottom of the 
image (yellow arrow), and the multiple neurites visible extending out from the EB (yellow 
arrow heads). Scale bar = 100μm. 
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Frame-by-frame analysis of time-lapse movies of these spontaneous contractions after 4 DIV 

using the same method as detailed previously (Fig. 4.16) reveals a similar pattern of activity to 

that seen in cultures of pure ESC-derived muscle (Fig. 5.3). The maximum strength of the 

contractions was similar to that seen in pure cultures, with a maximum displacement in day 4 

co-cultures measured at 16.4μm (Fig. 5.3 c), compared to 17.5μm in pure muscle cultures (Fig. 

4.17 a). The average displacement measured was lower in the co-cultures, mainly due to more 

frequent but lower strength contractions seen in this culture condition (see Fig. 5.3 b), with an 

average displacement of 6.3μm ± 0.1 in co-cultures compared to 14.1μm ± 0.5 in pure iMyoD C4 

monolayers. Extended periods of above-baseline displacement suggest a significant degree of 

tension on most myotubes imaged. All myotubes imaged that were situated near an EB showed 

some degree of activity, whereas less contraction was observed further away from the EBs 

within the same culture. Whereas most myotubes imaged displayed infrequent but relatively 

strong contractions, some myotubes displayed consistent, weak contractions, as shown in figure 

5.3 b. These frequent, weak contractions more closely resemble those seen in individual 

myoblasts (Fig. 4.18), and produce only a marginally stronger (p < 0.0001; ***) displacement of 

5μm ± 0.1 compared to 3.4μm ± 0.04 seen in myoblasts.  

5.2.2 Light evoked contractions in EB/muscle co-culture 

Due to the co-culture containing MNs positive for the ChR2-YFP transgene, it was possible to 

directly excite the ESC-derived MNs via blue light exposure while not directly stimulating the 

muscle populations. Figure 5.4 shows analysis of representative time-lapse movies where a blue-

light stimulus was used to stimulate the MNs via ChR2. As can be seen from these movies, blue 

light stimulation resulted in an immediate strong contraction in myotubes near EBs (Fig. 5.4). In 

movies where 2 blue light stimuli were presented, 2 contractions are recorded in nearby muscle 

tissue (Fig. 5.4 b+c). Recovery to baseline after light-evoked contractions was not immediate 

upon removal of the stimulus, and in one case a high level of displacement was maintained for 

the duration of the movie (Fig. 5.4 b).       
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Figure 5.3 iMyoD C4 monolayers co-cultured with ESC-derived EBs show spontaneous 
contractions after 4 days in vitro. Five time-lapse movies recorded on an optical microscope 
were analysed frame-by-frame as summarised in figure 4.16. Shown here is analysis of three 
representative movies showing clear contractile events (a, b + c). Note the consistent 
contractions seen in (b) compared to the stronger, but less frequent activity in (a) and (c). 
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Figure 5.4 iMyoD C4 muscle co-cultured with EBs contract in response to blue-light 
stimulation. Frame-by-frame analysis of time-lapse movies of 4 DIV co-cultures showing 
clear contractile events in response to a blue-light stimulus (a, b + c). One stimulus is applied 
in (a), while two separate stimuli are presented in (b) and (c). The blue light stimulus was 
presented manually at frame 20 and frame 35, indicated by blue bars under the graph. 

0

5

10

15

20

25

30

1 6 11 16 21 26 31 36 41

D
is

p
la

ce
m

en
t 

(μ
m

)

Frame

EB Co-Culture 1 + Light Stimulus

0

5

10

15

20

25

30

1 6 11 16 21 26 31 36 41

D
is

p
la

ce
m

en
t 

(μ
m

)

Frame

EB Co-Culture 3 + Light Stimulus 

0

5

10

15

20

25

30

1 6 11 16 21 26 31 36 41

D
is

p
la

ce
m

en
t 

(μ
m

)

Frame

EB Co-Culture 2 + Light Stimulus 

(c) 

(b) 

(a) 



157 
 

Time lapse movies of day 12 ESC-muscle/EB co-cultures were also recorded with and without 

blue-light stimuli as shown in figures 5.5 and 5.6 below. While the overall viability of these 

cultures was severely reduced at this time-point, a clear contractile response was still observed 

upon presentation of the light stimuli in most cases (Fig. 5.5). The contractions produced in 

response to the light stimulus were weaker in day 12 cultures than contractions observed in day 

4 cultures, with an average displacement of 7.75μm ± 0.39 at day 12 compared to 15.69μm ± 

1.6 at day 4. In one example, no obvious stimulus-evoked response was observed, with a low-

level constant contractile activity being present throughout the time-lapse (Fig. 5.5 c). This 

spontaneous activity had a similar amplitude as the one seen in single contractile myoblasts and 

spontaneous contractions of day 4 Myog::CD14 myoblast-derived monolayers, with an average 

displacement of 2.85μm ± 0.04. In one case multiple smaller contractile events were observed 

within one light-stimulus, with an additional contraction occurring after termination of the 

stimulus (Fig. 5.5 b).  

Comparison of the activity of the same 12 DIV myotubes in co-culture with EBs during recordings 

where no light stimulus was presented show very little spontaneous activity, and no clear 

contractile episodes as seen upon light stimulation (Fig. 5.6). Some low amplitude spontaneous 

activity was seen in “Myotube 3”, similar to the activity observed for this cell during light 

presentation (Fig. 5.6 c). The activity of MyoG C4 muscle cultured for 12 days without EBs was 

also analysed with and without light stimulation, to control for unexpected effects of the light 

stimulus. Examples of myotubes with both high and low level spontaneous activity were 

observed, however no response to a blue light stimulus was seen in any culture not containing 

EBs (Fig. 5.7). The average displacement produced by light-evoked and spontaneous 

contractions in co-cultures at both 4 DIV and 12 DIV are shown in figure 5.8. Contractions caused 

by blue-light stimulation of the cultures were significantly stronger than the spontaneous 

activity at both time points. The contractions recorded from day 12 co-cultures were weaker in 

both stimulated and non-stimulated recordings 
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Figure 5.5 Day 12 iMyoD C4 muscle/EB co-cultures show light-evoked contractions. Frame-
by-frame analysis of time-lapse movies of 12 DIV co-cultures showing clear contractile events 
in response to a blue-light stimulus (a, b + c). While much spontaneous activity was observed 
in (c), no contractile response was observed in in response to light stimulation. The blue light 
stimulus was presented manually at frame 20, indicated by blue bars under the graph. 
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Figure 5.6 iMyoD C4 muscle co-cultured with EBs show little activity in the absence of a 
blue-light stimulus. Frame-by-frame analysis of time-lapse movies of 12 DIV co-cultures 
showing few if any contractile events when no blue-light stimulus is presented (a, b + c). 
Some spontaneous activity is seen in (c), similar to the level of activity seen in this culture in 
figure 5.4. 
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Figure 5.7 Pure iMyoD C4 muscle cultures show no response to blue-light stimulation. (a + 
b) Frame-by-frame analysis of time-lapse movies of 12 DIV cultures of iMyoD C4. While some 
spontaneous activity was observed, no contractile events were seen in response to a blue-
light stimulus (a’ + b’). The blue light stimulus was presented manually at frame 20, indicated 
by blue bars under the graphs (a’ + b’). 

Figure 5.8 Average muscle displacement is much higher in iMyoD C4 muscle/EB co-cultures 
upon presentation with a blue-light stimulus. Average displacement calculated from frame-
by-frame analysis of time-lapse movies of 4 (n= 3 and 5 for +/- stim respectively) and 12 DIV 
(n= 4 and 4 for +/- stim respectively) co-cultures. At both time points, light stimulation caused 
a greater muscle contraction than seen from spontaneous activity. Error bars show S.E.M. 
Mann Whitney U Test, * = p <0.05, ** = p <0.01, *** = p <0.001. 
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than day 4, however the increased strength of light-evoked activity was still clear (Fig. 5.8). 

Tables detailing muscle contraction values are presented in Appendix A. 

5.2.3 Synapse formation in EB/muscle co-cultures 

To check for the presence of neuromuscular junctions in these co-cultures, 

immunocytochemistry was performed on day 14 using an anti-GFP antibody to label the MN 

axons and a fluorescently tagged α-Bungarotoxin, a snake toxin which specifically blocks the 

skeletal muscle nicotinic acetylcholine receptor, to label post-synaptic nicotinic acetylcholine 

receptors (Samson and Levitt, 2008). As can be seen in figure 5.8, extensive growth of GFP 

positive neurites was seen throughout the cultures. GFP positive MN cell bodies tended to 

remain clustered with each other, while the neurites exited the MN clusters and invaded the 

surrounding muscle tissue (Fig. 5.9). Fusion of myoblasts was evident from the staining for DNA, 

revealing multiple nuclei within many α-Bungarotoxin positive cells (Fig. 5.9 b’). Many nuclei 

were observed that were not associated with either α-Bungarotoxin staining or GFP, identifying 

them as contaminating cells, possibly derived from the unsorted EBs.  

While a background level of α-Bungarotoxin staining was present along the entire surface of 

most myocytes, bright patches of more specific staining were observed on some cells (Fig. 5.9 

a’, b’ + c’). These concentrated patches were often closely opposed to GFP positive neurites 

(presumably axons), and indeed in some cases GFP positive processes were observed wrapping 

around α-Bungarotoxin positive myocytes. While the characteristic “pretzel” shaped 

neuromuscular junction morphology was not observed in these cultures, the close apposition of 

GFP positive MN axons with concentrated regions of α-Bungarotoxin positive membrane 

suggests the presence of simple, immature synapses between these ESC-derived populations. 
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Figure 5.9 iMyoD C4 muscle/EB co-cultures have α-Bungarotoxin positive puncta closely 
opposed to GFP positive MN neurites, suggestive of neuromuscular synapses. 
Immunostaining of 14 DIV iMyoD C4 muscle/EB co-cultures labelled with α-Bungarotoxin 
(red), anti-GFP (green) and topro-3 (blue). (a, b + c) Bungarotoxin staining reveals labelled 
puncta on fused myoblasts. Evidence of myocyte fusion to form multinucleated fibres is clear 
(b’’), as well as development of NMJs, with close apposition of GFP positive neurites to α-
Bungarotoxin positive puncta on myocutes (a’, b’ + c’). Images (a’’, b’’ + c’’) show the white 
box in (a’, b’ + c’) enlarged. White arrows indicate possible synapses on myocutes. Scale bars: 
a+a’-c+c’= 100 μm; a’’-c’’= 50 μm. 

(a) (a’) 

(b) (b’) 

(c) (c’) 

(a’’) 

(c’’) 

(b’’) 
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5.3 Primary Chick Skeletal Muscle/Embryoid Body Co-Culture 

5.3.1 Early growth and morphology of CPM/EB co-cultures 

As mentioned previously, long-term in vitro culture of iMyoD C4 derived myotubes proved 

problematic, despite testing multiple culture conditions, substrates and media (see Chapter 4). 

Although iMyoD C4 cultures showed contractile responses to light-stimulation after 12 days, and 

basic synapses between ESC-derived MNs and muscle were observed in 2 week old cultures, the 

viability of these preparations was clearly limited, with weaker contractile activity than that seen 

in 4 DIV cultures, and fewer living myotubes remaining attached than after 4 days in vitro.  

Therefore, to provide a more stable post-synaptic target for ESC-derived MNs, allowing the 

development of more mature neuromuscular circuits, chick primary skeletal muscle (CPM) was 

used in co-culture with ESC-derived MNs. Initial experiments used unsorted embryoid bodies 

(EBs), as used in the previous experiments with ESC-derived muscle, due to the spontaneous 

activity of this mixed neuronal population, and positive results using these cells in the 

aforementioned cultures.  

Primary muscle co-cultures were prepared in a similar way to the ESC-derived muscle co-cultures 

described in figure 5.1, with the muscle plated on matrigel-coated glass coverslips 1 day prior to 

seeding with EBs containing MNs carrying both the Hb9::GFP-IRES-CD14 and CAG::ChR2-YFP 

transgenes, as well as a ubiquitously expressed GDNF transgene to promote survival (Bryson et 

al., 2014). Observation of these cultures revealed spontaneous contractile activity as early as 3 

DIV, as seen in pure muscle cultures previously (see figure 4.17). Using an epifluorescent light 

microscope allowed visualisation of the GFP and YFP positive MNs, and extensive neurite 

extension into the surrounding muscle tissue was seen by 7 DIV (Fig. 5.10). Also over this time 

frame, myoblast fusion to form multinucleated myofibres was observed, with long, partially 

aligned myofibres seen in all cultures by 7 DIV (Fig. 5.10). 
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Figure 5.10 Motor neurons in embryoid bodies extend long neurites, innervating 
surrounding chick primary skeletal myofibres. Live brightfield (left) and epifluorescent 
(right) images of 7 DIV chick skeletal muscle/EB co-cultures. Note the fusion of chick 
myoblasts to form long, multinucleated myofibres (a + b), and the growth of GFP/YFP positive 
MN neurites, presumably axons, throughout the surrounding tissue (a’ + b’). Scale bar = 
100μm. 

Brightfield GFP 
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(a) 

(b’) 
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5.3.2 Contractile activity of CPM/EB co-cultures 

Time lapse movies of CPM/EB co-cultures and controls were also recorded throughout long-

term in vitro culture, with and without blue-light stimuli, as performed previously with ESC-

derived muscle. Due to the improved survival of the primary muscle when compared to ESC-

derived muscle, these cultures were viable in vitro for up to 4 weeks, allowing a longer time-

course of investigation and more opportunity for circuit development and maturation.  

Representative frame-by-frame analyses of co-cultures at 5 DIV are presented below in figure 

5.11. As can be seen in Fig. 5.11 a, a blue-light stimulus presented at day 5 does produce a 

noticeable muscle contraction in the co-culture condition, with an average displacement of 

23.87μm ± 1.37. The displacement caused by the stimulus was maintained for some time after 

the stimulus was removed, indicating prolonged tension in the muscle after direct stimulation 

of the MNs via ChR2 ceased. Very little spontaneous activity was observed at this time point, as 

indicated by the lack of displacement measured in co-cultures in the absence of light-stimulation 

(Fig. 5.11 a’). CPM cultures without EBs added were also recorded to provide a negative control 

for the EBs, and as shown in Fig. 5.11 b and b’, little to no contractile activity was seen in this 

condition, regardless of light stimulation. 

After 12 days in vitro, more spontaneous activity is seen in both co-cultures and pure muscle 

cultures, as shown in figure 5.12. A clear light-evoked contraction is evident in the co-culture 

condition, with a mean displacement of 32.32μm ± 1.2 (Fig. 5.12 a). Again, contractile activity 

continues after the removal of the light stimulus, and even reaches a larger displacement than 

during the stimulus period in this example. The spontaneous activity seen in the co-cultures was 

varied, but often achieved the same amplitude of displacement as seen during stimulation. 

Spontaneous contractions were seen in CPM control cultures without EBs, however this was 

very variable, with examples shown of low and high spontaneous activity (Fig. 5.12 b + c). No 

response to the blue-light stimulus was observed in any pure muscle control culture. 
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Figure 5.11 Light-evoked responses in CPM muscle co-cultured with EBs at 5 DIV. Frame-
by-frame analysis of time-lapse movies of 5 DIV CPM/EB co-cultures and controls. (a + b) A 
clear contractile event in response to a blue light stimulus seen in the co-culture is not 
observed in the CPM only control. (a’ + b’) Very little contractile activity was observed in co-
cultures or controls in the absence of a light stimulus. 

Figure 5.12 Light-evoked and spontaneous activity in co-cultures and controls at 12 DIV. 
Frame-by-frame analysis of time-lapse movies of 12 DIV CPM/EB co-cultures and controls. (a 
+ b) A clear contractile event in response to a blue light stimulus seen in the co-culture is not 
observed in the CPM only control. (a’ + b’) Spontaneous activity was seen in co-cultures and 
controls at this time point. 
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Muscle contractions caused by light stimulation in co-cultures at day 20 were generally very 

strong, causing a clearly visible displacement as seen in figure 5.13 a and a’. In this example, a 

number of muscle fibres aligned between two close EBs, and light stimulation caused a strong 

contraction, bringing the EBs closer together, as indicated by the yellow and blue lines in the 

figure. The average displacement in stimulated cultures was 93.87μm ± 4.07. As before, no 

response to light stimulation was seen in pure muscle control cultures (Fig. 5.13 c). Spontaneous 

activity was seen in the absence of stimulation in both co-cultures and controls, however this 

was far weaker than light-evoked activity, and also noticeably weaker than spontaneous activity 

recorded in day 12 cultures (Fig. 5.13 b’ and c’).  

Muscle activity was much lower in 26 DIV cultures, for both light-evoked responses and 

spontaneous activity (Fig. 5.14). Blue light stimulation did cause a muscle contraction; however 

this was weaker than contractions seen in 20 DIV cultures, with an average displacement of 

32.92μm ± 1.36. Very little spontaneous activity was seen in the absence of a stimulus, either in 

co-cultures or muscle only controls. 

The mean displacements caused by contractions in co-cultures are summarized in figure 5.15 

below. At all time points studied, light-evoked contractions caused a greater displacement than 

spontaneous contractions. The greatest difference in evoked against spontaneous activity was 

seen at day 20, corresponding to the strongest evoked contractions. The strongest spontaneous 

activity was seen at day 12, with an average displacement of 28.48μm ± 0.84, not significantly 

lower than the average light-evoked contraction at this time point, of 32.32μm ± 1.72. A 

summary of the activity of these cultures is presented in figure 5.16, showing representative 

responses to blue-light stimulation and spontaneous activity in co-cultures and controls 

throughout the time course investigated. Tables detailing muscle contraction values are 

presented in Appendix A. 
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Figure 5.13 Light-evoked and spontaneous acitivity in co-cultures and controls at 20 DIV. 
Frame-by-frame analysis of time-lapse movies of 20 DIV CPM/EB co-cultures and controls. (a 
+ a’) Representative consecutive frames from a time-lapse movie of a 20 DIV co-culture, 
before and after a blue-light stimulus. Comparison of the distance markers from before the 
light stimulus (yellow line) and after (blue line) clearly show the displacement caused by the 
contraction. (b + c) A strong contractile event in response to a blue light stimulus seen in the 
co-culture is not observed in the CPM only control. (b’ + c’) Spontaneous activity was seen in 
both co-cultures and controls, however was much weaker than evoked activity, or 
spontaneous activity at 12 DIV. 
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Figure 5.14 Light-evoked and spontaneous acitivity in co-cultures and controls at 26 DIV. 
Frame-by-frame analysis of time-lapse movies of 26 DIV CPM/EB co-cultures and controls. (a 
+ b) Stimulus-evoked contractile acitivity seen in the co-culture is not observed in the CPM 
only control. (a’ + b’) Spontaneous activity was seen in both co-cultures and controls, 
however was much weaker than light-evoked activity, or spontaneous activity recorded at 
earlier time points. 

 

Figure 5.15 Average muscle displacement recorded in CPM/EB co-cultures, with or without 
blue-light stimulus. Averages include all contractile events, including spontaneous activity 
recorded in light-stimulated movies independent of the stimulus. n= 2 for Day 5 +/- stim, n= 
2 for Day 12 +/- stim, n= 4 for Day 20 +/- stim and n= 2 and 3 for Day 20 -/+ stim respectively.  
Error bars show the S.E.M. Mann Whitney U Test, * = p <0.05, ** = p <0.01, *** = p <0.001. 

0

50

100

150

200

1 7 13 19 25 31 37 43 49 55

D26 CPM/EB Co-Culture -Stim

0

50

100

150

200

1 7 13 19 25 31 37 43 49 55 61

D26 CPM/EB Co-Culture +Stim

0

50

100

150

200

1 7 13 19 25 31 37 43 49 55

D26 CPM Control +Stim

0

50

100

150

200

1 7 13 19 25 31 37 43 49 55 61

D26 CPM Control -Stim

(a) (a’) 

(b) (b’) 

0

10

20

30

40

50

60

70

80

90

100

Day 5 Day 12 Day 20 Day 26

D
is

p
la

ce
m

en
t 

(μ
m

)

Average Co-Culture Muscle Displacement

+ Stim - Stim

* *** 

** 



170 
 

  

Figure 5.16 A representative summary of contractile acitivity in CPM/EB co-cultures and 
controls at all time points recorded, with and without blue-light stimulus. A blue-light 
stimulus induced contractile activity in co-cultures at all time points, while no response to 
light was seen in CPM only controls at any stage. 
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5.3.3 Neuromuscular junctions in CPM/EB co-cultures 

Due to the clear light-evoked activity in the CPM, 14 DIV CPM/EB co-cultures was investigated 

for the presence of NMJs by immunocytochemistry, as done previously on iMyoD C4 muscle co-

cultures (Fig. 5.8). Initial labelling was performed with α-Bungarotoxin to stain nicotinic 

acetylcholine receptors (nAChRs), highlighting the post-synaptic side of any NMJs, and a 

phalloidin toxin tagged with a fluorescent dye, to reveal the ultrastructure of the cytoskeleton. 

As can be seen in figure 5.17, clusters of bungarotoxin positive puncta were observed on some 

muscle fibres in the co-cultured samples. Some clusters resembled the characteristic “pretzel” 

shape of NMJs seen in vivo. No bungarotoxin puncta were observed in pure CPM cultures 

however, suggesting the requirement of MNs to induce and/or maintain these structures (Fig. 

5.18).  

Phalloidin labelling revealed clear striations in the muscle fibres, clearly visible in figure 5.17 a, 

typical of mature striated skeletal muscle. These striations were visible in pure CPM cultures and 

co-cultures with EBs, as seen in figures 5.17 and 5.18. Striations were even visible using standard 

brightfield microscopy as shown in figure 5.18 a’’. 

Immunostaining using an antibody against a fast skeletal muscle specific myosin heavy chain 

(My32) resulted in specific labelling of the CPM fibres, and again revealed clear striations 

showing the presence of mature sarcomeres (Fig. 5.19). Again, complex bungarotoxin positive 

clusters were seen on co-cultured muscle fibres, but were absent from pure muscle control 

cultures (Fig. 5.19). Individual nuclei are also visible in these images of both co-cultured and pure 

CPM as dim ovoids against the labelled myosin heavy chain sarcomeric structure, revealing the 

multinucleated state of these fibres, characteristic of mature skeletal muscle formed via 

myoblast fusion (Fig. 5.19).   
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Figure 5.17 Chick muscle in 14 DIV CPM/EB co-cultures have clusters of bungarotoxin-
labelled puncta resembling NMJ endplates. Immunocytochemistry using phalloidin (a + b) 
and α-bungarotoxin (a’ + b’) on 14 DIV CPM/EB co-cultures. Note the clustering of 
bungarotoxin puncta on muscle fibres resembling “pretzel” shaped NMJs (yellow arrows). 
Scale bar = 100μm. 

Figure 5.18 CPM control cultures have an absence of α-bungarotoxin puncta, however 

cytoskeletal striations are visible in muscle fibres. Immunocytochemistry using phalloidin 

(a) and α-bungarotoxin (a’) on 14 DIV CPM control cultures. Note the lack of specific 

bungarotoxin positive puncta. (a’’) A brightfield image of these fibres, showing visible 

striations. Scale bar = 100μm. 
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Immunostaining using antibodies against synaptophysin and choline actetyltransferase (ChAT), 

markers of pre-synaptic components of the NMJ, did reveal specific staining in co-cultured 

samples as shown in figures 5.20 and 5.21. While no large pretzel shaped bungarotoxin labelled 

clusters were seen in these examples, synaptophysin staining did appear clustered around the 

bungarotoxin puncta (Fig. 5.20). Immunostaining for ChAT was weaker than for synaptophysin, 

but MN axons are clearly labelled, and specific staining is seen near bungarotoxin puncta on the 

muscle fibres (Fig. 5.21). No specific staining for either synaptophysin or bungarotoxin was 

observed in pure CPM control cultures (Fig. 5.20 + 5.21).  

Immunostaining was carried out at various time points throughout the long-term culture to 

investigate the developmental timeframe of NMJ development and maturation. At 7 DIV, 

extensive outgrowth of MN axons/dendrites was observed, as seen in figure 5.22. Multiple 

bungarotoxin positive puncta were visible after 1 week in culture, both on muscle fibres that 

were co-cultured with EBs and myofibres in pure muscle controls (Fig. 5.22). Regions of muscle 

fibres with less bungarotoxin staining were visible particularly in the pure muscle control 

samples and areas in co-cultures that were far away from EBs. While many puncta were closely 

associated with GFP positive processes from the MNs in the co-cultures, many puncta were also 

observed in isolation from GFP labelled neurites.  

After 2 weeks in vitro, clear post-synaptic bungarotoxin positive motor end plates were visible 

on muscle fibres in co-cultures, as shown in figure 5.23. While some small puncta remained 

visible, a few large clusters had formed, some resembling the classic pretzel shape morphology 

seen in vivo. GFP positive MN processes could be seen specifically innervating these large end 

plates, often adopting a complex branched morphology within the region overlapping the 

bungarotoxin labelling (Fig. 5.23 + 5.24). GFP positive axons could be found at a greater distance 

from the EBs than at 7 DIV, suggesting continued growth and development of the MNs at this 

time point.  
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Figure 5.19 Chick primary muscle is labelled by My32, a marker of mature fast skeletal 
muscle. Immunocytochemistry using My32 and α-bungarotoxin on 14 DIV CPM/EB co-
cultures (a + a’) and controls (b + b’). Note the clear striations visible on the muscle fibres 
labelled with My32, revealing sarcomeric structure, and the multiple nuclei (dark ovoids) in 
each myotube. Also note the specific bungarotoxin labelling revealing a motor end plate in 
the co-culture (a’), not seen in the controls (b’). Scale bar = 100μm. 
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Figure 5.20 Diffuse synaptophysin labelling is seen in MN axons and co-localised with 

bungarotoxin puncta in 14 DIV CPM/EB co-cultures. 14 DIV CPM/EB co-cultures (a, a’ + a’’) 

and controls (b, b’ + b’’) labelled with synaptophysin and α-bungarotoxin. Note the co-

localisation of snynaptophysin with bungarotoxin puncta in the co-cultures condition. Scale 

bar = 100μm. 

Figure 5.21 Specific choline acetyltransferase labelling seen in 14 DIV CPM/EB co-cultures 

is not seen in CPM only controls. 14 DIV CPM/EB co-cultures (a, a’ + a’’) and controls (b, b’ 

+ b’’) labelled with ChAT and α-bungarotoxin. Note the lack of specific ChAT labelling in the 

control culture. Scale bar = 100μm. 
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In multiple cases single MN axons could be seen innervating multiple end plates (the post-

synaptic structure where MN axons contact muscle fibres), and in a few cases multiple axons 

may be seen to overlap on the same NMJ (Fig 5.24). No large complex bungarotoxin end plates 

were seen in control cultures, but smaller puncta remained visible (data not shown). 

At 21 DIV, large NMJs with complex morphology were still present in co-cultured samples, with 

clear innervation by GFP positive MN axons (Fig. 5.25). The majority of complex bungarotoxin 

positive end plates were found physically close to EBs, and were always contacted by GFP 

positive axons. Many smaller bungarotoxin puncta were still observed without innervation, or 

further away from EBs, in both pure muscle control and co-cultured conditions. While GFP 

labelled axons could still be seen extending out from EBs in the co-cultures, the labelling 

appeared weaker than at earlier time points, and as can be seen from figure 5.26 the majority 

of GFP positive neurites remained within the EB cluster, with only a minority exiting the EBs and 

invading the surrounding muscle fibres.  

Immunostaining was performed on cultures at 28 DIV, however no large NMJs were found in co-

cultures at this time point, with only small bungarotoxin puncta observed in co-cultures and 

controls (data not shown). While some GFP positive MN axons were still present near EBs, no 

specific innervation of motor end plates was seen, and surviving axons appeared faint, 

suggesting decline in the viability of the cultures at this stage. Additionally, contaminating 

proliferative cells were overgrowing most samples at this time point, despite treatment with 

FDU to inhibit proliferation, preventing clear image acquisition or antibody penetration. 
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Figure 5.22 Extensive axon outgrowth and simple, small bungarotoxin puncta visible in 7 

DIV CPM/AsNAs co-cultures. (a) CPM co-cultured with AsNAs after 7 DIV. Note the long GFP 

positive processes extending out of the aggregate at top right, and the multiple small clusters 

of nicotinic acetylcholine receptors (red) on the muscle fibres. The white box is shown 

enlarged in the bottom right to show detail of the colocalisation. The same image with only 

the GFP channel is shown in (a’) to reveal details of the neurite morphology. (b) Day 7 CPM 

cultured alone showing multiple bungarotoxin puncta, while in another area far fewer 

puncta were observed on the muscle fibres (c). Scale bar = 100μm. 
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Figure 5.23 Specific innervation of large complex synapses by GFP positive axons in 14 DIV 

CPM/AsNAs co-cultures. (a + b) CPM co-cultured with AsNAs after 14 DIV. GFP positive 

processes contacting areas of specific bungarotoxin labelling (red) on muscle fibres. (a’ + b’) 

The same images with only one channel to reveal fine details of the synapses. Scale bar = 

100μm. 
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Figure 5.24 Neuromuscular junctions in 14 DIV CPM/AsNAs co-cultures develop the 

characteristic morphology of NMJs seen in vivo. (a) CPM co-cultured with AsNAs after 14 

DIV. GFP positive processes innervating bungarotoxin labelled synapses (red) on muscle 

fibres. Note the classic “pretzel” shape morphology of the synapse. (a’ + a’’) Close up of the 

boxed region in (a) to show fine detail of the synapse. Scale bar = 100μm. 
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Figure 5.25 Complex synapses are maintained in 21 DIV CPM/AsNAs co-cultures, with 

innervation by GFP positive MN axons. (a) CPM co-cultured with AsNAs after 21 DIV. GFP 

positive neurites can be seen growing along muscle fibres and making extensive contacts 

with bungarotoxin positive synapses (red). (a’) The same image with only one channel to 

reveal fine details of the axonal morphology. Scale bar = 100μm. 

 

Figure 5.26 Multiple complex neuromuscular junctions innervated by GFP positive MN 

axons in 21 DIV CPM/AsNAs co-cultures. (a) CPM co-cultured with AsNAs after 21 DIV. GFP 

positive processes innervating bungarotoxin labelled synapses (red) on muscle fibres. Note 

the precise overlap of the axon terminals with the post-synaptic receptors. (a’ + a’’) Close-

ups of the boxed regions in (a), showing fine details of the synapses. Scale bar = 100μm. 
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5.4 Chick Skeletal Muscle/Astro-neural Aggregate Co-Culture 

5.4.1 Contractile activity of CPM/AsNAs co-cultures 

Following the successful co-culture of MNs in EBs with CPM, ESC-derived MN co-culture with 

CPM was repeated using astro-neural aggregates (AsNAs), resulting in a better characterised 

and more reproducible neuronal population, with fewer unknown contaminating cell types. Due 

to the previously observed decrease in viability of co-cultures after 3 weeks in vitro, earlier time 

points were focused on for these experiments. 

As no spontaneous activity was observed during previous patch clamp recordings of AsNA 

cultures, and multiple studies have shown MN activity is key to stabilisation and maturation of 

NMJs in vivo (Walsh and Lichtman, 2003; Wyatt and Balice-Gordon, 2003), a computer-

controlled blue-LED array was incorporated into the tissue culture incubator to provide chronic 

photostimulation to the MN population. The stimulation protocol used was a two-day on/off 

cycle of 20ms bursts of 5 blue light flashes at 20 Hz, every 5 seconds (see Chapter 2.2.2.13). This 

protocol was based on previous work using the stimulation incubator showing detrimental 

effects on culture viability due to light toxicity if sustained for over 48 hours, or with more 

intense stimulation regimes (Grubb and Burrone, 2010; and unpublished observations). Control 

CPM/AsNAs co-cultures were not subjected to chronic photostimulation, but were stimulated 

to measure contractile responses to blue-light stimulation, while CPM only controls were grown 

in both conditions without co-culture with astro-neural aggregates. 

Representative frame-by-frame analyses of chronically stimulated CPM/AsNAs co-cultures at 3 

DIV are presented below in figure 5.27. As can be seen in Fig. 5.27 a, even at 3 DIV, a blue-light 

stimulus does produce a muscle contraction in these co-cultures, with an average displacement 

of 11.65μm ± 1.57. No contractile activity was noted in co-cultures in the absence of light 

stimulation, and no spontaneous activity was observed at this time point in either co-cultures or 

CPM only controls (Fig. 5.27).  
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Figure 5.27 Light-evoked and spontaneous activity in chronically stimulated CPM/AsNAs 
co-cultures and controls at 3 DIV. Frame-by-frame analysis of time-lapse movies of 3 DIV 
CPM/AsNAs co-cultures and controls. (a + b) Contractile activity in response to a blue light 
stimulus seen in the co-culture is not observed in the CPM only control. (a’ + b’) No 
spontaneous activity was seen at this time point. 

Figure 5.28 Light-evoked and spontaneous activity in chronically stimulated CPM/AsNAs 
co-cultures and controls at 6 DIV. Frame-by-frame analysis of time-lapse movies of 6 DIV 
CPM/AsNAs co-cultures and controls. (a) A strong light-evoked contraction seen in the co-
culture is not observed in the CPM only control (b). (a’ + b’) Some spontaneous activity was 
seen in both co-cultures and controls at this time point, however it was much weaker than 
light-evoked activity.  
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At 6 DIV, some spontaneous activity was observed in both co-cultures and controls, similar to 

levels seen in CPM/EB co-cultures previously (Fig. 5.28 a). Strong stimulus-evoked contractions 

were seen in chronically stimulated co-cultures at this time point, with an average displacement 

of 164.93μm ± 22.8, much higher than contractions seen in 5 DIV CPM/EB co-cultures (23.87μm 

± 1.37). As before, no contractile activity was seen in CPM controls in response to blue-light 

stimulation (Fig. 5.28 b).  

The strongest light-evoked contractions were observed in chronically stimulated 12 DIV 

CPM/AsNAs co-cultures, with a mean displacement of 252.97μm ± 5.4 (Fig. 5.29 a). A 

representative example is shown in figure 5.29. Light-evoked activity was also seen in non-

chronically stimulated CPM/AsNAs co-cultures around this time-point (14 DIV), however this 

was much weaker than for equivalent chronically stimulated co-cultures, with an average 

displacement of 32.03μm ± 2.4 (Fig. 5.31 a). While significant spontaneous activity was seen in 

both co-cultures and controls, this was weaker on average than at 6 DIV [23.72μm ± 0.29 and 

34.90μm ± 3.16 respectively] (Fig. 5.31 a).  No response to the blue-light stimulus was observed 

in pure muscle control cultures. 

Similar results were obtained for 20 DIV cultures, with a strong light-evoked contractile response 

seen in chronically stimulated CPM/AsNAs co-cultures, with an average displacement of 

195.96μm ± 14.0 (Fig. 5.30 a), while non-chronically stimulated co-cultures showed an average 

displacement of 22.76μm ± 2.31 (Fig. 5.32 a). Spontaneous acitivity in the co-cultures remained 

relatively stable in both chronically stimulated and non-stimulated co-cultures (20.04μm ± 0.33 

and 2.26μm ± 0.16 respectively), and no light-evoked activity was seen in CPM controls. 

 



184 
 

Figure 5.29 Light-evoked and spontaneous activity in chronically stimulated CPM/AsNAs 
co-cultures and controls at 12 DIV. Frame-by-frame analysis of time-lapse movies of 12 DIV 
CPM/AsNAs co-cultures and controls. (a) Again, a very strong light-evoked contraction seen 
in the co-culture was absent in the CPM only controls (b). (a’ + b’) Low level spontaneous 
activity was seen in both co-cultures and controls at 12 DIV. 

 

Figure 5.30 Light-evoked and spontaneous activity in chronically stimulated CPM/AsNAs 
co-cultures and controls at 20 DIV. Frame-by-frame analysis of time-lapse movies of 20 DIV 
CPM/AsNAs co-cultures and controls. (a) Clear light-evoked contractions were still apparent 
in the co-culture condition, and remained absent in CPM only controls (b). (a’ + b’) 
Spontaneous activity was still observed in both co-cultures and controls at 20 DIV. 
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Figure 5.31 Light-evoked and spontaneous activity in non-chronically stimulated 
CPM/AsNAs co-cultures and controls at 14 DIV. Frame-by-frame analysis of time-lapse 
movies of 14 DIV CPM/AsNAs co-cultures and controls. (a) Weak light-evoked contractions 
seen in the co-culture were absent in the CPM only controls (b). (a’ + b’) Very little 
spontaneous activity was seen in either co-cultures or controls at 14 DIV. 

Figure 5.32 Light-evoked and spontaneous activity in non-chronically stimulated 
CPM/AsNAs co-cultures and controls at 21 DIV. Frame-by-frame analysis of time-lapse 
movies of 21 DIV CPM/AsNAs co-cultures and controls. (a) A clear light-evoked contraction 
seen in the co-culture condition was absent from CPM only controls (b). (a’ + b’) Similar to 
14 DIV, very little spontaneous activity was seen in either co-cultures or controls at 21 DIV. 
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Comparison of contractile activity in response to a blue-light stimulus across the time series of 

all conditions shows that measured displacement peaked at 12/14 DIV for chronically stimulated 

(252.97μm ± 5.44) and non-stimulated co-cultures respectively [32.03μm ± 2.4] (Fig. 5.33 a). This 

peak activity level for non-stimulated co-cultures was not significantly different to spontaneous 

activity seen in CPM only controls at 12 DIV, which achieved an average displacement of 

23.60μm ± 0.35 during presentation of a blue-light stimulus, even in the absence of MNs (Fig. 

5.33 a). When all spontaneous contractile events observed were analysed, in the absence of a 

blue-light photostimulation presentation, this trend was abolished (Fig. 5.33 b). The highest level 

of spontaneous activity was seen in 6 DIV chronically stimulated co-cultures, with an average 

displacement of 34.90μm ± 3.16. While significantly stronger than spontaneous contractions 

seen in CPM controls at this time point (1.67μm ± 0.32), this level of activity was not dissimilar 

to that seen in CPM controls at 12 DIV (25.28μm ± 0.90), and again the levels were similar at 20 

DIV (Fig. 5.33 b). Spontaneous activity in non-chronically stimulated co-cultures appeared lower 

than the other conditions at 14 DIV and 21 DIV, but was not significantly different (6.73μm ± 

0.77 and 2.26μm ± 0.16 respectively). 

To further investigate the necessity of NMJs for the observed contractile activity in these 

cultures, chronically stimulated 20 DIV co-cultures were stimulated with blue light before and 

after treatment with α-bungarotoxin, a snake toxin which specifically blocks the skeletal muscle 

nicotinic acetylcholine receptor, found at the NMJ (Samson and Levitt, 2008). As shown in figure 

5.34, before addition of α-bungarotoxin, a blue-light photostimulus resulted in a strong muscle 

contraction with a peak displacement of 210.19μm, while very little activity was seen in the 

absence of light stimulation. Following treatment with α-bungarotoxin, this light-evoked activity 

was completely ablated, with only very small spontaneous contractions observed (Fig. 5.34). 

This effect was reproducible, with no stimulus-evoked displacements seen in two independent 

co-cultures tested (data not shown). Interestingly, treatment with α-bungarotoxin also 

appeared to reduce spontaneous activity, with the average displacement for non-stimulated 20 
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DIV cultures being 2.27μm ± 0.25, compared to 20.04μm ± 0.33 for non-bungarotoxin treated 

cultures. 

 

 

Figure 5.33 Average muscle displacement recorded in CPM/AsNAs co-cultures and 
controls, with and without chronic photostimulation. (a) Average displacement recorded in 
response to a blue-light stimulus in multiple movies across the time series in each condition.  
(b) Average displacement recordent in the absence of an acute blue-light stimulation. n= 2 
for Day 3 +/- stim and controls, n= 3 for Day 6 +/- stim and controls, n= 2 for Day 12/14 +/- 
stim and n= 3 for D12/14 controls and n= 5 for Day 20/21 -/+ stim and n= 4 for controls.  Error 
bars show the S.E.M. Kruskal-Wallis Test, * = p <0.05, ** = p <0.01, *** = p <0.001. 
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Figure 5.34 Treatment of CPM/AsNAs co-cultures with α-Bungarotoxin inhibits both 
spontaneous and light-evoked muscle activity at 20 DIV. Frame-by-frame analysis of time-
lapse movies of 20 DIV CPM/AsNAs co-cultures before and after treatment with α-
bungarotoxin. (a) Spontaneous activity was observed in 20 DIV co-cultures in the absence of 
a light stimulation and bungarotoxin. (b) A strong light-evoked contraction was seen in the 
absence of bungarotoxin. (c) After addition of bungarotoxin, the light-evoked contractile 
response is inhibited, and no spontaneous activity was observed for the duration of imaging. 
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5.4.2 Neuromuscular junctions in CPM/AsNAs co-cultures 

Co-cultures of CPM with astro-neural aggregates were examined by immunocytochemistry at 

four time points throughout the experiment as done previously for CPM/EB co-cultures, to 

determine if NMJs had formed, and to investigate their morphological development. Both 

chronically stimulated and non-stimulated cultures were analysed. Co-cultures fixed at 7 DIV 

have clear bungarotoxin positive puncta closely opposed to GFP positive MN axons, as shown in 

figure 5.35 below. This matches the functional data obtained previously, showing that 

chronically stimulated 6 DIV co-cultures strongly respond to blue-light stimulation, indicating 

functional connectivity between the MN population and the muscle fibres (Fig. 5.28). While 

some functional synapses are clearly present at this stage, there is also evidence of continued 

growth and circuit development, as MN axon growth cones could be observed growing away 

from the AsNAs clusters into the muscle tissue (Fig. 5.35 b).  

Day 14 CPM/AsNAs co-cultures were generally similar to 7 DIV samples, with multiple 

bungarotoxin puncta showing co-localisation with GFP from MN axons (Fig. 5.36). MN axons can 

be seen to associate with and grow along muscle fibres, with short branches extending to 

contact areas of high bungarotoxin staining to form synapses. In many cases, it appeared a single 

MN axon contacted multiple synapses on multiple muscle fibres, however confirmation of this 

would require single cell labelling to differentiate axons, as they often bundled together along 

muscle fibres, and became indistinguishable from each other. After 21 DIV, multiple large NMJ-

like structures were visible in both chronically stimulated and not-stimulated CPM/AsNAs co-

cultures, as can be seen in figure 5.37. Bungarotoxin puncta appeared larger, and in one example 

displayed the characteristic complex morphology of mature NMJs in vivo (Fig. 5.37 b). Most large 

bungarotoxin puncta were co-localised with GFP, while a few small puncta were not associated 

with MN axons. These results were similar for 28 DIV co-cultures, with GFP labelled axons closely 

matching the morphology of bungarotoxin labelled motor end plates (Fig. 5.38).  



190 
 

  

Figure 5.35 Extensive axon outgrowth with visible growth cones, and co-localisation with 

small bungarotoxin puncta visible in 7 DIV CPM/AsNAs co-cultures. (a) CPM co-cultured 

with AsNAs after 7 DIV (chronic stim). Note the long GFP positive processes extending across 

the muscle tissue, and the multiple small clusters of nicotinic acetylcholine receptors (red) 

on the muscle fibres contacted by GFP labelled axons. (b) Growth cones can be seen at the 

terminal of many GFP labelled processes at this time point (no chronic stim). Scale bar = 

100μm. 

 

Figure 5.36 Specific innervation of complex bungarotoxin labelled synapses by GFP positive 

axons in 14 DIV CPM/AsNAs co-cultures. (a + b) CPM co-cultured with AsNAs after 14 DIV. 

GFP positive processes contacting areas of specific bungarotoxin labelling (red) on muscle 

fibres. (a = chronic stim; b = no chronic stim). Scale bar = 100μm. 
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Figure 5.37 Co-localisation of GFP and bungarotoxin at complex neuromuscular junctions 
in 21 DIV CPM/AsNAs co-cultures. (a + b) CPM co-cultured with AsNAs after 21 DIV. GFP 
positive processes innervating bungarotoxin labelled synapses (red) on muscle fibres. Note 
the matching complex morphology of the synapse in (b). (b’ + b’’) Close up of the boxed 
region in (b) to show fine detail of the synapse. (a = chronic stim; b = no chronic stim). Scale 
bar = 100μm. 

Figure 5.38 Innervation of multiple neuromuscular junction like structures in 28 DIV 
CPM/AsNAs co-cultures. (a + b) CPM co-cultured with AsNAs after 28 DIV, chronically 
stimulated. GFP positive processes innervating bungarotoxin labelled synapses (red) on 
muscle fibres. Note the precise co-localisation of GFP and bungarotoxin at the synapse in (b). 
(b’ + b’’) Close up of the boxed region in (b) to show fine detail of the synapse. Scale bar = 
100μm. 
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No morphologically complex bungarotoxin puncta were observed in CPM only controls, with 

only small, simple puncta observed on the muscle fibres (Fig. 5.39). While there was some 

variation in the number of bungarotoxin puncta on individual muscle fibres, generally fewer 

puncta were observed in control samples compared to co-cultures.  

Figure 5.39 CPM cultured in the absence of motor neurons displays small, simple 
bungarotoxin puncta. CPM controls cultured in the absence of MNs for up to 28 DIV. 
Representative images of 7 DIV (a), 14 DIV (b), 21 DIV (c), and 28 DIV (d) are shown. Scale 
bare = 100μm. 

(a) (b) 

(c) (d) 
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 While no clear differences could be observed between chronically stimulated and non-

stimulated co-cultures by eye, analysis of NMJ number, size and innervation using ImageJ 

software enabled a more detailed investigation of synapse formation and development in these 

cultures over the time course investigated. For this analysis, an “NMJ” was defined as a 

bungarotoxin-labelled region with an area greater than 150 μm, while “innervation” was defined 

as direct overlap of GFP signal over the red bungarotoxin-labelled synapse. Innervation was 

further classified into partial or complete, depending on the degree of co-localisation between 

the green and red signals.  

 

 

Figure 5.40 Average number of NMJs in CPM/AsNAs co-cultures, with and without chronic 
photostimulation. (a) Average number of NMJs (red bar) observed in a single image frame of co-cultures 

over the 4-week time course. The overlaid green bar indicates the average number of these NMJs that were 
innervated by ESC-derived MNs. n= 4 for Day 7, n= 4 for Day 14, n= 5 for Day 21 and n= 6 for D28. (b) Average 
number of NMJs and innervation status observed in non-chronically stimulated co-cultures. n= 3 for Day 7, n= 
5 for Day 14, n= 6 for Day 21 and n= 5 for D28.  Error bars show the S.E.M. ANOVA between timepoints revealed 
no significant differences, however a significant difference between chronic and non-chronic stim innervation 
(green bars) was seen at 7 and 21 DIV by two-tailed T-Test (P values 0.0059 and 0.0139 respectively). 

(a) 

(b) 
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Chronically stimulated co-cultures had greater numbers of “NMJ-like” structures than non-

stimulated co-cultures or CPM controls at all time-points investigated as shown in figure 5.40 

and figure 5.41, however this difference was only significant at 7 DIV (**; p = 0.0059). The 

greatest number of NMJs was seen in chronically photostimulated co-cultures at 7 DIV, which 

possessed an average of 8 NMJ-like structures per image field. This is in contrast to non-

stimulated co-cultures, which showed the highest number of NMJ-like structures at 14 DIV, with 

3 per image field.  

The highest degree of innervation of these structures by GFP positive MN axons in chronically 

stimulated cultures was seen at 21 DIV, with 95.8% of NMJs innervated, of which 21.7% were 

partially innervated (Fig. 3.40 a). Innervation was always above 50% in chronically stimulated 

cultures, with the lowest value being 60.9% at 14 DIV, of which 50% were partially innervated. 

In non-stimulated cultures, 100% innervation was seen at 7 DIV with 0% partial innervation, 

however this may be a result of the low number of NMJs seen at this time-point in this condition. 

Total innervation was lower in this condition at both 21 and 28 DIV, with 35.7% and 50% 

respectively (Fig. 5.40 b). Of these innervation values, partial innervation accounted for 40% and 

57.1% respectively.  

Figure 5.41 Average number of NMJs in CPM control cultures, with and without chronic 
photostimulation. Average number of NMJs observed in a single image frame of control cultures over 
the 4-week time course. n= 3 for both conditions at all time points. Error bars show the S.E.M. ANOVA 
between time points and T-Tests between +/- Stim at each time point, no significant difference found. 
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The average number of NMJ-like structures in CPM controls over the time-course is shown in 

figure 5.41. As can be seen in figure 5.41, the average number of NMJ-like structures was lower 

in CPM controls when compared to both chronically stimulated and un-stimulated co-cultures 

at every time point studied. The highest average number of NMJs seen in controls was at 21 DIV, 

with 1.3 NMJs per image field (Fig. 5.41). As no MNs were present in these cultures, there was 

0% innervation by default. Tables detailing total counts of NMJs and innervation status are 

presented in Appendix A. 

NMJ area was determined by tracing the outline of the bungarotoxin positive region freehand 

in ImageJ. Analysis of average NMJ area in all conditions over the time course is shown in figure 

5.42. NMJs were generally larger in co-cultures than in CPM controls (Fig. 5.42). While NMJ area 

was slightly higher in chronically stimulated co-cultures at 14, 21 and 28 DIV than non-stimulated 

co-cultures, these differences were not significant (Fig. 5.42 a). The largest NMJs were seen at 

21 DIV for chronically photostimulated co-cultures, with an average of 378.01 μm ± 10.82, while 

in non-stimulated co-cultures 28 DIV cultures possessed the largest NMJs, with an average of 

291.49μm ± 9.55. In control cultures, the average NMJ size was typically just over the minimum 

threshold (150μm) used in this analysis (Fig. 5.42 b). Non-stimulated control cultures at 21 DIV 

had a larger average area of 285.39μm ± 41.27 compared to 162.68μm ± 2.12 in stimulated co-

cultures, however this result for non-stimulated cultures has a very large standard deviation of 

165.09 due to the presence of one large NMJ in a small sample size (n=4), and was not 

statistically significant. Further repeats would likely diminish this outlier. 

A simple assessment of NMJ morphology was conducted on all NMJs included in this analysis, to 

investigate differences in NMJ maturation between the conditions. For this assessment, NMJs 

were defined as having either a “simple” or “complex” morphology. A simple morphology was 

defined as either a circular or non-branched linear shape, while “complex” was any branched or 

“pretzel-like” appearance.   
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Figure 5.42 Average area of NMJs in CPM/AsNAs co-cultures and controls, with and 
without chronic photostimulation. (a) Average size of NMJs in chronically stimulated (blue 
bars) and unstimulated (orange bars) co-cultures. n= 4 for Day 7, n= 4 for Day 14, n= 5 for Day 21 

and n= 6 for D28. (b) Average size of NMJs in chronically stimulated (blue bars) and 
unstimulated (orange bars) CPM control cultures. n= 3 for both conditions at all time points. 

Error bars show the S.E.M. ANOVA analysis was carried out between time points and T-Tests 

between +/- Stim at each time point, no significant differences found. 
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The results of this analysis are presented in figure 5.43 below. Complex NMJ morphologies were 

only observed on muscle fibres co-cultured with AsNAs; no complex NMJs were seen in CPM 

control cultures at any time point. The majority of NMJs in both chronically photostimulated and 

unstimulated co-cultures had a simple morphology. Synapses with a complex morphology first 

emerged after 14 DIV, with more complex NMJs seen in unstimulated cultures (Fig. 5.43). In 

chronically stimulated co-cultures, complex morphology was most frequently observed at 21 

DIV (20.8%), with lower levels seen at 14 DIV and 28 DIV (8.7% and 10.8% respectively). For 

unstimulated co-cultures both 21 DIV and 28 DIV cultures showed the same proportion of 

complex NMJs (28.6%), while fewer were seen in 14 DIV cultures (13.3%). 

 

 

 

  

Figure 5.43 Percentage of NMJs across all time points with a complex morphology in 
CPM/AsNAs co-cultures and controls, with and without chronic photostimulation. No NMJs 
in CPM-only controls possessed a complex morphology, and so the bars for these conditions 
are not visible. Chronically stimulated (blue bars) and unstimulated (orange bars) co-culture 
did not develop complex morphology until at least 14 DIV. For co-cultures +/- Stim, n= 4 for 

Day 7, n= 4 for Day 14, n= 5 for Day 21 and n= 6 for D28. For controls +/- Stim n= 3 at all time points. 
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5.4.3 Incorporation of CPM/AsNAs co-cultures into a microfluidic device 

As one of the primary aims of developing this in vitro neuromuscular co-culture is to provide a 

reliable, reproducible model for investigating neuromuscular circuit formation and function, I 

attempted to incorporate these cellular components into a simple microfluidic device. An Ibidi 

3D chemotaxis slide was used, as it allows introduction of different cellular populations into two 

independent chambers, with a permeable channel connecting them, as shown in figure 5.44 

below. This slide was coated with matrigel, and then astrocytes were loaded into one culture 

chamber, while chick primary muscle was loaded into the second chamber. The middle channel 

was filled with a higher concentration of matrigel to form a semi-permeable barrier, to inhibit 

cell invasion, but enabling axon outgrowth and innervation of the muscle chamber. 

Representative images of the microfluidic slide after 1 DIV, showing the two cellular chambers 

and the matrigel channel are presented in figure 5.44.  

As can be seen from these images, this basic microfluidic device allows good separation of the 

different cell types, with a mostly empty permeable channel in between (Fig. 5.44 b). Both the 

astrocytes and the primary chick myoblasts attached to matrigel coated surface of the slide, and 

little invasion of the channel was seen. While the chick myoblasts formed a confluent 

monolayer, the astrocytes initially clumped up before spreading along the surface of the slide. 

Some evidence of myoblast fusion was already evident at this timepoint, however the majority 

of myoblasts remained unfused. 

ESC-derived MACS sorted MNs were added to the astrocyte compartment on day 1, after the 

astrocytes had attached to the surface. Representative images of the microfluidic co-culture 

after 2 DIV are shown in figure 5.45. MNs can be seen associated with the astrocyte clusters, 

and attached to the surface of the chamber (Fig. 5.45). While some cells have invaded the middle 

channel on both sides of the device, the majority of cells remained in the separate 

compartments, segregating the different cellular populations.  
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Figure 5.44 Incorporation of ESC-derived astrocytes and MNs with CPM in a simple 
microfluidic device. (a) An Ibidi 3d chemotaxis slide was used as a simple microfluidic device 
to separate the neural (pink) and muscular (blue) cellular components of a neuromuscular 
circuit, while allowing axonal innervation and connectivity. (b) Representative images from 
a microfluidic slide after 1 DIV, plated with astrocytes in the left chamber and CPM in the 
right chamber. The central channel was filled with concentrated matrigel, to inhibit cell 
mixing while allowing axon outgrowth. Scale bar = 100μm. (a adapted from image on 
http://ibidi.com/applications/ chemotaxis/u-slide-chemotaxis-3d/) 

(a) 

(b) 
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Using fluorescence microscopy, the GFP positive MNs can be identified. A network of GFP 

positive neurites can be seen extending throughout the neuronal chamber, with no apparent 

organisation or directionality (Fig. 5.45). Some GFP positive MNs can be seen in the central 

channel, and even in the CPM chamber at the border with the channel, indicating imperfect 

separation of the chambers. However, no GFP positive cells were seen in the central region of 

the CPM chamber, suggesting that contamination with motor neurons only occurred near the 

border with the middle channel. A long neurite can be seen invading the central channel from 

the neuronal chamber, and fluorescent imaging confirms this is a MN process, as it is GFP 

positive (Fig. 5.45). While this does prove the permeability of the matrigel barrier to MN axons, 

no axons were seen extending across the entire channel at this early time point.  

Spontaneous contractile activity was observed in the CPM compartment, as shown in figure 5.46 

below. This activity indicates that muscle contraction is possible in such a microfluidic device, 

Figure 5.45 ESC-derived MNs cultured with ESC-derived astrocytes can extend axons 
through a matrigel channel towards a muscle target in a simple microfluidic device. 
Representative brightfield (top) and epifluorescent (middle) images from a microfluidic 
slide after 2 DIV, following addition of ESC-derived MNs in the left chamber. Note the GFP 
positive axon (yellow arrow) extending into the central channel towards the muscle 
chamber (enlarged at bottom). Scale bar = 100μm. 
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and can be easily recorded for analysis. While a longer time course of culture was intended, to 

determine if MN axons could invade the muscle compartment and form NMJs, the microfluidic 

devices were contaminated, and the experiment had to be stopped prematurely. Unfortunately 

this experiment could not be repeated due to time constraints, but on-going work in the lab 

aims to further develop this idea with custom-made microfluidic devices. This preliminary study 

shows the feasibility of culturing these cellular components in a microfluidic device, indicates 

the types of data obtainable, and enables future work to build upon this simple assay to develop 

reproducible, reliable in vitro models of neuromuscular circuit formation and development.  
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Figure 5.46 Spontaneous muscle activity recorded after 2 DIV in a microfluidic culture slide. 
Frame-by-frame analysis of a time-lapse movie of CPM after 2 DIV in a simple microfluidic 
device. Spontaneous activity was seen in some myocytes, even before undergoing significant 
fusion to form multinucleated myotubes.   
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Chapter VI 

Discussion 

 

The aim of this thesis was to develop a neuromuscular culture system containing both motor 

neurons and skeletal muscle derived from murine ESCs to enable characterisation and 

visualisation of function and development in vitro. A key objective was the development and 

maturation of neuromuscular junctions, as this structure is vital for normal neuromuscular 

function and appears key to the pathology of various neuromuscular diseases, including 

amyotrophic lateral sclerosis. Other important objectives included introducing MACS-sortable 

transgenes into stable ESC lines to allow purification of ESC-derived motor neurons and 

myoblasts from mixed populations, and incorporation of optogenetic components to enable 

non-invasive control of neuronal activity.  

Both MNs and skeletal myoblasts were successfully produced from ESCs via exogenous factors 

and an inducible Myod1 transgene respectively. Human CD14-based constructs were produced 

to enable MACS-purification of MNs and myoblasts using the Hb9 and myogenin promoters 

respectively. Co-culture of ESC-derived MNs with ESC-derived astrocytes enabled long-term 

survival of the MNs, allowing morphological and electrophysiological maturation as revealed by 

patch clamp recordings and confocal imaging. Introduction of a channelrhodopsin-2 transgene 

into the MN ESC-line provided external control of MN activity via blue-light stimulation, which 

closely replicated firing patterns seen with direct current injection. 

While co-culture of ESC-derived MNs with ESC-derived myoblasts did result in immature synapse 

formation and contractile activity in ESC-derived myotubes, poor survival of the muscle tissue 

prevented long-term culture and maturation. Co-culture of ESC-derived MNs with primary chick 

skeletal muscle however did enable long-term in vitro culture, and NMJs with relatively mature 

morphologies were observed in these co-cultures after 2 weeks. Blue-light stimulation of ESC-
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derived MNs via the channelrhodopsin-2 transgene resulted in strong contractions in 

surrounding muscle fibres, indicating the presence of functional NMJs between these 

populations. 

These results demonstrate the use of ESC-derived cells for modelling clinically relevant cellular 

populations and tissues in vitro, recapitulating aspects of normal development including 

morphological and functional maturation. This work also demonstrates the value of transgenic 

stem cell lines in aspects ranging from directed differentiation to functional manipulation. 

Pluripotent SC-derived neuromuscular cultures such as this represent a reproducible and 

accessible model system to study various aspects of neuromuscular function and dysfunction in 

disease, and provide an ideal assay for pharmacological screens or other experimental therapies. 

6.1 Embryonic Stem Cell-Derived Motor Neurons 

6.1.1 Establishing optogenetic motor neurons 

Multiple strategies for the expression of a channelrhodopsin-2 (ChR2) transgene in murine ES 

cells were undertaken for this work, described in chapter 3.2. While use of the A2.lox murine ES 

cell line described previously did enable successful integration of ChR2 downstream of an 

inducible tetracycline response element (TRE), this strategy did not result in stable, long-term 

expression of the transgene. This effect has been noted before in this cell line, whereby 

induction of transgene expression with doxycycline results in expression for a period of 3-4 days, 

after which the transgene becomes silenced (unpublished observations). This is thought to be 

due to epigenetic changes such as DNA methylation at the transgene locus, inhibiting 

transcription of the transgene. 

The second strategy adopted was to use gene targeting to insert the transgene into the 

endogenous MAPT gene locus, thereby promoting expression of ChR2 specifically in neuronal 

cells. Confirmation that the DNA construct was functional and viable was obtained by transient 

transfection into COS-7 cells, which showed an inward current in response to blue-light 

stimulation during patch clamp experiments. However, motor neurons differentiated from 
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stably transfected, screened and selected ES cells did not show an electrophysiological response 

to photostimulation. While direct visualisation of the transgene via immunostaining was not 

possible due to mutation of the myc-tag, semi-quantitative PCR revealed significant levels of 

ChR2 mRNA in these motor neurons (MNs). This observation points to a problem in protein 

translation or trafficking to the membrane. Recent studies have shown that while ChR2 carries 

out its function at the plasma membrane, its trafficking to the membrane in mammalian neurons 

is dependent on fusion with a small soluble fluor moiety, such as GFP (Hochbaum et al., 2014). 

As the MAPT construct we designed was fused to a short myc tag as opposed to GFP, this may 

explain the lack of response to photostimulation seen in this cell line, due to failure to transport 

the protein to the plasma membrane, despite successful transcription of ChR2 mRNA. 

The third strategy adopted here was to put ChR2 downstream of a constitutively active CAGs 

promoter, and insert the construct into the parental murine ES cell line via tol-2 mediated 

transposition. As done previously, the construct was first tested in COS-7 cells, where patch 

clamp studies revealed clear inward currents in transfected cells. Following antibiotic resistance 

selection and screening to identify stably transfected ES colonies, photostimulation was applied 

during voltage clamp to both undifferentiated ES cells and terminally differentiated MNs, both 

of which produced strong depolarising currents. This data confirmed that the transgene was 

expressed in the MN lineage and was functional, allowing direct control over 

electrophysiological properties of the stem cell-derived MNs via light. 

6.1.2 Optimising in vitro culture of ES cell-derived motor neurons 

Pure cultures of MACS-sorted ChR2-YFP positive stem cell-derived MNs showed sustained 

responses to photostimulation over a week of culture, confirming stable integration and 

expression of the transgene. Interestingly, the inward current elicited by a light pulse of the 

same length and intensity increased in amplitude over time in culture, indicating increased levels 

of ChR2 protein in the membrane at later time points. This could be due to increased 

transcription or translation leading to higher levels of the protein, and/or be due to low turnover 
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or degradation of the mature protein, allowing it to accumulate at the plasma membrane. This 

effect appears to more than compensate for the growth of the neurons and surface area of the 

membrane, enabling sufficient current to elicit APs in electrically mature neurons with elaborate 

dendritic and axonal arbours.  

However, the viability of pure MN cultures rapidly declined within a few days of plating on 

coverslips, preventing long-term in vitro culture and functional maturation in this condition. One 

major reason for this may be the lack of supporting glia, such as astrocytes. Astrocytes have 

been shown to be particularly important for MN survival, contributing to metabolic and trophic 

support, supplying survival signalling factors and regulating the extracellular environment 

(Blackburn et al., 2009; Ransom and Ransom, 2012; Ullian et al., 2004). One key neurotrophic 

factor produced by astrocytes that has been identified is glial derived neurotrophic factor 

(GDNF), a distant member of the transforming growth factor-beta (TGF-beta) superfamily (Lin 

et al., 1993; Saarma, 2000). Initially shown to promote survival and morphological 

differentiation of midbrain dopaminergic neurons, it has since been demonstrated to influence 

MN survival, as well as having further roles in differentiation, migration and axon guidance 

(Gould et al., 2008; Henderson et al., 1994). Pure MACS-sorted MN cultures without glia will 

have little or no GDNF, limiting the viability of the cells. While recombinant GDNF added to the 

media did promote MN survival, widespread cell death was still observed, indicating the 

requirement of astrocyte-derived GDNF and/or astrocytes themselves (Stevenson, D., 

unpublished thesis, 2015). 

Cultures of dissociated embryoid bodies (EBs) containing MNs resulted in improved long-term 

viability and MN survival, with similar results obtained showing functional expression of the 

ChR2-YFP transgene, an increasing light-response and electrical maturation over 1 week in vitro. 

This improved survival may be due to the presence of ES cell-derived astrocytes in the cultures, 

as the key signalling factors involved in spinal astrocyte differentiation are very similar to those 

for MNs; indeed the protocol developed in our lab to generate astrocytes from murine ES cells 
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is identical to the MN protocol for the first week. It would be interesting to confirm the presence 

of astrocytes in dissociated EB cultures using a marker such as glial fibrillary acidic protein 

(GFAP), and to determine the time course of emergence of this population. 

While dissociated EB cultures promoted MN survival, many highly proliferative contaminating 

cells were also present in this condition, again limiting the long-term viability of the preparation. 

After the first week in vitro, most dissociated EB cultures were overgrown with proliferative cells 

of unknown identity, and died shortly after, preventing long-term investigation of MN 

development. While anti-proliferative compounds such as 5’-fluoro-2’-deoxyuridine [5-FdU, 

(Heidelberger et al., 1957)] were used to target this contaminating population, only temporary 

stalling of the overgrowth was possible in this format. 

One interesting observation from dissociated EB cultures was the presence of significant 

spontaneous activity in the MNs, not seen in pure MN cultures. This activity may be due to the 

presence of other neuronal populations in the mixed culture, such as spinal interneurons. Spinal 

interneurons share a similar developmental pattern and origin with spinal MNs, and synapse 

with MNs in vivo and in vitro (Brown et al., 2014; Zhang et al., 2011). Unlike MN synapses with 

muscle, synapses between interneurons and MNs are thought to be largely glutamatergic, and 

may drive spontaneous activity (Zhang et al., 2011). It would be interesting to investigate the 

presence of spinal interneurons in these cultures using antibodies against markers such as 

Bhlhb5 for V1 and V2 interneurons and Lhx1 or Pitx2 for V3 interneurons, and to determine if 

synapses between interneurons and MNs are present (Francius et al., 2013; Wichterle et al., 

2002). It would also be worth investigating if blocking glutamatergic signalling with NBQX or AP5 

silences this spontaneous activity, to determine the influence of both AMPA and NMDA 

receptors respectively on MNs in mixed cultures.  

To promote long-term survival of MNs in vitro without contaminating proliferative cells, we 

developed MACS-sortable ES cell-derived astrocytes, to allow co-culture of purified MNs with 

purified astrocytes. We combined the separate populations into aggregates via a hanging drop 
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protocol, which were then plated on glass coverslips for long-term culture. This format enabled 

long-term survival of MNs without overgrowth of contaminating cells from a dissociated EB 

limiting viability. Patch clamp recordings showed electrical maturation of these cells over 3 

weeks in vitro, progressing from a non-spiking phenotype to firing trains of APs. Additionally, 

the light-evoked currents in these cells increased over time in culture, and elicited AP firing 

equivalent to activity generated through direct electrical stimulation.  

While successful, these cultures were hard to standardise, with varying degrees of clumping and 

sizes of aggregates generated by the hanging drop method used to combine the separate cell 

populations. These variations may be responsible for some of the variations in 

electrophysiological responses obtained from MNs in these cultures, as most aggregates 

appeared to spread out across the substrate before extending neurites and symmetry breaking, 

possibly leading to variable maturation times. It may be possible to counter this by forming the 

aggregates in microwell culture plates as opposed to hanging drop culture, enabling more 

uniformly sized aggregates to be made. It would also be worth investigating the ideal ratio of 

astrocytes to neurons in these cultures, especially considering the variation in astrocyte/neuron 

ratios between different CNS regions and between species in vivo (Azevedo et al., 2009; 

Herculano-Houzel, 2011).  

The final culture format tested was to plate MACS-sorted MNs on monolayers of MACS-sorted 

astrocytes. This condition provided the neurotrophic benefits of co-culture with astrocytes, 

while also improving the reproducibility of the cultures. Long-term survival of MNs was seen 

over 4 weeks, with improved morphological and electrical maturation. MNs fired APs earlier in 

this format than in aggregates, possibly due to earlier symmetry breaking and neurite extension, 

key initial steps in neuronal differentiation, due to not having to first migrate out of an 

aggregate, allowing earlier differentiation of electrical properties (Inagaki et al., 2011; da Silva 

and Dotti, 2002). The cell soma of most MNs in these cultures were observed to grow in size 

over time, and along with the continued extension of axons and dendrites contributed to the 
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steadily increasing membrane resistance measured during patch clamp recordings. It would be 

interesting to quantify this increase in size to see if it correlates with electrical maturation and 

whether a maximum size is reached.  

Comparing the electrophsiological results obtained for ES cell-derived MNs in this study with 

reported properties of endogenous spinal MNs reveals a similarity in activity and passive 

properties. ESC-MNs fire repetitive trains of APs at relatively high frequency as seen in vivo, have 

a typical resting membrane potential and a comparable but higher membrane capacitance when 

compared to mouse spinal MNs (Carlin et al., 2000; Mitra and Brownstone, 2012; Sernagor and 

O’Donovan, 1991). ESC-MNs even displayed the characteristic spike-frequency adaptation seen 

in in vivo MNs, where initial APs have a higher frequency than successive APs during a sustained 

depolarisation, thought to improve muscle fibre recruitment at the beginning of an impulse, as 

seen in figures 3.12, 3.13 and 3.21 (Miles et al., 2005). Mature in vivo mouse spinal lumbar MNs 

however show a much faster AP and lower voltage threshold than found in this study, which 

may reflect further maturation is needed in vitro to achieve maximal functionality, or possibly 

reflect differences in MN identity (Mitra and Brownstone, 2012). While the finding reported here 

that the AP voltage threshold decreases while the current threshold increases over time in 

culture initially seems counter-intuitive, this could be explained by changes in ionic channel 

number or density during maturation. This would alter the membrane resistance, and especially 

an increase in potassium channels would increase the current threshold without dramatically 

influencing the voltage threshold. It would therefore be interesting to monitor changes in 

expression level and membrane recruitment of the key voltage-gated ion channels to determine 

if this explains the maturing electrophysiological phenotype.  

My results are also similar to previous reports of properties ESC-MNs in vitro, again with similar 

but higher membrane capacitance, resting membrane potential and firing frequencies (Miles et 

al., 2004). The higher values found in this study may be explained by the longer culture time and 

therefore greater maturation of MNs in this study, as a trend towards steadily increasing 
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membrane capacitance and AP frequency was seen during maturation. As previous studies have 

suggested that ESC-MNs derived via this differentiation protocol tend to produce Lhx3 positive 

“medial motor column” MNs, it would be interesting to determine if the MNs generated in this 

study have the same identity, or more closely align to another motor column (Soundararajan et 

al., 2006). It would also be beneficial to test the responses of these cells to exogenous 

neurotransmitters such as glutamate, GABA and glycine, as well as demonstrating inhibition of 

AP firing and synaptic activity by tetrodotoxin and curare respectively, both to confirm 

responsiveness to these agents, and to allow greater comparison to previously published studies 

(Miles et al., 2004). 

Another factor that may influence electrical maturation is the development of the axon initial 

segment (AIS). As mentioned in Results chapter 3.3.4, the AIS is a specialised region of the 

proximal axon found in most neurons that functions as the initiation point for action potential 

firing. To investigate if the acquisition of AP firing behaviour was related to AIS formation, I 

carried out immunocytochemistry using antibodies against AIS markers. While the antibody 

against the most common marker, the scaffold protein Ankyrin G, did not work in ES cell-derived 

MNs, this may be due to the fixation sensitive nature of this antibody. Repeating this staining 

with a shorter fixation step, a different fixative agent, or even a less concentrated 

paraformaldehyde solution may resolve this issue. It is highly unlikely that the AIS of ES cell-

derived MNs do not contain Ankyrin G, as previous studies have shown Ankyrin G present in the 

AIS of somatic MNs in mice, and that it is key to organising this structure in vivo (Duflocq et al., 

2011; Hedstrom et al., 2007; Le Bras et al., 2014).  

Another antibody was used as a marker of the AIS for this study, phosphorylated I kappaB alpha 

(pIκBα). Constitutive NF-kappaB signalling has been documented in mammalian central nervous 

system (CNS) neurons, and has been specifically implicated in neuronal polarity acquisition and 

AIS development (Sanchez-Ponce et al., 2008; Schultz et al., 2006). Activated I kappaB kinase 

(IKK), phosphorylated p65 and pIκBα have all been shown to be enriched at the AIS, and loss of 
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pIκBα leads to impaired axon outgrowth and a failure to cluster Ankyrin G and form an AIS in 

cultured hippocampal neurons (Sanchez-Ponce et al., 2008; Schultz et al., 2006). However, 

despite these findings, pIκBα labelling has still been observed at the AIS of IκBα-KO mice, and 

was shown to be unnecessary for AIS assembly, indicating that the labelling is likely due to cross-

reactivity with a phosphorylated epitope of a protein associated with the AIS cytoskeleton 

(Buffington et al., 2012). 

The pIκBα antibody was first used alongside anti-Ankyrin G in rat hippocampal cultures to 

confirm specific labelling of the AIS. pIκBα labelling was then found to be specifically enriched in 

a proximal region of a single neurite in each MN studied in ES cell-derived MN cultures, revealing 

the presence of an AIS in these cells. Interestingly, an AIS was visible as early as 3 DIV in ES cell-

derived MNs, prior to AP firing and electrical maturation. This may be due to the complex nature 

of a mature AIS, which is composed of scaffolding proteins, cell adhesion molecules, modulatory 

proteins, a unique extra-cellular matrix (ECM), and many voltage gated ion channels (Ogawa and 

Rasband, 2008). The observed discrepancy between AIS formation and electrophysiological 

maturity may be accounted for by the initial accumulation of scaffolding proteins early in 

development giving rise to pIκBα labelling, with later ion channel clustering required for 

functional properties and AP initiation. It is also possible that the specialised ECM is required for 

electrical maturity, and takes longer to establish than the intracellular components. 

It would be interesting to investigate these possibilities through direct labelling of voltage gated 

sodium and potassium channels to reveal the time course of AIS development in these cells, and 

determine if this correlates with acquisition of mature functional properties. The influence of 

the ECM on electrophysiological maturation could be investigated by inhibiting its formation or 

degrading it using an enzyme such as chondroitinase ABC, either from initial plating or more 

acutely during culture. 

It would also be worth investigating the plasticity of the AIS in these cells, as recent reports have 

shown the AIS to be a key structure involved in the modulation of excitability in neurons, both 
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via changes in length and position (Grubb and Burrone, 2010b; Kuba et al., 2006). This cell line 

is particularly suited to hyper-excitability studies, due to the stable expression of a 

Channelrhodopsin-2 transgene, allowing non-intrusive excitation via photostimulation. It could 

also be possible to generate an ES cell line with a fluorescently tagged Ankyrin G protein, to 

allow live imaging of AIS development and modulation. 
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6.2 Establishing in vitro muscle culture 

6.2.1 Establishing ESC-derived muscle 

A major goal of stem cell research is the reliable generation of specialised, differentiated cells 

from pluripotent stem cells for use in disease modelling or therapy. While reliable protocols for 

the generation of many types of differentiated somatic cells have been established, including 

the protocol to generate spinal motor neurons used in this study, a protocol to generate skeletal 

muscle using exogenous factors or small molecules has remained elusive.  

An alternative strategy to produce specific cell lineages from stem cells has been to drive 

differentiation using inducible transgenes to force the population towards a particular cell fate. 

Multiple studies have reported some level of success using this strategy to generate skeletal 

muscle, including forced expression of the paired box genes Pax3 or Pax7, and the myogenic 

transcription factor Myod1 (Darabi et al., 2008b; Skoglund et al., 2014; Tanaka et al., 2013). 

Another approach has been to FACS sort differentiating cells for early markers of the paraxial 

and lateral mesoderm lineages, such as the α-receptor for platelet-derived growth factor (PDGF-

αR) and vascular endothelial growth factor receptor-2 (VEGFR-2) (Darabi et al., 2008b; Sakurai 

et al., 2008).  

As initial attempts to generate skeletal muscle using a doxycycline-inducible Pax3 stem cell line 

were not successful in our lab, I generated a doxycycline-inducible Myod1 murine ES cell line. 

This strategy was chosen due to the well documented ability of this myogenic regulatory factor 

(MRF) to force conversion of multiple differentiated cell types including fibroblasts and 

chondroblasts into the muscle lineage, and the observed strength of this transcription factor in 

epigenetic reprogramming (Choi et al., 1990; Hirai et al., 2011). Additionally, Myod1 has been 

shown to directly up-regulate the expression of multiple other myogenic genes including Pax7 

and Myogenin (Gianakopoulos et al., 2011). A second construct to generate a doxycycline-

inducible Myf5 transgene was also generated as a back-up strategy, as these transcription 
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factors appear somewhat functionally redundant in myogenesis, with only a double-knockout 

resulting in loss of muscle formation, while a single knockout leads to compensatory up-

regulation of the remaining transcription factor (Rudnicki et al., 1992, 1993).  

Induction of Myod1 expression in murine ES cells via doxycycline following two days of embryoid 

body differentiation resulted in clear expression of myosin heavy chain (MHC), a definitive 

marker of terminal muscle differentiation. No MHC was detected in un-induced controls. In 

addition to expression of this lineage marker, the morphology of the doxycycline-induced cells 

changed to an elongated spindle shape, characteristic of proliferative myoblasts. While 

conversion to myoblasts was not 100% efficient, recent advances in epigenetics may provide a 

strategy to increase the efficiency of Myod1-driven differentiation. It has been shown that in 

human ES cells, forced expression of the SWI/SWF component BAF60C facilitates Myod1 

positioning and chromatin remodelling at target sites, epigenetically committing the cells to the 

myogenic lineage (Albini et al., 2013). A similar strategy could be used in conjunction with forced 

Myod1 expression in ES cells to enhance the myogenic differentiation, and produce a more 

uniform skeletal muscle culture. Recent advances in our understanding of the contribution of 

other signalling factors such as Wnt and Fgf to the generation of paraxial mesoderm, as well as 

screens to identify small molecules and pathways that drive myogenesis, present further 

opportunities to produce stem cell-derived muscle without the need for transgenic strategies in 

the near future (Gouti et al., 2014; Xu et al., 2013a). The results presented here confirm the 

conversion of the murine ES cells to the myogenic lineage, and the clone with the best 

morphology and most specific MHC expression was selected for further characterisation and 

optimisation. 

6.2.2 MACS-sortable ESC-derived muscle 

To further refine ES cell-derived muscle culture, and greatly increase the reproducibility and 

reliability of the resulting cells, a MACS-sortable transgene was inserted to enable purification 

of the desired cell type. The tol-2 transposable element was chosen to enable stable genomic 
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integration of the transgene, and due to the lack of target site specificity and high efficiency of 

this technique in vertebrate cells compared to other systems (Balciunas et al., 2006; Kawakami 

and Noda, 2004). The cell-surface marker CD14 was chosen as the MACS-target marker due to 

previous success using this transgene to sort other types of ESC-derived differentiated cells 

(Machado et al., 2014). The myogenin promoter was selected to drive specific expression of the 

CD14 transgene for MACS, as myogenin is expressed downstream of Myod1 and only after 

commitment to myogenesis (Berkes and Tapscott, 2005; Rudnicki and Jaenisch, 1995).  

Successfully transfected clones were selected via hygromycin resistance conferred by a 

hygromycin resistance cassette 5’ to the CD14 transgene in the tol-2 construct. A sub-clone with 

strong specific expression of CD14 in muscle cells with clear myoblast morphology was chosen 

for all further studies. Due to the random nature of tol-2 integration in the genome, it was 

necessary to map the insertion site of the transgene via inverse PCR mapping. As only the 5’ end 

of the tol-2 construct (Tol2R) returned a reliable result, with the expected primer binding sites 

and 5’ end of the tol-2R element running into genomic DNA, further repeats of the inverse PCR 

protocol should be carried out to confirm this initial result, and investigate the possibility of 

multiple insertions. The 5’ tol-2 element was found integrated into the Tanc1 gene on 

chromosome 2, a relatively poorly characterised gene encoding a 200 kDa ankyrin-repeat 

containing scaffolding protein localised to the post-synaptic density of neurons (Suzuki et al., 

2005). While this insertion may result in loss of one copy of this gene, no obvious influence on 

MN function or viability was observed in this cell line, indicating that a single allele of Tanc1 is 

sufficient for the normal functioning of MNs. 

MACS-sorting of this sub-clone revealed clear enrichment of the MHC-positive (Mf20) 

population, and depletion of non-MHC expression cells from the eluate. Conversely, there was 

noticeable depletion of MHC-positive cells from the flow-through fraction, indicating successful 

purification of the myogenic population. These results were further confirmed with flow 

cytometry and over multiple repeats, confirming the reliability of this sorting method and the 
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stable expression of the CD14 transgene over multiple passages. While some contamination of 

the eluate with non-MHC expressing cells was still seen, this is expected in MACS sorting, and is 

likely due to residual cell aggregation or clumping after chemical dissociation. We have also 

observed from ES cell-derived MN MACS sorts that some cells in the eluate that do not initially 

express markers of lineage commitment do go on to terminall differentiate 1-2 days following 

the sort, indicating that expression of the CD14 transgene precedes terminal marker expression 

(unpublished observations). This may also be occurring in the ES cell-derived muscle 

differentiation, with the myogenin promoter used in the transgene becoming active prior to the 

endogenous myogenin gene or MHC expression. 

It may be possible to improve the quality or efficiency of the MACS sorting protocol by pre-

sorting the differentiated cells for markers of paraxial mesoderm such as the PDGF-α receptor, 

restricting the CD14 MACS-sort to mesodermal progenitors, and therefore eliminating many of 

the potential contaminating cells (Darabi et al., 2008b; Sakurai et al., 2008). To reduce the 

impact of any contaminating cells remaining, 5’-fluoro-2’-deoxyuridine (5-FdU) was added to the 

eluate for the first 2 days of in vitro culture to prevent proliferation. However, even with this 

treatment, some proliferative cells were still observed. Longer or repeated 5-FdU treatment may 

be necessary to prevent this, or use of alternative anti-proliferative agents such as 

arabinofuranosyl cytidine (Ara-C).  

6.2.3 Characterisation of ESC-derived muscle 

Immunostaining of ES cell-derived myoblasts 1 day post-MACS revealed expression of multiple 

muscle-specific proteins, indicating complete conversion to the myogenic lineage. Additionally, 

the positive labelling using the My32 antibody is of particular interest, as this antibody is specific 

for an isotype of MHC found only in fast skeletal muscle, as opposed to cardiac or smooth muscle 

(Havenith et al., 1990). These results suggest that induction of Myod1 expression is sufficient in 

itself to induce the full genetic program for fast skeletal myogenesis, via interaction with other 

MRFs and epigenetic remodelling. However, not all cells in doxycycline-induced conditions 



216 
 

showed conversion to myoblasts, similar to results seen with transfection of Myod1 into some 

cell lines including HeLa cells (Weintraub et al., 1989). This may be due to epigenetic changes 

and commitment to other lineages during the embryoid body phase of differentiation, or the 

lack of certain Myod1 cofactors, such as E box proteins or MEF2 proteins. Forced expression of 

BAF60C may improve the efficiency of myoblast formation as mentioned previously, by 

facilitating Myod1 positioning and chromatin remodelling at target sites key to the myogenic 

program (Albini et al., 2013). 

While the generation of ES cell-derived myoblasts was relatively successful using this method, 

long-term in vitro culture of these cells remains problematic. Long-term viability was poor on 

multiple culture substrates and media formulations, despite similar conditions allowing long-

term culture of primary chick skeletal myoblasts. One possible reason is the lack of necessary 

survival factors or media supplements required specifically by murine myoblasts. Use of mouse 

embryonic extract instead of chick embryonic extract may resolve this issue. An alternative 

explanation may be the lack of a supportive environment, including the lack of other tissues 

typically found in vivo, such as the connective tissue, fibroblasts, endothelial cells or adipose 

cells, similar to the lack of astrocytes in the initial MN cultures. Indeed, defects in connective 

tissue transcription factor expression have been linked to musculoskeletal defects such as Holt-

Oran syndrome, revealing the importance of this tissue for proper muscle development (Hasson 

et al., 2010). Additionally, the physical conditions of the culture may be a limiting factor; this is 

especially relevant due to the serendipitous long-term culture achieved by a floating aggregate 

of murine ES cell-derived myoblasts that fused to form myotubes with visible sarcomeres after 

6 weeks in vitro. This result indicates that a 3-dimensional culture format may be necessary for 

improved long-term survival and maturation of murine skeletal muscle.  

Use of different substrate materials and culture conditions, including 3D culture, has been 

reported previously, with varying levels of success and reproducibility. While the matrigel 

substrate used in this study provided reproducible muscle development and allowed MN 
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innervation and NMJ formation, incorporating collagen, fibrin or PDMS based substrates into 3D 

culture systems seems to provide improved tissue architecture, myofiber alignment and fusion, 

and increased reproducibility (Bian et al., 2009; Martin et al., 2015; Smith et al., 2012). Another 

advantage of such systems includes the ability to monitor and assess the biomechanics and force 

generation of resultant cultures, allowing more direct measurement of muscle function and 

contractile force (Martin et al., 2015; Ramade et al., 2014).  

While the stem cell-derived transgenic myoblasts described in this study show many key 

characteristics of skeletal muscle found in vivo, including expression of fast skeletal muscle-

specific myosin heavy chain isotypes, expression of Myogenin and M-Cadherin as well as fusion 

to form multinucleated myotubes displaying a striated F-actin cytoskeleton and functional 

contractions and synapses with MNs, they are perhaps not reflective of true in vivo 

development. As these cells are forced into the myogenic lineage by overexpression of a Myod1 

transgene, based on previous studies showing the importance of this transcription factor for 

muscle differentiation, they are effectively trans-fated from the non-somitic mesoderm-like 

tissue found in growing embryoid bodie (Choi et al., 1990; Hollenberg et al., 1993; Tapscott et 

al., 1988). This may result in a compromised myogenic lineage with a conflicting transcriptome 

that is not an accurate representation of endogenous skeletal muscle, and may even explain the 

poor long-term survival observed in vitro. A better stem-cell derived model of skeletal muscle 

has been developed recently, using only exogenous signalling factors to drive differentiation into 

the myogenic lineage via a pre-somitic mesoderm-like fate that recapitulates primary and 

secondary myogenesis that even gives rise to Pax7 positive satellite cells, not seen in previous 

stem cell-derived muscle cultures (Chal et al., 2015). Incorporation of myoblasts generated by 

this directed differentiation into 3D culture substrates may therefore provide the best current 

in vitro model for studying skeletal muscle development and neuromuscular circuit formation, 

and co-culture with the optogenetic stem cell-derived MNs described here would enable great 

advances in in vitro modelling of neuromuscular circuits. 
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6.2.4 ESC-derived muscle activity 

Manual measurement of the displacement of visual landmarks in short time-lapse movies of ES 

cell-derived muscle cultures enabled analysis of contractile activity. Spontaneous activity was 

seen in both fused myotubes and individual myoblasts, however fused cultures produced much 

larger displacements. While beyond the scope of this investigation, developing a more thorough 

and preferably automated analysis using multiple reference points from the movie would likely 

improve the characterisation of this phenotype significantly. Additionally, adding artificial 

reference points to be used in the analysis could significantly improve the reproducibility and 

consistency of the data, such as coloured or fluorescent beads embedded in a flexible culture 

substrate or directly in the culture itself. If analysis could be automated, it could also be 

preferable to install a camera inside the incubator, allowing collection of activity data over long 

periods of time and in a preferable environment, compared to the relatively short movies 

manually filmed in a non-sterile, not atmospherically controlled microscope room. 

Unfortunately, due to the poor long-term viability of ES cell-derived muscle cultures, analysis of 

activity at later developmental time points or in co-culture with MNs was not possible in this 

study. Improvements the survival of the cultures in vitro via any of the strategies outlined 

previously may allow a better characterisation of ES cell-derived muscle development and 

activity. Of particular interested would be successful 3D culture, as a 3D muscle culture between 

defined flexible anchor points (similar to tendons in vitro) would allow direct measurement of 

the displacement of these anchor points.  

6.2.5 Establishing chick primary skeletal muscle culture 

As an alternative synaptic target for ES cell-derived MNs, chick primary muscle (CPM) culture 

was chosen due to the well-established protocols and relative ease and cheap cost of production 

(Caplan, 1976; Gerstenfeld et al., 1984). Initial testing of culture substrates and media revealed 

that chick embryo extract (CEE) was a necessary supplement for long-term survival, morphology 

and viability. Conversely, the matrigel concentration used to coat the substrate, and the 
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different substrates themselves did not significantly impact CPM morphology or viability. As with 

ES cell-derived cultures, contaminating proliferative cells quickly overgrew cultures, limiting 

long-term survival. Pre-plating the dissociated cells for 30 minutes and harvesting the suspended 

fraction reduced the number of contaminating cells, as contaminating fibroblasts adhere to the 

surface much more readily than skeletal myoblasts. Following this, treatment with 5-FdU for the 

first 2 days of culture also greatly limited the influence of proliferative cells on these cultures, 

but was still not sufficient to prevent eventual overgrowth beyond 4 weeks. 

As the substrate material had little impact on culture viability, all experimental CPM cultures 

were grown on glass coverslips, standardising the preparation of these cultures with MN 

cultures, and allows confocal microscopy of the samples. One disadvantage of this format is the 

inability to grow 3D cultures on coverslips, which may be more representative of in vivo muscle 

development. The standard concentration of cells used was 1 million per 18mm coverslip, as 

this gave the most consistent monolayer culture over repeated cultures.  

Similar to results with ES cell-derived myoblasts, CPM expressed markers of terminal muscle 

differentiation, including positive labelling with the My32 antibody, revealing fast skeletal 

muscle specific MHC. While low level staining was observed using the myogenin antibody F5D, 

it is likely this was non-specific background staining, likely due to the species specific nature of 

this antibody, which only recognises mammalian myogenin protein (Wright et al., 1991); 

http://dshb.biology.uiowa.edu/myogenin). While the mCadherin staining was also very weak 

and possibly non-specific background staining, this may also be due to species selectivity. To 

better characterise these cultures, it would be desirable to test the expression of more myogenic 

lineage markers, such as desmin, chick myogenin and α-actinin. Additionally, the presence of 

mesodermal progenitors or satellite cells in these cultures could be investigated using antibodies 

against Pax 3 and 7, which were not found in murine ES cell-derived muscle cultures. 

  

http://dshb.biology.uiowa.edu/myogenin
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6.3 Modelling Neuromuscular Circuits In Vitro 

6.3.1 ESC-derived muscle/EB co-culture 

Co-culture of ES cell-derived myoblasts with unsorted EBs resulted in outgrowth of neurites from 

EBs into the surrounding muscle tissue after 1 DIV and spontaneous contractile activity in the 

muscle after 3 DIV. While the strength of this contractile activity was not noticeably different to 

spontaneous activity in pure ES cell-derived muscle cultures, there was a noticeable increase in 

fused myotubes compared to unfused myoblasts in the co-cultures. This observation indicates 

that co-culture with MNs may accelerate myoblast fusion, and would be worth repeating the 

experiment with quantification of this phenotype to further investigate this possibility. It would 

also be interesting to determine if any effect of the MNs on the muscle at early time points (such 

as accelerated fusion or contractile activity) is via synaptic signalling or alternatively is a result 

of non-specific spontaneous release of neurotransmitters, similar to suggestions that CNS 

circuits mature in response to non-synaptic neurotransmitter release (Andreae and Burrone, 

2014). This could be achieved by blocking MN-muscle synapse function using α-bungarotoxin, 

effectively silencing this mode of signalling. 

Another observation from these cultures is that multiple different patterns of activity were seen 

in different myotubes, even within the same culture. If MN activity is driving this activity, this 

may be due to variable input from the MNs, or variable contraction thresholds in the muscle; 

this could be confirmed by patch clamp experiments to correlate muscle contraction with the 

firing patterns of the innervating MN. However, if this variable contractile activity is independent 

of MN innervation, it may be due to the presence of different sub-types of muscle, normal 

variations in spontaneous activity or possibly some other unforeseen heterogeneity or culture 

artefact. Further work is needed to clarify this phenomenon. 

Stimulation of these co-cultures with blue light resulted in light-evoked contractions as early as 

4 DIV, indicating the presence of functional synapses at this stage. Light-evoked activity was 
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reliable, and slightly stronger than spontaneous contractions, suggesting a stronger calcium 

response in the post-synaptic muscle target compared to spontaneous activity. No light-evoked 

activity was seen in pure ES cell-derived muscle cultures, confirming this behaviour is due to the 

ChR2 transgene in the MN population. Light-evoked contractions were only observed in 

myotubes physically close to EBs however, suggesting that MN axons did not reach the edges of 

the coverslip after 12 DIV. Light-evoked activity was much weaker at 12 DIV, suggesting a 

decrease in the viability of the cultures by this time point, also reflected in the poor morphology 

of the cultures seen after 14 DIV. Interestingly, this decrease in light-evoked activity reflects the 

procession of some in vivo neuromuscular diseases where breakdown of the NMJ precedes MN 

cell death (Fischer et al., 2004; Frey et al., 2000; Murray et al., 2008). As there is also much lower 

spontaneous activity at this time point, it is likely that myotube death is also a contributing factor 

in this culture condition. 

Immunocytochemistry of these co-cultures at 14 DIV revealed concentrations of α-

bungarotoxin-labelled acetylcholine receptors closely opposed to GFP positive axons, suggesting 

the presence of synapses or NMJs. However, no clear NMJs with complex morphology were seen 

in ES cell-derived myoblast/MN co-cultures at this time point. As the functional data indicates a 

significant decrease in viability by 12 DIV, it is possible that the majority of NMJs have broken 

down by 14 DIV. It would be worth repeating these cultures and investigating α-bungarotoxin 

staining at 3-5 DIV, when clear light-evoked activity is seen. While more MN/muscle synapses 

may be visible at earlier time points, it is unlikely that NMJs with complex morphology will be 

observed this early in the co-culture, as the maturation of the synapse takes up to 2 weeks in 

vivo (Personius and Balice-Gordon, 2001; Sanes and Lichtman, 1999).   

6.3.2 Primary Chick Skeletal Muscle/Embroid Body Co-Culture 

In co-cultures of chick primary muscle with EBs, multiple YFP-positive neurites could be seen 

extending out of the EB aggregates within the first week of culture. While processes radiated 

out from each EB throughout the surrounding myotubes, in many areas they aligned with muscle 
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fibres, suggesting some level of recognition that the CPM is a target structure. In most cases 

there were multiple neurites making contact with each myotube near the EB, suggesting that 

there may be intense competition for space or functional synapses between the MNs in the 

aggregate. 

Photostimulation resulted in light-evoked contractions at all time points up to 4 weeks in vitro, 

that peaked in strength at 20 DIV. Evoked activity was much stronger than spontaneous activity 

which was also observed in these cultures. The most spontaneous activity was observed at 12 

DIV, which could possibly represent a phase of reinforcement or stabilisation of immature 

synapses which then mature to form functional NMJs by 20 DIV, reflected by the strong stimulus 

evoked activity at this time point. By 26 DIV however, both the spontaneous and stimulus 

evoked activity and was significantly lower, and visual observation revealed overgrowth of the 

cultures by contaminating proliferative cells, despite treatment with 5-FdU after initial plating. 

This decrease in contractile strength may be a reflection of the declining viability of the cultures 

at this stage, possibly due to competition with contaminating cells for nutrients or build-up of 

waste products past sustainable levels. Improved elimination of these contaminating cells from 

the culture preparation may prevent premature death of these co-cultures, enabling NMJ 

maturation to be followed over a longer time period. 

While fusion of myoblasts to form multinucleated myotubes and sarcomeric structure was seen 

in muscle in both EB co-cultures and CPM only cultures, NMJs with a complex, pretzel-shaped 

morphology were only observed in EB co-cultures from 14 DIV onwards. This observation 

suggests that the maturation of simple acetylcholine receptor clusters into the large, complex 

structures associated with NMJs is dependent on MN input, while fusion of myoblasts and 

development of sarcomeres is MN independent. This finding supports observations from 

skeletal myogenesis in vivo, where pre-patterned AChR clusters are found on multinucleated 

myofibres prior to the arrival of MN axons, but the formation of morphologically and functionally 
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mature NMJs requires neuronal activity and signalling factors from the axon terminal (Darabid 

et al., 2014; Yang et al., 2001). 

Immunocytochemistry of CPM/EB co-cultures revealed the co-localisation of α-bungarotoxin 

with synaptophysin, a maker of pre-synaptic terminals, supporting the presence of functional 

synapses between MNs and muscle at these sites. While labelling for choline acetyl-transferase 

(ChAT), a common marker of cholinergic synapses, was not clearly opposed to α-bungarotoxin 

puncta (Figure 5.21), the staining produced by this antibody was poor, with high levels of 

background labelling. Repeating this staining with fresh antibody for ChAT may give a clearer 

result. Labelling the MN axons with anti-GFP revealed very clear innervation of α-bungarotoxin 

positive synapses, with direct overlap of GFP positive axon terminals with acetylcholine receptor 

complexes in multiple cases. These results reveal the formation of functional, functionally 

mature, cholinergic NMJs in these co-cultures, with direct control over activity possible via 

photostimulation of a ChR2 transgene expressed in the MN population. 

6.3.3 Primary Chick Skeletal Muscle/AsNAs Co-Culture 

While the use of unsorted EBs as a source of ES cell-derived MNs for co-culture with muscle 

enables viable, functional neuromuscular circuits that mature and form NMJs in vitro, the 

presence of many uncharacterised and proliferative contaminating cells from the EB results in a 

relatively poorly controlled and unreproducible model system. To improve upon this model, 

MACS-sorted MNs and astrocytes were combined via hanging drop culture to form well 

characterised astro-neural aggregates (AsNAs) for co-culture. As previous experiments showed 

little to no spontaneous activity in MNs cultured in this format, blue-light stimulation was used 

to induce neural activity in these co-cultures, to encourage functional synapse maturation. 

Chronically photostimulated AsNAs co-cultures show a similar maturation profile to EB co-

culture, however they had a higher peak contractile strength, and achieved this peak earlier, at 

12 DIV. This result indicates that specific MN driven activity may reinforces developing synapses, 

and strengthen post-synaptic responses in the myotube population. On the other hand, non-
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chronically stimulated co-cultures showed significantly weaker light-evoked contractions (Figure 

5.33), suggesting the impaired development and maturation of NMJs when MN activity is low or 

absent. These results support findings from in vivo studies of neuromuscular development, 

which show that NMJ maturation is impaired in mouse models of spinal muscular atrophy, which 

have reduced MN activity (Kong et al., 2009). Imposing inactivity on otherwise healthy MNs 

using tetrodotoxin or spinal hemisection also results in remodelling of NMJs at fast-type muscle 

fibres, revealing a requirement for continued activity to maintain NMJ integrity (Prakash et al., 

1999). 

Confirmation that light-evoked muscle contraction was driven by acetylcholine release at NMJs 

was provided by blocking acetylcholine receptors in live co-cultures using α-bungarotoxin, a 

competitive and irreversible nicotinic acetylcholine receptor antagonist. After incubation with 

the toxin for 30 minutes at room temperature virtually all muscle activity ceased, and blue-light 

photostimulation could no longer illicit a contractile response. It would be interesting to repeat 

this experiment with patch clamp data from the MN population to confirm that MN activity was 

unaffected, and α-bungarotoxin treatment results in specific inhibition of neurotransmitter-

dependent contractile activity. Another method to show this effect would be to block 

neurotransmitter release using botulinum toxin, which would be predicted to cause a similar 

effect on contractile activity as seen with α-bungarotoxin. 

As the activity of the MNs in these co-cultures (and indirectly the activity of the muscle) can be 

controlled via photostimulation, an interesting extension to this work would be to investigate 

the effect of different stimulation patterns on the cultures. As the muscle used here is skeletal 

muscle, long-duration stimulation should result in tetanus, which would not occur in the case of 

cardiac muscle, due to the longer refractory periods in that muscle type (Henderson et al., 1971). 

It may also be possible to use light-driven activity to “train” the muscle, resulting in stronger 

contractions and larger myofibres over time in vitro. Also, as the fast/slow subtype identity of 

mature skeletal muscle is partially dependent on MN activity patterns in vivo, it may be possible 
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to convert the muscle population in vitro to a slow muscle identity using only light-evoked 

activity patterns (Pette and Staron, 2000). 

Analysis of NMJ formation via immunocytochemistry revealed the presence of synapses at all 

time points in co-cultures, with large mature NMJs seen at 21 and 28 DIV. Similar to EB/CPM co-

cultures, no large post-synaptic endplates were seen in CPM only controls, reinforcing the idea 

that MN activity is required for NMJ development and maturation. Further strengthening this 

idea is that more NMJs were observed in chronically stimulated co-cultures, and more synapses 

were occupied by GFP positive MN axons in the stimulated condition. Even fewer “NMJs” were 

seen in unstimulated controls, indicating that even relatively silent axons provide some level of 

signalling to support synapse formation and stabilisation. It would be interesting to further test 

this hypothesis by preventing neurotransmitter release in a chronically stimulated co-culture 

(e.g. by botulinum toxin) to determine if the supportive effect on NMJ development is 

neurotransmitter dependent, or alternatively via another mechanism. 

While chronically stimulated co-cultures had slightly larger NMJs on average, this difference was 

not statistically significant, and possibly due to expected variation, especially due to the 

relatively low number of cultures analysed for this data set (Figure 5.42). A more typical analysis 

of NMJ formation would be to analyse only those structures which show co-localisation between 

pre-synaptic and post-synaptic components, for example synaptophysin and α-bungarotoxin 

labelling respectively. While this data was included in the analysis reported here (Fig.5.40 and 

5.41), in order to allow comparison with muscle-only control cultures a measure not including 

pre-synaptic components was necessary. For this reason, a NMJ was classified as any α-

bungarotoxin labelled structure with an area larger than 150µm. This value was found to exclude 

the vast majority of staining artefacts, and appeared most physiologically relevant in co-cultures 

– structures smaller than this were never innervated. Interestingly, other studies have reported 

a similar minimum size for NMJ development in vivo, indicating this may be a reliable indicator 

of post-synaptic specialisation (Sleigh et al., 2014a, 2014b). This definition does however open 



226 
 

the possibility of analysing post-synaptic clusters of acetylcholine receptors that could never be 

functionally innervated, or possibly large staining artefacts caused by aggregations of primary 

or secondary antibody. 

 Unexpectedly, the percentage of NMJs with a “complex” morphology was slightly higher in non-

chronically stimulated co-cultures, however this difference is due to the lower total number of 

NMJs in this condition, as chronically stimulated co-cultures had more NMJs with complex 

morphology in total (Figure 5.43). Pure CPM controls had smaller NMJs and never showed 

complex morphology, again reinforcing the idea that NMJ development and maturation is MN 

dependent. 

The distinction of simple vs complex NMJ morphology was based upon observations of NMJ 

maturation seen in vivo, where throughout post-natal development, NMJs mature from a simple 

ovoid plaque shape to a structurally complex “pretzel-like” morphology by gradual accumulation 

of perforations in the post-synaptic endplate (Marques et al., 2000; Sanes and Lichtman, 2001). 

This transition is a gradual process, however in this study only two states were defined, “simple” 

or “complex”, where simple represents an ovoid plaque morphology, whilst a NMJ was deemed 

complex if at least one perforation was observed in its structure (see figure 6.1 for examples). 

While these criteria are relatively easy to determine, they do not capture the full range of 

morphological maturation that these specialised synapses undergo, and could be open to error 

due to imaging or labelling artefacts.  

In addition to the influence of MNs on NMJ maturation shown here, multiple studies have shown 

the influence of MNs on muscle development in vivo and vice-versa. Perhaps most strikingly, 

loss of MN innervation in development leads to poor AChR patterning, and loss of MNs in adults 

leads to changes in fibre type composition, muscle atrophy and eventual degeneration, a 

situation clearly seen in motor neuron diseases and nerve injury (Aravamudan et al., 2006; Ohira 

et al., 2006; Yang et al., 2001; Yohn et al., 2008). Meanwhile, trophic factors produced by 

muscles have been shown to influence MN survival, sprouting and axon pathfinding. For 
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instance, overexpression of GDNF in muscle can cause hyperinnervation of NMJs by MNs, and 

has been shown to improve functional recovery after nerve injury (Glat et al., 2016; Kablar and 

Belliveau, 2005; Nguyen et al., 1998). Other neurotrophins, including neurotrophin-3 (NT3), 

have also been shown to promote MN survival (Angka and Kablar, 2007; Funakoshi et al., 1995). 

This co-culture system could therefore serve as a suitable assay to investigate these MN-muscle 

interactions during development and maturation. The survival, functionality and morphology of 

both MN and muscle components could be assessed in co-culture versus monoculture, and the 

maturation and morphology of motor end plates in particular could be assessed. Preliminary 

results from this study suggest that co-culture with MNs leads to more numerous, larger and 

more morphologically mature post-synaptic specialisations on the myofibers, supporting the 

previously mentioned findings from in vivo experiments. Development of more controlled co-

cultures, for example in microfluidic devices, would allow easier assessment of MN survival, 

myoblast fusion index and synapse formation than was feasible in the relatively large mixed co-

cultures described in this study. Finally, use of all stem cell-derived components in the co-culture 

would allow easy manipulation of growth factor expression, as transgenes could be inserted to 

drive overexpression of GDNF or NT-3 in the muscle lineage for example, to investigate the effect 

on MN survival and innervation. 
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6.3.4 Incorporation of CPM/AsNAs co-cultures into a microfluidic device 

With one of the ultimate goals of directed stem cell differentiation into specific cell types of 

clinical interest being the ability to model the development and/or disease of these tissues in 

vitro, I attempted to develop a basic microfluidic culture assay that would allow effective 

separation of the MN and muscle components while still enabling axon growth, synapse 

formation and MN driven muscle activity. Lacking the time or resources to develop a purpose 

built microfluidic device for this project, I adapted an Ibidi 3D chemotaxis slide for MN/muscle 

co-culture. 

This simple device allowed physical separation of the neural cells from the myoblasts, yet 

allowed axon growth across the small intervening space. Additionally, due to the small size and 

clear plastic used in these slides, direct imaging of spontaneous muscle contraction was possible, 

enabling quantification of muscle activity. This data provides a basic proof of principle of the use 

of stem cells in an in vitro microfluidic neuromuscular assay. Further development of this 

technology, with specially designed materials and reagents, could transform this method into a 

reliable, reproducible high-throughput screen assay for neuromuscular circuit development and 

disease. 

Figure 6.1 Defining neuromuscular junction morphology. Representative examples of a 

“simple” (a) and “complex” (b) NMJ respectively labelled with α-bungarotoxin. Note the clear 

perforation (white arrow) on one side in the “complex” NMJ, characteristic of NMJs seen in 

vivo. Examples taken from different regions of the same myofibre in a CPM/EB co-culture at 

14 DIV. Scale bar = 10µm.   

 

 

(a) (b) 
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6.4 Extensions and Conclusions 

This thesis describes the production and development of a broad range of cellular and molecular 

tools brought together to investigate neuromuscular circuit formation and maturation in vitro. 

With further optimisation and refinement, the assays developed here could be used in a wide 

variety of investigations ranging from basic developmental biology to genetic and 

pharmacological screens. 

One major attraction of using stem cells for in vitro models of biological systems or disease is 

the ability to rapidly and efficiently introduce stable genetic modifications into cells lines. In this 

study we took advantage of this to introduce MACS-sortable markers, differentiation factors and 

an optogenetic tool allowing non-invasive control over MN activity. An interesting extension to 

this work currently being developed in our lab is the introduction of genetically encoded 

fluorescent reporters of activity, or GECIs (genetically encoded calcium indicators). The most 

well-known of these, G-CAMP, has been used in multiple neuronal systems to non-invasively 

study neural activity with high temporal precision. The recent development of GECIs with shifted 

spectral properties (R-GECO, red; B-GECO, blue) open up opportunities to combine these tools, 

potentially allowing simultaneous activity visualisation in separate cell lines or populations (Zhao 

et al., 2011). We hope to incorporate R-GECO into the MN cell line used in this work, and B-

GECO into the iMyoD MACS-sortable muscle cell line, enabling visual monitoring of activity from 

both lineages in live in vitro co-cultures. This data should provide a dynamic and detailed insight 

into the activity of these cultures throughout development, and in response to external stimuli, 

drugs or further genetic modifications. 

Another potential use of stable genetic modification is the incorporation of fluorescently tagged 

proteins, or other reporter constructs. The generation of a GFP-tagged Ankyrin G transgene for 

example should allow the visualisation of AIS formation in live cultures, providing a more 

thorough insight into the development of this structure. Fluorescently labelled post-synaptic 

proteins or even acetylcholine receptors could be introduced into the ES cell-derived muscle line 
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to enable live visualisation of synapse formation and maturation. While many other strategies 

using fluorescent reporters could be generated for specific biological questions, both of the 

strategies mentioned above would complement the data presented in this study, and facilitate 

a deeper investigation into the development of these vital sub-cellular structures in vitro.  

Further extensions to this ES cell based assay include the introduction of specific disease-

associated genes to model disease mechanisms and progression in vitro. Disease genes can be 

separately and stably introduced to any of the populations generated from ES cells, including 

the MNs, skeletal muscle or the astrocytes. Preliminary work on MNs and astrocytes expressing 

mutant superoxide dismutase 1 (SOD1), implicated in amyotrophic lateral sclerosis (ALS), have 

already returned promising results showing increased MN cell death in culture. Any 

neuromuscular disease with an identified genetic component could potentially be studied using 

this strategy, as introduction of disease genes into the muscle lineage would also open up 

opportunities to investigate muscular dystrophies including Duchenne muscular dystrophy, 

myotonias such as myotonia congenita, and familial periodic paralysis (Rideout et al., 2002; 

Suetterlin et al., 2014; Trollet et al., 2009). 

Finally, opportunities to further improve and optimise this in vitro culture system remain. Recent 

advances in our understanding of the external signals and factors directing myogenesis enable 

the possibility of directed differentiation of ES cells into the skeletal myogenic lineage without 

the use of transgenes or other genetic or epigenetic modifications (Gouti et al., 2014; Xu et al., 

2013b). As mentioned previously, 3D co-culture of MNs and muscle may significantly improve 

myofibre and NMJ morphology and viability, while also allowing more accurate assessment of 

contractile properties. Another area of interest in our lab has been the differentiation and 

culture of oligodendrocytes from ES cells (Stevenson, D., unpublished thesis, 2015). 

Incorporation of these specialised ensheathing glia into neuromuscular co-cultures could allow 

investigation of myelination, and myelination disorders. Other absent populations include as 

muscle connective tissue from ESC-derived muscle cultures, and perisynaptic Schwann cells, 
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which have been shown to be important for NMJ maturation (see Chapter 1.2.3), from both CPM 

and ESC-derived muscle cultures. The lack of muscle connective tissue may partly the reduced 

viability of the ESC-derived myofibres compared to primary myofibres, and incorporation of 

these cells may improve survival of ESC-derived muscle and enable long-term in vitro culture. 

The inclusion of these supporting cell types would also contribute to the accuracy of the model 

in terms of replicating the in vivo situation, improving the reliability of results obtained from this 

system. Finally, the use of microfluidic devices to form separate cell chambers representing 

different in vivo environments, for example a “CNS” with astrocytes and MNs and a “muscle 

target” with myoblasts, separated by a chamber containing oligodendrocytes, could also allow 

separate experimental manipulation of the different populations and culture environments, 

facilitating investigation of the contribution of each cell type to development and disease. 
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Appendix A 

Gene targeting strategy to create ChR2-myc ES cell line 

  

Appendix A Gene targeting strategy to generate a ChR2-myc knock-in at the endogenous 

Mapt locus. The ChR2-myc murine ES cell line described in this thesis was generated by Dr. 

Ivo Lieberam by insertion of a ChR2-myc construct downstream of the endogenous tau 

(Mapt) promoter via a gene targeting approach using homologous recombination. The ChR2-

myc expression cassette (c) was inserted between two homology arms (b; kind gift from Silvia 

Arber) to regions upstream and downstream of exon 2 of the endogenous Mapt gene (a). 

The homology arms were designed to recombine at exon 2 as this exon contains the start 

ATG codon of Mapt, and exon 1 is non-coding. A successful recombination event therefore 

replaces exon 2, including the endogenous start codon, with the desired expression cassette. 

The expression cassette consisted of the ChR2 gene fused to the short myc tag, followed by 

the bovine growth hormone poly-A (pA) and a floxed Hygromycin resistance gene to allow 

antibiotic resistance selection of desired ESC colonies. Successful integration of the construct 

into the Mapt locus was confirmed by long-distance PCR. The forward primer 

(CCTGAGTTCAAATCCCCAGAAAC) was designed to bind to a site upstream of the small 

homology arm in the endogenous Mapt gene, while the reverse primer 

(GTGTCCTGTGGCAAGGTAGAGC) binding site is situated in the ChR2 gene, ensuring a PCR 

product is only generated in the case of a successful integration event. 
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Appendix B 

Data tables for NMJs and muscle contraction  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Monolayer Myoblast 

Average 14.122 3.435 

Standard Dev. 3.470 1.172 

SEM 0.496 0.040 

 4 DIV 12 DIV 

 + Stim - Stim + Stim - Stim 

Average 15.687 6.311 7.751 1.322 

Standard Dev. 7.990 3.943 1.995 0.893 

SEM 1.598 0.123 0.399 0.0812 

 5 DIV 12 DIV 

 + Stim - Stim + Stim - Stim 

Average 23.871 3.185 32.323 28.483 

Standard Dev. 5.484 2.204 10.333 11.797 

SEM 1.371 0.441 1.722 0.843 

 20 DIV 26 DIV 

 + Stim - Stim + Stim - Stim 

Average 93.874 17.259 32.924 12.366 

Standard Dev. 69.185 11.852 18.993 3.361 

SEM 4.070 0.790 1.357 0.224 

Table A1 Spontaneous contractile activity recorded in ESC-derived muscle after 4 DIV. 
Average displacement caused by contractile events in fused monolayer cultures against 
mononuclear myoblasts.  Monolayer n = 3; Myoblast n = 2. Dev. = Deviation, SEM = Standard 
error of the mean. 

Table A2 Spontaneous and light-evoked contractile activity recorded in ESC-derived 
muscle/EB co-cultures after 4 and 12 DIV. Average displacement caused by contractile 
events. +Stim indicates events in response to a short, manual blue-light photostimulus. DIV 
= Days in vitro. 4 DIV n = 5/3; 12 DIV n = 4/4. Dev. = Deviation, SEM = Standard error of the 
mean. 

Table A3 Spontaneous and light-evoked contractile activity recorded in chick primary 
skeletal muscle/EB co-cultures. Average displacement caused by contractile events. +Stim 
indicates events in response to a short, manual blue-light photostimulus. DIV = Days in vitro. 
5 DIV n = 2/2; 12 DIV n = 2/2; 20 DIV n = 4/4; 26 DIV n = 2/3. Dev. = Deviation, SEM = Standard 
error of the mean. 
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 3 DIV 6 DIV 

 + Stim - Stim + Stim - Stim 

Average 11.651 0 164.926 34.901 

Standard Dev. 3.149 0 91.184 50.562 

SEM 1.575 0 22.796 3.160 

 12 DIV 20 DIV 

 + Stim - Stim + Stim - Stim 

Average 252.970 23.7192 195.960 20.042 

Standard Dev. 21.767 6.765 98.036 13.617 

SEM 5.442 0.294 14.005 0.332 

 14 DIV 21 DIV 

 + Stim - Stim + Stim - Stim 

Average 32.034 6.734 22.757 2.257 

Standard Dev. 12.111 3.857 20.773 0.319 

SEM 2.422 0.771 2.308 0.160 

 3 DIV 6 DIV 

 + Stim - Stim + Stim - Stim 

Average N/A N/A N/A N/A 

Standard Dev. N/A N/A N/A N/A 

SEM N/A N/A N/A N/A 

Table A4 Spontaneous and light-evoked contractile activity recorded in chronically 
photostimulated chick primary skeletal muscle/Astro-neural aggregate co-cultures. 
Average displacement caused by contractile events. +Stim indicates events in response to a 
short, manual blue-light photostimulus. DIV = Days in vitro. 5 DIV n = 2/2; 12 DIV n = 2/2; 20 
DIV n = 4/4; 26 DIV n = 2/3. Dev. = Deviation, SEM = Standard error of the mean. 

Table A5 Spontaneous and light-evoked contractile activity recorded in non-chronically 
stimulated chick primary skeletal muscle/Astro-neural aggregate co-cultures. Average 
displacement caused by contractile events. All cultures from 3 and 6 DIV were contaminated, 
and no data could be obtained. +Stim indicates events in response to a short, manual blue-
light photostimulus. DIV = Days in vitro. 14 DIV n = 2/2; 21 DIV n = 3/2. Dev. = Deviation, SEM 
= Standard error of the mean. 
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 3 DIV 6 DIV 

 + Stim - Stim + Stim - Stim 

Average 0 2.628 0 1.698 

Standard Dev. 0 4.551 0 2.217 

SEM 0 1.138 0 0.317 

 12 DIV 20 DIV 

 + Stim - Stim + Stim - Stim 

Average 25.752 25.282 7.242 16.386 

Standard Dev. 14.716 27.088 2.924 9.331 

SEM 4.905 0.903 0.731 0.467 

 3 DIV 6 DIV 

 + Stim - Stim + Stim - Stim 

Average 0 2.628 0 1.698 

Standard Dev. 0 4.551 0 2.217 

SEM 0 1.138 0 0.317 

 14 DIV 21 DIV 

 + Stim - Stim + Stim - Stim 

Average 25.752 25.282 7.242 16.386 

Standard Dev. 14.716 27.088 2.924 9.331 

SEM 4.905 0.903 0.731 0.467 

Table A6 Spontaneous and light-evoked contractile activity recorded in chronically 
photostimulated chick primary skeletal muscle control cultures. Average displacement 
caused by contractile events.  No response was seen in 3 or 6 DIV cultures in response to 
photostimulation. +Stim indicates events in response to a short, manual blue-light 
photostimulus. DIV = Days in vitro. 3 DIV n = 2/2; 6 DIV n = 3/3; 12 DIV n = 3/5; 20 DIV n = 
4/4. Dev. = Deviation, SEM = Standard error of the mean. 

Table A7 Spontaneous and light-evoked contractile activity recorded in in non-chronically 
stimulated chick primary skeletal muscle control cultures. Average displacement caused by 
contractile events. No response was seen in 3 or 6 DIV cultures in response to 
photostimulation.+Stim indicates events in response to a short, manual blue-light 
photostimulus. DIV = Days in vitro. 3 DIV n = 2/2; 6 DIV n = 3/3; 14 DIV n = 1/1; 21 DIV n = 
4/4. Dev. = Deviation, SEM = Standard error of the mean.  
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7 DIV CC + 
Stim 

CC - Stim Control + Stim Control - Stim 

N = 4 3 3 4 

No. NMJs 32 3 0 1 

No. Innervated 18 3 0 0 

No. Partial 9 0 0 0 

No. Complex Morphology 0 0 0 0 

        

Average NMJ Area 223.705 220.589 0 157.170 

St Dev 71.798 89.801 0 0 

SEM 2.244 29.934 0 0 

Average No. NMJs 8 1 0 0.250 

Average No. Innervated 6.750 1 0 0 

 

 

14 DIV CC + 
Stim 

CC - Stim Control + Stim Control - Stim 

N = 4 5 3 3 

No. NMJs 23 15 1 2 

No. Inervated 7 9 0 0 

No. Partial 7 2 0 0 

No. Complex Morphology 2 2 0 0 

        

Average NMJ Area 299.255 276.638 176.471 153.034 

St Dev 138.683 95.969 0 0 

SEM 6.030 6.3980 0 0 

Average No. NMJs 5.750 3 0.333 0.667 

Average No. Innervated 3.5 2.2 0 0 

  

Table A8 Average number, morphology and size of NMJs in 7 DIV CPM/AsNAs co-cultures, 
with and without chronic photostimulation. +Stim indicates chronic stimulation, -Stim 
means no chronic stimulation. CC = Co-culture, control = CPM only. DIV = Days in vitro. Dev. 
= Deviation, SEM = Standard error of the mean. 

Table A8 Average number, morphology and size of NMJs in 14 DIV CPM/AsNAs co-cultures, 
with and without chronic photostimulation. +Stim indicates chronic stimulation, -Stim 
means no chronic stimulation. CC = Co-culture, control = CPM only. DIV = Days in vitro. Dev. 
= Deviation, SEM = Standard error of the mean. 
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21 DIV CC + 
Stim 

CC - Stim Control + Stim Control - Stim 

N = 5 6 3 3 

No. NMJs 24 14 4 4 

No. Inervated 18 3 0 0 

No. Partial 5 2 0 0 

No. Complex Morphology 5 4 0 0 

        

Average NMJ Area 378.012 263.920 162.685 285.387 

St Dev 259.753 168.194 8.499 165.091 

SEM 10.823 12.014 2.125 41.273 

Average No. NMJs 4.8 2.333 1.3333 1.333 

Average No. Innervated 4.6 0.833 0 0 

 

 

  

28 DIV CC + 
Stim 

CC - Stim Control + Stim Control - Stim 

N = 6 5 3 3 

No. NMJs 37 14 4 3 

No. Inervated 21 3 0 0 

No. Partial 4 4 0 0 

No. Complex Morphology 4 4 0 0 

        

Average NMJ Area 321.884 291.493 160.617 175.552 

St Dev 191.180 133.654 6.280 20.179 

SEM 5.167 9.547 1.570 6.726 

Average No. NMJs 6.167 2.8 1.333 1 

Average No. Innervated 4.167 1.4 0 0 

Table A8 Average number, morphology and size of NMJs in 21 DIV CPM/AsNAs co-cultures, 
with and without chronic photostimulation. +Stim indicates chronic stimulation, -Stim 
means no chronic stimulation. CC = Co-culture, control = CPM only. DIV = Days in vitro. Dev. 
= Deviation, SEM = Standard error of the mean. 

Table A8 Average number, morphology and size of NMJs in 28 DIV CPM/AsNAs co-cultures, 
with and without chronic photostimulation. +Stim indicates chronic stimulation, -Stim 
means no chronic stimulation. CC = Co-culture, control = CPM only. DIV = Days in vitro. Dev. 
= Deviation, SEM = Standard error of the mean. 
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Appendix C 

Published Papers 
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