This electronic thesis or dissertation has been downloaded from the King's Research Portal at https://kclpure.kcl.ac.uk/portal/

Immunohistochemical and Genomic Analysis of Ductal Carcinoma in Situ of the Human Breast

Brown, John Peter

Awarding institution: King's College London

The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement.

END USER LICENCE AGREEMENT

Unless another licence is stated on the immediately following page this work is licensed

under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

licence. https://creativecommons.org/licenses/by-nc-nd/4.0/

You are free to copy, distribute and transmit the work

Under the following conditions:

- Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work).
- Non Commercial: You may not use this work for commercial purposes.
- No Derivative Works You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above.

Take down policy

If you believe that this document breaches copyright please contact <u>librarypure@kcl.ac.uk</u> providing details, and we will remove access to the work immediately and investigate your claim.

Immunohistochemical and

Genomic Analysis of Ductal

Carcinoma in Situ of the Human

Breast

King's College London 2016

John Peter Brown

PhD

Abstract

Ductal Carcinoma in Situ (DCIS) is a non obligate precursor of invasive breast cancer. Due mainly to improved screening methods the detection of DCIS has risen over the last twenty years. The inability to reliably predict progression to invasive breast cancer results in the possible overtreatment of what can be regarded as a non-life threatening condition. Current treatment options remain controversial with no consensus upon the choice of mastectomy or breast conserving surgery with or without radiotherapy or adjuvant hormone therapies. The natural progression and molecular pathology of DCIS also still remains poorly understood.

Examination of DCIS cases with known clinical outcome has been carried out using traditional pathological criteria, immunohistochemistry and genomic analysis. Tissue microarrays have been constructed and stained with a panel of antibody markers demonstrating the presence of molecular subtypes of DCIS similar to those found in invasive breast disease, although at different frequencies.

Molecular inversion probe arrays have revealed a complex heterogeneity exists in early stages of breast cancer that may be drivers of invasion. Comparison with invasive breast disease and with DCIS associated with invasive breast disease reveals a highly complex system, where progression may rely on genomic changes already established within pure DCIS or those that occur during the DCIS phase of tumourigenesis.

ABSTRACT		2
ACKNOWLEI	DGEMENTS	. 15
ABBREVIATI	ONS AND GLOSSARY OF TERMS	. 16
CHAPTER 1.	INTRODUCTION	. 18
1.1 T	HE NORMAL BREAST AND DUCTAL CARCINOMA IN SITU	. 18
1.2 E	PIDEMIOLOGY OF DUCTAL CARCINOMA IN SITU	. 19
1.2.1 lr	ncidence of ductal carcinoma in situ (DCIS)	19
1.2.2	Ductal Carcinoma in Situ and Gender	21
1.2.3	Risk Factors of Ductal Carcinoma in Situ	21
1.2.4	Risk of Ductal Carcinoma in Situ Progressing to Invasive Disease	22
1.3 D	ETECTION OF DUCTAL CARCINOMA IN SITU	23
1.2.1	Mammography	23
1.2.2	Ultrasound	24
1.2.3	Magnetic Resonance Imaging (MRI)	25
1.3 H	ISTOLOGY OF DUCTAL CARCINOMA IN SITU	25
1.3.1	Histological Diagnosis of Ductal Carcinoma in Situ	25
1.3.2	Usual Epithelial Hyperplasia	26
1.3.3	Columnar Cell Lesions (CCLs) including Flat Epithelial Atypia (FEA)	27
1.3.4	Atypical Ductal Hyperplasia (ADH)	28
1.3.5	Lobular Carcinoma In Situ, Atypical Lobular Hyperplasia, Lobular Neoplasia	29
1.3.6	Microinvasive Carcinoma	30
1.3.7	Histological Variants of Ductal Carcinoma in Situ.	31
1.3.8	Rare Histological Forms of Ductal Carcinoma in Situ.	34
1.4 C	LASSIFICATION SYSTEMS FOR DUCTAL CARCINOMA IN SITU	.35
1.4.1	Growth Patterns for Ductal Carcinoma in Situ	35
1.4.2	High Grade, Intermediate Grade and Low Grade Ductal Carcinoma in Situ	35
1.4.3	The Van Nuys Grading System for DCIS and the Van Nuys Prognostic Index (VNPI)	36
1.4.4	The Tavassoli Grading/Classification System	37

1.4.5	R Holland and the European Pathologists Working Group Classification System32	7
1.4.6	Summary of Classification of DCIS	3
1.5	TREATMENT OF DUCTAL CARCINOMA IN SITU)
1.5.1	Surgical Procedures and Options for Ductal Carcinoma in Situ	9
1.5.2	Radiotherapy for Ductal Carcinoma in Situ	J
1.5.3	Hormone Therapy for Ductal Carcinoma in Situ)
1.5.4	Chemotherapy for Ductal Carcinoma in Situ42	1
1.6	TECHNIQUES FOR THE DIAGNOSIS AND INVESTIGATION OF PROGNOSIS IN DCIS AND INVASIVE BREAST CANCER	२
	41	
1.6.1	Sampling Techniques	1
1.6.2	Fixation and Processing of Biopsies42	2
1.6.3	Immunohistochemistry in Assessment and Prognosis of Ductal Carcinoma in Situ 44	1
1.6.4	Tissue Microarrays (TMAs)45	5
1.6.5	Genetic Aberrations & Molecular Inversion Probe Arrays for Genomic Profiling	5
1.7	Molecular Portraits of Breast Cancer)
1.7.1	Genetic Subgroups of Invasive Breast Cancer50)
1.7.2	IHC as a Surrogate to Genomic Profiling53	3
1.8	CONCLUSION	5
1.9	Hypothesis	5
CHAPTER 2	2. CONSTRUCTION OF TISSUE MICROARRAYS (TMAS) FOR IMMUNOHISTOCHEMICAL	L
EVALUATIO	DN OF DUCTAL CARCINOMA IN SITU	7
2 1		7
2.1		7
2.2	Results	1
2.5	TMA Constructs	1
2.3.1	Scanning 6	1
2.3.2 7 A		- 1
2. 4 2 <u>4</u> 1	Tissue Selection Criteria	1
2.7.1		-

	2.4.2	TMA cores size, number and distribution within a TMA block	62
СН	APTER	3. IMMUNOHISTOCHEMICAL STUDIES ON DUCTAL CARCINOMA IN SITU	65
	3.1	INTRODUCTION	65
	3.2	Material and Methods	65
	3.2.1	Correlation of Immunohistochemical Results to Patient Data and Outcome	65
	3.2.2	Histological Assessment of Necrosis and Inflammatory Response	66
	3.2.3	Immunohistochemical Experiments	68
	3.3	Hormone Receptors	69
	3.3.1	Oestrogen Receptor Structure and Function	69
	3.3.2	Oestrogen Receptor and Breast Cancer	70
	3.3.3	The Oestrogen Receptor and Ductal Carcinoma in Situ	71
	3.3.4	Progesterone Receptor	71
	3.4	Epidermal Growth Factor Receptors	72
	3.4.1	Epidermal Growth Factor Receptor Structure and Function	72
	3.5	PROLIFERATION MARKERS	74
	3.5.1	Introduction	74
	3.5.2	Ki-67	74
	3.5.3	Mini Chromosome Maintenance Proteins	78
	3.6	BASAL MARKERS	81
	3.6.1	Cytokeratins 5, 6 and 14	81
	3.7	SCORING OF ANTIBODY MARKERS IN IMMUNOHISTOCHEMICAL STUDIES	82
	3.7.1	Analysis of differing IHC Scores	88
	3.7.2	Inter Observer Variability in Scoring Immunohistochemistry	89
	3.8	STATISTICAL ANALYSIS OF IMMUNOHISTOCHEMICAL SCORING	90
	3.9	IMMUNOHISTOCHEMISTRY RESULTS	90
	3.9.1	Immunohistochemical Scoring	90
	3.9.2	Immunohistochemical Images	93
	3.9.3	Non Parametric Tests- Univariate Paired analysis:	96

3.9.	4 Univariate Analysis of Hormone Receptor Immunohistochemistry	97
3.9.	5 Univariate Analysis for HER2 Immunohistochemistry	102
3.9.	6 Univariate Analysis for Proliferation Marker Immunohistochemistry	
3.9.	7 Univariate Analysis for Cytokeratin Immunohistochemistry	107
3.9.	8 Univariate Analysis and Recurrence of DCIS and/or Invasive Breast Disease	
3.9.	9 Histological Grade in DCIS	
3.9.	10 Assignation of Molecular Subtypes to DCIS	
3.10	IMMUNOPHENOTYPIC SUBTYPES OF DCIS AND RECURRENCE	133
3.11	Discussion	134
CHAPTER	4. DCIS ASSOCIATED WITH INVASIVE BREAST CARCINOMA	
4.1	INTRODUCTION	139
4.2	MATERIALS AND METHODS	139
4.3	RESULTS	141
4.3.	1 Individual IHC Antibody Staining Concordance between Invasive Tumour and	DCIS in the
San	ne Case:	
San 4.3.	ne Case: 2 Assignation of Molecular Subgroups	141 142
San 4.3. 4.4	ne Case: 2 Assignation of Molecular Subgroups Discussion	
San 4.3. 4.4 CHAPTER	ane Case:	
San 4.3. 4.4 CHAPTER	ne Case: 2 Assignation of Molecular Subgroups DISCUSSION 3 5. GENOMIC STUDIES ON DCIS	
San 4.3. 4.4 CHAPTER 5.1	ne Case:	
San 4.3. 4.4 CHAPTER 5.1 5.2	ne Case:	
San 4.3. 4.4 CHAPTER 5.1 5.2 5.3	 <i>Assignation of Molecular Subgroups</i> <i>Assignation of Molecular Subgroups</i> DISCUSSION BENOMIC STUDIES ON DCIS INTRODUCTION GENETIC ABERRATIONS OF DCIS AND INVASIVE BREAST DISEASE – LITERATURE REVIEW MATERIALS AND METHODS 	
San 4.3. 4.4 CHAPTER 5.1 5.2 5.3 5.4	 <i>Assignation of Molecular Subgroups</i> <i>Assignation of Molecular Subgroups</i> DISCUSSION BENOMIC STUDIES ON DCIS A 5. GENOMIC STUDIES ON DCIS INTRODUCTION GENETIC ABERRATIONS OF DCIS AND INVASIVE BREAST DISEASE – LITERATURE REVIEW MATERIALS AND METHODS Hypothesis FOR MIP ARRAYS STUDIES IN DCIS AND INVASIVE BREAST CARCINOMA 	
San 4.3. 4.4 CHAPTER 5.1 5.2 5.3 5.4 5.4	 <i>Assignation of Molecular Subgroups</i> DISCUSSION 5. GENOMIC STUDIES ON DCIS INTRODUCTION GENETIC ABERRATIONS OF DCIS AND INVASIVE BREAST DISEASE – LITERATURE REVIEW MATERIALS AND METHODS HYPOTHESIS FOR MIP ARRAYS STUDIES IN DCIS AND INVASIVE BREAST CARCINOMA <i>1 DNA Extraction</i> 	
San 4.3. 4.4 CHAPTER 5.1 5.2 5.3 5.4 5.4 5.4. 5.4.	 <i>Assignation of Molecular Subgroups</i> <i>D</i>ISCUSSION <i>B</i> <i>GENOMIC STUDIES ON DCIS</i> INTRODUCTION GENETIC ABERRATIONS OF DCIS AND INVASIVE BREAST DISEASE – LITERATURE REVIEW MATERIALS AND METHODS HYPOTHESIS FOR MIP ARRAYS STUDIES IN DCIS AND INVASIVE BREAST CARCINOMA <i>DNA Extraction</i> <i>DNA Extraction</i> 	
San 4.3. 4.4 CHAPTER 5.1 5.2 5.3 5.4 5.4 5.4. 5.4. 5.4.	 <i>Assignation of Molecular Subgroups</i>. <i>Assignation of Molecular Subgroups</i>. DISCUSSION. 5. GENOMIC STUDIES ON DCIS. 1 INTRODUCTION . 1 DNA Extraction	
San 4.3. 4.4 CHAPTER 5.1 5.2 5.3 5.4 5.4 5.4. 5.4. 5.4. 5.4.	 <i>Assignation of Molecular Subgroups</i> DISCUSSION BS. GENOMIC STUDIES ON DCIS INTRODUCTION GENETIC ABERRATIONS OF DCIS AND INVASIVE BREAST DISEASE – LITERATURE REVIEW MATERIALS AND METHODS HYPOTHESIS FOR MIP ARRAYS STUDIES IN DCIS AND INVASIVE BREAST CARCINOMA <i>DNA Extraction</i> <i>MIP Array</i> <i>Statistical methods</i> <i>Analyses of Raw Data Tables</i> 	
San 4.3. 4.4 CHAPTER 5.1 5.2 5.3 5.4 5.4 5.4 5.4 5.4 5.4 5.4	 <i>Case</i>:	

5.	6	Results
	5.6.1	DNA Extraction for MIP Arrays
	5.6.2	MIP Array Maps
	5.6.3	Copy Number Aberrations for Oestrogen Receptor Positive DCIS Compared to Non
	Oestr	ogen Receptor DCIS
	5.6.4	Copy Number Aberrations for Oestrogen Receptor Positive Pure DCIS Compared to
	Oestr	ogen Receptor Positive DCIS Associated with Invasive Breast Disease
	5.6.5	Copy Number Aberrations for Oestrogen Receptor Positive Pure DCIS Compared to
	Oestr	ogen Positive Invasive Breast Disease
	5.6.6	Copy Number Aberrations for All Oestrogen Receptor Positive DCIS Compared to
	Oestr	ogen Receptor Positive Invasive Breast Disease
	5.6.7	Copy Number Aberrations for Triple Negative DCIS Compared to Non Triple negative DCIS
		220
	5.6.8	Copy Number Aberrations for Pure Triple Negative DCIS Compared to Triple Negative
	DCIS /	Associated with Invasive Breast Disease
	5.6.9	Copy Number Aberrations for Triple Negative Pure DCIS Compared to Triple Negative
	Invasi	ve Breast Disease
	5.6.10	Copy Number Aberrations in All Triple Negative DCIS compared to Triple Negative
	Invasi	ve breast disease
	5.6.11	Copy Number Aberrations for HER2 Positive DCIS Compared to Oestrogen Receptor
	Positi	ve DCIS and Triple Negative DCIS
5.	7	SUMMARY AND DISCUSSION OF GENOMIC DIFFERENCES BETWEEN PURE DCIS AND DCIS ASSOCIATED WITH
IN	VASIVE	Breast Disease
	5.7.1	Genomic Differences found in Oestrogen Receptor Positive Pure DCIS Versus Oestrogen
	Recep	tor Positive DCIS Associated with Invasive Breast Disease
	5.7.2	Genomic Differences found in Triple Negative Pure DCIS Versus Triple Negative DCIS
	Assoc	iated with Invasive Breast Disease
	5.7.3	Observations on Genomic Analysis of Pure DCIS Compared to DCIS Associated with Invasive
	Breas	t Disease

5.	8	SUMMARY OF GENOMIC DIFFERENCES BETWEEN DCIS AND INVASIVE BREAST DISEASE
	5.8.1	Genomic Difference between ER Positive DCIS and ER Positive Invasive Breast Disease.
	(See s	ection 5.3.4)
	5.8.2	Genomic Difference between Triple Negative DCIS and Triple Negative Invasive Breast
	Disea	se
	5.8.3	Observations on Genomic Analysis of DCIS Compared to DCIS Invasive Breast
	Disea	se
5.	9	SUMMARY OF GENOMIC DIFFERENCES BETWEEN PURE DCIS VERSUS INVASIVE BREAST DISEASE
	5.9.1	Pure ER Positive DCIS compared to ER Positive Invasive Breast Disease
	5.9.2	Pure Triple Negative DCIS versus Triple Negative Invasive Breast Disease (See section
	5.3.1	1). 327
	5.9.3	Observations of Genomic Analysis of Pure DCIS Compared to Invasive Breast
	Disea	se
5.	10	SUMMARY OF HER2 POSITIVE DCIS VERSUS ER POSITIVE DCIS AND TRIPLE NEGATIVE DCIS
	5.10.2	1 Observations of Genomic Analysis of Pure Her2 DCIS compared to Pure ER positive DCIS
	and P	ure TN DCIS
СНА	PTER 6	. CONCLUSIONS
6.	1	Tissue Microarrays
6.	2 Іммі	INOHISTOCHEMICAL STUDIES OF DCIS
6.	3	GENOMIC STUDIES OF DCIS
6.	4	LIMITATIONS OF THE STUDY
	6.4.1	Availability of clinical data
	6.4.2	Technical Considerations
	6.4.3	Genomics
6.	5	Further Work
REFE	RENCI	ES
APP	ENDIC	-5

Appendix 1: Copyright Permissions	. 360
APPENDIX 2: EXCEL TMA MAPS AND IHC SCORES	. 361
APPENDIX 3: TISSUE MICROARRAY PATIENT DEMOGRAPHICS	. 367
Appendix 4: Immunohistochemistry Protocols	. 379
APPENDIX 5: FREQUENCY TABLES AND NON PARAMETRIC STATISTICAL ANALYSIS OF DCIS IHC	. 380
APPENDIX 6: DNA EXTRACTION AND PURIFICATION PROTOCOLS	. 393
APPENDIX 7. QUBIT DNA QUANTITIES QUALITY: DNA QUIBIT READINGS FOR MIP ARRAY ANALYSIS	. 397
Appendix 8. MIP Array Analysis- DNA Samples sent to Affymetrix	. 405
Appendix 9 MIP Array Charts	. 409

List of Figures and Tables

Figure 1: Cranio-caudal and medio-lateral oblique mammographic views of a case v	with two
needle-localisation wires in place to mark an area of abnormality.	23
Figure 2: Usual epithelial hyperplasia	27
Figure 3: Flat epithelial atypia	28
Figure 4: Atypical Ductal Hyperplasia	29
Figure 5. Lobular carcinoma in-situ	30
Figure 6: DCIS (top right) with microinvasion (left).	31
Figure 7: Central comedo necrosis within DCIS	32
Figure 8: Solid architecture DCIS	33
Figure 9: Papillary DCIS/papillary carcinoma in situ	33
Figure 10: Cribriform DCIS	33
Figure 11: TMA manufacture and stylets	46
Figure 12: MIP Array Probe:	48
Figure 13: MIP array process for genomic profiling	49
Figure 14. Optical marking of disease on an H&E section.	58
Figure 15. Template for TMA composed of 2.0mm cores	59

Figure 16: DCIS in 2.0mm cores
Figure 17: TMA construct60
Figure 18: Structure and Functional Domains of ER70
Figure 19: EGFR Structure. DOI: http://dx.doi.org/10.7554/eLife.00708.003 reproduced
through Creative Commons Attribution license: original image from reference (132)73
Figure 20: Ki-67: Protein structure 1R-21-1-120 (human) A & 2AFF-1-120 (human) B76
Figure 21: Examples of a Hexameric Helicase Protein Structure for DNA replication80
Figure 22: MCM Proteins in the Cell Cycle
Figure 23: ER staining of DCIS in 2mm TMA core (X40, X200)93
Figure 24: PR staining of DCIS in 2mm TMA core (X40, X200)93
Figure 25: HER2 staining of DCIS in 2mm TMA core (X100, X200)93
Figure 26: EGFR staining of DCIS in 2mmm TMA core (X40, X100, X200)94
Figure 27: CK14 staining of DCIS in 2mm TMA core (X40, X200)94
Figure 28: Ki67 staining of DCIS in 2mm TMA core (X40, X200)94
Figure 29: CISH for HER2 showing amplification of the HER2 Gene in DCIS, 2mm Core (x40,
X200)
,
Figure 30: SMMHC IHC showing intact myoepithelial cell layer around DCIS140
Figure 30: SMMHC IHC showing intact myoepithelial cell layer around DCIS140 Figure 31: Chromosomal map for a ER Positive pure DCIS Case (DCISJPB10K 066)158
Figure 30: SMMHC IHC showing intact myoepithelial cell layer around DCIS
Figure 30: SMMHC IHC showing intact myoepithelial cell layer around DCIS
Figure 30: SMMHC IHC showing intact myoepithelial cell layer around DCIS
Figure 30: SMMHC IHC showing intact myoepithelial cell layer around DCIS
Figure 30: SMMHC IHC showing intact myoepithelial cell layer around DCIS. 140 Figure 31: Chromosomal map for a ER Positive pure DCIS Case (DCISJPB10K 066). 158 Figure 32: Chromosomal Map for a Pure DCIS Triple Negative Case (DCISJPB10K001). 159 Figure 33: Chromosomal Map for a Pure HER2 Positive Case (DCISJPB10K070); note chromosome 17 allelic amplification. 160 Figure 34: Chromosomal map for normal, DCIS and invasive samples from an ER positive lesion. 161
Figure 30: SMMHC IHC showing intact myoepithelial cell layer around DCIS. 140 Figure 31: Chromosomal map for a ER Positive pure DCIS Case (DCISJPB10K 066). 158 Figure 32: Chromosomal Map for a Pure DCIS Triple Negative Case (DCISJPB10K001). 159 Figure 33: Chromosomal Map for a Pure HER2 Positive Case (DCISJPB10K070); note chromosome 17 allelic amplification. 160 Figure 34: Chromosomal map for normal, DCIS and invasive samples from an ER positive lesion. 161
Figure 30: SMMHC IHC showing intact myoepithelial cell layer around DCIS140 Figure 31: Chromosomal map for a ER Positive pure DCIS Case (DCISJPB10K 066)158 Figure 32: Chromosomal Map for a Pure DCIS Triple Negative Case (DCISJPB10K001).159 Figure 33: Chromosomal Map for a Pure HER2 Positive Case (DCISJPB10K070); note chromosome 17 allelic amplification
Figure 30: SMMHC IHC showing intact myoepithelial cell layer around DCIS140 Figure 31: Chromosomal map for a ER Positive pure DCIS Case (DCISJPB10K 066)158 Figure 32: Chromosomal Map for a Pure DCIS Triple Negative Case (DCISJPB10K001).159 Figure 33: Chromosomal Map for a Pure HER2 Positive Case (DCISJPB10K070); note chromosome 17 allelic amplification
Figure 30: SMMHC IHC showing intact myoepithelial cell layer around DCIS. 140 Figure 31: Chromosomal map for a ER Positive pure DCIS Case (DCISJPB10K 066). 158 Figure 32: Chromosomal Map for a Pure DCIS Triple Negative Case (DCISJPB10K001). 159 Figure 33: Chromosomal Map for a Pure HER2 Positive Case (DCISJPB10K070); note chromosome 17 allelic amplification. 160 Figure 34: Chromosomal map for normal, DCIS and invasive samples from an ER positive lesion. 161 Figure 35: Chromosomal Map for normal, DCIS and invasive samples from a triple negative case. 162 Figure 36: Frequency plots showing copy number aberrations between oestrogen receptor positive DCIS and non oestrogen positive DCIS (pages 165-167). 163
Figure 30: SMMHC IHC showing intact myoepithelial cell layer around DCIS
Figure 30: SMMHC IHC showing intact myoepithelial cell layer around DCIS

Figure 38: Frequency plots showing copy number aberrations between oestrogen receptor positive pure DCIS and oestrogen positive invasive breast disease (amplifications, duplications, gains, Sc gains, losses, total losses CdLOH and CnLOH,) (pages 194-197).193 Figure 39: Frequency plots showing copy number aberrations between oestrogen positive DCIS and oestrogen positive invasive breast disease (amplifications, duplications, gains, Sc Figure 40: Frequency plots for copy number aberrations for triple negative DCIS versus non triple negative DCIS (amplifications, duplications, gains, Sc gains, losses, total losses CdLOH Figure 41: frequency plots showing copy number aberrations between pure triple negative dcis and triple negative DCIS associated with invasive breast disease (amplifications, duplications, gains, Sc gains, losses, total losses CdLOH and CnLOH,) (pages 236-238).236 Figure 42: Frequency plots showing copy number aberrations between pure triple negative DCIS and triple negative invasive breast disease (amplifications, duplications, gains, Sc gains, Figure 43: Frequency plots showing copy number aberrations between triple negative DCIS and triple negative invasive disease (amplifications, duplications, gains, Sc gains, losses, total losses CdLOH and CnLOH,) (pages 264-266)......268 Figure 44: Frequency plots showing copy number aberrations between HER2 positive pure DCIS compared to oestrogen positive dcis and triple negative DCIS (amplifications, duplications, gains, Sc gains, losses, total losses CdLOH and CnLOH,) (pages 279-282).286 Figure 45: Molecular functions associated with Sc gains in ER positive DCIS associated with Figure 46: Biological processes associated with Sc gains in ER positive DCIS associated with Figure 47: Protein classes associated with ER positive DCIS associated with invasive breast Figure 48: Molecular functions associated with total loss in ER positive DCIS associated with

Figure 49: Biological processes associated with total loss in ER positive DCIS associated with
invasive breast disease
Figure 50: Protein classes associated with ER positive DCIS associated with invasive breast
disease
Figure 51: Molecular functions associated with CnLOH in ER positive pure DCIS
Figure 52: Biological processes associated with CnLOH in ER positive pure DCIS
Figure 53: Protein classes associated with CnLOH in ER positive pure DCIS
Figure 54: Molecular functions associated with the genomic gains identified in TN DCIS
associated with invasive breast cancer
Figure 55: Biological processes associated with the gains identified in TN DCIS associated
with invasive breast cancer
Figure 56: Protein classes associated with the genomic gains identified in TN DCIS associated
with invasive breast cancer
Figure 57: Molecular functions associated with Sc gains for TN DCIS associated with invasive
breast disease
Figure 58: Biological processes associated with Sc gains for TN DCIS associated with invasive
breast disease
Figure 59: Protein classes associated with Sc gains in TN DCIS associated with invasive
breast disease
Figure 60: Molecular functions associated with total loss in TN DCIS
Figure 61: Biological processes associated with total loss in TN DCIS
Figure 62: Protein classes associated with total loss in TN DCIS

Tables:

Table 1: Surface areas of different TMA core sizes.	63
Table 2: Patient Demographics and Histological Details.	67
Table 3: Allred Scoring Method	90
Table 4: IHC methods of scoring, of handling differing scores from cores an	nd defined
acceptable variation for DCIS immunostaining.	91
Table 5: Staining frequencies for immunohistochemical antibody staining.	92

Table 6: Univariate analysis p-values for immunohistochemical and histological
parameters96
Table 7: Univariate paired analysis for oestrogen receptor immnunohistochemistry97
Table 8: Univariate paired analysis for progesterone receptor immunohistochemistry98
Table 9: Univariate analyses for ER and HER2 IHC: Fishers exact test p value < 0.0001 99
Table 10: Univariate analysis for ER and PR IHC; Fishers exact test p value < 0.0001 99
Table 11: Univariate analyses for ER and CK5 IHC; Fishers exact test p value = 0.0033100
Table 12: Univariate analyses for ER and CK14 IHC; Fishers exact test p value =
0.0018
Table 13: Univariate analyses for ER and Ki67 (>5%) IHC; Fishers exact test p value <0.0001
Table 14: Univariate analysis for ER and MCM2; (>5%) IHC Fishers exact test p value =
0.0032
Table 15: Univariate analyses for ER and Histological Grade; ER; Chi Square p value < 0.0001
Table 16: Univariate analyses for ER IHC and Histological Architecture; Chi square p Value <
0.0001
Table 17: Univariate paired analysis for HER2 immunohistochmistry
Table 18: Univariate Analysis of Proliferation Marker Immunohistochemistry
Table 19: Paired univariate analysis for CK immunohistochemistry
Table 20: Recurrence data for IHC Markers and Luminal Groups 123
Table 21: Biomarker expression by cytonuclear grade of DCIS. 124
Table 22: Paired Univariate Analysis for Histological Grade
Table 23: Definitions for Surrogate Molecular Subgroups for DCIS:
Table 24: Subgrouping of ER positive DCIS with Ki67 expression; cut-off defined at median,
5%
Table 25: Comparison of IHC scores between cases of admixed DCIS and invasive carcinoma
Table 26: IHC Molecular Subgroups for Invasive Carcinomas and Associated DCIS 143

Table 27: IHC Molecular Subgroups for Invasive Carcinomas and Associated DCIS for	· ER
Positive and Ki67 Expression	.143
Table 28: Sample Selection and Case Numbers for MIP Array Analysis.	.149
Table 29: Copy number analysis types for MIP arrays.	155
Table 30: MIP array cases with chromosomal maps	156
Table 31: MIP Array Comparison Groups	157
Table 32: Patient Demographics: RID= Research Number	369
Table 33: IHC scores for TMA cases with associated patient data.	372

Acknowledgements

There are so many people who have helped me in this endeavour. Firstly I would like to thank Professor Sarah Pinder whom I count as a true friend and also an excellent supervisor. She has been inspirational and also shown great patience in me. I may never be able to thank her enough. Sarah, I said I would submit before Watford FC were in the Premiership again I didn't think it would take quite so long for both to happen.

I would like to sincerely thank the following King's College London colleagues whom, due to their respective expertise, technical abilities and kindness have enabled me to produce this work: Professor Arnie Puroshotham, Professor Andrew Tutt, Dr Cheryl Gillett, Dr Patrycja Gazinska, Vadna Shah, Gursharn Hutchins and Sora Vorapon.

Dr Anita Grigoriadis and Hasan Mirza deserve medals for taking the time to explain to me (in fairly small words) the world of genetics and bioinformatics. Thanks for being so patient with me.

I would like to thank my sponsors Breakthrough Breast Cancer and The Breast Cancer Research Trust whose significant charitable donations have paid for this research. I would like to thank the Guy's and St Thomas's Breast Tissue and Data Bank staff for all their help.

This has been a long pathway and there are too many people to list here, apologies if you are missing but the following people most definitely deserve a mention: Louise Bell, Pierre Lao-Sirieix, Lisa Happerfield, Jill Davis, Ben Onwuegbusi, Mark Pett, Lucy Pett, Paul and Christy Russell & Peter Humphreys. Also I thank Nathan, Andy, Jo, Dan, Chris and Amanda for being such wonderful friends.

It would be remiss of me not to mention both my parents for their support. Thanks to my mother for everything but especially for teaching me the joy that can be found in books. Thanks to my father for showing me the things not found in books; honour, honesty, fishing, sport, pride in work and practicality. I hope I have made you proud. Thanks also to my siblings (especially the good looking one!) for always being there and keeping me sane.

Finally, none of this would be possible or even matter without my wonderful wife Davina. Her love and support over the last twenty five years of marriage, through some hard times, some very painful times but also some very good times, has been the inspiration driving me forward. I can never express the debt of gratitude that I owe her or how much she means to me. Davina, THANK YOU, I love you now and always, your loving husband, John.

Abbreviations and Glossary of Terms

Ab - Antibody

- aCGH array Comparative Genomic Hybridisation
- ADH Atypical ductal hyperplasia

Amplification - An increase in the copies of a gene coding for a specific protein without

- a proportional increase in other genes
- AR Antigen retrieval
- BCS Breast conserving surgery
- BM Basement membrane
- CNA Copy number aberrations
- CCL Columnar cell lesions
- CdLOH Copy deletion loss of heterozygosity
- CK Cytokerratin
- CnLOH Copy neutral loss of heterozygosity
- CNV Copy number variants

Copy Deletion Loss of Heterozygosity - Complete loss of a gene or gene region.

Copy-neutral LOH (CnLOH) - Also known as uniparental disomy (UPD) or gene conversion. An individual receives two copies of a chromosome, or part of a chromosome, from one parent and no copies from the other parent due to errors in meiosis I or meiosis II. This acquired homozygosity may lead to development of cancer if the individual inherited a non-functional allele of a tumor suppressor gene.

- DAB Diaminobenzidene
- DCIS Ductal Carcinoma in Situ
- DFS Disease free survival

Duplication - The repeating of an extra segment of DNA resulting in redundant copies

of a part of a gene, a whole gene or sequence of genes

- EGFR Epidermal growth factor receptor
- ER Oestrogen receptor
- FEA Flat epithelial hyperplasia
- FNA Fine needle aspirate
- FNAC Fine needle aspiration cytology
- H&E Haematoxylin and eosin
- HUT Hyperplasia of usual type
- IHC Immunohistochemistry
- IMF Immunofluorescence
- LCIS Lobular carcinoma in situ
- LOH –Loss of heterozygosity
- MCM Minichromosome maintainence
- MIP Molecular inversion probe
- MRI Magnetic resonance imaging
- NHS National Health Service
- OR Overall risk
- PCR Polymerase chain reaction
- PR Progesterone receptor
- RT Radiotherapy
- Sc gains Gain of a single copy of a gene.
- SNP Single nucleotide polymorphism
- Total Loss An entire gene sequence coding for a protein is missing from the genome
- UEH Usual epithelial hyperplasia
- UPD Unipartietal disomy

Chapter 1. Introduction

5.6 The Normal Breast and Ductal Carcinoma in Situ

The normal human female breast consists of six to ten major duct systems which, along with the lobules, comprise the parenchymal tissue of the breast. Ducts converge via multiple central ducts to the nipple; however each system exhibits little symmetry in shape and size. The ductal system is embedded in stromal connective tissue composed of varying amounts of fat and collagen-rich fibrous tissue. The large ducts and the interspersed smaller terminal ducts terminate in lobular acini. The acini consist of a lumen surrounded by columnar or cuboidal epithelial cells above a single myoepithelial cell layer, which sits upon a basement membrane. The stromal connective tissue around the ducts also contains lymphoid and plasma cells in small quantities. Epithelial cells of the lobular and ductal system are not quiescent, having a high degree of proliferative activity particularly during the secretory phase of the menstrual cycle. Proliferation also increases during pregnancy and lactation and slows down with age and the onset of the menopause.

Ductal carcinoma in situ (DCIS) is defined as a pre-invasive proliferation of cells confined to the breast parenchyma showing no invasion into surrounding tissues, or metastasis (1). The ducts become populated with a clonal expansion of epithelial cells that line, or fill, the breast duct. Cells exhibit the cytological features of malignancy but do not invade across the basement membrane. DCIS is believed to originate in the terminal duct lobular units and not specifically in the larger ducts (1).

1.2 Epidemiology of Ductal Carcinoma in Situ

1.2.1 Incidence of ductal carcinoma in situ (DCIS)

The incidence of DCIS has risen from 1- 5% of lesions detected prior to mammographic screening to approximately 20 - 25 % of all screen detected lesions in the UK (1-3). DCIS may be described as intraductal carcinoma or non-invasive tumour but regardless of terminology it now has the highest increase in frequency of all breast cancers (4). The reason for this seeming rise in incidence is almost entirely down to breast screening mammography, where, in some series, almost 50% of detected lesions are DCIS (5). In some screening populations DCIS is associated with age, where a younger screening population has a higher incidence of the disease than older women (3).

Breast cancer worldwide accounted for 22.9% of all female cancers (1,384,155 cases) and 13.7% (458,503 cases) of all cancer deaths according to the World Health Organisation's figures for 2008. Currently there are no worldwide statistics available on the incidence on DCIS. Countries in the developed world utilising breast screening programs would, by default, register a higher incidence than developing and third world countries, thus making direct comparison difficult. Statistics released by the National Health Screening Breast Screening Program (NHSBSP) for 2010/11 provides data for the incidence of breast cancer and DCIS in the screening population (women aged 47-97 years) for the United Kingdom (6); 2,188,608 women were screened with 17,258 cancers detected. Of these, 3522 were non-invasive or microinvasive carcinoma, accounting for approximately 20.4% of screen detected lesions. In the UK, for all ages, 2,221,975 women underwent breast screening with 14,177 (0.8%) breast cancers detected, with 3613 (25%) of these being classed as non-invasive cancers. There is currently no data available for the type of non-invasive disease, i.e. either DCIS or lobular carcinoma in situ (LCIS), but it is likely that the majority of these will be DCIS, due to its tendency to present with microcalcification (see below) whereas LCIS is often identified co-incidentally within a biopsy. Cancer Research UK gives figures of 5,765 women and 26 men diagnosed with in situ breast carcinoma in 2010 (7).

In the USA, the incidence of DCIS increased sevenfold from the 1970's to the 1990's. The National Institutes of Health (NIH) Consensus and State of the Science Statement on the Diagnosis and Management of DCIS gave an estimation of approximately half a million women living with DCIS in 2005 (8). The prevalence is higher in Caucasians compared to other ethnicities. A Surveillance, Incidence and End Results (SEER) publication for the USA gives an incidence for in situ cancer of the female breast from 1973 to 2007 for all ages of 21.19 cases per 100,000 (9). This figure rises to 53.42 per 100,000 in the over fifty age group. The incidence of in situ disease in black women and white women is essentially similar in those aged over 50, at 53.41 and 53.35 per 100,000 respectively, but is reportedly higher for white females below 50 years, at 9.03 compared to 7.29 per 100,000. Of note, the NIH advises caution interpreting these data as trends in pathological reporting and definitions have changed over time; as an example, one relevant element may be the absence of data on atypical ductal hyperplasia, which may have been previously reported as benign. However, another review of the SEER data from 1973 to 2000 by Joslyn (10) also identified that women between the ages of 35-44 have a higher incidence of DCIS than older groups. Differences between ethnics groups were also apparent with Asian women more likely to be diagnosed with DCIS followed by black women, white women and finally native Alaskan or American Indians. Thus the NIH data and SEER data are contradictory when comparing the incidence between black and white women but the relative times frames, changes in mammographic breast screening and diagnosis patterns are also possible causes of this discrepancy and highlight the difficulty in analysis of DCIS incidence.

1.2.2 Ductal Carcinoma in Situ and Gender.

Breast cancers are significantly more common in women than men with only 1% of breast cancers being found in males (11). Of this 1% of male lesions it is estimated that approximately 5% are DCIS. The lower incidence can be almost entirely attributed to the increased detection of DCIS in asymptomatic women due to breast screening programs and the absence of screening in the male population.

1.2.3 Risk Factors of Ductal Carcinoma in Situ

Risk factors for DCIS are difficult to quantify due to the absence of data prior to breast screening programmes and the difficulty in defining the asymptomatic incidence in the general population. Risk factors for DCIS are understandably believed to be similar to those known for invasive breast cancer. BRCA mutations are a known risk factor for invasive breast cancer with the cumulative risk by age 70 being 65% for BRCA1 and 45% for BRCA2 mutation carriers (12). Smith et al (12) found that patients carrying the BRCA1 mutation had a lower incidence of DCIS than found in sporadic cases. This may indicate that DCIS has a shorter or 'not observed' phase in BRCA1 mutation carriers. Conversely, Hwang et al (13) found that DCIS was equally prevalent in BRCA mutation carriers as in non-carriers although the onset of DCIS was at an earlier age in the former.

Comparison studies of risk factors for DCIS and invasive breast carcinoma have shown similarities in overall risk (OR). A family history of breast cancer and early menarche showed an increase OR (14). Late childbirth and nullparity however only showed an increased OR in older patients (>50 years) for both DCIS and invasive breast cancer (14). Invasive breast cancer risk is strongly associated with increased age, whereas DCIS is associated comparatively with younger age (14). This would fit with the hypothesis that DCIS is a precursor lesion of invasive disease.

Kerlikowske et al (14) found that increased body mass index (>25kg/m2) resulted in reduced OR in younger females (<45 years) for DCIS with a "trend bordering on

significance". They hypothesise that this is due to composition of breast tissue; women with lower body mass indices tend to have mammographically dense breasts and a two-threefold increased risk of invasive breast cancer compared to those with less dense, fatty tissue found in breasts (as seen in women with a higher body mass index). No increase in risk was found for DCIS in association with alcohol intake, smoking or previous smoking, hormone replacement therapy or oral contraception in individual studies (15-19).

1.2.4 Risk of Ductal Carcinoma in Situ Progressing to Invasive Disease. The natural history of DCIS remains unclear. When DCIS has been detected subsequent treatment is generally aimed at complete excision of the lesion. Studies focussed upon misdiagnosed DCIS as a benign lesion that could be used to look at the natural history are rare, as are series where the patient has declined surgical excision after definitive diagnosis of DCIS.

The Nurses' Health Study is the largest epidemiological study of women in the USA. It consists of two cohorts funded by the USA's National Institutes of Health, the first started in 1976 by Dr F Speizer (20) and the second in 1989 by Dr W Willett (20), with data on over 120,000 registered nurses. The study provides data on risk indicators for cancer, as well as other diseases. Collins et al (21) reviewed this cohort looking for the incidence of untreated DCIS finding only thirteen cases, thus highlighting the rarity of such incidences. Observations of the natural progression of these untreated DCIS found that ten women developed either a subsequent ipsilateral invasive or an in-situ lesion (2-5 years post original biopsy). The original DCIS lesions included lesions of low, intermediate and high nuclear grade. Although the number of cases studied is small the incidence of 'recurrences' is highly indicative of DCIS presenting a high risk of presenting with a subsequent cancer. In 1978 Betsill et al (22) reviewed intraductal carcinomas treated by biopsy alone and reported that an invasive recurrence occurred in 39% (range 25%-75%) of cases reported in the literature,

however, some recurrences were quoted at ten months and could arguably represent disease that was present at the time of initial DCIS diagnosis.

1.3 Detection of Ductal Carcinoma in Situ

1.2.1 Mammography

The primary screening tool for the detection of DCIS is mammography. Other techniques such as magnetic resonance imaging (MRI), ultrasound and scintimammography are generally regarded as insufficiently sensitive, in the absence of invasive disease (23). Mammograms are radiographic images of the breast that utilise low energy x-rays to identify the contrasting difference between normal breast parenchymal tissue, adipose tissue and breast tumours (1). Radiographic images are usually taken through two aspects, the cranio-caudal and medial-lateral oblique views, to determine the exact location of any lesion. Calcification seen by mammography can be, but is not exclusively predictive of, an indicator of malignant change (see Figure 1).

Figure 1: Cranio-caudal and medio-lateral oblique mammographic views of a case with two needle-localisation wires in place to mark an area of abnormality.

The most common mammographic feature of DCIS is microcalcification, seen in 80-90% of cases radiographically (24). Mammographic detection of DCIS thus typically relies upon the identification of calcification deposits that either result from a breakdown product of cells, seen as comedo-type necrosis, or from secretions in the luminal spaces. The clinical presentation of symptomatic cases is variable and may appear as a palpable mass, nipple discharge or as Paget's disease of the nipple (23). Radiographic abnormalities are also often seen in the presence of symptomatic disease with up to 50% of Paget's disease also showing some form of radiological abnormality (23).

Mammographic calcifications (and histological microcalcifications) are not specific for DCIS and occur in many other processes, including normal breast tissue and both benign and malignant lesions, such as involutional changes, duct ectasia and fibrocystic change. It is not possible to accurately grade DCIS on mammography alone and even high grade DCIS lesions can be missed if the area is small.

1.2.2 Ultrasound

Ultrasound is a useful imaging tool for women who present with symptomatic breast disease and can be used to differentiate between a benign and malignant mass in some cases, for example by assessment of the regularity of the margin of the lesion. Its use for identification of DCIS is limited due to a low sensitivity for this disease (1). Nevertheless, ultrasound may be of use in the detection of DCIS where calcification is not present (approximately 16% of cases) which are undetected using mammography. A small study, of 22 cases, has shown that high definition ultrasound can improve upon mammographic screening where calcification is not present (25). Practically, however, it would be difficult to implement ultrasound screening for every patient who attends for breast screening who does not exhibit calcification in the breast on mammography.

1.2.3 Magnetic Resonance Imaging (MRI)

Magnetic resonance imaging (MRI) is a highly sensitive method for detection of invasive breast carcinoma. Historically, the sensitivity for benign lesions and for DCIS has been shown to be less reliable than other techniques (1, 2, 26) but more recent studies have indicated that it is more sensitive than mammography (1, 27). MRI does not visualise calcification but uses a contrast agent to detect neovascularisation. Identification of soft tissue changes in DCIS has been reported in 27% of cases using analogue mammography and 60% using digital mammography (27). The cost and time consuming nature of MRI coupled with the claustrophobic nature of the process, however, also inhibits its acceptance as a population screening technique for those not at high risk of developing cancer.

1.3 Histology of Ductal Carcinoma in Situ

1.3.1 Histological Diagnosis of Ductal Carcinoma in Situ

Once a breast lesion has been identified and sampled it requires histological diagnosis and classification. Specimens are placed in a fixative or snap frozen before undergoing microtomy followed by haematoxylin and eosin staining (H&E) of cut sections. H&E staining provides morphological and nuclear detail of cellular structures and is a reliable stain for a diagnosis of a particular disease state.

The biological events in the transition from a normal to a malignant state in breast tissues are difficult to assign into predefined groups. There is a spectrum of breast lesions with variable, but low, risk of developing invasive disease. Hyperplastic and atypical changes, such as usual epithelial hyperplasia (UEH), columnar cell lesions (CCLs) including flat epithelial atypia (FEA), and atypical ductal hyperplasia (ADH), represent a disparate group of entities that may exhibit some of the features of, but fall short of, DCIS. These entities are included here to highlight possible diagnostic pitfalls and to demonstrate the morphological and molecular similarities with DCIS.

1.3.2 Usual Epithelial Hyperplasia

Usual epithelial hyperplasia (Figure 2) is defined as a proliferation of cells above the basement membrane (BM) that have only mild or no abnormal architectural and/or cytological features. In the normal breast there is a two cell layer above the BM, that of a single layer of myoepithelial cells and a layer of epithelial cells. Where the intraluminal proliferation is confined to four layers or less then the term mild usual epithelial hyperplasia is used. Where five or more cells are present above the BM the term used is moderate epithelial hyperplasia. Where cells have undergone significant proliferation and crossed the ductal spaces enlarging the ducts then the term florid may be used. Clinically there is no increased risk of developing breast cancer where mild epithelial hyperplasia is present and the risk due to moderate or florid usual epithelial hyperplasia is low. Features that distinguish usual epithelial hyperplasia from more serious lesions such as atypical ductal hyperplasia (ADH) or DCIS as set out by the NHSBSP guidelines for 2005 are:

- 1. The presence of a mixed cell population
- 2. A syncytial growth pattern
- 3. Irregular lumen often with a slit-like shape
- 4. Peripheral lumina
- 5. Streaming epithelial bridges
- 6. No abnormal mitoses and few normal ones

Figure 2: Usual epithelial hyperplasia

1.3.3 Columnar Cell Lesions (CCLs) including Flat Epithelial Atypia (FEA)

Columnar cell lesions (CCLs) are formed from enlarged terminal duct lobular units typically with dilated acini lined by columnar shaped epithelial cells. These lesions are increasingly seen in image guided needle biopsies targeting mammographic microcalcification, which is typically present within secretions in the luminal spaces. In 2003 Schnitt and Vincent-Salomon (28) proposed a classification system consisting of four categories: columnar cell change, columnar cell hyperplasia, columnar cell change with atypia and columnar cell hyperplasia with atypia. The latter two categories were combined to a single entity of flat epithelial atypia (FEA) in 2003 by the World Health Organisation (WHO) Working Group on the Pathology and Genetics of Breast Tumours. Columnar cell change and columnar cell hyperplasia are not considered to increase a risk of breast cancer development. FEA lesions are being detected with increased frequency due to breast screening programs where they may present with mammographic microcalificatons (29). The natural history of these lesions is poorly understood but possible progression to ADH, low grade DCIS and invasive carcinoma cannot be ruled out (29). This necessitates the distinction of FEA (Fig 3) from non-atypical CCLs for future patient management and surveillance.

Molecular evidence indicates that FEA may be the earliest morphological identification of neoplastic change in the breast (30), as FEA lesions have a loss of heterozygosity (LOH) matched by those seen in adjacent concurrent DCIS or invasive cancers. In addition, common chromosomal alterations have been identified on 16q, 11q and 13q, which are not observed in UEH but are frequently seen ADH and DCIS (30, 31).

Figure 3: Flat epithelial atypia

1.3.4 Atypical Ductal Hyperplasia (ADH)

The morphology and cytological features of ADH are similar to low grade DCIS but this is a microfocal lesion that is generally confined to a single lobular unit. Specifically, ADH does not involve two complete membrane-bound spaces. The nuclei in ADH are uniform, small, regular and evenly-spaced. As well as the uniformity of cells, ADH forms rigid cellular bars and secondary spaces, which are not seen in FEA (Figure 4). There are presently no immunohistochemical markers available to distinguish ADH from low grade DCIS.

Figure 4: Atypical Ductal Hyperplasia

1.3.5 Lobular Carcinoma In Situ, Atypical Lobular Hyperplasia, Lobular Neoplasia

Atypical lobular hyperplasia and lobular carcinoma in situ have identical cytological features and are distinguished from each other by the extent of involved spaces (1). As such, the term lobular neoplasia was coined to describe both lesions. Cells lack cellular adherence, exhibit eccentric nuclei and often have intracytoplasmic mucinous vacuoles (Figure 5) (1). Lobular carcinoma in situ is considered a separate morphological non-obligate precursor to DCIS, conferring less risk of progression over a longer latent phase.

Figure 5. Lobular carcinoma in-situ

1.3.6 Microinvasive Carcinoma

Where a DCIS lesion exists and one or more foci of invasion are present but none measure more than 1mm in diameter the classification of microinvasion is given. This is most commonly seen in association with high grade DCIS but is uncommon in DCIS of any grade. Microinvasion may be misdiagnosed when DCIS spreads into lobules, a term known as 'cancerisation' of lobules. Correct classification can often be given by examination of further tissue sections ('levels') and/or immunohistochemistry with myoepithelial and basement marker examination. Cancerisation remains within the breast parenchymal structures and does not extend through the myoepithelial layer and basement membrane (Figure 6).

Figure 6: DCIS (top right) with microinvasion (left).

1.3.7 Histological Variants of Ductal Carcinoma in Situ.

Histologically DCIS was classified by the architectural pattern of the proliferating epithelial cells. Both the cytology and architecture of DCIS are complex and giving credence to DCIS as a group of heterogeneous lesions. In the United Kingdom the NHS Breast Screening Programme has issued a "Pathology Reporting of Breast Disease Guideline" (32) outlining criteria for the classification and reporting of all breast disease, including DCIS. A brief description and microphotograph of each entity is given below (1, 5, 32).

Comedo pattern DCIS (Figure 7), also historically known as comedo carcinoma, is characterised by sheets of high grade malignant cells with an area of central necrosis typically surrounded by apoptotic cells. The necrotic area often contains microcalcifications identified mammographically. "Comedo" describes the central necrosis, rather than a specific cell type or grade and is therefore not now regarded as a true architectural type of DCIS.

Solid DCIS (Figure 8) is characterised by sheets of malignant cells completely filling the duct space. Cells may be small with few mitoses or, more commonly, large and pleomorphic. Solid DCIS can be confused with lobular carcinoma in situ (LCIS), however the cells of solid DCIS have cell-cell adhesion, seen as distinct cell boundaries, and may bear microacini with cells showing polarisation around small luminal spaces.

Papillary DCIS/papillary carcinoma in situ (Figure 9) presents architecturally as fingerlike projections into the ductal lumen. These are composed of fine fibrovascular fronds surrounded by columnar carcinoma cells. Duct spaces can be expanded/dilated. Myoepithelial cells are not observed between the epithelial cells and the fibrovascular cores, but are present around the external aspect of the duct space in true in situ disease. Where the projections are composed of epithelial cells alone and lack a fibrovascular core the term micropapillary is used. Micropapillary DCIS often also forms complex intraductal bridges and maybe admixed with cribriform patterns.

Cribriform DCIS (Figure 10) has intraepithelial luminal spaces that are classically evenly-distributed and regular in shape. The central area of the lumen is usually present and may or may not contain areas of microcalcification and necrotic material.

Figure 7: Central comedo necrosis within DCIS

Figure 8: Solid architecture DCIS

Figure 9: Papillary DCIS/papillary carcinoma in situ

Figure 10: Cribriform DCIS

1.3.8 Rare Histological Forms of Ductal Carcinoma in Situ.

Several rarer morphological variants of DCIS exist, some of which exhibit features that have potential for causing errors in histological diagnosis. The clinical significance of the histological features and genetic mutations present in such lesions remains poorly researched and are not understood.

Clear cell DCIS is formed of cells with distinct margins and clear cytoplasm. Both cribriform and solid structures may be present with central necrosis. Poorly fixed tissues can take on the appearance of clear cell lesions (1).

In apocrine DCIS the cells have the features of apocrine cells with abundant, granular eosinophilic cytoplasm, large nuclei and prominent nucleoli. Severe cytological atypia is often present, as is central necrosis (1).

Neuroendocrine DCIS has polygonal or spindle shaped cells that usually have granular cytoplasm. A pseudo-rosette architecture and papillary areas may be seen. Often positive for oestrogen receptor and neuroendocrine markers this lesion should not be confused with epithelial hyperplasia which has a similar "streaming" architecture (1).

Flat high grade DCIS is possibly a variant of micropapillary DCIS. The features are similar to a variety of columnar cell changes seen in both benign and malignant breast disease which makes identification and classification difficult (1).

Cystic hypersecretory DCIS is also a variant of micropapillary DCIS but produces eosinophilic or mucinous secretions, which expand the ducts to give a cystic appearance. Microcalcifications are common (1).

One of the challenges encountered with classification based on architectural features lies with the presence of more than one of the morphological subtypes coexisting in the same lesion. Descriptive histology terms such as comedo, cribriform, micropapillary, solid, papillary or even "clinging" provide some indication of extent and likely behaviour of disease but are often present in combination, making categorisation difficult for the pathologist. Quinn et al (33) found that heterogeneity or a mixed architecture was present in up to 62% of cases.

1.4 Classification Systems for Ductal Carcinoma in Situ

1.4.1 Growth Patterns for Ductal Carcinoma in Situ

DCIS usually presents in a single duct system and rarely exhibits a multifocal distribution (34). Several studies have been carried out looking at growth patterns in DCIS (35-37). All postulate that where apparently multicentric disease (i.e. more than one cancer separated by normal breast tissue) is present it is due to large lesion size with extended growth along the ductal system. Micropapillary DCIS, however, has been shown to have a greater incidence of multiple foci when compared to other histological subtypes (37).

1.4.2 High Grade, Intermediate Grade and Low Grade Ductal Carcinoma in Situ

There are several grading systems (38-43) classifying DCIS largely utilising cytonuclear features, into high grade, intermediate grade or low grade categories. It should be noted that whichever grading system is used that there is a degree of interobserver variability between pathologists, particularly with regard to intermediate grade DCIS. The current UK grading system for is based upon guidelines set by the NHSBSP (6).

High Grade DCIS is characterised by large pleomorphic cells with variation in size shape and polarity. Coarse chromatin and prominent nucleoli are abundant and mitotic cells are frequently seen. Nuclear outlines have irregular contours and may appear crenelated with the enlarged nuclei being greater than three times the size of erythrocytes. High grade DCIS is usually associated with a central necrosis and
calcification deposits within this area. This calcified necrotic debris is identified on mammographic screening.

Low grade DCIS comprises more evenly-spaced uniform cells that are generally smaller than other forms of the disease. The cells have regular, round nuclei located centrally and are normally one to two times the size of erythrocytes. Cells are arranged in well-ordered patterns showing polarity. Mitotic figures are sparse. A solid sheet architecture is rare but cribriform and micropapillary patterns are common, often with both present in the same lesion. When both are seen the cribriform pattern tends to dominate.

Intermediate grade DCIS cells exhibit moderate pleomorphism and lack the uniformity of a low grade lesion. Nuclear size is greater than that seen in low grade DCIS being two to three times the size of erythrocytes and occasional nucleoli are present. Lesions can have a cribriform, solid or micropapillary pattern with some polarisation of cells.

Although rare, sometimes a DCIS lesion will exhibit a range of nuclear features; when this occurs the classification is according to the highest nuclear grade present.

1.4.3 The Van Nuys Grading System for DCIS and the Van Nuys Prognostic Index (VNPI)

The Van Nuys grading system (38) applies a combination of cytonuclear features (as above), combined with the presence of comedo-type necrosis to classify DCIS. High grade lesions are classified according to the cytonuclear grade, regardless of the presence of necrosis, whilst non-high grade lesions are classified as non-high grade with necrosis or non-high grade without necrosis. This classification divides DCIS into three groups with differing risk of recurrence.

The grading system was further enhanced into a prognostic index for DCIS by adding tumour size and margin width (distance of tumour cells from excision margin) to the pathological classification. This classification was named the Van Nuy's Prognostic Index (VNPI) (39). The VNPI takes into account these three parameters associated with local tumour recurrence in patients with DCIS. Tumour size, margin width and pathological classification are all assigned a score of 1-3; 1 relating to best prognosis. A sum of the scores, of 3-9, was determined and a cut-off point relating to treatment failure, i.e. recurrence, was calculated. The original classification study was carried out on 333 patients and determined that a VNPI score of 3 or 4 showed no additional benefit for disease free survival from radiation treatment compared to scores of 6 or 7 who did receive benefit. Those patients with scores of 8 and 9 had a high recurrence rate regardless of treatment. The VNPI was updated by Silverstein et al as the University of California/ VNPI in 2003 with the addition of age as a factor in determining treatment (44).

1.4.4 The Tavassoli Grading/Classification System

The Tavassoli system (40) splits high grade, intermediate and low grade DCIS into ductal intraepithelial neoplasia groups (DIN). The designation removes 'carcinoma' from the terminology, similar to neoplasia grading in cervical screening. DIN3 represents high grade DCIS with, or without, marked intraluminal necrosis and severely atypical nuclei. DIN2 is characterised by cribriform or micropapillary type lesions with mild to moderate nuclear atypia, with or without necrosis. The classification of DIN1 requires the absence of necrosis and mild atypia with uniform nuclei and includes hyperplasia of usual type (HUT) and atypical hyperplasia (see above).

1.4.5 R Holland and the European Pathologists Working Group Classification System

This grading system, first proposed by Holland et al (41), uses nuclear pleomorphism combined with cell polarity to define high grade, intermediate grade and low grade DCIS. Polarisation of cells is the orientation in relationship to luminal spaces, where loss of polarisation indicates a higher risk of local recurrence. The European Breast Screening Working Group adopted a similar system (42), relying on nuclear grade but ignoring polarisation on the grounds of difficult reproducibility amongst pathologists. This is the system currently recommended in the NHSBSP guidelines (32).

1.4.6 Summary of Classification of DCIS

There are at least ten grading systems described for reporting of DCIS. All have their merits and disadvantages. Shoker and Sloane (45) reviewed the available classifications in 1999 and determined that nuclear grade was the best predictor of risk of recurrence. Pinder et al (46) reviewed over 1600 cases of DCIS for the UK Coordinating Committee on Cancer Research (UKCCCR) trial. A full pathological assessment of all cases was undertaken and compared the Van Nuy's, Nottingham and Holland classifications. There results found that all grading systems of DCIS showed a significant association with recurrence of ipsilateral DCIS or invasive disease. However, they identified an additional subgroup, which had a particularly poor recurrence rate. This group was defined by over 50% of ducts showing central comedo type necrosis, a high cytonuclear grade and over 50% of ducts showing a solid architecture pattern. Pinder et al proposed a new three group system to define DCIS. The categories are: 1) low and intermediate cytonuclear grade DCIS, (2) high cytonuclear grade DCIS with non-solid architecture and < 50% of ducts with necrosis (3) high cytonuclear grade DCIS with a predominantly solid architecture and >50% of ducts bearing central comedo necrosis.

All of the classification systems rely upon traditional pathological evaluation of H&E stained tissue sections. Whilst they all have been shown to have a predictive element and be related to risk of disease recurrence, none are currently definitive in the assessment of a possible relapse; thus even patient's with low grade (low risk) DCIS may develop recurrent disease as in situ or invasive breast cancer. This may be due

in some part to the subjective nature of pathology reporting and interpretation of morphological definitions.

1.5 Treatment of Ductal Carcinoma in Situ

1.5.1 Surgical Procedures and Options for Ductal Carcinoma in Situ

Treatment options for DCIS are similar to those for invasive carcinoma being mastectomy, or breast conserving surgery (BCS) with or without radiotherapy (RT) (47). The American College of Radiology (ACR) issued appropriateness criteria in 2011 which reflect both the heterogeneity of DCIS and the patient-driven choice (47). The recommendations state that BCS with whole breast radiotherapy for localised DCIS is acceptable, as opposed to mastectomy. Older patients with fully excised low grade DCIS may undergo observation alone. In cases where microinvasion is present with DCIS (mDCIS) then a sentinel lymph node biopsy is advised.

1.5.2 Radiotherapy for Ductal Carcinoma in Situ

Radiotherapeutic treatment for DCIS is primarily recommended after breast conserving surgery and seldom performed after a mastectomy for DCIS. There remains some controversy as to the clinical need and effectiveness compared to breast conserving surgery alone. In 2013 Donker et al (48) reviewed the treatment of DCIS with and without radiotherapy (RT) after local excision of lesions. They studied survival rates over a period of fifteen years for both groups from a European Organisation for Research and Treatment of Cancer (EORTC) randomized phase III trial (number EORTC10853). They found that 30% of women who underwent local excision for DCIS without radiotherapy had a local recurrence (LR) with 50% of these being invasive. In the group in receipt of both local excision and RT, only 17% had a recurrence, with 56% of these having an invasive recurrence. In both groups the risk of recurrence in the first five years was greater than ten or fifteen years. From these data radiotherapy is shown to decrease the risk of local recurrence.

difference in local recurrence between the two groups was not translated into any change in breast cancer specific survival. All subgroups of DCIS had a reduced recurrence rate with RT with clinging/micropapillary DCIS showing the least additional benefit (no RT = 12.5% recurrence, with RT = 5%).

Other clinical trials have similarly demonstrated a reduction in local recurrence with the use of RT (49-52). In a Swedish study, Holmberg et al (49) found that RT substantially reduced the risk of recurrence but was more beneficial in older women compared to younger women. Confounding factors in the treatment of DCIS with RT such as DCIS grade, age, RT dose, length of dosage time and the use of boost (a higher final dose aimed at the tumour bed) and the effect of adjuvant intervention (such as hormone therapy) make definitive conclusions difficult to make over such long survival periods. The Loris trial (53) is an ongoing a phase III trial addressing possible overtreatment of low grade DCIS by using active monitoring as opposed surgical treatment for screen detected or asymptomatic low grade DCIS.

Cuzick et al (50) looked at the effect of Tamoxifen and RT in DCIS patients. 1701 women were randomly assigned to treatment groups: RT and Tamoxifen, RT alone, Tamoxifen alone, or to no adjuvant treatment. Their findings also showed a benefit in reducing either DCIS or invasive ipsilateral recurrence with RT. They also found that RT had no benefit for overall survival (OR). They reported that Tamoxifen had an increased benefit in prevention of development of cancer in the contralateral breast.

1.5.3 Hormone Therapy for Ductal Carcinoma in Situ

DCIS may be treated with anti-oestrogens such as Tamoxifen or aromatase inhibitors (AI) if a lesion is positive for oestrogen receptors. Staley et al (54) reviewed the Cochrane Central Register of Controlled Trials (CENTRAL, *The Cochrane Library*), the Cochrane Breast Cancer Group's Specialised Registry, and the World Health Organization's International Clinical Trials Registry Platform (WHO ICTRP) in 2011 looking at randomised clinical trials using Tamoxifen with or without radiotherapy.

They conclude that, in a similar fashion to RT, Tamoxifen reduces the recurrence rate but has no effect on OS. The NASBP-24 trial (55) found that Tamoxifen reduced recurrence in ER positive DCIS but not in ER negative DCIS.

1.5.4 Chemotherapy for Ductal Carcinoma in Situ

Chemotherapy as a treatment is not usually given or recommended for DCIS. As pure DCIS is a non-invasive lesion, which has not metastasized, systemic treatment is regarded as having little or no benefit for patients.

1.6 Techniques for the Diagnosis and Investigation of Prognosis in DCIS and Invasive Breast Cancer

1.6.1 Sampling Techniques.

Once a suspected lesion is identified, either through screening or symptomatic presentation, a confirmed histological diagnosis is required. In order to achieve this there are several possible sampling techniques the clinician may choose. These are discussed below with relation to suitability for a diagnosis of DCIS.

Fine needle aspirate (FNA) or fine needle aspiration cytology (FNAC) is a percutaneous process of using a small needle attached to a syringe to extract cells. Cells are directly drawn from the site of interest and smeared onto glass slides where the cells are stained and interpreted. This procedure is suitable for the identification of cancerous cells but has severe limitations in its ability to distinguish in-situ lesions from invasive carcinoma, due to the lack of relevant architecture/morphology. The NHS Breast Screening Programme specifically does not recommend FNAC for the diagnosis of microcalcifications.

A core biopsy is the removal of a solid core of tissue by the use of a hollow needle. The needles can be of various sizes or gauges. The choice of biopsy size for palpable lesions is often a matter of clinical preference, although there are studies that indicate that a 14 gauge is superior to either a 16 or 18 gauge needle (56, 57). The use of ultrasound guidance and/or a stereotactic needle biopsy (where 3 dimensional coordinates are used to locate the area to be sampled on x-ray) are required for non-palpable lesions. There is evidence that ultrasound guidance reduces the false negative rate in identifying breast carcinoma using core biopsies (58, 59). Core needle biopsies are suitable for the identification of DCIS, however some caution is advised when giving a definitive diagnosis based on core biopsy alone (60); studies of the underestimation of invasive disease where a core needle biopsy shows DCIS range from 8% to 41% (58, 61). Chan et al found that lesion size and the number of cores taken were predictive factors in cases where a diagnosis of DCIS was made but there was adjacent invasive disease present compared to core sampling alone (62).

Vacuum-assisted biopsies utilise a larger gauge needle and have the advantage that multiple tissue samples can be obtained from one insertion. Vacuum-assisted biopsies are normally performed under image guidance, in the form of x-rays or ultrasound, to assist the sampling of breast abnormalities. Studies comparing vacuum-assisted biopsies against non-vacuum stereotactic biopsies have shown that the need for repeat biopsies is reduced, although not eliminated (63, 64).

In some instance definitive diagnosis with FNAC or core biopsy pre-surgery may not be possible. If there is a high suspicion of malignancy then an open biopsy may be performed by surgical excision.

1.6.2 Fixation and Processing of Biopsies

Once a tissue sample has been removed, it requires preparation for light microscopy. The standard practise in most UK laboratories is to fix tissues in a formaldehyde fixative, or one of its derivatives, and process to paraffin wax blocks. Fixation stops putrefaction and autolysis whilst processing to paraffin wax has a twofold aim. This is the removal of water, which assists fixation, and the hardening of tissue so that it can be suspended in a suitable medium (paraffin wax). This enables slicing thin enough for light to pass through thus enabling light microscopy. Processing is achieved by passing tissues through a variety of graded alcohols and organic solvents followed by impregnation with molten wax. Thin sections of wax embedded tissue are cut, usually 3-4µm thick, and stained with haematoxylin and eosin stain (H&E) to demonstrate the nuclear and cytological components of cells. A diagnosis is generally made on the H&E stains, although a panel of immunohistochemistry (IHC) antibodies may also be used as ancillary tests to aid in a definitive diagnosis. In invasive breast cancer additional IHC is then performed to establish the expression of hormonal markers such as oestrogen and progesterone receptors and growth factors such as HER2 in order to determine subsequent optimum clinical treatment.

Immunohistochemistry (IHC) is a technique for identifying tissue components (antigens) by means of an antibody-antigen reaction. Antibodies specific to a known epitope, or epitopes, can be produced by injecting a host species (usually a mouse or rabbit) with the antigen. The host then produces an immune response in the form of antibodies. These antibodies (known as the primary antibody) can be harvested and applied to histological sections where they will bind to their target antigen if it is present. In fluorescence microscopy a fluorophore is usually bound to the primary antibody to give a fluorescent image. In chromogenic or light microscopy the primary antibody signal is usually amplified by the application of secondary antibodies. These secondary antibodies are links binding to the primary antibody and an enzyme, either with the use of a polymer chain or an avidin biotin complex. The substrate for the enzyme forms an insoluble coloured end product when applied and can be viewed using light microscopy. The most common enzyme substrate reaction used in IHC is currently horseradish peroxidase (HRP) combined with a diaminobenzidine (DAB) substrate, which produces a brown coloured end product. The use of IHC to identify proteins or antigens in tissues has significant advantages over other protein assays, as the target protein can be identified in its morphological setting. This enables identification of proteins in tumours or normal tissues.

IHC as a technique does however have some inherent problems. In the UK, the majority of tissues for examination are fixed in formaldehyde or one of its derivatives. Whilst an excellent fixative, formalin produces cross links in the form of hydroxymethyl and methylene bridges, which may effectively mask the antigen of interest (65), and prevents primary antibody binding. In order to overcome this, antigen retrieval (AR) techniques utilising heat and salt solutions have been incorporated in many IHC protocols. Unfortunately there is little standardisation of the use of fixatives with regard to type and length of fixation, resulting in the need for optimisation of individual antibodies with known positive controls in each different laboratory. The lack of standardisation in laboratories may affect interpretation of IHC markers and is one of the contributory factors that make IHC scoring somewhat subjective in nature. However, despite these limitations, IHC has proven to be a valuable tool in both diagnosis and in prediction of response to therapy in breast cancer diagnosis.

1.6.3 Immunohistochemistry in Assessment and Prognosis of Ductal Carcinoma in Situ

Immunohistochemistry is commonly used to assess DCIS. The demonstration of an intact basement membrane (BM) or myoepithelial cell layer is integral to a diagnosis of DCIS as opposed to an invasive lesion. Antibodies raised against the BM include collagen IV and laminin whilst myoepithelial markers such as smooth muscle myosin heavy chain (SMMHC), p63 and smooth muscle actin (SMA) are all used in diagnostic laboratories to confirm that the lesion is in-situ. Other IHC markers may be used to help in the differential diagnosis of a lesion, for example E-cadherin is typically positive in DCIS but absent or reduced in LCIS, and ER and basal cytokeratins, such as cytokeratin 5 and cytokeratin 14, typically show homogenous staining patterns in DCIS and can be used to aid in a differential diagnosis between UEH and DCIS (1). There are currently no IHC markers to distinguish ADH from DCIS.

The demonstration of hormonal markers, HER2 or other IHC markers are not routinely used to classify DCIS or predict the possibility of invasion. ER expression in DCIS remains difficult to assess mainly due to the lack of clinical data defining positive and negative thresholds. The various scoring techniques employed e.g. Histoscore, Allred and percentage score also prevent systematic comparison. Expression of ER is lower in high grade DCIS than low grade DCIS and the percentage of DCIS ER positive cases is approximately 70%, which is similar to that found in invasive series (1). The expression of HER2 in DCIS has been shown to be higher in high grade DCIS than in grade 3 invasive tumours, with expression in 50-60% cases compared to approximately 20%, cases respectively. For example, Park et al (66) found that pure DCIS expressed HER2 at a greater frequency than invasive breast disease. Borgquist et el used tissue microarrays to determine Her2 expression in primary DCIS. In their cohort of 458 patients over 30% had Her2 positive DCIS (n=132). They found the risk of developing an invasive breast cancer recurrence was "statistically significantly lower subsequent to a HER2 positive DCIS compared to a HER2 negative DCIS(67)",

1.6.4 Tissue Microarrays (TMAs)

Tissue microarrays (TMAs) were first described in their current format by Kononen as a tool for gene expression and copy number analyses (68). Subsequently, the technique was recognised, and has been widely used, as an efficient method for assessing biological markers on large numbers of cases economically. Biomarker validation using TMAs with immunohistochemistry (IHC) and in situ hybridisation (ISH) is valuable for evaluation of putative diagnostic and prognostic markers and also drug targets when applied to large series and especially to randomised clinical trial samples. Tissue microarrays (TMAs) have become an established research tool over the last ten years enabling rapid assessment of significant numbers of test tissues using tinctorial staining, IHC or ISH. The premise of the procedure is to sample pre-existing blocks of histologically processed tissue for further evaluation by removing individual cores from each test case and amalgamating these into one block from which multiple tissue sections can be taken for analysis. The procedure allows simultaneous testing of multiple cores, giving reduced costs and improved standardisation of experiments. The vast majority of TMAs are constructed from formalin fixed paraffin wax embedded tissues using 0.6mm, 1.0mm or 1.5mm cores taken from a donor block using a hollow tube (stylet) to biopsy the original tissue which are then are placed into a recipient wax block (Figure 11) into which up to a hundred or more cores can be placed. Once the blocks have been constructed the cores are annealed to the recipient block by a process of gentle heating and cooling. Once this has been achieved, sections are cut in the normal manner on a microtome and subsequent slides can undergo IHC or ISH testing.

Figure 11: TMA manufacture and stylets (TMA image courtesy of Yale University, Department of Pathology, Connecticut USA.)

1.6.5 Genetic Aberrations & Molecular Inversion Probe Arrays for Genomic Profiling

Profiling of the human genome is increasing our understanding of the disease process and is seen as a potential tool to identify new biomarker targets for interventional therapy. However, the human genome contains more than ten million nucleotide positions that have >1% or "common" variations between individuals. Identification of these differences and subsequent comparison of the genomic changes found in progression from normal to a tumour state in breast and other, cancers requires reliable and robust sequencing methodologies. The field of genomics has made significant advances since the publication of the human genome sequence simultaneously by Lander et al (69) and Ventner et al (70).

An individual has two copies of the genome, one from each parent. Where a single base differs in the genome between these two inherited copies a single nucleotide polymorphism (SNP) is present giving rise to heterozygosity in the individual's genome. Chromosomal arrangement in humans is paired, allowing for heterozygosity. However, loss of a genomic region from one parent can occur giving only one region, which by default cannot be heterozygous at a SNP location; this is termed as loss of heterozygosity (LOH). LOH of a tumour suppressor gene results in only one copy of the suppressing gene. A point mutation (replacement of a single base) can lead to inactivation of the tumour suppressing gene given rise to potential tumourigenesis. However, LOH is not restricted to a loss of a genomic region; copy neutral LOH can occur where no overall net loss of chromosomes or copy number is apparent. Also known as unipartietal disomy (UPD) (71), errors during meiosis may result in two copies, or partial copies, of a genomic region which are inherited from one parent and not the other parent. This can cause inherited homozygosity and, if a non-functional tumour suppressor gene is present, may also result in tumorigenesis. It is estimated that up to 50-75% of human cancers demonstrate LOH (71, 72).

In addition to LOH, and copy neutral LOH, deletions of chromosomal regions and amplifications can also lead to cancer development. Copy number variations (CNVs) are abnormal variants in one or more regions of the genome. They usually correspond to large regions ranging from one kilobase to several megabases and can be either deletions or amplifications. They differ from SNPs in that the copy number variation can be repeated along the length of DNA, e.g. a section that has repeat elements with

GGATCC may be replaced with GGGATCC (duplication) or GGATC (deletion). CNVs have been estimated to account for approximately 13% of human genomic DNA (73). Various platforms have been developed to improve the speed, accuracy and quality of genomic profiling (74). The goal of personalised whole genome association studies requires the ability to identify aberrant genomically regions from very little tissue or DNA with minimal cross reaction; as may seen with PCR amplification where carryover of PCR products to subsequent amplification reactions can occur, in a cheap and reproducible system (75). Molecular Inversion Probe (MIP) arrays are a technology for analysis of SNPs, copy number alterations, somatic mutations and loss of heterozygosity (LOH) (including copy-neutral LOH). The probes consist of primers of approximately 20 nucleotides separated by a linker region (usually an endoribonuclease) and sequences of single stranded DNA that are complimentary to regions adjacent to a SNP in the target DNA sequence of a sample. The technique works on the principle of a SNP-genotype reaction being placed directly upon the genomic DNA target prior to any amplification and then subsequently using a PCR step to only increase the amplification of detected target molecules. This alleviates problems of multiplex PCR where undesired reactions such as "primer dimers" are caused by unwanted binding of complimentary bases instead of the intended DNA amplicons. Each MIP has two sequences that are complementary to the target DNA at the 3 primed (3') and 5 primed (5') ends of the DNA strand (Figure 12). Each sequence hybridizes to the target, becoming "inverted" and forming a circle with the 3' and 5' ends adjacent to each other with the restriction endoribonuclease forming a free hanging loop.

Figure 12: MIP Array Probe:

Figure 13: MIP array process for genomic profiling

(Adapted from <u>http://en.wikipedia.org/wiki/File:MIP_technique_timothy.png#filelinks</u> copyright permission licensed under the GFDL see: Appendix 1)

MIP array technology has been further developed by the commercial company, Affymetrix (California, USA), to be used in archival formalin fixed paraffin wax embedded material (FFPE). The company cites the advantages of MIP array as the ability to identify genomic regions of interest in partially degraded samples such as FFPE tissue allowing as little as 40bp per genomic region of interest and being able to identify difference in copy number states in as little as 60bp with a high discrimination between "signal" and "noise" ratio in degraded samples. One additional advantage of MIP array technology is the multiplexing ability where thousands of loci can be simultaneously analysed; the Affymetrix system offers over 300,000 markers.

1.7 Molecular Portraits of Breast Cancer

1.7.1 Genetic Subgroups of Invasive Breast Cancer

The morphological and molecular heterogeneity of breast tumours makes the classification of lesions challenging. Perou (76) and Sorlie (77) have shown that invasive breast cancers can be classified into distinct genetic subgroups that correlate with overall survival (OS) and disease free survival (DFS) and have potentially important clinical implications. Their findings have been corroborated in other studies (76, 78, 79). The sub-groups of invasive breast carcinoma, designated as luminal A, luminal B, ERBB2-positive, basal-like and "normal" demonstrate that the phenotypic variety seen histologically is, unsurprisingly, present at the molecular level. The molecular phenotypes correlate well with certain immunohistochemical profiles. Approaches have confirmed the existence of some subclasses, such as the basal-like groups of tumours which had been previously described in some IHC series (78, 80-83) but which, until genomic expression profiling, had not been truly regarded as a distinct subgroup of invasive breast cancer.

Perou's experiments examined breast cancer profiles using known gene clusters for 65 tissue tumour samples along with cultured cell lines of known genomic sequences to ascertain a molecular signature of the breast cancers studied. In developing a system for classifying tumours based upon the gene expression, a second subset of genes (known as the intrinsic subset) to further classify tumours was examined/proposed. Using the rationale that any samples taken from the same tumour should demonstrate a similar profile and that separate tumours should vary in their expression, twenty paired samples were analysed and gave rise to identification of 496 genes with significant variation between tumours compared to the paired samples. As Perou points out there, is a great multidimensional variation in gene expression in that the patterns are mainly independent. However, there are distinct molecular portraits that relate to both similarities and differences of tumours. These include a proliferation cluster as the largest group, which correlated with the histological mitotic index and the immunohistochemical markers of proliferation, Ki67 and PCNA. As the hierarchical cluster is further broken down, two dendogram branches reveal oestrogen receptor (ER) positive and ER negative tumours separated by clusters of genes expressed by luminal cells of the breast. The ER positive, luminal grouping was also correlated with immunohistochemical expression of cytokeratins 8 and 18. Further evaluation by Sorlie et al, elucidated that these luminal groups could be further subdivided into groups luminal A, B and "normal" like. Six tumour samples from the original Perou experiments clustered in a group associated with genes characterised in basal or myoepithelial cells of the breast. This group had a protein expression of cytokeratins 5/6 and 17. The basal-like subgroup has particular clinical implications as the vast majority of these tumours exhibit negative IHC staining profiles for ER, progesterone receptor (PR) and HER2. These tumours are unlikely, therefore, to respond to Tamoxifen or aromatase inhibitors as they lack expression of hormone receptors. Similarly, the lack of HER2 expression means that tailored anti-HER2 therapy, such as with trastuzumab, is also likely to be of little value. The lack of expression of these three markers which is frequently seen in these basal-like lesions has resulted in the 'triple negative' term being erroneously used synonymously to such "basal-like" tumours. Rakha (84) reviewed the expression profiles of basal-like lesions and addressed some of the confusion surrounding the definition of basal-like tumours. Rakha points out that there is a large subset of the basal-like group that is triple negative in immunophenotype but that the absence of these three markers does not automatically indicate a basal-like

phenotype. Conversely, tumours within other molecular sub-groups may also exhibit a triple negative profile. It should also be noted that the expression of one single "basal" IHC marker does not necessarily detect a basal tumour. Rakha advocates the use of a panel (CK5/6, CK14, CK17, EGFR), with positive expression of these, as well as ER and HER2 negativity required for the identification of a basal-like tumour. The majority of invasive breast cancers arising in BRCA1 carriers also fall into the basal group, but this also is not exclusive. The definition of basal-like tumours cannot therefore be defined by either a triple negative phenotype or a BRCA1 carrier group, once again demonstrating the heterogeneity of invasive breast tumours. The basallike immunophenotype has also been identified in forms of DCIS (85-87).

The next subdivision postulated by Perou et al is the HER2 expressing group. This cluster contained not only the Erb-B2 locus, but also several other genes located in the same region on chromosome 17. This subset also showed lower levels of ER positivity.

The "normal like" subgroup was identified and named based on similarities in gene expression patterns to those of normal epithelial cells, adipose tissue and other non-epithelial cell type. Norum describes these tumours in 2014 as "clearly carcinomas that have gene expression features common to both basal-like and luminal subtypes, showing no expression of proliferation-associated genes" There is an acknowledgement that these samples may have a low tumour cell percentage within the samples(88).

The molecular profiling of invasive breast tumours, and subsequent subdivision of tumours into groups, may have wide-ranging clinical implications. Currently, the pathological assessment of tumours and patient's prognosis and subsequent clinical management is based upon descriptive histological factors such as lymph node stage, pathological measurement of carcinoma size and histological grade, the latter incorporating a proliferative assessment, and morphological (architectural and cytological) subtypes. These factors are routine coupled with the IHC expression of

several markers, notably ER, PR and HER2, which are used as predictive markers and on which likelihood of response to hormone therapy and trastuzumab is based. Other antibodies can help with the identification of morphological tumour type but have a limited prognostic value; for example, it is well recognised that invasive lobular carcinoma typically shows a loss of E-cadherin immunohistochemically. In addition, many novel markers, although demonstrating some potential as prognostic markers, for example c-kit (86, 87), Aurora A (89, 90) and BCL2 (91-93) are not widely accepted as independent predictive markers of significance compared to existing pathological criteria.

The molecular expression profiles demonstrate that morphologically similar tumours may be subdivided into groups which appear to have different genetic origins, leading to questions regarding current histological classification, particularly the "histological special types" (94, 95). Such findings also raise questions as to the validity of current practice. However, it should be noted that studies of genetic molecular profiling of invasive breast tumours have been carried out on relatively small numbers. Validation of these classification criteria using microarray based systems on thousands of samples is cost prohibitive and any novel genetic taxonomy would require detailed correlation with existing clinical practice.

1.7.2 IHC as a Surrogate to Genomic Profiling.

The use of tissue microarrays and IHC can facilitate the examination of the robustness of the genetic subdivisions. Several studies have focussed upon this method, with promising results (82, 86, 96). Abd EI-Rehim (96) et al analysed over 1000 breast tumours with a large immunohistochemical panel of 25 antibodies. These included antibodies for the luminal phenotype based upon the expression of cytokeratins 7/8, 18 & 19 and the basal phenotype with cytokeratins 5/6 and 14. In addition to this hormonal markers ER, PR, androgen receptor (AR), tumour suppressor genes (p53, BRCA1, Anti-FHIT), cell adhesion molecules (E-cadherin, P-

cadherin), mucins (Muc-1, Muc-1 core, Muc-2), apocrine differentiation (Anti-GCDFP-15), and neuroendocrine differentiation (chromogranin A, synaptophysin) were evaluated. Using an agglomerative clustering approach, Abd El-Rehim et al classified tumours into six groups, with nine of the twenty five antibodies being key discriminatory markers (AR, c-erbB-2, CK18, MUC1, CK5/6, p53, nuclear BRCA1, ER and E-cadherin). Interestingly, the results broadly correlate with the genomic arrays of Perou and Sorlie and defined six classes of breast cancer. Two were hormonal positive luminal groups having similar immunohistochemical profiles to luminal A and B sub-groups but having differing overall disease free survival, a third group had cerbB2 (HER2) positivity with strong Muc1 expression, altered E-cadherin and weak hormonal marker expression. The fifth group showed elevated p53 and basal marker expression and lower hormone receptor expression, group six consisted of HER2 and E-cadherin positive tumours that had weak or no hormone receptor status and MUC1. Group four only consisted of four tumours so it is difficult to draw conclusions for this division.

These authors similarly showed, like Perou et al, that the IHC identification of subgroups was of prognostic value in invasive breast cancer. The grouping determined in this series was defined by a panel of antibodies reflecting the various genetic pathways that may be responsible for tumour growth. Other workers, such as Nielsen (82) and Rakha (84), have also demonstrated that the basal subgroup can be identified using IHC markers.

In 2011, the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer agreed to define subgroups for invasive breast cancer based on clinicopathological criteria, including immunohistochemistry for ER, PR, HER2 and Ki67, as opposed to a gene expression array criterion. Their reasoning was that systemic therapy approximately matches the subtype classification (97). They proposed the following subgroups: luminal A (ER and/or PR positive, HER2 negative and Ki67 <14%), luminal B/HER2- (ER and/or PR positive, HER2 negative and Ki67

≥14%), luminal B/HER2+ (ER and/or PR positive, HER2 positive), HER2+/ER- (non luminal) (ER and PR negative and HER2 positive) and triple negative (ductal), (ER, PR and HER2 negative). To date only one study (98) has used this specific criteria to assess DCIS, finding no link between the subgrouping and risk of recurrence, as either invasive carcinoma or DCIS, over a ten year period.

1.8 Conclusion

DCIS still represents a clinical dilemma for patient management. The inability to reliably predict possible progression to invasive breast cancer results in the possible overtreatment of what can be regarded as a non-life threatening condition. Current treatment options remain controversial with no consensus upon the choice of mastectomy, or breast conserving surgery with or without radiotherapy, or indeed adjuvant hormone treatments.

The natural progression and molecular pathology of DCIS also still remains poorly understood. This thesis aims to address some of these problems by analysing a series of DCIS cases with known clinical outcome. This includes DCIS lesions that have not progressed (pure DCIS), DCIS lesion that have had a DCIS recurrence and DCIS lesions that have an invasive recurrence with or without associated DCIS. A further series of cases of pure DCIS and DCIS admixed with invasive disease contemporaneously allows comparison of biomarker and genomic changes in the different disease states. Analysis of genomic changes using Molecular Inversion Probe arrays (MIPs) and immunohistochemical (IHC) profiles in these cases will hopefully identify possible biomarkers of interest and genetic abnormalities that confer greater or lesser risk of progression from DCIS to invasive disease and allow comparison of groups of lesions with regard to genetic changes and biology.

1.9 Hypothesis

An immunohistochemical and genomic assessment of "pure" DCIS and of DCIS associated with invasive breast cancer will identify differences in biomarkers and gene expression between individual cases. Within immunophenotypic sub-groups variations in biomarkers and gene patterns may identify cases with increased risk of recurrence and/or progression.

Summary of Aims:

- To determine the expression of a range of immunohistochemical markers in DCIS lesions and determine if these markers can identify molecular subtypes similar to those found in invasive breast cancer.
- 2. To create a database of significant size providing information on DCIS samples with genomic, immunohistochemical and demographic data. This database will provide a resource for further research beyond the scope of this thesis.
- To undertake an analysis of archival DCIS samples to identify genomic variation, abnormalities and changes between different pure DCIS lesions and DCIS lesions associated with invasion
- 4. To identify any protein and/or genomic changes in all DCIS (pure and that associated with invasion) compared to invasive breast disease to determine potential biomarkers responsible for progression to an invasive state.

Chapter 2. Construction of Tissue Microarrays (TMAs) for Immunohistochemical Evaluation of Ductal Carcinoma in Situ

2.1 Introduction

In this study, the evaluation of multiple immunohistochemical markers is used to determine if DCIS can be classified and sub-typed in a similar fashion to invasive breast carcinoma on an immunohistochemical level. In order to assess multiple markers on significant numbers of DCIS cases, TMAs have been used. The nature of DCIS, including size and distribution of lesions and intralesional heterogeneity, introduces some challenges in TMA construction. The design and manufacture of TMAs had to address several criteria specific to DCIS, as well as some general principles not often cited in the literature. These include core size, number of cores, core placement, tissue selection criteria, heterogeneity of tissue and subsequent TMA analysis. These issues are discussed below.

2.2 Materials and Methods

A search was carried out for DCIS specimens within the King's Health Partners Tissue Bank (KHPB), formerly the Guy's and St Thomas's Breast Tissue and Data bank (BTBD), yielding a list of 579 cases for evaluation. The specimens were defined as containing a "pure" DCIS component not associated with invasive carcinoma, or DCIS as a recurrence. All tissue had been uniformly fixed in 10% neutral buffered formalin within 60 minutes of surgery. The haematoxylin and eosin (H&E) stained slides for cases were retrieved from the archive and screened by a consultant breast histopathologist (SEP) to reclassify each lesion using the current classification and terminology. Each case was then assessed for suitability for coring for tissue microarray. Cases where core biopsy material alone was available were discounted due to lack of tissue.

Once the slides had been reviewed, the matching formalin fixed paraffin wax embedded (FFPE) blocks corresponding to the marked slides were retrieved from the archive. The blocks were assessed for amount of remaining tissue and any deemed insufficient were excluded from the study. It was noted that for some of the cases the tissue in the FFPE blocks did not match the shape of the tissue sections due to taking of multiple sections for other, previous, studies. All the blocks were subsequently reembedded and a single section cut and H&E stained for marking using an optical marker (Nikon-Melville, New York U.S.A.) attached to a microscope (Figure 14).

Figure 14. Optical marking of disease on an H&E section.

Once areas of interest had been marked, TMAs were constructed. As described in Chapter 1, the basic principle is to take an empty paraffin wax block (recipient block) with which a small hole is drilled using a first stylet. Then a second, slightly larger, stylet is used to sample the paraffin wax block containing the tissue of interest (donor block). This core of tissue is then inserted into the small hole in the recipient block. Once all the desired cores have been transferred from the donor to the recipient block then the newly constructed TMA undergoes an annealing process. This process involves heating and cooling the newly constructed TMA block to just below the melting temperature of the wax to enable the cores to meld to the wax of the recipient block. Various temperatures and times are used dependent upon core size and tissue type. For this study, trial and error demonstrated that placing the new TMA blocks in a pre-warmed oven at 56°C for ten minutes followed by 30 minutes cooling repeated thrice produced TMAs with suitable annealing to prevent core loss.

Each case of DCIS had three 2mm cores taken, with each of these cores placed into a separate block labelled A, B and C respectively. The standard size for TMA cores in studies of invasive carcinoma is 0.6-1.0 mm (99). A larger core size (2mm) has been used in this study to be certain of obtaining representative morphology from ducts bearing in-situ carcinoma. This results in a larger tissue surface area to demonstrate IHC expression and to assess the presence of staining heterogeneity. Each TMA block consisted of twenty DCIS test cases, and five control tissue cores of either kidney or liver tissue, to enable easy orientation of cores when examining the sections under light microscopy (Figure 15).

Figure 15. Template for TMA composed of 2.0mm cores

Once constructed, a peripheral surface section was cut from the TMAs and an H&E stained slide produced in order to assess the accuracy of the coring and confirm the presence of DCIS. Examples of sample 2.0mm cores with DCIS present are shown in Figure 16 with an example of a whole TMA section in Figure 17.

Figure 16: DCIS in 2.0mm cores

Figure 17: TMA construct

Use of tissues and data (see 3.2.1) was approved under NHS REC agreement (07/H0874/131) with Biobank Access Committee approval.

2.3 Results

2.3.1 TMA Constructs

The 579 cases of DCIS in the initial database yielded a total of 280 cases of pure DCIS suitable for TMA construction. These were made into 14 tissue microarray blocks in triplicate giving a total of 740 cores for IHC staining.

2.3.2 Scanning

All TMAs had a 4μ m section cut and stained with H&E to verify the presence of DCIS within cores. A total of 42 H&E sections were taken and scanned using a "Nanzoomer" digital scanner (Hamamatsu, Welwyn Garden City, UK) to provide digital images for analysis. Loss of DCIS due to either missing cores, incorrect coring from donor block or lack of viable cells was evident in 15-20% of cases.

2.4 Discussion

2.4.1 Tissue Selection Criteria

The selection of good quality tissue for inclusion in any TMA is paramount. However, the vast majority of TMAs are drawn from archival diagnostic stores with very few having tissue prospectively acquired. A major problem with the use of archival tissue is that fixation and processing is typically poorly documented, and often highly variable even within a single institution. The archive based at Guy's and Thomas' Tissue and Data bank has specimens dating back to the early 1970's available for research. The archive also includes accurate records of time to fixation and duration in fixative; the breast tissue used in this study were expertly sliced and placed in formalin within 30 minutes of surgery. The maximum duration of fixation was 48 hours. The quality of the archive owes much to the foresight of the individuals who established the tissue bank, and who recognised the importance of adequate fixation and detailed record keeping before the advent of modern immunohistochemistry and molecular techniques.

2.4.2 TMA cores size, number and distribution within a TMA block

There is variation in the literature as to what is considered "representative" when selecting the number, size and distribution of cores within a TMA. Core diameter and number ranging from a single 1.0 mm core to six 0.6 mm cores have been suggested as suitable. Some authors have reported that a single core, regardless of size (1.0mm to 0.6mm), correlated with whole section mounts when assessed for ER, PR, HER2 and Ki67 (100-102). However, others have advocated the use of multiple cores to provide more accurate concordance; Graham et al suggested that a minimum of four assessable cores from six sampled areas were required for accurate evaluation of HER2 status of invasive breast cancer (103). Bharghava showed that between two to four cores had a high (99%) concordance with whole sections for HER2 status by fluorescent in-situ hybridisation (FISH), again in invasive disease (104). Sapino et al recommended that at least 4 cores are required and that where a negative hormonal marker such as ER or PR is found then the IHC should be repeated on a whole section (105). Thus there is little agreement, for even standard biomarkers, on the number of TMA cores that should be assessed, let alone the number of cells required.

Table 1 compares the surface areas of the most common cores sizes: 0.6mm, 1.0mm, 1.5mm and 2.0mm and the total surface area obtained when multiple cores are examined. Taking one 1.0mm core is roughly equivalent to three 0.6mm cores. This excludes demonstration of regional heterogeneity within a cancer, but for markers with uniform expression significant time and cost savings could be made by use of a larger core size. Where multiple cores are taken from lesions of known heterogeneity,

increasing the core size from 0.6mm to 1.0 mm will give a threefold increase in tissue area for analysis.

Core Diameter	Core Radius	Core Circumference	Core Area		
Ooro Diamotoi	00101100100		0010 /04		
(mm)	(mm)	(mm)	(mm^2)		
((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((mm-)		
0.00	0.00	4.005	0.000		
0.60	0.30	1.885	0.283		
1.00	0.50	3.142	0.785		
	•••••	••••=	••••		
1.50	0.75	4 712	1 767		
1.00	0.70	7.7.12	1.707		
2.00	1.00	6 283	3 1/2		
2.00	1.00	0.205	5.142		

Table 1: Surface areas of different TMA core sizes.

There is an inevitable loss of cores when cutting TMA sections and performing subsequent tests such as IHC. Such loss can be due to tissue type, fixation, poor region selection, poor annealing of cores in the donor block, core size, section thickness, section drying and overuse of organic solvents. Technical expertise can minimise some of these, although the use of archival material that is poorly processed will have an influence on core preservation. Heating of sections for processes such as antigen retrieval in IHC and denaturation of DNA in ISH are a particular cause of core loss and a percentage will be lost in such processes, even when performed by expert technicians.

Histopathological sections of diseased tissue are, by their very nature, a small representation of an entire tumour or disease state. Rarely is a tumour sampled in its entirety with every section of tissue cut and examined for tumour heterogeneity with repeated antibody testing. Large tumours are excised and the pathologist selects representative pieces which, in general, have only one H&E section taken and examined from the block. TMAs have, since their inception, have been dogged with the criticism that they are not representative of the entire tumour and cannot capture

the heterogeneity seen in whole sections. Camp et al (99) point out that the general consensus is that in most cases two 0.6mm cores are representative of a whole section but that some antibodies, such as those involved in hypoxia, that show heterogeneous expression may require more cores. In this study, selection was based on the diagnosis of DCIS. Larger cores were chosen as they allowed entire duct spaces, with their surrounding myoepithelial layer and basement membrane to be visualised within the TMA core. This would also address issues of potential staining heterogeneity (by manufacturing triplicate blocks) and included a sufficient quantity of tissue to be considered representative of a lesion when compared to the guidelines quoted in the literature. Indeed the actual sampling in this thesis exceeds the vast majority of current studies. It is anticipated that this would give a true reflection of IHC staining patterns in the tissues examined.

Chapter 3. Immunohistochemical Studies on Ductal Carcinoma in Situ

3.1 Introduction

The expression of key proteins, or biomarkers, is of prognostic and/or predictive importance in invasive breast cancer. Panels of proteins have been proposed that can divide breast cancer into clinically important subtypes with differing survival outcomes. However, there is currently a lack of information as to whether these tumour subtypes are represented at the in situ stage, and their prognostic significance in DCIS. Immunohistochemical experiments looking at a number of proteins of known importance in invasive breast cancer were carried out for this thesis to investigate their expression within DCIS. Sections 3.3 to 3.9 refer to specific types of antibody with regard to their target antigen and the rationale for inclusion into a prospective panel. The procedure for staining for all antibodies was similar and is summarised below with details of any variations given.

3.2 Material and Methods

3.2.1 Correlation of Immunohistochemical Results to Patient Data and Outcome

See Appendices 2, 3 & 4

In order to evaluate the effect of any IHC biomarker upon the likelihood of recurrence, whether invasive, in situ or not present, it was necessary to determine the patient outcome in our cohort. Patient demographics including age, treatment, details of local, ipsilateral and contralateral recurrence, if any, were retrieved from the King's Health Partner's Breast Cancer Biobank records.

Samples of pure DCIS tissues from this cohort of patients were taken between the years 1974 and 2005. Patient details in some instances were incomplete and not

suitable for further analysis. Reasons for these losses included patient relocation, loss of records or conflicting data. This reduced the total number of TMA cases available for correlation with patient demographics. For these cases TMA core loss also occurred in a small percentage of cases giving a slight variance in numbers available for each antibody assessed.

The data in the bank is prospectively populated with follow up data from clinical visits by patients and from cause of death registration. Patients were diagnosed with DCIS between 1974 and 2005.

Table 2 summarises patient demographics. Records for 180 patients were available. Mean patient age at diagnosis was 72 (range 22-90).

Records list 112 patients with an excision biopsy as first form of surgery, 11 had microductectomy, 2 had a needle localisation excision biopsy, 5 had a wide local excision and 12 had a simple mastectomy. Data on type of first surgery was unavailable for 20 patients. The majority of patients underwent further treatment (n=131), of these patients 41 had a simple mastectomy, 50 has a wide local excision, 7 were listed as both wide local excision and simple mastectomy, 14 had a modified radical mastectomy, 2 had an excision biopsy, one biopsy and one microdochectomy. There was no data on the type of subsequent surgery for two patients.

Twenty three patients had a known recurrence more than 3 months (range 108-4363 days) after original diagnosis and surgery.

3.2.2 Histological Assessment of Necrosis and Inflammatory Response.

Histological re-assessment of samples (Chapter 2) provided details of the degree of comedo-type necrosis and of inflammatory response as well as cytonuclear grade and architecture of the DCIS. The histological data frequencies are shown in Table 2. The presence of necrosis was scored as "mild", "moderate" or "marked" where 10% or less of the ducts bearing comedo-type necrosis were defined as a mild degree,

moderate corresponded to approximately 10-50% and marked to 50% or more of ducts exhibiting necrosis (46). Assessment of the presence of inflammation was based on 'routine' categorisation of the degree of chronic inflammatory cell infiltrate adjacent to and/or surrounding the duct spaces bearing DCIS. Previous work in classifying inflammation in DCIS has shown good reproducibility between consultant pathologists in (RM and SEP unpublished data).

		Number of	% (of 180 in TMA
		patients	series)
Mean patient age at diagnosis	72 (range 22-90)		
(range)	166	92	
Size of DCIS (mm)	Average 14	.9	
	Median 14	.9 168	93
	Range 1.0 - 31	.0	
Dominant architecture	Solid 74 (4	3)	
n (%)	Cribriform 69 (4	.0)	97
	Micropapillary 18 (1)	0) 174	
	Papillary 13 (7	7)	
Side	Left 92 (58	3)	
n (%)	Right 68 (4)	2) 160	89
Cytonuclear grade	High 103 (60))	
n (%)	Intermediate 57 (33	3) 173	96
	Low 13 (7)		
Invasive Recurrence	Yes 18 (13	3)	
n (%)	No 140 (87	7) 161	91
Invasive			
Recurrence	Ipsilateral 9 (50))	
Site	Bilateral 1 (6)) 18	10
n (%)	Unknown side 8 (44	l)	
Invasive Recurrence Grade	High 8 (77	·)	
n (%)	Intermediate 3 (23	3) 11	7
	Low 0 (0)		
DCIS Recurrence	2 (10	00) 2	1
DCIS Recurrence Site	Ipsilateral 1 (5	0)	0.5
	Unknown side 1 (5	0)	0.5

Table 2: Patient Demographics and Histological Details.

DCIS Recurrence Grade	High	2 (100)	2	1
New Lesion (contralateral)		3	3	2

3.2.3 Immunohistochemical Experiments

Tissue sections from the manufactured in-house TMAs (Chapter 2) were cut at $4\mu m$ and dried overnight at 37 °C before being baked at 57 °C for two hours prior to IHC staining. Immunohistochemical staining, using antibodies raised against oestrogen receptor (ER) clone 6F11 (Leica, Newcastle, UK), progesterone receptor (PR) clone 636 (Dako, Ely, UK), HER2 (Oracle kit, Leica, Newcastle, UK) cytokeratin 5/6 (CK5/6) clone D5/16 B4 (Dako, Ely, UK), cytokeratin 5 (CK5) clone XM26 (Leica, Newcastle, UK), cytokeratin 14 (CK14) clone NCL-CK14 (Leica, Newcastle, UK), Ki67 (clone MIB1) (Dako, Ely, UK), MCM2 -clone NCL-MCM2 (Leica, Newcastle ,UK) and epidermal growth factor receptor (EGFR) clone 384 (Leica, Newcastle, UK), was performed. All TMAs were stained in triplicate to reduce the loss of data due to core loss and ensure sufficient cells were available for assessment. Sections were stained using a two-step compact polymer chain biotin free IHC protocol using a 3-3'diaminobenzindine chromogen on the BondMax[™] Leica automated staining system. HER2 tests were carried out on the same system using the HER2 Oracle kit (Leica, Newcastle, UK). All slides underwent blocking for endogenous peroxidase and a haematoxylin counterstain prior to coverslipping in an organic medium. Antigen retrieval was undertaken for each antibody according to manufacturer's recommendations. All slides were stained alongside appropriate known positive control sections for quality control purposes. ER and PR status was previously recorded for some of the cases in this study, however due to changes in IHC methodology and improvements in antibody clones it was determined that repeat would be undertaken for all. Appendix 4 lists reagents and protocols for immunohistochemical staining.

3.3 Hormone Receptors

3.3.1 Oestrogen Receptor Structure and Function

Oestrogens are steroidal sex hormones involved in a large number of physiological processes (106). They have a major effect on the female reproductive system, including ovulation, pregnancy, childbirth and lactation (106). They are also involved in the cardiovascular system, immune response, central nervous system and bone growth (106). Many of the physiological actions of oestrogen are mediated via binding to the oestrogen receptor (ER) (106-108).

ER is a ligand-activated intracellular transcription factor responsible for the biological effects of oestrogen via gene regulatory pathways (109-111). ER belongs to a groups of proteins known as the nuclear hormone receptor (NHR) superfamily which includes progesterone (PR), testosterone and vitamins A and D (111). There are two identified isoforms, ER α and ER β , coded for by the genes ESR1 (located 6q24-q27) and ESR2 (located 14q21-q22). These isoforms have 95% amino acid homology (110). ER protein structure (Figure 18) consists of a variable N terminal domain containing an activation domain, AF1, followed by a DNA binding domain (DBD). The DBD is linked to a variable hinged region connected to a ligand binding domain (LBD). The LBD contains a second activation domain AF2. The activation domains regulate the transcriptional activity of ER (110, 112). The DBD allows the ER to bind to specific DNA loci within the nucleus, known as oestrogen response elements (EREs), due to the presence of two highly conserved zinc fingers distinct to the NHR superfamily. The variable hinged region of ER is a flexible region of the protein and acts as a

nuclear localisation signal connecting the DBD and LBD (110). The LBD acts as a "molecular switch" which, upon binding the hormone oestrogen, becomes transcriptionally active (112, 113). ER α and ER β binding of 17 β estradiol (E2) via the EREs and the transcriptional activation has been designated the classic pathway of oestrogen action (114). The binding of E2 to the receptor results in conformational changes leading to dimerisation with coactivator or corepressor molecules which regulate downstream physiological responses (115).

Figure 18: Structure and Functional Domains of ER

3.3.2 Oestrogen Receptor and Breast Cancer

Unlike most of the NHR superfamily, oestrogen receptor (ER) (and androgen receptor (AR)) have the ability to stimulate cellular proliferation and are essential for the normal development of the female breast during puberty and pregnancy (116). However, it is this very ability that, when aberrations occur, can lead to tumourigenesis and uncontrolled proliferation. The exact mechanism of how the ER/E2 complex initiates cellular proliferation remains elusive.

IHC expression of ER status is a weak prognostic marker of independent clinical outcome but a strong predictive marker of response to therapy in invasive breast cancer (117). Approximately 60-70% of breast cancers in women under 50 years and 80% of breast cancers in women over 50 are ER positive (118). Unlike many IHC markers, ER is used clinically to help determine the likelihood of response to endocrine therapy for patients with invasive breast cancer, which can be in the form of antagonists that directly block the receptor pathway (Tamoxifen) or indirect blocking such as the aromatase inhibitors which prevent conversion of androgens to oestrogen (119).

3.3.3 The Oestrogen Receptor and Ductal Carcinoma in Situ

The expression of oestrogen receptor in DCIS may have important implications for the treatment of precursor lesions, with some studies showing ER, PR and HER2 predict an increased risk of local recurrence (120, 121). Up to 80% of DCIS lesions are ER positive. (122). However, treatment of DCIS with anti-oestrogen therapy such as Tamoxifen has not shown an overall decrease in mortality (54). Randomised trials by the National Surgical Adjuvant Breast and Bowel Project (NSABP) have demonstrated a reduction of incidence of both invasive breast cancer and DCIS with Tamoxifen treatment for women aged over 35 recognised to be at increased risk of developing breast cancer (123).

3.3.4 Progesterone Receptor

Progesterone receptor (PR) is another member of the steroid receptor superfamily important for growth and development in the breast and female genital tract. PR expression is induced by oestrogen, and is thought to be an indicator of an intact ER pathway. Thus, PR positivity may be an adjunct to prediction of response to oestrogen related therapies (118). PR is also often advocated as an IHC marker where a possible false negative ER result is suspected (118). It has been shown that some ER+ PR- invasive breast tumours have a reduced response to tamoxifen compared to ER+ PR+ tumours, however the exact mechanism as to how both oestrogen and progesterone interact is not known (118, 119, 124). Tamoxifen therapy induces a greater drop in PR than ER levels, with some lesions losing PR expression completely; this may be one mechanism in the development of acquired tamoxifen resistance and a poorer overall survival (OS) in patients with invasive breast cancer (124). The ATAC trial (125) studied the response of ER positive breast disease treated with tamoxifen or anastrozole (arimidex) alone or in combination. Results from this study showed that patients treated with anastrozole had prolonged disease free survival, time to recurrence, distant metastases and contralateral breast cancers after
five years compared to tamoxifen (125). These findings were also reported in a long term follow up of the ATC trial after 10 years (126).

3.4 Epidermal Growth Factor Receptors

3.4.1 Epidermal Growth Factor Receptor Structure and Function.

The epidermal growth factor receptor (EGFR) or ErbB family of tyrosine kinases (phosphorylation enzymes) comprises four related transmembrane proteins (HER1 to HER4) that can form oligomers, usually in the form of a homo-dimers or heterodimers (127). The HER family of proteins acts as conduits for the activation of intracellular signalling pathways from extracellular signals (128). All four of the HER proteins are characterised by an extracellular ligand binding domain, a transmembrane domain and an intracellular tyrosine kinase domain (128). Crystollographic studies by Burgess et al (129) defined the structure and ligand induced dimerization, however the exact kinetic mechanisms remained elusive. Zhang et al (130) elucidated, through further crystallographic & mutational analysis, that the allosteric mechanism was similar to CDK2/cyclin A activation, where the C-terminal lobe of one kinase interacts with the N terminal of the adjacent kinase. The Erb family of proteins plays key roles in mediating the cellular proliferation of cells, differentiation, metabolism and motility (131).

The *HER2* gene was first identified in human breast cancer by King et al in 1985. Also known as ErbB2 (referring to both human and rodent gene), "*HER2*" refers to the human gene and protein and not the rodent (128). Unlike HER1, HER3 and HER4, HER2 does not bind specific ligands but relies on hetero-dimerisation, with one of the other ligand-bound HER proteins (132) (Figure 19).

Figure 19: EGFR Structure. DOI: http://dx.doi.org/10.7554/eLife.00708.003 reproduced through Creative Commons Attribution license: original image from reference (132)

The overexpression of both HER1 (EGFR) and HER2 (C-erbB2) has been implicated in many solid tumours, including bladder, breast, colon and lung cancers (127, 133, 134).

EGFR (HER1) has been shown to be expressed in the basal-like invasive breast tumours and in some DCIS (127, 134) and is one of the targets currently under investigation for monoclonal antibody therapy with drugs such as erlotinib, cetuximab, and lapatanib in invasive breast cancer (135, 136). There are a several antibodies commercially available for the immunohistochemical assessment of EGFR. Although membrane reactivity is regarded as 'positive' for EGFR, significant staining variation between antibodies exists (unpublished data) and there is yet to be a defined pathological scoring system such as the HER2 scoring system for this antibody.

In breast cancer HER2 overexpression is present in between 15-25% of invasive lesions. Although associated with a poorer prognosis overall, targeted therapy, for

example with the drug trastuzumab (Herceptin), is available (137) and widely recommended and effective for patients with HER2 positive invasive breast cancer.

3.5 Proliferation Markers

3.5.1 Introduction

Deregulated proliferation is one of the hallmarks of the cancerous state (138). In order for a tumour to grow and infiltrate surrounding tissues, the ability for a neoplastic cell to replicate is essential for the progression of a lesion. Several IHC markers have been established as indicators of proliferation, and have found use in both the research and diagnostic laboratory setting. In this study, Ki67and the minichromosome maintenance protein 2 (MCM2) have been selected as suitable indicators of proliferation.

3.5.2 Ki-67

Ki-67 is an established marker for the assessment of cellular proliferation (139). First used to show proliferative activity in frozen or freeze-dried sections of human lung tissue (140) it is one of the most utilised biomarkers in cancer research. A Pubmed enquiry in 2015 using the search criteria "Ki-67 & cancer" yields over 15,000 articles, a search for Ki-67 alone yields over 19,000. The large number of articles belies the fact that the exact function of this protein is still not fully understood and there is a relative paucity of papers looking at Ki-67 structure and function (139). However, it is almost universally accepted that Ki-67 protein expression is essential for the cell cycle (139). Removal of phosphorylated Ki67 from cells using antisense nucleotides prevents cell cycling (141). Loss or inhibition of Ki67 results in ribosomal RNA synthesis inhibition (142). Ki67 is expressed during all stages of the cell cycle, G1, G2, S and mitosis, however, it is not expressed in G0 (143).

3.5.2.1 Ki-67 nomenclature

The Ki-67 antigen is known to be a large protein and is referred to as Ki67 protein, as opposed to the original antibody, raised against the protein which is referred to as the Ki67 antibody. This antibody was the prototype for other Ki67 antibodies raised to different epitopes on this large molecule and was produced by immunizing mice with nuclei from a Hodgkin lymphoma cell line (L428) (139, 141). These include the clone MIB1 (Molecular Immunology Borstel), MIB5 and TEC-3. The name Ki-67 originates from the city of discovery (Kiel) and the position in a 96 well plate of the original clone (139).

3.5.2.2 The Structure and Function of Ki-67

Ki-67 has 2 prominent forms detectable at the protein level (Figure 20), a 395kDa and a 320kDa protein encoded by nearly 30,00 base pairs (141). Schulter et al (144) published the cDNA sequence encoding for the Ki-67 protein in 1993 identifying 2 spliced isoforms of mRNA (modifications of the RNA transcript by removing introns and introducing exons) which differed by the absence in one region encoded by exon 7. They also describe a series of 366 base pair "Ki67 repeat" elements in a 6,845 base pair exon located centrally within the antigen. This exon (138) is one of the largest mammalian exons known. They concluded that Ki-67 has no known homology with other known amino acid sequences and it is a short-lived category of cell cycle associated nuclear non-histone protein. Further studies by Hofmann and Butcher identified a forkhead associated domain (FHA) in Ki67 as well as other unrelated proteins found in yeast, bacteria and mammals but all believed to be involved in DNA repair, synthesis or cell cycle regulation (145). The Ki-67 protein contains 143 protein kinase C, 89 casein kinase II and 2 tyrosine kinases (protein kinases phosphorylate serine, threonine, tyrosine, or histidine residues to modify a protein function) (139). Analysis of the amino acid sequence has led to the prediction of ten nuclear targeting

signals, which may explain why Ki-67 is only found in the nuclei during interphase (139, 146-148).

Figure 20: Ki-67: Protein structure 1R-21-1-120 (human) A & 2AFF-1-120 (human) B. Images courtesy of RCSB PDB rendering based on 1r21.en.wikipedia.org

Despite the fact that Ki-67 has been described, and used in immunohistochemical studies, for over thirty years the exact function remains elusive as do its possible interactions with other cell cycle markers. There are several possible explanations why Ki67 function is difficult to elucidate. Scholzen et al suggest that its large size and susceptibility to proteolytic cleavage make biochemical assays difficult. Secondly, they cite the lack of similarity to other proteins makes study of this molecule with standard methods difficult. To date there is no definitive explanation of Ki-67 function. Although believed to be expressed solely in the active proliferative phases of cell cycling (G_1 , G_2 , S and mitoses) there is some evidence that Ki67 can be detected in quiescent cells (G_0) and has a possible role in RNA transcription (149) and RNA synthesis (142).

3.5.2.3 Ki-67 as a Biological Marker in Cancer

There have been many studies showing that Ki67 assessment has prognostic value in invasive cancer. Brown and Gatter's review in 2002 showed a total of 23 papers

examining Ki67 in breast cancer alone as having an independent prognostic value (141). A Pubmed search on the 26th April 2015 for "Ki-67, breast cancer and independent prognostic factor" yielded over 160 journal articles citing Ki67 alone, or in combination with other markers, having potential value as a prognostic marker. More recently, the focus has been on the use of Ki67 as a predictive factor (i.e. in selection of response to therapy) with Darb-Esfahani al reporting that Ki67 can be utilised as an independent predictor of response to anthracycline/taxane-based neoadjuvant chemotherapy regardless of invasive tumour type (150) although Jones et al found no association with Ki67 and clinical response (151). Other studies have reported that changes in Ki67 level are a valuable predictor of response to hormone therapy. Finally, groups, such as Cheang et al, have used a Ki67 Index in association HER2 and ER to define/classify the luminal B subgroup of invasive breast cancer using immunohistochemistry (152).

3.5.2.4 Ki67 and Ductal Carcinoma in Situ

In DCIS, Ki67 expression in conjunction with COX-2 and p16 expression, has been suggested to be an important factor and associated with an increased risk of developing subsequent invasive disease (120). Altinas et al examined a range of biological markers, including Ki67, as possible predictors of local recurrence and no found evidence that Ki67 alone or in conjunction with other markers was significant (153).

However, much of the data on Ki67 and definition of sub-groups for comparison with outcome has been undertaken on invasive disease. Zhou et al used Ki67 with a cut-off of >14% to distinguish positive cases to assign subgroups in invasive disease. Those with >14% were defined luminal A and those with <14% were defined as luminal B/HER2 negative (as defined by the St Gallen International Expert Consensus from Cheang's publication (145), although they found no significant prognostic value in their cohort (97). Ruiz et al (154) compared three molecular classification

subgroups, finding that only the classification including Ki67 as a marker improved prediction of overall survival in invasive disease.

3.5.3 Mini Chromosome Maintenance Proteins

3.5.3.1 The Structure and Function of Mini Chromosome Maintenance Proteins

Unlike Ki67, the structure and function of the Mini Chromosome Maintenance (MCM) proteins are well understood. A review by Bochman & Schwacha in 2009 (155) references 280 articles on MCM structure and function in both archaeal and eukaryotic forms. For the purpose of this thesis, information on eukaryotic MCM function is given.

MCM proteins are essential components of DNA replication in the cell cycle (156). Several gene variants exist encoding for the proteins MCM2 to MCM7, which are required to establish a pre-replication complex prior to cellular division. MCM2, MCM3 and MCM5 were first discovered in the yeast Schizosaccharomyces cerevisiae (157), followed by the discovery of MCM4, MCM7 and cell division mutations (155). MCM6 was discovered in Schizosaccharomyces pombe in 1994 (158). Further studies on Xenopus Laevis (African clawed frog) identified that all six proteins (MCM2 to MCM7) were required to couple to DNA for replication to occur (155, 159). In eukaryotic cells, all six cell cycle related MCMs have a similar 250 amino acid region encoding for ATPases. ATPases, also known as AAA proteins, are a diverse group of proteins with a wide range of functions acting as DNA helicases and proteases (155).

MCM proteins form ring-like structures to incorporate ATP binding and enable hydrolysis to alter DNA within the central circle or channel of the ring-like structure and perform helicase activity, unwinding the DNA and forming replication forks (160). The MCM2 to MCM7 helicase structure is essential for initiation and elongation of double stranded DNA (155).

The activation of MCMs from an inactive form to an enzymatic helicase requires the recruitment of several protein cofactors. This includes, but may not be exclusive of, proteins Cdt1, Cdc6, MCM10, geminin and the kinase Cdc7-Dbf4 (161). During G_1 inactive MCM proteins are transported by Cdt1 protein to the origin of replication site where cells undergo "licensing" for replication by a group of six polypeptides, known as the origin recognition complex1-6 (ORC1-6)(162). ORC1-6 is a heterohexameric protein complex which binds proteins Cdt1 and Cdc6 (162, 163) followed by the binding of MCMs thus forming a heterohexamer pre-replication complex (Figure 22). The binding of MCMs requires the presence of ORC1-6 and Cdc6, which provide ATP hydrolysis and thus the energy for this active process (155, 164). Once the MCMs are bound to DNA ORC1-6 and Cdc6 are disassociated from the complex. In S phase of the cell cycle, cyclin dependent kinases (CDKS) promote the formation of DNA replication forks and possibly the initiation of MCM function (155). MCMs demonstrate a helicase activity responsible for the unwinding of the DNA helix prior to replication (165). Once the pre-replication complex has loaded, DNA polymerases are recruited and DNA replication ensues. Sanchez-Berrondo et al (166) demonstrated in Bacillus cereus MCMs bind DNA and not only act as a helicase but also function as a primase and a polymerase.

Once replication has occurred, MCMs are inactivated by phosphorylation, leading to their dissociation from the pre-replicative complex thus limiting replication to once per cell cycle (Figure 22).

Figure 21: Examples of a Hexameric Helicase Protein Structure for DNA replication. (Image courtesy of *http://www.ebi.ac.uk/*)

Figure 22: MCM Proteins in the Cell Cycle

(Creative Commons Attribution-Share Alike 3.0 Unported license, author: Azackta1 2013)

3.5.3.2 Minichromosome Maintenance Proteins and Cancer

Previous studies examining MCM2 and MCM5 have shown them as potential alternatives to Ki67 for assessment of proliferation in invasive cancer (167-170). Some have shown MCMs to be independent prognostic markers in invasive breast cancer (171, 172) although MCM expression correlates with Ki67 expression and histological grade (173). The deregulation of MCMs 2-7 has been shown to be an early event in tumourigenesis, both in actively cycling cells and, unlike Ki67, non-proliferating cells that have the potential to enter the cell cycle (167, 170, 174-178). To date, there are only two studies examining the relationship between precursors of invasive breast cancer and MCM2 (179, 180). Reena et al (179) advocate MCM2 as a reliable proliferation marker in DCIS, whilst Nasir et el (180) included MCM2 in a panel alongside TOP2A and BUB1B as "potential molecular biomarkers of malignancy in histologically normal and benign breast tissues".

3.6 Basal Markers

3.6.1 Cytokeratins 5, 6 and 14

Basal epithelial cells were traditionally described as cells adjacent to the basement membrane (181). However, since Moll's work on cytokeratins (182), the term has become synonymous with those cells expressing the high molecular weight cytokeratins, 5 and 14 and 17 (CK5, CK14, CK17). The term 'basal cell' is often incorrectly applied to myoepithelial cells although the expression of these cytokeratins is not solely confined to myoepithelial cells (183). This has led to a dual meaning for the term basal, which can now refer to either myoepithelial cells or cells expressing "basal" cytokeratins, and is further complicated by the term basal-like breast cancer, which is a molecular phenotype. Basal-like breast tumours are often triple negative (i.e. tumours negative for ER, PR and HER2) and a significant proportion of the triple

negative carcinomas express CK5, 14 or 17. However, the two terms are not synonymous, with some triple negative tumours lacking basal marker expression and occasional basal like tumours being positive for hormone receptors or HER2. Triple negative invasive tumours have a poorer prognosis that many other types of breast carcinoma, with no targeted therapy currently available (86, 184). Thus accurate identification of the premalignant stage could be beneficial in the early identification of these difficult to manage lesions, without the need for adjuvant systemic treatments. In the context of this study, the immunohistochemical expression of one or more of CK5, 5/6 and 14 and / or EGFR is used to define basal breast carcinoma (BBC) as a pathological entity.

3.7 Scoring of Antibody Markers in Immunohistochemical Studies

5.7 TMA slides with immunohistochemical stains were independently scored by a consultant breast pathologist (SEP) and the author (JPB). Original Excel TMA maps and scores are given in Appendix 2: Excel TMA Maps and IHC Scores

TMA block	DCIS TMA								
number	location	ER Average	PR	HER2	EGFR	СК5/6	CK14	KI67	MCM2
DCIS 15A	A1	0	0	0	0	0	1	1	0

DCIS 15A	A2	0	0	0	0	0	0	x	0
DCIS 15A	A4	2	0	0	0	x	10	1	0
DCIS 15A	A5	0	0	1	3	0	5	40	10
DCIS 15A	B1	x	x	x	0	x	x	x	x
DCIS 15A	B3	0	0	0	3	0	0	10	40
DCIS 15A	B4	0	0	0	0	0	0	30	x
DCIS 15A	B5	2	0	0	1	0	0	15	30
DCIS 15A	C2	5	0	0	0	0	0	5	5
DCIS 15A	C3	1	0	1	2	0	0	5	5
DCIS 15A	C4	5	7	2	0	0	0	1	1
DCIS 15A	C5	8	8	0	0	0	0	0	2
DCIS 15A	D1	x	x	x	x	x	x	x	x
DCIS 15A	D2	x	x	х	x	х	х	х	х
DCIS 15A	D3	0	x	x	x	x	x	x	x
DCIS 15A	D4	x	x	х	x	х	х	х	х
DCIS 15A	E1	2	x	x	x	x	x	x	х
DCIS 15A	E2	0	0	0	0	0	x	0	5
DCIS 15A	E3	5	x	x	x	x	x	x	х
DCIS 15A	E4	8	x	0	0	0	0	1	1
DCIS 16A	A1	0	x	x	x	x	x	x	x
	INVASIVE								
TMA block	TUMOUR			HER2	EGFR				
number	location	ER (Allred)	PR (Allred)	(HER2)	(HER2)	CK5/6 (%)	CK14 (%)	KI67 (%)	MCM
DCIS 16A	A2	8	5	х	0	0	0	1	3
DCIS 16A	A4	7	0	3	0	0	0	1	5

DCIS 16A	A5	2	4	2	0	0	0	0	0
DCIS 16A	B1	3	x	х	x	x	х	x	x
DCIS 16A	B3	5	8	2	0	0	0	2	5
DCIS 16A	B4	1	x	х	x	0	0	x	x
DCIS 16A	B5	4	0	0	x	0	0	20	45
DCIS 16A	C2	5	8	2	х	0	0	10	25
DCIS 16A	C3	4	0	1	3	0	0	25	30
DCIS 16A	C4	2	0	0	1	0	0	10	25
DCIS 16A	C5	4	0	3	1	0	0	5	35
DCIS 16A	D1	0	0	0	0	0	0	15	40
DCIS 16A	D2	3	x	х	х	x	х	х	х
DCIS 16A	D3	5	x	х	х	x	Х	х	х
DCIS 16A	D4	5	8	0	0	0	0	x	х
DCIS 16A	E1	5	0	х	x	0	0	10	10
DCIS 16A	E2	1	x	3	0	0	0	x	х
DCIS 16A	E3	4	0	3	0	0	0	10	30
DCIS 16A	E4	2	0	2	1	1	0	2	10
DCIS 16A	E5	x	0	х	2	0	0	3	35
INV T 15	A1	0	0	0	3	15	0	8	8
INV T 15	A2	0	0	0	3	0	0	5	2
INV T 15	A4	0	0	0	3	60	95	4	53
INV T 15	A5	0	0	1	3	0	0	50	17
	INVASIVE								
TMA block	TUMOUR			HER2	EGFR				
number	location	ER (Allred)	PR (Allred)	(HER2)	(HER2)	CK5/6 (%)	CK14 (%)	KI67 (%)	MCM

-									
INV T 15	A6	0	0	2	3	0	20	30	17
INV T 15	A7	0	0	0	3	0	100	10	37
INV T 15	B1	0	0	0	0	0	0	50	17
INV T 15	B3	4	0	х	2	0	25	20	15
INV T 15	B4	6	0	1	2	0	0	20	7
INV T 15	B5	8	6	0	0	0	0	3	1
INV T 15	B6	8	7	2	0	0	0	15	5
INV T 15	B7	8	8	0	0	0	0	0	0
INV T 15	C2	8	7	1	0	0	0	15	5
INV T 15	C3	8	8	1	0	0	0	4	1
INV T 15	C4	3	0	0	1	0	0	x	Х
INV T 15	C5	8	0	3	1	0	0	5	2
INV T 15	C6	4	0	0	3	0	0	20	7
INV T 15	C7	6	0	0	3	0	0	5	2
INV T 15	D1	8	8	3	0	0	0	8	3
INV T 15	D2	8	7	0	0	0	0	5	2
INV T 15	D3	7	8	2	1	0	0	4	1
INV T 15	D4	8	6	0	1	0	0	3	1
INV T 15	D6	8	6	1	1	0	0	4	1
INV T 15	D7	8	0	3	0	0	0	4	1
INV T 15	E1	8	7	0	0	0	0	0	0
INV T 15	E2	8	8	0	0	0	0	4	1
INV T 15	E3	7	0	3	0	0	0	5	Х
INV T 15	E4	6	0	0	1	0	80	30	37

	INVASIVE								
TMA block	TUMOUR			HER2	EGFR				
number	location	ER (Allred)	PR (Allred)	(HER2)	(HER2)	CK5/6 (%)	CK14 (%)	KI67 (%)	MCM
INV T 15	E5	8	8	0	1	0	0	5	2
INV T 15	E6	4	0	0	2	0	0	35	12
INV T 15	E7	0	0	0	2	0	0	20	7
INV T 15	F1	3	0	3	0	0	0	х	х
INV T 15	F2	0	3	0	2	5	4	20	10
INV T 15	F3	8	8	3	0	0	0	8	3
INV T 15	F4	8	8	0	0	0	0	5	2
INV T 15	F5	8	4	0	1	0	0	4	1
INV T 15	F7	8	0	0	0	0	0	5	2
INV T 15	G1	4	0	3	1	0	0	15	5
INV T 15	G2	8	0	3	0	0	0	х	х
INV T 15	G3	3	0	0	2	20	0	25	15
INV T 15	G4	0	0	0	2	10	0	40	17
INV T 15	G6	8	0	2	0	0	0	5	2
INV T 15	G7	4	0	0	3	0	0	12	4

2. ER and PR stained sections were scored according to the Allred method based upon the proportion and staining intensity of tumour nuclei. A score between 0 and 3 is given for intensity of staining and a score of 0-5 for % of cells stained. These two scores are combined to give a score out of eight. At the current time, an Allred score of three or more is regarded as positive in invasive breast carcinoma, with patients with ER positive invasive breast cancers eligible for anti-oestrogen therapy (32).

HER2 and EGFR were scored using the HerceptTest[™] (DAKO, Ely, UK) scoring method, based upon tumour cell membrane staining. The membranous staining of tumour cells is assigned a value of 0-3 with zero being completely negative for staining, one having less than 10% of complete tumour cell membrane staining with faint or barely perceptible staining intensity. A value of two relates to greater than 10% of cells staining with moderate, complete, membrane reactivity and a score of three is assigned when greater than 10% of cells show complete tumour cell membrane staining with strong intensity. Normal breast ducts should be negative and thus act as an internal control to ensure no over-staining has occurred. Where a score 2+ for HER2 is found the result is deemed to be equivocal. For this study chromogenic in-situ hybridisation (CISH) was selected to test those cases of DCIS with HER2 scores of 2+ for genomic amplification of the HER2 gene. Fluorescence in-situ hybridisation (FISH) is a regarded by some authors as being more consistent for identifying HER2 gene amplifications in FFPE tissues (185). However, concordance has been demonstrated between chromogenic in-situ hybridisation (CISH) and FISH (186) and the former does not require a fluorescence microscope or specialist filters. In this Study the "INFORM HER2 Dual ISH DNA Probe Cocktail Assay" (Ventana, Tuscan, USA) was assessed on all cases scoring 2+ using IHC. HER2 gene status is determined by enumeration of the ratio of the HER2 gene to Chromosome 17 with a ratio of HER2 to chromosome 17 of more than 2.00 or copy number of 6 or more indicating gene amplification/HER2 positivity.

Cytokeratins were deemed as staining positively where cytoplasmic and/or membranous staining was present in tumour cells and a semi-quantitative percentage score recorded for the number of tumour cells stained.

Ki67 (MIB1) staining was scored semi-quantitatively as a percentage of positive tumour cell nuclei.

Fourteen TMAs containing 20 cases of DCIS each were stained in triplicate giving a total of 840 cores for assessment for each antibody. The use of large 2.0mm cores gives a greater area than generally deemed representative in the literature, as described above. For this reason for scoring purposes only one core was required to meet the criteria of adequate for inclusion in analysis. Where two or three cores were available either an average or the maximum/highest score was recorded dependent upon the protein under evaluation (see below).

3.7.1 Analysis of differing IHC Scores.

Each antibody had a potential of three TMA cores requiring a score. This could, depending upon tissue heterogeneity, result in different scores for each TMA core per case. This posed a dilemma for analysis. As previously stated, the consensus in the literature indicates that a single core in this study would be regarded as representative but three separate scores in a single case would question this assumption. If variation between cores existed in a single lesion as scored by an individual observer then how should the final score be assigned? Should the highest or an average score of cores available be taken for each antibody?

There are guidelines for ER, PR and HER2 scoring of invasive tumours, with clinical cut-off values relating to suitability for targeted therapy. For ER and PR, the Allred method of scoring was chosen, as it is the recommended scoring system from the UK NHS Breast Screening Program for invasive breast cancer (NHSBSP guidelines

2005) for invasive cancer. For these antibodies the same rationale for scoring was applied to DCIS (Table 3).

The Allred of scoring was chosen, as it is the recommended scoring system from the UK NHS Breast Screening Program for invasive breast cancer (NHSBSP guidelines 2005) for invasive cancer. For these antibodies the same rationale for scoring was applied to DCIS).

Similarly, as the scoring for EGFR mirrored HER2 in terms of pattern, the same cutoff principles were applied. Cut-off values for the basal cytokeratins and Ki67 were harder to determine, with significant variation in the literature (see discussion). For these an average score of all representative cores was taken.

Currently there are limited data on the value of TMAs for setting quantitative relationships or cut-off values to clinical samples and this invariably plays a role in comparison of different series. The International Ki67 in Breast Cancer working group (187) suggest that TMAs should not be used to predict cut-offs, however, the use of 2mm cores as opposed to 0.6mm may somewhat ameliorate any discrepancy between whole sections and TMAs. In this series the median value was chosen as a cut-off due to the lack on consensus for a clinical cut-off value for Ki67 in cases of DCIS.

3.7.2 Inter Observer Variability in Scoring Immunohistochemistry

All cores were independently scored by the two reviewers. Comparison of results between the two reviewers was performed to determine reproducibility. The degree of variance allowed and the best scoring method needed to be defined prior to screening to eliminate any possible bias; the allowances for inter observer variation are given in 4. Scores that differed between individuals greater than the accepted variance underwent joint review by both scorers with a consensus being reached.

Score for proportion	Score for intensity
0 = no staining	0 = no staining
1 = <1% nuclei staining	1 = weak staining
2 = 1-10% nuclei staining	2 = moderate staining
3 = 11-33% nuclei staining	3 = strong staining
4 = 34-66% nuclei staining	
5 = 67-100% nuclei staining	

Table 3: Allred Scoring Method

3.8 Statistical Analysis of Immunohistochemical Scoring

Statistical analyses were performed using the software pakage StatView (SAS Institute Inc. San Francisco, CA). Frequency distrubutions and non parametric univariate analysis was undertaken to compare the expression the biomarkers with each other and with the pathological criteria utilising the Chi-square (χ^2) and Fisher's exact tests as appropriate. Fisher's exact test is suitable for defining a p value where two categorical variables have small values (usually less than 5). Chi- square is used to test for associations between larger values. Frequency distributions and univariate analyses tables are listed in Appendix 5.

- 3.9 Immunohistochemistry Results
 - 3.9.1 Immunohistochemical Scoring

Immunohistochemical results for staining of DCIS are given below (Table 5) with the number of positive and negative stained cases according to the scoring criteria above. Staining frequencies for each antibody are listed in Table 5. Representative images for IHC staining of pure DCIS & CISH for HER2 are seen in Figure 23 to Figure 29 (section 3.9.2) Sections 3.9.3 to 3.9.9 give representative examples of paired univariate analysis for IHC markers and observed frequencies. Appendix 5 lists all other sets.

Antibodies	Scoring Method,	Allowed variance between observers
	recorded score	
ER and PR	Allred (0-8). The	Scores must be within 1 of each other i.e. a
	average of all	score of 7 on one core and 6 or 8 on the others
	cores is taken.	is acceptable.
HER2 and	HER2 score, 0-3.	No variance accepted
EGFR	Highest value is	
	regarded as	
	definitive.	
CKs (5, 5/6,	%, an average of	Variance of 5% is acceptable
14)	scores from the	
	cores is regarded	
	as final result.	
Ki67	%, an average of	Variance of 5% is acceptable
	scores from the	
	cores is regarded	
	as final score.	

Table 4: IHC methods of scoring, of handling differing scores from cores and defined acceptable variation for DCIS immunostaining.

Antibody	Total	Number of	Number of
	Number of	Positive	Negative
	Cases	Cases	Cases
	Stained	(%)	(%)
ER	224	165 (74)	59 (26)
PR	236	113 (48)	123 (52)
HER2	248	57 (23)	191 (77)
EGFR	227	11 (5)	213 (95)
CK5	227	32 (14)	195 (86)
CK5/6	220	69 (31)	151(69)
CK14	231	38 (16)	193 (84)
Ki67	237	136 (57)	101 (43)
MCM2	237	130 (55)	107 (45)

 Table 5: Staining frequencies for immunohistochemical antibody staining.

3.9.2 Immunohistochemical Images

Figure 23: ER staining of DCIS in 2mm TMA core (X40, X200)

Figure 24: PR staining of DCIS in 2mm TMA core (X40, X200)

Figure 25: HER2 staining of DCIS in 2mm TMA core (X100, X200)

Figure 26: EGFR staining of DCIS in 2mmm TMA core (X40, X100, X200)

Figure 27: CK14 staining of DCIS in 2mm TMA core (X40, X200).

[Peripheral myoepithelial cell staining was not included in assessment of the DCIS]

Figure 28: Ki67 staining of DCIS in 2mm TMA core (X40, X200)

Figure 29: CISH for HER2 showing amplification of the *HER*2 Gene in DCIS, 2mm Core (x40, X200)

3.9.3 Non Parametric Tests- Univariate Paired analysis:

Positive univariate paired analyses tables and p-values for ER, PR, HER2, EGFR, Ki67, MCM2, CK5, CK5/6, CK14 and histological parameters are given below (Table 6).

Antibody	HER2	ER	PR	Ki67	Grade	Inflam- mation	Nec- rosis	MCM2	Archit- ecture	CK5/6	CK14	CK5	EGFR
HER2													
ER	<0.000 1												
PR	<0.000 1	<0.000 1											
Ki67	<0.000 1	<0.000 1	<0.000 1										
Grade	0.0001	<0.000 1	0.0006	0.0009									
Inflammatio	<0.000	<0.000	<0.000	<0.000	<0.000								
n	1	1	1	1	1	<0.000							
Necrosis	1	1	0.0013	1	1	1							
MCM2	<0.000 1	0.0032	0.0033	<0.000 1	<0.000 1	0.0003	<0.000 1						
Architecture	0.0003	<0.000 1	0.0011	0.0073	<0.000 1	0.0025	0.0008	0.0098					
CK5/6	0.0041	0.0298	0.0542	0.2279	0.1044	0.0025	0.0515	0.3772	0.006 6				
CK14	0.0037	0.0018	0.2791	0.29	0.115	0.2056	0.042	0.215	0.135 5	<0.000 1			
CK5	0.0443	0.0033	0.2385	0.3305	0.1364	0.0422	0.804	0.4392	0.201 1	<0.000 1	0.0003		
EGFR	0.7324	<0.000 1	0.0008	0.0294	0.0865	0.0126	0.0816	0.0254	0.152 7	>0.999 9	>0.999 9	0.2139	
Ipsilateral Recurrence	>0.999 9	0.2912	0.3666	0.0812	0.3851	0.6047	0.4063	>0.999 9	0.483 4	>0.999 9	0.7327	0.6594	>0.999 9
All Recurrence	0.1952	0.784	>0.999 9	0.4856	0.8452	0.8269	0.8352	0.4938	0.926 6	>0.999 9	0.4113	>0.999 9	>0.999 9

Table 6: Univariate analysis p-values for immunohistochemical and histological

parameters.

3.9.4 Univariate Analysis of Hormone Receptor Immunohistochemistry

Row exclusion: DCIS STATVIEW DAT					
Num. Missing	52				
DF	1				
Chi Square	57.061				
Chi Square P-Value	<.0001				
G-Squared	52.622				
G-Squared P-Value	<.0001				
Contingen cy Coef.	.451				
Phi	.506				
Cty. Cor. Chi Square	54.443				
Cty. Cor. P-Value	<.0001				
Fisher's Exact P-Value	<.0001				

Summary Table for FINAL ER STATUS, FINAL HER2 STATUS Row exclusion: DCIS STAT<u>VIEW DAT</u>ASET

Observed Frequencies for FINAL ER STATUS, FINAL HER2 STATUS Row exclusion: DCIS STATVIEW DATASET

	0	1	Totals
0	23	36	59
1	145	19	164
Totals	168	55	223

Summary Table for FINAL EGFR STATUS, FINAL ER STATUS Row exclusion: DCIS STATUEW DATASET

Num. Missing	60
DF	1
Chi Square	25.989
Chi Square P-Value	<.0001
G-Squared	22.528
G-Squared P-Value	<.0001
Contingen cy Coef.	.328
Phi	.348
Cty. Cor. Chi Square	22.514
Cty. Cor. P-Value	<.0001
Fisher's Exact P-Value	<.0001

Observed Frequencies for FINAL EGFR STATUS, FINAL ER STATUS Row exclusion: DCIS STATVIEW DATASET

	0	1	Totals
0	45	159	204
1	10	1	11
Totals	55	160	215

Table 7: Univariate paired analysis for oestrogen receptor

immnunohistochemistry

Summary Table for FINAL PR STATUS, FINAL HER2 STATUS Row exclusion: DCIS STATVIEW DATASET

Num. Missing	45
DF	1
Chi Square	40.858
Chi Square P-Value	<.0001
G-Squared	45.748
G-Squared P-Value	<.0001
Contingency Coef.	.388
Phi	.421
Cty. Cor. Chi Square	38.915
Cty. Cor. P-Value	<.0001
Fisher's Exact P-Value	<.0001

Observed Frequencies for FINAL PR STATUS, FINAL HER2 STATUS Row exclusion: DCIS STATVIEW DATASET

	0	1	Totals
0	70	50	120
1	104	6	110
Totals	174	56	230

SummaryTable for FINAL EGR STATUS, FINAL PR STATUS Row exclusion: DCIS STATVIEW DATASET

Num. Missing	57
DF	1
Chi Square	10.764
Chi Square P-Value	.0010
G-Squared	•
G-Squared P-Value	•
Contingency Coef.	.217
Phi	.222
Cty. Cor. Chi Square	8.829
Cty. Cor. P-Value	.0030
Fisher's Exact P-Value	.0008

Observed Freque ncies for FINAL EGFR STATUS, FINAL PR STATUS Row exclusion: DCIS STATVIEW DATASET

	0	1	Totals
0	102	105	207
1	11	0	11
Totals	113	105	218

Table 8: Univariate paired analysis for progesterone receptor immunohistochemistry. The majority of DCIS cases were positive for hormone receptors (ER n=165, PR n=144- Table 7Table 8). For ER status there was an inverse correlation (p=0.001) with both EGFR and HER2 (Table 9); ER positive DCIS was associated with a negative EGFR and/or HER2 status. All PR positive cases were also ER positive (n=102 Table 10) There was an inverse correlation for CK5 and CK14 and ER with 90% (n=147) and 88% (n=142) of ER positive cases being CK5 and CK14 negative respectively (Table 12). Few cases were negative for both ER and proliferation markers (ER-ve + Ki67-ve n=8 Table 13 and ER-ve MCM –ve n=15

Table 14) All low grade DCIS (n=9) was ER positive (6% of all graded cases) and 82% (n=46) of intermediate grade DCIS (n=50) was ER positive (34% of all graded cases; Table 15). High grade DCIS (n=90) made up 60% of cases and 61% (n=55) of these lesions were ER positive (p<0.0001). ER positive cases were more likely to have cribriform (n=55) or solid (n=38) architecture (Table 16). ER status did not predict the likelihood of recurrence of either DCIS or invasive disease (p=0.784; Table 20).

	ER -ve	ER +ve	Total
HER2 -	23	145	168
ve			
HER2	36	19	55
+ve			
Total	59	164	223

Table 9: Univariate analyses for ER and HER2 IHC: Fishers exact test p value < 0.0001

	ER -ve	ER +ve	Total
PR -ve	56	55	111
PR +ve	0	102	102
Total	56	157	213

Table 10: Univariate analysis for ER and PR IHC; Fishers exact test p value < 0.0001

	ER -ve	ER +ve	Total
CK5 -ve	41	147	188
CK5 +ve	15	16	31
Total	56	163	219

Table 11: Univariate analyses for ER and CK5 IHC; Fishers exact test p value = 0.0033.

	ER -ve	ER +ve	Total
CK14 -ve	40	142	182
CK14	18	19	37
+ve			
Total	58	161	219

Table 12: Univariate analyses for ER and CK14 IHC; Fishers exact test p value = 0.0018.

	ER -ve	ER +ve	Total
Ki67 -ve	8	78	86
Ki67+ve	51	79	130
Total	59	157	216

Table 13: Univariate analyses for ER and Ki67 (>5%) IHC; Fishers exact test p value <0.0001

	ER -ve	ER +ve	Total
MCM2 -	15	77	92
ve			
MCM2+ve	44	83	127
Total	59	160	219

Table 14: Univariate analysis for ER and MCM2; (>5%) IHC Fishers exact test p value = 0.0032

	ER -ve	ER +ve	Total
HG	35	55	90
IG	4	46	50
LG	0	9	9
Total	39	110	149

Table 15: Univariate analyses for ER and Histological Grade; ER; Chi Square p value <0.0001

	ER -ve	ER +ve	Total
Crib	5	55	60
Micropap	7	6	13
Рар	1	11	12
Solid	26	38	64
Total	39	110	149

Table 16: Univariate analyses for ER IHC and Histological Architecture; Chi square p Value < 0.0001

3.9.5 Univariate Analysis for HER2 Immunohistochemistry

Now CACINGION. DOID OT AT VIEW DATA		
Num. Missing	50	
DF	1	
Chi Square	.050	
Chi Square P-Value	.8229	
G-Squared	.049	
G-Squared P-Value	.8249	
Contingency Coef.	.015	
Phi	.015	
Cty. Cor. Chi Square	0.000	
Cty. Cor. P-Value	>.9999	
Fisher's Exact P-Value	.7324	

Summary Table for FINAL HER2 STATUS, FINAL EGFR STATUS Row exclusion: DCIS STATVIEW DATASET

Observed Frequencies for FINAL HER2 STATUS, FINAL EGFR STATUS Row exclusion: DCIS STATVIEW DATASET

	0	1	Totals
0	162	8	170
1	52	3	55
Totals	214	11	225

Summary Table for FINAL HER2 STATUS, FINAL ER STATUS Row exclusion: DCIS STATVIEW DATASET

Num. Missing	52
DF	1
Chi Square	57.061
Chi Square P-Value	<.0001
G-Squared	52.622
G-Squared P-Value	<.0001
Contingency Coef.	.451
Phi	.506
Cty. Cor. Chi Square	54.443
Cty. Cor. P-Value	<.0001
Fisher's Exact P-Value	<.0001

Observed Frequencies for FINAL HER2 STATUS, FINAL ER STATUS Row exclusion: DCIS STATVIEW DATASET

	0	1	Totals
0	23	145	168
1	36	19	55
Totals	59	164	223

Table 17: Univariate paired analysis for HER2 immunohistochmistry.

A total of 248 cases had HER2 IHC results (Table 17), of these 23% (n=57) were HER2 positive. This included 5% (n=13) of the 2+ cases on IHC (n=47) which were subsequently shown to show *HER2* gene amplification by CISH. Of the HER2 positive cases 9% (n=19) were also ER positive. 24% (n=39) of patients for whom clinical data was available (n=161) had HER2 positive DCIS. Of these HER2 positive cases 28% (n=11) were also ER positive (p<0.0001) 13% (n=5) was of intermediate grade (p=0.0001). Of note, 4 of the 5 cases of intermediate grade DCIS which were HER2 positive Were also ER positive (80%). There were no low grade HER2 positive DCIS cases. A significant p value was given between HER2 positivity and architectural pattern (p=0.0003), the presence of necrosis (p=0.0001) and chronic inflammation (p<0.001). None of the 11 HER2/ER positive cases had an invasive recurrence, 45% (n=5) underwent mastectomy as a result of the DCIS diagnosis and 3 had recurrent DCIS in the same year. Three cases of DCIS were both HER2 and EGFR positive 7%, all had a simple mastectomy.

3.9.6 Univariate Analysis for Proliferation Marker Immunohistochemistry

NOW EXClusion. Doio OTATVILW DAT		
Num. Missing	43	
DF	1	
Chi Square	15.451	
Chi Square P-Value	<.0001	
G-Squared	16.560	
G-Squared P-Value	<.0001	
Contingen cy Coef.	.250	
Phi	.258	
Cty. Cor. Chi Square	14.255	
Cty. Cor. P-Value	.0002	
Fisher's Exact P-Value	<.0001	

Summary Table for FINAL KI67 (AT MEDIAN, 5%), FINAL HER2 STATUS Row exclusion: DCIS STATVIEW DATASET

Observed Frequencies for FINAL KI67 (AT MEDIAN, 5%), FINAL HER2 STATUS Row exclusion: DCIS STATVIEW DATASET

	0	1	Totals
0	87	11	98
1	89	45	134
Totals	176	56	232

Summary Table for FINAL EGFR STATUS, FINAL KI67 (AT MEDIAN, 5%) Row exclusion: DCIS STATVIEW DATASET

Num. Missing	53
DF	1
Chi Square	4.869
Chi Square P-Value	.0273
G-Squared	5.872
G-Squared P-Value	.0154
Contingency Coef.	.146
Phi	.148
Cty. Cor. Chi Square	3.580
Cty. Cor. P-Value	.0585
Fisher's Exact P-Value	.0294

Observed Frequencies for FINAL EGFR STATUS, FINAL KI67 (AT MEDIAN, 5%) Row exclusion: DCIS STATVIEW DATASET

	0	1	Totals
0	90	121	211
1	1	10	11
Totals	91	131	222

Summary Table for FINAL MCM2 (AT MEDIAN, 27.5%), FINAL HER2 STATUS Row exclusion: DCIS STATVIEW DATASET

Num. Missing	39
DF	1
Chi Square	19.314
Chi Square P-Value	<.0001
G-Squared	20.682
G-Squared P-Value	<.0001
Contingency Coef.	.275
Phi	.286
Cty. Cor. Chi Square	17.992
Cty. Cor. P-Value	<.0001
Fisher's Exact P-Value	<.0001

Observed Frequencies for FINAL MCM2 (AT MEDIAN, 27.5%), FINAL HER2 STATUS Row exclusion: DCIS STATVIEW DATASET

	0	1	Totals
0	94	11	105
1	85	46	131
Totals	179	57	236

Summary Table for FINAL EGFR STATUS, FINAL MCM2 (AT MEDIAN, 27.5%) Row exclusion: DCIS STATVIEW DATASET

Num. Missing	50
DF	1
Chi Square	5.588
Chi Square P-Value	.0181
G-Squared	6.671
G-Squared P-Value	.0098
Contingency Coef.	.156
Phi	.158
Cty. Cor. Chi Square	4.217
Cty. Cor. P-Value	.0400
Fisher's Exact P-Value	.0254

Observed Frequencies for FINAL EGFR STATUS, FINAL MCM2 (AT MEDIAN, 27.5%) Row exclusion: DCIS STATVIEW DATASET

	0	1	Totals
0	97	117	214
1	1	10	11
Totals	98	127	225

Table 18: Univariate Analysis of Proliferation Marker Immunohistochemistry.

The proliferation markers examined (Table 18), Ki67 and MCM2, were both scored as positive when >5% of DCIS cells showed nuclear positivity, which corresponded to the median value for Ki67. 91% (n=78) of Ki67 negative cases were positive for ER. Only 4% (n=8) of cases were negative for both Ki67 and ER (p=<0.0001).

The association between PR and Ki67 was similar to ER and Ki67; 16% (n=36) cases were negative for both PR and Ki67 (p<0.0001). If one of these markers was positive the other was most likely to be negative. MCM2 and ER showed a similar profile to Ki67 and ER, with 7% (n=15) of cases negative for both markers and 75% (n=44) of ER negative cases being MCM2 positive (p=0.0032). Similar to Ki67 and PR, 18% (n=42) of DCIS cases were negative for both PR and MCM2, whilst cases tended to be positive for one of these markers and negative for the other (p=0.0033)

3.9.7 Univariate Analysis for Cytokeratin Immunohistochemistry

Num. Mssing	49	
DF	1	
Chi Square	5.022	
Chi Square P-Value	.0250	
G-Squared	4.594	
G-Squared P-Value	.0321	
Contingen cy Coef.	.147	
Phi	.149	
Cty. Cor. Chi Square	4.081	
Cty. Cor. P-Value	.0434	
Fisher's Exact P-Value	.0443	

Summary Table for FINAL CK5 (AT 1 %), FINAL HER2 STATUS Row exclusion: DCIS STATVIEW DATASET

Observed Frequencies for FINAL CK5 (AT 1%), FINAL HER2 STATUS Row exclusion: DCIS STATVIEW DATASET

	0	1	Totals
0	151	43	194
1	19	13	32
Totals	170	56	226

Summary Table for FINAL EGFR STATUS, FINAL CK5 (AT 1%) Row exclusion: DCIS STATVIEW DATASET

Num. Missing	60
DF	1
Chi Square	1.405
Chi Square P-Value	.2360
G-Squared	1.190
G-Squared P-Value	.2754
Contingen cy Coef.	.081
Phi	.081
Cty. Cor. Chi Square	.566
Cty. Cor. P-Value	.4518
Fisher's Exact P-Value	.2139

Observed Frequencies for FINAL EGFR STATUS, FINAL CK5 (AT 1%) Row exclusion: DCIS STATVIEW DATASET

	0	1	Totals
0	175	29	204
1	8	3	11
Totals	183	32	215
Summary Table for FINAL CK5/6 (AT 1%), FINAL HER2 STATUS Row exclusion: DCIS STATVIEW DATASET

Numer Manaima	
Num. Wissing	58
DF	1
Chi Square	8.863
Chi Square P-Value	.0029
G-Squared	8.507
G-Squared P-Value	.0035
Contingen cy Coef.	.198
Phi	.202
Cty. Cor. Chi Square	7.892
Cty. Cor. P-Value	.0050
Fisher's Exact P-Value	.0041

Observed Frequencies for FINAL CK5/6 (AT 1%), FINAL HER2 STATUS Row exclusion: DCIS STATVIEW DATASET

	0	1	Totals
0	120	28	148
1	43	26	69
Totals	163	54	217

Summary Table for FINAL EGFR STATUS, FINAL CK5/6 (AT 1%) Row exclusion: DCIS STATVIEW DATASET

Num. Missing	62
DF	1
Chi Square	.139
Chi Square P-Value	.7094
G-Squared	.143
G-Squared P-Value	.7053
Contingen cy Coef.	.026
Phi	.026
Cty. Cor. Chi Square	.002
Cty. Cor. P-Value	.9653
Fisher's Exact P-Value	>.9999

Observed Frequencies for FINAL EGFR STATUS, FINAL CK5/6 (AT 1%) Row exclusion: DCIS STATVIEW DATASET

Summary Table for FINAL CK14 (AT 1 %), FINAL HER2 STATUS Row exclusion: DCIS STATVIEW DATASET

Num. Missing	47
DF	1
Chi Square	9.474
Chi Square P-Value	.0021
G-Squared	8.599
G-Squared P-Value	.0034
Contingency Coef.	.200
Phi	.204
Cty. Cor. Chi Square	8.253
Cty. Cor. P-Value	.0041
Fisher's Exact P-Value	.0037

Observed Frequencies for FINAL CK14 (AT 1%), FINAL HER2 STATUS Row exclusion: DCIS STATVIEW DATASET

	0	1	Totals
0	150	40	190
1	21	17	38
Totals	171	57	228

Summary Table for FINAL EGFR STATUS, FINAL CK14 (AT 1 %) Row exclusion: DCIS STATVIEW DATASET

Num. Missing	55
DF	1
Chi Square	.007
Chi Square P-Value	.9348
G-Squared	.007
G-Squared P-Value	.9352
Contingen cy Coef.	.006
Phi	.006
Cty. Cor. Chi Square	0.000
Cty. Cor. P-Value	>.9999
Fisher's Exact P-Value	>.9999

Observed Frequencies for FINAL EGFR STATUS, FINAL CK14 (AT 1%) Row exclusion: DCIS STATVIEW DATASET

	0	1	Totals
0	173	36	209
1	9	2	11
Totals	182	38	220

Table 19: Paired univariate analysis for CK immunohistochemistry.

The frequency of expression of CK5 and CK5/6 was distinctly different; 31% of cases were positive for CK5/6 (n=69) compared to only 14% for CK5 (n=32)(Table 19). Few cases showed EGFR positivity (n=11, 5%); 3 EGFR positive cases were also either CK5/6 or CK5 positive and 2 cases exhibited both CK14 and EGFR positivity.

Of the basal cytokeratin markers, CK14 (p=0.0018) and CK5 (p=0.0033) demonstrated an inverse relationship with ER but no significant association between CK5/6 (p=0.298) and ER was seen. Over 90% of EGFR positive cases were ER negative and over 99% of ER positive cases were EGFR negative (p<0.0001). All but one case of EGFR positive DCIS was positive for both proliferation markers Ki67 (p=0.0294) and MCM2 (p=0.0254) EGFR positive DCIS was of higher cytonuclear grade and was more likely to have solid architecture with comedo-type necrosis and associated chronic inflammation present.

3.9.8 Univariate Analysis and Recurrence of DCIS and/or Invasive Breast Disease

Univariate paired analyses were carried out for all antibodies to determine any significant correlation with recurrence (Table 20).

Summary Table for REC Y/N, FINAL HER2 STATUS Row exclusion: DCIS STATVIEW DATASET

Num. Missing	121
DF	1
Chi Square	2.156
Chi Square P-Value	.1420
G-Squared	2.426
G-Squared P-Value	.1194
Contingen cy Coef.	.118
Phi	.118
Cty. Cor. Chi Square	1.461
Cty. Cor. P-Value	.2268
Fisher's Exact P-Value	.1952

Observed Frequencies for REC Y/N, FINAL HER2 STATUS Row exclusion: DCIS STATVIEW DATASET

	0	1	Totals
Ν	95	36	131
Y	20	3	23
Totals	115	39	154

Summary Table for FINAL EGFR STATUS, REC Y/N Row exclusion: DCIS STATVIEW DATASET

Num. Missing	130
DF	1
Chi Square	.084
Chi Square P-Value	.7723
G-Squared	.080
G-Squared P-Value	.7773
Contingency Coef.	.024
Phi	.024
Cty. Cor. Chi Square	0.000
Cty. Cor. P-Value	>.9999
Fisher's Exact P-Value	.6738

Observed Frequencies for FINAL EGFR STATUS, REC Y/N Row exclusion: DCIS STATVIEW DATASET

	N	Y	Totals
0	114	20	134
1	9	2	11
Totals	123	22	145

Summary Table for FINAL ER STATUS, REC Y/N Row exclusion: DCIS STATVIEW DATASET

Num. Missing	135
DF	1
Chi Square	.152
Chi Square P-Value	.6971
G-Squared	.148
G-Squared P-Value	.7002
Contingency Coef.	.033
Phi	.033
Cty. Cor. Chi Square	.013
Cty. Cor. P-Value	.9092
Fisher's Exact P-Value	.7840

Observed Frequencies for FINAL ER STATUS, REC Y/N Row exclusion: DCIS STATVIEW DATASET

	N	Y	Totals
0	33	6	39
1	88	13	101
Totals	121	19	140

Summary Table for FINAL PR STATUS, REC Y/N Row exclusion: DCIS STATVIEW DATASET

Num. Missing	125
DF	1
Chi Square	.004
Chi Square P-Value	.94 89
G-Squared	.004
G-Squared P-Value	.94 89
ContingencyCoef.	.005
Phi	.005
Cty. Cor. Chi Square	0.000
Cty. Cor. P-Value	>.9999
Fisher's Exact P-Value	>.9999

Observed Frequencies for FINAL PR STATUS, REC Y/N Row exclusion: DCIS STATVIEW DATASET

	N	Y	Totals
0	64	10	74
1	66	10	76
Totals	130	20	150

Summary Table for FINAL CK5 (AT 1%), REC Y/N Row exclusion: DCIS STATVIEW DATASET

Num. Missing	130
DF	1
Chi Square	.005
Chi Square P-Value	.9436
G-Squared	.005
G-Squared P-Value	.9438
Contingency Coef.	.006
Phi	.006
Cty. Cor. Chi Square	0.000
Cty. Cor. P-Value	>.9999
Fisher's Exact P-Value	>.9999

Observed Frequencies for FINAL CK5 (AT 1%), REC Y/N Row exclusion: DCIS STATVIEW DATASET

	N	Y	Totals
0	107	17	124
1	18	3	21
Totals	125	20	145

Summary Table for FINAL CK5/6 (AT 1%), REC Y/N Row exclusion: DCIS STATVIEW DATASET

Num. Missing	133
DF	1
Chi Square	.061
Chi Square P-Value	.8050
G-Squared	.062
G-Squared P-Value	.8039
Contingency Coef.	.021
Phi	.021
Cty. Cor. Chi Square	0.000
Cty. Cor. P-Value	>.9999
Fisher's Exact P-Value	>.9999

Observed Frequencies for FINAL CK5/6 (AT 1%), REC Y/N Row exclusion: DCIS STATVIEW DATASET

	N	<u>Y</u>	Totals
0	82	14	96
1	40	6	46
Totals	122	20	142

Summary Table for FINAL CK14 (AT 1%), REC Y/N Row exclusion: DCIS STATVIEW DATASET

Num. Missing	126
DF	1
Chi Square	.941
Chi Square P-Value	.3321
G-Squared	1.028
G-Squared P-Value	.3106
Contingency Coef.	.079
Phi	.079
Cty. Cor. Chi Square	.477
Cty. Cor. P-Value	.4898
Fisher's Exact P-Value	.4113

Observed Frequencies for FINAL CK14 (AT 1%), REC Y/N Row exclusion: DCIS STATVIEW DATASET

	<u> </u>	Y	Totals
0	98	19	117
1	29	3	32
Totals	127	22	149

Summary Table for FINAL KI67 (AT MEDIAN, 5%), REC Y/N Row exclusion: DCIS STATVIEW DATASET

Num. Missing	128
DF	1
Chi Square	.632
Chi Square P-Value	.4267
G-Squared	.646
G-Squared P-Value	.4214
Contingen cy Coef.	.065
Phi	.066
Cty. Cor. Chi Square	.314
Cty. Cor. P-Value	.5755
Fisher's Exact P-Value	.4856

Observed Frequencies for FINAL KI67 (AT MEDIAN, 5%), REC Y/N Row exclusion: DCIS STATVIEW DATASET

	N	Y	Totals
0	51	7	58
1	74	15	89
Totals	125	22	147

Summary Table for FINAL MCM2 (AT MEDIAN, 27.5%), REC Y/N Row exclusion: DCIS STATVIEW DATASET

Num. Missing	124
DF	1
Chi Square	.508
Chi Square P-Value	.4761
G-Squared	.504
G-Squared P-Value	.4778
Contingen cy Coef.	.058
Phi	.058
Cty. Cor. Chi Square	.232
Cty. Cor. P-Value	.6303
Fisher's Exact P-Value	.4938

Observed Frequencies for FINAL MCM2 (AT MEDIAN, 27.5%), REC Y/N Row exclusion: DCIS STATVIEW DATASET

	<u> </u>	Y	Totals
0	54	11	65
1	75	11	86
Totals	129	22	151

Summary Table for GRADE, REC Y/N Row exclusion: DCIS STATVIEW DATASET

Num. Missing	118
DF	2
Chi Square	.336
Chi Square P-Value	.8452
G-Squared	.370
G-Squared P-Value	.8310
Contingency Coef.	.046
Cramer's V	.046

Observed Frequencies for GRADE, REC Y/N Row exclusion: DCIS STATVIEW DATASET

	<u> N</u>	Y	Totals
HG	78	13	91
IG	47	7	54
LG	11	1	12
Totals	136	21	157

Summary Table for ARCH, REC Y/N Row exclusion: DCIS STATVIEW DATASET

118 3 .465 .9266 .439

> .054 .054

Num. Missing	118
DF	3
Chi Square	.465
Chi Square P-Value	.9266
G-Squared	.439
G-Squared P-Value	.9322
Contingen cy Coef.	.054
Cramer's V	.054

Observed Frequencies for ARCH, REC Y/N
Row exclusion: DCIS STATVIEW DATASET

	<u>N</u>	Y	Totals
CRIB	56	8	64
MICROPAP	14	3	17
PAP	10	2	12
SOLID	56	8	64
Totals	136	21	157

Summary Table for NECROSIS, REC Y/N Row exclusion: DCIS STATVIEW DATASET

Num. Missing	118	
DF	3	
Chi Square	.860	
Chi Square P-Value	.8352	
G-Squared	.914	
G-Squared P-Value	.8219	
Contingency Coef.	.074	
Cramer's V	.074	

Observed Frequencies for NECROSIS, REC Y/N Row exclusion: DCIS STATVIEW DATASET

	<u>N</u>	Y	Totals
MARKED	35	6	41
MILD	39	4	43
MOD	29	5	34
NONE	33	6	39
Totals	136	21	157

Summary Table for CI, REC Y/N Row exclusion: DCIS STATVIEW DATASET

Num. Missing	120
DF	3
Chi Square	.894
Chi Square P-Value	.8269
G-Squared	.947
G-Squared P-Value	.8142
Contingency Coef.	.076
Cramer's V	.076

Observed Frequencies for CI, REC Y/N Row exclusion: DCIS STATVIEW DATASET

	<u>N</u>	Y	Totals
MARKED	32	3	35
MILD	47	7	54
MOD	29	5	34
NONE	27	5	32
Totals	135	20	155

Summary Table for REC Y/N, SIZE RECODED AT MEDIAN (15) Row exclusion: DCIS STATVIEW DATASET

Num. Missing	125
DF	1
Chi Square	.853
Chi Square P-Value	.3556
G-Squared	.854
G-Squared P-Value	.3553
Contingen cy Coef.	.075
Phi	.075
Cty. Cor. Chi Square	.460
Cty. Cor. P-Value	.4977
Fisher's Exact P-Value	.4625

Observed Frequencies for REC Y/N, SIZE RECODED AT MEDIAN (15) Row exclusion: DCIS STATVIEW DATASET

	LESS THAN MEDIAN	MEDIAN (15) OR MORE	Totals
Ν	61	70	131
Y	11	8	19
Totals	72	78	150

Summary Table for AGE RECODED AT 50, REC Y/N Row exclusion: DCIS STATVIEW DATASET

Num. Missing	121
DF	1
Chi Square	.414
Chi Square P-Value	.5201
G-Squared	.402
G-Squared P-Value	.5261
Contingen cy Coef.	.052
Phi	.052
Cty. Cor. Chi Square	.156
Cty. Cor. P-Value	.6924
Fisher's Exact P-Value	.6208

Observed Frequencies for AGE RECODED AT 50, REC Y/N Row exclusion: DCIS STATVIEW DATASET

	N	Y	Totals
AGE 50 OR LESS	35	8	43
MORE THAN 50	95	16	111
Totals	130	24	154

Summary Table for LUMINAL A, REC Y/N Row exclusion: DCIS STATVIEW DATASET

Num. Missing	138
DF	1
Chi Square	.052
Chi Square P-Value	.8204
G-Squared	.052
G-Squared P-Value	.8204
Contingency Coef.	.019
Phi	.019
Cty. Cor. Chi Square	0.000
Cty. Cor. P-Value	>.9999
Fisher's Exact P-Value	>.9999

Observed Frequencies for LUMINAL A, REC Y/N Row exclusion: DCIS STATVIEW DATASET

	N	Y	Totals
0	60	8	68
1	60	9	69
Totals	120	17	137

Summary Table for LUMINAL B, REC Y/N Row exclusion: DCIS STATVIEW DATASET

Num. Missing	131
DF	1
Chi Square	1.042
Chi Square P-Value	.3073
G-Squared	1.177
G-Squared P-Value	.2780
Contingency Coef.	.085
Phi	.085
Cty. Cor. Chi Square	.500
Cty. Cor. P-Value	.4797
Fisher's Exact P-Value	.5290

Observed Frequencies for LUMINAL B, REC Y/N Row exclusion: DCIS STATVIEW DATASET

	N	Y	Totals
0	99	16	115
1	27	2	29
Totals	126	18	144

Summary Table for HER2 GROUP, REC Y/N Row exclusion: DCIS STATVIEW DATASET

Num. Missing	135
DF	1
Chi Square	.173
Chi Square P-Value	.6778
G-Squared	.180
G-Squared P-Value	.6713
Contingency Coef.	.035
Phi	.035
Cty. Cor. Chi Square	.011
Cty. Cor. P-Value	.9182
Fisher's Exact P-Value	>.9999

Observed Frequencies for HER2 GROUP, REC Y/N Row exclusion: DCIS STATVIEW DATASET

	N	Y	Totals
0	97	16	113
1	24	3	27
Totals	121	19	140

Summary Table for LUMINAL-HER2, REC Y/N Row exclusion: DCIS STATVIEW DATASET

Num. Missing	135
DF	1
Chi Square	1.875
Chi Square P-Value	.1710
G-Squared	•
G-Squared P-Value	•
Contingency Coef.	.115
Phi	.116
Cty. Cor. Chi Square	.829
Cty. Cor. P-Value	.3625
Fisher's Exact P-Value	.3605

Observed Frequencies for LUMINAL-HER2, REC Y/N Row exclusion: DCIS STATVIEW DATASET

	N	Y	Totals
0	110	19	129
1	11	0	11
Totals	121	19	140

Summary Table for BASAL-LIKE GROUP, REC Y/N Row exclusion: DCIS STATVIEW DATASET

Num. Missing	136
DF	1
Chi Square	.181
Chi Square P-Value	.6709
G-Squared	.187
G-Squared P-Value	.6658
Contingen cy Coef.	.036
Phi	.036
Cty. Cor. Chi Square	.020
Cty. Cor. P-Value	.8863
Fisher's Exact P-Value	.7830

Observed Frequencies for BASAL-LIKE GROUP, REC Y/N Row exclusion: DCIS STATVIEW DATASET

	N	Y	Totals
0	90	16	106
1	29	4	33
Totals	119	20	139

Summary Table for LUMINAL B1, REC Y/N Row exclusion: DCIS STATVIEW DATASET

Num. Missing	141
DF	1
Chi Square	.085
Chi Square P-Value	.77 05
G-Squared	.084
G-Squared P-Value	.77 16
Contingen cy Coef.	.025
Phi	.025
Cty. Cor. Chi Square	.001
Cty. Cor. P-Value	.97 80
Fisher's Exact P-Value	.7955

Observed Frequencies for LUMINAL B1, REC Y/N Row exclusion: DCIS STATVIEW DATASET

	<u>N</u>	Y	Totals
0	75	11	86
1	41	7	48
Totals	116	18	134

Summary Table for LUMINAL A1, REC Y/N Row exclusion: DCIS STATVIEW DATASET

Num. Missing	141
DF	1
Chi Square	.486
Chi Square P-Value	.4856
G-Squared	.502
G-Squared P-Value	.47 87
Contingen cy Coef.	.060
Phi	.060
Cty. Cor. Chi Square	.186
Cty. Cor. P-Value	.66 59
Fisher's Exact P-Value	.60 04

Observed Frequencies for LUMINAL A1, REC Y/N Row exclusion: DCIS STATVIEW DATASET

	<u> N</u>	Y	Totals
0	74	13	87
1	42	5	47
Totals	116	18	134

3.9.9 Histological Grade in DCIS

Immunohistochemical expression of all markers in this study was compared to histological grade to determine any correlation between grade and specific markers. Table 21 gives the number of positive and negative cases expressing IHC markers in relation to cytonuclear grade.

	High Grade (n)	High Grade (% of total)	Intermediate Grade (n)	Intermediate Grade (% of total)	Low Grade (n)	Low Grade (% of total)	Total (n)
ER -ve	35	90	4	10	0	0	39
ER +ve	55	50	46	42	9	8	110
Total	90		50		9		149
PR -ve	54	70	23	30	0	0	77
PR +ve	37	46	33	41	10	13	80
Total	91		56		10		157
EGFR -ve	81	57	53	37	8	6	142
EGFR +ve	10	91	1	9	0	0	11
Total	91		54		8		153
HER2 -ve	60	49	51	41	12	10	123
HER2 +ve	33	87	5	13	0	0	38
Total	93		56		12		161
Ki67 low	26	42	28	45	8	13	62
Ki67 high	65	71	24	26	3	3	92
Total	91		52		11		154
MCM2 low	28	39	36	51	7	10	71
MCM2 high	66	76	17	20	4	5	87
Total	94		53		11		158
CK5 -ve	73	57	46	36	10	8	129
CK5 +ve	17	77	5	23	0	0	22
Total	90		51		10		151
CK5/6 -ve	56	54	42	41	5	5	103
CK5/6 +ve	34	72	11	23	2	4	47
Total	90		53		7		150
CK14 -ve	69	55	49	39	7	6	125
CK14 +ve	23	74	6	19	2	6	31
Total	92		55		9		156

Table 21: Biomarker expression by cytonuclear grade of DCIS.

Paired univariate analysis between the immunohistochemical markers and histological parameters such as cytonuclear grade, comedo type necrosis, chronic inflammation was undertaken to determine any correlations (Table 22).

Summ ary Table	for GRADE,	FINAL HER2	STATUS
Row exclusion:	DCIS STAT	VIEW DATAS	ET

Num. Missing	114
DF	2
Chi Square	17.675
Chi Square P-Value	.0001
G-Squared	•
G-Squared P-Value	•
Contingency Coef.	.315
Cramer's V	.331

Observed Frequencies for GRADE, FINAL HER2 STATUS Row exclusion: DCIS STATVIEW DATASET

	0	1	Totals
HG	60	33	93
IG	51	5	56
LG	12	0	12
Totals	123	38	161

Summary Table for FINAL EGFR STATUS, GRADE Row exclusion: DCIS STATVIEW DATASET

Num. Missing	122
DF	2
Chi Square	4.894
Chi Square P-Value	.0865
G-Squared	•
G-Squared P-Value	•
Contingency Coef.	.176
Cramer's V	.179

Observed Frequencies for FINAL EGFR STATUS, GRADE Row exclusion: DCIS STATVIEW DATASET

	HG	IG	LG	Totals
0	81	53	8	142
1	10	1	0	11
Totals	91	54	8	153

Summary Table for FINAL ER STATUS, GRADE Row exclusion: DCIS STATVIEW DATASET

Num. Missing	126
DF	2
Chi Square	19.267
Chi Square P-Value	<.0001
G-Squared	•
G-Squared P-Value	•
Contingency Coef.	.338
Cramer's V	.360

Observed Frequencies for FINAL ER STATUS, GRADE Row exclusion: DCIS STATVIEW DATASET

	HG	IG	LG	Totals
0	35	4	0	39
1	55	46	9	110
Totals	90	50	9	149

Summary Table for FINAL PR STATUS, GRADE Row exclusion: DCIS STATVIEW DATASET

Num. Missing	118
DF	2
Chi Square	14.910
Chi Square P-Value	.00 06
G-Squared	•
G-Squared P-Value	•
Contingency Coef.	.294
Cramer's V	.308

Observed Frequencies for FINAL PR STATUS, GRADE Row exclusion: DCIS STATVIEW DATASET

	HG	IG	LG	Totals
0	54	23	0	77
1	37	33	10	80
Totals	91	56	10	157

Summary Table for FINAL CK5 (AT 1 %), GRADE Row exclusion: DCIS STATVIEW DATASET

Num. Missing	124
DF	2
Chi Square	3.985
Chi Square P-Value	.1364
G-Squared	•
G-Squared P-Value	•
Contingency Coef.	.160
Cramer's V	.162

Observed Frequencies for FINAL CK5 (AT 1%), GRADE Row exclusion: DCIS STATVIEW DATASET

	HG	IG	LG	Totals
0	73	46	10	129
1	17	5	0	22
Totals	90	51	10	151

Summary Table for FINAL CK5/6 (AT 1%), GRADE Row exclusion: DCIS STATVIEW DATASET

Num. Missing	125
DF	2
Chi Square	4.519
Chi Square P-Value	.1044
G-Squared	4.680
G-Squared P-Value	.0963
Contingency Coef.	.171
Cramer's V	.174

Observed Frequencies for FINAL CK5/6 (AT 1%), GRADE Row exclusion: DCIS STATVIEW DATASET

Summary Table for FINAL CK14 (AT 1 %), GRADE Row exclusion: DCIS STATVIEW DATASET

Num. Missing	119
DF	2
Chi Square	4.325
Chi Square P-Value	.1150
G-Squared	4.658
G-Squared P-Value	.0974
Contingen cy Coef.	.164
Cramer's V	.167

Observed Frequencies for FINAL CK14 (AT 1%), GRADE Row exclusion: DCIS STATVIEW DATASET

	HG	IG	LG	Totals
0	69	49	7	125
1	23	6	2	31
Totals	92	55	9	156

Summary Table for FINAL KI67 (AT MEDIAN, 5%), GRADE Row exclusion: DCIS STATVIEW DATASET

Num. Missing	121
DF	2
Chi Square	13.981
Chi Square P-Value	.00 09
G-Squared	14.052
G-Squared P-Value	.00 09
Contingency Coef.	.288
Cramer's V	.301

Observed Frequencies for FINAL KI67 (AT MEDIAN, 5%), GRADE Row exclusion: DCIS STATVIEW DATASET

	HG	IG	LG	Totals
0	26	28	8	62
1	65	24	3	92
Totals	91	52	11	154

Summary Table for FINAL MCM2 (AT MEDIAN, 27.5%), GRADE Row exclusion: DCIS STATVIEW DATASET

Num. Missing	117
DF	2
Chi Square	21.592
Chi Square P-Value	<.0001
G-Squared	21.981
G-Squared P-Value	<.0001
Contingency Coef.	.347
Cramer's V	.370

Observed Frequencies for FINAL MCM2 (AT MEDIAN, 27.5%), GRADE Row exclusion: DCIS STATVIEW DATASET

	HG	IG	LG	Totals
0	28	36	7	71
1	66	17	4	87
Totals	94	53	11	158

Summary Table for ARCH, GRADE Row exclusion: DCIS STATVIEW DATASET

Num. Missing	106
DF	6
Chi Square	47.715
Chi Square P-Value	<.0001
G-Squared	•
G-Squared P-Value	•
ContingencyCoef.	.469
Cramer's V	.376

Observed Frequencies for ARCH, GRADE Row exclusion: DCIS STATVIEW DATASET

	HG	IG	LG	Totals
CRIB	25	33	10	68
MICROPAP	11	4	3	18
PAP	3	10	0	13
SOLID	59	11	0	70
Totals	98	58	13	169

Summary Table for NECROSIS, GRADE Row exclusion: DCIS STATVIEW_DATASET

Num. Missing	106	
DF	6	
Chi Square	69.559	
Chi Square P-Value	<.0001	
G-Squared	•	
G-Squared P-Value	•	
Contingen cy Coef.	.540	
Cramer's V	.454	

Observed Frequencies for NECROSIS, GRADE Row exclusion: DCIS STATVIEW DATASET

	HG	IG	LG	Totals
MARKED	39	3	0	42
MILD	22	24	1	47
MOD	28	10	0	38
NONE	9	21	12	42
Totals	98	58	13	169

Summary Table for CI, GRADE Row exclusion: DCIS STATVIEW DATASET

Num. Missing	108	
DF	6	
Chi Square	50.846	
Chi Square P-Value	<.0001	
G-Squared	•	
G-Squared P-Value	•	
Contingency Coef.	.483	
Cramer's V	.390	

Observed Frequencies for CI, GRADE Row exclusion: DCIS STATVIEW DATASET

	HG	IG	LG	Totals
MARKED	37	0	0	37
MILD	27	28	4	59
MOD	24	11	1	36
NONE	10	17	8	35
Totals	98	56	13	167

Table 22: Paired Univariate Analysis for Histological Grade.

3.9.10 Assignation of Molecular Subtypes to DCIS

3.9.10.1 Molecular Subgrouping of DCIS

Surrogate molecular subgroups (76) were assigned to the pure DCIS cohort using the criteria in Table 23. These groups broadly correlate to the five molecular subtypes proposed by Perou et al. A subgroup which was both HER2 and ER positive was also identified within the series and categorised as luminal/HER2.

DCIS subgroup	IHC Expression Pattern	Number of Cases	% of Cases
Luminal A	ER +		
	PR+	103	38
	HER2 -		
Luminal B	ER +		
	PR-	55	20
	HER2 -		
HER2	ER –		
	HER2 +	47	17
Basal-like	EGFR+ and/or CK5,		
	CK5/6, CK14+	50	18
Luminal HER2	ER +		
	HER2 +	20	7

Table 23: Definitions for Surrogate Molecular Subgroups for DCIS:

Additionally, the expression of Ki67 was examined in the ER positive and HER2 negative DCIS cases in order to define luminal A and luminal B according to proliferation rate (Table 24). Subgroups of luminal A1 and luminal B1 were defined as ER positive, Ki67 low and ER positive, Ki67 high respectively, in addition to the alternative method of defining cases according to ER and PR status, i.e. ER positive,

PR positive as luminal A and ER positive, PR negative as luminal B. Table 24 gives details of numbers of ER positive cases as assigned by high or low Ki67 expression.

Group	Definition	No. Cases	% of
		(TMA total n = 280,	assessable
		relevant (ER+) cases	Cases
		n= 158)	
	ER+		
Luminal A1	Ki67 low (<5% tumour	78	49
	cells)		
	ER +		
Luminal B1	Ki67 high (>5% tumour	80	51
	cells)		

Table 24: Subgrouping of ER positive DCIS with Ki67 expression; cut-off defined at median, 5%.

3.10 Immunophenotypic Subtypes of DCIS and Recurrence

Three HER2 positive (HER2 group) cases recurred (n=47; 6.4%) and three of the basal-like group (n=50; 6%) had a recurrence (Table 20). In this cohort of pure DCIS the luminal A group (n=103), as defined above, showed no association with recurrence; nine of the recurrent cases belonged to the luminal A group. Only one of the recurrent cases was found in the luminal B group (n=55).

For ER positive cases (n=95), 51% (n=48) had high Ki67 expression. High Ki67 status resulted in a 19% (n=18) shift from the luminal A (ER positive but low proliferation, defined as A1) to the luminal B1 (ER positive but high proliferation, defined as B1) group. In this series, seven of the luminal B1 group and four of the luminal A1 had a

recurrence. Overall, cases of DCIS that were ER and PR positive had a higher incidence of recurrence than cases which were ER positive with high Ki67 expression. In our series 74% of DCIS are ER positive. Approximately 70-80% of invasive ductal carcinomas of no special type (NOS) are ER positive according to the literature (188). This is related to cytonuclear grade of DCIS in the present series (p value < 0.001); 61% of high grade cases (HG) are ER positive (n=90), 92% of intermediate grade (IG) (n=50) and 100% of low grade (LG) DCIS are ER positive n=9). Previous studies have demonstrated variation in ER expression in high grade DCIS, ranging from 31.8% (189), 69% (190) to 72% (191).

3.11 Discussion

The genomic profiling of invasive breast cancers has revealed subtypes of invasive breast cancer, namely luminal A, luminal B, HER2, basal, normal and (subsequently) null. A search of the literature (Pubmed in 2014: search criteria; DCIS + molecular subtype, DCIS + IHC, DCIS + basal, DCIS + luminal, DCIS + phenotype) has yielded a small number of studies that examine the possibility of using IHC as a surrogate for genetic profiling to classify DCIS in a similar manner. To date only a few (82, 192) of these have taken a comparative approach by assigning the genetic molecular profile to samples then assessing the corresponding IHC as opposed to simply assigning groups by IHC expression alone.

In this series immunohistochemistry (IHC) on "pure" DCIS was performed to ascertain if any potential marker or markers could be identified as a biological indicator of known progression to either a recurrence of DCIS or invasive disease. However, no association or predictor has been found for recurrence of DCIS with any of ER, PR, HER2, EGFR or the basal cytokeratins 5, 5/6 or 14, high or low expression of proliferative markers in univariate analysis. Unsurprisingly, a correlation is seen between cytonuclear grade increased expression of proliferative markers (Ki67 and MCM2), which largely mirrors findings in invasive breast carcinoma.

None of the IHC biomarkers evaluated in this cohort were significantly associated with recurrence of disease, although this may be due to the small numbers of patients in this series who suffered with recurrence. Additionally, the cohort for this study was based upon patients diagnosed with DCIS between 1995 and 2006 with 50% (n=71) of patients undergoing a mastectomy within 65 days of original histology report. Thomas et al (193) examined data from the Sloane Project, currently the largest prospective audit on DCIS. Examination of over 8000 cases indicates that mastectomy rates dropped to 26% between April 2003 and March 2012 with more women undergoing breast conserving surgery (BCS). They also highlight the significant degree of practice variation between institutions affecting patient outcome. These differences in practice should be considered when looking at data sets from an individual institution.

Molecular profiling of *invasive* breast carcinomas gives subgroup frequencies of luminal A - 40%, luminal B - 20%, HER2 - 10-15% and basal-like - 15-20%. (76, 82, 194, 195). In this series of DCIS the subgroup frequencies for DCIS as determined by IHC profiling were luminal A - 37%, luminal B - 20%, HER2 - 17%, luminal/HER2 - 7% and basal-like - 18%, indicating an essentially similar frequency between the invasive carcinoma immunosub-types and that seen in DCIS.

There is, however, no consensus agreement on assigning sub-type based on IHC panels for invasive disease, and this has not been satisfactorily addressed for DCIS. Whilst there is a increase in the frequency of HER2 positive DCIS compared to invasive breast carcinoma, 7% of these would be assigned to the luminal A group based on the surrogate panels suggested by some authors (82, 196, 197). In this cohort these patients are designated to a small group that is positive for both HER2 and ER as thus as luminal/HER2.

Other studies have looked at the possibility of using IHC as a method of classifying DCIS, either to define potential molecular subtypes (86, 196-199) or specifically to identify a sub-set of basal-like DCIS, or to predict outcome or recurrence. Tamimi et al (200) identified subgroups in both invasive breast carcinomas (n=2897) and DCIS (n=272) noting that the luminal A group was more prevalent in the invasive cohort, whilst the HER2 and luminal B groups had a higher incidence in DCIS. Zhou et al (198) identified a basal-like subtype of DCIS with an increased risk of recurrence of disease. They constructed TMAs from 485 cases of primary DCIS found in Swedish women between 1986 and 2004. Using IHC markers (ER, PR, HER2, CK5/6 and EGFR) as surrogates for genomic profiling they defined groups as triple negative, non-triple negative and basal-like. Results for 392 women were available. Basal-like DCIS in their series (n=32) had a higher risk of local recurrence with hazard ratio (HR) of 1.8 (Confidence interval (CI) 95% 0.8 - 4.2) and also invasive risk recurrence of 1.9 (CI 0.7 - 5.1) but these results were not statistically significant. They found no significantly increased risk of recurrence of disease for patients with triple negative DCIS.

Meijenen et al (196) evaluated 16 IHC markers identifying six (ER, PR, androgen receptor, Bcl2, HER2 and p53) which they suggested were suitable for defining DCIS into two major groups, luminal and non-luminal, and 5 subgroups. They also noted that intermediate grade DCIS had more IHC similarities to well differentiated than poorly differentiated disease. Clark et al (197) also classified DCIS into molecular subgroups with IHC, suggesting a role for BCL2 as a possible identifier for good prognosis. Overall, therefore the present, and other, studies show that it is possible to identify differences between cases of DCIS using panels of IHC markers. Such markers show correlations with each other and with features of known clinico-pathological relevance and can be combined into sub-groups equivalent to those in invasive breast cancer. However, no individual marker, or combination, shows a

strong association with recurrence of disease and thus to be of significant clinical value at this time.

Few studies have looked directly at genomic and IHC parameters in the same lesions, either invasive or in situ. Nielsen et al (82) studied invasive breast carcinoma with both IHC and genomic profiling and identified a concordant set of basal-like tumours using four IHC markers (HER2, EGFR, CK5/6 and ER). In the present series we have defined a basal-like group by utilising three basal cytokeratin antibodies (CK14, CK5 and CK5/6) in addition to EGFR, ER, PR and HER2, but we note that the frequencies of expression of CK5/6 and CK5 showed distinct disparity. This highlights one of the concerns in the definition of molecular subtypes using IHC; the variability of clones and the interpretation of scoring are parameters that currently have no defined values. What constitutes a positive CK score varies in the literature, with some researchers advocating any staining as positive (196, 200) and some using a threshold of $\geq 10\%$ (197, 199). Indeed, one of the issues that requires addressing before a molecular taxonomy equivalent to genomic profiling, for either invasive or DCIS, can be adopted by application of IHC is the precise and globally acceptable definitions using specific antibodies, and possibly even clones. Robust scoring criteria and a need for standardisation of collection, fixation, processing and reporting are also fundamental to accurate assignation of molecular subtypes. Tang et al (201) reviewed the IHC classification of invasive breast cancers and advocated a molecular classification, which could be similarly used for DCIS. They suggest for invasive breast cancer subgrouping as luminal A (ER positive, HER2 negative), luminal B (ER positive, HER2 positive), HER2 group (ER negative, HER2 positive), basal subgroup (ER negative, HER2 negative, CK5/6 and/ EGFR positive) and an unclassified group (ER negative, HER2 negative, CK5/6 negative, EGFR negative).

The present study aimed to identify the possibility of using IHC as a genomic surrogate to identify subgroups of DCIS and to investigate associations with patient outcome. We have found that molecular subgroups can be identified using an IHC approach. However, further work is required to evaluate the usefulness of such a system in DCIS, particularly with regard to prediction of recurrence. Retrospective studies will probably lack the statistical power or accuracy required to give reliable data, given the variation in clinical management in historical series, including the proportion of cases treatment by breast conserving surgery, differences in the definiton of a tumour-free margin of excision, as well as the use of radiotherapy and hormone treatments.

Chapter 4. DCIS Associated with Invasive Breast Carcinoma

4.1 Introduction

The molecular profiling and immunohistochemical studies described in Chapter 3 focused upon the IHC marker expression and the propensity for "pure" DCIS to become invasive or recur as further DCIS. However, DCIS may also be expressed alongside an invasive breast lesion. Previous genomic studies have demonstrated that similar genetic profiles exist between DCIS and synchronously expressed invasive breast disease (202-204). Conversely, there is some evidence of intratumour heterogeneity between some DCIS and the respective invasive breast lesion given rise to the possibility of divergent clonal pathways within an individual tumour (202). This may indicate that, in synchronous DCIS and invasive breast disease at least, that DCIS is already at an advanced stage committed to invasive progression. We aimed therefore to explore the possibility of different IHC profiles or frequencies in a subset of DCIS with associated invasive carcinoma and to determine whether any potential difference existed between pure DCIS and DCIS lesions associated with invasive breast tumours. These would be stained with the same antibody panel as the pure DCIS in Chapter 3. This subset would also provide part of the cohort for further genomic studies (see Chapter 5).

4.2 Materials and Methods

DCIS and associated invasive tissue were provided by King's Health Partners Tissue Bank (KHPB) with tissue microarrays constructed in the same manner as described in section 2.2. Similarly, TMA sections were stained with the same antibodies using the similar conditions as set out in section 3.2. However, in this instance cores were taken from a minimum of two defined processes, namely DCIS and invasive components. For DCIS regions three 2mm cores were taken and for the invasive component three 0.6mm cores were taken. The DCIS component was identified by the presence of a complete basement membrane and myoepithelial layer surrounding the malignant epithelial cell islands by the author and consultant breast pathologist (SEP). In lesions where there was a doubt regarding the presence of an intact membrane, IHC for the marker smooth muscle myosin heavy chain (SMMHC) was used to identify DCIS by demonstration of the surrounding myoepithelial cell layer (Figure 30).

Figure 30: SMMHC IHC showing intact myoepithelial cell layer around DCIS.

A total of 41 cases dating between 1989 and 2004 with synchronous invasive breast disease and DCIS lesions was identified and stained with ER, PR, HER2, EGFR, CK5/6, CK14, MCM2 and Ki67. IHC scoring was carried out as per section 3.7. Molecular subgroups were assigned as defined by Perou et al using the following criteria: ER positive, PR positive, HER2 negative = luminal A; ER positive, PR negative, HER2 negative = luminal B; HER2 positive, ER negative = HER2 group; ER negative, PR negative, HER2 negative with any/or EGFR, CK5/6, CK14 = basal–like; no expression of any of ER, PR, HER2, basal CKs or EGFR = null. A subgroup of disease which was HER2 positive and ER positive was also noted within our series and designated luminal HER2. Additionally, the expression of proliferative markers was examined in ER positive cases to determine any association with prognosis and recurrence. Subgroups luminal A1 and luminal B1 were defined as ER positive, Ki67 low and ER positive, Ki67 high respectively as opposed to ER positive, PR positive (luminal A) and ER positive PR negative (luminal B) within the HER2 negative subset.

4.3 Results

4.3.1 Individual IHC Antibody Staining Concordance between Invasive Tumour and DCIS in the Same Case:

The TMAs constructed and stained with IHC markers had scores generated for both the DCIS and invasive carcinoma components within each case. The DCIS and invasive component scores with each antibody were compared. Table 25 shows the association between DCIS and invasive IHC scores.

Antibody	Positive in	Positive	Positive in	Negative	DCIS	Invasive	Total
IHC scoring	DCIS and	in	DCIS only	for both	loss of	loss of	
method and	invasive	invasive			core	core	
cut-off value)	carcinoma	only					
ER (Allred >3)	23	3	2	2	11	0	41
PR (Allred >3)	9	1	3	8	20	0	41
HER2 (HER2	8	0	7	13	13	0	41
score 3+)							
EGFR (HER2-	5	6	2	4	24	0	41
like score 3+)							
CK5/6 (>2%	1	4	0	32	4	0	41
tumour cells							
stained)							
CK14 (>2%	1	4	2	30	4	0	41
tumour cells							
stained)							
Ki67 (>5%	9	16	1	10	3	2	41
tumour cells							
stained)							
MCM2 (>5%	9	1	6	2	20	3	41
tumour cells							
stained)							

Table 25: Comparison of IHC scores between cases of admixed DCIS and invasive

carcinoma

4.3.2 Assignation of Molecular Subgroups

Molecular subgroups were assigned according to both the invasive carcinoma IHC scores and DCIS IHC scores. Tables 26 and 27 give details of numbers and subgroups and concordance. Table 26 shows the number of cases assigned to each group according to DCIS or Invasive component. Table 27 shows the distribution according to proliferative (Ki67) and hormonal status.

	Invasive Carcinoma	DCIS	Paired Cases (Invasive carcinoma and DCIS match in same case)	Unpaired cases (Invasive carcinoma and DCIS do not match in the same case)
Luminal A (ER positive, PR positive, HER2 negative)	14	6	4	2
Luminal B (ER positive, PR negative, HER2 negative)	3	4	3	0
HER2 (HER2 positive, ER negative)	0	4	1	3
Basal-like (ER negative, PR negative, HER2 negative, EGFR /CK5/ CK5/6 and/or CK14)	12	9	4	5
Luminal/ HER2 (ER positive, HER2 positive)	7	11	7	0
Null (All negative)	1	1	0	1
Total	37	35	18	12

Table 26: IHC Molecular Subgroups for Invasive Carcinomas and Associated DCIS

	Invasive Carcinoma	DCIS	Paired Cases (Invasive carcinoma and DCIS match in same case)	Unpaired cases (Invasive carcinoma and DCIS do Not match in the same case)
Luminal A1				
ER positive, Ki67	10	9	6	3
high expression				
Luminal B1				
ER positive, Ki67 low	10	16	6	4
expression				
Total	*20	25	12	7
	*3 cases no Ki	67 Score		

Table 27: IHC Molecular Subgroups for Invasive Carcinomas and Associated DCIS

for ER Positive and Ki67 Expression
4.4 Discussion

In this series of DCIS associated with invasive breast carcinoma several observations can be made. For ER positive DCIS and invasive breast disease there is a high degree of concordance with 83% (n=25/30) of cases showing a similar ER status. Analysis of the Allred scores also shows that cores have a similar degree of ER expression. A similar pattern is seen with PR, with 81% (n=17/21) having concordant scores.

HER2 expression with IHC showed 75% concordance (n=21/28); although 25% of the DCIS was HER2 IHC positive whereas the invasive breast disease was negative, even in this small series.

For EGFR there was no distinct pattern of correlation between DCIS and invasive breast disease; 3 cases were EGFR positive in both the invasive breast cancer and the DCIS, 3 cases showed positivity in the invasive disease only and 2 cases positivity in the DCIS only.

Interestingly, there was also little similarity between invasive breast disease and DCIS with regard to basal cytokeratin expression; in 5 cases positive CK5/6 expression was seen in the invasive carcinoma whilst the DCIS was CK5/6 negative. Similarly, CK14 positive invasive breast disease (n=4) was negative in the associated DCIS in 3 cases. Conversely, DCIS was positive for CK14 in 3 cases and negative in the associated invasive cancer in two. One DCIS case was CK5/6 positive but negative in the invasive breast disease.

Ki67 showed concordance (scores within 5% of each other) for 63% of admixed DCIS and invasive breast disease (n=22). Of note, the 37% (n=13) of discordant cases had elevated Ki67 in the invasive breast disease in all cases (range = 7-32% mean = 10%). MCM2 expression was concordant in the DCIS and the invasive disease in 37% of cases (n=7/19), 52% (n=10/19) of cases showed elevated MCM2 expression

144

(range = 7-73% mean = 38%) in the invasive tumour compared to the DCIS and 11% (n= 2/19) showing elevated MCM2 in the DCIS lesion (range= 12-49% mean =30%). Unlike the pure DCIS cohort, HER2 expression was associated with ER positivity in the DCIS component with 73% (n=11/15) showing positive staining for both. In the invasive component, unexpectedly, 100% of the HER2 positive disease was ER positive (n=7/7). Although there are many studies on ER positive HER2 negative breast cancer there are few articles addressing ER positive HER2 positive lesions. Ryden et al (205) describe HER2+ and ER+ breast cancer as a separate subgroup of tumours with poor prognosis in premenopausal breast cancer. Alqaisi et al (206) found co-expression of ER-positive HER2 positive disease was found in younger age, had higher grade and increased visceral involvement in de novo metastasis.

Unfortunately, in the DCIS TMA there was a marked loss of cores for ER, PR, EGFR, HER2 and MCM2 during the antigen retrieval step. The reason for this remains unclear as all TMAs were constructed with the same guidelines as other TMAs, including the invasive TMA from the same tissue samples, which retained tissue during antigen retrieval steps. The same cases for each antibody had tissue loss possibly indicating a fixation or necrotic tissue problem. It was possible therefore to assign only 35 cases to molecular subgroup for both the invasive and the in situ elements..

Intriguingly, however, in this cohort such molecular subgrouping does not show perfect concordance between the DCIS and the associated invasive tumour for most groups. Only the luminal/HER2 group has complete concordance with all available samples being ER positive and HER2 positive in both the DCIS and HER2. 66% of luminal A, 0% of luminal B, 44% of basal-like and 0% of null had concurrent IHC staining in this series. This could be due to several factors:

 Tumour heterogeneity and, in particular, clonal expansion of particular cell types once invasion has occurred;

- Synchronous development of unrelated tumour and DCIS within the same patient (highly unlikely);
- 3. Down- or up-regulation of proteins once invasion has begun.

The limitations of this experiment must be fully acknowledged before such conclusions can be drawn. The substantial loss of cores in the DCIS TMA during IHC staining has compromised the ability to group samples by more than one marker and have reduced the cohort size significantly.

Chapter 5. Genomic Studies on DCIS

5.1 Introduction

Understanding the genomic basis of DCIS and how it relates to invasive breast carcinoma may help elucidate the underlying mechanisms of progression to invasive disease or demonstrate that DCIS in certain instances may already represent a commitment to an invasive phenotype. The progression of DCIS to an invasive phenotype has been previously studied using gene expression profile analysis (203, 207) and array comparative genomic hybridisation (aCGH) in small numbers of studies and cases (208-210). These studies have demonstrated that DCIS lesions of the same grade have similar genetic profiles to the concurrent invasive tumour, although qualitative differences such as prevalence are reported in matched series (211).

Copy number variations (CNVs) are genomic variations of greater than one kilobase affecting the number of copies of genes possessed by an individual compared to a reference sample. First reported by Charles Lee in 2002 (212) CNVs represent deletions, insertions or duplications of DNA. Shlien et al (213) described the importance of CNVs succinctly:

"DNA copy number variations (CNVs) are an important component of genetic variation, affecting a greater fraction of the genome than single nucleotide polymorphisms (SNPs). The advent of high-resolution SNP arrays has made it possible to identify CNVs. Characterization of widespread constitutional (germline) CNVs has provided insight into their role in susceptibility to a wide spectrum of disease, and somatic CNVs can be used to identify regions of the genome involved

147

in disease phenotypes. The role of CNVs as risk factors for cancer is currently underappreciated."

Identification of CNVs in DCIS may provide clues to progression and help improve targeted treatment for both those with low and high risk invasive potential.

5.2 Genetic Aberrations of DCIS and Invasive Breast Disease – Literature Review

Changes in DNA copy numbers may be inherited or due to somatic mutations. Copy number variants (CNVs) usually refer to inherited variation whilst copy number aberrations (CNAs) refer to somatic mutation (214). Whilst beyond the scope of the thesis to identify every potential copy number gain or loss found in invasive breast disease in the literature, due to the vast array of data, commonly found copy number aberrations (CNAs) have been identified (215-219). These include gains on 1q, 6p, 8q, 11q, 16p, 17q, 19, 20q and losses on 5q, 6q, 7p, 13q, 16q, 17p and 22q. In DCIS, several studies have identified a variety of CNAs (202, 207, 210, 220, 221). Copy number gains on 1q, 5q, 8q, 16p, 19q, 20 and losses on 1p, 3q, 6q, 8p, 9p, 11q, 13q, 16q, 17p and 17q are reported. These include known loci for *HER2* (17q12), ER (6q25.1), EGFR (7p11) and p53 (17p1).

In addition to the known CNAs there are many novel potential candidate genes identified in both DCIS and invasive breast disease that could be biomarkers for therapeutic intervention. Hanneman et al (192) identified 35 genes which differed between DCIS and invasive breast disease and 43 genes that differed between low grade and high grade DCIS in 2006. Since then a few studies (210, 222-224) have identified genes that may be implicated in transformation of DCIS into an invasive phenotype.

5.3 Materials and Methods

Several criteria were used for selections of MIP array samples. Due to the cost, it was deemed unfeasible to perform analysis on the whole cohort from the DCIS TMA set. Additionally, although only a comparatively small amount of tissue was required from the DCIS samples there was an issue of tissue availability. In general DCIS is not markedly cellular, TMAs had already been manufactured from the cases, and clearly one has a commitment not to exhaust a resource that must legally be retained as part of the patients' diagnostic record. Subsets for genomic analyses were therefore chosen to represent two groups, namely pure DCIS and DCIS associated with Invasive component. To further represent the larger cohort, DCIS lesions were chosen with the following IHC profiles: ER positive, HER2 positive and triple negative. Where a DCIS lesion was matched to invasive tissue samples were taken from both components and if possible a sample of adjacent normal tissue. Table 28 gives the number and type of sample selected for MIP array analysis.

Specimen type	Number of Cases
Triple negative pure DCIS	12
Triple negative DCIS associated with invasive breast disease*	
and	10
Triple negative invasive breast disease associated with DCIS*	10
ER positive pure DCIS	10
ER positive DCIS associated with invasive breast disease [^] and	9
ER positive invasive breast disease associated with DCIS [^]	9
HER2 positive pure DCIS	8
Matched normal from ER positive DCIS and invasive breast	
disease^	7
Matched normal from triple negative DCIS and invasive breast	
disease*	8
Total number of samples	83

Table 28: Sample Selection and Case Numbers for MIP Array Analysis.

[* and ^ represent different microdissected components of the same cases]

5.4 Hypothesis for MIP Arrays Studies in DCIS and Invasive Breast Carcinoma

Genomic analysis of tissue samples may provide additional knowledge in our understanding of breast cancer progression and help define treatments in the future. Whilst not exhaustive in sample size this does represent one of the largest studies on DCIS using MIP array to date. A comparison of the various groups may shed light on genomic differences found within the different disease states i.e. precursor versus invasive breast cancer. This could be used to determine if the expression the immunohistochemical markers used in Chapter 3 are present at the genomic level (as expected), for example, is there HER2 amplification in the HER2 positive IHC cases? It also creates a database of genomic data with to study alongside the immunohistochemical and demographic data. This database will provide a resource for further research beyond the scope of this thesis. The analysis will also provide insights into variations between genomic changes seen in DCIS and invasive breast cancers and may present novel genes not currently identified in the literature. Identification of genes that represent an underlying commitment to invasive potential established before the expression of a molecular subtype may also be found. To address these issues comparisons of different comparative analysis of the following groups was carried out to help elucidate possible genetic aberrations, for all cases of DCIS, both pure and that associated with invasive disease:

- 1. ER+ DCIS compared to non ER+ DCIS
- 2. ER+ pure DCIS compared to ER+ DCIS associated with invasive disease
- 3. ER+ pure DCIS compared to ER+ invasive breast disease
- 4. All ER+ DCIS (pure and matched) compared to all ER+ invasive disease
- 5. Triple negative pure DCIS compared to triple negative invasive breast disease
- 6. All triple negative DCIS compared to all non-triple negative DCIS

- Triple negative pure DCIS compared to triple negative DCIS associated with invasive disease
- 8. All triple negative DCIS compared to triple negative invasive disease
- 9. HER2+ pure DCIS compared to non-HER2+ DCIS

5.4.1 DNA Extraction

DNA was extracted using a modified technique incorporating elements from the QIAGEN FFPE DNA kit (QIAGEN Ltd. Manchester UK) and protocols provided by Dr Jorge Reis-Filho (Cheaty Beatty Laboratories, London, UK). 4µm sections were cut from blocks already identified from the TMA cohorts, and H&E stained to ascertain the amount of available tissue. Where a suitable quantity of DCIS and/or invasive tumour/normal tissues was present, up to 20 sections were cut at 8µm and dried overnight at 37°C. Sections were dewaxed in xylene then stained with nuclear fast red dye. Sections were viewed through a dissecting microscope and any areas of tissue not required for DNA analysis were scraped away using a fine aspirate needle (gauge 10). This included any stroma, lipid or connective tissue. Sections were immersed in sodium thiocyanate overnight to remove formalin fixation crosslinks. Slides were then rinsed in changes of ultra-pure H₂O and sections examined under the dissecting microscope where components such as DCIS, invasive tumour and normal tissues were scraped into individual 1.5ml eppendorf tubes using individual aspirate needles for each component. Samples were immersed in proteinase K for 48 hours at 40°C to aid proteolysis, followed by DNA extraction using the QIAamp DSP DNA FFPE Tissue Kit (Qiagen, Manchester UK). DNA quality was initially assessed by taking a spectrophotometer reading (Nanodrop, Thermo Scientific Wilmington, Delaware, USA) to determine DNA presence. DNA absorbs light at 260nm, a spectrophotometer can detect the amount of light absorbed in a sample, thus the more DNA the greater the absorbance of light. However, contaminants such

as proteins and RNA may also absorb light at 260nm so errors are possible. Once the presence of DNA was confirmed by this approach, samples were then assessed using a fluorimeter (Qubit- Life Sciences, Paisley, UK). The Qubit system uses fluorescent dyes that bind to target molecules (e.g. DNA); these dyes have a minimal fluorescent signature which becomes greatly enhanced upon target binding. When compared to a standard sample of known concentration an accurate DNA concentration can be given. Protocols for DNA extraction are listed in Appendix 6.

5.4.2 MIP Array

DNA samples were shipped to AffyMetrix MIP laboratory (California, USA). Samples were allocated an anonymised number and all identifying data removed to ensure sample blinding, including the matched normal tissues. Using the OncoScan[™] FFPE Express Service samples underwent MIP array assays.

Data quality was assessed using the sample 2-point relative standard error. The majority (95%) of FFPE tumours samples applied to the MIP arrays passed the 2p-RSE threshold (GSE31424).

5.4.3 Statistical methods

Tumour Aberration Prediction Suite (TAPS), a bioinformatics tool for the identification of allele-specific copy numbers in tumour samples using data from Affymetrix SNP arrays, was run on all samples to obtain allele specific absolute copy numbers at genomic segment level. Raw output tables from TAPS output are seen on the attached disc. Gene centric versions of these tables i.e. each row represents a gene and its respective CN and other parameters are directly copied from TAPS raw tables are also provided (attached disc). This shows gene level copy numbers for each sample. Using these gene centric tables, intra-group gene centric count/percentage tables were created according to the IHC groups (ER+, triple negative and HER2+) (also see attached disc). These tables show counts/percentage for each gene and each CN type, as well as the respective sample IDs.

To compare groups, Fisher's exact tests were performed between two groups for each copy number type. For example, frequencies were calculated for "gains" for each segment among the two groups into a contingency table which was used to run Fisher's test, resulting in a p-value for each segment for that copy number type. Files are stored on the attached disc and give Fisher tests output for all segments for each comparison respectively. Genome frequency plots for these tables are also provided (see attached disc). Significantly different segments between 2 groups i.e. based on p-values cut-off of <=0.05, are also presented on the attached disc, along with tables and genomic frequency plots for segments based on the above mentioned threshold.

5.4.4 Analyses of Raw Data Tables

The raw data (TAPS tables) produced a significant amount of data, which is too large for a single thesis to adequately analyse. Mining of the data to elicit possible key genes was determined to be a suitable way forward; this approach has been used by others previously (221).

Data was compiled into groups for comparison e.g. ER positive pure DCIS compared to pure non ER positive DCIS (similarly all triple negative, HER2 etc.).

Genomic regions were sorted into those with significant p-values for the various genomic states: amplification, deletion, copy neutral loss of heterozygosity (cnLOH), copy deletion loss of heterozygosity (cdLOH) and total loss.

Of the samples with significant p values, genomic bands with the greatest difference between the number of samples (and the greatest percentage difference) were selected, e.g. in ER positive pure DCIS there is genomic band (region) where 5 samples had amplification within this region compared to no amplification in any of the pure non ER positive samples. In many instances there were multiple genetic aberrations listed in a general locus of a particular chromosome or arm. In others there were only one or two genetic aberrations identified. A rationale that the occurrence of the same genetic aberrations found in multiple samples are more likely to be key players than genetic aberrations found in any one individual sample representing heterogeneity or genetic plasticity in tumourigenesis was adopted. Although this concept may be potentially flawed, analysis of multiple genes on the same locus also produces very complex and varied biological processes when analysed by PANTHER (see 5.2.2).

In addition to the above method, a literature search of genes associated with DCIS and invasive progression previously identified as potential drivers by other researchers was carried out.

5.5.5 Analysis of MIP array Data Using "PANTHER" Classification System The large amount of genomic data generated, and subsequently analysed by the Breakthrough Breast Cancer/Research Oncology, King's College London bioinformatics team, based upon the MIP array results requires further analysis in order to identify similarities and differences between groups. There are many gene analysis software packages available online (e.g. GeneOntology, Webgestalt, GeneGo, Pubgene, TopGeneSuite). It is beyond the scope of this thesis to determine the pros and cons of each individual package. Under advice from the Breakthrough Breast Cancer/Research Oncology, King's College London bioinformatics team, and based upon the type of analysis required, the "protein annotation through evolutionary relationships" or PANTHER protein and gene analysis software was selected. In 2013 Mi et al (225) described the analysis software thus: "PANTHER (protein annotation through evolutionary relationship) classification system (<u>http://www.pantherdb.org/</u>) is a comprehensive system that combines gene function, ontology, pathways and statistical analysis tools that enable biologists to analyse large-scale, genome-wide data from sequencing, proteomics or gene expression experiments."

5.5.6 Analysis of DCIS and Invasive Breast Disease Subgroups.

Groups were compared using the 7 copy number types (excluding undefined segments) shown below. Generalized copy number types of "gains" and "losses" were also included (Table 29).

Cn	mCn	New CN Type	Combined CN Type
NA	NA	Undefined	Undefined
0	0	Total Loss	Total loss
2	NA	Normal with unknown allele specificity	Normal
2	1	Allele specific normal	normai
1	NA/0	Copy deletion LoH	Copy deletion LoH
2	0	Copy neutral LoH	Copy neutral LoH
3	NA	Single copy gain with unknown allele specificity	Single copy gain
3	0	Copy neutral single copy gain	

Table 29: Copy number analysis types for MIP arrays.

5.8 Results

5.8.1 DNA Extraction for MIP Arrays

For each of the 82 samples undergoing MIP array DNA quantities and Qubit fluorescence readings can be found in appendix 7.

5.8.2 MIP Array Maps

All MIP array data was analysed by the Bioinformatics Unit of King's College London, Breakthrough Breast Cancer. MIP array data was analysed by three Independent researchers (AG, HM & SR). A total of 73 cases (Table 30) were provided for analysis separated into the different phenotypic groups. These phenotypic groups were then compared with each other (Table 31).

All MIP array chromosomal maps can be found in appendix 8 & 9. Representative figures are given below for ER positive pure DCIS (Figure 31), HER2 positive pure DCIS (Figure 32) and triple negative pure DCIS (Figure 33). Additionally, representative figures showing comparisons of normal breast tissue, DCIS and invasive breast disease for ER positive (Figure 34) and triple negative cases (Figure 34) are given below.

Specimen type	Number of Cases
ER positive pure DCIS	8/10
ER positive DCIS associated with invasive disease	9/9
ER positive invasive breast disease associated with DCIS	9/9
Triple negative pure DCIS	9/12
Triple negative DCIS associated with invasive breast	
disease	10/10
Triple negative invasive disease associated with DCIS	7/10
HER2 positive pure DCIS	7/8

Table 30: MIP array cases with chromosomal maps

Title	Group1	Group2
ER+ DCIS compared to non ER+ DCIS	ER Pure DCIS, ER DCIS with invasive disease (n=17)	TN pure DCIS, TN DCIS with invasive disease, HER2 positive pure DCIS (n=26)
ER+ DCIS associated with invasive breast disease compared to ER+ pure DCIS	ER+ DCIS with invasive disease (n=9)	ER+ pure DCIS (n=8)
ER+ invasive breast disease compared to all ER+ DCIS	ER+ invasive breast disease (n=9)	ER+ pure DCIS, ER DCIS with invasive disease (n=17)
ER+ pure DCIS compared to ER+ invasive breast disease	ER+ pure DCIS (n=8)	ER+ invasive breast disease (n=9)
Triple negative invasive breast disease compared to all triple negative DCIS	TN invasive breast disease (n=7)	TN Pure DCIS, TN DCIS with invasive disease (n=19)
Triple negative DCIS associated with invasive breast disease compared to triple negative pure DCIS	TN DCIS with invasive disease (n=10)	TN pure DCIS (n=9)
Triple negative pure DCIS compared to triple negative invasive breast disease	TN pure DCIS (n=9)	TN invasive breast disease (n=7)
HER2+ pure DCIS compared to ER+ pure DCIS	HER2 positive pure DCIS (n=7)	ER+ pure DCIS (n=8)
HER2+ pure DCIS compared to TN pure DCIS and ER+ pure DCIS	HER2 positive pure DCIS (n=7)	TN pure DCIS, ER+ pure DCIS (n=17)

Table 31: MIP Array Comparison Groups

[TN = triple negative; ER+ = oestrogen receptor positive]

Figure 31: Chromosomal map for a ER Positive pure DCIS Case (DCISJPB10K 066).

The X axis in the diagram refers to chromosome number (1-21 and X) and the Y axis is split into two sections. The upper section shows log of ratio of signal of the same probe from the tumour and normal samples. The lower section of the plot shows allelic-ratio. Usually, this represents the ratio of B-allele as compared to A-allele. The value always lies between 0 and 1. e.g. if there is one copy each of both allele then allele ratio would be 1/2 = 0.5 which represent the normal allele pairing. Each probe represents the number of copies for a genomic region. The probe signal from the normal sample is subtracted from the tumour samples and a log ratio (usually base 2)

Figure

Figure 32: Chromosomal Map for a Pure DCIS Triple Negative Case (DCISJPB10K001)

Figure 33: Chromosomal Map for a Pure HER2 Positive Case (DCISJPB10K070); note chromosome 17 allelic amplification.

Figure 34: Chromosomal map for normal, DCIS and invasive samples from an ER positive lesion.

Figure 35: Chromosomal Map for normal, DCIS and invasive samples from a triple negative case.

5.8.3 Copy Number Aberrations for Oestrogen Receptor Positive DCIS Compared to Non Oestrogen Receptor DCIS

These series examines the difference between oestrogen receptor positive DCIS and non oestrogen receptor positive DCIS.

Frequency plots showing copy number aberrations between Oestrogen receptor positive DCIS and oestrogen receptor negative DCIS were provided by Breakthrough Breast Cancer/Research Oncology, King's College London Bioinformatics Department (Figure 37).

Figure 36: Frequency plots showing copy number aberrations between oestrogen receptor positive DCIS and non oestrogen positive DCIS (pages 165-167).

Frequency Plots_ All ER+ DCIS vs All Non-ER+ DCIS

5.8.3.1 Amplification in Oestrogen Receptor (ER) Positive DCIS and Oestrogen Receptor Negative DCIS

There are amplifications found in ER positive DCIS (n=5/17) not observed in the majority of non ER DCIS (n=2/26).

- 1. p-values < 0.05;
- 2. A gene list is mapped from 16 genomic regions found on chromosomes 8, 11;
- 3. These regions encompass 118 genes altered in ER positive DCIS;

Genes:

5S_rF	NA	AC011626.1	AC021636.1	AC027238.1	AC090821.2	AC090821.3	AC090821.4	AC090821.5	AC103706.1	AC103764.1	
	AC103863.1	AC107374.1	AC115836.1	AF130342.1	AF178030.2	AF186191.1	AF230666.2	AL031777.1	ANKRD46	AP003385.1	
	AP003716.2	AP003716.4	AP003716.5	CCND1 CEB	PD CHRAC1	CSMD3	CTC-458A3.	1	CTD-2182N2	23.1	
	DENND3	DEPDC6 EIF	2C2	FGF19	FGF3	FGF4	GDAP1	HFE	HIST1H1C	HIST1H1D	
HIST1	H1E	HIST1H1PS	1	HIST1H1T	HIST1H2AB	HIST1H2AC	HIST1H2AD	HIST1H2AE	HIST1H2APS	S 3	
	HIST1H2APS	54	HIST1H2BB	HIST1H2BC	HIST1H2BD	HIST1H2BE	HIST1H2BF	HIST1H2BG	HIST1H2BH	HIST1H2BI	
HIST1	НЗА	HIST1H3B	HIST1H3C	HIST1H3D	HIST1H3E	HIST1H3F H	IIST1H3G	HIST1H4A	HIST1H4B	HIST1H4C	
	HIST1H4D	HIST1H4E H	IIST1H4F	HIST1H4G	hsa-mir-151	hsa-mir-30b	hsa-mir-30d	IKBKB	KB-1615E4.1	KCNK9	
	KIAA0146	KIAA0196	MYEOV	NCALD NDR	G1 NSMCE2	ORAOV1	PHF20L1	POLB	PRKDC	PTK2	
	PXDNL RAD	21 RNF19A	RP11-1023P	17.1	RP11-231D2	.0.1	RP11-697N1	8.1	RP11-709P2	.1	RP1-
221C ⁻	16.7	RPS10P1	RRM2B	SLA	SLC45A4 SN	IORA40	SNORA7	SPAG1	SQLE	ST18	
	ST3GAL1	TG	TMEM71 TR	APPC9	TRPS1	U6	U7	U91328.2	UNC93B5	WISP1	
	Y_RNA ZFA	T ZFATAS	ZMAT4								

PANTHER analysis: 56 mapped ids are found, 62 mapped ids are not found.

There are amplifications found in non ER DCIS (n=2/26) that are also present in some ER positive DCIS (n=6/17).

- 1. p=values <0.05;
- A gene list is mapped from 13 genomic regions on chromosome 8;
- 3. These regions encompass 49 genes altered in non ER DCIS;

Genes:

 AC021636.1
 AC090821.2
 AC090821.3
 AC090821.4
 AC090821.4
 AC090821.4
 AC090821.4
 AC103704.1
 AC103704.1
 AC107374.1
 AC115836.1
 AF186191.1

 AF230662
 CBPD
 CSMD3
 CTC-458A3.1
 CTD-2182/3.1
 DEND3
 DEPDC6
 hsa-mir-300
 hsa-mir-300
 hsa-mir-300
 NSMC2
 PHF2011
 POLB
 PKCC
 FKDC

 PTK2
 PXDNL
 RP11-1023/7.1
 RP11-231/2.1
 RP11-697N18.1
 RP11-709P.2.1
 SLA

 MISP1
 SNORA0
 SNORA7
 SQLE
 ST3GAL1
 TG
 TMEM71
 TRAPC9
 U6

 WISP1
 ZFAT
 ZFATAS
 ZMAT4
 ST3GAL1
 TG
 TMEM71
 TRAPC9
 U6

PANTHER analysis: 25 mapped ids are found, 24 mapped ids are not found.

5.8.3.2 Duplication in Oestrogen Receptor Positive DCIS and Oestrogen Receptor

Negative DCIS

There are no duplications in ER negative DCIS (check the status of the HER2 positives) in this series.

There are duplications in ER positive DCIS (n=4/17) not observed in non ER positive DCIS (n=0/26)

- 1. p-values < 0.05;
- A gene list is mapped from 4 genomic regions found on chromosomes 3, 6, 16:
- 3. These regions encompass 27 genes altered in ER positive DCIS;

Genes:

 AC136443.1
 AC138932.2
 AL645941.2
 AL669918.1
 BFAR
 HLA-DMB
 HLA-DQB
 HLA-DQB2
 HLA-DQB2
 HLA-DQB3
 HLA-DQB3

PANTHER analysis: 15 mapped ids are found, 12 mapped ids are not found.

5.8.3.3 Genomic Gains in Oestrogen Receptor Positive DCIS and Non Oestrogen

Receptor Positive DCIS

There are genomic gains in ER positive DCIS (n=6/17) not observed in non ER positive DCIS (n=0/26).

- 1. p-values < 0.05;
- 2. A gene list is mapped from 10 genomic regions on chromosome 3;
- 3. These regions encompass 75 genes altered in ER positive DCIS;

Genes:

5S_rF	RNA AC09697	71.2	AC097359.1	AC097359.2	AC097359.3	AC099668.5	AC104186.1	AC104448.1	AC121252.1	AC121252.	2
	AC126118.1	AC126118.2	AC141002.1	AMIGO3	APEH	ATRIP	C3orf35	C3orf54	CAMP	CCDC51 C	CDC72
	CDC25A	CDH29	CELSR3	COL7A1	CTD-3211M	3.1 FBXW12	FOXP1	GMPPB	GOLGA4	hsa-mir-211	15hsa-
mir-7	11 IP6K1	IP6K2	LRRFIP2	MLH1	MST1	NCKIPSD	NDUFB1P1	NME6	PFKFB4	Р	LXNB1
	PRKAR2A	RNF123	RP11-20023	3.1	RP11-24C3.	2	RP11-391M	.3	RP11-430J3	.1	
	RP11-430J3	.2	RP11-502L5	.2	RP11-520A2	1.1	RP11-528N2	1.1	RP11-528N2	1.2	
	RP11-528N2	21.3	RP11-905F6	.1	RP13-1056D	016.2 RP13-4	80C15.1	RPL14	SHISA5	SLC26A6	
	snoU13	SPINK8 TM	EM89 TREX1	U5	U6	U7	UBA7	UCN2	UQCRC1	Y_RNA	
	ZNF589 ZNF	-619 ZNF620	ZNF621								

PANTHER analysis: 36 mapped ids are found, 39 mapped ids are not found.

There were gains present in non ER DCIS (n=10/17) which are also present in ER positive DCIS (n=13/10).

- 1. p-values < 0.05;
- A gene list is mapped from 16 genomic regions found on chromosomes 6, 8, 10, 19;

 These regions encompass 30 genes altered in both non ER DCIS and ER DCIS;

Genes:

5S_rRNA AC008734.2 AC090821.2 AC090821.3 AC090821.4 AC090821.5 AC103706.1 AF186191.1 AF216667.1 AF230666.2 AL713922.2 CTC-458A3.1 CTD-2182N23.1 DIP2C IKBKB IL9RP2 LRRC6 MUC16 NDRG1 PHF20L1 RP11-631M21.1 RP11-631M21.2 RP11-631M21.6 SLA SNORA40 ST3GAL1 TG TMEM71 WISP1 ZMYND11

PANTHER analysis: 12 mapped ids are found, 18 mapped ids are not found.

5.8.3.4 Genomic Sc Gains in Oestrogen Receptor Positive DCIS and Non Oestrogen Positive Receptor DCIS

There are some overlaps in Sc gains found in ER positive DCIS (n=9/17) and non ER positive DCIS (n=4/26).

- 1. p-values < 0.05;
- A gene list is mapped from 49 genomic regions found on chromosomes 3, 4,
 5, 7, 8, 10, 11, 12, 17, 20, 21;
- These regions encompass 180 genes altered in for ER positive DCIS and some non ER positive DCIS;

Genes:

5S_r	RNA ABCG1	ABHD12	AC004001.1	AC005355.1	AC008038.1	AC008264.4	AC008937.2	AC009365.4	AC009518.8	AC013434	.1
	AC016831.7	AC018642.1	AC058791.1	AC058791.2	AC079595.1	AC079595.2	AC080112.3	AC087071.1	AC087071.2	AC092214	.10
	AC097534.1	AC097534.2	AC105285.1	AC105285.2	AC121247.2	AC121252.2	AC135506.1	AC137630.1	AF213884.1	AL031666.	1
AL034	4548.1	AL034548.2	AL034548.3	AL109954.2	AL121894.1	AL157718.1	AL365356.1	AL713922.2	AL732437.1	ANKS1B	
	AP002827.1	ARIH2	ARL1 ASB13	C10orf18	C12orf23	C20orf26	C21orf121	C21orf128	C2CD2		C3orf62
	C3orf71	C5orf15	CALML3	CALML5	CCDC25	CCDC36 CC	DC71	CDC6	CDKL3	CDKN2AIP	PNL
	CHCHD3	CRNKL1	CRY1	CST11 CST	BCST8	CST9	CST9L	CSTL1	CTD-2410N1	18.1	
	DALRD3	DIP2C	DOCK4 EIF4	E2P1	ENTPD6	EPHA1	GALNT7	GDPD4	GPX1	GZF1	
	HMGB2	hsa-mir-191	hsa-mir-425	hsa-mir-620	IL9RP2	IMPDH2	KLHDC10	KLHDC8B	LAMB2	N	/AP3K1
	MED13L	MKLN1	MTERFD3	NAPB	NAT5	NDUFAF3	NET1 NFKB	1	NRSN2	NXT1	
	P4HTM	PAK1	PODXL	PPIAP2	PPP2CA	PRKAR2A	PYGB QARS	QRICH1	RALGAPA2	RARA	
	RHOA	RHOH	RIN2	RP11-10K16	.1	RP11-135F9	.1	RP11-215P8	.1	RP11-215F	P8.2
	RP11-215P8	.3	RP11-215P8	.4	RP11-218C1	4.2 RP11-218	3C14.6	RP11-218C1	4.7	RP11-230	13.1
	RP11-306G2	0.1	RP11-312A1	5.2	RP11-312A1	5.3	RP11-316M2	24.1	RP11-336A1	0.4	
	RP11-336A1	0.5	RP11-336A1	0.7	RP11-395l6.	2	RP11-3B7.1	RP11-3B7.6	RP1-148H17	'.1	
	RP11-631M2	1.1	RP11-631M2	21.2 RP11-63	1M21.6	RP11-694I1	5.6	RP11-775D2	2.2	RP11-798	V19.3
	RP13-131K1	9.1 RP13-131	IK19.2	RP13-463N1	6.6	RP3-322G13	3.5	RP3-333B15	.2	RP4-569M	23.2
	RP5-1002M8	.4 RP5-1103	G7.4	RPS27P23	SAP30	SKP1	SLC24A3	SLC25A20	snoU13	SOX12	SPIC

TCF7	TMTC2	TOP2A	TRIB3	U5	U6	UBE2B	UBE2H	UMODL1	USP19	USP4
UTP20	VDAC1	WDR6	Y_RNA	ZC3HC1	ZCCHC3	ZMYND11	ZMYND8 Z	ZNF295		

PANTHER analysis: 87 mapped ids are found, 92 mapped ids are not found.

There are some overlaps in Sc gains for non ER positive DCIS (n=12/26) and ER positive DCIS (n=9/17).

- 1. p-values < 0.05;
- A gene list is mapped from 25 genomic regions found on chromosomes 1, 7, 10, 12, 17.
- These regions encompass 83 genes altered in non ER positive DCIS and ER positive DCIS.

Genes:

5S_rRNA	AC013434.1	AC016182.1	AC018628.1	AC018628.3	AC058791.2	AC079595.1	AC079595.2	AC096947.1	AGBL4	
	AL713922.2	ANKS1B	ARMC7 BRI	P1	C12orf23	C1orf123	C1orf185	C20orf26	CDKN2C	
	CFLP2 CPT2	2CRNKL1	CRY1	CSDA	CYTH1	DIP2C	DMRTA2	DNAH17	FAF1	HN1
	IL9RP2	INTS2	LRP8	MAGOH	MED13	MKLN1	MTERFD3 N	IAT5	NFIA	
	NT5C	PRH1	PRH2	PRR4	RIN2	ROR1	RP11-117D2	22.1	RP11-183G2	22.2
	RP11-183G22.3		RP11-24J23.2		RP11-323N12.1		RP11-323N1	2.2	RP11-631	M21.1
	RP11-631M2	21.2	RP11-631M21.6		RP4-784A16.1 RP4-784A		16.2	RP4-784A16	.3	RP4-
784A16.4	RP4-784A16	6.5	RP5-1002M8	3.4	RP5-1024G6	6.2	RP5-1024G6	6.5	RP5-833A20).1
	RP5-850015	5.3	RP5-926E3.	1	SLC16A5	TAS2R10	TAS2R13	TAS2R14	TAS	32R19
	TAS2R20	TAS2R31	TAS2R50	TAS2R7	TAS2R8 TAS	S2R9 TIMP2	TMTC2	U6	USP36	
	Y_RNA	ZMYND11	ZNF859P							

PANTHER analysis: 46 mapped ids are found, 47 mapped ids are not found.

5.8.3.5 Losses in Oestrogen Receptor Positive DCIS and Non Oestrogen Receptor Positive DCIS

There are genomic losses found in ER positive DCIS (n=8/17) not observed in non ER positive DCIS (n=0/26).

- 1. p-values < 0.05;
- A gene list is mapped from 25 genomic regions found on chromosomes 2, 7,
 9, 10, 11, 1;
- 3. These regions encompass 79 genes altered in ER positive DCIS;

Genes:

AC006432.1	AC007403.1	AC007403.2	AC007537.1	AC007537.2	AC009474.1	AC009474.2	AC022882.1	AC036111.1	AC068339.1
AC079920.1	ACSM4 APC	000720.1	AP001482.1	AP002826.1	AP003065.3	AP006437.1	APLNR	ARAP1	ARHGEF17
BCL2L14	CACNA1C	CD163L1	ETV6	FAM168A	GRM5 LRP6	LRRC55	MANSC1	OR10AG1	OR5AK3P
OR5AK4P	OR5AQ1P (DR5AS1	OR5BE1P	OR5D13	OR5D14	OR5D16	OR5D18 OR	5F1 OR5G3P	OR5G5P
OR5I1	OR5J1P	OR5J2	OR5L1	OR5L2	OR5T1	OR5T2 OR5	Т3	OR5W1P	OR5W2
OR7E5P	OR8H1	OR8H2	OR8H3 OR8	12	OR8J3	OR8K5	OR8V1P	OR9M1P	P2RX3
PRG2	PRG3	PTPRD REL	т	RP11-267J2	3.1	RP11-31L22	.2	SBDS	SLC22A8
SLC43A3	snoU13 SPF	RYD5	SSRP1	TNKS1BP1	TYR	TYW1	U2	U6	

PANTHER analysis: 46 mapped ids are found, 33 mapped ids are not found.

There are genomic losses found in non ER positive DCIS (n=11/26) not observed in ER positive DCIS (n=0/17).

- 1. p-values < 0.05;
- A gene list is mapped from 17 genomic regions found on chromosomes 3, 4, 5, 14, 15, 17, 22;
- 3. These regions encompass 35 genes altered in non ER positive DCIS;

Genes:

 AB019437.56
 AC008772.1
 AC008872.1
 AC026202.5
 AC026214.2
 AC092373.1
 C22orf30
 CD180
 CNTN6

 FAT1
 IGHV1-67
 IGHV1-68
 IGHV1-69
 IGHV2-70
 IGHV3-66
 IGHV3-71
 IGHV3-72
 IGHV3-73
 IGHV3-74
 IGHV11

 67-1
 IGHVIII-67-2
 MAST4
 PISD
 RAB27A
 RP11-173M1.1
 RP11-287J9.1
 RP11-287J9.2
 RP11-308K2.1

 RP11-5P22.1
 RP11-5P22.2
 RP11-5P22.3
 RP5-858B16.5
 SFRS12
 snoU13

PANTHER analysis: 6 mapped ids are found, 29 mapped ids are not found.

5.8.3.6 Total Losses in Oestrogen Receptor Positive DCIS and Non Oestrogen Receptor Positive DCIS

There were total losses present in ER positive DCIS (n=13/17) not observed in non ER positive DCIS (n=0/26).

- 1. p-values < 0.05;
- A gene list is mapped from 11 genomic regions found on chromosomes 8, 11, 13, 17;
- 3. These regions encompass 88 genes altered in ER positive DCIS;

Genes:

5S_rRNA	AC005696.2	AC005696.3	AC006435.1	AC015799.1	AC015799.2	AC027763.1	AC027763.2	AC032044.1	AC055839.2	AC0877	42.1
	AC087742.2	AC090617.1	AC091153.4	AC116914.1	AC118754.2	AC118754.4	AC127521.1	AC130689.5	AIPL1	AL45022	26.1
	AL450226.2	ALOX12	ALOX15 AP	001970.1 ARF	RB2	ASGR1	ASGR2	ATP2A3	BCL6B	BHLHAS	¢
	C17orf100 C	17orf49	C17orf85	CAMKK1 CL	EC10A CRKC	SMD1 CTD-2	2545G14.1	DLG4	DPH1	FAM64A	•
	FBXO39	GAS7	GGT6	GSG2	HIC1 hsa-mi	r-132	hsa-mir-195	hsa-mir-212	hsa-mir-497	ITGAE	
	KIAA0664	KIAA0753 M	ED31	METT10D	MNT	MYBBP1A	OVCA2	P2RX1	PAFAH1B1	PELP1	PITPNM3
	RNASEK	RP11-314A2	.0.1	RP11-314A2	.0.2	RP11-609D2	21.1	RP11-76K19	0.5	SGSM2	
	SLC13A5 SL	C16A11	SLC16A13 S	MG6	SMTNL2	SNORD91	snoU13	SPNS2	SPNS3	SRR	TEKT1
	TSR1	TUSC5	TXNDC17	U6 U8 UBE2	G1	XAF1	YWHAE				

PANTHER analysis: 51 mapped ids are found, 37 mapped ids are not found.

There were total losses present in non ER positive DCIS (n= 20/26) not observed in ER positive DCIS (n=0/17).

- 1. p-values < 0.05;
- 2. A gene list is mapped from 21 genomic regions from chromosome 17;
- 3. These regions encompass 182 genes altered in non ER positive DCIS;

Genes:

5S_rRNA	ABHD5	AC008734.2	AC011816.4	AC020626.1	AC025029.1	AC092038.1	AC092798.2	AC092798.3	AC093416.3	3
AC098477.	AC098477.2	AC098647.1	AC099539.1	AC099544.1	AC099544.2	AC099557.1	AC099778.3	AC104163.1	AC104184.1	
AC104307.	I AC104434.1	AC104434.2	AC104434.3	AC104445.1	AC105935.1	AC112512.1	AC115283.1	AC121251.1	AC121252.2	2
AC124914.3	AC133141.1	AC133680.1	AC135966.1	ANO10	C3orf35 C3o	rf39 CACNA1	D	CADM2	CAMKV	
CDC25A	CDCP1	CELSR3 CLI	EC3B CSPG5	CTNNB1	DHX30	EIF1B	EIF4BP9	ENTPD3	EXOSC7	
FAM116A	FAM198A	FOXP1	FYCO1	GBE1	hsa-mir-1226	6hsa-mir-564	ITGA9	KIF15	LARS2	
LIMD1	LRIG1	MAP4	MITF	MLH1	MUC16	MYRIP NCK	IPSD	NGLY1	NKIRAS1	
NR1D2	OXSM	PRICKLE2	RARB RP11	-1029M24.1	RP11-1029N	124.2	RP11-10701	3.1	RP11-129B2	22.1
RP11-129B22.2	RP11-129B2	22.4	RP11-129B2	2.5	RP11-136C2	24.1	RP11-136C2	4.2	RP11-141M	3.2
RP11-142L	1.2	RP11-142L1	.3	RP11-148G2	0.1 RP11-18	8P20.2	RP11-260O1	8.1	RP11-26G1	0.1
RP11-272D	20.2	RP11-30M20).1	RP11-341J3	.1	RP11-353H3	5.1	RP11-372H2	.1	
RP11-391M	1.2 RP11-391	M1.3	RP11-395P1	6.1	RP11-420K5	i.1	RP11-564P9	.1	RP11-68	3104.1
RP11-697K	23.1	RP11-755B1	0.3	RP11-814M2	22.1	RP11-88B8.2	2	RPL15	SACM1L	
SLC6A20	SLMAP	SMARCC1	SNORA64 S	NORD5	SNRK	TGM4	TMEM42	TOP2B	TRAIP	U2
U3	U5	U6 U7	UBE2E1	UBE2E2	ULK4	Y_RNA	ZDHHC3			

PANTHER analysis: 50 mapped ids are found, 78 mapped ids are not found.

5.8.3.7 CdLOH in Oestrogen Receptor Positive DCIS and Non Oestrogen Receptor

Positive DCIS

There is CdLOH present in ER positive DCIS (n=8/17) not observed in non ER positive DCIS (n=0/26).

- 1. p-values < 0.05;
- 2. A gene list is mapped from 13 genomic regions found on chromosomes 9, 11;
- 3. These regions encompass 30 genes altered in ER positive DCIS;

Genes:

	P2RX3	PRG2	PRG3 PTPRD	snoU13	SSRP1	TNKS1BP1	U2	VSIG2	
	OR5D18	OR5G3P	OR5G5P OR5L1	OR5L2	OR5T1	OR5T2	OR5T3	OR8H1	OR8V1P
AC022882	.1	AC036111.1	AP000866.1 AP000866.2	AP006437.1	C11orf61 ES	SAM NRGN	OR5D13	OR5D14	OR5D16

PANTHER analysis: 19 mapped ids are found, 11 mapped ids are not found.

There is CdLOH in non ER positive DCIS (n=11/26) not observed in ER positive DCIS (n=0/17).

- 1. P-values < 0.05;
- 2. A gene list is mapped from 13 genomic regions found on chromosomes 8, 9,

10, 11;

3. These regions encompass 27 genes altered in non ER positive DCIS;

Genes:

AB01	9437.56 AC008772.1	AC026214.2	AC092373.1	CNTN6	FAT1	IGHV1-67 IGHV1-68 I	GHV1-69	IGHV2-70
	IGHV3-66 IGHV3-71	IGHV3-72	IGHV3-73 IG	HV3-74 IGHV	′II-67-1	IGHVIII-67-2 MAST4	RP11-173N	11.1
	RP11-287J9.1	RP11-287J9	2	RP11-308K2	.1	RP11-5P22.1	RP11-5P22	.2
	RP11-5P22.3	SFRS12	snoU13					

PANTHER analysis: 3 mapped ids are found, 24 mapped ids are not found.

5.8.3.8 CnLOH in Oestrogen Receptor Positive DCIS and Non Oestrogen Receptor

Positive DCIS

There is CnLOH in ER positive DCIS (n=15/17) not observed in non ER positive DCIS (n=0/26).

1. p-values < 0.05;

2. A gene list is mapped from 40 genomic regions found on chromosomes 1, 2,

3, 6, 7, 10, 12 19, 20;

3. These regions encompass 200 genes altered in ER positive DCIS;

Genes:

5S_	rRNA	7SK	AC004906.3	AC007040.5	AC008686.2	AC010733.4	AC012671.2	AC022021.2	AC062029.1	AC074389.1	
	AC074389.6	AC074389.7	AC074389.9	AC078841.5	AC083864.3	AC083864.4	AC104134.2	AC104170.1	AC110781.3	AC110	0781.5
	ACOT11	AKIRIN1	AL031289.1	AL031985.1	AL139244.1	AL160287.2	AL161740.1	AL161932.2	AL929472.1	AL929472.3	
	APBB1IP AR	HGAP12	BAZ1B	C10orf50	C1orf122	C1orf168	C1orf175	C1orf191 C1	orf228	C2orf51	C8A
	C8B	CARD11	CDCP2	CITED4 CST	1 CST4	CSTP2	CTPS	CYB5RL	DAB1	DEM1	
	DEPDC1	EDN2	EEPD1 EGF	R EIF2AK3	ELFN1	EPHA10	EPS15	FAM151A	FHL3	FOXI3	
	FOXO6 GLIS	S1 GLUDP5	GRIK3	HEYL	HIVEP3	HPCAL4	hsa-mir-23a	hsa-mir-24-2	hsa-mir-27a	hsa-mir-30c-	-1
	hsa-mir-30e	IL20RB	INPP5B	KCNQ4 KIF2	C KIF5B	MAD1L1	MANEAL	MPP7	MRPL37	MTF1	
	NCK1	NDUFS5 NF	YC NRP1	NT5C1A	OMA1	OSBPL3	OSBPL9	OVCH1	PABPC4	PARS2 F	DSS1
	PPAP2B	PPIE	PRKAA2	RET	RIMS3	RNF220	RP11-109P1	4.1	RP11-109P1	4.10	
	RP11-109P14.2		RP11-109P14.8 RP11-109P1		4.9	RP11-128B16.3		RP11-15J6.1 RP11-167O6.2		6.2	
	RP11-191G24.1 RP11-19 RP11-241l20.3 RP11-275F13.1		1G24.2	RP11-213P13.1		RP11-240D10.2		RP11-240D1	0.4	RP11-24	1120.1
			RP11-241l20.4 RP11-275F13.3		RP11-241l20.5 RP11-342D11.2		RP11-253A20.1 RP11-348A7.1		RP11-269F19.2		
									RP11-348A7.2		
	RP11-351M1	16.1	RP11-351M1	6.2	RP11-351M1	6.3	RP11-377K2	2.2	RP11-377K2	2.3	
	RP11-378113	3.1	RP11-399E6	.1	RP11-399E6	.4	RP1-144F13	.3	RP11-472N1	3.3	RP11-
486B	10.3	RP11-486B1	0.4	RP11-524K2	2.1	RP11-575C1	.1 RP11-656I	010.3	RP11-656D1	0.5	
	RP11-656D1	0.6	RP11-781D1	1.1	RP11-85F14	.1	RP11-85F14	.6	RP1-28017.	1	
	RP13-16H11	.1	RP13-16H11	.2 RP13-16H	11.5	RP13-16H11	.6	RP13-16H11	.7	RP1-63P18.	2
	RP4-614N24	.1 RP4-678E	16.4	RP4-694A7.2	2	RP4-694A7.3	3	RP4-694A7.4	1	RP4-705F19	9.1
	RP4-705F19	.2	RP4-710M16	5.2	RP4-739H11	.1	RP4-739H11	.3	RP4-783C10	.3	RP5-
1033	K19.2	RP5-1066H1	3.4	RP5-1103B4	.3	RP5-866L20	.1	RP5-866L20	.2	RP5-866L20).3
	RP5-997D24	1.3	RP5-997D24	.5 RP6-239D	12.1	RPE65	RPIA	SDK1	SF3A3	SNORA63	
	SNORD112	snoU13 SSB	P3 TCEB1P1	8	TMEM53	TMTC1	TTC39A	TTC4	U3	U5	U6
	U7 UTP11L	VAX2	WAC	Y_RNA	YRDC	ZNF642	ZNF643	ZNF684 ZSV	VIM4		

PANTHER analysis: 77 mapped ids are found, 123 mapped ids are not found.

There is CnLOH present in non ER positive DCIS (n=24/26) not observed in ER positive DCIS (n=0/17).

- 1. p-values < 0.05;
- A gene list is mapped from 38 genomic regions found on chromosomes 1, 3,
 6, 10, 12, 21;
- These regions encompass 126 genes altered in non ER positive DCIS;
 Genes:

5S_rF	RNA	7SK	AACS	ABI3BP	AC078811.1	AC083805.1	AC083805.2	AC106728.2	AC108739.7	AC1173	77.1
	ADPRHL2	AF015262.1	AF015262.2	AL008732.1	AL034372.1	AL136180.1	AL136230.1	AL138724.3	AL138889.1	A	L139044.1
	AL139286.1	AL590403.1	AL773603.1	AL844908.5	ANKS1B AP	000304.12	AP000313.1	AP000313.2	AP000318.2	AP0003	20.6
	AP000322.53 AP000322.54		54	AP000569.2	AP000569.8	AP001630.1	AP001630.5	AP001631.9	ARHGAP9	ATP5O	
	C21orf51	C21orf67	C21orf70	C6orf125 CA	P2 CBS	CLDND1	CLIC6	COL8A2	CPOX	CTD-202	21J15.1
	CTD-2021J1	5.2 DCBLD2	DCTN2	EIF2C1	EIF2C3	EIF2C4	FAM8A1 GN	L1 GPR15	GRM4	hsa-mir-	1275hsa-
mir-54	48a-1	IFNGR2	IMPG2	IP6K3 ITGB2	ITPR3	ITSN1	KCNE1	KCNE2	KIF13A	KIF5A	
	LEMD2 MAR	RS MGAT4C	MIP	MLN	MRPL51P2	NCRNA0016	60	NDUFV3	NUP153	OR5K2	PKNOX1
	PRKG1	PRR3	PTTG1IP	RCAN1	RNF144B	RP11-14H3.	3	RP11-204E9	.1	RP11-22	27H4.1
	RP11-227H4	1.4	RP11-227H4	.5 RP11-254	A17.1	RP11-301G2	23.1	RP11-319J2	4.1	RP11-31	19J24.3
RP11	-377N20.1	RP11-40M23	3.1	RP11-524C2	1.1	RP11-569H1	4.1	RP11-663C1	1.1	RP11-68	36D16.1
	RP11-686D1	16.2	RP1-273P12	.3	RP1-67M12.	1	RP3-322L4.2	2RP3-468B3.2	2	RP4-665	5N4.4
	RP4-665N4.	5	RUNX1 SNO	RA11 snoU13	3	SOX4	ST3GAL6	SYT1	TEKT2	TIMELE	SS
	TMEM50B	TMTC2 TRIM	//38	U2AF1	U6	U7	Y_RNA				

PANTHER analysis: 56 mapped ids are found, 70 mapped ids are not found.

5.8.4 Copy Number Aberrations for Oestrogen Receptor Positive Pure DCIS Compared to Oestrogen Receptor Positive DCIS Associated with Invasive Breast Disease

These series examines the difference between oestrogen receptor positive pure DCIS and oestrogen receptor positive DCIS associated with invasive breast disease i.e. the DCIS component and not the invasive breast disease.

Frequency plots showing copy number aberrations between oestrogen receptor positive pure DCIS and oestrogen receptor positive DCIS associated with invasive breast disease were provided by Breakthrough Breast Cancer/Research Oncology, King's College London Bioinformatics Department (Figure 37).

Figure 37: Frequency plots showing copy number aberrations between oestrogen positive pure DCIS and oestrogen positive DCIS associated with tumour (amplifications, duplications, gains, Sc gains, losses, total losses CdLOH and CnLOH,) (pages 177-180).

5.8.4.1 Amplification in Oestrogen Receptor Positive Pure DCIS Compared to

Oestrogen Receptor Positive DCIS Associated with Invasive Breast Disease

There were no amplifications in ER positive pure DCIS (n=0/8) in this series. However, there were amplifications present in cases of ER positive DCIS associated with invasive breast disease (n=5/9).

- 1. p-values < 0.05;
- 2. A gene list is mapped from 7 genomic regions found on chromosomes 6, 8.

 These regions encompass 69 genes altered in ER positive DCIS associated with invasive breast disease;

Genes:

 5S_rRNA AC025647.3
 AC103863.1 AF130342.1 AL031777.1 ANKRD46 AP001207.1 AP001208.1 AP001208.2 AP002852.1

 AP002907.1 CHRAC1 DENND3 EIF2C2 FBXO43
 GRHL2
 HFE
 HIST1H1C
 HIST1H1D
 HIST1H1E
 HIST1H1PS1

 HIST1H1T HIST1H2AB
 HIST1H2AC
 HIST1H2AD
 HIST1H2AE
 HIST1H2APS3
 HIST1H2APS4
 HIST1H2BB

 HIST1H2BC
 HIST1H2BE
 HIST1H2BF
 HIST1H2BG
 HIST1H2BF
 HIST1H2BG
 HIST1H2BF
 HIST1H2BF
 HIST1H2BF
 HIST1H2BF
 HIST1H3B
 HIST1H3B
 HIST1H3B
 HIST1H3B
 HIST1H4BF
 HIST1H4F
 HIST1H4F</td

PANTHER analysis: 29 mapped ids are found, 40 mapped ids are not found.

5.8.4.2 Duplication in Oestrogen Receptor Positive Pure DCIS Compared to Oestrogen Receptor Positive DCIS Associated with Invasive Breast Disease

There were no duplications present in ER positive DCIS associated with invasive breast disease in this series. However, there were duplications identified in ER positive pure DCIS (n=4/8).

- 1. p-values < 0.05;
- 2. A gene list is mapped from 1 genomic region and chromosome 8;
- 3. These regions encompass 2 genes altered in ER positive pure DCIS;

Gene: ASPH 7SK

PANTHER analysis: 1 mapped id is found.

Gene ID: ENSG00000198363

Protein ID: <u>Q12797</u>

Gene Name: Aspartyl/asparaginyl beta-hydroxylase

Gene Symbol(s): ASPH

5.8.4.3 Genomic Gains in Oestrogen Receptor Positive Pure DCIS Compared to Oestrogen Receptor Positive DCIS Associated with Invasive Breast Disease

There were gains associated with both ER positive pure DCIS (n=4/8) and ER positive DCIS associated with invasive breast disease (n=9/9).

- 1. p-values < 0.05;
- A gene list is mapped from 43 genomic regions found on chromosomes 1, 3,
 5, 6, 7, 10, 11, 16, 17, 18, 19, 20;
- These regions encompass 283 genes altered in both ER positive pure DCIS and ER positive DCIS associated with invasive breast disease;

5S_r	RNA	7SK	AC005220.3	AC006076.1	AC006486.1	AC007431.1	AC007431.2	AC009362.2	AC013434.1	AC016831	.7
	AC018642.1	AC018816.3	AC058791.1	AC058791.2	AC090625.1	AC090821.2	AC090821.3	AC090821.4	AC090821.5	AC09	90955.3
	AC103706.1	ACAP3	ADIG	AGRN	AL021394.1	AL021578.1	AL096828.1	AL109823.2	AL109840.1	AL118506.	1
	AL118506.3	AL121673.1	AL121673.2	AL121827.1	AL133330.1	AL136532.1	AL139348.1	AL162505.1	AL365229.1	AL390719.	1
	AL669831.3	AL713922.2	ARF4P2	ARFGAP1 A	RFRP1	ARL6IP1	ATP5E	AURKAIP1	B3GALT6	BCAS1	
	BCAS4 BCL	2	BCL2L1	BHLHE23	BIRC7	C1orf159	C1orf170	C20orf11 C2	0orf135	C20orf166	
	C20orf181	C20orf195	C20orf20	C20orf200 C	20orf83	C20orf90	CANT1	CBFA2T2	CD44	CDH4	
	CHRNA4	CIC COL20A	1	COL9A3	COX4I2	CPSF3L	CST3	CTD-3184A7	7.4 CTS	SZ D	BNDD2
	DENND3	DIDO1	DIP2C	DNAJC5	DPH3B	DVL1	EDN3 EEF1/	42	EGOT	ERF	F3
	FAM132A	FAM41C	FAM65C	GATA5 GLTI	PD1	GMEB2	GNAS	GNASAS	GPR20	GSK3A	
	HAR1A HAR	1B	HAR1F	HES4	HM13	hsa-mir-1-1	hsa-mir-124-	3	hsa-mir-133a	a-2 hsa-n	nir-1914
	hsa-mir-200	ahsa-mir-2001	ohsa-mir-296	hsa-mir-298	hsa-mir-429	hsa-mir-647	hsa-mir-941-	1	hsa-mir-941-	3	hsa-
mir-9	41-4	ID1	IL9RP2	ISG15 ITPR1	KCND2	KCNQ2	KDSR	KIAA0406	KLHL17	LGALS3BF	P LIME1
MKL	N1	MRPS16P	MSI2	MXRA8	NCOA3	NCRNA0002	29	NKAIN4 NOO	C2L	NTSR1	
	NXT1	OGFR	OSMR	PAFAH1B3	PARD6B	PDHX PHAC	TR3	PIGT	PLEKHN1	PPDPF	
	PRPF6	PTK6	PUSL1	RALGAPB R	BPJL RICTO	R	RP11-164D1	8.2	RP11-206L1	0.13	
	RP11-243J1	6.7	RP11-261N1	1.8	RP11-305P2	2.5	RP11-358D1	4.2	RP11-429E1	1.2	
	RP11-429E1	1.3	RP11-465B2	2.3	RP11-465B2	2.5	RP11-465B2	2.6	RP11-5407.	1	
	RP11-5407.	.10	RP11-5407.	11	RP11-5407.	14	RP11-5407.	2	RP11-5407.	3	
	RP11-631M	21.1	RP11-631M2	1.2	RP11-631M2	21.6 RP11-86	H7.6	RP11-93B14	.4	RP11-93B1	14.5
	RP11-93B14	1.6	RP1-1J6.2 R	P1-290I10.2	RP1-290I10.	3	RP1-290I10.	6	RP1-290I10.	7	RP1-
290I	10.8	RP1-309F20	.2 RP1-309F2	20.3	RP13-30A9.	1	RP13-30A9.2	2	RP3-322G13	3.7	RP3-
3240	017.2 RP3-324	017.4	RP3-324O17	.5	RP3-453C12	8	RP3-461P17	.10	RP4-530I15.	6	RP4-
543J	19.8	RP4-564F22	2	RP4-564F22	.5	RP4-583P15	i.10	RP4-583P15	.11	RP4-614C	15.2
	RP4-614C1	5.3	RP4-697K14	.12	RP4-697K14	.3	RP4-697K14	.7	RP4-719C8.	1	RP4-
724E	16.2	RP4-797C5.	2 RP4-806M2	0.2	RP5-1049G1	6.4	RP5-1100H1	3.3	RP5-827L5.1	RP5-827L5	5.2RP5-
885L	7.10	RP5-885L7.	11	RP5-890O3.3	3	RP5-890O3.	9	RP5-902P8.	10	RP5-96	63E22.4
	RPL7P3	RPRD1B	RPS3P2	RTEL1	SAMD10 SA	MD11 SCNN1	1D	SDC4	SDF4	SFRS1	
	SLC17A9	SLC1A2	SLC2A4RG	SLC45A4 SL	.CO4A1	SLMO2	SMG1	SNHG11	SNORA40	SNORA71	
SNO	RA71A SNOR	A71B	snoU13	SNTA1	SRMS	ST3GAL1	STMN3	SULF2	SUMO1P1		SYCP2
	SYS1	TAF4	TAS1R3	TCFL5	TFAP2A	TGM2	TH1L	TMSL6 TNFI	RSF18	TNFRSF4	

TNFRSF6B	TOP1	TP53TG5	TPD52L2	TPX2 TSP	AN12	TTLL10	TUBB1	U1	U6	U7
UBE2J2	UCKL1	VSTM2L W	FDC2	Y_RNA	YTHDF1	ZBTB46	ZGPAT	ZMYND11		ZNF217
ZNF512B	ZNF831									

PANTHER analysis: 131 mapped ids are found, 152 mapped ids are not found.

There were gains present in ER positive DCIS associated with invasive breast disease (n=5/9) not observed in ER positive pure DCIS (n=0/8).

- 1. p-values < 0.05
- A gene list is mapped from 35 genomic regions found on chromosomes 1, 2,
 4, 5, 6, 7, 9, 11, 12, 14, 18, 19, 20, 22;
- These regions encompass 147 genes altered in ER positive DCIS associated with invasive breast disease;

;	5S_rl	RNA	7SK	AC000032.1	AC010442.1	AC012305.1	AC022724.2	AC026740.1	AC027097.1	AC064834.2	AC064834.3	
		AC064834.4	AC091609.1	AGAP1	AHRR	AIM1	AL031963.1	AL031963.2	AL031963.3	AL031963.5	AL109754.1	
		AL117692.1	AL117692.2	AL133351.1	AL136164.1	AL139092.1	AL161626.1	AL356735.1	AMIGO1	AMPD2	ANKRD5	
		AP000769.1	AP000944.1	AP002478.2	AP002478.4	ATG5	ATP5F1	ATP8B1	ATXN7L2	BPHL	C14orf182	
		C14orf183	C5orf55	C6orf155	C6orf195	CCDC127	CELSR2	CEP72	CTD-2083E4	.4	CTD-2083E4	4.5
		CTD-2083E4	l.6	CTD-2228K2	2.1	CTD-2228K2	2.2	CTD-2228K2	2.5	CTD-2231H1	6.1	
		CTD-2589H1	9.4	CYB561D1	DLGAP1	ETS1	EXOC3	FAM136B	FRMD8	GCNT1	GNAI3	
		GNAT2	GPR61	GSK3A	GSTM2	GSTM3	GSTM4	GSTM5	hsa-mir-197	hsa-mir-30a	hsa-mir-30c-	2
		hsa-mir-612	KDSR	LRRC14B	MYBPHL	MYLK4	NQO2	OGFRL1	OVGP1	PDCD6	PLEKHG4B	
		PRDM1	PRUNE2	PSMA5	PSRC1	RIPK1	RP11-101C1	1.1	RP11-109I2.	3	RP11-145H9	9.3
		RP11-154D6	i.1	RP11-214N1	6.2	RP11-218C1	4.5	RP11-310P5	.1	RP11-310P5	.2	
		RP11-404H1	4.1	RP11-416N4	.1	RP11-416N4	1.4	RP11-420G6	5.3	RP11-420G6	5.4	
		RP11-422N1	9.3	RP11-552M1	1.2	RP11-552M1	11.4	RP11-58E21	.1	RP11-66C24	.1	
		RP11-811115	5.1	RP11-94F13	.1	RP1-40E16.	11	RP1-40E16.2	2	RP1-40E16.3	3	RP1-
4	0E16	.4	RP1-40E16.8	3	RP1-40E16.9	Э	RP1-90J20.1	0	RP1-90J20.2	RP1-90J20.7	RP1-90J20.8	3 RP3-
3	31H2	4.4	RP4-630J13	.1	RP4-735C1.4	4	RP5-1160K1	.1	RP5-1160K1	.3	RP5-1160K1	.6
		RP5-839B4.7	7	RP5-839B4.8	3	RSL24D1P1	1	SDHA	SERPINB1	SERPINB6	SERPINB9	
		SLC39A10	SLC9A3	SNAP25	SORT1	SYPL2	TPPP	TUBB2A	U6	USP24	WDR77	WI2-
8	0423	F1.1	WRNIP1	Y_RNA	ZDHHC11	ZDHHC11B	ZFYVE28					

5.8.4.4 Genomic Sc Gains in Oestrogen Receptor Positive Pure DCIS Compared to Oestrogen Receptor Positive DCIS Associated with Invasive Breast Disease

There were Sc gains present in ER positive pure DCIS (n=4/8) not observed in any

ER positive DCIS associated with invasive breast disease (n=0/9) in this series.

- 1. p-values < 0.05;
- 2. A gene list is mapped from 6 genomic regions found on chromosomes 1, 8;
- 3. These regions encompass 16 genes altered in ER positive pure DCIS;

Genes:

 AC018442.1
 AC023933.1
 AL590138.1
 CD244
 CSMD3
 F11R
 hsa-mir-151
 ITLN1
 ITLN2
 PLXNA2
 PTK2

 RP11-312J18.5
 RP11-312J18.6
 RP11-312J18.7
 RP11-544M22.1
 VPS13B

 PANTHER analysis: 8 mapped ids are found, 8 mapped ids are not found.

There were Sc gains present in ER positive DCIS associated with invasive breast disease (n=6/9) not observed in ER positive pure DCIS (n=0/8).

- 1. p-values < 0.05;
- A gene list is mapped from 23 genomic regions found on chromosomes 1, 2, 11, 12, 17, 19, 20;
- These regions encompass 143 genes altered in ER positive DCIS associated with invasive breast disease;

ABCC	3 AC005220.	.3	AC007431.1	AC012305.1	AC091062.2	AC092066.6	ACAP3 AGA	P1	AGRN	AL049736.1
	AL109754.1	AL109840.1	AL136532.1	AL139348.1 A	AL365229.1	AL390719.1	AL669831.3	ANKRD5	ATP5E	AURKAIP1
	B3GALT6 B	CAS1	BCAS4	BCL3	C17orf73	C1orf159	C1orf170	C20orf177 C	20orf83	CBLC
	CDH26	CDH4	CPSF3L	CTB-22K21.	2	CTSZ	CYP24A1 DO	OK5	DVL1	FAM132A
	FAM41C	FAM65C	GLTPD1	GNAS	HES4 HOXB	3	HOXB4	HOXB5	hsa-mir-10a	hsa-mir-200ahsa-
mir-20	00b hsa-mir-4	29	ISG15	KLHL17	LUC7L3	MRPS16P	MSI2	MXRA8 NOC	C2L NXT1	PARD6B
	PFDN4	PHACTR3	PLEKHN1	PPP1R3D	PTPRT PUS	L1	RNFT1	RP11-164D1	8.2	RP11-206L10.13
	RP11-294J2	2.5	RP11-357H1	4.7	RP11-416N4	.1	RP11-416N4	.4	RP11-429E1	1.2
	RP11-429E1	11.3	RP11-465B2	2.3	RP11-465B2	2.5	RP11-465B2	2.6	RP11-506D1	2.1
	RP11-506D ²	12.3	RP11-5407.	1	RP11-5407.	10	RP11-5407.	11 RP11-540	7.14	RP11-5407.2
	RP11-5407.	.3	RP11-700H6	5.1	RP11-700H6	.2 RP1-232N	11.2	RP1-309F20	.2	RP1-309F20.3
	RP3-322G1	3.7	RP4-530l15.	6 RP4-543J1	9.8	RP4-583K8.	1	RP4-614C15	5.2	RP4-614C15.3
	RP4-715N1	1.2 RP4-719C	8.1	RP4-723E3.	1	RP4-724E16	.2	RP4-730D4.	1	RP5-1022J11.1
RP5-1	1022J11.2	RP5-1030M6	6.2	RP5-1073F1	5.1	RP5-827L5.1	RP5-827L5.2	2 RP5-839B4.	7	RP5-839B4.8

RP5-890O3	.3	RP5-890O3	.9	RP5-902P8	.10	RPL12P4 R	PS6KB1	SAMD11	SCNN1D
SDF4	SLC39A11	SLMO2	SNAP25 SN	IORA70	snoZ6	SYCP2	TAS1R3	TH1L	TMSL6
TNFRSF18	TNFRSF4 T	OB1	TTLL10	TUBB1	U4atac	U6	U7	UBE2J2	WFIKKN2
Y_RNA ZFF	P64	ZNF217	ZNF831						

PANTHER analysis: 62 mapped ids are found, 79 mapped ids are not found.

5.8.4.5 Losses in Oestrogen Receptor Positive Pure DCIS Compared to Oestrogen

Receptor Positive DCIS Associated with Invasive Breast Disease

There is some overlap in the losses found in ER positive pure DCIS (n=5/8) compared to ER positive DCIS associated with invasive breast disease (n=1/9). DCIS.

- - 1. p-values < 0.05;
 - A gene list is mapped from 35 genomic regions found on chromosomes 3, 9, 11;
 - 3. These regions encompass 510 genes altered in ER positive pure DCIS;

Genes:

5S_rRNA AC015689.1 AC019227.1 AC019227.2 AC025029.1 AC087441.1 AC090587.2 AC090587.4 7SK ABCG4 AC090587.5 AC090804.1 AC108448.2 AC108448.3 AC109309.4 AC132217.4 ACA59 ACAD8 ADAMTS15 ADAMTS8 AMICA1 AMOTL1 ANKK1 ANKRD42 ANKRD49 AP000560.1 AP000619.1 AP000620.1 AP000620.2 AP000642.1 AP000654.1 AP000654.2 AP000757.1 AP000767.1 AP000769.1 AP000787.1 AP000797.1 AP000797.2 AP000843.2 AP000844.1 AP000866.1 AP000866.2 AP000873.1 AP000880.1 AP000892.4 AP000907.1 AP000907.2 AP000907.3 AP000908.1 AP000911.1 AP000925.2 AP000936.1 AP000936.3 AP000936.4 AP000936.5 AP000944.1 AP001007.1 AP001007.3 AP001122.1 AP001267.1 AP001267.2 AP001528.1 AP001582.1 AP001767.1 AP001781.1 AP001830.1 AP001891.1 AP001922.1 AP001972.1 AP001979.1 AP001992.2 AP001999.1 AP002364.1 AP002364.2 AP002380.1 AP002380.2 AP002451.1 AP002754.1 AP002783.1 AP002783.2 AP002783.3 AP002783.4 AP002783.5 AP002783.6 AP002802.1 AP002884.4 AP002886.2 AP002956.4 AP002962.1 AP002986.1 AP002991.1 AP003025.2 AP003039.3 AP003039.4 AP003041.1 AP003070.1 AP003072.1 AP003122.1 AP003175.1 AP003304.2 AP003392.1 AP003392.3 AP003402.1 AP003402.2 AP003461.1 AP003461.10 AP003461.11 AP003461.2 AP003461.3 AP003461.4 AP003461.5 AP003461.6 AP003461.7 AP003461.8 AP003461.9 AP003499.3 AP003500.1 AP003774.4 AP003774.5 AP003774.7 AP003780.2 AP003781.1 AP003971.1 AP004242.1 AP004242.2 AP004248.4 AP004372.1 AP004607.1 AP004607.3 AP004609.2 AP004609.4 AP005273.1 AP005435.1 AP005597.1 AP005638.1 AP005638.3 AP005718.1 AP004607.2 AP005814.1 AP006216.10 AP006216.11 AP006216.12 AP006216.5 AP006288.1 APLP2 APOA1 APOA4 APOA5 APOC3 ARCN1 ARHGAP32 ARHGAP42 ARHGEF12 ARHGEF17 ARRB1 ATM ATP5L B3GAT1 BACE1 BARX2 BCL9L BCO2 BEST1 BIRC2 BIRC3 BTG4 BUD13 C11orf1 C11orf10 C11orf2 C11orf30 C11orf36 C11orf45 C11orf52 C11orf53 C11orf54 C11orf57 C11orf61 C11orf63 C11orf65 C11orf66 C11orf71 C11orf75 C11orf82 C11orf84 C11orf88 C11orf9 CAPN1 CARS CCDC15 CCDC153 C11orf90 C11orf92 C11orf93 CADM1 CBL CCDC67 CCDC82 CCDC83 CCDC84 CCDC89 CCDC90B CD3D CD3E CD3G CDC42EP2 CEP164 CEP57 CHORDC1 CHRM1 CLDN25 CUL5 CWC15 CHEK1 CNTN5 CREBZF CRTAM CRYAB CTSC CXCR5 DAGLA DCUN1D5 DDI1 DDX25 DDX6 DGAT2 DIXDC1 DLAT DLG2 DPF2 DRD2 DSCAML1 DYNC2H1 EI24 EIF3F ENDOD1 ESAM ETS1 EXPH5 FADS1 FADS2 FADS3 FAM168A FAM181B FAM55A FAM55B FAM55D FAM76B FAU FCHSD2 FEN1 FLI1 FOLH1B FOLR4 FRMD8 FDX1 FDXACB1 FOXR1 FTH1 FUT4

	FXYD2	FXYD6	FZD4	GBE1	GLB1L2	GLB1L3	GPR83	GUCY1A2 H	EPACAM	HEPN1	
	HRASLS5	hsa-mir-1304	4hsa-mir-1908	3hsa-mir-34b	hsa-mir-34c	hsa-mir-483	hsa-mir-548l	hsa-mir-611	hsa-mir-612	HSPB2	HTR3A
HTR	3B	HYLS1	IFT46	IGF2	IGF2AS	IGSF9B	IL10RA	IL18	INS JAM3	JRKL	
	KCNJ1	KCNJ5	KDELC2	KDM4D	KDM4DL	KIAA1731 L/	AYN LRRC10	В	MALAT1	MAML2	
	MAP6	MARK2	ME3	MED17 MLL	MMP1	MMP10	MMP12	MMP13	MMP20	MMP27	
	MMP3 MMP	7	MMP8	MOGAT2	MPZL2	MPZL3	MRE11A	MRGPRE	MRGPRG	r	MRPL49
	MTMR2	MYLKP1	NAALAD2	NCAM1	NCAPD3 NC	RNA00167	NEU3	NFRKB	NLRX1	NNMT	
	NOX4	NPAT	NRGN	NUP98	OPCML OR	I0V1	OR2AT2P	OR2AT4	OR4A15	OR4A16	
	OR55B1P O	R8A1 OR8B1	2	OR8B9P	OSBP	OSBPL5	P2RY2	P2RY6	PAFAH1B2	PANX3	PATL1
	PCF11	PCSK7	PDGFD	PDZD3	PGAP2	PGR	PHLDB1 PIC	ALM	PIH1D2	PIWIL4	
	PKNOX2	POLA2	POU2AF1	PPIHP1 PPF	2R1B	PRCP	PRDM10	PTPRD	PUS3	RAB30	
	RAB38	RAB39	RAB3IL1 RB	M7	RDX	RELT	REXO2	RHOG	RNF169	RNF214	
	ROBO3 RO	BO4 RP11-14	2L1.1	RP11-142L1	.2	RP11-142L1	.3	RP11-147l3.	1	RP11-160	H12.1
	RP11-237N	19.1	RP11-358N4	1.2	RP11-359D2	24.1	RP11-399J1	3.1	RP11-438N5	i.1	
	RP11-447G	14.1	RP11-567M2	21.1	RP11-657K2	.0.1	RP11-659G9	9.1	RP11-667M	19.1	
	RP11-690D	19.1	RP11-727A2	3.1	RP11-742N3	3.1	RP11-810P1	2.1	RP11-832N8	3.1	
	RP11-861M	13.1	RP11-864G5	5.1	RP11-959F1	0.1	RPL23AP64	RPL37AP8	RPLP0P2	RRM1	
SCA	RNA11	SCN2B	SCN4B	SDHD	SESN3	SFRS2B	SIAE SIDT2	SIK2	SIK3	SLC22A10)
	SLC22A20	SLC22A24	SLC22A25	SLC22A9 SL	C25A45	SLC35F2	SLC36A4	SLC37A2	SLCO2B1	SNORA1	
SNO	RA18	SNORA25	SNORA32	SNORA40	SNORA7	SNORA70 S	NORA8	SNORD112	SNORD5	SNORD56	;
	snoU13	snoU2_19 sr	noU2-30	snoZ40	SORL1	SPA17	SPATA19	SPCS2	SPDYC	ST14	STIM1
	STT3A	SYT7	SYTL2	SYVN1	TAF1D	TAGLN	TBRG1	TEX12 THY	N1	TIGD3	
	TIMM8B	TM7SF2	TMEM123	TMEM126A	TMEM126B T	MEM135	TMEM136	TMEM218	TMEM25	TMEM45B	
	TMPRSS13	TMPRSS4	TMPRSS5	TP53AIP1	TREH	TRIM48	TRIM49	TRIM49L TR	IM53	TRIM53B	
	TRIM64	TRIM64B	TRIM77	TTC12	TTC36	U2 U6	U7	UBASH3B	UBE4A	UBTFL2	
	UBTFL3	UPK2	USP28 UVR	AG	VPS26B	VSIG2	XRRA1	Y_RNA	ZBTB16	ZBTB44	
ZC3F	112C	ZNF259	ZNHIT2	ZW10							

PANTHER analysis: 286 mapped ids are found, 224 mapped ids are not found.

There were losses present in ER positive DCIS associated with invasive breast disease (n=6/9) not observed in ER positive pure DCIS (n=0/8).

- 1. p-values < 0.05;
- A gene list is mapped from 56 genomic regions found on chromosomes 5, 8, 10, 16, 19, X;
- These regions encompass 149 genes altered in ER positive DCIS associated with invasive breast disease;

 Genes:
 55_rRNA
 AC002366.3
 AC003666.1
 AC009055.1
 AC009110.1
 AC009161.1
 AC010546.1
 AC018558.1
 AC022164.1

 AC023824.2
 AC025287.1
 AC025287.2
 AC025287.3
 AC025287.4
 AC069278.1
 AC073493.2
 AC073493.3
 AC135776.1

 ADAM3A
 ADAM5P
 AGTR2
 AKR1B1P8
 AL035443.1
 AL133512.1
 AL353698.1
 AL591398.1
 AMELX
 ANKRD26P1

 ARHGAP6
 ARHGEF9
 ASPDH
 BMP15
 BX119964.1
 BX119964.3
 BX119964.4
 C5orf50
 CCNYL3
 CDH11

 CDH8
 CLCN4 CTD-2503H21.1
 CXorf29
 DHRSX
 DMD
 EFHC2
 EIF2S3 FAAH2 FAM48B2 FDPSL5

	FMR1	FMR1NB	FRMPD4	GPR112	GPR64 GS1	-256022.1	GS1-256O22	2.5	GS1-466O4.	2	
	GS1-466O4.	3	GS1-466O4.	5 GS1-541M1	.2	JOSD2	KLF8	L29074.1	L29074.2	L29074.3	
	L29074.5 LR	RC4B	MAGEB18	MAGEB5	MAGEB6	MAGEB6B	MAGED4 MA	AGEE1	MAP3K7IP3	NRG3	
	PSMD7	RP11-104D2	:1.1	RP11-104D2	1.2 RP11-104	4D21.3	RP11-121C2	2.1	RP11-156J2	3.1	
	RP11-1A15.2	2	RP11-357C3	3.2	RP11-357C3	.3	RP11-363G1	0.2	RP1-137H15	.2	RP1-
138A5.1	RP11-38O23	3.3	RP11-38O23	3.4	RP11-38O23	3.5	RP11-38O23	3.7	RP11-3D23.	1	
	RP11-434J2	4.2	RP11-467P2	2.4	RP11-479I1.	4 RP11-517D	11.3	RP11-54I5.1	RP11-552E4	.2	
	RP11-61708	3.1	RP11-637B2	3.1	RP11-637B2	3.3	RP11-702C7	.1	RP11-702C7	.2	
	RP11-761E2	:0.1	RP11-81C12	1	RP11-93B10	.3	RP1-20J23.1	RP1-267M5.	1 RP1-267M5	.2	RP1-
290C9.2	RP13-188A5	i.1	RP13-346H1	0.2	RP13-348B1	3.1 RP13-348	3B13.2	RP13-34C21	.1	RP13-60P5.	2
	RP1-54B20.7	7	RP3-433G13	3.1 RP4-551E	13.2	RP5-1145L2	3.2	RP5-849L7.1	IRP6-102.1	SHROOM4	
SLITRK4	SNORA11	SNORA68	snoU13	SPACA5B	SPANXN3 S	PIN4 SSX5	SSX6	U40455.1	U6	VENTXP1	
	WWOX	Y_RNA	Z98304.1 ZF	P112	ZFRP1	ZFX	ZIC3	ZNF180	ZNF229	ZNF285	

PANTHER analysis: 42 mapped ids are found, 106 mapped ids are not found.

5.8.4.6 Total Loss in Oestrogen Receptor Positive Pure DCIS Compared to Oestrogen Receptor Positive DCIS Associated with Invasive Breast Disease

There were total losses present in ER positive pure DCIS (n=5/8) not observed in ER positive DCIS associated with invasive breast disease (n=0/9).

- 1. p-values < 0.05;
- A gene list is mapped from 13 genomic regions found on chromosomes 9, 11, 13, 15, 19;
- 3. These regions encompass 25 genes altered in for ER positive pure DCIS;

Genes:

 7SK
 AC025678.1
 AC027139.2
 AC027139.3
 AP000720.1
 AP001482.1
 AP003072.1
 CCDC67
 CTSC
 GOLGA8B
 GRM5
 hsa

 mir-1233
 KDM4C
 LPAR6
 NOX4 OR 10V1
 OSBP
 PATL1
 RB1
 RP11-657K20.1
 SLC36A4
 TYR

 U7 ZNF208
 ZNF257

 TYR

PANTHER analysis: 15 mapped ids are found, 10 mapped ids are not found.

There were total losses present in ER positive DCIS associated with invasive breast disease (n= 9/9) not observed in ER positive pure DCIS (n=0/8).

- 1. p-values < 0.05;
- A gene list is mapped from 91 genomic regions found on chromosomes 11, 13, 16, 17, X;

3. These regions encompass genes altered in ER positive DCIS associated with

invasive breast disease;

5S_rF	RNA	7SK	ABCC12	ABR	AC000003.1	AC002347.1	AC002347.2	AC002366.3	AC003658.1	AC00407	D.1
	AC004478.2	AC005277.1	AC005284.1	AC005323.1	AC005358.1	AC005358.3	AC005548.1	AC005548.2	AC005696.2	AC	005696.3
	AC005725.1	AC006435.1	AC007225.1	AC007339.1	AC009053.1	AC009110.1	AC009120.1	AC009120.3	AC009161.1	AC01054	6.1
	AC015799.1	AC015799.2	AC015908.2	AC016292.1	AC016292.3	AC025287.1	AC025287.2	AC025287.3	AC025287.4	AC02551	B.1
	AC027045.1	AC027763.1	AC027763.2	AC032044.1	AC055839.2	AC073493.1	AC073493.2	AC073493.3	AC08749	8.1 AC	087501.1
	AC087742.1	AC087742.2	AC090282.1	AC090617.1	AC091153.4	AC097370.1	AC099508.1	AC099684.1	AC100748.2	AC10458	1.1
AC10	9599.1 AC11	6914.1	AC118754.2	AC118754.4	AC127521.1	AC130343.2	AC130689.5	AC135178.7	ACA64	ADAT1	
	AIPL1	AL136160.1	AL355852.1	AL390738.2	AL450226.1	AL450226.2	AL589987.1	ALOX12	ALOX15	AMAC1L3	3
	AMELX ANK	(FY1 ANKRD	26P1	AP001970.1	ARHGAP6	ARHGEF15	ARHGEF9	ARRB2 ASB	12 ASGR1	ASGR2	
	ASMT	ASPA	ATP2A3	ATP5EP2	BCAR1 BCL	6B BHLHA9	BMP15	BRWD3	BX004827.1	BX649443	3.1
	C13orf36 C1	16orf78	C16orf87	C17orf100	C17orf44	C17orf48	C17orf49 C1	7orf68	C17orf85	C17orf91	
	CAMKK1	CBLN1	CCDC42	CDH13 CDH	18	CFDP1	CHD3	CHRNB1	CHST5	CHST6	
	CLEC10A C	LEC18B	CRK	CRLF2	CTD-2503H2	21.1	CTD-2545G	14.1	CTNS	CTRB1	-CTRB2
	CYB5D1	CYB5D2	DDX26B	DHRS7C	DHRSX DLG	64 DNAH2	DNAH9	DNAJA2	DPH1	EEF1AL1	
	EIF4A1P10	ERN2 FA2H	FAM123B	FAM46D	FAM64A	FANCB	FBXO39	FRMPD4 GA	BARAPL2	GAPDHP	34
	GAS7	GGT6	GLG1	GLP2R	GLRA2	GPT2 GS1-4	16604.2	GS1-466O4	.3	GS1-4660	D4.5
	GS1-541M1	.1	GS1-541M1	.2	GSG2	GTPBP6 HC	CS	HDHD1A	HIC1	HK2P1	
	HMGA1L1	hsa-mir-125	3hsa-mir-132	hsa-mir-146	3hsa-mir-195	hsa-mir-212	hsa-mir-22	hsa-mir-497	INPP5K	ITGAE	KARS
	KDM6B	KIAA0664	KIAA0753	KRBA2	LDHD	LL0YNC03-3	3F3.1 LSMD1	MAGEB18	MAGEB5	MAGEB6	
	MAGEB6B	MAGED1 M	AGED4	MAGED4B	MAGEE1	MAP2K4	MED31	METT10D N	IFSD6L	MLKL	MNT
	MTMR8	MTUS2	MYBBP1A	MYH1	MYH10 MYH	113	MYH2	MYH3	MYH4	MYH8	
	MYLK3	MYO1C	MYOCD NC	RNA00086	NCRNA0010)7	NCRNA0010)8	NDEL1	NETO2	
	NPIPL2	NTN1 NXN	ODF4	OR1A1	OR1A2	OR1D2	OR1D5	OR1E1	OR1E2		OR1G1
	OR3A1	OR3A2	OR3A3	OR3A4	ORC6L OVC	CA2 P2RX1	P2RX5	P2RY8	PAFAH1B1	PAN3	
	PCDH11X	PDX1	PELP1 PFA	S	РНКВ	PIK3R5	PIK3R6	PIRT	PITPNA	PITPNM3	
	PLCXD1 PL	K1	POLR2A	PPP2R3B	PRPF8	PRPSAP2	PSMD7	RAB43P1 R	ANGRF	RAP1GA	2
	RCVRN	RFWD3	RILP	RNASEK	RNF222 RP	1-107N3.1	RP1-107N3.	2	RP11-114H2	20.1	
	RP11-120D	5.1	RP11-145B3	8.2 RP11-151	A2.2	RP11-16L6.:	3RP11-197L7	.2	RP11-217H ²	19.1	
	RP11-234P3	3.2 RP11-234	P3.3	RP11-234P3	.4	RP11-234P3	3.5	RP11-265D ²	19.5	RP11-2	265D19.6
	RP11-284B1	18.3	RP11-2N21.	2	RP11-309M	23.1	RP11-309M	23.2 RP11-31	1P8.1	RP11-311	P8.2
	RP11-314A2	20.1	RP11-314A2	20.2 RP11-32	5E14.1	RP11-325E1	4.2	RP11-325E1	14.5	RP11-331	F4.1
	RP11-331F4	4.4 RP11-33N	11.1	RP11-342C2	20.3	RP11-344N1	17.11	RP11-344N	17.2	RP11-3	344N17.3
	RP11-344N	17.6	RP11-344N ²	17.7	RP11-344N1	17.8	RP11-357C3	3.2	RP11-357C	3.3	
	RP11-360A9	9.1	RP11-363G	10.2	RP11-364B1	14.1	RP11-364B1	4.2	RP11-364B1	4.3	
	RP11-403E2	24 1	RP11-432N	13.2	RP11-432N1	13.3	RP11-459A1	0.1	RP11-459A1	0.2	
	RP11-459A1	10.3	RP11-462C	21.1	RP11-471M	2 1	RP11-471M	22	RP11-481E2	23.1	
	RP11-483M	24.2	RP11-48B12		RP11-51C14	1 1	RP11-51C14	12	RP11-520E9	12	
	RP11-552E4	13	RP11-552E4	14	RP11-552E4	1.5 RP11-565	F19 1	RP11-572E4	11 11 02010	RP11-600	1 120
	RP11-6170	 R 1	RP11-63783		RP11-63782	23.3	RP11-64711	71	RP11-7020	7 1	
	RP11-7020	7.2	RP11-712H	12 1	RP11-03R10	13	RP11-062H	11	RP11-063H	12	RP1-
2701	11 1	RP13-2100	15.1	RP13-21004	5.4	RP13-21004	15.6	RP13-207E	16.3	RP13-207	7E16 /
21311	RP13-207E4	16.5	RP13-34C2	1	RP13-/65P1	17.2	RP13-/65P1	73	RP13-5650	16.2	210.4
	RP13_60PF	2	RP13_95902	7 1	RP13-026M	18.1	RD3_/22A42	11.3	RP4-71014	10.2	
	RPL26	- RTN4RL1	SCARF1	SCARNA21	SCO1	SERPINF1	SERPINF2 S	SFRS17A	SGSM2	SHCBP1	N AI

SHOX	SHPK	SHROOM4	SLC13A5	SLC16A11	SLC16A13	SLC25A35	SLC43A2	SLITRK5 SMG6
SMYD4	SNORA11	SNORA69	SNORA76	SNORD91 s	moU13	SOX3	SPATA22	SPDYE4
SPNS2	SPNS3 SRF	R SSX1	SSX3	SSX9	STX8	TAX1BP3	TBX22	TEKT1
TIMM22 TL	CD2 TMEM17	ΟA	TMEM220	TMEM231	TMEM88	TMEM93	TNFSF12	TNFSF12-TNFSF13
TRPV1	TRPV3	TSR1	TUSC5	TXNDC17	U1 U6	U7	U70984.1	U8
UPRT	USP43	VAT1L	VENTXP1 V	PS35 WDR1	6 WDR59	WDR81	WSCD1	XAF1
YWHAE ZB	TB4	ZDHHC15	ZFP1	ZNF423	ZNF449	ZNF75D	ZNRF1	ZZEF1
	SHOX SMYD4 SPNS2 TIMM22 TL TRPV1 UPRT YWHAE ZB	SHOXSHPKSMYD4SNORA11SPNS2SPNS3 SRFTIMM22 TLCD2 TMEM17TRPV1TRPV3UPRTUSP43YWHAE ZBTB4	SHOX SHPK SHROOM4 SMYD4 SNORA11 SNORA69 SPNS2 SPNS3 SRR SSX1 TIMM22 TLC/2 TMEM170 TISR1 TRPV1 TRPV3 TSR1 UPRT USP43 VAT1L YWHAE ZBTB4 ZDHHC15 SDHC15	SHOX SHPK SHROOM4 SLC13A5 SMYD4 SNORA11 SNORA69 SNORA76 SPNS2 SPNS3 SR SSX1 SSX3 S TIMM22 TLCD2 TMEM17C TMEM220 TMEM220 TRPV1 TRPV3 TSR1 TUSC5 UPRT USP43 VAT1L VENTXP1 V YWHAE ZBTB4 ZDHRC15 ZP1	SHOX SHPK SHROOM SLC13A5 SLC16A11 SMYD4 SNORA11 SNORA69 SNORA76 SNORD91 SNORD91 SPNS2 SPNS3 SR SX1 SX3 SX3 SX9 S TIMM22 TLC2 TMEM17 TMEM220 TMEM220 TMEM221 TMEM220 TMEM221 TRPV1 TRPV3 TSR1 TUSC5 TXNDC17 TUPRT USP43 VAT1L VENTXP1 VS35 WDR14 YWHAE ZBTB1 ZDHHC15 ZFP1 ZNF423 TUPR1 TMEM22	SHOX SHPK SHROOM4 SLC13A5 SLC16A11 SLC16A13 SMYD4 SNORA11 SNORA69 SNORA76 SNORD1 $$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SHOX SHR SHROOM SLC13A5 SLC16A11 SLC16A13 SLC25A35 SLC43A2 SMYD4 SNORA11 SNORA69 SNORA76 SNORD91 SOX3 SPA7A2 SPNS2 SPNS3 SR - SX1 SX3 SX9 STX8 TAX1BP3 TBX22 TIMM22 TL-7 TMEMT TMEM20 TMEM20 TMEM20 TMEM30 TMEM39 TMF393 TRPV1 TRPV3 SR1 TUSC5 TXNDC17 U1 U6 U7 U70984.1 UPRT USP43 VAT1L VENTXPLYS5 WDR15 WDR81 WDR81 WSCD1 YWHAE ZFH ZDHHC15 ZPF1 ZNF43 ZNF49 ZNF50 ZNF11

PANTHER analysis: 219 mapped ids are found, 223 mapped ids are not found.

5.8.4.7 CdLOH in Oestrogen Receptor Positive Pure DCIS Compared to Oestrogen Receptor Positive DCIS Associated with Invasive Breast Disease

There is CdLOH present in ER positive pure DCIS (n=6/8) not observed in any ER positive DCIS associated with invasive breast disease (n=0/9).

- 1. p-values < 0.05;
- 2. A gene list is mapped from 54 genomic regions found on chromosomes 3, 9, 11;
- 3. These regions encompass 333 genes altered in ER positive pure DCIS;

5S_rRNA	ABCG4	AC015689.1	AC025029.1	AC087441.1	AC090587.2	AC090587.4	AC090587.5	AC090804.1	AC108448.2	AC108448	.3
	AC109309.4	AC132217.4	AC133041.1	ACAD8	AMOTL1	ANKRD42	ANKRD49 A	P000438.1	AP000560.1	AP000619	.1
	AP000620.1	AP000620.2	AP000642.1	AP000654.1	AP000654.2	AP000767.1	AP000769.1	AP000787.1	AP000873.1	AP0	00911.1
	AP000944.1	AP001267.1	AP001267.2	AP001528.1	AP001767.1	AP001922.1	AP001972.1	AP001979.1	AP001992.2	AP001999	.1
	AP002364.1	AP002364.2	AP002380.1	AP002380.2	AP002754.1	AP002783.1	AP002783.2	AP002783.3	AP002783.4	AP002783	.5
	AP002783.6	AP002802.1	AP002956.4	AP002991.1	AP003122.1	AP003175.1	AP003304.2	AP003392.1	AP003392.3	AP0	03461.1
	AP003461.1	D	AP003461.1	1	AP003461.4	AP003461.5	AP003461.7	AP003499.3	AP003774.4	AP003774	.5
	AP003774.7	AP003780.2	AP003781.1	AP003971.1	AP004242.1	AP004242.2	AP004607.1	AP004607.2	AP004607.3	AP0	04609.2
	AP004609.4	AP005273.1	AP005435.1	AP005718.1	AP005814.1	AP006288.1	ARCN1	ARHGAP42	ARHGEF12	ARHGEF1	7
	ARRB1 ATM	ATP5L	B3GAT1	BCL9L	BEST1	BIRC2	BIRC3	C11orf10	C11orf2	C11orf30	
C11orf36	C11orf54	C11orf65	C11orf66	C11orf75	C11orf82 C1	1orf84	C11orf9	C11orf90	CADM1	CAPN1	
	CARS	CBL CCDC1	53	CCDC67	CCDC82	CCDC83	CCDC84	CCDC89 CC	DC90B	CD3G	
	CDC42EP2	CEP57	CHORDC1	CHRM1	CNTN5 CRE	BZF CTD-202	26G6.1	CTD-2026G6	6.2	CWC15	
	CXCR5	DAGLA DCU	IN1D5	DDI1	DDX6	DGAT2	DLG2	DPF2	DYNC2H1	EIF3F	
	ENDOD1 EX	PH5	FADS1	FADS2	FADS3	FAM168A	FAM181B	FAM76B	FAM86D		FAU
	FCHSD2	FEN1	FOLH1B	FOLR4	FOXR1	FRMD8	FTH1 FUT4	FZD4	GBE1	GLB1L2	
	GLB1L3	GPR83	GUCY1A2	HRASLS5 hs	a-mir-1304	hsa-mir-1324	hsa-mir-1908	3hsa-mir-483	hsa-mir-548l	hsa-mir-61	1 hsa-
mir-612	IFT46	IGF2	IGF2AS	IGSF9B	INS	JAM3	JRKL	KDELC2 KD	M4D	KDM4DL	
	KIAA1731	LRRC10B	MALAT1	MAML2 MAP	96 MARK2	ME3	MED17	MLL	MMP1	MMP10	
	MMP12	MMP13 MMF	P20	MMP27	MMP3	MMP7	MMP8	MOGAT2	MRE11A	MRGPRE	
MRGPRG	MRPL49	MTMR2	MYLKP1	NAALAD2	NCAPD3 NE	U3 NLRX1	NOX4	NPAT	NUP98	OR2AT2P	
	OR2AT4	OR55B1P	OSBPL5 P2F	RY2 P2RY6	PCF11	PDGFD	PDZD3	PGAP2	PGR	PHLDB1	
	PICALM PIW	/IL4	POLA2	PRCP	PTPRD	RAB30	RAB38	RAB3IL1	RELT	RHOG	RNF169
	RP11-142L1	.1	RP11-142L1	.2	RP11-142L1	.3	RP11-147I3.	1	RP11-160H1	2.1 RP11-	241K7.1
	RP11-241K7	.2	RP11-358N4	.2	RP11-359D2	24.1 RP11-399	9J13.1	RP11-413E6	5.1	RP11-413	E6.2

	RP11-413E6	.3	RP11-438N5	5.1	RP11-447G1	4.1	RP11-642N1	4.3	RP11-659G9	0.1	
	RP11-690D1	9.1	RP11-727A2	3.1	RP11-742N3	.1	RP11-803B1	.1	RP11-803B1	.2	
	RP11-803B1	.3	RP11-803B1	.4	RP11-803B1	.5	RP11-803B1	.7	RP11-810P1	2.1	
	RP11-861M1	13.1	RP11-864G5	5.1	RP11-959F1	0.1	RPL23AP64	RPLP0P2	RRM1	SESN3	
	SFRS2B	SLC22A10 S	LC22A20	SLC22A24	SLC22A25	SLC22A6	SLC22A8	SLC22A9 SL	C25A45	SLCO2B1	
	SNORA1	SNORA18	SNORA25	SNORA32 S	NORA40	SNORA7	SNORA70	SNORA8	SNORD112	SNORD5	
SNORD56	snoU13	snoU2_19	snoU2-30	snoZ40	SPATA19 SF	PCS2 SPDYC	STIM1	SYT7	SYTL2	SYVN1	
	TAF1D	THYN1	TIGD3	TM7SF2 TM	EM123	TMEM126A	TMEM126B	TMEM135	TMEM136	TMEM25	TREH
TRIM49	TRIM49L	TRIM53	TRIM53B	TRIM64	TRIM64 TRI	M77 TTC36	U2	U6	UBE4A	UBTFL2	
	UBTFL3	UPK2	UVRAG VPS	26B XRRA1	Y_RNA	ZNHIT2					

PANTHER analysis: 167 mapped ids are found, 166 mapped ids are not found.

There is CdLOH found in ER positive DCIS associated with invasive breast disease. (n=8/9) with some overlap in ER positive pure DCIS (n=1/8).

- 1. p-values < 0.05;
- A gene list is mapped from 36 genomic regions found on chromosomes 5, 7, 10, 12, 16, 19, X;
- These regions encompass 61 genes, 2 and 59 genes altered in ER positive DCIS associated with invasive breast disease;

Genes:

AC002519.2	AC005774.	2 AC009055.1	AC009120.1	AC018558.1	AC022164.1	AC023824.2	AC025287.2	AC069278.1	AC073057.5
AC135776	1 ARHGEF9	ASPDH	BX649443.1	C16orf67	C5orf50	CCNYL3	CDH11 DHR	SX EFHC2	EIF2S3
FAM48B2	FDPSL5	FRMPD4	GPR64 JOS	D2 LRRC4B	MAGED4	NRG3	RP11-114G1	1.2	RP11-1217F2.15
RP11-133	M24.1	RP11-357C3	3.2	RP11-357C3	8.3	RP11-363G1	10.2	RP11-479I1.	4
RP11-6170	08.1	RP11-93B10).3	RP1-290C9.	2	RP13-297E1	6.4 RP13-297	7E16.5	RP13-34C21.1
RP13-8580	27.1	RP4-551E13	3.2 SNORA11	SNORA68	SORCS3	SPIN4	U7	VN1R66P	Y_RNA
ZFP112 ZF	X ZNF180	ZNF229	ZNF285	ZNF716	ZNF720	ZNF720P1			

PANTHER analysis: 41 mapped ids are found, 28 mapped ids are not found.

5.8.4.8 CnLOH in Oestrogen Receptor Positive Pure DCIS Compared to Oestrogen

Receptor Positive DCIS Associated with Invasive Breast Disease

There is CnLOH present in ER positive pure DCIS (n=8/8) not observed in ER positive

DCIS associated with invasive breast disease (n=0/9).

1. p-values < 0.05;

A gene list is mapped from 98 genomic regions found on chromosomes 1, 2, 3, 4, 6, 10, 11, 12, 16, 19, 20, 21;

3. These regions encompass 627 genes altered in ER positive pure DCIS;

5S_I	RNA	7SK	ABI3BP	ABT1	AC000032.1	AC002485.1	AC004699.1	AC012154.1	AC018809.6	AC021749	.1
	AC021749.2	AC021749.3	AC022007.1	AC022007.2	AC022007.4	AC022007.5	AC023085.1	AC025423.2	AC027288.1	AC0	27288.2
	AC034102.1	AC034193.5	AC034193.7	AC063962.1	AC073366.1	AC078917.1	AC079598.1	AC079598.2	AC087521.1	AC087521	.2
	AC087521.3	AC087521.4	AC087521.5	AC093028.1	AC096649.1	AC096649.2	AC096649.3	AC124890.1	AC131263.1	AC131263	.2
	AC137628.1	AC137834.2	ACCS	ACCSL ADA	M30	ADAMTS14	ADH5P4	AF254982.1	AF254982.2	AF254982	.3
AGAF	P10	AGAP6	AGAP7	AGAP8	AHCYL1	AL021807.2	AL021808.1	AL021808.2	AL021808.3	AL023913.	.1
	AL031178.1	AL035045.1	AL035456.1	AL035467.1	AL035661.3	AL050321.1	AL050321.2	AL050322.1	AL050335.1	AL050335.	.2
	AL109754.1	AL109922.1	AL118509.1	AL133255.1	AL136164.1	AL138850.1	AL139429.1	AL354680.1	AL354933.1	AL355344	.1
AL35	9752.1	AL391137.2	AL442003.2	AL442003.3	AL450342.1	AL450342.2	AL512288.1	AL512503.1	AL590062.1	AL591034.	.2
	AL591044.1	AL591044.2	AL591044.3	AL591044.4	AL672187.3	AL672187.4	AL713998.1	ALKBH3 ALX	(3 AMBRA1	ANKRD5	
	ANKRD52	ANO3	ANXA8L1	AP000302.58	3 AP000303.1	AP000304.12	2	AP000304.2	AP001992.2	APOF	
	ARHGAP1	ARHGAP9 A	SAH2	ATF2	ATP5G3	B3GAT2	BANF2	BDNF	BDNFOS	BMS1P2	BTBD3
	BYSL	C10orf53	C11orf91	C1orf127	C1orf167	C1orf216 C2	0orf12	C20orf187	C20orf3	C20orf61	
	C20orf72	C20orf78 C2	:0orf79	C20orf94	C22orf30	C3orf10	C3orf24	C6orf155 C6	orf205	C6orf57	
	CASP14	CCDC34	CCT2	CD59	CD82	CDK2 CFLP6	3	CHRM4	CHST1	CIDECP	
	CLCN6	CLSPN	CNPY2 CON	1TD1	COQ10A	CR381653.1	CR381653.2	CR381653.3	CR381670.1	CR3	81670.2
	CR382285.2	CR382287.1	CR392039.1	CR392039.2	CR392039.3	CREB3L1	CRELD1	CRYZL1	CS	CSF1	
	CSRP2BP	CST1	CST2 CST3	CST4	CST5	CST7	CSTF3	CSTP1	CSTP2	CTA-215D	11.3
	CTA-215D11	.4 CTSLL7	CYCSP41	DEFB110	DEFB112	DEFB113	DEFB114 DE	FB133	DEK	DEPDC7	
	DGKZ	DIP2C	DNAJC28	DONSON	DPCR1 DTN	BP1	DUPD1	DUSP13	ELOVL5	ENO1	
	EPHA6	EPS8L3 ERE	3B3	ERRFI1	ESYT1	EXT2	EYA3	EYS	F2	FAM135A	
	FAM21A FAI	M21D	FAM25B	FAM25D	FAM35B2	FAM40A	FAM72B FAM	NCD2 FAT1P	1	FBXO3	
	FBXO9	FCGR1B	FRS2	FRS3	GART	GCLC GCM1	GGTLA4	GLI1	GLUDP8	GMPR	
	GPR182	GSTM2	GSTM3 GST	M3P	GSTM5	GUSBL1	HARBI1	HCG21	HIPK3	HIST	T1H2AH
	HIST1H2BJ	HIST1H2BK	HIST1H4I	HIST2H2BA	HIST2H2BB	HMGA1L5	HNRNPM	hsa-mir-1228	3hsa-mir-1252	2hsa-mir-12	9-2
	hsa-mir-30a	hsa-mir-30c-2	hsa-mir-670	hsa-mir-933	HSD17B12	ICK	IFNGR2 IGH	V10R15-5 IK	ZF4	IL17RC	
	IL23A	INHBC	INHBE	IRAK2							
	KIA A0652				ITSN1	JAG1	JARID2	KDM1B KHD	RBS2	KIAA0319L	-
	RIAA0032	KIAA1274	KIF16B	LGR4	ITSN1 LIN28AP3 LI	JAG1 N7C	JARID2 LRP1	KDM1B KHD LRRC10	RBS2 MACROD2	KIAA0319I Mar02	- MDK
	MDM2	KIAA1274 MED20	KIF16B MKKS MRPS	LGR4 311P1	ITSN1 LIN28AP3 LII MTHFR	JAG1 N7C MYCL1	JARID2 LRP1 MYL6	KDM1B KHD LRRC10 MYL6B	RBS2 MACROD2 MYLIP	KIAA0319I Mar02 MYO1A	- MDK MYST4
NAB2	MDM2	KIAA1274 MED20 NCOA4	KIF16B MKKS MRPS NCRNA0024	LGR4 311P1 0	ITSN1 LIN28AP3 LI MTHFR NDUFA4L2	JAG1 N7C MYCL1 NEU3	JARID2 LRP1 MYL6 NKX22	KDM1B KHD LRRC10 MYL6B NKX2-4 NOE	MACROD2 MYLIP MYL	KIAA0319I Mar02 MYO1A NOTCH2	MDK MYST4 NTS
NAB2	MDM2 NCDN NXPH4	KIAA1274 MED20 NCOA4 NXT1	KIF16B MKKS MRPS NCRNA0024 OBFC2B	LGR4 311P1 0 OGDHL OGF	ITSN1 LIN28AP3 LI MTHFR NDUFA4L2 RL1 OTOR	JAG1 N7C MYCL1 NEU3 OVOL2	JARID2 LRP1 MYL6 NKX22 PA2G4	KDM1B KHC LRRC10 MYL6B NKX2-4 NOC PA2G4P2	RBS2 MACROD2 MYLIP DAL PAK7	KIAA0319I Mar02 MYO1A NOTCH2 PAN2	MDK MYST4 NTS
NAB2	MDM2 NCDN NXPH4 PANK4	KIAA1274 MED20 NCOA4 NXT1 PARG	KIF16B MKKS MRPS NCRNA0024 OBFC2B PARK7 PGA	LGR4 §11P1 © OGDHL OGF M3P	ITSN1 LIN28AP3 LI MTHFR NDUFA4L2 FRL1 OTOR PGC	JAG1 N7C MYCL1 NEU3 OVOL2 PHACTR1	JARID2 LRP1 MYL6 NKX22 PA2G4 PHF21A	KDM1B KHE LRRC10 MYL6B NKX2-4 NOE PA2G4P2 PIP5K2A	RBS2 MACROD2 MYLIP DAL PAK7 PISD	KIAA0319I Mar02 MYO1A NOTCH2 PAN2 PLCH2	MDK MYST4 NTS
NAB2	MDM2 NCDN NXPH4 PANK4 PLK1S1 POI	KIAA1274 MED20 NCOA4 NXT1 PARG M121L1P	KIF16B MKKS MRPS NCRNA0024 OBFC2B PARK7 PGA POM121L2	LGR4 311P1 -0 OGDHL OGF M3P POM121L3P	ITSN1 LIN28AP3 LI MTHFR NDUFA4L2 FRL1 OTOR PGC PPIAP13	JAG1 N7C MYCL1 NEU3 OVOL2 PHACTR1 PPIAP17	JARID2 LRP1 MYL6 NKX22 PA2G4 PHF21A PPYR1 PRAI	KDM1B KHC LRRC10 MYL6B NKX2-4 NOE PA2G4P2 PIP5K2A M1 PRF1	RBS2 MACROD2 MYLIP DAL PAK7 PISD PRICKLE4	KIAA0319I Mar02 MYO1A NOTCH2 PAN2 PLCH2 PRPF19	MDK MYST4 NTS
NAB2	MDM2 NCDN NXPH4 PANK4 PLK1S1 POI PRRT3	KIAA1274 MED20 NCOA4 NXT1 PARG M121L1P PRSS16	KIF16B MKKS MRPS NCRNA0024 OBFC2B PARK7 PGA POM121L2 PSMB2	LGR4 511P1 -0 OGDHL OGF M3P POM121L3P PTMAP3 QS	ITSN1 LIN28AP3 LI MTHFR NDUFA4L2 FRL1 OTOR PGC PPIAP13 ER1	JAG1 N7C MYCL1 NEU3 OVOL2 PHACTR1 PPIAP17 R3HDM2	JARID2 LRP1 MYL6 NKX22 PA2G4 PHF21A PPYR1 PRAI RAB5B	KDM1B KHC LRRC10 MYL6B NKX2-4 NOC PA2G4P2 PIP5K2A M1 PRF1 RASSF9	RBS2 MACROD2 MYLIP DAL PAK7 PISD PRICKLE4 RDH16	KIAA0319I Mar02 MYO1A NOTCH2 PAN2 PLCH2 PRPF19 RERE	- MDK MYST4 NTS
NAB2	MDM2 NCDN NXPH4 PANK4 PLK1S1 POI PRRT3 RFX4 RIC8E	KIAA1274 MED20 NCOA4 NXT1 PARG M121L1P PRSS16 RIMS1	KIF16B MKKS MRPS NCRNA0024 OBFC2B PARK7 PGA POM121L2 PSMB2 RNF144B	LGR4 511P1 0 OGDHL OGF M3P POM121L3P PTMAP3 QS RNF41	ITSN1 LIN28AP3 LI MTHFR NDUFA4L2 FRL1 OTOR PGC PPIAP13 ER1 RP11-102J14	JAG1 N7C MYCL1 NEU3 OVOL2 PHACTR1 PPIAP17 R3HDM2 4.1	JARID2 LRP1 MYL6 NKX22 PA2G4 PHF21A PPYR1 PRAI RAB5B RP11-104F1	KDM1B KHE LRRC10 MYL6B NKX2-4 NOE PA2G4P2 PIP5K2A M1 PRF1 RASSF9 5.7	RBS2 MACROD2 MYLIP DAL PAK7 PISD PRICKLE4 RDH16 RP11-109G1	KIAA0319I Mar02 MYO1A NOTCH2 PAN2 PLCH2 PRPF19 RERE 0.2	- MDK MYST4 NTS
NAB2	MDM2 NCDN NXPH4 PANK4 PLK1S1 POI PRRT3 RFX4 RIC8E RP11-134K1	KIAA1274 MED20 NCOA4 NXT1 PARG M121L1P PRSS16 RIMS1 3.2	KIF16B MKKS MRPS NCRNA0024 OBFC2B PARK7 PGA POM121L2 PSMB2 RNF144B RP11-144G6	LGR4 511P1 0 OGDHL OGF M3P POM121L3P PTMAP3 QS RNF41 5.10	ITSN1 LIN28AP3 LI MTHFR NDUFA4L2 FRL1 OTOR PGC PPIAP13 ER1 RP11-102J14 RP11-144G6	JAG1 N7C MYCL1 NEU3 OVOL2 PHACTR1 PPIAP17 R3HDM2 4.1 i.4	JARID2 LRP1 MYL6 NKX22 PA2G4 PHF21A PPYR1 PRAI RAB5B RP11-104F1: RP11-144G6	KDM1B KHE LRRC10 MYL6B NKX2-4 NOE PA2G4P2 PIP5K2A M1 PRF1 RASSF9 5.7 3.9	RBS2 MACROD2 MYLIP DAL PAK7 PISD PRICKLE4 RDH16 RP11-109G1 RP11-14612.	KIAA0319I Mar02 MYO1A NOTCH2 PAN2 PLCH2 PRPF19 RERE 0.2 1	- MDK MYST4 NTS
NAB2	MDM2 NCDN NXPH4 PANK4 PLK1S1 POI PRRT3 RFX4 RIC8E RP11-134K1 RP11-154D6	KIAA1274 MED20 NCOA4 NXT1 PARG M121L1P PRSS16 RIMS1 3.2	KIF16B MKKS MRPS NCRNA0024 OBFC2B PARK7 PGA POM121L2 PSMB2 RNF144B RP11-144G6 RP11-157E1	LGR4 511P1 0 OGDHL OGF M3P POM121L3P PTMAP3 QS RNF41 5.10 4.1	ITSN1 LIN28AP3 LI MTHFR NDUFA4L2 RL1 OTOR PGC PPIAP13 ER1 RP11-102J14 RP11-144G6 RP11-157E1	JAG1 N7C MYCL1 NEU3 OVOL2 PHACTR1 PPIAP17 R3HDM2 4.1 i.4	JARID2 LRP1 MYL6 NKX22 PA2G4 PHF21A PPYR1 PRAI RAB5B RP11-104F1: RP11-144G6 H22.1	KDM1B KHD LRRC10 MYL6B NKX2-4 NOE PA2G4P2 PIP5K2A M1 PRF1 RASSF9 5.7 .9 RP11-160A9	RBS2 MACROD2 MYLIP DAL PAK7 PISD PRICKLE4 RDH16 RP11-109G1 RP11-146i2. .1	KIAA0319I Mar02 MYO1A NOTCH2 PAN2 PLCH2 PRPF19 RERE 0.2 1 RP11-160/	- MDK MYST4 NTS
NAB2	MDM2 NCDN NXPH4 PANK4 PLK1S1 POI PRRT3 RFX4 RIC8E RP11-134K1 RP11-154D6 RP11-185B1	KIAA1274 MED20 NCOA4 NXT1 PARG M121L1P PRSS16 RIMS1 3.2 .1 4.1 RP1-118.	KIF16B MKKS MRPS NCRNA0024 OBFC2B PARK7 PGA POM121L2 PSMB2 RNF144B RP11-144G6 RP11-144G6 RP11-157E1	LGR4 511P1 00 OGDHL OGF M3P POM121L3P PTMAP3 QS RNF41 5.10 4.1 RP11-195M1	ITSN1 LIN28AP3 LI MTHFR NDUFA4L2 RL1 OTOR PGC PPIAP13 ER1 RP11-102J14 RP11-144G6 RP11-157E1 6.1	JAG1 N7C MYCL1 NEU3 OVOL2 PHACTR1 PPIAP17 R3HDM2 4.1 i.4 4.3 RP11-159 RP11-209A2	JARID2 LRP1 MYL6 NKX22 PA2G4 PHF21A PPYR1 PRAI RAB5B RP11-104F1: RP11-144G6 H22.1 .1	KDM1B KHE LRRC10 MYL6B NKX2-4 NOE PA2G4P2 PIP5K2A M1 PRF1 RASSF9 5.7 3.9 RP11-160A9 RP11-218C1	RBS2 MACROD2 MYLIP DAL PAK7 PISD PRICKLE4 RDH16 RP11-109G1 RP11-146l2. .1	KIAA0319I Mar02 MYO1A NOTCH2 PAN2 PLCH2 PRPF19 RERE 0.2 1 RP11-160/ RP11-227I	- MDK MYST4 NTS A9.2 D2.3
NAB2	MDM2 MDM2 NCDN NXPH4 PANK4 PLK1S1 POI PRRT3 RFX4 RIC8E RP11-134K1 RP11-154D6 RP11-185B1 RP11-239L2	KIAA1274 MED20 NCOA4 NXT1 PARG M121L1P PRSS16 RIMS1 3.2 .1 4.1 RP1-118. 0.3	KIF16B MKKS MRPS NCRNA0024 OBFC2B PARK7 PGA POM121L2 PSMB2 RNF144B RP11-144G6 RP11-157E1 I21.5 RP11-239L2	LGR4 511P1 00 OGDHL OGF M3P POM121L3P PTMAP3 QS RNF41 5.10 4.1 RP11-195M1 0.4	ITSN1 LIN28AP3 LI MTHFR NDUFA4L2 FRL1 OTOR PGC PPIAP13 ER1 RP11-102J14 RP11-102J14 RP11-144G6 RP11-157E1 6.1 RP11-239L20	JAG1 N7C MYCL1 NEU3 OVOL2 PHACTR1 PPIAP17 R3HDM2 4.1 3.4 4.3 RP11-159 RP11-209A2 0.5	JARID2 LRP1 MYL6 NKX22 PA2G4 PHF21A PPYR1 PRAI RAB5B RP11-104F1: RP11-144G6 H22.1 .1 RP11-244C2	KDM1B KHE LRRC10 MYL6B NKX2-4 NOE PA2G4P2 PIP5K2A M1 PRF1 RASSF9 5.7 .9 RP11-160A9 RP11-218C1 0.1	RBS2 MACROD2 MYLIP DAL PAK7 PISD PRICKLE4 RDH16 RP11-109G1 RP11-146I2. .1 4.5 RP11-263F1	KIAA0319I Mar02 MYO1A NOTCH2 PAN2 PLCH2 PRPF19 RERE 10.2 1 RP11-1600 RP11-227I 5.1	- MDK MYST4 NTS A9.2 D2.3
NAB2	MDM2 MDM2 NCDN NXPH4 PANK4 PLK1S1 POI PRRT3 RFX4 RIC8E RP11-134K1 RP11-134K1 RP11-154D6 RP11-239L2 RP11-239L2	KIAA1274 MED20 NCOA4 NXT1 PARG M121L1P PRSS16 RIMS1 3.2 .1 4.1 RP1-118. 0.3 1.1	KIF16B MKKS MRPS NCRNA0024 OBFC2B PARK7 PGA POM121L2 PSMB2 RNF144B RP11-144G6 RP11-157E1 J21.5 RP11-239L22 RP11-239L22	LGR4 511P1 00 OGDHL OGF M3P POM121L3P PTMAP3 QS RNF41 5.10 4.1 RP11-195M1 0.4 2.3	ITSN1 LIN28AP3 LI MTHFR NDUFA4L2 FRL1 OTOR PGC PPIAP13 ER1 RP11-102J17 RP11-102J17 RP11-144G6 RP11-157E1 6.1 RP11-239L20 RP11-239L20	JAG1 N7C MYCL1 NEU3 OVOL2 PHACTR1 PPIAP17 R3HDM2 4.1 5.4 4.3 RP11-159 RP11-209A2 0.5 2.4	JARID2 LRP1 MYL6 NKX22 PA2G4 PHF21A PPYR1 PRAI RAB5B RP11-104F1: RP11-144G6 H22.1 .1 RP11-244C2 RP11-292F2	KDM1B KHC LRRC10 MYL6B NKX2-4 NOE PA2G4P2 PIP5K2A M1 PRF1 RASSF9 5.7 .9 RP11-160A9 RP11-218C1 0.1 2.5	RBS2 MACROD2 MYLIP DAL PAK7 PISD PRICKLE4 RDH16 RP11-109G1 RP11-146I2. .1 4.5 RP11-263F1 RP11-298J2	KIAA0319I Mar02 MYO1A NOTCH2 PAN2 PLCH2 PRPF19 RERE 0.2 1 RP11-160/ RP11-227I 5.1 3.5	- MDK MYST4 NTS 49.2 D2.3
NAB2	MDM2 MDM2 NCDN NXPH4 PANK4 PLK1S1 POI PRRT3 RFX4 RIC8E RP11-134K1 RP11-154D6 RP11-154D6 RP11-239L2 RP11-239L2 RP11-239L2	KIAA1274 MED20 NCOA4 NXT1 PARG M121L1P PRSS16 RIMS1 3.2 .1 4.1 RP1-118. 0.3 1.1 3.6	KIF16B MKKS MRPS NCRNA0024 OBFC2B PARK7 PGA POM121L2 PSMB2 RNF144B RP11-144G6 RP11-157E1 I21.5 RP11-239L2 RP11-239L2 RP11-292F2 RP1-129L7.1	LGR4 511P1 0 OGDHL OGF M3P POM121L3P PTMAP3 QS RNF41 5.10 4.1 RP11-195M1 0.4 2.3 RP11-307F22	ITSN1 LIN28AP3 LI MTHFR NDUFA4L2 RL1 OTOR PGC PPIAP13 ER1 RP11-102J14 RP11-102J14 RP11-144G6 RP11-157E1 6.1 RP11-239L20 RP11-292F2 2.2	JAG1 N7C MYCL1 NEU3 OVOL2 PHACTR1 PPIAP17 R3HDM2 4.1 3.4 4.3 RP11-159 RP11-209A2 0.5 2.4 RP11-314P1	JARID2 LRP1 MYL6 NKX22 PA2G4 PHF21A PPYR1 PRAI RAB5B RP11-104F1: RP11-144G6 0H22.1 .1 RP11-244C2 RP11-292F2 2.2	KDM1B KHE LRRC10 MYL6B NKX2-4 NOE PA2G4P2 PIP5K2A M1 PRF1 RASSF9 5.7 3.9 RP11-160A9 RP11-218C1 0.1 2.5 RP11-314P1	RBS2 MACROD2 MYLIP DAL PAK7 PISD PRICKLE4 RDH16 RP11-109G1 RP11-14612. .1 4.5 RP11-263F1 RP11-263F1 RP11-298J2 2.3	KIAA0319I Mar02 MYO1A NOTCH2 PAN2 PLCH2 PRPF19 RERE 0.2 1 RP11-160/ RP11-227I 5.1 3.5 RP11-324I	- MDK MYST4 NTS A9.2 D2.3

	RP11-399K2	21.4	RP11-399K2	21.5	RP11-399K2	21.6	RP1-13D10.	2	RP1-13D10.	3	RP1-
13D1	0.4	RP1-13D10	.5	RP11-401E1	4.1 RP11-40	1E14.2	RP11-416N4	l.1	RP11-416N4	1.4	
	RP11-425L1	0.1 RP11-43	1K24.1	RP11-431K2	24.2	RP11-431K2	24.3	RP11-431K2	24.4	RP11-435D	7.3
	RP11-439A1	17.10	RP11-439A	17.2	RP11-439A1	17.4	RP11-439A1	7.5	RP11-439A1	17.7	
	RP11-439A1	17.9	RP11-448N	11.1	RP11-448N	11.2	RP11-457M1	11.2	RP11-46011	3.5	
	RP11-46011	3.6	RP11-462G	2.1	RP11-462G	2.2	RP11-466G1	11.1	RP11-472l2	0.1	
	RP11-481A1	12.2	RP11-481A	12.5	RP11-481A1	12.6	RP11-487l5.	4	RP11-506E9	0.1 RP11-50	7K13.4
	RP11-507K1	13.6	RP11-526K	17.2	RP11-526K2	21.2 RP11-528	BA10.1	RP11-528A	10.2	RP11-542F9	9 .1
	RP11-560J1	.1	RP11-56A2	1.4 RP11-56N	19.5	RP11-575L1	6.2	RP11-587D	21.1	RP11-592B	15.3
	RP11-592B1	15.4	RP11-592B	15.6	RP11-69I22	.2	RP11-69l22.	3	RP11-707M	13.1	RP11-
710A	11.2	RP11-74E24	4.2	RP11-77G23	3.2	RP11-77G23	3.5	RP11-789A	7.1	RP1-190J20).2
	RP11-96J19	0.1	RP11-96J19	0.2	RP11-96J19	.3	RP1-198K11	.3 RP1-20N4	.1	RP1-240B8	.3
	RP1-278O22	2.1	RP1-278O2	2.2	RP1-27K12.	4 RP1-288M2	2.1	RP1-288M2	2.2	RP1-298M8	.1
	RP13-15M1	7.1	RP13-392I1	6.1	RP1-34L19.	1RP1-34L19.2	2RP1-89D4.1	RP3-322G1	3.7	RP3-331H2	4.4
	RP3-395M2	0.2	RP3-395M2	0.3	RP3-410C9.	1	RP3-410C9.2	2 RP3-477M7	7.2	RP3-477M7	.3
	RP3-477M7.	.4	RP3-483K16	6.2	RP3-483K16	6.3 RP3-527G	5.1	RP4-564O4	.1	RP4-568F9.	3RP4-
568F	9.6	RP4-568F9.	7RP4-580G1	3.1 RP4-63318	3.1	RP4-633l8.2	RP4-633l8.3	RP4-63318.4	RP4-697P8.	2	RP4-
697P	8.3 RP4-705D	016.3	RP4-717M2	3.2	RP4-718D20	0.3	RP4-726N1.	2	RP4-728D4.	2	RP4-
728D	4.3	RP4-734C1	8.1	RP4-735C1.	4	RP4-735C1.	5	RP4-735C1	6	RP4-737E2	3.2
	RP4-737E23	3.4	RP4-742J24	.2	RP4-777D9.	2 RP4-796l8.	1RP5-1018A4	.3	RP5-104218	.6	RP5-
1053	E7.1	RP5-1053E	7.2 RP5-1068	E13.3	RP5-1068F1	6.3	RP5-1069C8	3.1	RP5-1069C8	3.2 RP5-1099	9D15.1
	RP5-110016	.1	RP5-1100l6	.2	RP5-1115A1	15.1	RP5-1177M2	21.1 RP5-119	5D24.1	RP5-839B4.	.7
	RP5-839B4.	8	RP5-858B16	6.5	RP5-860P4.	2	RP5-872K7.2	2	RP5-872K7.	7	RP5-
905G	11.3	RP5-931K24	4.1	RP5-973N23	3.4 RP5-983H	21.3	RP5-984P4.	1	RP5-984P4.	4	
	RPL15P1	RPL23AP6	RPL24P2 R	PL41	RPL7AL3	RPLP0P1	RPS11P1	RPS15AP1	RPS26	RPS5L	
	RRBP1 SAM	1D8	SDR9C7	SFTA2	SHMT2	SILV	SLC15A3	SLC24A3 SI	_C25A33	SLC39A5	
	SLC45A1	SLC9A3P1	SLC9A3P3	SMAP1 SMA	ARCC2	SMCHD1	SNAP25	SNORA48	SNORA70	SNORA74	
SNO	RA77	SNORA8	SNORD17	snoU13	SNRPB2	SNX5	SON SPCS2	SPDEF	SPTLC3	STAC3	
	STAT2	STAT6	SUOX	SYT1	TAC3 TCP1	L1	TFAP2E	TFEB	TIMELESS	TIMM23	
	TIMM23B	TMEM109 T	MEM111	TMEM132A	TMEM132B	TMEM194A	TMEM50B	TMEM90B T	OMM6	TP53I11	
	TPMT	TPTE	TRIT1	TSPAN18	TTC17	U1	U2	U3 U4	U6	U7	
	USP49	VARSL	VDAC2	VN1R11P	VN1R12P V	N1R13P	VN1R14P	XRN2	XRRA1	XXbac-	
BPG	118E17.9	XXyac YR14	4BB7.1	XXyac-YX60	D10.1	Y_RNA	ZBTB39	ZC3H10	ZNF133	ZN	F322A
	ZNF408	ZPLD1									

PANTHER analysis: 248 mapped ids are found, 379 mapped ids are not found.

There is CnLOH in ER positive DCIS associated with invasive breast disease not observed in ER positive pure DCIS.

- 1. p-values < 0.05;
- A gene list is mapped from 27 genomic regions found on chromosomes 5, 14, 15;

3. These regions encompass 149 genes altered in ER positive DCIS associated

with invasive breast disease;

Genes:

	K AB019439.2	AC008659.1	AC008659.2	AC009997.1	AC010674.2	AC010724.1	AC010724.2	AC010724.3	AC010724.4	AC0107	24.5
	AC010724.6	AC010724.7	AC011295.1	AC011295.2	AC011295.3	AC011295.4	AC011295.5	AC011944.1	AC012050.1	AC0189	26.1
	AC018926.2	AC022748.1	AC025580.2	AC025917.1	AC026624.1	AC026956.1	AC026956.2	AC039057.1	AC039057.3	AC0449	07.1
ACC	68870.1	AC069082.1	AC084882.1	AC087738.2	AC092373.1	AC104115.1	AC105339.1	AC105339.2	AC116903.1	AC1169	03.2
	AC126339.1	AC126339.2	AC126339.3	AC126339.4	AC135995.1	AC135995.2	AC135995.3	AC135995.4	AC135995.5	AC1369	40.3
	ADAMTS7	AGXT2L2	ANKRD34C	AP3B2	ARPP19 BCI	L2L10	C15orf26	C15orf32	C15orf48	CCPG1	
	CHRNB4 CL	K4 COL23A1	CPEB1	CTB-129O4.	1	CTD-2184D3	3.1	CTD-2270N2	23.1 CT	SH	CYP19A1
	DYX1C1	EFTUD1	F2RL1	FAM153C	FAM154B	FAM174B FS	SD2	GFPT2	GNB5	GOLGA	6L10
	GOLGA6L3	GOLGA6L5	GOLGA6L9	HNRNPAB H	INRNPH1	HOMER2	hsa-mir-1266	bhsa-mir-147b	hsa-mir-184	hsa-mir-	628 IGHD
IL16	KIAA1024	KIAA1199	KIAA1370	MAPK9	MAST4	MESDC1 ME	SDC2	MEX3B	MORF4L1	MYO5A	
	MYO5C	NEDD4 NHF	2 ODZ2	PIGB	PRTG	PYGO1	RAB27A	RASGEF1C	RASGRF1	RFX7	RMND5B
	RP11-1001										
	Ki 11-100 ik	//////	RP11-252I14	l.1	RP11-287J9	.1	RP11-335K5	.1 RP11-5P22	2.1	RP11-5	P22.2
	RP11-5P22.	3	RP11-252I14 RP11-889L3	l.1 .1	RP11-287J9. RP11-889L3	.1 .3	RP11-335K5 RP11-889L3	.1 RP11-5P22 4 RP11-96J2	2.1 3.1	RP11-5	P22.2 08F4.1
	RP11-5P22.	3 8.1	RP11-252114 RP11-889L3 RPS17	I.1 .1 S100Z	RP11-287J9 RP11-889L3 SCARNA15	.1 .3 SEMA6D SH	RP11-335K5 RP11-889L3 3GL3 SLC30,	.1 RP11-5P22 .4 RP11-96J2 A4	2.1 3.1 snoU109	RP11-5 RP13-6 snoU13	P22.2 08F4.1
	RP11-5P22. RP13-996F3 SPATA5L1	3 3.1 ST8SIA2	RP11-252114 RP11-889L3 RPS17 STARD5 TE	4.1 .1 S100Z K9 TMC3	RP11-287J9 RP11-889L3 SCARNA15 TMED3	.1 .3 SEMA6D SH U1	RP11-335K5 RP11-889L3 3GL3 SLC30, U2	.1 RP11-5P22 4 RP11-96J2 44 U7	2.1 3.1 snoU109 UBE2Q2P2	RP11-5 RP13-60 snoU13 UNC130	P22.2 08F4.1 C

PANTHER analysis: 64 mapped ids are found, 84 mapped ids are not found.

5.8.5 Copy Number Aberrations for Oestrogen Receptor Positive Pure DCIS Compared to Oestrogen Positive Invasive Breast Disease

These series examines the difference between oestrogen receptor positive pure DCIS and oestrogen receptor positive invasive breast cancer.

Frequency plots showing copy number aberrations between oestrogen receptor positive pure DCIS and oestrogen receptor positive invasive breast disease were provided by Breakthrough Breast Cancer/Research Oncology, King's College London Bioinformatics Department (Figure 38).

Figure 38: Frequency plots showing copy number aberrations between oestrogen receptor positive pure DCIS and oestrogen positive invasive breast disease (amplifications, duplications, gains, Sc gains, losses, total losses CdLOH and CnLOH,) (pages 194-197).

Frequency Plots_ ER+ Pure DCIS vs ER+ Tumour

5.8.5.1 Amplification in Oestrogen Receptor Positive Pure DCIS Compared to Oestrogen Receptor Positive Invasive Breast Disease

There were no amplifications in ER positive pure DCIS (n=0/8) in this series. However, there were amplifications in ER positive invasive breast disease (n=5/9) not present in the ER positive pure DCIS.

- 1. p-values < 0.05;
- 2. A gene list is mapped from 2 genomic regions on chromosome 8;
- These regions encompass 3 gene altered in ER positive invasive breast disease;

Genes:

AC103863.1 AF130342.1 EIF3H

PANTHER analysis: 1 mapped id is found, 2 mapped ids are not found.

Gene Information: ENSG00000147677 Protein ID: O15372

Gene Name: Eukaryotic translation initiation factor 3 subunit H Gene Symbol(s): EIF3H

Organism: Homo sapiens Alternate Ids: EIF3H_HUMAN (UniProtKB-ID) NP_003747 (refSeq)

ENSG00000147677 (Ensembl) 4503515(GI) IPI00977658 (IPI) EIF3H (Synonym) 603912(MIM) ENST00000521861(Ensembl_TRS) HGNC:3273(HGNC) ENSP00000429931(Ensembl_PRO)

5.8.5.2 Duplication in Oestrogen Receptor Positive Pure DCIS Compared to Oestrogen Receptor Positive Invasive Breast Disease

No duplications were found in either ER positive pure DCIS or ER positive invasive breast disease.

```
5.8.5.3 Genomic Gains in Oestrogen Receptor Positive Pure DCIS Compared to
Oestrogen Receptor Positive Invasive Breast Disease
```

Gains present in ER positive pure DCIS (n=1/8) were present in gains found in ER positive invasive breast disease (n=7/9). This represents gains in both ER positive pure DCIS and ER positive invasive breast disease.

- 1. p-values < 0.05;
- A gene list is mapped from 16 genomic regions found on chromosomes 6, 16, 20;
- These regions encompass 91 genes altered in ER positive invasive breast disease and ER positive DCIS;

Genes:

AC006076.1	AC106739.1	I AL109840.1	AL121583.1	AL121673.1	AL136532.1	ARF4P2	ASXL1	ATP5E	C20orf11	
C20orf112	C20orf166	C20orf195 C	20orf20	C20orf200	C20orf90	C6orf48	COL9A3	CTD-3184A7	7.4	CTSZ
DIDO1	DNMT3B	DPH3B	EEF1A2	GATA5	GCNT2 GM	EB2 GNAS	GNASAS	HLA-DQA1	HLA-DQB1	HLA-
DRB1 hsa-mir-1-1	hsa-mir-133	a-2	HSPA1A	HSPA1B	HSPA1L	IL4R	JMJD5	KCNQ2	KIF3B	LSM2
NSMCE1	NTSR1	OGFR	PPDPF	PTK6	RP11-11M2	0.2 RP11-358	D14.2	RP11-360O1	19.1	
RP11-3600	19.4	RP11-93B14	1.4	RP11-93B14	1.5	RP11-93B14	1.6	RP1-1J6.2	RP1-290I10	.3
RP1-290I10	.4	RP1-290I10	.5	RP1-290I10.	6	RP1-290I10	7	RP1-290I10.	8	RP1-
309F20.2	RP1-309F2	0.3 RP13-30A	9.1	RP13-30A9.	2	RP4-543J19	.8	RP4-697K14	.12	RP4-
697K14.3 RP4-697	7K14.7	RP4-724E16	3.2	RP5-1184F4	.5	RP5-885L7.	10	RP5-885L7.	11	
RPL7P3 RT	EL1	SLC17A9	SLCO4A1	SLMO2	SNTA1	SRMS	STMN3	TAF4 TCFL5	TFAP2A	
TH1L	TOP1	TUBB1	VARS	XXbac-BPG	254F23.5	XXbac BPG	254F23.6	ZNF217		

PANTHER analysis: 43 mapped ids are found, 48 mapped ids are not found.

199

There were gains present in ER positive invasive breast disease (n=6/9) not observed in ER positive pure DCIS (n=0/8).

- 1. p-values < 0.05;
- A gene list is mapped from 12 genomic regions found on chromosomes 6, 18, 20:
- These regions encompass 91 genes altered in ER positive invasive breast disease;

Genes:

5S_rF	RNA	7SK	AIM1	AL031963.1	AL031963.2	AL031963.3	AL031963.5	AL033383.2	AL033523.1	AL10	9754.1
	AL133351.1	AL133509.1	AL138831.1	AL139092.1	AL160398.1	AL445309.1	AL445309.2	ANKRD5	AP005058.2		AP005482.1
	AP006565.1	ATG5	BPHL	C6orf145	C6orf146	C6orf195 C6	Sorf201	CDYL	CEP76	FAM1	136B
	FAM50B	FOXO3	LACE1	MYLK4 NQC)2	PECI	PRDM1	PRPF4B	PSMG2	PSM	34
	RIPK1	RP11-145H9	9.3	RP11-404H1	14.1	RP1-140K8.	1	RP1-140K8.	2	RP1-	140K8.3
	RP1-140K8.	4	RP11-416N4	4.1	RP11-416N4	1.4	RP11-420G6	6.3	RP11-420G6	6.4	
	RP11-420L9	9.2	RP11-420L9	9.4	RP11-428J1	.2	RP11-620A1	7.1	RP11-625P7	.1	
	RP11-697G	4.3	RP1-223B1.	1	RP1-40E16.	11	RP1-40E16.	2 RP1-40E16	.3	RP1-	40E16.4
	RP1-40E16.	8	RP1-40E16.	9	RP1-90J20.1	10	RP1-90J20.2	2 RP1-90J20.	7RP1-90J20.8	RP3-	359N14.1
	RP3-359N14	4.2	RP3-400B16	6.1 RP3-400B	16.2	RP3-400B16	6.3	RP3-406P24	.1	RP3-	406P24.3
RP3-4	430A16.1	RP3-527G5.	.1	RP4-529N6.	1	RP5-839B4.	7	RP5-839B4.	В	SERF	PINB1
SERF	PINB6	SERPINB9	SLC22A23	SNAP25	snoU13	SPIRE1 TUE	B2A TUBB2E	3U6	WRNIP1	Y_RN	1A

PANTHER analysis: 26 mapped ids are found, 66 mapped ids are not found.

5.8.5.4 Genomic Sc Gains in Oestrogen Receptor Positive Pure DCIS Compared to Oestrogen Receptor Positive Invasive Breast Disease

Sc gains in ER positive pure DCIS (n=5/8) show some overlap with Sc gains in ER positive invasive breast disease (1/9).

- 1. p-values < 0.05;
- 2. A gene list is mapped from 6 genomic regions found on chromosomes 1, 8;
- 3. These regions encompass 28 genes altered in ER positive pure DCIS;

Genes:

 ACBD6
 AL359853.1
 AL359853.3
 AL390718.1
 C1orf192
 CEP350
 FMO2 FMO3 FMO6P
 hsa-mir-1295LHX4

 QSOX1
 RP11-122G18.5
 RP11-12M5.4
 RP11-145A3.1
 RP11-145A3.2
 RP11-216N21.1

RP1-127D3.4
RP5-1180C10.2

SDHC

RP11-502H18.2 RP11-52I18.1 TOR1AIP1 TOR1AIP2 U6

PANTHER analysis: 11 mapped ids are found, 17 mapped ids are not found.

Sc gains in ER positive invasive breast disease (6/9) show some overlap with the Sc gains in ER positive pure DCIS (n=1/8).

- 1. p-values < 0.05;
- 2. A gene list is mapped from 10 genomic regions found on chromosomes 6, 20;
- 3. These regions encompass 67 genes altered in ER positive invasive breast disease:

Genes:

	AL031	1963.1	AL031963.2	AL031963.5	AL109754.1	AL109840.1	AL121583.1	AL121673.1	AL133343.1	AL136532.1	ANKRD5	
		ARF4P2	ASXL1	ATP5E								
BPHL		C20orf11	C20orf112	C20orf166	C20orf20	C20orf200	C20orf90 CC	DL9A3	CTSZ	DIDO1	DNMT3B	
		DPH3B	GATA5	GNAS	GNASAS hsa	a-mir-1-1	hsa-mir-133a	a-2	KIF3B	NTSR1	OGFR	
		RP11-11M20).2 RP11-410	N8.1	RP11-410N8	.3	RP11-410N8	3.4	RP11-416N4	.1	RP11-416N4	1.4
		RP11-93B14	.4	RP11-93B14	.5	RP11-93B14	.6	RP1-1J6.2 R	P1-309F20.2	RP1-309F20	.3	
		RP13-30A9.1	1	RP13-30A9.2	2	RP1-40E16.1	11	RP1-40E16.8	3	RP1-40E16.9	9	RP4-
543J1	9.8	RP5-1184F4	.5	RP5-839B4.3	7	RP5-839B4.8	3 RP5-885L7.	10	RP5-885L7.1	11	RPL7P3	
		SLC17A9	SLCO4A1	SLMO2 SNA	P25 TAF4	TCFL5	TH1L	TOP1	TUBB1	TUBB2A		

PANTHER analysis: 23 mapped ids are found, 44 mapped ids are not found.

5.8.5.5 Losses in Oestrogen Receptor Positive Pure DCIS Compared to Oestrogen

Receptor Positive Invasive Breast Disease

Genomic losses in ER positive pure DCIS (n=6/8) show some overlap with genomic losses in ER positive invasive breast disease (1/9).

- 1. p-values < 0.05;
- 2. A gene list is mapped from 32 genomic regions on chromosome 11;
- 3. These regions encompass 225 genes altered in ER positive pure DCIS;

Genes:

5S rRNA 7SK AC009294.1 AC019227.1 AC019227.2 ACA59 ACAD8 ACRV1 ADAMTS15 ADAMTS8 AMICA1 ANKK1 AP000757.1 AP000770.1 AP000797.1 AP000797.2 AP000843.2 AP000844.1 AP000880.1 AP000892.4 AP000907.2 AP000907.3 AP000908.1 AP000911.1 AP000925.2 AP000926.1 AP000936.1 AP000936.3 AP000936.4 AP000907.1 AP000936.5 AP001122.1 AP001267.1 AP001267.2 AP001582.1 AP001781.1 AP001891.1 AP001979.1 AP001992.2 AP001998.1

	AP002451.1	AP002806.1	AP002806.2	AP002856.4	AP002856.5	AP002856.6	AP002856.7	AP002884.4	AP002886.2	AP002962.	1
AP00	2986.1	AP002991.1	AP003025.2	AP003039.3	AP003039.4	AP003040.1	AP003040.2	AP003041.1	AP003070.1	AP003402.	1
	AP003402.2	AP003500.1	AP003730.1	AP003730.2	AP004248.4	AP004372.1	AP005597.1	AP005638.1	AP005638.3	AP005639.	1
	AP006216.1	0	AP006216.1	1	AP006216.1	2	AP006216.5	APLP2	APOA1	APOA4	
	APOA5	APOC3	ARHGAP20	ARHGAP32 A	RHGEF17	ATP5L	B3GAT1	BACE1	BAK1P2	BARX2	
	BCO2 BSX E	3TG4	BUD13	C11orf1	C11orf44	C11orf45	C11orf52	C11orf57 C1	1orf63	C11orf71	
	C11orf88	CADM1	CD3D	CD3E	CD3G	CEP164 CHE	EK1	CLDN25	CRTAM	CRYAB	
	CUL5	DDX10	DDX25	DDX6 DIXDO	C1	DLAT	DRD2	DSCAML1	EI24	ETS1	
	FAM168A	FAM55A FA	M55B FAM55	D	FDX1	FDXACB1	FLI1	FXYD2	FXYD6	GLB1L2	
	GLB1L3 hsa	-mir-34b	hsa-mir-34c	HSPA8	HSPB2	HTR3A	HTR3B	HYLS1 IGSF	9B	IL10RA	IL18
	JAM3	KCNJ1	KCNJ5	LAYN	MLL	MPZL2	MPZL3 NCA	M1	NCAPD3	NCRNA001	67
	NEU3	NFRKB	NNMT	OPCML OR4	A15 OR4A16	PAFAH1B2	PATE1	PATE2	PATE3	PATE4	
	PCSK7	PIH1D2 POL	J2AF1	PPIHP1	PPP2R1B	PRDM10	PUS3	RAB39	RBM7	RDX	RELT
REXC	02	RNF214	RP11-237N1	9.1	RP11-567M2	21.1	RP11-667M1	9.1 RP11-76	2B21.1	RP11-762E	21.2
	RP11-762B2	1.3	RP11-801G1	6.1 RP11-832	2N8.1	RPL37AP8	SCARNA11	SCN2B	SCN4B	SDHD	
	SIDT2 SIK2	SIK3	SLC35F2	SNORD14	snoU13	SNX19	SPATA19	SPCS2 ST14	1STT3A	TAGLN	
	TEX12	THYN1	TIMM8B	TMEM225	TMEM45B T	MPRSS13	TMPRSS4	TMPRSS5	TP53AIP1	TRIM48	
	TTC12	U2	U4 U4atac	U6	U6atac	UBASH3B	UBE4A	USP28	VPS26B	XRRA1	Y_RNA
ZBTB	16	ZBTB44	ZC3H12C	ZNF259	ZW10						

PANTHER analysis: 129 mapped ids are found, 96 mapped ids are not found.

There is a degree of overlap of the genomic losses in ER positive invasive breast disease (n=8/9) compared to ER positive pure DCIS (n=3/8).

- 1. p-values < 0.05;
- A gene list is mapped from 51 genomic regions found on chromosomes 8, 9, 13, 15, 16, 19, X;
- These regions encompass 84 genes altered in both ER positive invasive breast disease and ER positive pure DCIS;

Genes:

5S_	rRNA	7SK	AC009707.1	AC011445.1	AC019176.2	AC022559.1	AC022716.1	AC073493.1	AC073493.2	AC073493.3	3
	AC090204.1	AC090204.1	0 AC090204.	2	AC090204.3	AC090204.4	AC090204.5	AC090204.6	AC090204.7	AC090	0204.8
	AC090204.9	AC090420.1	AC100800.1	AC129915.1	AF238378.1	AL135784.1	AL590131.1	AL611925.1	ARHGEF10	BX649443.1	
	C8orf68 CAC	NA1B	CLN8	CSMD1	DEFA5	DHRSX	DLC1	DLGAP2	EHMT1		FREQ
	FRMPD4	GANC	GFRA2	hsa-mir-596	hsa-mir-627	IGSF1	IL28A IL28B	IL29	JPH3	KBTBD11	
	MAGED1	MAGED4B	MRRFP	MYOM2 NC	CRP1	NLGN4X	OR11N1P	OR1AA1P	OR5BH1P	PCDH19	
PLA2	G4F	PSD3	RP11-114H2	.0.1	RP11-133M2	24.1	RP11-234P3	.2 RP11-234	P3.3	RP11-234P3	3.4
	RP11-2N21.	2	RP11-346L6	.1	RP1-154J13	.2	RP1-154J13	.3	RP11-647I17	7.1	
	RP13-858C7	.1	RP5-1168A5	.1	RP5-1170D6	5.1	RP5-964N17	.1	SNORA11	SNORA70	
	SYCN	TMEM87A	U3 U6	VPS39	Y_RNA						

PANTHER analysis: 25 mapped ids are found, 59 mapped ids are not found.

5.8.5.6 Total Loss in Oestrogen Receptor Positive Pure DCIS Compared to Oestrogen Receptor Positive Invasive Breast Disease

There are total losses for ER positive pure DCIS (n=5/8) not observed in ER positive invasive breast disease (n=0/9).

- 1. p-values < 0.05;
- A gene list is mapped from 12 genomic regions found on chromosomes 9, 11, 15, 19;
- 3. These regions encompass 22 genes altered in ER positive pure DCIS;

Genes:

7SK AC025678.1 AC027139.2 AC027139.3 AP000720.1 AP001482.1 AP003072.1 CCDC67 CTSC GOLGA8B GRM5 hsamir-1233 KDM4C NOX4 OR10V1 OSBP PATL1 RP11-657K20.1 SLC36A4 TYR U7 ZNF208 ZNF257

PANTHER analysis: 13 mapped ids are found, 10 mapped ids are not found.

There were total losses present for ER positive invasive breast disease (n=9/9) not observed in ER positive pure DCIS (n=0/8).

- 1. p-values < 0.05;
- A gene list is mapped from 84 genomic regions found on chromosomes 8, 13, 14, 16, 17, X;
- These regions encompass 443 genes altered in ER positive invasive breast disease;

Genes:

5S_rRNA AC000003.1 AC001226.2 AC002347.1 AC002366.3 AC002504.1 AC005284.1 AC005323.1 AC005410.2 7SK AC005548.1 AC005548.2 AC005696.2 AC005696.3 AC005725.1 AC007333.1 AC007333.2 AC015799.1 AC015799.2 AC015908.2 AC016292.3 AC022716.1 AC025518.1 AC026462.1 AC027045.1 AC027763.1 AC027763.2 AC073493.1 AC073493.2 AC073493.3 AC074035.1 AC087498.1 AC090282.1 AC097370.1 AC099684.1 AC112778.1 AC112778.2 AC144838.1 AIPL1 AL136001.1 AL136160.1 AL136219.1 AL136359.1 AL138690.1 AL138815.1 AL138815.3 AL139002.1 AL139034.1 AL139082.1 AL158032.2 AI 162377 1 AI 162377 2 AI 163544 1 AI 355611 1 AI 355611 2 AI 355611 3 AI 356863 1 AI 359180 1 AI 391384 1 AI 442203 2 AL445989.1 AL450423.1 AL450447.1 AL512362.1 AL512652.1 AL589987.1 AL590007.2 AL596092.1 ALOX12 AMAC1L3 ARHGAP6 ARX ASGR1 ASGR2 ASPA ASPG ASS1P4 ATP7B ATP8A2 ATXN8OS B3GALTL BCL6B BTF3L1 BX649443.1 BX890604.1 BX890604.2 C13orf23 C13orf34 C13orf36 C13orf37 C14orf180 C17orf100 C17orf49 C17orf51 C17orf61 C17orf74 C17orf91 CCDC42 CCDC70 CCNA1CDK8 CHRNB1 CLEC10A DGKH CRYL1 CTD-2545G14.1 CTNS DACH1 DHRS7C DHRSX DHX9P1 CLN5 DIAPH3 DIS3 DLC1 DLG4 DNAH9 DPH1 DUSP21 EBF2 EDNRB EFHA1 FLT1 FOXO1 EIF4A1P6 FAM123A FAM64A FBXL3 FBXO39 FGF11 FGF9 FREM2 FREQ

G	APDHP34 (GAS7 GFRA2	GJA3	GJB2 GJB6	GLP2R	GPR12	HDHD1A	HMCN2 HNF	4GP1	hsa-mir-12	253hsa-
mir-195		hsa-mir-203	hsa-mir-22	hsa-mir-497	hsa-mir-744	hsa-mir-759	IFT88	IL17D	IRG1	KCNJ12	
K	DM6A	KIAA0564 KI	AA0664	KIAA0753	KIF26A	KLF12	KLF5	KLHL1 LHFF	LIN28AP2	I	MAP2K3
M	AP2K4	MED31	METT10D	MFSD6L	MTUS2 MXR	A5 MYH1	MYH10	MYH13	MYH2	MYH3	MYH4
M	YH8	N6AMT2	NDEL1 NEFI	-	NEFM	NEK3	NEK5	NFYAP1	NHLRC3	NLGN2	
NI	LGN4X NTI	N1 NXN	OLFM4	OR1A1	OR1A2	OR1D2	OR1D5	OR1E1 OR1	E2	OR1G1	
O	R3A1	OR3A2	OR3A3 OR3	A4 OVCA2 P	ABPC3	PAFAH1B1	PARP4	PCDH8	PIBF1	PIK3R5	
PI	IK3R6 PIRT	T	PITPNM3	PLSCR3	POLA1 POLI	R2A POU4F1	PRKX	PSPC1 RAP	1GAP2	RCVRN	
RI	FXAP	RNASEK	RNF17	RNF219	RNF6 RP11-	101P17.10	RP11-101P1	7.11 RP11-10)1P17.5	RP11-101	P17.6
RP11-10)1P17.7	RP11-101P1	7.8	RP11-101P1	7.9	RP11-107B1	.1	RP11-110K1	8.2	RP11-	110K8.1
RI	P11-117N4	.1	RP11-11C5.	1	RP11-12I24.	2 RP11-12I24	1.3	RP11-133M2	24.1	RP11-137	M6.2
RP11-14	I9B7.1	RP11-149B7	.3	RP11-149B7	.4	RP11-149B7	.5	RP11-165l9.	3	RP11-165	19.4
RP11-16	519.6 RP11	-16519.8	RP11-169O1	7.1	RP11-169O1	7.5	RP11-16D22	2.1 RP11-16L6	3.3	RP11-172	E9.2
RI	P11-172H2	4.3 RP11-181	ID10.2	RP11-187A9	.2	RP11-187A9	0.3	RP11-196l2.	1	RP11-196	P2.1
RI	P11-197L7.	.2 RP11-1M18	3.1 RP11-203	P2.1	RP11-203P2	.2	RP11-206H1	5.2	RP11-206L1	.2	
RI	P11-209P2	.1	RP11-21401	1.1	RP11-21401	1.2	RP11-218l2	1.1	RP11-248G5	i.3	
RI	P11-24H2.1	1	RP11-24H2.2	2	RP11-252B2	0.1 RP11-261	1P13.3	RP11-264J4	.4	RP11-264	J4.5
RI	P11-264J4.	.6	RP11-266E6	.2	RP11-267118	3.1	RP11-271B5	.1	RP11-279N8	.1 RP11-	304M3.2
RI	P11-30C8.1	1	RP11-30C8.2	2	RP11-318G2	21.2	RP11-318G2	21.3	RP11-318G2	1.4	RP11-
323P14.2	2 RP11-325	5D5.3	RP11-327P2	.3	RP11-335N6	5.1	RP11-342C2	20.2	RP11-342C2	0.3	
RI	P11-349O1	0.1	RP11-350A1	8.1	RP11-351N4	.3	RP11-360A9	.1	RP11-364B1	4.1	
RI	P11-364B1	4.2	RP11-364B1	4.3	RP11-367C1	1.2 RP11-380	DN8.1	RP11-380N8	.3	RP11-380	N8.4
RI	P11-381L18	8.2	RP11-388E2	0.1	RP11-393H6	5.2	RP11-393H6	6.3	RP11-394A1	4.1	
RI	P11-394A1	4.2	RP11-394A1	4.3	RP11-398O1	9.3	RP11-408O1	3.2	RP11-408O1	3.3	RP11-
421P11.	5	RP11-430I3.	2	RP11-430K2	2.1	RP11-430K2	2.2	RP11-43102	2.2	RP11-442	F12.2
RI	P11-459A1	0.1	RP11-459A1	0.2	RP11-459A1	0.3	RP11-459J2	3.1	RP11-459J2	3.2	
RI	P11-462C2	1.1	RP11-463M3	3.1 RP11-467	D10.2	RP11-471M2	2.1	RP11-471M2	2.2	RP11-473	M10.1
RI	P11-473M1	0.2	RP11-473M1	0.3	RP11-474L7	.4	RP11-483M2	24.2	RP11-501G6	6.1 RP11-	505F3.2
RI	P11-505F3.	.4	RP11-518D7	.1	RP11-51B13	.2	RP11-520F2	4.1 RP11-520	F24.2	RP11-520	F24.3
RI	P11-520F9.	.2	RP11-521H3	.1	RP11-523H2	4.5	RP11-527F1	5.1	RP11-52L5.4	RP11-534	K14.1
RI	P11-534K1	4.2 RP11-545	5M8.1	RP11-545M8	3.2	RP11-545M8	3.3	RP11-556N2	1.4 RP11-56	//2.1 RP11-	570F6.1
RI	P11-571G1	.1	RP11-571G1	.2	RP11-609D2	1.1 RP11-61	K9.2	RP11-629E2	4.2	RP11-629	O4.1
RP11-70	6015.1	RP11-706O1	5.3	RP11-706O1	5.5	RP11-706O1	15.7	RP11-706O1	5.8	RP11-707	P20.1
RI	P11-713H1	2.1	RP11-76N11	.2	RP11-77P3.	1	RP11-7B3.2	RP11-7B3.3	RP11-7B3.4	RP11-822	E23.1
RI	P11-88G17	.6	RP11-90M5.	1 RP11-963H	4.1	RP1-258N20).3	RP13-858C7	.1	RP13-926	M18.1
RPA1 R1	TN4RL1	SCEL	SCO1	SERPINF1 S	ERPINF2	SHISA6	SHPK	SLAIN1 SLC	13A5	SLC16A1	1
SL	LC16A13	SLITRK5	SMAD9	SMYD4 SNC	RA25	SNORA48 S	NORA68	SNORA9	SNORD116	SNORD37	,
snoU13		SPATA22	SPDYE4	SPEM1	STOML3	STX8	TCEB1P23	DRD3 TDRD	9 TEKT1	TLCD2	
ТМ	MEM102	TMEM179	TMEM46 TN	K1 TOX3	TRPC4	TRPV1	TRPV3	TXNDC17	U2	U3	U4
U6 U7 U	FM1 UTP1	4C	VCX3A	WASF3	WDR81	WSCD1	XAF1	XPO4 Y_RN	A	ZBED1	
ZE	BTB4	ZDHHC20 ZI	MYM2 ZMYM	5							

PANTHER analysis: 167 mapped ids are found, 276 mapped ids are not found.

Receptor Positive Invasive Breast Disease

There are similarities between CdLOH in ER positive pure DCIS (n=7/8) and CdLOH in ER positive invasive breast disease (n=3/9).

- 1. p-values < 0.05;
- A gene list is mapped from 38 genomic regions found on chromosomes 9, 11, 17;
- These regions encompass 281 genes altered in ER positive invasive breast disease and ER positive pure DCIS;

Genes:

5S_r	RNA	7SK	AC004148.1	AC006435.1	AC009294.1	AC019227.1	AC019227.2	AC055839.2	AC087500.1	AC08774	2.1
	AC116914.1	AC129492.6	ACA59	ACAD8 ACR	V1	ADAMTS15	ADAMTS8	ALOX12B	ALOX15B	ALOXE3	AMICA1
ANK	FY1	ANKK1	AP000757.1	AP000770.1	AP000797.1	AP000797.2	AP000843.2	AP000844.1	AP000880.1	AP00089	2.4
	AP000907.1	AP000907.2	AP000907.3	AP000908.1	AP000911.1	AP000925.2	AP000926.1	AP000936.1	AP000936.3	AP00093	6.4
	AP000936.5	AP001122.1	AP001267.1	AP001267.2	AP001582.1	AP001781.1	AP001891.1	AP001979.1	AP001992.2	AP00199	8.1
AP00	2451.1	AP002806.1	AP002806.2	AP002856.4	AP002856.5	AP002856.6	AP002856.7	AP002884.4	AP002886.2	AP00296	2.1
	AP002986.1	AP002991.1	AP003025.2	AP003039.3	AP003039.4	AP003040.1	AP003040.2	AP003041.1	AP003070.1	AP00340	2.1
	AP003402.2	AP003500.1	AP003730.1	AP003730.2	AP004248.4	AP004372.1	AP005597.1	AP005638.1	AP005638.3	AP00563	9.1
AP00	6216.10	AP006216.1	1	AP006216.1	2	AP006216.5	APLP2	APOA1	APOA4		APOA5
	APOC3	ARHGAP20	ARHGAP32	ARHGEF17	ATP2A3 ATF	25L AURKB	B3GAT1	BACE1	BAK1P2	BARX2	
	BCO2	BSX BTG4 E	BUD13	C11orf1	C11orf44	C11orf45	C11orf52	C11orf57	C11orf63		C11orf71
	C11orf88	C17orf44	C17orf59	C17orf68	C17orf85 C1	7orf87	C1QBP	CADM1	CAMKK1	CD3D	
	CD3E	CD3G	CEP164 CHI	EK1	CLDN25	CNTROB	CRTAM	CRYAB	CTNS	CUL5	CYB5D2
	DDX10	DDX25	DDX6	DERL2	DHX33	DIXDC1	DLAT	DRD2	DSCAML1		EI24
	ETS1	FAM168A	FAM55A	FAM55B	FAM55D	FDX1	FDXACB1 F	LI1	FXYD2	FXYD6	
	GLB1L2	GLB1L3	GSG2	GUCY2D	HES7	HIC1 hsa-mi	r-132	hsa-mir-212	hsa-mir-34b	hsa-mir-3	4c
	HSPA8	HSPB2 HTR	3A HTR3B	HYLS1	IGSF9B	IL10RA	IL18	ITGAE	JAM3	KCNJ1	
	KCNJ5 LAYI	N	METT10D	MIS12	MLL	MPZL2	MPZL3	NCAM1	NCAPD3 N	CRNA001	67 NEU3
	NFRKB	NLRP1	NNMT	NUP88	OPCML	OR4A15 OR	4A16 P2RX1	P2RX5	PAFAH1B2	PATE1	
PATE	2	PATE3	PATE4 PCS	K7 PER1	PFAS	PIH1D2 POL	J2AF1	PPIHP1	PPP2R1B	PRDM10	
	PTPRD PUS	3	RAB39	RABEP1	RANGRF	RBM7	RDX	RELT	REXO2	RNF214	RP11-
237N	19.1	RP11-48B14	.1	RP11-567M2	21.1	RP11-667M	19.1 RP11-76	2B21.1	RP11-762B2	1.2	
	RP11-762B2	1.3	RP11-801G1	16.1	RP11-832N8	.1	RPAIN	RPL37AP8	SCARNA11	SCN2B	
	SCN4B	SDHD SIDT2	2SIK2	SIK3	SLC25A35	SLC35F2	SMG6	SNORD14	snoU13 S	NX19	SPATA19
	SPCS2	ST14	STT3A	TAGLN	TAX1BP3	TEX12	THYN1 TIM	//8B	TMEM107	TMEM22	5
	TMEM45B	TMEM93	TMPRSS13	TMPRSS4	TMPRSS5	TP53AIP1	TRIM48	TTC12	U2	U4	
	U4atac	U6 U6atac	U7	U8	UBASH3B	UBE4A	USP28	USP6	VAMP2	VPS26B	XRRA1
	Y_RNA	ZBTB16	ZBTB44	ZC3H12C	ZNF259 ZNF	594 ZW10	ZZEF1				

PANTHER analysis: 168 mapped ids are found, 113 mapped ids are not found.

There are some similarities between CdLOH in ER positive invasive breast disease (n=7/9) and CdLOH in ER positive pure DCIS (n=1/8).

- 1. p-values < 0.05;
- A gene list is mapped from 34 genomic regions found on chromosomes 1, 8, 9, 15, 16, 19, 22, X;
- These regions encompass 51 genes altered in ER positive invasive breast disease and ER positive pure DCIS;

Genes:

5S_rRNA AC011445.1 AC018558.1 AC019176.2 AC022716.1 AC023824.2 AC073493.1 AC073493.2 AC073493.3 7SK BX649443.1 CACNA1B CSMD1 DDT AF238378.1 AL611925.1 AP000351.4 BMP15 DEFA5 DHRSX EHMT1 FRMPD4 GABRB3 GANC GFRA2 GSTT2 GSTTP1 hsa-mir-627 IL28A IL28B IL29 LARGE MAGED1 NCCRP1 PLA2G4F PRKCZ RP11-104D21.1 RP11-104D21.2 RP11-104D21.3 RP11-637B23.1 RP11-637B23.3 RP13-346H10.2 RP13-858C7.1 RP5-1168A5.1 RP5-RP5-964N17.1 SNORA70 SYCN TMEM87A U3 VPS39 1170D6.1

PANTHER analysis: 20 mapped ids are found, 31 mapped ids are not found.

5.8.5.8 CnLOH in Oestrogen Receptor Positive Pure DCIS Compared to Oestrogen Receptor Positive Invasive Breast Disease

There are similarities between ER positive pure DCIS (n=8/8) and ER positive invasive breast disease (n=4/9).

- 1. p-values < 0.05;
- A gene list is mapped from 67 genomic regions found on chromosomes 1, 3,
 4, 5, 6, 10, 11, 12, 18, 19, 20, 22;
- 3. These regions encompass 357 genes altered in ER positive pure DCIS;

5S_r	RNA	7SK	ABT1	AC000032.1	AC002485.1	AC005399.1	AC025423.2	AC034193.1	AC099680.1	AC124890	.1
	RP11-209A2	.1	ADH5P4	AGAP10 AH	CYL1 AK3L1	AKD1	AL021807.2	AL021808.1	AL021808.2	AL021808.	3
	AL023913.1	AL035045.1 A	AL035661.3	AL050321.1	AL050321.2	AL050322.1	AL050335.1	AL050335.2 /	AL109754.1	AL109922.	1
	AL109947.1	AL109947.2	AL118509.1	AL121584.1	AL121988.1	AL132996.1	AL133255.1	AL133472.1	AL138850.1	AL1	39429.1
AL354	680.1	AL391137.2	AL391559.1	AL589723.1	AL590062.1	AL591044.1	AL591044.2	AL591044.3	AL591044.4	AL691432.	2
	AL713998.1	ANKRD5 AN	KA8L1	AP001029.1	AP001992.2	AP005482.1	APBB2	ASPHD2	BACH2		BANF2
	BEND6	BMS1P2	BTBD3 BX25	55972.1 C1orf	212	C20orf12 C2	0orf187	C20orf3	C20orf61	C20orf72	
	C20orf78	C20orf79 C2	0orf82	C20orf94	C3orf10	C6orf1 C6orf	140 C6orf184	CD164 CDH	12	CDK11A	
	CECR2	CECR9	CENPM	CEP76 CRY	BB2P1	CSF1	CSRP2BP	CST1	CST2 CST3	CST4	

	CST5	CST5 CST7 CSTP1 CSTP2 CTA-221G9.9		9 CTA-246H3.11		CTA-246H3.7						
	CTA-246H3.8 CTA-250D1 DHFRP2 DLGAP3 DTNBP1 EL		0.15 CTA-250D10.19		CTB-1048E9	9.7	CTSLL7	CYP2S1	DEK			
			DTNBP1 EL	DTNBP1 ELAVL4 ENSAP1		EPS8L3 EYS		FAM25B FAM35B2		FAM40A		
	FAT1P1	FGFR3P	FIG4	FLOT1	GAPDP2 GG	GTLA4 GJA4	GJB3 GJB4	GJB5	GLS2	GLUDP8		
	GMPR	GSTM2	GSTM3 GST	M3P GSTM5	GUSBL1	HCP5	HIST1H2AH	HIST1H2BJ	HIST1H2BK	HIST1H4I	HLA-B	
	HLA-S	HMGA1	HNRNPM	HPS4	hsa-mir-33a	IRAK2	JARID2 KE	DM1B KHDF	RBS2 KIF13	A KIF16B	LGSN	
	LIN28AP3	LRP5L	MACROD2	MAP3K7	MAR02	MDC1	MDM2	MICA	MICAL1	MKKS		
	MMP23A MF	RPS11P1	MYLIP	MYO1F	N4BP2	NAV3	NCRNA0022	27	NCRNA0024	10 NEU3 N	NHLRC1	
	NKX2-2	NKX2-4 NUE	DT3 NXT1	OTOR	OVOL2 PA2	G4P2	PACSIN1	PAK7	PGAM3P	PHACTR1		
	PLK1S1 PO	M121L1P POI	M121L2	POM121L3F	PPIAP17	PPIL6	PPYR1	PRAM1	PRSS16		PSMG2	
	PTMAP3	PTPN2	RBMS2	RNF11B	RNF144B	RP11-102J1	4.1 RP11-124	IA7.2	RP11-129K2	.4.4		
	RP11-144G6	6.10	RP11-144G6	6.4	RP11-144G6	6.9 RP11-146I2.		.1	RP11-157E1	14.1		
	RP11-157E1	4.3 RP11-19	5M16.1	RP11-218C1	14.5	RP11-227D2	2.3 RP11-239L20.3		RP11-239L20.4 RP11-239L20.5			
	RP11-292F2	2.3	RP11-292F2	2.4	RP11-292F2	2.5	RP1-129L7.	1RP11-307F2	22.2	RP11-314	P12.2	
RP11	-314P12.3	RP11-388K2	2.1	RP1-13D10.	2	RP1-13D10.	3	RP1-13D10.	4	RP1-	13D10.5	
	RP11-401E1	4.1 RP11-40'	1E14.2	RP11-416N4	RP11-416N4.1 RP11-416N		4.4 RP11-457M		/11.2 RP11-492l2.1		12.1	
	RP11-513I1	5.3	RP11-513I1	5.5 RP11-513	115.6	RP11-526K1	7.2	RP11-528A1	10.1	RP11-528	A10.2	
RP11	-542F9.1	RP11-560J1	.1	RP11-575L16.2 RP11-69l22.2			RP11-69I22.	3	RP11-707M	13.1		
	RP11-74E24	1.2	RP1-187N21	1.2	RP1-190J20.2		RP1-198K11	.3RP1-240B8	3.3	RP1-298M	18.1	
	RP3-322G13	3.7	RP3-453l5.2	RP3-462D8.	P3-462D8.2 RP3-525L			2RP4-564O4.1		RP4-568F9.3RP4-568F9.6RP4-		
568F9	9.7RP4-580G	13.1	RP4-697P8.	2 RP4-697P8.		3 RP4-705D16.3		6.3	.3 RP4-717M2		23.2RP4-718D20.3	
	RP4-726N1.	2	RP4-734C18	8.1 RP4-735C1.		4 RP4-735C1.		.5 RP4-735C1		1.6 RP4-		
737E2	23.2 RP4-737	E23.4	RP4-742J24	² 4-742J24.2 R		RP4-777D9.2RP4-794H19		9.4 RP4-796l8.1		.3	RP5-	
1068	E13.3RP5-106	8F16.3	RP5-1069C8	8.1 RP5-1069C		8.2 RP5-1077l2.		.3 RP5-1077l2		2.4RP5-1100l6.1		
	RP5-1100l6.	2	RP5-1177M2	7M21.1 RP5-11		24.1RP5-839E	34.7	RP5-839B4.	8	RP5-860P	4.2	
	RP5-872K7.	2	RP5-872K7.	7	RP5-905G11	1.3RP5-919F1	19.5 RP5-9311	K24.1	RP5-984P4.	1	RP5-	
984P4	4.4	RP5-997D16	6.2	RPL13P	RPL15P1	RPL23AP6	RPL24P2 RF	PL7AL3 RPLF	20P1	RPS10		
	RPS10P2	RPS11P1	RPS15AP1	RRBP1	SEP03 SEZ6	6L	SHISA8	SLC24A3	SMCHD1	SMPD2	SNAP25	
SNOF	RD17	SNORD83	snoU13	SNRPB2	SNX5	SPCS2	SPDEF SPIF	RE1	SPRYD4	SPTLC3		
	SREBF2	TASP1 TME	M90B TNFRS	SF13C TPMT	TUBB	U1	U2	U3	U6	U7	VHL	
	VN1R11P	VN1R12P VI	N1R13P VN1I	R14P XRN2	XRRA1	XXbac-BPG	181B23.4	XXbac-BPG181B23.6		XXbac-		
BPG2	48L24.11	XXbac-BPG2	248L24.12	XXbac-BPG	27H4.7 XXbad	-BPG308K3.	6	XXyac-YR14	1BB7.1	XXyac-		
YX60D10.1		Y_RNA Z99716.2		ZBTB24	ZDHHC20P2 ZNF13		ZNF322A	ZNF414				

PANTHER analysis: 120 mapped ids are found, 237 mapped ids are not found.

There are similarities between ER positive invasive breast disease (n=4/9) and ER positive pure DCIS (n=8/8).

- 1. p-values < 0.05;
- A gene list is mapped from 34 genomic regions found on chromosomes 3, 4,
 5, 7, 8, 10, 11, 12, 15, 17, 18, 19;
- These regions encompass 470 genes altered in ER positive invasive breast disease;

Genes:

5S_rF	RNA	AAAS	ABHD14A	ABHD14B	AC002347.1	AC002481.5	AC005323.1	AC008021.1	AC008590.1	AC00927	1.1	
	AC009704.1	AC009779.1	AC010297.1	AC011260.2	AC011385.1	AC011385.3	AC012379.1	AC012379.2	AC013558.1	AC	015689.1	
	AC021066.1	AC022031.1	AC023055.2	AC023509.1	AC025165.2	AC025165.7	AC025165.8	AC026689.1	AC040963.1	AC04483	9.1	
	AC044839.2	AC055715.1	AC068473.1	AC068888.1	AC068987.1	AC068988.1	AC069209.1	AC073573.1	AC078778.1	AC07886	64.1	
	AC079600.1	AC087893.3	AC090398.1	AC090666.1	AC091103.1	AC091551.1	AC091934.1	AC091934.2	AC097359.1	AC	097359.2	
	AC097359.3	AC099557.1	AC100783.1	AC103681.1	AC103681.2	AC104186.1	AC104448.1	AC104850.1	AC105105.1	AC10531	6.1	
	AC107016.1	AC107016.2	AC112205.1	AC112215.2	AC112215.4	AC116904.1	AC116917.2	AC126118.1	AC126118.2	AC13221	7.4	
	AC156455.1	AC190387.1	ACACB ACV	R1B ACVRL1	ACY1	ALAS1	ALDOAP1	ALKBH2	ALPK2	AMHR2		
	ANAPC5 AN	KRD33	AP005273.1	AP006288.1	ARHGEF3	ATCAY	ATF7	ATP5G2 ATF	9B	ATRIP		
	ATXN2	ATXN7	B4G ALNT1	BAP1	BCL7A	BIN2	BLOC1S1 BI	VP3 C11orf94	C12orf10	C12orf44		
	C18orf26	C18orf54	C18orf55 C3	orf45 C3orf49	C3orf63	C3orf78	C4orf22	C4orf39	CACNA2D2	C/	ACNA2D3	
	CAMKK2	CAMP	CBX5	CCDC51	CCDC66	CCDC72 CC	CDC99	CCNG1	CCR8	CD63		
	CDC25A	CELA1	CHST11	CNDP1 CND	IP2	COP71	CPF	CRY2	CSAD	CSRNP1		
	CSRNP2	CTB-164I 20	1	CTB-95B16	1	CTD-3211M	3.1	CTDP1	CTNNA1	CUX2	CX3CR1	
	CVR561D2				DA7AD2						0/00/11	
			1024	EEE2						ETE1		
		DIMEERIA	TP24	EEFZ				ENTPD3	ESPLI			
			FAM196B		FBLL1		FGFR4		JZ	GALNIG		
	GAS/	GDF11	GK3P	GLP2R	GLYCAM1	GLYCIK GN	AI2	GOLGA4	GPR84	GPRIN1		
	GRASP	GRP	GISF1	GYLIL1B HI	GD1C	HIGD1DP	HMMR	HNRNPA1	hsa-let-7g	hsa-mir-1	03-1	
	hsa-mir-122	hsa-mir-135a	a-1	hsa-mir-148t	hsa-mir-1979	hsa-mir-2115	5hsa-mir-218-	2 hsa-mir-483	hsa-mir-578	hsa-mir-6	637	
	HSPA9	HYAL1	HYAL2	HYAL3 IFR	02	IGF2	IGF2AS	IGFBP6	IL31	INS		
	ITGA5	ITGA7	ITGB1BP3 I	FGB7 KDM2B	KIF5A	KLHL2	KRT1	KRT2	KRT3	KRT4		
	KRT5	KRT6A	KRT6B KRT	6C KRT7	KRT71	KRT72	KRT73	KRT74	KRT75	KRT76	KRT77	
	KRT78	KRT79	KRT8	KRT80 KRT	81	KRT82	KRT83 KRT	84	KRT85	KRT86		
	LACRT	LETMD1	LMO1	LRRC43 LRF	RFIP2 MAP2K	(2	MAP3K12	MAPK8IP1	MAT2B	MBD2		
	METTL7B M	EX3C MFSD5	5 MIP	MLH1	MLXIP	MMP19	MXI1	MYH1	MYH13	MYH2	MYH4	
	MYH8	MYRIP	NACA3P	NAT6	NCKAP1L	NDUFB1P1	NEDD4L NE	FL NEFM	NFATC1	NFE2		
	NISCH	NME6	NPFF	NR4A1	NSD1	NT5DC2 NU	DCD2	OR10P1	ORMDL2	P2RX4		
	P2RX7	PANK3	PBRM1 PCE	P2 PCBP4	PCDH24	PDE1B	PDZRN4	PEX16	PFDN5	PHF21A	PHF7	
	PIAS4	PLXNB1	POLI	POU6F1	PPM1M	PPP1R1A	PPTC7 PRD	M11	PRICKLE1	PRKG2		
	PRR13	PSMD9	RAD9B	RAPGEF2 R	ARG	RARS	RASSF1	RCVRN	RDH5	RNF34		
	RNF44	RP11-100N2	20.1 RP11-102	29M24.1	RP11-1029N	124.2	RP11-138A2	3.1	RP11-138A2	3.2		
	RP11-153F5	.1	RP11-155D18.11		RP11-168J18.4		RP11-168J18.6		RP11-219C20.1		.1	
	RP11-241K1	8.1	RP11-241K1	8.2	RP11-24C3.2	2	RP11-25I15.	1 RP11-285B	24.1	RP11-294	402.2	
	RP11-330H6	.5	RP11-331G2.4 RP11-366		M4.1 RP11-366M4		4.11 RP11-366M4		VI4.12 RP11-366N		6M4.13	
	RP11-366M4	.14	RP11-366M4	4.15	RP11-366M4	1.17	RP11-366M4	.2	RP11-366M4	4.3		
	RP11-366M4	.4	RP11-366M4	4.5	RP11-366M4	1.6	RP11-366M4	.8	RP11-391M	1.2		
	RP11-391M1	.3	RP11-416A1	7.1	RP11-438N5.1		RP11-462C21.1		RP11-469O1	1.2		
	RP11-502L5	.2	RP11-504H5	5.1 RP11-50F2	24.3	RP11-51017	.1	RP11-528N2	1.2	RP11-52	8N21.3	
	RP11-541P9	.3	RP11-554O1.1		RP11-644A7	.1	RP11-727C1.1 RP11-834C11.7		RP11-834C11.3			
	RP11-834C11.4 RP11-972K6.1		RP11-834C1	1.5	RP11-834C1	1.6			RP11-834C1	1.8		
			RP5-1157M23.2		RPL14 RPL2	9	RPSA		SARNP	SC4MOL		
	SCN8A	SEC11C	SEMA3B SE	MA3E	SEMA3G	SH2B3	SHC4	SIL1	SLC11A2	SLC25A3	38	
	SLC26A10 S	LC35C1	SLC38A3	SLC4A8	SLIT3	SMAD4	SMAGP	SMNDC1 SM	1UG1	SNCB		
	SNORA30	SNORA62	SNORA64	SNORD28	SNORD37 S	NORD63	snoU13	SOAT2	SOCS6	SP1	SP7	
	SPATA12 SF	VINK8 SPRYE	03	STAB1	STARD6	STIM1	SVOP	SYT13	TARBP2	TCF4		
	TCTN1 TEN	C1	TFCP2	THOC7	TIMELESS	TLR9	TMEM115	TMEM192	TNNC	1	TP53I11	
	TRIM60	TRIM61	TRIM75	TSPAN18	TTC21A TUS	SC2 TUSC4	TWF2	TXNL1	U1	U4	U5	

208

U6	U6atac	U7	U73166.1 U	73166.2	U73167.7	U73169.1	UNG	USP30	WDR51A	
WDR66 WD	R7 WDR82	WWC1	XIRP1	Y_RNA	ZBTB7A	ZMYND10	ZNF346	ZNF385	A	ZNF407
ZNF589	ZNF619	ZNF620	ZNF621	ZNF740						

PANTHER analysis: 285 mapped ids are found, 185 mapped ids are not found.

5.8.6 Copy Number Aberrations for All Oestrogen Receptor Positive DCIS Compared to Oestrogen Receptor Positive Invasive Breast Disease

These series examines the difference between all oestrogen receptor positive DCIS (i.e. both pure and that associated with invasion) and oestrogen receptor positive invasive breast disease.

Frequency plots showing copy number aberrations between oestrogen receptor positive DCIS and oestrogen receptor positive invasive breast disease were provided by Breakthrough Breast Cancer/Research Oncology, King's College London Bioinformatics Department (Figure 39).

Figure 39: Frequency plots showing copy number aberrations between oestrogen positive DCIS and oestrogen positive invasive breast disease (amplifications, duplications, gains, Sc gains, losses, total losses CdLOH and CnLOH,) (pages 209-212).

No amplifications in either ER positive DCIS or ER positive invasive breast disease are found in this series.

5.8.6.2 Duplication in Oestrogen Receptor Positive DCIS Compared to Oestrogen

Receptor Positive Invasive Breast Disease

There are some overlaps in the duplications present in ER positive DCIS (n=4/17) and in ER positive invasive breast disease (n=1/9).

- 1. p-values < 0.05;
- 2. A gene list is mapped from 2 genomic regions on chromosome 1;
- These regions encompass 18 genes altered in ER positive DCIS and some ER positive invasive breast disease;

Genes:

AL592307.2 HFE2 TXNIP POLR3GL ANKRD34A LIX1L RBM8A GNRHR2 PEX11B ITGA10 ANKRD35 PIAS3 RP11-458D21.2 RP11-458D21.1 RP11-315I20.1 RP11-315I20.3 U1 PDE4DIP

PANTHER analysis: 12 mapped ids are found, 6 mapped ids are not found.

There are duplications found in ER positive invasive disease (n=4/9) not present in ER positive DCIS (n=0/17).

- 1. p-values < 0.05;
- 2. A gene list is mapped from 17 genomic regions found on chromosomes 1, 8,

9, 10, 17, 21;

 These regions encompass 255 genes altered in ER positive invasive breast disease;

ADA	M15	5S_rRNA	7SK	AC046185.1	AC046185.2	AC110921.1	ADAR AF216	6667.1	AL359758.1	AL589764.	2
	AL589765.1	AL589986.2	AL590431.1	AL590431.2	AL590431.3	AL590666.2	AL591893.1	AL591893.2	AL591893.3	AL5	92307.1
	AL592492.2	AL606500.1	AL713999.1	ANTXRL	AP000304.1	2 AP000313.1	AP000313.2	AP000569.2	AP000569.8	APOA1BP	
	AQP10	ASH1L ATPS	50	ATP8B2	BCAN	BCL9	C1orf104	C1orf189	C1orf230	C1orf43	C1orf46
	C1orf61	C1orf68	CAPN2	CCDC47	ССТЗ	CGN CHD1L	CHRNB2	CKS1B	CLK2	CRABP2	
	CRCT1	CRNN DAP3	DCST1	DCST2	DDX42	DPM3	EFNA1	EFNA3	EFNA4	FAM189B	FDPS
FLAD	1	FLG	FLG2	FTSJ3	GABPB2	GBA	GBAP	GPATCH4	HAPLN2	HAX1	HCN3
	HDHD1CP	HELZ	HRNR	hsa-mir-190b	hsa-mir-5480	1-2	hsa-mir-554	hsa-mir-555	hsa-mir-9-1	hsa-mir-92	b IL6R
	IQGAP3	ITSN1	KCNH6 KCN	IN3 KPRP	KRTCAP2	LCE1D	LCE1E	LCE1F	LCE2A	LCE2B	
	LCE2C	LCE2D	LCE3A	LCE3B LCE3	BC	LCE3D	LCE3E	LCE4A	LCE5A	LELP1	
	LENEP	LIMD2	LINGO4	LOR LRRC6	LYSMD1	MAP3K3	MEF2D	MLLT11	MRPL9	MSTO1	MTX1
	MTX1P1	MUC1	NBPF10	NBPF15	NBPF16 214	NES NOTCH	I2NL NUP210	L	OAZ3	OR13Z1P	

PBXIP1	PGLYRP3	PGLYRP4	PI4KB PIP5	K1A	PITPNC1	PKLR	PMVK	POGZ	PRR9
PSMB4	PSMC5 PSI	MD12 PSMD4	PTPRD	PYGO2	RAG1AP1	RFX5	RHBG	RP11-107M	16.2 RP11-126K1.2
RP11-126	(1.6	RP11-126K	1.8	RP11-13911	4.2 RP11-201	K10.1	RP11-21N7.	2	RP11-21N7.6
RP11-21N	7.7	RP11-243J1	8.2	RP11-263K	19.4	RP11-263K1	19.6	RP11-274N1	19.2
RP11-284F	21.5	RP11-284F2	21.7	RP11-289I1	0.1	RP11-28911	0.2	RP11-292F2	2.2
RP11-292F	22.3	RP11-29H2	3.1	RP11-29H23	3.2	RP11-29H23	3.4	RP11-29H23	3.5
RP11-29H2	23.6	RP11-307C	12.11	RP11-316M	1.11	RP11-337C	18.4	RP11-350G8	3.3
RP11-3500	68.4	RP11-350G	8.5	RP11-350G	8.7	RP11-404E1	16.1	RP1-140J1.	1 RP1-140J1.4
RP11-441L	.11.1 RP1-14N	1.2	RP11-540D	14.6	RP11-540D	14.8	RP11-61L14	.2	RP11-61L14.6
RP11-6664	1.1	RP11-666A	1.2	RP11-666A	1.3	RP11-666A1	1.4	RP11-666A1	.5
RP11-66D	17.3	RP11-66D1	7.5	RP11-68I18	.2	RP11-74C1.	2 RP11-74C1	.4	RP11-763B22.2
RP11-763E	322.3	RP11-763B	22.4	RP11-89F3.	2RP11-89F3.	3RP11-98D18	3.1	RP11-98D18	3.2
RP11-98D	18.3 RP11-98E	018.7	RP11-98D18	3.9	RP11-98G7	.1	RP1-43017.	1	RP1-43017.2
RP1-52J10	.9 RP1-91G5.1	I RP1-91G5.3	RPTN	RUSC1	SCAMP3	SCNM1 SEC	C22B	SELENBP1	SEMA6C
SHC1	SHE	SMARCD2	SNORA44 S	NORA58	SNORA8	SNORD59	snoU13	SNX27	STRADA
TACO1 TC	AM1	ТСНН	TCHHL1	TDRD10	TDRKH	THBS3	TMEM71	TMOD4	TNFAIP8L2
TNRC4	TPM3	TRIM46	TTC24	TUFT1	U2	U6	U7 UBAP2L	UBE2Q1	VPS72
Y_RNA	YY1AP1	ZBTB7B	ZNF687						

PANTHER analysis: 137 mapped ids are found, 118 mapped ids are not found.

5.8.6.3 Genomic Gains in Oestrogen Receptor Positive DCIS Compared to Oestrogen Receptor Positive Invasive Breast Disease

There were gains present in both ER positive DCIS (n=5/17) and ER positive invasive breast disease (n=7/9) with considerable overlap in this series.

- 1. p-values < 0.05;
- 2. A gene list is mapped from 3 genomic regions found on chromosomes 6, 16;
- These regions encompass 16 genes altered in both ER positive DCIS and ER positive invasive breast disease;

Genes:

AC106739.1 AL031963.1 AL031963.2 AL031963.5 BPHL HLA-DQA1 HLA-DQB1 IL4R JMJD5 NSMCE1 RP1-40E16.11 RP1-40E16.8 RP1-40E16.9

PANTHER analysis: 10 mapped ids are found, 6 mapped ids are not found.

5.8.6.4 Genomic Sc Gains in Oestrogen Receptor Positive DCIS Compared to Oestrogen Receptor Positive Invasive Breast Disease

There are similar Sc gains in both ER positive DCIS (n=4/17) and ER positive invasive breast disease (n=6/9) in this series.
- 1. p-values < 0.05;
- A gene list is mapped from 16 genomic regions found on chromosomes 6, 12, 16, 18, 20;
- These regions encompass 63 genes altered in both ER positive invasive breast disease and ER positive DCIS;

Genes:

ASXL	1	5S_rRNA	ABCC11	AC106739.1	AC125494.2	AL031963.1	AL031963.2 A	L031963.3	AL031963.5	AL1219	35.1	
	AL133343.1	ATN1	BPHL	C12orf57 C2	20orf112	CD4	COPS7A	EMG1	ENO2	FAM136	6B	
	GNB3	GPR162 HL	A-DQA2	HLA-DQB2	HLA-DQB3	hsa-mir-141	hsa-mir-200c	IL4R	JMJD5	LAG3	LEPRE	:L2
	LONP2	LRRC23	MACROD2	MLF2	NQO2	NSMCE1 PH	IB2 PTMS	PTPN6	RIPK1	RP11-3	5612.2	
	RP11-356l2.	4	RP11-410N8	5.1	RP11-410N8	.3 RP11-410	N8.4	RP11-568A7	.1	RP1-1J	6.2 RI	P1-
40E16	5.11	RP1-40E16.2	2	RP1-40E16.3	3	RP1-40E16.4	4	RP1-40E16.8	В	RP1-40	E16.9	
	RP1-90J20.8	8 RP5-1184F4	.5	snoU89	TCP10L2	TNFAIP3	TOP1	TUBB2A	U47924.1 U7	,		

PANTHER analysis: 30 mapped ids are found, 33 mapped ids are not found.

5.8.6.5 Losses in Oestrogen Receptor Positive DCIS Compared to Oestrogen Receptor Positive Invasive Breast Disease

There are similar losses in both ER positive DCIS (n=7/17) and ER positive invasive breast disease (n=8/9) in this series.

- 1. p-values < 0.05;
- A gene list is mapped from 29 genomic regions found on chromosomes 1, 8, 13, 15, 16, 22, X;
- These regions encompass 114 genes altered in both ER positive invasive breast disease and ER positive DCIS;

Genes:

5S_rl	RNA	AC022716.1	AC039056.1	AP000351.4	AP000553.1	AP000555.1	ARHGEF10	ATXN8OS	CCDC116	CLN8	
	CSMD1	CT45A1	CT45A2 CT4	I5A3	CT45A4	DDT	DLC1	EHMT1	EIF4A1P6	F8A3	
	GANC GFR	42	GSTT1	GSTT2	GSTTP1	H2AFB3	hsa-mir-1184	1hsa-mir-130b	o hsa-mir-301	b	hsa-
mir-5	96	hsa-mir-627	JPH3	KB-1027C11	.4	KLHL1	LARGE MAF	PK1	MRRFP	PAK3	
	PLA2G4D	PLA2G4E	PLA2G4F	PPIL2 PRKC	Z	RP11-110K1	8.2	RP11-206H1	5.2	RP11-218L1	4.4
	RP11-264J4.5 RP11-264J4.6		.6	RP11-520F2	4.1	RP11-520F2	4.2	RP11-520F2	4.3 RP11-52	1H3.1	
	RP11-77P3.	1	RP11-954J6	.3	RP13-36C9.4	4	RP13-36C9.	5	RP5-1168A5	5.1	RP5-
1170	D6.1	RP5-964N17	7.1	SDF2L1	TDRD3 TME	M87A TMLHE	E	ТОР3В	U3	U6	
	UBE2L3	VPS39	Y_RNA YDJ	C YPEL1	ZMYM2						

PANTHER analysis: 35 mapped ids are found, 37 mapped ids are not found.

216

5.8.6.6 Total Loss in Oestrogen Receptor Positive DCIS Compared to Oestrogen

Receptor Positive Invasive Breast Disease

There were total losses present in ER positive DCIS (n=13/17) not observed in ER positive invasive breast disease (n=0/9).

- 1. p-values < 0.05;
- A gene list is mapped from 29 genomic regions found on chromosomes 3, 4,
 8, 9, 10, 11, 13, 15, 16;
- 3. These regions encompass 60 genes altered in ER positive DCIS;

Genes:

7SK	AC025678.1	AC090947.1	AC108056.1	AC133041.1	AL596092.1	AP000720.1	AP001482.1	AP001970.1	ATP8A2	CEP164
	CTD-2026G6	6.1	CTD-2026G6	5.2	DSCAML1	ERN2	GRM5	hsa-mir-1324	ILHFP	MTUS2
	NEFL NEFM	NOX4	NUPL1	OR10D1P	OR10D3P	OR10V1	OR8B1P	OR8B2 OR8	B3	OR8B4
	OR8C1P	OR8D1	OR8D2	OR8F1P OR	8G2P OR8G5	OSBP	PATL1	PLK1	PPARG	RP11-206I15.2
	RP11-241K7	7.1 RP11-241	<7.2	RP11-351N4	.3	RP11-413E6	.1	RP11-413E6	.2	RP11-413E6.3
	RP11-468L1	8.1	RP11-527F1	5.1	RP11-642N1	4.3	RP11-803B1	.1	RP11-803B1	.2
	RP11-803B1	.3	RP11-803B1	.4	SNORA31 T	YR	U6	U7	U8	VWA5A

PANTHER analysis: 22 mapped ids are found, 38 mapped ids are not found.

There were total losses present in ER positive invasive breast disease (n=9/9) not observed in ER positive DCIS (n=0/17).

- 1. p-values < 0.05;
- A gene list is mapped from 23 genomic regions found on chromosomes 9, 13, 14, 16, X;
- These regions encompass 120 genes altered in ER positive invasive breast disease;

	RP11-24H2.	1	RP11-24H2.	2	RP11-266E6	.2	RP11-279N8	3.1 RP11-30C	8.1	RP11-30C8.	2
	RP11-206L1	.2 RP11-209F	2.1	RP11-21401	1.1	RP11-214O1	1.2	RP11-218 21	1.1	RP11-24	18G5.3
	RP11-133M2	24.1	RP11-16D22	2.1 RP11-187/	49.2	RP11-187A9	.3	RP11-196l2.	1	RP11-206H ²	15.2
	OLFM4 PCDH8		PIBF1	POLA1	RP11-117N4	.1 RP11-11C	5.1	RP11-12l24.	2	RP11-12I24	.3
mir-2	hir-203 hsa-mir-759		KDM6A	KIAA0564	KIF26A	KLF12	KLF5	KLHL1 NEK	3NEK5	NHLRC3	
	C14orf180	CCDC70	CCNA1 DAC	CH1 DGKH	DIS3	DUSP21	FOXO1	FREM2	FREQ	HMCN2	hsa-
	AL512362.1	AL590007.2	ARX	ASPG	ATP7B	ATXN8OS	C13orf23 C1	3orf34	C13orf36	C13orf37	
	AL162377.2	AL163544.1	AL355611.1	AL355611.2	AL355611.3	AL356863.1	AL359180.1	AL391384.1	AL442203.2	AL450	0423.1
Ge	NES: 5S_r	RNA	AC002504.1	AC112778.1	AC112778.2	AL136001.1	AL136359.1	AL138690.1	AL139082.1	AL162377.1	

	RP11-327P2	2.3	RP11-335N6	6.1	RP11-349O1	0.1 RP11-38	1L18.2	RP11-393H6	.2	RP11-3	93H6.3
	RP11-430K2	22.1	RP11-430K2	2.2	RP11-43102	2.2	RP11-459J2	3.1	RP11-459J2	3.2	
	RP11-474L7	.4	RP11-501G6	6.1	RP11-505F3	.2	RP11-505F3	.4	RP11-520F2	4.1	RP11-
520F2	24.2	RP11-520F2	4.3	RP11-56M2.	1	RP11-571G1	1.1	RP11-571G1	.2	RP1	1-62904.1
	RP11-76N11	1.2	RP11-77P3.	1	RP11-7B3.2	RP11-7B3.3	RP11-7B3.4	RP11-88G17	.6	RP1-25	8N20.3
	SNORA25	SNORA68 S	NORA9	SNORD37	STOML3	TDRD9	TMEM179	TRPC4	U4 U6	U7	
	UFM1	UTP14C	Y_RNA								

PANTHER analysis: 31 mapped ids are found, 89 mapped ids are not found.

5.8.6.7 CdLOH in Oestrogen Receptor Positive DCIS Compared to Oestrogen Receptor Positive Invasive Breast Disease

There is similar CdLOH present in both ER positive DCIS (n=10/17) and ER positive invasive breast disease (n=7/9).

- 1. p-values < 0.05;
- A gene list is mapped from 67 genomic regions found on chromosomes 1, 2,
 5, 7, 8, 9, 11, 13, 15, 19, 22, X;
- These regions encompass 215 genes altered in both ER positive DCIS and ER positive invasive breast disease;

5S_rF	RNA	7SK	AC000035.3	AC000041.8	AC002472.8	AC002472.9	AC004019.10	DAC004019.1	6	AC004019	.17
	AC005300.5	AC006946.1	2	AC006946.1	5 AC008162.1	IAC011890.1	AC019176.2	AC022613.1	AC022716.1	AC027807	.1
AC03	9056.1	AC068286.1	AC074389.1	AC074389.6	AC074389.7	AC074389.9	AC090510.1	AC102941.1	AC103965.1	AC110781	.3
	AC110781.5	ACRV1 ADA	MTSL3	ADRBK2	AIFM3	AL022323.1	AL121825.1	AL451005.1	AP000347	7.2 AP00	0350.10
	AP000350.6	AP000350.7	AP000350.8	AP000351.3	AP000351.4	AP000553.1	AP000555.1	AP1B1	AP3B1	ATP1B4	
	BPIL2	C1GALT1C1	C22orf28 C2	2orf30	CCDC116	CDAN1	CECR1	CECR2	CECR3	CECR4	CECR5
	CECR6	CFP	CHEK1	CPXCR1	CSMD1	CT45A1 CT4	15A2	CT45A3	CT45A4	CT47B1	
	CTA-211A9.	5	CTA-221G9.	11 CTA-256D	12.11	CTA-256D12	2.12	CTA-292E10).6	CTA-292E	10.7
CTA-4	407F11.6	CTA-407F11	.7	CTA-407F11	.8	CTA-85E5.7	CTA-984G1.	5 CTD-2037K	23.1	CTD-2037	K23.2
	CTD-2254N1	19.1	CUL4B	CXorf25 CXo	orf64 DDT	DDTL	DLC1	EFCAB6	EHMT1	EIF4A1P6	
	ELFN1	ELK1	EMID1 FAM	189A1	FAM32B	FAM70A	FBXO7	GANC	GFRA2	GRIA3	GSTT1
	GSTT2	GSTT2B	GSTTP1	HAUS2	HMGN2L9	HORMAD2 h	nsa-mir-130b	hsa-mir-301	ohsa-mir-627	IGLV10-67	,
	IGLV1-62	IGLVI-63 IGI	_VIV-64	IGLVIV-65	IGLVIV-66-1	IGLVV-66	IL17RA	KB-1027C11	.4 KIA	41671	LAMP2
	LARGE	LL22NC03-2	3C6.15	LL22NC03-2	8H9.5	LRRC57 LZ	FR1 MAD1L1	MAPK1	MCTS1	MRRFP	
	MTMR3	NEFH	NF2 NIPSNA	\P1	PA2G4P1	PAK3	PATE1	PATE2	PDE4D	PLA2G4D	
	PLA2G4E PL	_A2G4F	PNPLA5	PPIL2	PRAMEL	PRKCZ	RFPL1	RFPL1S RFI	PL3 RFPL3S	RGL4	
	RHBDD3	RP11-137D1	9.1	RP11-442I12	2.1	RP11-45J1.1	1 RP1-149A16	5.12	RP1-149A16	6.15	RP1-
149A [,]	16.16	RP1-149A16	6.17 RP1-149/	A16.3	RP11-521H3	5.1	RP1-212G6.	4	RP1-222H5.	.1	RP1-
302D	9.2 RP1-302D	9.3	RP1-302D9.4	4	RP1-302D9.	5	RP1-30E17.1	1	RP1-30E17.	2	

	RP13-36C9.	4 RP13-36C9	.5	RP3-388M5.	8	RP3-393P12	2.1	RP4-655L22	.2	RP4-655L	.22.4
	RP5-1168A5	5.1	RP5-1170D6	5.1	RP5-964N17	' .1	SC22CB-1D	7.1	SCAMP1		SDF2L1
	SGSM1	SLC27A6	SNAP23	SNORA70	SNORD56 s	noU13	STARD9	SULT4A1	SYN1	SYN3	
	TDRD3	THAP7	THOC5 TJP	1	TMEM211	TMEM87A	ТОРЗВ	TTBK2	TTC28	U3	U6
	UBE2L3 UB	R1	UXT	VPS39	XXbac-B135	H6.15	Y_RNA	YDJC	YPEL1	Z71183.1	ZBTB33
ZNRF	3										

PANTHER analysis: 96 mapped ids are found, 115 mapped ids are not found.

5.8.6.8 CnLOH in Oestrogen Receptor Positive DCIS Compared to Oestrogen Receptor Positive Invasive Breast Disease

There is CnLOH in ER positive DCIS (n 16/17) not observed in ER positive invasive breast disease (n=0/9).

- 1. p-values < 0.05;
- 2. A gene list is mapped from 36 genomic regions found on chromosomes 1, 3,

4, 12, 19, 20;

3. These regions encompass 85 genes altered in ER positive;

Genes:

 Mar-02
 SS_rRNA
 XKX003111.1
 AC003111.2
 AC003111.2
 AC003612.1
 AC00366.1
 AC024075.1
 AC027667.1
 AC027667.2

 AC034193.1
 AC099680.1
 AGAP2
 AK3L1
 AKAP8
 AKAP8L
 AL121988.1
 BRD4
 C19orf42
 C19orf42
 C19orf44
 <td

PANTHER analysis: 42 mapped ids are found, 43 mapped ids are not found.

There is CnLOH present in ER positive invasive breast disease (n=9/9) not observed in ER positive DCIS (n=0/17).

- 1. p-values < 0.05;
- A gene list is mapped from 16 genomic regions found on chromosomes 1, 3, 11, 12;
- 3. These regions encompass 60 genes altered in ER positive DCISv

Genes:

5S_r	RNA	AC012598.1	AC044839.1	AC044839.2	AC061999.1	AC092910.1	AC092910.2	AC103681.1	AC103681.2	AC117377	7.1
	AC119795.1	ADPRHL2 A	LX4 ANKS1B	C11orf74	C11orf94	C3orf15	COL8A2	COX17 CRY	1 CRY2	DCTN2	
	DDIT3	EIF2C3	EXT2	GAP43	GSK3B	GYLTL1B hs	a-mir-616	KIF5A	LSAMP	MAPK8IP	1
	MARS	MBD6	MGAT4C	MIP NR1I2 P	EX16	PHF21A	POPDC2	PRDM11	RAG1	RAG2	
RP11-169N		3.1 RP11-169	9N13.4	RP11-18H7.	1	RP11-190C2	22.1	RP11-326J1	B.1	RP11-767	L7.1
RP11-	-767L7.2	RP4-665N4.4	4	RP4-665N4.	5	SLC35C1	SYT13	TEKT2	TIMELESS		TP53l11
	TRAF6	TSPAN18	U6								

PANTHER analysis: 37 mapped ids are found, 23 mapped ids are not found

5.8.7 Copy Number Aberrations for Triple Negative DCIS Compared to Non Triple negative DCIS

This series examines the differences between pure triple negative DCIS and all other types of DCIS (e.g. ER+, HER2+) (pure and in the presence of invasive disease). Frequency plots showing copy number aberrations between TN DCIS and non TN DCIS are given in Figure 40.

Figure 40: Frequency plots for copy number aberrations for triple negative DCIS versus non triple negative DCIS (amplifications, duplications, gains, Sc gains, losses, total losses CdLOH and CnLOH, pages 220-223).

Frequency plots below show the relative copy number gains and losses for an entire sample set compared to its counterpart e.g. the first plot in Figure 36 shows amplification for all triple negative DCIS and invasive breast disease compared to all non triple negative DCIS and invasive breast disease in this series. The number on the y axis refers to the number of cases showing a genomic difference. The x axis refers to the chromosome number. The lower half of the y axis represents the non triple negative and the upper half the triple negative. Amplification on chromosome 8 is apparent on several regions for non triple negative DCIS and invasive breast disease and is also present at a lower frequency on fewer loci for triple negative DCIS

and invasive breast disease. Amplification is present on chromosomes 6 (n=24), 11(n=25) and 17(n=26) for non triple negative DCIS and invasive breast disease but absent in triple negative DCIS and invasive breast disease.

Frequency Plots_ Triple Negative vs Non-Triple Negative

PANTHER Analysis is used to provide the following information the above copy number scenarios for all groups listed in sections 5.3.3 to 5.3.8

- p-values- a significant p-value showing the genomic aberrations are not defined by chance and that the null hypothesis is correct, as an example – duplications found in triple negative DCIS compared to triple negative DCISa p-value of 0.5 showing that the there is a 5% chance that these duplication differences and found by random chance alone within our series.
- 2. The gene list mapped from different genomic regions on each chromosome. Each chromosome has been divided into overlapping genomic regions which are assessed for amplifications, duplications etc. Genes are identified in each region from different chromosomes. For each analysis the number of gene regions and chromosomes is given.

- A list of genes is created from an online database (ESEMBL) and these genes are listed in the results section as gene ids.
- 4. The gene list (ids) are uploaded to the PANTHER analysis software, homo sapiens is the species genome selected and a functional analysis is requested. The Software provides a list of mapped genes with known biological, molecular and protein functions. Those genes entered into the software with established functions are returned as "mapped ids found" and those without are returned as "mapped ids not found". The mapped ids are used to create pie charts showing biological processes, molecular functions and radar graphs for protein classes (representative charts and graphs are found in 5.3.7 the majority are stored on the accompanying disc.

Genomic data and subsequent PANTHER analysis for TN negative DCIS and non triple negative DCIS is given below.

5.8.7.1 Amplification in Triple Negative DCIS Compared to Amplification in Non Triple Negative DCIS

The comparison of amplifications in TN DCIS (n=3/26) compared to non TN DCIS (n=12/33) shows considerable overlap between those amplifications found in TN DCIS also found in non TN DCIS.

- 1. p-values < 0.05;
- A gene list is mapped from 19 genomic regions found on chromosomes 6, 8, 11, 17;
- These regions encompass 39 genes altered in TN DCIS and non TN DCIS;
 Genes:

AC107374.1 ADCY8 AF216667.1 CCND1 CEBPD CRKRS CSMD3 DENN DENND3 HIST1H2AB HIST1H3A HIST1H3B HIST1H4A HIST1H4B hsa-mir-151 IKBKB KIAA0146 KIAA1429 LRRC6 MYEOV ORAOV1 POLB PRKDC PTK2 PTK2 PTK2 PXDNL RP11-231D20.1 RP11697N18.1 SLC45A4 SNORA7 U6 U6

PANTHER analysis: 19 mapped ids found, 10 mapped ids are not found.

Amplifications are found in non TN DCIS (n=8/33) that are not observed in TN DCIS

(n=0/26)

- 1. p-values < 0.05;
- A gene list is mapped from 18 genomic regions found on chromosomes 8, 11, 17;
- 3. These regions encompass 39 genes altered in non TN DCIS;

Genes:

7SK AC013300.1 AC022973.1 AC103833.1 AC109322.1 ADCY8 C8orf4 CRKRS CSMD3 CYC1 DEPDC6 EFR3A EXOSC4 FAM49B FGF19 FGF3 FGF4 GPAA1 GPR20 GRINA GSDMC KCNQ3 KIAA1875 LRRC6 MAF1 OC90 OPLAH PARP10 PLEC PTK2 RP11-1023P17.1 RP11274M4.1 RP11473O4.1 SHARPIN SLC45A4 SNORA25 SPATC1 ST18 TMEM71

PANTHER analysis: 27 genes mapped, 1 id is not found.

5.4.1.1 Duplication of Triple Negative DCIS Compared to Duplication in Non Triple Negative DCIS

Duplications are found in TN DCIS (n=5/26) that are not observed in non TN DCIS

(n=0/33)

- 1. p-values < 0.05;
- 2. A gene list is mapped from 18 genomic regions found on chromosomes 3, 6,

12;

3. These regions encompass 17 genes altered in TN DCIS;

Genes:

5S_rRNA AC004671.1 AC106722.1 AL096711.1 C6orf174 ECHDC1 MBNL1 NTF3 RNF146 RP11362A9.3 RP1-177A13.1 RP3-351K20.3 RP3-351K20.4 RP3-403A15.1 RSP03 TMEM14E Y_RNA

PANTHER analysis: 6 mapped ids found, 11 mapped ids are not found.

Duplications are found in non TN DCIS (n=0/33) that are not observed in TN DCIS (n=7/26).

1. p-values < 0.05;

- A gene list is mapped from 20 genomic regions found on chromosomes 3, 8, 10, 16, 17, 20, 22;
- 3. These regions encompass 54 genes altered in non TN DCIS;

Genes: AC015813.2AC020688.1 AC090922.1 AC092291.1 AC124319.3 AC136443.1 AC138932.2 AL031661.1 AL391421.1

 AL391421.2
 AL391421.3
 AL391421.4
 AP003355.2
 ATG3P1 BFAR
 CTD-2561B21.1
 CUEDC1
 DLG5
 FAM18A

 GSTTP2
 H2AFZP5 hsamir-1972
 HSPEP1 KCNS2
 MRPS23
 NIT2
 NONO1
 NPIP
 NUBP1 OXR1
 PACUEDC1
 PLA2G10

 POLR3A
 RALGAPB
 RP11-101E14.2
 RP11-101E14.3
 RP11126H7.3
 RP1-191L6.2
 RP4-564F22.2
 RP4
 564F22.5

 RP5-1031J8.1
 RP524
 SNHG11
 SNORA714
 SNORA71B
 SNORD112
 TEC1223
 VEZF1

 Y_RNA
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K

PANTHER analysis: 19 mapped ids are found, 35 mapped ids are not found.

5.8.7.2 Genomic Gains in Triple Negative DCIS Compared to Genomic Gains in Non Triple Negative DCIS

Gains found in TN DCIS (n=10/26) have some overlap with gains found in non TN DCIS (n=3/33).

- 1. p-values < 0.05;
- 2. A gene list is mapped from 17 genomic regions found on chromosomes 3, 4,

5, 10, 10;

3. These regions encompass 77 genes altered in non TN DCIS;

Genes:

 5S_rRNA AC006296.3
 AC022400.3
 AC096971.2
 AC103560.1
 ACADSB
 AGAP5APC
 BMS1P4
 BUB3
 C10orf55
 CAMK2G
 CHCHD1

 COQ6CTC-459M5.1
 CTC-459M5.2
 CTC-493D22.1
 CTD2077I5.1
 CTD
 2192A1.1CTD-2201G3.1
 ENTPD5
 EPB41L4A
 FAM161B
 FHIT

 FOXP1
 FTHL23
 FUT11
 GLUDP3
 HMX2
 HMX3
 IKZF5
 KIAA0913
 MCC
 MYOZ1
 NCRNA00219
 NDST2
 PLAU

 PPP4R2
 PSTK
 PTGR2
 RNase_MRP
 RP11-162A23.5
 RP11-28211.1
 RP11-417011.5
 RP11430J3.1
 RP11

 430J3.2
 RP11-458B24.2
 RP11-464F9.1
 RP11-464F9.19
 RP11-464F9.9
 RP11526F3.1
 RP11-574K11.16
 RP11-574K11.16
 RP11-574K11.16
 RP11-574K11.16
 RP11-574K11.18
 RP11-574K11.20
 RP11-728B21.2
 RP11-905F6.1
 SEC24C
 SHQ1

 SNORA13
 snoU13
 SYNPO2L
 TSSK1B
 U1
 U4atac
 U7
 U7
 U54
 VCL
 Y_RNA
 YTHDC2
 ZNF410

There were gains found in non TN DCIS (n=8/33) that are not observed in TN DCIS (n=0/26).

1. p-values < 0.05;

2. A gene list is mapped from 36 genomic regions found on chromosomes 2, 6,

7, 9, 10, 17, 18, 19;

3. These regions encompass 99 genes altered in non TN DCIS;

Genes:

AC004603.4 AC005176.1 AC005205.2 AC005205.3 AC005205.4 AC005239.1 AC006133.3 AC007842.1 AC008555.5 AC008655.1 AC009711.1 AC011443.1 AC011445.1 AC011455.1 AC011496.1 AC011500.1 AC011500.2 AC012309.4 AC012309.5 AC080032.1 AC091078.1 AC091078.2 AC092296.1 AC092296.3 AC093063.1 AC103996.1 ACAN ASPDH C19orf63 CDKN2BAS CEACAMP7 CLC DENND4C DLL3 DYRK1B EID2 EID2B FAM71E1 FBL FBX.027 FCGBP GMFG IL28A IL28B IL29 JOSD2 KCNC3 KCTD15 LEUTX LGALS13 LGALS14 LRFN1 LRRC4B MED29 MLLT3 MRPS12 MTAP MYBPC2 MYH14 NAPSA NAPSB NCCRP1 NFKBIB NR1H2 PAF1 PAK4 PLEKHG2 POLD1 PSG1 PSG10 PSG11 PSG6 PSG7 PSMC4 RINL RP11513M16.5 RPS16 RPS6 SAMD4BSARS2 SIRT2 snoU13 SPIB SUPT5H SYCN SYT3 TIMM50 VN1R96P Y_RNA ZFP14 ZFP36 ZFP82 ZNF146 ZNF30 ZNF383 ZNF546 ZNF565 ZNF780A ZNF780B

PANTHER analysis: 59 mapped ids found, 40 mapped ids are not found.

5.8.7.3 Genomic Sc Gains in Triple Negative DCIS Compared to Genomic Sc Gains in Non Triple Negative DCIS

There are Sc Gains found in TN DCIS (n=7/26) that are not observed from non TN DCIS (n=0/33).

- 1. p-values < 0.05;
- A gene list is mapped from 21 genomic regions on 6 chromosomes 1, 2, 6, 9, 16, 19;
- 3. These regions encompass 86 genes altered in TN DCIS;

Genes:

 5S_rRNA AC016699.1
 AC017099.3 AC018892.1 AC018892.3 AC018892.4 AC018892.5 AC018892.5 AC018892.7 AC018892.7 AC018892.8

 AC018892.9 AC079337.1 AC079395.1 AC079395.1 AC092683.2 AC092683.3 AC106785.1 AC106785.10
 AC106785.10
 AC106785.1 AC106785.1 AC106785.1 AC106785.1 AC106785.1 AC106785.1 AC106785.1 AC106785.2 AC018892.7 AC016785.2 AC016785.2 AC016785.2 AC016785.2 AC106785.2 A

PANTHER analysis: 21 mapped ids are found, 65 mapped ids are not found.

There are Sc Gains in non TN (n=8/33) not observed in TN DCIS (n=0/26).

- 1. p-values < 0.05;
- 2. A gene list is mapped from 36 genomic regions found on chromosomes 3, 4,

5, 9, 14, 17;

3. These regions encompass 93 genes altered in TN DCIS;

Genes:

7SK AC006	296.3	AC068400	.1 AC	098869.1	AC099668	5 AC10499	6.1 AC105	935.1 A	C121252.2	AC12632	7.1 AC1	26327.4	AL117692.1
AL117	692.2	AL136294.	1 AL16	1626.1 A	MIGO3 APC	APEH ATPE	VOA1 BLM	IH C14orf	135 C14orf	182 C14o	rf183 C3c	orf54 C9o	rf40 C9orf41
C9orf95 CAN	1KV	CCDC55	CDCP1	CDH29 0	COASY CPD	CTB-75G16	1 CTC-4	59M5.1	CTC-459	M5.2 CT	D-2184C	24.1 C	FD-2192A1.1
DDX5	2	DHRS11 D	HRS7	DUSP14	EFCAB5 EP	341L4A	FAM134C	GCNT	1 GGNB	P2 GMF	PB hsa	a-mir-423	HSD17B1
HSD1	7B1P1	IP6K1 LRF	C9 ML	X MRM1	MST1 MYO1	9	NAGLU N	CRNA002	219 NTRK2	(OSTF1	PIGW	PLEKHH3
PPM1A PRK	AR2A	PRUNE2 P	SMC3I	Þ	RAD51L1 RE	3M47 RNF12	3 RP11-19	7P3.1	RP1	11-197P3.4	4	RP11	-197P3.5
RP11-	214N1	16.2	RP1	1-422N19	9.3 RP11-458	3B24.2	RP11-526	F3.1 F	RP11-58E21	.1 RP1	1-66C24.	1 RP1	3-1056D16.2
RP13-	480C1	15.1 SLC6A	4 SNOF	RA13 SNO	ORD63 SYN	RG	TADA2A	rmigd1 t	RAIP TRPI	M6 TUBG1	TUBG2	U6 UBA7	Y_RNA

PANTHER analysis: 50 mapped ids are found, 43 mapped ids are not found.

5.8.7.4 Losses in in Triple Negative DCIS Compared to Genomic Total Loss in Non

Triple Negative DCIS

There are losses found in TN DCIS (n=11/26) that are not observed in non TN DCIS (n=0/33).

- 1. p-values <0.0001;
- 2. A gene list is mapped from 23 genomic regions on chromosome 4;
- 3. These regions encompass 94 altered genes in TN DCIS;

Genes:

MAR01 7SK AC079349.1 AC095046.1 AC095047.1 AC096766.1 AC097534.1 AC097534.2 AC104082.1 AC104082.2 AC105285.2 AGPAT9 ANXA3 ARHGAP24 C4orf12 C4orf39 C4orf43 CDS1 CPE FAM175A FGF5 FRAS1 GALNT7 GALNTL6 GK2 GK3P HMGB2 hsa-mir-1979 hsa-mir-578 KLHL2 NACA3P NKX6-1 NPY5R OR7E94P RP11-10K16.1 RP11-218C23.1 RP11-219C20.1 RP11-234K19.1 RP11-234K19.2 RP11-RP111121 18 1 RP11-147K21 1 RP11-294O2.2 RP11-366M4.1 274J2.1 RP11-294O2.1 RP11-366M4.11 RP11-366M4.12 RP11-366M4.13 RP11-366M4.14 RP11-366M4.15 RP11-366M4.17 RP11-366M4.2 RP11-366M4.3 RP11-366M4.4 RP11-366M4.5 RP11-366M4.6 RP11-366M4.8 RP11-42A4.1 RP11-436A7.1 RP11-443J23.1 RP11-452C8.1 RP11-469O11.1 RP11-469O11.2 RP11-485C11.1 RP11-489G11.1 RP11-502M1.1 RP11-502M1.2 RP11-51G24.1
 RP11-606P2.1
 RP11-61008.1
 RP11-689K5.2 RP11-689K5.3
 RP11-722P15.1

 RP11-75A5.1
 RP11-767N15.1
 RP11-798M19.3 RP11-8L2.1
 RPL35AP12
 SAP30
 SC4MOL
 SCRG1
 SNORA31 SNORA75 SPOCK3 TKTL2 TMEM192 TRIM60 TRIM61 TRIM75 U4 U5 U6 WDFY3 Y_RNA

PANTHER analysis: 23 mapped ids are found, 71 mapped ids are not found.

230

There are losses in non TN DCIS (n=10/33) that are not observed in TN DCIS (n=0/26) represents losses for non TN DCIS (N=10/24).

- 1. P values < 0.05;
- A gene list is mapped from 35 genomic regions found on chromosomes 1, 2, 3, 6, 9, 10, 17, 18, 19;
- 3. These regions encompass 127 altered genes in TN DCIS;

Genes:

5S_rRNA	AC002539.1	AC003051.1	AC004562.1	AC005176.1	AC005205.2	AC005205.3	AC005205.4	AC005208.1	AC0052	39.1
	AC005307.1	AC005616.1	AC006133.3	AC007392.3	AC007392.4	AC007403.1	AC007403.2	AC007403.3	A	C009474.1
	AC009474.2	AC011443.1	AC011500.1	AC011500.2	AC023115.3	AC078941.1	AC091038.2	AC092155.1	AC0921	55.2
	AC092155.4	AC093063.1	AL162419.2	AL356957.10	AL356957.2	AL356957.3	AL356957.4	AL356957.6	A	L356957.7
	AL356957.9	AL359836.1	AL732363.1	C9orf68	CAPN12 CD	H2 CLCDLL3	DYRK1B	EHBP1	EID2	
	EID2B	EMX2OS	FAM98C FBL	FBXO27	FCGBP	FSHR GLIS3	GMFG	hsa-mir-1-2	hsa-mir-	133a-1
KCNJ16 KCI	NJ2	KCNK18	KIAA1598 LE	UTX LGALS	13	LGALS14	LGALS7 LRF	N1 MAP4K1	MED29	
	MEIS1	MIB1	NT5E PAF1 I	PAK4	PDZD8	PLEKHG2 R	ASGRP4	RP11-14N7.	1	
	RP11-14N7.	2	RP11-268I9.	1 RP11321N4	1.3	RP11-33E24	.1	RP11-33E24	.3	
	RP11-358M	14.2RP11-403	8113.1 RP1140	3l13.2 RP11-	403113.4	RP11-403I13	3.5	RP11-403I13	3.6	
	RP11-403I13	3.7 RP11403I	13.8RP11-501	J20.2 RP11-	501J20.3 RP1	1-501J20.5	RP11-5G18.	2	RP11-70	OJ12.1
RP11-744H1	8.1	RP11-744H1	8.2 RP11-763	B22.5	RP11-763B2	2.6	RP11-763B2	2.7	RP11-76	63B22.8
	RP11-763B2	2.9	RP1-3J17.3 I	RPS16 RSL24	4D1P2	RYR1	SAMD4B	SARS2 SI	_C18A2	SLC1A1
	SNHG5	SNORA73 S	NORA81	SNORD50	snoU13 SNX	14 SPRED3	SUPT5H	SYNCRIP TI	MM50 U ²	1 U6 VAX1
Y_RNA ZFP	36									

PANTHER analysis: 41 mapped ids are found, 86 mapped ids are not found.

5.8.7.5 Total Loss in Triple Negative DCIS Compared to Genomic Total Loss in Non

Triple Negative DCIS

There are total losses found in TN DCIS (n=17/26) that are not observed in non TN DCIS (n=0/33).

- 1. p-values = 0.05;
- A gene list is mapped from 58 genomic regions found on chromosomes 3, 4,14,15,17;
- 3. These regions encompass 223 genes altered in Non TN DCIS;

Genes:

5S_rRNA 7SK ABCD4 AC002117.1 AC003043.1 AC003043.2 AC003102.3 AC003963.2 AC004222.1 AC004596.1 AC004596.1 AC004968.1 AC004968.2 AC004968.1 AC007056.1 AC007056.1 AC007722.1 AC008045.1 AC008105.1 AC012409.1

	AC015936.1	AC015936.3	AC016251.1	AC019131.2	AC020704.1	AC026202.1	AC026202.5	AC026882.1	AC027708.1	
	AC027807.1	AC036222.1	AC055813.1	AC055873.1	AC068400.1	AC079915.1	AC084809.2	AC084809.3	AC090043.1	
	AC090283.1	AC090283.3	AC091199.1	AC096750.1	AC102948.1	AC102948.2	AC103702.1	AC103965.1	AC104260.1	
	AC113211.1	AC124789.1	AC134669.1	AC135724.1	AC138150.3	AC138150.4	AC183087.1	AC183087.2	ACBD4	
	ACCN1	ADAM11	ADAMTSL3	ADCK1	ADH1A	ADH1B	ADH1C	ADH4	ADH5	
	ADH6	AF111168.1	AF111168.3	AHSA1	ALKBH1	ARHGAP23	ARRDC4	ASB16	ATXN7L3	
	C14orf148	C14orf156	C14orf174	C14orf178	C17orf104	C17orf105	C17orf46	C17orf53	C17orf65	
	C17orf93	C1QL1	C4orf37	CA10	CCDC103	CCDC43	CD300LG	CDC6	CNTN4	
	CNTN6	COX6B1P2	CTD-2175M	1.1	CTD-2377D2	24.1	CTD-2377D2	24.2	CTD-2377D	24.4
	CTD-2377D2	24.6	DBF4B	DCAKD	DDX52	DHX8	DUSP3	DYNLL1P1	EFTUD2	
	EIF4E	ETV4	EVI2A	EVI2B	FAM149B2	FAM169B	FAM171A2	FAM177A2	FAM187A	
	FMNL1	FZD2	G6PC3	GFAP	GJC1	GPATCH8	GPR179	GRN	GSTZ1	
	HDAC5	HEXIM1	HEXIM2	HIGD1B	HNF1B	HOXB13	HOXB7	HOXB9	hsa-mir-126	0hsa-
mir-1469	hsa-mir-196a	a-1	hsa-mir-2117	ISM2	ITGA2B	KIAA1737	KIF18B	KRT222	KRT24	
	KRT25	LIN52	LSM12	MAP3K14	MCTP2	MEOX1	METAP1	MPP2	MPP3	
	MRPL45	MYO1D	NAGS	NF1	NGB	NMT1	NR2F2	NRXN3	OMG	
	PCNAP1	PLCD3	POMT2	PPY	PRAC	PYY	RAB11FIP4	RGS6	RP11-10720	C15.1
	RP11-15B17	.1	RP11-176P1	4.1	RP11-18707	.1	RP11-204C2	3.1	RP11-299L1	7.1
	RP11-332E1	9.1	RP11-352E6	.1	RP11-352E6	.2	RP11-357H1	4.4	RP11-36911	6.1
	RP11-428B4	.2	RP11-522B1	5.1	RP11-522B1	5.2	RP11-571L1	9.2	RP11-571L1	9.4
	RP11-624A4	.1	RP11-696N1	4.1	RP11-765K1	4.1	RP11-799A1	2.1	RP11-799A1	12.2
	RUNDC3A	SIPA1L1	SLC25A39	SLC4A1	SMARCE1	SNORA32	SNORA46	SNORD56	snoZ178	
	SNW1	SOCS7	SOST	SPACA3	SPATA8	SPRED1	SPTLC2	SRCIN1	STON2	
	SYNRG	TBC1D3	TMED8	TMEM101	TMEM63C	TMEM98	TMUB2	U3	U6	U7
	UBTF	VEGFC	VIPAR	VSX2	WIPF2	Y_RNA	ZDHHC22			

PANTHER analysis: 115 mapped ids are found, 108 mapped ids are not found.

There are total losses found in non TN DCIS (n=27/33) that are not observed in TN DCIS (n=0/26).

- 1. p-values <0.0001;
- 2. A gene list is mapped from 18 genomic regions on 1 chromosome (17) ;
- 3. These regions encompass 46 genes altered in TN DCIS;

Genes:

AC000003.1 AC027763.1 AC027763.2 AIPL1 ALOX12 AMAC1L3 ASGR1 ASGR2 BCL6B C17orf49 C17orf61 C17orf74 CCDC42 CHRNB1 CLEC10A CTD-2545G14.1 DLG4 DPH1 FBXO39 FGF11 GAS7 hsa-mir-195 hsa-mir-497 MFSD6L NLGN2 OVCA2 PIK3R5 PIK3R6 PLSCR3 POLR2A RNASEK RNF222 RP11-609D21.1 SLC16A11 SLC16A13 SPDYE4 SPEM1 TEKT1 TMEM102 TNFSF12 TNFSF12-TNFSF13 TNFSF13 TNK1 U6 Y_RNA ZBTB4

PANTHER analysis: 33 mapped ids are found, 13 mapped ids are not found.

5.8.7.6 CdLOH in Triple Negative DCIS Compared to with CdLOH in Non Triple Negative DCIS

There is CdLOH found in TN DCIS (n=11/26) that are not present in non TN DCIS (n=0/33).

1. p-values <0.0001;

2. A gene list is mapped from 24 genomic regions on 2 chromosomes (4 and 5);

These regions encompass 91 genes altered in TN DCIS;

Genes: Mar01 7SK AC023355.1 AC023355.3 AC079349.1 AC095047.1 AC096766.1 AC097534.1 AC097534.2 AC104082.1 AC104082.2 AC105285.2 AGPAT9 ANXA3 ARHGAP24 C4orf39 C4orf43 CDS1 CPE DUT FBN1 FGF5 FRAS1 GALNT7 GALNTL6 GK2 HMGB2 hsa-mir-1979 hsa-mir-578 KLHL2 NACA3P NKX6-1 NPY5R GK3P OR7E94P RP11-10K16.1RP11-112L18.1 RP11-218C23.1 RP11-219C20.1 RP11-234K19.1 RP11-234K19.2 RP11-274J2.1 RP11294O2.1 RP11-RP11-366M4.1 RP11-366M4.11 RP11-366M4.12 RP11-366M4.13 RP11-366M4.14 RP11-366M4.15 RP11-366M4.17 29402.2 RP11-366M4.2 RP11-366M4.3 RP11-366M4.4 RP11-366M4.5 RP11-366M4.6 RP11-366M4.8 RP11-42A4.1 RP11-443J23.1 RP11-469O11.1 RP11-469O11.2 RP11-485C11.1 RP11-489G11.1 RP11-502M1.1 RP11-RP11-436A7.1 502M1.2 RP11-51G24.1 RP11-606P2.1 RP11-689K5.2 RP11-689K5.3 RP11-75A5 1 RP11-767N15.1 RP11-798M19.3 RP11-8L2.1 RPL35AP12 SAP30 SC4MOL SCRG1 SLC12A1 SNORA31 SPOCK3 TKTL2 TMEM192 TRIM60 TRIM61 TRIM75 U4 U5 U6 WDFY3 Y RNA

PANTHER analysis: 25 mapped ids are found, 66 mapped ids are not found.

There is CdLOH found in non TN DCIS (n=10/26) that are not observed in TN DCIS (0/26)

- 1. p-values < 0.05;
- 2. A gene list is mapped from 36 genomic regions found on chromosomes 2, 6,

7, 9, 10, 17, 18, 19;

3. These regions encompass 107 genes altered in TN DCIS;

Genes: 55_rRNA AC002539.1 AC003051.1 AC004562.1 AC005176.1 AC005205.2 AC005205.3 AC005205.4 AC005208.1 AC005239.1 AC005307.1 AC005616.1 AC006133.3 AC007392.3 AC007392.4 AC007403.1 AC007403.2 AC009474.1 AC009474.2 AC011443.1 AC011500.1 AC011500.2 AC091038.2 AC092155.4 AC093063.1 AL133476.1 AL359836.1 ATP8B5P C6orf161 CAPN12 CDH2 CLC DLL3 DYRK1B EHBP1 EID2 EID2B EMX2OS FAM98C FBL FBX027 FCGBP GLIS3 GMFG hsa-mir-1-2 hsa-mir-133a-1 KCNJ16 KCNJ2 KCNK18 KIAA1598 LEUTX LGALS13 LGALS14 LGALS7 LRFN1 NT5E PAF1 PAK4 PDZD8 PLEKHG2 RASGRP4 RP11-207F8.1 RP11-268I9.1 MAP4K1 MED29 MEIS1 MIB1 RP11-30P6.1 RP11-30P6.2 RP11-30P6.3 RP11-30P6.4 RP11-30P6.6 RP11-321N4.3 RP11-33E24.1 RP11-33E24.3 RP11-424A16.1 RP11-501J20.2 RP11 501J20.3 RP11-501J20.5 RP11-5G18.2 RP1-161C16.1 RP11-70J12.1 RP1-263J7.1 RP1263J7.2 RP1-3J17.3 RP3-455E7.1 RYR1 SAMD4B SARS2 SLC18A2 SNHG5 SNORA73 SNORA81 SNORD50 snoU13 SNX14 SPRED3 SUPT5H SYNCRIP TEK TIMM50 U4 U6 UNC13B VAX1 Y_RNA ZFP36

PANTHER analysis: 51 mapped ids are found, 104 mapped ids are not found.

233

5.8.7.7 CnLOH in Non Triple Negative DCIS Compared with CnLOH in Triple Negative DCIS

There is CnLOH found in TN DCIS (23/26) that are not observed in non TN DCIS (0/33).

- 1. p-values < 0.05;
- A gene list is mapped from 31 genomic regions found on chromosomes 6,10,19, 20;
- 3. These regions encompass 145 genes altered in TN DCIS;

Genes:

	Mar0)2	5S_rRNA	7SK	AC010323.1	AC114273.1	AL023583.1	AL024498.1	AL031123.1	AL031123.2	AL033539.1	
		AL033539.2	AL136305.1	AL136307.1	AL136307.2	AL139807.1	AL158198.1	AL158817.1	AL357054.1	AL357497.1	AL662797.1	
		ANGPTL4	ATP5GP1	BMP6	C6orf134	C6orf136	C6orf52	CAGE1	CAP2	CCDC90A	CD320	
		CD83	DHX16	DSP	DTD1	EDN1	EEF1A1P34	EEF1E1	ELOVL2	F13A1	FARS2	
		GCM2	GCNT2	GCNT6	HDGFL1	HIVEP1	KANK3	KIAA1949	KLF6	LASS4	LPCAT3	
		LY86	MAK	MRPS18B	MUTED	NDUFA7	NEDD9	NOL7	NRM	NRN1	OFCC1	
		PAK1IP1	PIP5K1P1	PPP1R10	PRL	PTMAP1	RAB11B	RANBP9	RBM24	RIOK1	RNF182	
		RP11-125M1	16.1	RP11-127P7	.2	RP11-146l2.	1	RP11-184A2	2	RP11-239H6	5.2	
		RP11-239H6	3.3	RP11-288G3	3.2	RP11-288G3	3.3	RP11-288G3	3.4	RP11-320C1	5.1	
		RP11-339A7	' .1	RP11-359N1	1.1	RP11-359N1	1.2	RP11-360O1	9.1	RP11-36001	9.4	
		RP11-360O19.5		RP11-379J5	.4	RP11-379J5	.5	RP11-405O1	0.2	RP11-456H1	8.1	
		RP11-456H1	18.2	RP11-464C1	9.2	RP11-464C1	9.3	RP11-556O1	5.1	RP11-63701	9.2	
		RP11-69L16	.4	RP11-69L16	.5	RP11-69L16	.6	RP11-716O2	23.1	RP11-71602	23.2	RP1-
	1820	16.1	RP1-182016	6.2	RP1-23O21.	1	RP1-273P12	.1	RP1-290I10.	2	RP1-290I10.	.3
		RP1-290I10.	4	RP1-290I10.	5	RP1-290I10.	6	RP1-290I10.	7	RP1-290I10.	8	RP1-
3	303A1	1.1	RP1-309H15	5.2	RP1-62D2.3	RP1-80N2.2	RP3-336K20	B.2	RP3-380B8.	1	RP3-380B8.	3
		RP3-380B8.4	4	RP3-380E11	.2	RP3-398D13	3.2	RP3-398D13	3.3	RP3-429O6.	1	RP3-
4	451B1	15.3	RP3-470L22	.1	RP3-486D24	.1	RP3-510L9.	RP4-76112.2	RP4-761I2.4	RP5-1068E1	3.3	
		RPL15P3	RPS28	RREB1	snoU13	SNRNP48	SSR1	SYCP2L	TFAP2A	TMEM14B	TMEM14C	
		TXNDC5	U1	U6atac	U7	Y_RNA						

PANTHER analysis: 51 mapped ids are found, 104 mapped ids are not found.

There is CnLOH found in non TN DCIS (29/33) that are not observed in TN DCIS (0/26).

- 1. p-values < 0.05;
- A gene list is mapped from 70 genomic regions on chromosomes 1, 2, 3, 7, 10, 19, 20;

3. These regions encompass 244 genes altered in non TN DCIS;

Genes:

5S_rRNA	AC005034.2	AC006039.1	AC007040.5	AC007099.1	AC007099.2	AC007878.1	AC010733.2	AC010733.4	AC010733.7	
	AC010744.1	AC010975.1	AC011245.1	AC011455.1	AC012494.1	AC012671.1	AC012671.2	AC016747.3	AC023881.1	
	AC062029.1	AC064872.1	AC073628.1	AC078841.5	AC083864.3	AC083864.4	AC084149.1	AC084149.2	AC092660.1	
	AC093616.1	AC096540.1	AC098581.1	AC104134.2	AC104135.2	AC104135.3	AC104135.4	AC104170.1	AC108479.1	
	AC108479.2	AC110491.1	AC117444.2	AC117444.3	ACOT11	ACPL2	ADARB2	AHSA2	AKIRIN1	
	AL031289.1	AL031985.1	AL110502.1	AL161740.1	AL592166.1	AL929472.1	AL929472.3	ARL6	ATP1B3P1	
	ATP6V1B1	BAZ1B	BEST4	BMP8B	BTBD19	C1orf122	C1orf168	C1orf175	C1orf228	
	C2orf51	C2orf74	C8A	C8B	CCDC163P	CITED4	CRYBG3	CST1	CST4	
	CSTP2	CTNNA2	CTPS	DAB1	DEM1	DYSF	EBNA1BP2	EDN2	EEPD1	
	EGFR	EIF2AK3	EIF2B3	EPHA10	EPHA6	EPS15	FABP1	FAM126A	FAM151A	
	FAM176A	FAM183A	FHL3	FOXI3	FOXJ3	FOXO6	GABRR3	GRIK3	GUCA2A	
	GUCA2B	HEYL	HIVEP3	HK2	HPCAL4	hsa-mir-30c-	1	hsa-mir-30e	INPP5B	
	KCNQ4	KIAA1841	KIF2C	KRCC1	LRRTM4	MANEAL	MINA	MMACHC	MRPS12	MT-
ATP8	MTF1	MYCL1	NDUFA4P2	NDUFS5	NFKBIB	NFYC	NT5C1A	OMA1	OR5AC1	
	OR5AC1P	OR5AC2	OR5AC4P	OR5H1	OR5H14	OR5H15	OR5H2	OR5H3P	OR5H4P	
	OR5H5P	OR5H6	OR5H7P	OR5H8P	OR5K3	OR5K4	OSBPL9	OXCT2	PABPC4	
	PAIP2B	PAPOLG	PEX13	PLK3	POLE4	POU5F1P7	PPAP2B	PPIE	PRKAA2	
	PTCH2	PUS10	RASA2	RGPD2	RIMS3	RINL	RNF220	RP11-109P1	4.1	
	RP11-109P1	4.10	RP11-109P1	4.2	RP11-109P1	4.8	RP11-109P1	4.9	RP11-124D9	9.1
	RP11-15J6.1	1 RP1-118J21	.24	RP1-118J21	.5	RP11-191G2	4.1	RP11-191G2	.4.2	
	RP11-213P1	3.1	RP11-215L1	7.1	RP11-223A3	.1	RP11-231L1	1.1	RP11-231L1	1.3
	RP11-240D1	10.2	RP11-240D1	0.4	RP11-253A2	0.1	RP11-269F1	9.2	RP11-269F1	9.4
	RP11-275F1	3.1	RP11-275F1	3.3	RP11-282K6	.3	RP11-316C1	0.1	RP11-319C2	21.1
	RP11-325B2	23.2	RP11-343D2		RP11-346M1	0.1	RP11-346M1	0.2	RP11-348A7	.1
	RP11-348A7	.2	RP11-377K2	2.2	RP11-377K2	2.3	RP11-378113	3.1	RP11-399E6	5.1
	RP11-399E6	6.2	RP11-399E6	.4	RP11-416L2	1.1	RP11-438D8	.2	RP11-438D8	8.3
	RP11-438D8	3.4	RP1-144F13	.3	RP1-144F13	.4	RP11-486B1	0.3	RP11-486B1	0.4
	RP11-4H14.	1	RP11-526K1	7.2	RP1-158P9.	I	RP11-656D1	0.3	RP11-656D1	0.5
	RP11-656D1	10.6	RP11-764l5.	1	RP11-781D1	1.1	RP11-789L4	.1	RP1-21K4.1	RP1-
63P18.2	RP4-564O4.	1	RP4-580G13	3.1	RP4-614N24	.1	RP4-635E8.	1	RP4-657D16	6.4
	RP4-657D16	6.5	RP4-678E16	.4	RP4-705F19	.1	RP4-705F19	.2	RP4-710M16	6.1
	RP4-710M16	6.2	RP4-739H11	.1	RP4-739H11	.3	RP4-783C10	0.3	RP5-1066H1	3.4
	RP5-1090E8	3.1	RP5-1103B4	.3	RP5-1180C1	8.1	RP5-860P4.2	2	RP5-866L20	.1
	RP5-866L20	.2	RP5-866L20	.3	RP5-88207.	1	RP5-88207.	3	RP5-88207.	4
	RP6-239D12	2.1	RPIA	RPL38	RPS8	SARS2	SCMH1	SF3A3	SIRT2	
	SLC25A36	SLFNL1	SMYD1	SNORA26	SNORA63	SNORD112	SNORD38	SNORD46	snosnR61	
	snoU109	snoU13	SPSB4	SSBP3	TACR1	TCTEX1D4	TESK2	THNSL2	TMEM53	
	TMEM90B	TRIT1	TTC39A	U2	U5	U6	U7	USP34	UTP11L	
	VAX2	WDR65	Y_RNA	YRDC	ZBTB38	ZNF638	ZNF642	ZNF643	ZNF684	
	ZPLD1									

PANTHER analysis: 118 mapped ids are found, 170 mapped ids are not found.

5.8.8 Copy Number Aberrations for Pure Triple Negative DCIS Compared to Triple Negative DCIS Associated with Invasive Breast Disease

These series examines the differences between pure triple negative DCIS and triple negative DCIS associated with invasive breast disease, i.e. the DCIS component not the invasive breast disease.

Frequency plots showing copy number aberrations between Pure TN DCIS and TN DCIS associated with invasive breast disease were provided by Breakthrough Breast Cancer/Research Oncology, King's College London Bioinformatics Department (Figure 41).

Figure 41: frequency plots showing copy number aberrations between pure triple negative dcis and triple negative DCIS associated with invasive breast disease (amplifications, duplications, gains, Sc gains, losses, total losses CdLOH and CnLOH,) (pages 236-238).

5.8.8.1 Amplification of Pure Triple Negative DCIS and Triple Negative DCIS Associated with Invasive Breast Disease

No amplifications in TN pure DCIS or TN DCIS associated with invasive breast disease were found in this series.

5.8.8.2 Duplication of TN pure DCIS and TN DCIS Associated with Invasive Breast Disease

No Duplications in TN pure DCIS or TN DCIS associated with invasive breast disease found in this series.

5.8.8.3 Genomic Gains of TN pure DCIS and TN DCIS Associated with Invasive breast disease

There is considerable overlap between the genomic gains seen in TN pure DCIS (n=5/9) and TN DCIS associated with invasive breast disease (n=10/10).

- 1. p-values < 0.05;
- A gene list is mapped from 13 genomic regions found on chromosomes 1, 8, 22;

 These regions encompass 67 genes altered in TN pure DCIS and TN DCIS associated with invasive breast disease;

Genes:

5S_rRNA	7SK	AC108925.1	ACTN2	AL513363.1	AP000351.1	AP000351.1	0	AP000351.2	AP000351.6
	AP000351.7	AP000351.8	AP000351.9	CFLP4	CHML	CHRM3	CSMD3	EDARADD	ENO1P1
	EXO1	FH	GSTT1	GSTTP1	GSTTP2	HEATR1	hsa-mir-120	4KMO	KRT18P32
	LGALS8	MAP1LC3C	MTR	NCRNA0021	0	OPN3	PLD5	PVT1	RP11-149J18.1
	RP11-152L7	.1	RP11-152L7	.2	RP11-177F1	5.1	RP11-182B2	22.2	RP11-307O1.1
	RP11-323D1	18.1	RP11-323D1	8.4	RP11-323D	18.5	RP11-362H1	12.1	RP11-371I1.2
	RP11-385F5	5.2	RP11-385F5	.4	RP11-397A1	15.4	RP11-400N1	13.1	RP11-439E19.3
	RP11-439E1	9.5	RP11-439E1	9.6	RP11-439E1	19.8	RP11-463J7	.2	RP11-488L18.1
	RP11-488L1	8.8	RP11-544D2	21.1	RP11-553N	16.1	RP11-561I1	1.2	RP11-561I11.3
	SCCPDH	SNORD112	SPATA17	U6	VN1R17P	VN1R5	WDR64		

PANTHER analysis: 18 mapped ids are found, 49 mapped ids are not found.

There were gains present in TN DCIS associated with invasive breast disease (n=7/7) not observed in pure DCIS (n=0/9).

- 1. p-values < 0.05;
- A gene list is mapped from 13 genomic regions found on chromosomes 1, 2, 6, 9;
- These regions encompass 69 genes altered in TN DCIS associated with invasive breast disease;

Genes:

AC002485.1	AC096583.1	AC139712.2	AL158147.1	AL161450.1	AL161450.10	0 AL161450.1	1	AL161450.4	13AL16145	0.16
AL161450.2	AL161450.3	AL161450.4	AL161450.8	AL161450.9	C9orf146	C9orf46	C9orf66	CBWD1	CD274	DMRTA2
DOCK8	ELAVL4	FAF1	FAM138C	FOXD4	hsa-mir-101-	2	hsa-mir-1302	2-2	JAK2	
LAMA2	NFIB	PDCD1LG2	PTPRD RCL	1 RLN1	RP11-125K1	0.2	RP11-125K1	0.4	RP11-12	5K10.5
RP11-12D24	4.6 RP11-12D	24.7	RP11-143M1	.2	RP11-143M	1.3	RP11-143M1	.4	RP11	-143M1.7
RP11-183G	22.1	RP11-183G2	2.2	RP11-183G2	2.3	RP11-25010).1	RP11-280C)24.1	
RP11-284P2	20.2	RP11-284P2	0.3	RP11-284P2	0.4	RP11-32F11	.2	RP11-39K2	4.11	
RP11-39K24	4.14	RP11-39K24	.2 RP11-39K2	24.4	RP11-39K24	.5	RP11-39K24	.9	RP11-49	212.1
RP11-560D2	2.2	RP11-567C2	.0.2	RP11-567C2	0.3	RP11-572H4	l.1	RP11-5906	3.3	U6
XXyac-YRM	2039.1	XXyac-YRM2	2039.2	XXyac-YRM2	2039.3 ZCCH	C11				

PANTHER analysis: 16 mapped ids are found, 53 mapped ids are not found.

5.8.8.4 Genomic Sc Gains of TN pure DCIS and TN DCIS Associated with Invasive

Breast Disease

There are no significant Sc gains found in pure DCIS in this series. There are Sc gain found in TN DCIS associated with invasive breast disease (n=7/10) that mapped ids in TN pure DCIS (n=0/9).

- 1. p-values< 0.05;
- 2. A gene list is mapped from 49 genomic regions found on chromosomes 1, 5,6, 8, 9, 20;
- These regions encompass 350 genes altered in TN DCIS associated with invasive breast disease;

5S_rRNA	7SK	AC008949.1	AC010455.1	AC010491.1	AC010627.1	AC012640.3	AC016553.1	AC016575.1	AC024589.2	
	AC025181.1	AC025472.1	AC025647.3	AC034229.1	AC091878.1	AC099784.2	AC106774.1	AC108925.1	AC112200.1	
AC114981.1	AC138409.1	AC138409.2	AC138951.3	AC139783.1	ADAMTS12	AGBL4	AL034429.1	AL035467.1	AL133230.2	
	AL136164.1	AL136310.1	AL354933.1 A	AL357519.1	AL390776.1	AL592166.1	AL596225.1	AL645730.1	AL645730.2	
AMACR	ANKH	ANKRD33B	ANKRD46	BASP1	BEST4	BTBD19	C1orf123 C1	orf163	C1orf185	
	C1orf228	C1QTNF3	C5orf17	C5orf22 C5o	rf23 C6orf155	CC2D1B	CCT5	CDH12	CDH18	
	CDH6	CDH9	CDKN2C CF	LP2	CMBL	COX6CP2	CPT2	CTB-40H15.	1	
	CTB-40H15.	2	CTB-40H15.	3	CTB-55B8.1	CTC-305H11	1.1	CTC-461F20).1	
	CTD-2001E2	2.1	CTD-2001E2	2.2 CTD-200	4A9.1	CTD-2008E3	3.1	CTD-201012	2.1	
	CTD-2010122	2.2 CTD-2011	G10.1	CTD-2011G1	17.1	CTD-2017D1	15.1	CTD-2023M	8.1	
	CTD-2057J6	.1	CTD-2057J6	.2	CTD-2061E9	9.1	CTD-2066L2	1.1	CTD-2066L2	21.2
CTD-2066L2	1.3	CTD-2134P3	3.1	CTD-2138O1	14.1	CTD-2139B1	5.1 CTD-213	9B15.2	CTD-2139B1	15.4
	CTD-2139B1	5.5	CTD-2143L2	4.1	CTD-2151L9	.1	CTD-2151L9	0.2	CTD-2154B1	17.1
	CTD-2165H1	16.1	CTD-2165H1	16.2	CTD-2165H1	16.3	CTD-2194F1	2.1	CTD-219704	4.1
	CTD-219904	4.1	CTD-2201E9	9.1	CTD-2201E9	0.2	CTD-2201E	9.3	CTD-2201E9	9.4
	CTD-2203K1	7.1	CTD-2206G1	10.1	CTD-2206G1	10.2	CTD-2215L1	0.1	CTD-2218G	20.1
	CTD-2218G2	20.2	CTD-2233C1	1.2	CTD-2233C1	1.3	CTD-2256P1	15.1	CTD-2269E2	23.1
	CTD-2269E2	23.2	CTD-2290C2	23.1	CTD-2290C2	23.2	CTD-2290C2	23.3	CTD-2290P7	7.1
	CTD-2313D3	3.1	CTD-2351A8	3.1	CTD-2533K2	21.1	CTD-2533K2	21.2	CTD-2533K2	21.3
	CTD-2533K2	21.4	CTD-3007L5	.1	CTD-3065A1	3.1	CTNND2 DA	P	DMRTA2	
	DMRTB1	ECHDC2	EIF2B3	ELAVL4	ERI3 FAF1 F	AM105A	FAM105B	FAM134B	FAM159A	
	FAM173B	FBXL7	FBXO43 FTH	HL10	GPX7	GRHL2	GUCA2A	GUCA2B	HIVEP3	hsa-
mir-30a	hsa-mir-30c-	2	hsa-mir-579	KB-1615E4.1	KIF2C	LAMA2	LRP8	MAGOH Mar	11	Mar6
	MTMR12	MYCL1	MYO10	NCALD	NPR3	OGFRL1 OR	C1L	PDZD2	PLK3	
	PMCHL1	PRDM9	PRPF38A	PTCH2 PTPI	N1	REV3L	RGS22	RIMS1	RNASEN	
	RNF19A	RNF220	ROPN1L RP	11-1023L17.1	RP11-1023L	17.2	RP11-1084J	3.1	RP11-1084J	3.2
RP11-1084J	3.3	RP11-113l22	2.1	RP11-117D2	2.1	RP11-117D2	2.2	RP11-124N3	3.1	
	RP11-124N3	.2	RP11-124N3	.3	RP11-125011	15.1	RP11-12501	15.2	RP11-1325J	9.1
	RP11-154D6	5.1	RP11-15501	8.3	RP11-159C2	1.3	RP11-159C2	21.4	RP11-183G2	22.1

	RP11-183G2	22.2	RP11-183G2	22.3	RP1-118J21	.5	RP11-19708	1.1	RP11-19O2	.1
	RP11-1902.	2	RP11-19O2.	4	RP11-1C1.1	RP11-1C1.3	RP11-1C1.4	RP11-1C1.5	RP11-1C1.6	6
RP11-1C1.7	RP11-215G1	15.2	RP11-215G1	5.3	RP11-215G1	5.4	RP11-25010).1	RP11-260E	18.1
	RP11-263F1	5.1	RP11-269F1	9.2	RP11-269F1	9.4	RP11-275B7	.1	RP11-291J9	ə.1
	RP11-291J9	.2	RP11-308B1	6.1 RP11-308	B16.2	RP11-319C2	1.1	RP11-321E2	.10	
	RP11-321E2		RP11-321E2	.12	RP11-321E2	.13	RP11-321E2	.2	RP11-321E	2.3
	RP11-321E2	2.4	RP11-321E2	.5	RP11-321E2	.6	RP11-321E2	.7	RP11-321E	2.8
	RP11-321E2	2.9	RP11-32F11	.2	RP11-36C20	.1	RP1-137K24	.1	RP11-419	9C19.1
	RP11-419C1	9.2	RP11-419C1	9.3	RP11-42L13	.1	RP11-42L13	.2	RP11-432M	8.1
	RP11-432M8	3.10	RP11-432M8	3.11	RP11-432M8	3.12	RP11-432M8	8.13	RP11-432M	8.14
	RP11-432M8	3.15	RP11-432M8	3.16	RP11-432M8	3.17	RP11-432M8	8.18	RP11-432M	8.19
	RP11-432M8	3.2	RP11-432M8	3.3	RP11-432M8	3.4	RP11-432M8	8.5	RP11-432M	8.6
	RP11-432M8	3.7	RP11-432M8	3.8	RP11-432M8	8.9	RP11-447B1	8.1	RP11-454P2	21.1
	RP11-463J7	.1	RP11-463J7	.2	RP11-463J7	.3	RP11-46C20	.1	RP11-478A	7.1
	RP11-492l2.	1	RP11-54F2.	IRP11-560A7	.1 RP11-560E	02.2	RP11-567C2	0.2	RP11-567C	20.3
	RP11-572H4	l.1	RP11-572H4	.2	RP11-5N11.	1	RP11-5N11.	2	RP11-5N11	.3
	RP11-5N11.4	4	RP11-5N11.	5 RP11-5N11	.6	RP11-5N11.	7	RP1-167G20).1	RP1-
167G20.2	RP11-81B23	.1 RP11-823	P9.1	RP11-823P9	.3	RP11-93G23	.1	RP11-93N19	0.1 RP11-93	3N19.2
	RP11-93N19	0.3	RP1-21K4.1	RP1-251I12.	1	RP1-288M22	2.1 RP1-288N	22.2	RP3-331H2	4.4
	RP3-415N12	2.1	RP3-487J7.2	RP4-631H13	.2 RP4-784A	16.1	RP4-784A16	.2	RP4-784A1	6.3
	RP4-784A16	6.4 RP4-784A	16.5	RP4-795A5.	1	RP4-796B4.	I	RP5-1024G6	6.2	RP5-
1024G6.5 R	P5-850O15.3	RP5-88207.	1	RP5-926E3.	1	RPS8	RXFP3	SEMA5A	SLC45A2	
SNORA18	SNORA40	SNORD123	SNORD38	SNORD46	snosnR61 sn	ioU13 SPAG1	SUB1	TARS	TAS2R1	
	TCTEX1D4	TMEM53	TRIO	TRIT1	U2 U4	U5	U6	U8	Y_RNA	
	ZCCHC11	ZFR	ZNF622	ZNF859P ZY	′G11A	ZYG11B				

PANTHER analysis: 84 mapped ids are found, 266 mapped ids are not found.

5.8.8.5 Losses in TN pure DCIS and TN DCIS Associated with Invasive Breast

Disease

There are genomic losses in TN pure DCIS (n=4/9) which were not observed in TN DCIS associated with invasive breast disease (n=0/10).

- 1. p-values < 0.05;
- A gene list is mapped from 7 genomic regions found on chromosomes 7, 16, 17, 19;
- 3. These regions encompass 29 genes altered in TN pure DCIS;

AC006013.1	AC006480.2	AC008734.1	AC067941.1 AC09	9758.1	AC131384.1	CALN1	KRT14	KRT16	KRT17	
	KRT42P	PMS2L4	RP11-166O4.1		RP11-166O4	.4	RP11-166O4	.5	RP11-166O4.6	
	RP11-358M3	3.1	RP11-421N10.1		RP4-63505.	1	RP4-736H5.	1	RP4-736H5.2	
	RP4-736H5.3	3	RP5-945F2.1 RP5-	945F2.2	2	RP5-945F2.3	STAG3L4	TYW1	WBSCR17	
	Y_RNA									

PANTHER analysis: 6 mapped ids are found, 23 mapped ids are not found.

There are some similarities in genomic losses in TN DCIS associated with invasive breast disease (n=7/10) compared to TN pure DCIS (n=1/9).

- 1. p-values < 0.05;
- 2. A gene list is mapped from 19 genomic regions found on chromosomes 3, 4,

5, 13, 14;

 These regions encompass 49 genes altered in TN DCIS associated with invasive breast disease;

Genes:

AC006427.1	AC006427.2	AC006427.3	AC093848.1	AC106868.1	AC107394.1	AC109351.1	AC110766.1	AL590102.1	AL596329.1	1
	CCKAR	CTC-507E12	.1 FHIT GPH	B5 GPHN	KCNH5	KCNIP4	LDB2	MAGI1	PACRGL	
	PCDH7 PPP	2R5E	RHOJ	RP11-120A1	.1	RP11-141E1	3.1	RP11-174E2	2.1	RP11-
174E22.2	RP11-293A2	1.1	RP11-293A2	1.2	RP11-308K2	.1	RP11-315A1	7.1	RP11-390C	;19.1
	RP11-415C1	5.1	RP11-417M1	7.1	RP11-429G1	7.1	RP11-495L1	8.2	RP11-543A	.18.1
	RP11-617I14	1.1	RP11-619J2	D.1	RP11-93M12	2.1	SCARNA20	SLIT2	SNORD74	
	snoU13 STIM	//2 SYNE2	TAPT1	TBC1D19	U6					

PANTHER analysis: 16 mapped ids are found, 33 mapped ids are not found.

5.8.8.6 TN DCIS Associated with Invasive breast disease

There were total losses present in TN pure DCIS (n=8/9) which were not observed in

TN DCIS associated with invasive breast disease (n=0/10).

- 1. p-value<0.05;
- 2. A gene list is mapped from 25 genomic regions found on chromosomes 6, 8,

11, 13, 14, 16, 17, 19, 22;

3. These regions encompass 72 genes altered in TN pure DCIS;

AARSD1		ABCC12	ABCC4	AC004019.1	0	AC004019.1	7	AC004659.1	AC005513.1	AC008734	.1
AC	2008734.2	AC087650.1	AC087650.8	AC090427.1	AC100793.2	ADAM5P	AL136359.1	AL137001.1	AOC2	AOC3	
AR	RL4D	BRCA1 CAC	NA1A	CCDC105	CECR2	CTD-3199J2	3.2	DNAH9	EMR2 EMR3	FBXO33	
G6	6PC	GPC5	hsa-mir-2117	7 IFI35	MBD3L1	MUC16 OLF	M4 OR4C3	OR4C45	OR4C5	OR4S1	
OF	R4X1	OR4X2 OR7	A10 OR7A11	P	OR7A17	OR7A2P	OR7A5	OR7C1	OR7C2	PARK2	PSME3
RN	ND2	RP11-24H2.	1	RP11-24H2.	2	RP11-301J1	6.2	RP11-301J1	6.3	RP11-3	01J16.5
					245						

RP11-301	J16.7	RP11-442.	117.4	RPL27	RTN1	RUNDC1 SLC1A6	SNORA40	U2	U6
VAT1	Y_RNA	ZNF333	ZNF558						

PANTHER analysis: 40 mapped ids are found, 29 mapped ids are not found.

There were total losses present in TN DCIS associated with invasive breast disease (n=8/10) which were not observed in TN pure DCIS (n=0/9).

- 1. p-values < 0.05;
- A gene list is mapped from 32 genomic regions found on chromosomes 3, 4,
 5, 8, 9, 13, 14, 15, 17, 18;
- These regions encompass 56 genes altered in TN DCIS associated with invasive breast disease;

Genes:

7SK	AC021860.1	AC022559.1	AC023385.1	AC034111.1	AC084882.1	AC091133.1	AC096750.1	AC103702.1	AC114477.1	
	AC139426.1	AC139426.3	AC139426.4	ACTR10	AL079307.3	AL079307.4	AL079307.5	AL121579.1	AL132989.2	
AL138995.1	AL139021.2	AL163952.2	ARAP2	ARID4A	ASPN B4GA	LNT2 C14orf	166	C14orf181	CENPP	
	CSMD1	CTD-2015H6	5.1	CTD-2015H6	5.2	CTD-2015H6	5.3	CTD-2244F1	1.2	
	CTD-2325P2	2.2	DTHD1 ECM	12	FAM151B	FAM7A1	FMN1	FRMD6	GIP	
	GNG2	GREM1 HM	GB1L14	HOXB7	HOXB9	IGF2BP1	KIAA0586	KLB	KLF3 KLHL	5 LIAS
	MITF	MSRA	MTUS1	OMD	PDCD6IP	PDS5B	PELI2 PRSS	55	PSMA3	
	RAD51L1	RFC1	RP11-1000B	6.2	RP11-212F1	1.1 RP11-213	3G21.1	RP11-213G2	21.2	
	RP11-22A3.2	2	RP11-360F5	.1	RP11-360F5	.2 RP11-360F	5.3	RP11-380B4	.2	
	RP11-431M7	7.2	RP11-431M7	7.3	RP11-501C1	4.5	RP11-501C1	4.6	RP11-501C	14.7
	RP11-617D2	20.1	RP11-708H2	:1.1	RP11-83C7.	1	RP11-83C7.	2	RP13-395E	19.1
	RP1L1	RPL9	SCG5 SNF8	SNORA18	snoU13	SPRED1	TIMM9	TMEM156	TOMM20L	U1
U3	U6	U8	UBE2Z	WDR19	Y_RNA	ZFP36L1	ZFYVE16			

5.8.8.7 CdLOH of TN pure DCIS and TN DCIS Associated with Invasive breast disease

There is CdLOH present in TN pure DCIS (n=4/9) which were not observed in TN DCIS associated with invasive breast disease (n=0/10)

- 1. p-values < 0.05;
- A gene list is mapped from 4 genomic regions found on chromosomes 7, 16, 17;

3. These regions encompass 12 genes altered in TN pure DCIS;

Genes:

AC006013.1 AC131384.1 CALN1 KRT14 KRT16 KRT17 KRT42P RP11-358M3.1 RP4-63505.1 RP5-945F2.1 RP5-945F2.2 RP5-945F2.3

PANTHER analysis: 4 mapped ids are found, 8 mapped ids are not found.

There is CdLOH present in TN DCIS associated with invasive disease (n=7/10) not observed in TN pure DCIS (n=0/9).

- 1. p-values < 0.05;
- A gene list is mapped from 37 genomic regions found on chromosomes 3, 4,
 5, 8, 13, 14, 15, 17;
- These regions encompass 96 genes altered in TN DCIS associated with invasive breast disease;

Genes:

7SK	AC006160.1	AC006160.2	AC006160.4	AC006160.5	AC006445.6	AC006445.7	AC007126.1	AC015688.1	AC02069	8.1
	AC093848.1	AC098830.1	AC106868.1	AC107394.1	AC110766.1	AC111152.1	ADH1A	ADH1B	ADH1C	
AL110292.1	BOD1L	C14orf53	C4orf47	C5orf13	CCDC110 C	DCA2 CLRN2	CTC-459M5.	.1	CTC-459	M5.2
	CTD-2022H?	16.1	CTD-2192A1	.1 EPB41L4A	FAM184B	FAM189A1	FAM19A4	GBA3	GPM6A	
	GPR125 KC	NH5	KCNIP4	KSR1	LAP3	LDB2	LGALS9	MED28	MTNR1A	
NCRNA002	19	PCDH7	PDLIM3	PPARGC1A	PTPRG	QDPR	RP11-103J1	7.1	RP11-10	G12.1
	RP11-10G12	2.2	RP11-120A1	.1	RP11-141E1	3.1	RP11-17E2.2	2	RP11-19	6P2.1
	RP11-215A1	9.1	RP11-24D11	.1 RP11-279	D 9.4	RP11-301L8	.2	RP11-315A1	7.1	
	RP11-333E5	5.1	RP11-333E5	.2	RP11-341G	5.1	RP11-380P1	3.1	RP11-38	0P13.2
	RP11-495L1	8.2	RP11-540E1	6.2	RP11-556G2	2.1	RP11-556G2	22.2	RP11-55	6G22.3
	RP11-576E2	20.1	RP11-598O1	2.1	RP11-598O1	2.2	RP11-617I14	4.1	RP11-61	9J20.1
	RP11-626E1	3.1	RP11-665I14	4.1	RP11-696N1	4.1	RP11-722M1	1.1	RP11-80	6K15.1
	RP11-93M12	2.1	RP13-497K6	.1	RPL10AP6	SNORA13	SNORA51	SNORA75	snoU13	SORBS2
TJP1	U6	WDR17	Y_RNA							

PANTHER analysis: 28 mapped ids are found, 68 mapped ids are not found.

5.8.8.8 CnLOH of TN pure DCIS and TN DCIS Associated with Invasive Breast Disease

There is CnLOH present in TN pure DCIS (n=9/9) which were not observed in TN DCIS associated with invasive breast disease (n=0/10).

- 1. p-values < 0.05;
- 2. A gene list is mapped from 74 genomic regions found on chromosomes 1, 2,

3, 6, 7, 10, 11, 19;

3. These regions encompass 574 genes altered in TN pure DCIS;

5S_rRNA	7SK	AC002066.1	AC005487.2	AC005779.1	AC010087.1	AC010087.4	AC010087.5	AC011489.2	AC011489	9.3
	AC013251.1	AC013251.2	AC017083.1	AC017083.2	AC017083.3	AC022210.2	AC023165.1	AC067950.1	AC073130).3
AC073210.1	AC079112.1	AC084193.1	AC092958.1	AC099680.1	AC104073.1	AC105342.1	AC108697.1	AC117508.1	ACTG2	
	ADAM22	ADCY5 AGT	R1 AKR1A1	AL008729.1	AL023583.1	AL023807.1	AL023807.2	AL024498.1	ALC	31785.1
	AL031905.1	AL034372.1	AL035464.1	AL035555.2	AL035670.1	AL049710.1	AL049710.2	AL049710.4	AL050335	.1
	AL050335.2	AL079341.1	AL109918.1	AL117340.2	AL117340.3	AL121946.1	AL135912.1	AL136230.1	AL1	36305.1
	AL137003.1	AL138724.3	AL157773.1	AL162579.1	AL354680.1	AL357079.1	AL357079.2	AL357497.1	AL359316	i.1
	AL391839.1	AL391839.3	AL445669.2	AL590068.1	AL603888.1	AL604028.1	AL604028.2	ALG1L	APC	03774.4
	AP003774.5	AP003774.6	AP003774.7	APBB1IP	APLNR ART	N ATP5LP5	ATP6V0B	ATXN1	B4GALT2	
	BCL7B	BLOC1S3	BMP5	BPESC1 BR	AF	BTBD9	BTF3L4	C10orf68	C1D	
	C1orf210	C1orf50	C2orf89 C3o	rf16	C3orf72	C6orf114	C6orf142	C6orf52	C6orf64	CAP2
CAV2	CCDC14	CCDC17	CCDC23	CCDC24	CCDC30	CCDC88B C	CDC90A	CCT6P3	CD2AP	
	CD83	CEP70	CLDN19	CNRIP1 COL	_21A1	COL9A2	COMMD2	CTB-54D4.1	CYP26B1	
	CYP39A1 DA	AAM2 DEFB1	10	DEFB112	DEFB113	DEFB114	DEFB133	DEK	DNAH6	DNAH8
	DNAJB9	DNAJC30	DPH2	EBNA1BP2	EDN1	EEF1A1P25	EFHC1	ELOVL2	EPC1	
	ERMAP	ERV3	ESYT3	EXOC3L2	FAIM FAM8A	1	FOXL2	GAPDHP39	GCLC	
	GCM2	GCNT2	GCNT6	GEMIN7 GF	OD1	GFRAL	GJA9	GLO1	GLP1R	
	GMPR	GPBP1L1	GPR110 GP	R111	GPR115	GPR116	GSTA1	GSTA2	GSTA3	GSTA5
GSTA6P	HCRTR2	HIVEP1	HMGCLL1	hsa-mir-1237	hsa-mir-133t	hsa-mir-206	hsa-mir-548a	a-1	hsa-mir-76	61
	IL17A	IL17F	INTS4L1	IPO13	IPP IQCJ	ITGB1	JAK1	KCNK16	KCNK17	
	KCNK5	KDM1B	KDM4A KIF1	3A	KIF6	KLHL31	KTI12	LEPRE1	LRFN2	
	LRRC1	LRRC55 LRI	RC68	LTBP4	LYZL2	MAK	MAST2	МСМЗ	MEP1A	
	MLXIPL MM	E MRAS	MRPS22	MYCBP	MYLIP	MYLK	NASP	NEDD9	NKPD1	NOL7
NRCAM	NRD1	NRP1	NUP153	OFCC1	OSBPL9	P2RY1 PAB	PC1P10	PAK1IP1	PAQR8	
	PDIA5	PFN2	PHACTR1	PIK3CB PIK3	3R3 PKHD1	PLA2G7	PNO1	PNPLA8	PPCS	
	PPIH	PPP3R1	PRIM2 PRR2	23A	PRR23B	PRR23C	PTPLB	PTPRF	RAB3B	
	RAB7A RAN	BP9	RARRES1	RAVER2	RBM24	RCAN2	RELB	RHBDL2		RIMKLA
	RNF13	RNF144B	RNF182	RP11-10022	2.2	RP11-117F2	2.1 RP11-121	P10.1	RP11-125	M16.1
	RP11-127P7	.2	RP11-135A2	4.2 RP11-135	5A24.4	RP11-146l2.	1	RP11-146l2.	2	
	RP11-14C22	2.5	RP11-14H3.	3	RP11-157D1	8.2	RP11-163G1	0.2	RP11-163	G10.3
	RP11-163G1	10.4	RP11-166N1	7.1	RP11-166N1	7.3	RP11-167H9	0.3	RP11-167	H9.4
	RP11-184I16	6.2	RP11-184I16	6.3	RP11-184I16	6.4	RP11-192K2	3	RP11-192	P3.1
	RP11-192P3	.3	RP11-202D2	0.1	RP11-203H2	2.1	RP11-203H2	.2	RP11-204	E9.1
	RP11-221E2	.0.3	RP11-221E2	0.4	RP11-221E2	0.5	RP11-22806	6.2	RP11-232	M24.1
	RP11-253D1	9.1	RP11-253D1	9.2	RP11-255N4	.2	RP11-255N4	.3	RP11-268	F1.2
	RP11-268F1	.3 RP11-282	K6.3	RP11-306L1	4.1	RP11-322N2	1.2	RP11-323I14	↓A.1	RP11-
328P23.2	RP11-330A1	6.1	RP11-330O1	1.2	RP11-342D1	1.3 RP11-342	2M1.2	RP11-342M1	1.3	
	RP11-342M1	1.4	RP11-345L2	3.1	RP11-354I10	0.1	RP11-359N1	1.1	RP11-359	N11.2
	RP11-360O1	19.1	RP11-360O1	9.4	RP11-360O1	9.5	RP11-379B1	8.4	RP11-379	B18.5
	RP1-137F1.3	3RP11-385F7	.2	RP11-38P22	.2	RP11-392A2	3.4	RP11-392A2	3.5	RP11-

397G17.1	RP1-13D10.2		RP1-13D10.3		RP1-13D10.4		RP1-13D10.5		RP11-401E14.1		
	RP11-401E14.2		RP11-411K7.1		RP11-411K7.2		RP11-411K7.4		RP11-411K7.5		
	RP11-418B12.1		RP11-420A21.1		RP1-142O9.2		RP11-430C17.1		RP11-446F17.3		
	RP11-451G4.2		RP11-451G4.3		RP11-460H18.1		RP11-460H18.2		RP11-460N20.3		
	RP11-460N20.4		RP11-460N20.5		RP11-462L8.1		RP11-462L8.2		RP11-466L17.1		
RP11-470H9.1 RP11-472N		13.2 RP11-479G		22.3	RP11-479G	22.5 RP11-479G		22.6			
	RP11-479G22.7		RP11-501I19.3		RP11-501I19.4		RP11-501O2.1		RP11-501O2.2		
	RP11-501O2.3		RP11-50102.4		RP11-501O2.5		RP11-505J9.1		RP1-151F17.1		
	RP11-529G21.4		RP1-152L7.1RP1-152L7.		3RP1-152L7.5RP1-152L7.		6RP11-548O1.1		RP11-548O1.3		
RP11-550C4.6 RP11-590C		23.1 RP11-598F1		7.1 RP11-63015		.1 RP11-6351		10.1 RP11-637O19.2			
	RP11-639B1.1		RP11-63E1	3E16.1 RP1		RP11-649A16.1 RP11-649A16		RP11-651P23.2			
	RP11-651P23.3		RP11-651P23.4		RP11-651P23.5		RP11-651P23.6		RP11-666A20.1		
	RP11-666A20.3		RP11-666A20.4		RP11-689D3.4		RP11-71N10.1		RP11-722C17.1		
	RP11-72304.2		RP11-735A5.1		RP11-746P2.5		RP11-767N6.2		RP11-767N6.7		
	RP11-771D21.2		RP11-788A4.1		RP11-788A4.2		RP11-793K1.1		RP11-795J1.1		
	RP11-795J1.2		RP11-797H7.1		RP11-797H7.2 RP11-797		'H7.3 RP11-797H		7.5		
	RP11-79N2	3.1	RP11-7011.3		RP1-180E22.3 RP11-812		120.2	RP11-90C4.1			
	RP11-90C4.2		RP11-90C4.3		RP11-90C4.4		RP1-190J20.2		RP11-91A18.1		
	RP11-91A18.4		RP11-91A18.5		RP11-9N20.1		RP1-202l21	.3	RP1-202l21.5		
	RP1-207H1.2		RP1-207H1.3		RP1-217P22.2 RP1-228H		13.1 RP1-228H1		3.2 RP1-		
257A7.4	RP1-273P12.1		RP1-273P12.3 RP1-27K1		2.2 RP1-27K12.		.4 RP1-290110).4 RP1-		
290110.5	RP1-290I10.7		RP1-295F6.2 RP1-304B1		4.3 RP1-319M7		.2 RP13-469C		16.1		
	RP13-476E20.1		RP1-62D2.3 RP1-71H19.		2 RP3-322I12		.2 RP3-322L4		.2RP3-335N17.2		
	RP3-347E1.2 RP3-365O1		2.2 RP3-380E1		I.2 RP3-437C1		5.1 RP3-445N2		.1 RP3-		
44819.1	RP3-448I9.2 RP3-451B1		5.3	.3 RP3-462C17		7.1 RP3-486B10.1		024.1	RP3-503A6	P3-503A6.2	
	RP3-510L9.1RP4-533D7		.3 RP4-533D7.		.4	RP4-533D7.		RP4-633H1	7.2	RP4-	
657D16.3	RP4-724P12.1 RP5-864K19.4		RP4-753D5.3 RP5-994D16.3		RP4-753D5.4 RP5-994D16.7		RP4-76112.2	RP4-761l2.2 RP4-761l2.4 RP5-994D16.9		RP5-1043E3.1	
							RP5-994D1			RPN1	
	RPS15AP10	RPS15AP1	6 RPS17P5	RPS6KA4	RRAGC	SEC22A SF	RS16	SHKBP1	SHMT1P1		
	SIRT5 SLC25A20F		1 SLC25A27		SLC35B3 SLC6A9		SMAP2	SNORA15	SNORA22		
	SNORA24	SNORA5 SI	NORA8	SNORD45	SNORD66	snoU13	SOX4	SPTBN4	ST3GAL3	STX1A	
	SUCLA2P2	SYCP2L	TBC1D7	TBL2	TDRD6	TFAP2B TF	AP2D TFEC	THAP5	TMEM125		
	TMEM14A TMEM14B		TMEM14C	TMEM69 TM	ASB10 TNFR	SF21	TPMT	TRAM2	TRAPPC6A		
	TSPAN1	TXNDC12	U1	U3 U6	U7	USP34	VPS37D	WBSCR22	WDR92		
	WWTR1	Y_RNA YB	K1	ZEB1	ZFAND3	ZIC1	ZIC4	ZMYND12	ZNF117		
	ZNF138 ZN	F273 ZNF296	5 ZNF438	ZNF643	ZNF691						

PANTHER analysis: 126 mapped ids are found, 331 mapped ids are not found.

There is some overlap in CnLOH in TN DCIS associated with invasive breast cancer (n=10/10) and CnLOH in TN pure DCIS (n=5/9).

This represents CnLOH for TN DCIS associated with invasive breast disease.

1. p-values < 0.05;

2. A gene list is mapped from 49 genomic regions found on chromosomes 1, 2,

3, 7, 10, 12, 17, 19, 20, 21, X;

3. These regions encompass 309 genes altered in TN DCIS associated with invasive breast disease;

Genes:

5S_rRNA	AC004455.1	AC004691.5	AC005189.6	AC005537.2	AC005879.1	AC006466.5	AC006960.7	AC006978.1	AC010789.1	
	AC015923.1	AC016706.1	AC063927.2	AC063927.3	AC063927.4	AC063927.5	AC063927.6	AC063927.7	AC063927.8	}
	AC063927.9	AC063944.1	AC068765.1	AC073585.1	AC087069.2	AC113554.1	AC114788.1	AC114788.2	AC138128.1	
	ACADSB	ACE	ACE2	ADCYAP1R1	ADRB1	AF015262.1	AF015262.2	AF015720.3	AF015726.1	
	AF020802.1	AF020802.2	AF020802.3	AF020802.4	AL133215.1	AL133387.2	AL135794.1	AL157788.1	AL158014.1	
	AL162407.1	AL353664.1	AL355598.1	AL355861.1	AL359747.1	AL359836.1	AL591845.1	AL603764.1	AL731543.1	
	ANLN	AOAH	AP000688.8	AQP1	ARMS2	ATE1	BBX	BLVRA	BMX	
	BRIP1	BTBD16	BTRC	BUB3	C10orf118	C10orf119	C10orf120	C10orf2	C10orf46 CASC2	
	C10orf76	C10orf84	C10orf88	C10orf90	C1orf113	C7orf44	CA5B	CA5BP		
	CCDC54	CD3EAP	CSF3R	CUZD1	CYB561	DCAF7	DCLRE1A	DLGAP3	DMBT1	
	DNMBP	DOCK1	DPCD	EIF3A	ELOVL3	EMX2	EMX2OS	ERCC1	FAM176B	
	FAM178A	FAM188B	FAM24A	FAM24B	FAM45A	FBXW4	FGF8	FGFR2	FOSB	
	FTLP18	GBF1	GHRHR	GLI3	GPAM	GRK5	GS1-594A7.3	3	GS1-594A7.5	
	HDAC4	HECW1	HMX2	НМХ3	HPS6	hsa-mir-608	hsa-mir-802	HTRA1	IKZF5	
	INMT	INPP5F	INTS2	JAKMIP3	KAZALD1	KCNH6	KCNIP2	KCNK18	KIAA1598	
	LBX1	LDB1	LSM10	LZTS2	MGEA5	MRPL43	MRPS15	MRPS24	MT-ATP6	MT
CO1	MT-CO3	MT-ND1	MT-ND2	MT-ND3	MT-ND4	MT-ND4L	MT-ND5	MT-ND6	NANOS1	
	NCRNA0009	3	NHLRC2	NKX2-3	NOLC1	NPM3	NSMCE4A	OSCP1	PDZD7	
	PDZD8	PITX3	PLEKHA1	POLL	PPM1N	PPP1R13L	PPP1R2P2	PPRC1	PRDX3	
	PRLHR	PSTK	RAB11FIP2	RGS9	RP11-107C1	6.2	RP11-107I14	l.1	RP11-107I1	4.2
	RP11-107I14.4		RP11-107I14.5		RP11-108L7.4		RP11-108L7.7		RP11-129J12.1	
	RP11-153N17.1		RP11-162A23.5		RP11-179H18.8		RP11-181E22.1		RP11-190J1.10	
	RP11-190J1.3		RP11-190J1.7		RP11-198M6.2		RP11-198M6.5		RP11-214N15.5	
	RP11-215A21.2		RP11-223P11.2		RP11-223P11.3		RP11-244H3.1		RP11-244H3.2	
	RP11-245J24.1		RP11-248l9.2		RP11-25C19.1		RP11-25C19.3		RP11-280F2.1	
	RP11-280F2.2		RP11-282I1.1		RP11-298H24.1		RP11-302K17.3		RP11-302K17.4	
	RP11-302K17.7		RP11-309P22.1		RP11-319I23.2		RP11-319I23.3		RP11-31L23.3	
	RP11-324L3.1		RP11-328K15.1		RP11-338O1.2		RP11-354M20.3		RP11-36N22.1	
	RP11-36N22.3		RP11-381K7.1		RP11-381K7.2		RP11-411P18.2		RP11-446H18.1	
	RP11-446H18.3		RP11-446H18.5		RP11-45P22.1		RP11-45P22.2		RP11-462G8.2	
	RP11-462G8.3		RP11-498J9.1		RP11-498J9.2		RP11-498J9.4		RP11-500G22.2	
	RP11-501J20.2		RP11-501J20.3		RP11-501J20.5		RP11-561O4.1		RP11-564D11.3	
	RP11-567J24.4		RP11-56I23.1		RP11-57H14.3		RP11-5G18.2		RP11-781P14.3	
	RP11-78C6.1		RP11-79M19.2		RP11-93B21.1		RP13-314C10.5		RP5-1158B12.1	
	RP5-877J2.1	RPL23AP3	RPL34P3	RPS20P1	RTN2	RUNX1	SAT1	SCN4A	SEC23IP	
	SEMA4G	SETD4	SFPQ	SFXN3	SFXN4	SLC18A2	SNORA19	SNORA63	SNORD112	
	SNORD60	snoU13	SORCS3	STK40	TACC2	TANC2	TCERG1L	THRAP3	TLX1	
	TLX1NB	TMEM27	TWIST2	U2	U3	U4	U6	URGCP	USP29	
	VASP	VAX1	VTI1A	Y_RNA	ZIM3	ZMYM1	ZMYM6			

PANTHER analysis: 134 mapped ids are found, 157 mapped ids are not found.

5.8.9 Copy Number Aberrations for Triple Negative Pure DCIS Compared to Triple Negative Invasive Breast Disease

These series examines the difference between pure triple negative DCIS only and TN invasive breast disease.

Frequency plots showing copy number aberrations between Pure TN DCIS and TN invasive breast disease were provided by Breakthrough Breast Cancer/Research Oncology, King's College London Bioinformatics Department (Figure 42).

Figure 42: Frequency plots showing copy number aberrations between pure triple negative DCIS and triple negative invasive breast disease (amplifications, duplications, gains, Sc gains, losses, total losses CdLOH and CnLOH,) (pages 249-251).
Frequency Plots_ Triple Negative Pure DCIS vs Triple Negative Tumour

Frequency Plots_ Triple Negative Pure DCIS vs Triple Negative Tumour

5.8.9.1 Amplification of Pure Triple Negative DCIS and Triple Negative Invasive Breast Disease

No amplifications are found in TN pure DCIS or TN invasive breast disease in this series.

5.8.9.2 Duplication in Pure Triple Negative DCIS and Triple Negative Invasive Breast

Disease

There are duplications are found in TN pure DCIS (n=1/9) and TN invasive breast disease (n=3/7).

- 1. p-values < 0.05;
- A gene list is mapped from 13 genomic regions found on chromosomes 2, 6, 8, 12;
- These regions encompass 181 genes altered in TN pure DCIS and TN invasive breast disease;

Genes:

5S rRNA 7SK ABCC10 AC012494.1 AC079600.1 AL080315.3 AL096711.1 AL121959.1 AL136304.1 AL136304.2 AL136304.3 AL451073.1 AL583834.1 ARG1 BMP5 BYSL C6orf108 C6orf132 C6orf15 2 C6orf154 C6orf174 C6orf192 C8orf85 CCND3 CENPW CLIC5 CNPY3 COL21A1 CRIP3 C6orf226 C6orf58 CTAGE9 CTGF ECHDC1 EEF1A1P36 EEF1DP5 ENPP1 CUL7 CUL9 DLK2 ENPP3

	ENPP4	ENPP5 EYA	4 FRS3	GFRAL	GNMT	GUCA1A	GUCA1B	HCRTR2	HEY2	HINT3	
HMG	B1L13	HMGCLL1	hsa-mir-588	KIAA0240	KLC4	KLHDC3	LAMA2 LRF	N2	MEA1	MED20	
	MED23	MOXD1	MRPL2	MRPS10 NC	OA7 OR2A4	PEX6	PGC	POLR1C	PPP2R5D	PRB2	
	PRICKLE1	PRICKLE4	PTCRA	PTK7	PTPRK	RNF146	RP11-103C	16.2	RP11-121P	10.1	RP11-
123H	121.1	RP11-151M	7.1	RP11-162L1	0.1	RP11-203B4	4.1 RP11-213	N20.1	RP11-2280	6.2	
	RP11-25I15	.1	RP11-295F4	1.4	RP11-298J2	3.5 RP11-298	3J23.6	RP11-314E2	23.1	RP1-131F1	5.2
	RP11-3250	24.1	RP11-3250	24.2 RP11-35	7P24.2	RP1-139D8.	6	RP11-480N	24.3	RP11-480N	124.4
	RP11-480N	24.6	RP11-527F1	3.1	RP11-527F1	3.2	RP11-53302	20.2	RP11-570K4	4.1	
	RP11-624M	8.1	RP11-69I8.2	RP11-6918.3	RP11-753G	20.1 RP11-77	5122.2	RP1-177A13	3.1	RP1-179E1	3.1
	RP1-283K1	1.3	RP1-293L8.	2RP1-293L8.	5RP13-4690	16.1	RP1-55C23.	4	RP1-55C23	.5	RP1-
55C2	23.7	RP1-6P5.2	RP1-78N10.	2	RP1-86D1.2	RP1-86D1.3	RP1-86D1.4	RP1-86D1.5	RP1-8B1.4	RP3-323K2	23.3
	RP3-330M2	1.5	RP3-337H4.	6	RP3-351K20).3	RP3-351K20).4	RP3-403A1	5.1	RP3-
416F	10.1	RP3-447E2	1.3 RP3-462C	17.1	RP3-475N16	6.1	RP3-523C2	1.1	RP3-523C2	1.2 RP5-97	'3N23.4
	RP5-988G1	5.1	RPL24P4	RPL7L1	RPS12	RSPO3 SCA	RNA15	SLC22A7	SLC30A8	SNORA33	
	SNORA8	SNORD100	SNORD101	snoU13	SRF	STX7	TAAR1	TAAR2	TAAR3	TAAR4P	
	TAAR5 TAA	R6	TAAR7P	TAAR8	TAAR9	TAF8	TFEB	THEMIS	TJAP1	ТОММ6 Т	RERF1
TRM	T11	TTBK1	U4	U6	U7	USP49	VNN1	VNN2	VNN3	XPO5	
	Y_RNA YIP	F3	ZNF318								

PANTHER analysis: 83 mapped ids are found, 98 mapped ids are not found.

5.8.9.3 Genomic Gains of Pure Triple Negative DCIS and Triple Negative Invasive Breast Disease

There is overlap in the genomic gains present in TN pure DCIS (n=2/9) and TN Invasive breast disease (n=6/7).

- 1. p-values < 0.05;
- A gene list is mapped from 11 genomic regions found on chromosomes 1, 6, 8, 10;
- These regions encompass 133 genes altered in TN pure DCIS and TN invasive breast disease;

55	_rRNA	7SK	AC099805.1	AL139392.1	AL359983.1	AP001207.1	C1orf150 CA	PN11	CFLP4	CHML	
	EXO1	EYA1	FH	FMN2	GREM2	GRHL2 HSD	017B7P1	KIF26B	KMO	MAP1LC3	С
	MRPL14	NCALD	NLRP3 OPN	13	OR11L1	OR13G1	OR14A16	OR14A2	OR14C36	OR14K1	
OR	14L1P	OR1C1	OR2AJ1	OR2AK2	OR2B11	OR2C3 OR2	2G2 OR2G3	OR2G6	OR2L13	OR2L1P	
	OR2L2	OR2L3	OR2L5	OR2L8 OR2	M1P	OR2M2	OR2M3	OR2M4	OR2M5	OR2M7	OR2T1
OR	2T10	OR2T11	OR2T12	OR2T2	OR2T29	OR2T3	OR2T33 OR	2T34 OR2T3	5OR2T4	OR2T5	
	OR2T6	OR2T8	OR2W3	OR2W5	OR6F1	OR9H1P PL	D5	RGS7	RP11-132G1	10.2	
	RP11-177F	11.1	RP11-314P1	12.2	RP11-323D1	8.1	RP11-323D1	18.4	RP11-323D1	18.5	
	RP11-331N	16.1	RP11-397A1	15.4	RP11-407H1	2.4	RP11-407H1	12.8	RP11-43011	5.2	
	RP11-430l1	5.4	RP11-435F1	3.1	RP11-435F1	3.2	RP11-438F1	4.1	RP11-438F1	4.3	

RP11-438H8.3	RP11-438H8.8	RP11-438H	8.9	RP11-439E	19.3	RP11-439E	19.5	
RP11-439E19.6	RP11-439E19.8	RP11-463J	7.1	RP11-463J	7.2	RP11-463J7	7.3	
RP11-467l20.2	RP11-467I20.3 RP11-467	7120.4	RP11-467l2	0.5	RP11-467l2	20.6	RP11-488L	.18.1
RP11-488L18.8	RP11-513D4.1	RP11-513D	4.2	RP11-513D	4.3	RP11-553N	16.1	
RP11-561l11.2	RP11-561I11.3	RP11-634B	7.1	RP11-634B	7.4	RP11-634B	7.5	
RP11-80B9.1	RP11-80B9.2	RP11-80B9	.4	RP11-80B9	.5	RP11-978l1	5.10	
RP11-978l15.9	RSL24D1P4 SCCPDH	SLC29A1 S	NORD112	snoU13	TMEM63B	TRIM58	U5	U6
VN1R17P VN1R5 WDR6	4 XXyac-YR14BB7.1	Y_RNA						

PANTHER analysis: 62 mapped ids are found, 71 mapped ids are not found.

There are genomic gains present in some samples of TN invasive breast disease (n=2/9), none of which are observed in TN pure DCIS (n=0/9).

- 1. p-values < 0.005;
- 2. A gene list is mapped from 2 genomic regions on chromosome 3;
- 3. These regions encompass 17 genes altered in TN invasive breast disease;

Genes:

 AC133435.2
 AC112504.2
 RNF7
 GRK7
 ATP1B3
 TFDP2
 AC128648.1
 GK5
 RP11-340E6.1
 RP11-340E6.2

 RP11-144C9.1
 RP11-271K21.2
 RP11-271K21.4
 RP11-271K21.7
 RP11-343B5.1
 AC133435.1
 U6

 PANTHER analysis: Number of mapped IDs found 5, 12 mapped ids are not found.

Genomic Sc Gains in TN pure DCIS and TN Invasive Breast Disease

There are no Sc gains in TN pure DCIS in this series (n=0/9). Sc gains are, however, present in TN invasive breast disease (n=4/7).

- 1. p-values < 0.05;
- A gene list is mapped from 14 genomic regions found on chromosomes 1, 3,
 8;
- 3. These regions encompass 143 genes altered in TN invasive breast disease;

5S_	rRNA	AC023165.1	AC092898.1	AC092902.1	AC099805.1	AC112484.1	AC112504.2	AC117401.1	AC117508.1	AC128648	.1
	AC133435.1	AC133435.2	ACAD9	ADCY5	ALDH1L1	ALG1L	ATP1B3	C3orf15	C3orf22		C3orf37
	CCDC14	CCDC48	CHCHD6	CHST13	CNBP	COPG COX	17	ENO1P3	EYA1	GK5	GP9
	GRAMD1C	GRK7	GS1-388B5.	1 GS1-388B5	.2	GS1-388B5.	3	GS1-388B5.	4	GS1-388B	5.5
	GS1-388B5.	6	GS1-388B5.	7 GS1-388B5	.8	GSK3B	H1FX	HEG1	hsa-mir-548i	-1	ISY1
	ITGB5	KALRN KIAA	1257 KIAA14	07	MUC13	MYLK	NR1I2	OSBPL11	PLXNA1	POPDC2	PTPLB
QTF	RTD1	RAB43	RAB7A	RNF7	ROPN1	ROPN1B	RP11-124N2	2.1 RP11-124	N2.2	RP11-124	N2.3
	RP11-144C9	9.1	RP11-158I23	3.1 RP11-169	N13.1	RP11-169N1	13.4	RP11-18H7.	1	RP11-1900	C22.1

RP11-197K3	3.1 RP11-202	D20.1	RP11-221E2	0.3	RP11-221E2	20.4	RP11-221E2	.0.5	RP11-255E6.1
RP11-271K2	1.2	RP11-271K2	21.4	RP11-271K2	1.7	RP11-290K4	1.2	RP11-340E6	.1
RP11-340E6	5.2	RP11-343B5	5.1	RP11-379B1	8.1	RP11-379B1	8.2	RP11-379B1	8.3
RP11-379B1	8.4	RP11-379B1	8.5	RP11-390G1	14.1	RP11-434H6	6.2	RP11-435F1	7.1
RP11-435F1	7.3	RP11-463J7	.1	RP11-463J7	.2	RP11-463J7	.3	RP11-521J5	.1
RP11-529F4	.1 RP11-605	F14.1	RP11-605F1	4.2	RP11-605F1	4.3	RP11-666A2	20.1	RP11-666A20.3
RP11-666A2	.4	RP11-689D3	3.4	RP11-71H17	' .1	RP11-71H17	7.6	RP11-722C1	7.1
RP11-72304	1.2	RP11-72304	4.3	RP11-72304	4.6	RP11-72304	4.7	RP11-72304	.8
RP11-767L7	.1	RP11-767L7	.2 RP11-775J	23.1	RP11-775J2	3.2	RP11-9N20.	1	RP13-685P2.4
RP13-685P2	.5	RPS15AP16	RPS27P12	RSRC1	SHOX2	SLC12A8 SL	_C41A3	SNORA24	SNORA5
snoU13	SNX4	TFDP2	TXNRD3 TX	NRD3IT1	U1	U6	UMPS	UROC1	Y_RNA
ZBTB20	ZDHHC23 Z	NF148	ZXDC						

PANTHER analysis: 51 mapped ids are found, 92 mapped ids are not found.

5.8.9.4 Genomic Losses in TN pure DCIS and TN Invasive Breast Disease

There are genomic losses found in TN pure DCIS (n=1/9) also present in TN invasive breast disease (n=5/7).

- 1. p-values >0.05;
- A gene list is mapped from 28 genomic regions found on chromosomes 4, 14, 15, 19;
- These regions encompass 165 genes altered in TN pure DCIS and TN invasive breast disease;

Y_RN	A	5S_rRNA	7SK	ABLIM2	AC011912.1	AC012379.1	AC012379.2	AC013452.1	AC013452.2	AC018926.1
	AC084882.1	AC090427.1	AC093680.1	AC093827.1	AC093848.1	AC097381.1	AC104059.1	AC104650.2	AC106868.1	AC107394.1
	AC108516.1	AC109351.1	AC110766.1	ACOX3	ADH1A	ADH1B	ADH1C	ADH7	AF146191.4	AF250324.2
	AFAP1	AFF1	AGPAT9	AIMP1	AL133444.1	AL160471.2	AL160471.3	ANXA3	AP001962.3	ARD1B
	ARHGAP24	ARHGEF38	C15orf33	C4orf12	C4orf17	C4orf23	C4orf36	C4orf6	CCPG1	CEP152
	CGRRF1	COPS2	CPZ	CRMP1	DAPP1	DNAJB14	DTWD1	EMR2	EVC	EVC2
	FAM175A	FAM190A	FBN1	FGF5	FGF7	FOXA1	FRAS1	FRG1	FRMD6	GALK2
	GCH1	GK2	GMPSP	GPR78	GSTCD	H2AFZ	hsa-mir-95	HSD17B11	HSD17B13	HTRA3
	INTS12	KLHL8	MAPK10	MAPKSP1	MIPOL1	MTTP	NID2	NPNT	NUDT9	OR7E94P
	PCDH7	PIGB	PRDM8	PTPN13	RAB27A	RASGEF1B	RG9MTD2	RP11-112L1	8.1	RP11-11N6.1
	RP11-1258F	18.1	RP11-15B17	.1	RP11-15B17	7.4	RP11-162K6	.1	RP11-174E2	2.1
	RP11-174E2	2.2	RP11-218C2	3.1	RP11-234K1	9.1	RP11-234K1	9.2	RP11-274J2	.1
	RP11-311D1	4.1	RP11-311D1	4.2	RP11-377G1	16.2	RP11-390C1	9.1	RP11-397E7	.1
	RP11-397E7	.2	RP11-397E7	.3	RP11-397E7	7.4	RP11-417M1	7.1	RP11-42A4.	1
	RP11-438E5	.1	RP11-452C8	5.1	RP11-45L9.4	1RP11-463J1	7.1	RP11-476C8	3.1	RP11-476C8.2
	RP11-476C8	3.3	RP11-529H2	.1	RP11-61008	3.1	RP11-617I14	1.1	RP11-656C2	2.1
	RP11-689K5	.3	RP11-689P1	1.2	RP11-689P1	1.3	RP11-696N1	4.1	RP11-696N1	4.3
	RP11-710E1	.1	RP11-710F7	.2	RP11-710F7	.3	RP11-722P1	5.1	RP11-766F1	4.1

RP11-766F1	4.2	RP11-767N1	5.1	RP11-77403	3.1	RP11-77403	3.2	RP11-77403	3.3	
RP11-778J1	5.1	RP11-792D2	21.1	RP11-792D2	21.2	RP11-8L2.1	RP11-93M12	2.1	RP13-612N2	1.1
RSL24D1	SAMD4A	SH3TC1	SHC4	SLC10A6	SNORA75	snoU13	SPARCL1	STK32B	ТВСК	U5
U6	U6atac	WDFY3								

PANTHER analysis: 67 mapped ids are found, 98 mapped ids are not found.

There are genomic losses found in TN invasive breast disease (5/7) not observed in TN pure DCIS (0/9).

- 1. p-values < 0.05;
- A gene list is mapped from 8 genomic regions found on chromosomes 4, 8,14, 18, X;
- 3. These regions encompass 33 genes altered in TN invasive breast disease;

Genes:

AC0 ²	18797.3	AF196969.5	AF196972.1	AF196972.9	AF213884.1	AF224669.3	AKAP6	AL592043.1	BMX	EBP
	FAM47A	FTSJ1	MANBA	NFKB1	PIR	PORCN	RBM3	RP11-10L12	.1	RP11-10L12.2
	RP11-10L12	.4	RP11-10L12	.5	RP11-10L12	.6	RP11-1148L	6.5	RP11-1148L	6.6
	RP11-281B1	.2	RP11-305F1	8.1	RP11-545D1	9.1	RP13-202B6	.2	SMAD4	snoU13
	TBC1D25	UBE2D3	WDR13							

PANTHER analysis: 14 mapped ids are found, 19 mapped ids are not found.

5.8.9.5 Total Loss in TN pure DCIS and TN Invasive Breast Disease

There are total genomic losses present in TN pure DCIS (n=8/9) not observed in TN invasive breast disease (n=0/7).

- 1. p-values < 0.05;
- 2. A gene list is mapped from 23 genomic regions found on chromosomes 6,

8, 11, 13, 14, 17, 19;

3. These regions encompass 69 genes altered in TN pure DCIS;

Genes:

 AARSD1 ABCC4 AC004659.1 AC005513.1
 AC008734.1 AC008734.2 AC087650.1 AC087650.8 AC090427.1 AC100793.2

 ACTL9
 ADAM5P
 ADAMTS10 AL136359.1 AL137001.1 AOC2
 AOC3
 ARL4D
 BRCA1

 CACNA1A
 CCDC105
 CTD-2557P19.1
 CTD-3199J23.2
 EMR2
 EMR3
 FBXO33

 G6PC
 GPC5
 hsa-mir-21171F135
 MBD3L1
 MUC16
 MY01F
 OLFM4
 OR2Z1

 260
 260
 COMPARENTIAL
 CC08734.1 AC008734.2 AC087650.1 AC087650.8 AC090427.1 AC100793.2

OR4C3 OR4	4C45	OR4C5	OR4S1	OR4X1	OR4X2	OR7A10 OR	7A11P	OR7A17
OR7A2P	OR7A5	OR7C1	OR7C2 PAR	K2 PSME3	RND2	RP11-24H2.	1	RP11-24H2.2
RP11-301J1	16.2	RP11-301J1	6.3 RP11-30'	IJ16.5	RP11-301J1	6.7	RP11-442J1	7.4
RPL27	RTN1	RUNDC1 SL	_C1A6	SNORA40	U2	U6	VAT1	Y_RNA
ZNF333	ZNF558							

PANTHER analysis: 41 mapped ids are found, 28 mapped ids are not found.

There are total genomic losses present in TN invasive breast disease (n=7/7) not observed in TN pure DCIS (n=0/9).

- 1. p-values < 0.05;
- 2. A gene list is mapped from 30 genomic regions found on chromosomes 4, 8,

13, 14, 15, 17;

3. These regions encompass 112 genes altered in TN invasive breast disease;

Genes:

5S_rR	NA AC00532	4.1 AC005324	4.2	AC005324.4	AC005324.6	AC005324.7	AC007686.1	AC015922.1	AC015922.2	AC015922.7
	AC090283.1	AC090283.3	AC096750.1	AC098487.1	ADCK1	AF111168.1	AF111168.3	AHSA1	AL049775.1	AL136160.1
	AL357172.1	AL359180.1	ALKBH1	ARD1B	ATP5C1P1 C	C13orf23	C13orf36	C14orf148	C14orf156	C14orf174
	C14orf178 C	14orf184	CACNA1G	CATSPERB	CNOT6L	CTD-2175M ⁻	1.1	DDIT4L DYN	ILL1P1	FLRT2
	GAPDHP34	GK2	GNG5P5	GSTZ1	hsa-mir-1260	IL6STP1 ISN	12	KIAA1737	KRT222	KRT24
	KRT25	LHFP	LMO7	MEIS3P1	MTUS1 NGE	NHLRC3	NRXN3	OR7E94P	POMT2	RASGEF1B
	RFXAP RP1	1-15B17.1	RP11-16L6.3	3RP11-197L7	.2	RP11-226P1	.1	RP11-234K1	9.1	RP11-234K19.2
	RP11-299L1	7.1	RP11-352E6	.1	RP11-352E6	.2 RP11-421	P11.5	RP11-438E5	.1	RP11-452C8.1
	RP11-478K1	5.1	RP11-478K1	5.2	RP11-478K1	5.3	RP11-478K1	5.4	RP11-478K1	5.5
	RP11-499E1	8.1	RP11-527F1	5.1	RP11-588P8	.1	RP11-61008	.1	RP11-624A4	.1
	RP11-689K5	.3	RP11-765K1	4.1	RP11-94C24	.10	RP11-94C24	.11	SLC39A8	SMAD9
	SMARCE1	SNORA32	SNORA46 S	NORA75	snoU13	SNW1	SPTLC2	STOML3	STON2	TBC1D26 TMED8
	TMEM63C	TRIM16	U3	U7	UBE2Z	VEGFC	VIPAR Y_RN	IA	ZDHHC22	ZNF286
	ZNF29P									

PANTHER analysis: 39 mapped ids are found, 72 mapped ids are not found.

5.8.9.6 CdLOH of TN pure DCIS and TN Invasive Breast Disease

There is CdLOH present in TN pure DCIS (n=1/9) also present in TN invasive breast disease (n=5/7).

- 1. p-values>0.05;
- A gene list is mapped from 23 genomic regions found on chromosomes 4, 14, 15;

 These regions encompass 128 genes altered in TN pure DCIS and TN invasive breast disease;

Genes:

5S_rF	RNA	7SK	ABLIM2	AC011912.1	AC012379.1	AC012379.2	AC013452.1	AC013452.2	AC018926.1	AC084882.1	
	AC093680.1	AC093827.1	AC093848.1	AC097381.1	AC104059.1	AC106868.1	AC108516.1	AC109351.1	ACOX3	AF146191.4	
	AF250324.2	AFAP1	AFF1	AGPAT9	AIMP1	AL133444.1	AL160471.2	AL160471.3	ANXA3	AP001962.3	
	ARHGAP24	ARHGEF38	C15orf33	C4orf23	C4orf36	C4orf6	CCPG1	CEP152	CGRRF1	COPS2	CPZ
	CRMP1	DAPP1	DNAJB14	DTWD1	EVC	EVC2	FBN1	FGF5	FGF7	FOXA1	
	FRAS1	FRG1	FRMD6	GALK2	GCH1	GPR78	GSTCD	H2AFZ	HSD17B11	HSD17B13	
	HTRA3	INTS12	KLHL8	MAPK10	MAPKSP1	MIPOL1	NID2	NPNT	NUDT9	PIGB	
	PRDM8	PTPN13	RAB27A	RASGEF1B	RP11-112L1	8.1	RP11-15B17	.1	RP11-15B17	.4	
	RP11-162K6	5.1	RP11-174E2	2.1	RP11-174E2	2.2	RP11-218C2	3.1	RP11-274J2	.1	
	RP11-311D1	4.1	RP11-311D1	4.2	RP11-377G1	6.2	RP11-390C1	9.1	RP11-397E7	.1	
	RP11-397E7	.2	RP11-397E7	.3	RP11-397E7	.4	RP11-417M1	7.1	RP11-42A4.	1	
	RP11-45L9.1	IRP11-463J1	7.1	RP11-476C8	.1	RP11-476C8	.2	RP11-476C8	.3	RP11-529H2	2.1
	RP11-656C2	2.1	RP11-689K5	.3	RP11-689P1	1.2	RP11-689P1	1.3	RP11-710E1	.1	
	RP11-710F7	.2	RP11-710F7	.3	RP11-766F1	4.2	RP11-767N1	5.1	RP11-77403	3.1	
	RP11-77403	3.2	RP11-77403	3.3	RP11-778J1	5.1	RP11-792D2	1.1	RP11-792D2	1.2	
	RP11-8L2.1	RP13-612N2	:1.1	RSL24D1	SAMD4A	SHC4	SLC10A6	snoU13	SPARCL1	STK32B	
	ТВСК	U5	U6	U6atac	Y_RNA+AA1	:A128					

PANTHER analysis: 56 mapped ids are found, 72 mapped ids are not found.

There is CdLOH present in TN invasive breast disease (n=4/7) not observed in TN pure DCIS (0/9).

- 1. p-values < 0.05;
- A gene list is mapped from 103 genomic regions found on chromosomes 4, 5,
 8, 9, 10, 12, 13, 14, 15, 16, 18, X;
- 3. These regions encompass 433 genes altered in TN invasive breast disease;

5S_rRNA		AC003658.1	AC004053.1	AC006160.1	AC006160.2	AC006160.4	AC006160.5	AC006445.1	AC006445.6	AC006445.7
AC0	06445.8	AC007126.1	AC007956.2	AC008245.1	AC010296.1	AC013558.1	AC018413.1	AC018558.1	AC019131.2	AC020698.1
AC0	23824.2	AC034110.1	AC034110.2	AC068473.1	AC090360.1	AC091551.1	AC091602.1	AC091646.1	AC092621.1	AC092846.1
AC0	93628.1	AC093848.1	AC096742.1	AC098830.1	AC105423.1	AC106785.1	AC106785.1	0	AC106785.1	4
AC1	06785.18	8	AC106785.20	D	AC106785.2	2	AC106785.2	5	AC106785.2	7
AC1	06785.28	В	AC106785.6	AC106868.1	AC111152.1	AC114688.1	AC116553.1	AC134978.1	AC139100.1	ACTBP1
ACY	′P1	ADH1A	ADH1B	ADH1C	ADH4	ADH5	ADH7	ADNP2	AF196970.3	AF196972.3
AF1	96972.4	AF213884.1	AF241726.2	AF241726.4	AF241726.6	AKAP6	AL096700.1	AL096700.2	AL121578.2	AL132716.1
AL1	32716.2	AL132777.1	AL132777.2	AL132988.1	AL132988.2	AL132988.3	AL132988.4	AL359219.1	AL445487.1	AL591394.1
AL9	29101.1	ANXA10	AP002075.1	ARAF	ASB5	ATP8A1	ATP9B	B3GALTL	BANK1	BCL2
BDH	12	BOD1L	C13orf26	C13orf33	C14orf149	C14orf38	C14orf53	C15orf43	C18orf22	C4orf37
					262					

	C8orf75	CDH7	CENPE	CENPVL1	CFP	CHST7	CISD2	CLRN2	COMMD10	CTB-118N6.	3
	CTC-339F2.	2	CTD-2022H	16.1	CTD-2522E6	6.4	CTDP1	CXorf24	CXorf25	CXorf31	
	CXXC4	CYP4V2	DCTN2	DDIT3	DDX60	DDX60L	DLST	DUOX1	DUOX2	DUOXA1	
	DUOXA2	DUSP4	EEF1DP3	EGLN3	EIF2B2	EIF4E	ELK1	EMCN	FAM149A	FAM164C	
	FAM177A2	FAM184B	FANCB	FCF1	FRY	FTLP16	FTSJ1	GALR1	GBA3	GLRA2	
	GPR125	GPR64	GSPT2	hsa-mir-1255	ia	hsa-mir-221	hsa-mir-222	hsa-mir-616	HSBP1L1	HSP90AB2P	,
	HSPH1	INE1	JKAMP	KCNG2	KCNH5	KCNIP4	KIAA0317	KIF5A	KLF12	KLHL4	
	KLKB1	KRT8P14	LAP3	LDB2	LRRC9	LTBP2	MAGED1	MAGED4	MAGED4B	MAP3K15	
	MARS	MBD6	MBP	MED28	METAP1	MEX3C	MLH3	MNAT1	MOSPD2	MTNR1A	
	NDUFB11	NEK9	NFATC1	NFKB1	NHEDC1	NHEDC2	NKX3-2	NOVA1	NPAS3	NUS1P1	отс
	PARD6G	PCDH7	PCTK1	PDHA1	PGF	PHF16	PHKA2	PPARGC1A	PPEF1	PPP3CA	
	PQLC1	PROX2	QDPR	RAB28	RAD23B	RBM10	RGN	RP11-109E2	24.1	RP11-10G12	2.1
	RP11-10G12	2.2	RP11-10L12	.4	RP11-1148L	6.6	RP11-114H2	.0.1	RP11-120A1	.1	
	RP11-12302	22.1	RP11-1299A	16.1	RP11-1299A	16.2	RP11-141E1	3.1	RP11-159J2	.1	
	RP11-159J2	.2	RP11-162A1	2.1	RP11-167N1	9.1	RP11-167N1	9.2	RP11-173M1	1.1	
	RP11-173M1	11.2	RP11-173P1	6.2	RP11-17E2.2	2	RP11-196I18	3.2	RP11-196I18	3.3	
	RP11-196l18	3.4	RP11-198M	5.1	RP11-200A2	4.1	RP11-207N4	.2	RP11-207N4	.3	
	RP11-215A1	9.1	RP11-22B10	.3	RP11-234P3	.2	RP11-234P3	.3	RP11-234P3	.4	
	RP11-234P3	3.5	RP11-245M2	24.1	RP11-24D11	.1	RP11-252M2	21.1	RP11-252M2	21.3	
	RP11-252M2	21.4	RP11-252M2	21.6	RP11-252M2	21.7	RP11-289C1	7.1	RP11-289C1	7.2	
	RP11-292B1	.1	RP11-292B1	.2	RP11-297P1	6.1	RP11-297P1	6.3	RP11-297P1	6.4	
	RP11-305F1	8.1	RP11-30C8.	1	RP11-30C8.2	2	RP11-310l9.	1	RP11-311P8	.1	
	RP11-311P8	3.2	RP11-315A1	7.1	RP11-324B6	.1	RP11-328K4	.1	RP11-333E5	.1	
	RP11-333E5	5.2	RP11-341G	5.1	RP11-367C1	1.2	RP11-380P1	3.1	RP11-380P1	3.2	RP1-
138A	RP11-333E5 5.1	5.2 RP11-38023	RP11-341G5 3.3	5.1 RP11-38O23	RP11-367C1 8.4	1.2 RP11-38023	RP11-380P1 3.5	3.1 RP11-38O23	RP11-380P1 3.7	3.2 RP11-417L1	RP1- 4.1
138A	RP11-333E5 5.1 RP11-428B4	5.2 RP11-38O23 I.2	RP11-341G5 3.3 RP11-433O3	5.1 RP11-38O23 3.1	RP11-367C1 3.4 RP11-451L9	1.2 RP11-38O23 .2	RP11-380P1 3.5 RP11-451L9	3.1 RP11-38O23 .3	RP11-380P1 3.7 RP11-45F23	3.2 RP11-417L1 .1	RP1- 4.1
138A	RP11-333E5 5.1 RP11-428B4 RP11-462G2	5.2 RP11-38O23 1.2 22.1	RP11-341G5 3.3 RP11-433O3 RP11-473D2	5.1 RP11-38023 3.1 4.1	RP11-367C1 3.4 RP11-451L9 RP11-474L7	1.2 RP11-38023 .2 .4	RP11-380P1 3.5 RP11-451L9 RP11-495L1	3.1 RP11-38O23 .3 8.2	RP11-380P1 3.7 RP11-45F23 RP11-498M5	3.2 RP11-417L1 .1 5.2	RP1- 4.1
138A	RP11-333E5 5.1 RP11-428B4 RP11-462G2 RP11-499E1	5.2 RP11-38O2; 1.2 22.1 8.1	RP11-341G5 3.3 RP11-433O3 RP11-473D2 RP11-49F1.1	5.1 RP11-38023 3.1 94.1 IRP11-508N1	RP11-367C1 3.4 RP11-451L9 RP11-474L7 2.2	1.2 RP11-38O23 .2 .4 RP11-508N1	RP11-380P1 3.5 RP11-451L9 RP11-495L1 2.3	3.1 RP11-38O23 .3 8.2 RP11-508N1	RP11-380P1 3.7 RP11-45F23 RP11-498M5 2.4	3.2 RP11-417L1 .1 5.2 RP11-552E4	RP1- 4.1
138A	RP11-333E5 5.1 RP11-428B4 RP11-462G2 RP11-4699E1 RP11-552E4	5.2 RP11-38023 1.2 22.1 8.1 1.3	RP11-341G8 3.3 RP11-433O3 RP11-473D2 RP11-49F1. RP11-552E4	5.1 RP11-38023 3.1 4.1 IRP11-508N1 .4	RP11-367C1 .4 RP11-451L9 RP11-474L7 2.2 RP11-556G2	1.2 RP11-38023 .2 .4 RP11-508N1 22.1	RP11-380P1 3.5 RP11-451L9 RP11-495L1 2.3 RP11-556G2	3.1 RP11-38O23 .3 8.2 RP11-508N1 22.2	RP11-380P1 3.7 RP11-45F23 RP11-498M8 2.4 RP11-556G2	3.2 RP11-417L1 .1 5.2 RP11-552E4 22.3	RP1- 4.1 4.2
138A	RP11-333E5 5.1 RP11-428B4 RP11-462G2 RP11-499E1 RP11-552E4 RP11-56H2.	5.2 RP11-38023 1.2 22.1 8.1 1.3 1	RP11-34168 3.3 RP11-43300 RP11-473D2 RP11-49F1. RP11-552E4 RP11-571E6	5.1 RP11-38023 3.1 4.1 RP11-508N1 .4 .1	RP11-367C1 .4 RP11-451L9 RP11-474L7 2.2 RP11-556G2 RP11-571E6	1.2 RP11-38023 .2 .4 RP11-508N1 22.1 .3	RP11-380P1 3.5 RP11-451L9 RP11-495L1 2.3 RP11-556G2 RP11-571E6	3.1 RP11-38023 .3 8.2 RP11-508N1 22.2 .4	RP11-380P1 3.7 RP11-45F23 RP11-498M5 2.4 RP11-556G2 RP11-571L1	3.2 RP11-417L1 .1 5.2 RP11-552E4 22.3 9.2	RP1- 4.1
138A	RP11-333E5 5.1 RP11-428B4 RP11-462G2 RP11-499E1 RP11-552E4 RP11-56H2. RP11-571L1	5.2 RP11-38023 4.2 22.1 8.1 1.3 1 9.4	RP11-34168 3.3 RP11-43303 RP11-473D2 RP11-49F1. RP11-57166 RP11-57166	5.1 RP11-38023 8.1 44.1 IRP11-508N1 .4 .1 0.1	RP11-367C1 .4 RP11-451L9 RP11-474L7 2.2 RP11-556G2 RP11-571E6 RP11-61714	1.2 RP11-38023 .2 .4 RP11-508N1 22.1 .3 .1	RP11-380P1 3.5 RP11-451L9 RP11-495L1 2.3 RP11-556G2 RP11-571E6 RP11-619J2	3.1 RP11-38023 .3 8.2 RP11-508N1 22.2 .4 0.1	RP11-380P1 3.7 RP11-45F23 RP11-498M8 2.4 RP11-556G2 RP11-571L1 RP11-644A7	3.2 RP11-417L1 5.2 RP11-552E4 22.3 9.2	RP1- 4.1
138A	RP11-333E5 5.1 RP11-428B4 RP11-462G2 RP11-499E1 RP11-552E4 RP11-56H2. RP11-571L1 RP11-655M	5.2 RP11-38023 4.2 22.1 8.1 1.3 1 9.4 19.1	RP11-341G8 3.3 RP11-43303 RP11-473D2 RP11-49F1. RP11-552E4 RP11-571E6 RP11-576E2 RP11-665C1	5.1 RP11-38023 3.1 44.1 IRP11-508N1 .4 .1 0.1 4.1	RP11-367C1 .4 RP11-451L9 RP11-474L7 2.2 RP11-556G2 RP11-571E6 RP11-617114 RP11-665C1	1.2 RP11-38023 .2 .4 RP11-508N1 22.1 .3 4.1 4.2	RP11-380P1 3.5 RP11-451L9 RP11-495L1 2.3 RP11-556G2 RP11-571E6 RP11-619J2 RP11-66514	3.1 RP11-38023 .3 8.2 RP11-508N1 22.2 .4 0.1 k.1	RP11-380P1 3.7 RP11-45F23 RP11-498M5 2.4 RP11-556G2 RP11-571L1 RP11-644A7 RP11-692P1	3.2 RP11-417L1 5.2 RP11-552E4 22.3 9.2 .1 4.1	RP1- 4.1
138A	RP11-333E5 5.1 RP11-428B4 RP11-462G2 RP11-499E1 RP11-552E4 RP11-55H2. RP11-56H2. RP11-655M ¹ RP11-695N1	5.2 RP11-38023 1.2 22.1 8.1 1.3 1 9.4 19.1 14.1	RP11-34168 3.3 RP11-43303 RP11-473D2 RP11-49F1. ⁻ RP11-552E4 RP11-571E6 RP11-576E2 RP11-665C1 RP11-696N1	5.1 RP11-38023 8.1 4.1 IRP11-508N1 4.1 0.1 4.1 4.3	RP11-367C1 .4 RP11-451L9 RP11-474L7 2.2 RP11-556G2 RP11-571E6 RP11-617114 RP11-665C1 RP11-6C14.	1.2 RP11-38023 .2 .4 RP11-508N1 22.1 .3 4.1 4.2 1	RP11-380P1 3.5 RP11-451L9 RP11-495L1 2.3 RP11-556G2 RP11-571E6 RP11-619J2 RP11-665I14 RP11-703G6	3.1 RP11-38023 .3 8.2 RP11-508N1 22.2 .4 0.1 5.1	RP11-380P1 3.7 RP11-45F23 RP11-498M5 2.4 RP11-556G2 RP11-571L1 RP11-644A7 RP11-692P1 RP11-729M2	3.2 RP11-417L1 5.2 RP11-552E4 22.3 9.2 .1 4.1 20.1	RP1- 4.1
1384	RP11-333E5 5.1 RP11-428B4 RP11-462G2 RP11-499E1 RP11-552E4 RP11-56H2. RP11-56H2. RP11-655M1 RP11-696N1 RP11-75A9.	5.2 RP11-38023 9.2 22.1 8.1 9.3 1 9.4 19.1 14.1	RP11-34168 3.3 RP11-43303 RP11-473D2 RP11-49F1. RP11-57166 RP11-57166 RP11-665C1 RP11-696N1 RP11-75A9.	5.1 RP11-38023 8.1 44.1 IRP11-508N1 4.4 0.1 4.1 4.3 2	RP11-367C1 .4 RP11-451L9 RP11-474L7 2.2 RP11-556G2 RP11-571E6 RP11-617114 RP11-665C1 RP11-6C14. RP11-75A9.3	1.2 RP11-38023 .2 .4 RP11-508N1 22.1 .3 .4 .1 4.2 1 3	RP11-380P1 3.5 RP11-451L9 RP11-495L1 2.3 RP11-556G2 RP11-571E6 RP11-619J2 RP11-665I14 RP11-703G6 RP11-703G6	3.1 RP11-38023 3 8.2 RP11-508N1 22.2 4 0.1 1.1 5.1 12.1	RP11-380P1 3.7 RP11-45F23 RP11-498MS 2.4 RP11-556G2 RP11-571L1 RP11-644A7 RP11-692P1 RP11-729M2 RP11-729M2	3.2 RP11-417L1 5.2 RP11-552E4 22.3 9.2 1.1 4.1 20.1 2.1	RP1- 4.1
138А	RP11-333E5 5.1 RP11-428B4 RP11-462G2 RP11-499E1 RP11-552E4 RP11-56H2. RP11-571L1 RP11-655M1 RP11-696N1 RP11-75A9. RP11-799A1	5.2 RP11-38023 4.2 22.1 8.1 9.3 19.4 19.1 14.1 1 2.2	RP11-341G8 3.3 RP11-43303 RP11-473D2 RP11-49F1. RP11-576E2 RP11-576E2 RP11-665C1 RP11-696N1 RP11-75A9. RP11-87F15	5.1 RP11-38023 5.1 44.1 IRP11-508N1 4 1 0.1 4.1 4.3 2 .2	RP11-367C1 .4 RP11-451L9 RP11-474L7 2.2 RP11-556G2 RP11-571E6 RP11-617114 RP11-665C1 RP11-6C14. RP11-75A9.3 RP1-212G6.	1.2 RP11-38023 .2 .4 RP11-508N1 22.1 .3 4.1 4.2 1 3 4	RP11-380P1 3.5 RP11-451L9 RP11-495L1 2.3 RP11-556G2 RP11-571E6 RP11-619J2 RP11-66514 RP11-703G6 RP11-703G6 RP11-769N2	3.1 RP11-38023 .3 8.2 RP11-508N1 22.2 .4 0.1 .1 3.1 RP13-43E11	RP11-380P1 3.7 RP11-45F23 RP11-498M5 2.4 RP11-556G2 RP11-571L1 RP11-644A7 RP11-692P1 RP11-729M2 RP11-729M2 .1	3.2 RP11-417L1 5.2 RP11-552E4 22.3 9.2 .1 4.1 20.1 2.1 RP13-479F1	RP1- 4.1 .2 7.2
138A	RP11-333E5 5.1 RP11-428B4 RP11-462G2 RP11-499E1 RP11-552E4 RP11-55H2 RP11-55H2 RP11-655M1 RP11-696N1 RP11-7599A1 RP13-497K6	5.2 RP11-38023 1.2 22.1 8.1 1.3 1 9.4 19.1 14.1 1 2.2 3.1	RP11-34168 3.3 RP11-43303 RP11-473D2 RP11-49F1. RP11-57166 RP11-57166 RP11-65601 RP11-696N1 RP11-75A9. RP11-87F15 RP13-928P6	5.1 RP11-38023 8.1 4.1 IRP11-508N1 4.1 4.1 4.3 2 .2 .3	RP11-367C1 .4 RP11-451L9 RP11-474L7 2.2 RP11-556G2 RP11-571E6 RP11-617114 RP11-665C1 RP11-665C1 RP11-6C14. RP11-75A9.3 RP1-212G6.	1.2 RP11-38023 .2 .4 RP11-508N1 22.1 .3 .1 4.2 1 3 4 7	RP11-380P1 3.5 RP11-451L9 RP11-495L1 2.3 RP11-556G2 RP11-571E6 RP11-619J2 RP11-665I14 RP11-703G6 RP11-703G7.2 RP1-30G7.2 RP1-71L16.1	3.1 RP11-38023 3 8.2 RP11-508N1 22.2 4 0.1 4.1 5.1 12.1 RP13-43E11 IRP1-71L16.2	RP11-380P1 3.7 RP11-45F23 RP11-498M5 2.4 RP11-556G2 RP11-571L1 RP11-644A7 RP11-692P1 RP11-729M2 RP11-799A1 .1 2RP1-71L16.3	3.2 RP11-417L1 5.2 RP11-552E4 22.3 9.2 .1 4.1 20.1 2.1 RP13-479F1 3RP1-71L16.6	RP1- 4.1 .2 7.2 6RP2
1388	RP11-333E5 5.1 RP11-428B4 RP11-462G2 RP11-499E1 RP11-552E4 RP11-55H2 RP11-55H2 RP11-655M RP11-696N1 RP11-696N1 RP11-799A1 RP13-497K6 RP3-393P12	5.2 RP11-38023 5.2 22.1 8.1 5.3 1 9.4 19.1 1 4.1 1 2.2 5.1 2.1	RP11-341G8 3.3 RP11-43303 RP11-473D2 RP11-49F1. RP11-571E6 RP11-571E6 RP11-665C1 RP11-696N1 RP11-696N1 RP11-87F15 RP13-928P6 RP3-393P12	5.1 RP11-38023 8.1 44.1 IRP11-508N1 4.4 1.1 4.3 2 .2 .3 .2 .2	RP11-367C1 .4 RP11-451L9 RP11-474L7 2.2 RP11-556G2 RP11-571E6 RP11-617114 RP11-665C1 RP11-665C1 RP11-6C14. RP11-75A9.3 RP1-212G6. RP1-54B20.7 RP3-393P12	1.2 RP11-38023 .2 .4 RP11-508N1 22.1 .3 4.1 4.2 1 3 4 7 .3 4 .3 .3 .3 .3 .1 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3	RP11-380P1 3.5 RP11-451L9 RP11-495L1 2.3 RP11-556G2 RP11-571E6 RP11-619J2 RP11-665I14 RP11-703G6 RP11-703G6 RP11-703G7,2 RP1-30G7,2 RP1-71L16,1 RP3-436M11	3.1 RP11-38023 3 8.2 RP11-508N1 22.2 4 0.1 4.1 5.1 8.1 RP13-43E11 RP13-43E11 1.3	RP11-380P1 3.7 RP11-45F23 RP11-498MS 2.4 RP11-556G2 RP11-571L1 RP11-644A7 RP11-692P1 RP11-729M2 RP11-729M2 .1 2RP1-71L16.3 RP3-499B10	3.2 RP11-417L1 5.2 RP11-552E4 22.3 9.2 1.1 4.1 20.1 2.1 RP13-479F1 3RP1-71L16.6 3.3	RP1- 4.1 .2 7.2 5RP2 RP3-
138A\$ 499B	RP11-333E5 5.1 RP11-428B4 RP11-462G2 RP11-499E1 RP11-552E4 RP11-56H2. RP11-571L1 RP11-655M RP11-655M RP11-75A9. RP11-79A1 RP11-79A1 RP13-497K6 RP3-393P12	5.2 RP11-38023 4.2 22.1 8.1 1.3 1.9.4 19.1 14.1 1.2.2 5.1 RP3-499B10	RP11-34168 3.3 RP11-43303 RP11-473D2 RP11-49F1. RP11-552E4 RP11-576E2 RP11-665C1 RP11-665C1 RP11-696N1 RP11-75A9. RP11-87F15 RP13-928P6 RP3-393P12	5.1 RP11-38023 5.1 4.1 IRP11-508N1 4.1 4.1 4.1 4.3 2 .2 .3 .2 RP4-733D15	RP11-367C1 .4 RP11-451L9 RP11-454L7 2.2 RP11-556G2 RP11-571E6 RP11-617114 RP11-665C1 RP11-6C14. RP11-75A9.3 RP1-212G6. RP1-54B20.7 RP3-393P12 .1	1.2 RP11-38023 .2 .4 RP11-508N1 22.1 .3 4.1 4.2 1 3 4 7 .3 RP4-774G10	RP11-380P1 3.5 RP11-451L9 RP11-495L1 2.3 RP11-556G2 RP11-571E6 RP11-619J2 RP11-665114 RP11-703G6 RP11-703G6 RP1-30G7.2 RP1-30G7.2 RP1-71L16.1 RP3-436M11	3.1 RP11-38023 3 8.2 RP11-508N1 2.2 4 0.1 4.1 3.1 2.1 RP13-43E11 1RP1-71L16.2 1.3 RP5-1158E1	RP11-380P1 3.7 RP11-45F23 RP11-498M5 2.4 RP11-556G2 RP11-571L1 RP11-644A7 RP11-692P1 RP11-799A1 .1 2RP1-71L16.3 RP3-499B10 2.1	3.2 RP11-417L1 5.2 RP11-552E4 22.3 9.2 .1 4.1 20.1 2.1 RP13-479F1 3RP1-71L16.6 .3 RP5-1158E1	RP1- 4.1 .2 5RP2 RP3- 2.2
138A	RP11-333E5 5.1 RP11-428B4 RP11-462G2 RP11-499E1 RP11-552E4 RP11-56H2. RP11-56H2. RP11-655M1 RP11-655M1 RP11-696N1 RP11-79A1 RP13-497K6 RP3-393P12 10.4 RP5-1158E1	5.2 RP11-38023 5.2 5.2 5.1 5.1 RP3-499B10 2.3	RP11-34168 3.3 RP11-43303 RP11-473D2 RP11-49F1. RP11-571E6 RP11-571E6 RP11-57622 RP11-655C1 RP11-655C1 RP11-696N1 RP11-87F15 RP13-928P6 RP3-393P12 .5 RP5-972B16	5.1 RP11-38023 8.1 4.1 IRP11-508N1 4.1 4.3 2 .2 .3 .2 RP4-733D15 .2	RP11-367C1 .4 RP11-451L9 RP11-474L7 2.2 RP11-556G2 RP11-571E6 RP11-617114 RP11-665C1 RP11-665C1 RP11-6C14. RP1-54B20.7 RP1-54B20.7 RP3-393P12 .1 RP6-227L5.1	1.2 RP11-38023 .2 .4 RP11-508N1 22.1 .3 .1 4.2 1 3 4 .3 RP4-774G10 RP6-227L5.2	RP11-380P1 3.5 RP11-451L9 RP11-495L1 2.3 RP11-556G2 RP11-571E6 RP11-619J2 RP11-665I14 RP11-703G6 RP11-703G6 RP1-703G7.2 RP1-30G7.2 RP1-30G7.2 RP1-30G7.2 RP1-30G7.2 RP1-30G7.2 RP1-71L16.1 RP3-436M11	3.1 RP11-38023 3 8.2 RP11-508N1 22.2 4 0.1 4.1 6.1 1.2 RP13-43E11 1.3 RP1-71L16.2 1.3 RP5-1158E1 RPGR	RP11-380P1 3.7 RP11-45F23 RP11-498MS 2.4 RP11-556G2 RP11-571L1 RP11-644A7 RP11-692P1 RP11-729M2 RP11-729M2 RP11-799A1 .1 2RP1-71L16.3 RP3-499B10 2.1 RPS6KL1	3.2 RP11-417L1 5.2 RP11-552E4 22.3 9.2 .1 4.1 20.1 2.1 RP13-479F1 3RP1-71L16.6 .3 RP5-1158E1 RTN1	RP1- 4.1 3.2 7.2 6RP2 RP3- 2.2
138A5 499B	RP11-333E5 5.1 RP11-428B4 RP11-462G2 RP11-499E1 RP11-552E4 RP11-55H2. RP11-571L1 RP11-655M1 RP11-656M1 RP11-75A9. RP11-79A1 RP11-79A1 RP13-393P12 10.4 RP5-1158E1 RXFP2	5.2 RP11-38023 5.2 22.1 8.1 1.3 1.9.4 19.4 19.1 1.1 2.2 5.1 RP3-499B10 2.3 SALL3	RP11-341G8 3.3 RP11-43303 RP11-473D2 RP11-49F1. RP11-571E6 RP11-571E6 RP11-65C1 RP11-665C1 RP11-696N1 RP11-75A9. RP11-87F15 RP13-928P6 RP3-393P12 0.5 RP5-972B16 SEMA6A	5.1 RP11-38023 8.1 14.1 1RP11-508N1 4.4 1.1 0.1 4.1 4.3 2 .2 .3 .2 RP4-733D15 .2 SLC25A21	RP11-367C1 .4 RP11-451L9 RP11-474L7 2.2 RP11-57662 RP11-571E6 RP11-617114 RP11-665C1 RP11-6174. RP11-6174. RP1-212G6. RP1-212G6. RP1-54B20. RP3-393P12 .1 RP6-227L5.1 SLC38A5	1.2 RP11-38023 .2 .4 RP11-508N1 22.1 .3 4.1 4.2 1 3 4 7 .3 RP4-774G10 RP6-227L5.2 SLC38A6	RP11-380P1 3.5 RP11-451L9 RP11-495L1 2.3 RP11-556G2 RP11-571E6 RP11-619J2 RP11-665I4 RP11-703G6 RP11-703G6 RP1-30G7.2 RP1-30G7.2 RP1-30G7.2 RP1-30G7.2 RP1-30G7.2 RP1-30G7.2 RP1-30G7.2 RP1-30G7.2 RP1-71L16.1 SLC7A1	3.1 RP11-38023 3 8.2 RP11-508N1 22.2 4 0.1 8.1 1.1 RP13-43E11 1.RP1-71L16.2 1.3 RP5-1158E1 RPGR SLC9A7	RP11-380P1 3.7 RP11-45F23 RP11-498MS 2.4 RP11-556G2 RP11-571L1 RP11-644A7 RP11-692P1 RP11-729M2 RP11-729M2 RP11-729M2 2.1 RP3-499B10 2.1 RPS6KL1 SMAD4	3.2 RP11-417L1 5.2 RP11-552E4 22.3 9.2 1.1 4.1 20.1 2.1 RP13-479F1 3RP1-71L16.0 3 RP5-1158E1 RTN1 SNORA11	RP1- 4.1 .2 .2 SRP2 2.2
138A	RP11-333E5 5.1 RP11-428B4 RP11-428B4 RP11-499E1 RP11-552E4 RP11-551L1 RP11-571L1 RP11-655M RP11-655M RP11-75A9. RP11-75A9. RP11-79A1 RP13-497K6 RP3-393P12 10.4 RP5-1158E1 RXFP2 SNORA25	5.2 RP11-38023 4.2 22.1 8.1 9.4 19.1 14.1 1 2.2 3.1 RP3-499B10 2.3 SALL3 SNORA31	RP11-34168 3.3 RP11-43303 RP11-473D2 RP11-49F1. RP11-576E2 RP11-576E2 RP11-665C1 RP11-665C1 RP11-665C1 RP11-75A9. RP11-87F15 RP13-928P6 RP3-393P12 D.5 RP5-972B16 SEMA6A SNORA7	5.1 RP11-38023 5.1 4.1 IRP11-508N1 4.1 4.1 4.1 4.3 2 .2 .2 RP4-733D15 .2 SLC25A21 SNORA75	RP11-367C1 .4 RP11-451L9 RP11-474L7 2.2 RP11-556G2 RP11-571E6 RP11-617114 RP11-665C1 RP11-6174. RP11-75A9.3 RP1-212G6. RP1-54B20.7 RP3-393P12 .1 RP6-227L5.1 SLC38A5 SNORD37	1.2 RP11-38023 .2 .4 RP11-508N1 22.1 .3 4.1 4.2 1 3 4 7 .3 RP4-774G10 RP6-227L5.2 SLC38A6 snosnR60_Z	RP11-380P1 3.5 RP11-451L9 RP11-495L1 2.3 RP11-556G2 RP11-571E6 RP11-619J2 RP11-665I14 RP11-703G6 RP11-703G6 RP1-71L16.1 RP3-436M11 0.1 2RP6-99M1.1 SLC7A1 15	3.1 RP11-38023 3 8.2 RP11-508N1 2.2 4 0.1 1.1 1.1 1.2 1.3 RP13-43E11 1.3 RP5-1158E1 RP5-1158E1 RPGR SLC9A7 snoU13	RP11-380P1 3.7 RP11-45F23 RP11-498M5 2.4 RP11-556G2 RP11-556G2 RP11-571L1 RP11-644A7 RP11-692P1 RP11-799A1 .1 2RP1-71L16.3 RP3-499B10 2.1 RPS6KL1 SMAD4 SOCS6	3.2 RP11-417L1 5.2 RP11-552E4 2.3 9.2 .1 4.1 2.1 RP13-479F1 3RP1-71L16.0 .3 RP5-1158E1 RTN1 SNORA11 SORD	RP1- 4.1 3.2 56RP2 RP3- 2.2
138A5 499B	RP11-333E5 5.1 RP11-428B4 RP11-462G2 RP11-499E1 RP11-552E4 RP11-56H2. RP11-56H2. RP11-571L1 RP11-655M1 RP11-655M1 RP11-696N1 RP11-79A1 RP13-497K6 RP3-393P12 10.4 RP5-1158E1 RXFP2 SNORA25 SPACA5	5.2 RP11-38023 4.2 22.1 8.1 1.3 1 9.4 19.1 4.1 1 2.2 3.1 2.1 RP3-499B10 2.3 SALL3 SNORA31 SPACA5B	RP11-34168 3.3 RP11-43303 RP11-473D2 RP11-49F1. RP11-571E6 RP11-571E6 RP11-57622 RP11-665C1 RP11-696N1 RP11-696N1 RP11-75A9.3 RP13-928P6 RP3-393P12 0.5 RP5-972B16 SEMA6A SNORA7 SPCS3	5.1 RP11-38023 8.1 4.1 IRP11-508N1 4.1 4.3 2 .2 .3 .2 RP4-733D15 .2 SLC25A21 SNORA75 SRPX	RP11-367C1 .4 RP11-451L9 RP11-474L7 2.2 RP11-556G2 RP11-571E6 RP11-6771E6 RP11-665C1 RP11-665C1 RP11-665C1 RP11-665C1 RP11-54B20.7 RP1-54B20.7 RP3-393P12 .1 RP6-227L5.1 SLC38A5 SNORD37 SSX5	1.2 RP11-38023 .2 .4 RP11-508N1 22.1 .3 .1 4.2 1 3 4 7 .3 RP4-774G10 RP6-227L5.2 SLC38A6 snosnR60_Z SSX6	RP11-380P1 3.5 RP11-451L9 RP11-495L1 2.3 RP11-556G2 RP11-571E6 RP11-619J2 RP11-665I14 RP11-703G6 RP11-703G6 RP1-71L16.1 RP3-436M11 0.1 2RP6-99M1.1 SLC7A1 15 STAMBPL1	3.1 RP11-38023 3 8.2 RP11-508N1 22.2 4 0.1 1.1 2.1 RP13-43E11 1.2 RP5-1158E1 RP5R SLC9A7 snoU13 SUV39H1	RP11-380P1 3.7 RP11-45F23 RP11-498MS 2.4 RP11-556G2 RP11-571L1 RP11-644A7 RP11-692P1 RP11-729M2 RP11-729M2 .1 2RP1-71L16.3 RP3-499B10 2.1 RPS6KL1 SMAD4 SOCS6 SYN1	3.2 RP11-417L1 5.2 RP11-552E4 22.3 9.2 1.1 4.1 20.1 2.1 RP13-479F1 3RP1-71L16.6 3 RP5-1158E1 RTN1 SNORA11 SORD SYTL5	RP1- 4.1 .2 .2 6RP2 RP3- 2.2
138A	RP11-333E5 5.1 RP11-428B4 RP11-428B4 RP11-499E1 RP11-552E4 RP11-551L1 RP11-551L1 RP11-655M1 RP11-655M1 RP11-75A9. RP11-79A1 RP11-79A1 RP13-393P12 10.4 RP5-1158E1 RXFP2 SNORA25 SPACA5 TACR3	5.2 RP11-38023 5.2 22.1 8.1 1.3 1.9.4 19.4 19.1 1.1 2.2 3.1 2.1 RP3-499B10 2.3 SALL3 SNORA31 SPACA5B TIMP1	RP11-34168 3.3 RP11-43303 RP11-473D2 RP11-49F1. RP11-57166 RP11-571662 RP11-57662 RP11-665C1 RP11-665C1 RP11-696N1 RP11-75A9. RP11-87F15 RP13-928P6 RP3-393P12 0.5 RP5-972B16 SEMA6A SNORA7 SPCS3 TJP1	5.1 RP11-38023 8.1 14.1 1RP11-508N1 4.1 4.1 4.3 2 .2 .2 RP4-733D15 .2 SLC25A21 SNORA75 SRPX TLR3	RP11-367C1 A RP11-451L9 RP11-474L7 2.2 RP11-57662 RP11-571E6 RP11-617114 RP11-65C1 RP11-61714 RP11-65C1 RP11-6174 RP1-212G6. RP1-212G6. RP3-393P12 .1 RP6-227L5.1 SLC38A5 SNORD37 SSX5 TMED10	1.2 RP11-38023 .2 .4 RP11-508N1 22.1 .3 4.1 4.2 1 3 4 7 .3 RP4-774G10 RP6-227L5.2 SLC38A6 snosnR60_Z SSX6 TRMT5	RP11-380P1 3.5 RP11-451L9 RP11-495L1 2.3 RP11-556G2 RP11-571E6 RP11-619J2 RP11-665I4 RP11-703G6 RP11-703G6 RP11-709N2 RP1-30G7.2 RP1	3.1 RP11-38023 3 8.2 RP11-508N1 22.2 4 0.1 8.1 1.2 1.3 RP13-43E11 1.8 RP13-43E11 1.8 RP1-71L16.2 1.3 RP5-1158E1 RPGR SLC9A7 snoU13 SUV39H1 TSPAN5	RP11-380P1 3.7 RP11-45F23 RP11-498MS 2.4 RP11-556G2 RP11-571L1 RP11-644A7 RP11-692P1 RP11-692P1 RP11-729M2 RP11-729M2 RP11-729M2 2.1 RP3-499B10 2.1 RP3-499B10 2.1 RPS6KL1 SMAD4 SOCS6 SYN1 TSPAN7	3.2 RP11-417L1 5.2 RP11-552E4 2.3 9.2 1 4.1 20.1 2.1 RP13-479F1 3RP1-71L16.6 3 RP5-1158E1 RTN1 SNORA11 SORD SYTL5 TXNL4A	RP1- 4.1 .2 .2 RP3- 2.2 U1
138A	RP11-333E5 5.1 RP11-428B4 RP11-428B4 RP11-499E1 RP11-552E4 RP11-56H2. RP11-571L1 RP11-655M RP11-655M RP11-656M RP11-75A9. RP11-75A9. RP11-79A1 RP13-497K6 RP3-393P12 10.4 RP5-1158E1 RXFP2 SNORA25 SPACA5 TACR3 U12	5.2 RP11-38023 4.2 22.1 8.1 9.4 19.1 14.1 1 2.2 3.1 RP3-499B10 2.3 SALL3 SNORA31 SPACA5B TIMP1 U2	RP11-34168 3.3 RP11-43303 RP11-473D2 RP11-49F1. RP11-576E2 RP11-576E2 RP11-576E2 RP11-665C1 RP11-665C1 RP11-665C1 RP11-75A9. RP11-87F15 RP13-928P6 RP3-393P12 D.5 RP5-972B16 SEMA6A SNORA7 SPCS3 TJP1 U3	5.1 RP11-38023 5.1 4.1 IRP11-508N1 4.1 0.1 4.1 4.3 2 .2 RP4-733D15 .2 SLC25A21 SNORA75 SRPX TLR3 U4atac	RP11-367C1 A RP11-451L9 RP11-474L7 2.2 RP11-556G2 RP11-571E6 RP11-617114 RP11-665C1 RP11-61714 RP11-61748 RP1-212G6. RP1-54B20.7 RP3-393P12 .1 RP6-227L5.1 SLC38A5 SNORD37 SSX5 TMED10 U6	1.2 RP11-38023 .2 .4 RP11-508N1 22.1 .3 4.1 4.2 1 3 4 7 .3 RP4-774G10 RP6-227L5.2 SLC38A6 snosnR60_Z SSX6 TRMT5 U7	RP11-380P1 3.5 RP11-451L9 RP11-495L1 2.3 RP11-556G2 RP11-571E6 RP11-619J2 RP11-665I4 RP11-703G6 RP11-703G6 RP1-71L16.1 RP3-436M11 0.1 2RP6-99M1.1 SLC7A1 15 STAMBPL1 TSHZ1 U70984.1	3.1 RP11-38023 3 8.2 RP11-508N1 2.2 4 0.1 1.1 1.1 1.1 1.2 1.3 RP13-43E11 1.3 RP5-1158E1 RPGR SLC9A7 snoU13 SUV39H1 TSPAN5 UBA1	RP11-380P1 3.7 RP11-45F23 RP11-498M5 2.4 RP11-556G2 RP11-571L1 RP11-644A7 RP11-692P1 RP11-799A1 .1 2RP1-71L16.3 RP3-499B10 2.1 RPS6KL1 SMAD4 SOCS6 SYN1 TSPAN7 UBE2D3	3.2 RP11-417L1 5.2 RP11-552E4 2.3 9.2 1 4.1 2.1 RP13-479F1 3RP1-71L16.0 3 RP5-1158E1 RTN1 SNORA11 SORD SYTL5 TXNL4A UNC13C	RP1- 4.1 3.2 7.2 6RP2 RP3- 2.2 U1
138A5 499B	RP11-333E5 5.1 RP11-428B4 RP11-462G2 RP11-499E1 RP11-55E4 RP11-56H2. RP11-56H2. RP11-55M1 RP11-655M1 RP11-655M1 RP11-696N1 RP11-79A1 RP13-497K6 RP3-393P12 10.4 RP5-1158E1 RXFP2 SNORA25 SPACA5 TACR3 U12 UPRT	5.2 RP11-38023 4.2 22.1 8.1 1.3 1.9 4.1 1.1 2.2 5.1 RP3-499B10 2.3 SALL3 SNORA31 SPACA5B TIMP1 U2 USP11	RP11-34168 3.3 RP11-43303 RP11-473D2 RP11-49F1. RP11-57166 RP11-57166 RP11-57166 RP11-665C1 RP11-696N1 RP11-696N1 RP11-75A9.3 RP13-928P6 RP3-393P12 D.5 RP5-972B16 SEMA6A SNORA7 SPCS3 TJP1 U3 UXT	5.1 RP11-38023 8.1 4.1 IRP11-508N1 4.1 4.3 2 .2 .2 RP4-733D15 .2 SLC25A21 SNORA75 SRPX TLR3 U4atac WAS	RP11-367C1 A RP11-451L9 RP11-474L7 2.2 RP11-57662 RP11-571E6 RP11-6771E6 RP11-665C1 RP11-665C1 RP11-665C1 RP11-6C14. RP1-212G6. RP1-212G6. RP3-393P12 .1 RP6-227L5.1 SLC38A5 SNORD37 SSX5 TMED10 U6 WDR72	1.2 RP11-38023 .2 .4 RP11-508N1 22.1 .3 .1 4.2 1 3 4 7 .3 RP4-774G10 RP6-227L5.2 SLC38A6 snosnR60_Z SSX6 TRMT5 U7 Y_RNA	RP11-380P1 3.5 RP11-451L9 RP11-495L1 2.3 RP11-556G2 RP11-571E6 RP11-619J2 RP11-665I14 RP11-703G6 RP11-703G6 RP1-71L16.1 RP3-436M11 0.1 2RP6-99M1.1 SLC7A1 15 STAMBPL1 TSHZ1 U70984.1 YLPM1	3.1 RP11-38023 3 8.2 RP11-508N1 22.2 4 0.1 1.1 2.1 RP13-43E11 RP1-71L16.2 1.3 RP5-1158E1 RPGR SLC9A7 snoU13 SUV39H1 TSPAN5 UBA1 Z98304.1	RP11-380P1 3.7 RP11-45F23 RP11-498MS 2.4 RP11-556G2 RP11-571L1 RP11-644A7 RP11-692P1 RP11-729M2 RP11-729M2 AP11-729M2 CRP1-71L16.3 RP3-499B10 2.1 RP36KL1 SMAD4 SOCS6 SYN1 TSPAN7 UBE2D3 ZADH2	3.2 RP11-417L1 .1 .2 RP11-552E4 22.3 9.2 .1 4.1 20.1 2.1 RP13-479F1 3RP1-71L16.6 .3 RP5-1158E1 RTN1 SNORA11 SORD SYTL5 TXNL4A UNC13C ZDHHC15	RP1- 4.1 .2 .2 6RP2 RP3- 2.2 U1

PANTHER analysis: 163 mapped ids are found, 270 mapped ids are not found.

5.8.9.7 CnLOH of TN pure DCIS and TN Invasive Breast Disease

There is CnLOH present in TN pure DCIS (n=9/9) not observed in TN invasive breast disease (n=0/7).

- 1. p-values < 0.05;
- 2. A gene list is mapped from 110 genomic regions found on chromosomes 1, 2,

3, 6, 7, 10, 11, 12, 20, 21;

These regions encompass 891 genes altered in TN pure DCIS;

Genes:

5S rRNA 7SK ABHD11 AC004975.1 AC004979.1 AC004979.2 AC004979.3 AC004979.4 AC004979.5 AC004979.6 AC004979.7 AC005537.2 AC005586.2 AC006021.1 AC007092.1 AC007238.1 AC007560.1 AC007680.2 AC007682.1 AC007682.2 AC008173.1 AC010087.1 AC010087.4 AC010087.5 AC012361.1 AC012368.1 AC012368.2 AC013251.1 AC013251.2 AC016727.3 AC016894.1 AC017083.1 AC017083.2 AC017083.3 AC018462.2 AC018462.3 AC022210.2 AC023115.1 AC023115.3 AC023165.1 AC025594.1 AC025594.2 AC064868.1 AC067950.1 AC069304.1 AC073422.1 AC073464.11 AC073464.9 AC073846.1 AC073846.2 AC073846.3 AC074289.1 AC078811.1 AC078941.1 AC079112.1 AC079807.4 AC083868.1 AC083883.1 AC092898.1 AC092902.1 AC092910.1 AC092910.2 AC092958.1 AC093087.1 AC093168.1 AC097463.1 AC097463.2 AC106874.1 AC106874.3 AC107081.1 AC107081.2 AC107081.5 AC108039.1 AC108039.2 AC108039.3 AC108462.1 AC108697.1 AC108729.1 AC108739.1 AC112484.1 AC112694.1 AC114752.1 AC114808.2 AC114808.3 AC117401.1 AC117472.1 AC117472.2 AC117508.1 AC126182.1 AC131571.1 AC131571.2 AC138655.4 AC144441.1 ACAD9 ACTG2 ACTGP9 ACTR3C ADCY5 AF131217.1 AF227510 7 AGK AGTR1 AKR1A1 AL008729.1 AL022170.1 AL023583.1 AL023807.1 AL023807.2 AL024498.1 AL034372.1 AL035670.1 AL049635.1 AL049635.2 AL049710.1 AL049710.2 AL049710.4 AL050335.1 AL050335.2 AL109918.1 AL121946.1 AL133268.1 AL136230.1 AL136305.1 AL137003.1 AL138724.3 AL139044.2 AL157773.1 AL160037.2 AL160400.1 AL160400.2 AL162579.1 AL354680.1 AL357079.1 AL357079.2 AL357497.1 AL359316.1 AL445669.2 AL589723.1 AL590062.1 AL603888.1 AL604028.1 AL604028.2 AL645811.1 ALG1L ALK ANKRD20B APOB ARGFX ARTN ASB3 ASS1P1 ATP5LP2 ATP5LP5 ATP6V0B ATP6V1F ATXN1 B3GNT1 B4GALT2 BAK1 BBS9 BCL7B BMP5 BPESC1 BTF3L4 C1D C1orf210 C1orf50 C1orf84 C2orf43 C2orf89 C3orf16 C3orf22 C3orf33 C3orf37 C3orf72 C6orf114 C6orf142 C6orf227 C6orf52 C7orf29 C7orf55 CAP1 CAP2 CCDC136 CCDC14 CCDC17 CCDC23 CCDC24 CCDC30 CCDC48 CCDC90A CD2AP CD83 CD96 CEP70 CCT4 CHCHD6 CHST13 CLDN19 CLDN3 CLDN4 CLEC5A CMAH CNBP COL21A1 COL9A2 COMMD1 CYP26B1 COMMD2 COPG COX6B1P1 CTD-2021J15.1 CTD-2021J15.2 CYP39A1 DEFB110 DEFB112 DEFB113 DEFB114 DEFB133 DNAH6 DNAJB6 DNAJC30 DPH2 EBNA1BP2 DEK EDN1 EEF1A1P25 EFHC1 ELOVL2 ELP4 ENO1P3 EPCAM ERBB3 ERMAP ESYT3 FABP7 FAIM FAM161A FAM65B FAM8A1 FBXO40 FLNC FOXL2 FOXN2 FSTL1 GAPDHP39 GCNT2 GFOD1 GFRAL GGNBP1 GIMAP2 GIMAP4 GCLC GCM2 GCNT6 GIMAP6 GIMAP7 GMNN GMPR GPBP1L1 GPR110 GPR111 GPR115 GIMAP8 GJA9 GMPS GP9 GPR116 GPR156 GRM8 GS1-388B5.1 GS1-388B5.2 GS1-388B5.3 GS1-388B5.4 GS1-388B5.8 GS1-388B5.5 GS1-388B5.6 GS1-388B5.7 GSK3B GSTA1 GSTA2 GSTA3 GSTA5 GSTA6P GTF2E1 GTF2H1 H1FX HCRTR2 HEG1 HGD HIPK2 HIVEP1 HLA-DQA1 HLA-DQB1 HMGCLL1 HMGCS2 hsa-mir-133b hsa-mir-206 hsa-mir-548a-1 hsa-mir-548i-1 IMMP1L IPP IQCJ hsa-mir-559 hsa-mir-761 HSPDP7 IRF5 HYI IGSF22 IL17A IL17F IPO13 ITGB5 JHDM1D KDM4A KIAA0319I ISY1 ITPR3 JARID2 KAI RN KCNK12 KCP KDM1B KIAA1257 KIF13A KLHL31 KLRAQ1 KLRG2 KTI12 LDHA LDHAL6A KIAA0467 KIAA1147 LUC7L2 LDHC LEPRE1 LRFN2 LRRC1 LRRC16A LRRC4C LRRC58 LRRC61 MAK MAST2 **МСМ3** MED8 MEP1A MFSD2A MGAM MKRN1 MLXIPL MME MRAS MRPL32

264

	MRPS22	MSH2	MTCO3P1	MUC13	MUTYH MYC	CBP	MYL6P4	MYLIP	MYLK	N6AMT1	
	NAP1L1P3	NASP	NCDN NCR	NA00240	NEDD9	NHLRC1	NOL7	NRD1	NRXN1	NUP153	OFCC1
OR5/	AK2	OR9A1P	OR9A3P	OR9A4	OSBPL11	OSBPL9 P2	RY1 PABPC1	P10	PAK1IP1	PAQR8	
	PARP12	PAX6	PDIA4	PDIA5	PELI1 PFN2	PHACTR1	PHGDH	PIK3CB	PIK3R3	PKHD1	PKIB
PLA2	G7	PLCH1	PLCXD2	PLXNA1	PNO1	PPCS	PPIH	PPP3R1 PP	T1 PRIM2	PRR23A	
	PRR23B	PRR23C	PRSS37	PSMB2	PTPLB PTP	N5	PTPRF	RAB19	RAB3B	RAB43	
	RAB7A	RABL3	RANBP9 RA	RRES1	RARRES2	RBM24	RCAN2	REPIN1	RHBDL2	RIMKLA	RLF
	RNF13	RNF144B	RNF160	RNF182	ROPN1	RP11-100F2	22.1 RP11-10	022.2	RP11-115D	7.3	
	RP11-117F2	22.1	RP11-117L1	5.1 RP11-117	7L15.3 RP11-'	121P10.1	RP11-1220	<2.2	RP11-125M	16.1	
	RP11-127P7	7.2 RP11-128	A6.2 RP11-12	8A6.3 RP11-	138N21.1	RP11-146l2	.1	RP11-146I2	.2	RP11-14H	13.3
	RP11-157D ²	18.2	RP11-163G	10.2	RP11-163G1	10.3	RP11-163G	10.4 RP11-16	7H9.3	RP11-167	'H9.4
	RP11-17403	3.1	RP11-1740	3.3 RP11-174	O3.4	RP11-184I1	6.2	RP11-184I1	6.3	RP11-184	116.4
	RP11-18H7.	.1	RP11-191A1	5.1	RP11-191A1	5.2	RP11-191A	15.3	RP11-191A	15.4 RP11-	-192K2.3
	RP11-197K3	3.1	RP11-202D2	20.1	RP11-219E2	4.1 RP11-22	1E20.3	RP11-221E2	20.4	RP11-221	E20.5
	RP11-22806	6.2	RP11-232M	24.1	RP11-255N4	1.2	RP11-255N	4.3	RP11-268F	1.2	
	RP11-268F1	I.3 RP11-280	H21.1	RP11-282K6	6.3	RP11-290K4	4.1	RP11-290K4	4.2	RP11-2	291L19.1
	RP11-306L1	4.1	RP11-309L2	4.2	RP11-309L2	4.4	RP11-309L2	24.6	RP11-310F	12.1	
	RP11-311B1	18.1	RP11-321G	3.1	RP11-322N2	21.2	RP11-3304	16.1	RP11-33K5	1	
	RP11-342M	1 2	RP11-342M	1 3 RP11-3/2	M1 /	RP11-3451 2	23.1	RP11-350H	3.1	PP11-350	H3 /
RP11	-359N11 1	RP11-359N	11.2	RP11-3600	19.1	RP11-3600	19.4	RP11-3600	19.5	RP11-365	F18 1
	RP11-365E1	18.3	RP11-367G	31	RP11-370B1	8 1	RP11-370B	18.2	RP11-370B	18.3	10.1
	DD11 270D1	10.5	DD11 270D1	0 5	DD11 202E6		DD11 2045	7 4	DD11 2045	7.0	
	DD14 20553	7.0	DD14 20D2	0.0	C444	DD11 2024	RF11-304F7	DD11 2024	RF11-304F	0.2	0474
0.04	RP11-300F7	.2	RP11-30P22	.2 RP11-390		RP11-392A	-	RP11-392A	23.5	RP11-397	G17.1
RP1-	13D10.2	RP1-13D10	.3	RP1-13D10.		RP1-13D10.	5	RP11-401E	14.1	RP11-401	E14.2
	RP11-402J7	.2	RP11-402J7	.3	RP11-40M23	3.1	RP11-411K	7.1 RP11-411	K7.2	RP11-411	K7.4
	RP11-411K7	7.5	RP11-418B1	2.1	RP11-428L9	.1	RP1-142O9	.1	RP1-142O9	.2	
	RP11-434H6	5.2	RP11-446F1	7.3 RP11-440	6F3.2	RP11-451G	4.2	RP11-451G	4.3	RP11-466	iL17.1
	RP11-470H9	9.1	RP11-500K1	9.1	RP11-501119	9.3	RP11-50111	9.4	RP11-5010	2.1	
	RP11-50102	2.2	RP11-50102	2.3	RP11-501O2	2.4	RP11-5010	2.5	RP11-505J9).1	
	RP11-506B1	15.4	RP11-506B1	5.6	RP11-511P7	.2 RP1-151F	17.1	RP11-521J5	5.1	RP11-526	iP5.1
	RP11-526P5	5.2	RP11-529F4	.1 RP11-529	G21.4	RP1-152L7.	1RP1-152L7.	3RP1-152L7.	5RP1-152L7.	6RP11-543	F8.1
	RP11-543F8	3.2	RP11-5480	1.1	RP11-548O1	1.3	RP11-550C4	4.6 RP11-560	J1.1	RP11-567	'P17.1
	RP11-567P1	17.2	RP11-585F2	20.1	RP11-598F1	7.1	RP11-605F	14.1	RP11-605F	14.2	
	RP11-605F1	14.3	RP11-622P1	3.2	RP11-630l5.	1	RP11-632K2	21.1	RP11-632K	21.3	
	RP11-635I1	0.1 RP11-637	019.2	RP11-639B1	1.1	RP11-639F	1.1	RP11-639F	1.2	RP11-639	F1.3
RP11	-63E16.1	RP11-649A	16.1	RP11-649A1	6.5	RP11-651P2	23.2 RP11-65	1P23.3	RP11-651P2	23.4	
	RP11-651P2	23.5	RP11-651P2	23.6	RP11-666A2	.0.1	RP11-666A2	20.3	RP11-666A	20.4	
	RP11-674E1	16.1	RP11-681L4	.1	RP11-689D3	3.4	RP11-69C1	7.3	RP11-69C1	7.4	
	RP11-71H17	7.1	RP11-71H17	7.6	RP11-71N10).1	RP11-722C	17.1	RP11-723C	11.2	
	RP11-72304	4.2	RP11-72304	4.3	RP11-72304	1.6	RP11-7230	4.7	RP11-7230	4.8	
	RP11-735A5	5.1	RP11-767N6	3.2	RP11-767N6	6.7	RP11-771D	21.2	RP11-775J2	23.1	
	RP11-775J2	3.2	RP11-779P1	5.1	RP11-779P1	5.2	RP11-785H	2.1	RP11-788A	4.1	
	RP11-788A4	4.2	RP11-793K1	.1	RP11-795J1	.1	RP11-795J1	.2	RP11-79N2	3.1 RP1	1-7011.3
	RP1-180E22	2.3	RP11-812I2	0.2	RP11-90C4.	1	RP11-90C4	2 RP11-90C4	.3	RP11-900	24.4
	RP1-190J20	0.2	RP11-91A18	3.1	RP11-91A18	.4 RP11-91A	18.5	RP11-9N20	.1	RP1-228	113.1
	RP1-228H13	3.2	RP1-245M1	3.2 RP1-257A	7.4	RP1-273P12	2.1	RP1-273P12	2.3	RP1-27K1	2.2
	RP1-27K12.	4 RP1-290I10).4	RP1-290I10	.5	RP1-290I10	.7	RP1-304B14	4.3	RP13-476	E20.1
RP13	-685P2.4	RP13-685P2	2.5	RP1-39G22.	.4	RP1-39G22	.5	RP1-62D2.3	RP1-71H19	2	RP1-
9201	4.6	RP3-335N1	7.2	RP3-342P20).2	RP3-347E1.	2 RP3-365O1	2.2	RP3-380E1	1.2	RP3-
	121	RP3-425P1	2 2 RP3-425P	12.4	RP3-425P12	5	RP3-437C1	5.1	RP3-44819.1	RP3-448	9.2 RP3-

451B15.3	RP3-462C1	7.1	RP3-486B10	D.1	RP3-486D24	4.1	RP3-501N12	2.3	RP3-510L9	.1RP3-
522P13.1	RP3-522P1	3.2	RP3-522P13	3.3 RP3-525L	.6.2	RP4-533D7.	3	RP4-533D7	.4	RP4-
533D7.5	RP4-584D1	4.5	RP4-584D14	4.6	RP4-633H1	7.2	RP4-657D16	6.3	RP4-724P1	2.1
RP4-728[04.2	RP4-728D4	.3	RP4-753D5	.3	RP4-753D5.	4	RP4-76112.2	2 RP4-76112.	4 RP4-
765A10.1	RP4-765A1	0.2	RP5-1142J1	9.1	RP5-1142J1	9.2	RP5-1154E9	9.5	RP5-1154E	9.6
RP5-1154	E9.7	RP5-864K1	9.4	RP5-894A1	0.2	RP5-894A10).5	RP5-983H2	1.3	RP5-
994D16.3	RP5-994D1	6.7	RP5-994D10	6.9	RPL15P3	RPN1	RPS15AP10	RPS15AP16	6 RF	S17P5
RPS27P1	2 RRAGC	SCGN	SEC22A	SEMA5B	SHMT1P1 S	IRT5	SLC12A8	SLC25A20P	'1	
SLC25A2	7 SLC33A1	SLC37A3	SLC6A9 SM	IAP2	SMPDL3A	SNORA24	SNORA5	SNORA70	SNORD66	
SNORD78	snoU13	SNTG2	SNX4	SOX6	SPTY2D1	SSBP1	ST3GAL3 S	TX1A	SUCLA2P2	
SUCLG1	SYCP2L	TAS2R3	TAS2R38	TAS2R4 TA	S2R5	TBC1D7	TBL2	TBXAS1	TDRD6	
TESK2	TFAP2B TF	AP2D TFAP2	ETGFBR3	TIE1	TMCO2	TMEM125	TMEM14A	TMEM14B	ТМ	EM14C
TMEM69	TMEM86A	TMSB10	TNFRSF21	TNPO3 TO	E1 TPI1P2	TPMT	TPO	TRAM2	TRIM38	
TSG101	TSPAN1 T	FC26 TXNDC1	12	TXNRD3	TXNRD3IT1	U1	U3	U4	U6	U7
UBE3C U	BN2	UEVLD	UMPS	UROC1	USP34	VN1R11P	VN1R12P	VN1R13P	V	PS37D
WBSCR2	2 WBSCR26	WBSCR27	WBSCR28	WDR92 WE	E2 WWTR1	XPO1	XXbac-BPG	254F23.5	XXbac-	
BPG254F23.6	XXbac-BPC	6254F23.7 Y_	RNA	YBX1	Z83001.1	Z93017.1	ZBTB20	ZC3HAV1	ZC3HAV1L	ZIC1
ZIC4	ZMPSTE24	ZMYM4	ZMYND12	ZNF148	ZNF398 ZNI	F425 ZNF643	ZNF691	ZNF775	ZNF786	

PANTHER analysis: 335 mapped ids are found, 497 mapped ids are not found.

There is CnLOH present in TN invasive breast disease (n=7/7) not observed in TN pure DCIS (n=0/9).

- 1. p-values < 0.05;
- A gene list is mapped from 30 genomic regions found on chromosomes 1, 4,
 7, 10, 14, 18, 21;
- 3. These regions encompass 379 genes altered in TN invasive breast disease;

Genes:

5S rRNA 7SK ABCA4 ABCD3 ABLIM1 AC005071.1 AC005071.2 AC005071.3 AC005879.1 AC006557.1 AC007922.2 AC007956.2 AC016839.1 AC018797.3 AC022884.1 AC023983.1 AC069281.1 AC069281.2 AC073585.1 AC073588.1 AC073842.18AC073842.19 AC090363.1 AC091588.1 AC093577.3 AC093577.5 AC093577.7 AC093577.8 AC096947.1 AC104961.1 AC105247.1 ACADSB ACTL6B AFAP1L2 AFG3L2 AGFG2 AL109761.3 AL109761.5 AL117351.1 AL117351.2 AL117351.3 AL117351.4 AL117351.5 AL117351.6 AL117351.7 AL133384.1 AL157788.1 AL158014.1 AL353664.1 AL355598.1 AL355861.1 AL3559747.1 AL359836.1 AL603764.1 AL731543.1 ALG14 AMAC1L1 ANKRD62 AP000431.1 AP000431.2 AP000432.2 AP000457.1 AP000568.2 AP000745.1 AP000855.4 AP000946.2 AP000963.2 AP000963.3 AP000998.1 AP000998.2 AP001029.1 AP001120.1 AP001171.1 AP001439.2 AP001441.1 AP001442.2 AP001525.1 AP001525.2 AP001604.3 AP001605.4 AP001605.6 AP001607.1 AP002414.1 AP002414.2 AP005264.2 AP4M1 APP ARHGAP29 ARMS2 ATE1 BAG3 BCAR3 BTBD16 BTG3 C10orf119 C10orf120 C10orf46 C10orf82 C10orf84 C10orf88 C10orf96 BUB3 C18orf1 C18orf19 C1orf87 C1QBPP C21orf131 C21orf37 C21orf91 C7orf43 C7orf47 C7orf51 C18orf45 C7orf59 C7orf61 CABLES1 CACNA2D1 CASC2 CCDC18 CDH2 CELF4 CHODL CHST9 CIDEA CNN3 CNPY4 COPS6 CTA-109P11.1 CTAGE1 CTB-161A2.2 CTB-161A2.3 CTB-161A2.4 CUZD1 CXADR CYP2J2 DLST DMBT1 DNMBP DNTTIP2 DR1 EIF3A FIF4A1P EMX2OS ENO4 F3 FAM24A FAM24B FAM45A FAM69A FBXO24 FCF1 EMX2 FDPSP FGFR2

FGGY FNBP1L GAL3ST4 GAPDHP29 GATA6 GATS GCLMGFRA1 GIGYF1 GNAL GNB2 НМХ3 GPC2 GRK5 HMX2 HOOK1 HRH4 hsa-mir-106bhsa-mir-1-2 hsa-mir-133a-1 hsamir-25 hsa-mir-320c-2 hsa-mir-760 hsa-mir-93 HSPA12A HTR7 HTRA1 IKZF5 IMPA2 IMPACT INADL KCNK18 KCTD1 KIAA0317 KIAA1598 KRT18P2 LRCH4 LTBP2 MANBA INPP5F MBLAC1 MCM7 MEPCE MIB1 MIR1255B1 MOSPD3 MPPE1 MTF2 NANOS1 NCAM2 MC2R MC5R NCRNA00093 NCRNA00113 NCRNA00157 NFIA NFKB1 NSMCE4A ORC5L OSBPL1A PCOLCE PDZD8 PILRA PILRB PLEKHA1 PMS2L1 PNLIP PNLIPRP1 PNLIPRP2 PNLIPRP3 PPIAP PROX2 PRSS7 PSMA8 PSTK PRDX3 PRLHR PVRIG RAB11FIP2 RELN RGS10 RP11-107C16.2 RP11-10L12.1 RNMT RP11-10L12.2 RP11-10L12.4 RP11-10L12.5 RP11-145M4.2 RP11-145M4.3 RP11-148B18.1 RP11-148B18.3 RP11-10L12.6 RP11-148B18.4 RP11-162A23.5 RP11-179H18.2 RP11-179H18.4 RP11-179H18.5 RP11-179H18.7 RP11-179H18.8 RP11-198M6.5 RP11-215A21.2 RP11-245J24.1 RP11-268I9.1 RP11-198M6.2 RP11-26N15.1 RP11-282I1.1 RP11-295023.2 RP11-295023.4 RP11-313A24.1 RP11-317F20.2 RP11-319l23.2 RP11-319l23.3 RP11-328K15.1 RP11-33D13.2 RP11-354M20.3 RP11-366L18.1 RP11-36N22.1 RP11-36N22.3 RP11-430G17.1 RP11-436K8.1 RP11-44M6.1 RP11-44M6.3 RP11-465K1.2 RP11-470E16.1 RP11-488P3.1 RP11-498B4.2 RP11-498B4.5 RP11-498B4.7 RP11-498J9.1 RP11-498J9.2 RP11-498J9.4 RP11-500G22.2 RP11-501J20.3 RP11-501J20.5 RP11-501J20.2 RP11-506M12.1 RP11-539l5.1 RP11-539l5.2 RP11-564D11.3 RP11-567J24.4 RP11-575B7.2 RP11-575B7.3 RP11-57H12.2 RP11-62L18.3 RP11-5G18 2 RP11-681N23.1 RP11-758P17.2 RP11-758P17.3 RP11-781P14.3 RP11-786F14.1 RP11-78A18.2 RP11-78O9.1 RP11-79M19.2 RP11-86H7.1 RP11-86H7.2 RP11-86H7.3 RP11-86H7.6 RP11-86H7.7 RP13-530H6.2 RP4-612C19.1 RP4-RP4-639F20.1 RP4-639F20.3 RP4-668G5.1 RP4-713B5.2 RP4-717l23.2 612C19.2 RP5-1033H22.2 RP4-782L23.2 RP5-833A20.1 RP5-837O21.1 RP4-717l23.3 RP4-782L23.1 RP5-RP5-837021.5 RP5-837021.6 RP5-837021.7 837021.2 RP5-837021.3 RP5-837021.4 RP5-837O21.8 RP5-837O21.9 RPL10P1 RPL37P3 RPL37P4 RPS15AP5 RPS3AP1 RPS6KL1 SEC23IP SFXN4 SLC18A2 SLC44A3 SLC6A6P SLMO1 SNORA19 SNORA7 SNORA73 snoU13 SPDYE3 SPIRE1 SS18 STAG3 TACC2 TAF4B TAF6 TFR2 TGFBR3 TIAL1 TM2D1 TMED5 TMEM56 TSC22D4 TUBB6 U1 U3 U6atac U7 U6 UBE2D3 VAX1 Y_RNA YLPM1 ZCWPW1 ZNF3 ZNE519 ZNE521 ZSCAN21

PANTHER analysis: 152 mapped ids are found, 227 mapped ids are not found.

5.8.10 Copy Number Aberrations in All Triple Negative DCIS compared to Triple Negative Invasive breast disease

This series examines the difference between TN DCIS and TN invasive breast disease.

Frequency plots showing copy number aberrations between TN DCIS and TN invasive breast disease were provided by King's College London Bioinformatics department; Figure 43.

Figure 43: Frequency plots showing copy number aberrations between triple negative DCIS and triple negative invasive disease (amplifications, duplications, gains, Sc gains, losses, total losses CdLOH and CnLOH,) (pages 264-266).

Frequency Plots_ Triple Negative Tumour vs All Triple Negative DCIS

5.8.10.1 Amplification of Triple Negative DCIS and Triple negative Invasive Breast Disease

No amplifications were present in triple negative DCIS (n=0/19) or triple negative invasive breast disease (n=0/7).

5.8.10.2 Duplication of Triple Negative DCIS Compared to Duplication in Triple Negative Invasive Breast Disease

Duplicated genes found in TN DCIS (1/19) were also present in TN invasive breast disease (n=3/7).

- 1. p-values < 0.05;
- The gene list is created from 5 genomic regions found on chromosomes 2, 6, 12;
- 3. These regions encompass 57 genes altered in TN DCIS;

Genes:

7SK AC012494.1 AC079600.1 AL121959.1 ARG1 C6orf192 CTAGE9 CTGF EEF1A1P36 ENPP1 ENPP3 HCRTR2 HMGB1L13 LRFN2 MED23 MOXD1 OR2A4 PRICKLE1 RP11-121P10.1 RP11-123H21.1 FYA4 RP11-69I8.2 RP11-203B4.1 RP11-25I15.1 RP11-295F4.4 RP11-314E23.1 RP1-131F15.2 RP11-69I8.3 RP1-283K11.3 RP1-55C23.4 RP1-55C23.5 RP1-55C23.7 RP1-78N10.2 RP3-

323K23.3	K23.3 RP3-416F10.1 RP3-462C17.1			RP3-523C2	1.1	RP3-523C2	1.2	RP5-988G1	5.1	
RPS12 SNORA33 SNORD100 SNORD101		STX7	TAAR1	TAAR2	TAAR3	TAAR4P	TAAR5	TAAR6		
TAAR7P TAAR8 TAAR9 U4		VNN1	VNN2	VNN3						

PANTHER analysis: 22 mapped ids are found, 35 mapped ids are not found.

Duplication of genes found in TN invasive breast disease (n=3/7) which are not observed in TN DCIS (n=0/19):

- 1. p-values < 0.05;
- The gene list is created from 8 genomic regions found on chromosomes 6, 8, 12;
- 3. These regions encompass 126 genes altered in TN invasive breast disease;

Genes:

5S_rRNA 7SK	ABCC10 AL	.080315.3	AL096711.1	AL136304.1	AL136304.2	AL13630	4.3 AL45	1073.1	AL58	3834.1	BMP5
BYSL	C6orf108 C	6orf132 C6orf	15_2 C6orf154	4 C6orf174 C6	Sorf226 C6orf	58	C8orf85 C	CND3	CENPW	CLIC5	CNPY3
COL21A1 CRIP3 (CUL7 CUL9	DLK2 ECH	DC1 EEF1DP5	ENPP4 ENP	P5 FRS3	GFRAL	GNMT GU	CA1A	GUCA1B	HCRTF	R2 HEY2
HINT3 HMGCLL1	hsa-mir-588	KIAA0240 K	LC4 KLHDC3	LAMA2	MEA1	MED20	MRPL2	MRPS	S10 NCO	A7 PEX	B PGC
POLR1C PF	PP2R5D	PRB2	PRICKLE4	PTCRA	PTK7	PTPRK RNF	-146 RP11-1	03C16.2	2 F	RP11-15	IM7.1
RP11-162L	10.1	RP11-213N	20.1	RP11-22806	6.2	RP11-298J2	23.5 RP11-2	98J23.6	6 RP11-	325024.	1 RP11-
325O24.2 RP11-3	57P24.2 RP1	139D8.6 RP1	1480N24.3 RF	P11-480N24.4	RP11-480N2	24.6 RP11-52	7F13.1 RP11	-527F1	3.2 RP11	-533020	.2 RP11-
570K4.1 RP11-624	4M8.1 RP11-7	753G20.1	RP11-775l2	2.2	RP1-177A13	3.1	RP1-179E1	3.1	F	RP1-2931	.8.2
RP1-293L8.5 RP1	3-469O16.1 F	RP1-6P5.2	RP1-86D1.2	RP1-86D1.3	RP1-86D1.4	RP1-86D1.5	6 RP1-8B1.4 F	RP3-330)M21.5 R	P3-337F	l4.6 RP3-
351K20.3	RP3-351K2	0.4	RP3-403A15	5.1 RP3-447E	21.3	RP3-475N1	6.1	RP5-9	973N23.4	Ļ	
RPL24P4	RPL7L1 RS	PO3	SCARNA15	SLC22A7 SL	C30A8 SNOR	A8	snoU13	SRF	TAF8	TFEB	THEMIS
TJAP1 TOMM6 TF	RERF1 TRMT	11 TTBK1	U6 U7	USP49 XPO	5 Y_RNA	YIPF3	ZNF318				

PANTHER analysis: 62 mapped ids are found, 64 mapped ids are not found.

5.8.10.3 Genomic Gains of Triple Negative DCIS Compared to Genomic Gains in Non Triple Negative DCIS

Gene gains for TN DCIS (n= 4/19) and TN invasive breast disease (n=5/7) show considerable overlap, i.e. genes are present in both groups.

- 1. p-values < 0.05;
- A gene list is mapped from 25 genomic regions found on chromosomes 1, 3,
 9, 10, 20, 21, X;

These regions encompass 232 genes altered in TN DCIS and TN invasive breast disease;

Genes:

5S rRNA 7SK AC055758.1 AC072028.2 AC092898.1 AC107021.1 AC108729.1 AC112504.2 AC128648.1 AC133435.1 AC133435.2 AKAP12 AL096840.2 AL13260.1 AL158155.2 AL356137.1 AL357514.2 AL357561.2 AL365214.2 AL450307.1 AL583849.1 ATP1B3 ATR BNIP3 C1orf135 C3orf16 C3orf58 C3orf70 CCDC39 CCIN CHCHD6 CLIC6 CLTA COMMD2 CTD-250103.1 CTD-250103.2 CTD-250103.3 DCAF10 DHX36 EEF1A1P25 EHHADH EIF2S2P2 ESR1 EXOSC3 EXTL1 FAM54B FBX010 FLYWCH1P1 FRMPD1 FXR1 GK5 GLIPR2 GM2AP1 GNE GPR149 GRHPR GRK7 HRCT1 IPCEF1 IYD JAKMIP3 MACROD2 MAN1C1 MAP3K13 MELK MFN2 MIP MME MTHED1L NCRNA00160 OPRM1 OR2S2 PABPC1P10 PAFAH2 PAQR7 PAX5 PCOLCE2 PDIK1L PFN2 PIK3CB PLCH1 PLEKHG1 PLOD2 PLS1 PLSCR1 PLSCR2 PLSCR4 PLSCR5 PLXNA1 POLR1E PPP1R14C PPP2R2D RAB1C RECK RFPL4B RG9MTD3 RNF13 RNF38 RNF7 RP1-105O18.1 RP11-110C15.4 RP11-113A10.1 RP11-113A10.2 RP11-113A10.3 RP11-113A10.5 RP11-117F22.1 RP11-117I 15 1 RP11-136K14.2 RP11-136K14.3 RP11-144C9.1 RP11-167H9.2 RP11-136K14.1 RP11-167H9.3 RP11-167H9.4 RP11-167H9.5 RP11-167H9.6 RP11-190C21.3 RP11-190C21.4 RP11-217E22.1 RP11-217E22.5 RP11-21M4.2 RP11-220I1.1 RP11-220I1.2 RP11-217E22.2 RP11-232M24.1 RP1123D24.1 RP11-23D24.2 RP11-255N4.2 RP11-220I1.4 RP11-255N4.3 RP11-259P15.1 RP11-259P15.3 RP1-125I3.2 RP1-125I3.3 RP1-125I3.4 RP1-125I3.7 RP11-270G15.2 RP11271K21.2 RP11-271K21.4 RP11-271K21.7 RP11-274H2.2 RP11-274H2.3 RP11-291C6.1 RP11-297B17.2 RP11-29A1.3 RP11-317B3.2 RP11-327L3.1 RP11-327L3.3 RP11-327L3.4 RP11-327L3.5 RP11-340E6.1 RP11-340E6.2 RP11-343B5.1 RP11-383G6.3 RP11-383G6.4 RP11-397D12.4 RP11-397D12.6 RP11-397D12.7 RP11-405L18.1 RP11-405L18.2 RP11-405L18.4 RP11427D1.1 RP11-439C8.1 RP11-439C8.2 RP11-451G4.1 RP11-451G4.2 RP11-451G4.3 RP11-465M18.1 RP11-471B18.1 RP11-483E7.1 RP11-506B6.1 RP11-506B6.2 RP11-506B6.3 RP11-548O1.1 RP1-159M24.1 RP11-605F14.3 RP11-613F7.1 RP11-613M10.6 RP11-622L21.1 RP11639F1.1 RP11-639F1.2 RP11-639F1.3 RP11-63E16.1 RP11-649A16.1 RP11-651P23.2 RP11651P23.3 RP11-651P23.5 RP11-651P23.6 RP11-656A15.1 RP11-65C6.1 RP11-651P23.4 RP11-785G3.1 RP11-758I14.2 RP11-758I14.3 RP11-84P7.1 RP11-84P7.2 RP11-84P7.3 RP11-88H10.1 RP1188H10.2 RP11-88H10.3 RP1-197O17.3 RP1-292B18.1 RP1-292B18.3 RP1-292B18.4 RP1-297M16.2 RP1-317E23.3 RP1-44A20.4 RP1-99E18.2 RP3-422F24.2 RP3-460G2.2 SCARNA17 SCARNA18 SEPN1 SLC30A2 SLC35F1 snoU13 STMN1 TFDP2 TOMM5 TRIM63 TRPC1 U1 U3 U4 U6 U7 U8 WWTR1 XRN1 Y RNA ZBTB5 ZCCHC7

PANTHER analysis: 77 mapped ids are found, 155 mapped ids are not found.

5.8.10.4 Sc Gains of Triple Negative DCIS Compared to Sc Gains in Triple Negative Invasive Breast Disease

The comparison of values for Sc gains in TN invasive breast disease (n=3/7) and TN DCIS (n=0/19)

- 1. p-values <0.05;
- 2. A gene list is mapped from 32 genomic regions found on chromosomes 1, 2,

3, 6, 10, 16, 20. This represents Sc gains for TN Invasive breast disease;

3. These regions encompass 209 genes altered in TN invasive breast disease;

Genes:

5S_rRNA	7SK	AADAC	AADACL2	AC007392.3	AC007403.1	AC007403.2	AC009086.1	AC009086.3	AC00908	6.4
	AC009474.1	AC009474.2	AC025279.1	AC055758.1	AC072028.2	AC078784.1	AC107021.1	AC107027.2	AC10872	9.1
AC121332.1	I AC128648.1	AC133435.1	AC133435.2	AC133555.1	AC133555.2	AC133555.3	AC133555.4	AC133555.6	AC13355	5.7
	ACPL2	AL357561.2	AL450307.1 A	ARHGAP31	ASTE1	ATP2C1 ATF	P5LP5 ATR	B4GALT4	BNIP3	BOLA2
C1orf135 C	2orf86 C3orf16	6 C3orf30 C3	orf58 CCDC39	9 COMMD2	CPNE4	CTD-250103	3.1	CTD-250103	3.2	
	CTD-25010	3.3 DHX36	EEF1A1P25	EXTL1 FAM5	4B GIYD1 Gł	K5 GM2AP1 C	SPR149 GST	D3P IGSF11	IYD 、	JAKMIP3
LSAMP MA	CROD2	MAN1C1 MM	IE MRPL3	NEK11	NUDT16 NU	DT16P	OPRM1 P2R	Y1	PABPC1F	P10
PAFAH2	PAQR7	PARK2	PCOLCE2	PDIK1L	PFN2	PIK3CB PLC	H1 PLOD2	PLS1	PLSCR1	
	PLSCR2	PLSCR4	PLSCR5 PPI	P1R14C	PPP2R2D Q	PRT	RASA2	RNF13	RP11-117	'F22.1
	RP11-117L1	5.1	RP11-167H9	0.2	RP11-167H9	9.3 RP11167F	19.4 RP11-16	7H9.5	RP11-167	'H9.6
	RP11-190C2	21.3	RP11-190C2	1.4	RP11-217E2	2.1 RP11217	7E22.2 RP11	-217E22.5 R	P11-21M4.	2 RP11-
232M24.1 R	P11-23D24.1	RP11-23D24.	2 RP11255N4	4.2	RP11-255N4	I.3 RP1-12513	.2	RP1-125l3.3	RP1-125	3.4 RP1-
125I3.7 RP1	1265F19.1	RP11-270G1	5.2 RP11-274	4H2.2	RP11-274H2	2.3	RP11-291C6	5.1	RP11-305	519.1
RP11-316C	10.1	RP11-340E6	.1	RP11-343B5	.1	RP11-383G6	6.3	RP11-383G6	6.4	
	RP11-38P22	2.2 RP11-39E	3.3	RP11-39E3.4	4 RP11-39E3.	.5	RP11-39E3.0	6	RP11-402	2E20.1
	RP11-420J1	1.2 RP11-427	D1.1 RP11-4	38D8.2	RP11-438D8	3.3	RP11-438D8	3.4	RP11-439	C8.1
RP11-439C	8.2 RP11-451	G4.1	RP11-451G4	1.2	RP11-451G4	4.3	RP11-454C1	8.2	RP11-483	BE7.1
	RP11-484M	3.4 RP11-484	M3.5	RP11-496B1	0.1	RP11-496B1	0.3	RP11-496B1	0.5	
	RP11-517B1	1.2	RP11-517B1	1.4 RP11-517	7B11.6	RP11-54801	1.1	RP11-622L2	1.1	
	RP11-639F1	.1	RP11-639F1	.2	RP11-639F1	.3 RP11-63E	16.1	RP11-63L4.	RP11-649	A16.1
	RP11-64D22	2.1	RP11-64D22	2.2	RP11-64D22	2.5 RP11-651	P23.2	RP11-651P2	3.3	
	RP11-651P2	23.4	RP11-651P2	3.5	RP11-651P2	3.6	RP11-656A1	5.1	RP11-	758114.2
	RP11-75811	4.3	RP11-785G3	3.1	RP11-788A4	.1	RP11-788A4	.2	RP11-789)L4.1
RP11-88H1	0.1 RP11-88H	10.2	RP11-88H10	.3	RP11-933H2	2.4	RP1-317E23	3.3 RP3-422F	24.2 RP4	-635B5.1
RUNDC2B	SCARNA17	SCARNA18	SEPN1 SLC3	0A2 SNORA5	8 snoU13 SP	N	STMN1 SUC	NR1 SULT1	4 TFDP2	TM4SF4
TRIM63 TR	PC1	TTC14	U1	U3	U4	U6	U7 U8 UF	K1B WWTF	1 XRN1	Y_RNA
ZBTB38										

PANTHER analysis: 64 mapped ids are found, 145 mapped ids are not found.

5.8.10.5 Losses in Triple Negative DCIS Compared to Losses in Triple Negative Invasive Breast Disease

Losses in TN DCIS (n=1/19) show similarities with losses in TN invasive breast disease (n=3/7). This represents losses for TN DCIS and TN invasive breast disease.

- 1. p-values <0.05;
- The gene list is created from 31 genomic regions found on chromosomes 1,
 3, 6, 10, 16, 20;
- 3. These regions encompass 203 genes altered in TN DCIS;

5S_rF	RNA	7SK	AADAC	AADACL2	AC007392.3	AC007403.1	AC007403.2	AC009086.1	AC009086.3	AC009086	6.4
	AC009474.1	AC009474.2	AC025279.1	AC055758.1	AC072028.2	AC078784.1	AC107021.1	AC107027.2	AC108729.1	AC1	121332.1
	AC133555.1	AC133555.2	AC133555.3	AC133555.4	AC133555.6	AC133555.7	ACPL2	AL357561.2	AL450307.1	ARHGAP	31
	ASTE1	ATP2C1 ATI	P5LP5	ATR	B4GALT4	BNIP3	BOLA2	C1orf135	C2orf86	C3orf16	C3orf30
	C3orf58	CCDC39	COMMD2	CPNE4	CTD-250103	3.1 CTD-2501	O3.2	CTD-250103	3.3	DHX36	
	EEF1A1P25	EXTL1	FAM54B GIN	D1 GM2AP1	GPR149	GSTO3P	IGSF11	IYD	JAKMIP3	LSAMP	
MACI	ROD2	MAN1C1	MME	MRPL3	NEK11	NUDT16	NUDT16P O	PRM1	P2RY1	PABPC1P	' 10
	PAFAH2	PAQR7	PARK2	PCOLCE2 P	DIK1L	PFN2	PIK3CB	PLCH1	PLOD2	PLS1	
	PLSCR1	PLSCR2 PL	SCR4	PLSCR5	PPP1R14C	PPP2R2D	QPRT	RASA2	RNF13	RP11-1	17F22.1
	RP11-117L1	5.1	RP11-167H9	9.2	RP11-167H9	.3 RP11-167	H9.4	RP11-167H9	9.5	RP11-167	H9.6
	RP11-190C2	21.3	RP11-190C2	21.4	RP11-217E2	2.1	RP11-217E2	2.2	RP11-217E2	2.5	
	RP11-21M4.	2	RP11-232M2	24.1	RP11-23D24	.1	RP11-23D24	1.2	RP11-255N4	1.2	
	RP11-255N4	1.3	RP1-125l3.2	RP1-125l3.3	RP1-125l3.4	RP1-125l3.7	RP11-265F1	9.1	RP11-270G1	15.2	
	RP11-274H2	2.2	RP11-274H2	2.3	RP11-291C6	5.1	RP11-305l9.	1	RP11-316C1	10.1	
	RP11-340E6	6.1 RP11-383	G6.3	RP11-383G6	6.4	RP11-38P22	2.2	RP11-39E3.	3	RP11-39E	3.4
	RP11-39E3.	5	RP11-39E3.	6	RP11-402E2	0.1	RP11-420J1	1.2	RP11-427D1	1.1	
	RP11-438D8	3.2	RP11-438D8	3.3	RP11-438D8	3.4	RP11-439C8	3.1	RP11-439C8	3.2	
	RP11-451G4	1.1	RP11-451G4	4.2	RP11-451G4	l.3	RP11-454C1	8.2	RP11-483E7	7.1	
	RP11-484M	3.4	RP11-484M	3.5	RP11-496B1	0.1	RP11-496B1	0.3	RP11-496B1	0.5	
	RP11-517B1	1.2	RP11-517B1	1.4	RP11-517B1	1.6	RP11-548O1	1.1	RP11-622L2	1.1	
	RP11-639F1	.1	RP11-639F1	.2	RP11-639F1	.3	RP11-63E16	5.1	RP11-63L4.1	1RP11-649	A16.1
	RP11-64D22	2.1	RP11-64D22	2.2	RP11-64D22	.5 RP11-651	P23.2	RP11-651P2	3.3	RP11-651	P23.4
	RP11-651P2	3.5 RP11-65	1P23.6	RP11-656A1	5.1	RP11-758l14	4.2	RP11-758l14	4.3	RP11-785	G3.1
					RP11-7801 /	.1	RP11-88H10).1 RP11-88H	10.2	RP11-88H	110.3
	RP11-788A4	l.1	RP11-788A4	.2							
	RP11-788A4 RP11-933H2	l.1 2.4	RP11-788A4 RP1-317E23	1.2 3.3 RP3-422F2	24.2	RP4-635B5.	1	RUNDC2B	SCARNA17	SCARNA1	18
	RP11-788A4 RP11-933H2 SEPN1 SLC	1.1 2.4 30A2 SNORA	RP11-788A4 RP1-317E23 58	8.2 8.3 RP3-422F2 snoU13	24.2 SPN	RP4-635B5. STMN1	1 SUCNR1	RUNDC2B SULT1A4	SCARNA17 TM4SF4	SCARNA1	18 TRIM63
	RP11-788A4 RP11-933H2 SEPN1 SLC TRPC1	1.1 2.4 30A2 SNORA TTC14	RP11-788A4 RP1-317E23 58 U1	I.2 3.3 RP3-422F2 snoU13 U3	24.2 SPN U4	RP4-635B5. STMN1 U6	1 SUCNR1 U7	RUNDC2B SULT1A4 U8	SCARNA17 TM4SF4 UPK1B	SCARNA1	I8 TRIM63 WWTR1

PANTHER analysis: 62 mapped ids are found, 141 mapped ids are not found.

The comparison of losses represents losses in TN DCIS and TN invasive breast disease

- 1. p-values < 0.05;
- A gene list is mapped from 98 genomic regions found on chromosomes 1, 4, 10, 12, 15, 18, 19, X;
- These regions encompass 317 genes altered in TN DCIS and TN invasive breast disease;

Genes:

5S_rRNA AC005184.1 AC008245.1 AC009731.1 AC012379.1 AC012379.2 AC013452.1 AC013452.2 AC013452.2 AC013558.1 AC018413.1 AC018797.3 AC022046.2 AC025263.1 AC034110.1 AC034110.2 AC036176.2 AC064801.1 AC068473.1 AC083805.1 AC083805.2 AC090360.1 AC090393.1 AC090669.1 AC091551.1 AC091643.1 AC091646.1 AC093827.1 AC100783.1 AC100843.1 AC104059.1 AC114688.1 AC134978.1 AC139100.1 AC139100.2 ACE2 ADNP2 AF196969.5 AF196972.1 AF196972.10 AF196972.3 AF196972.3 AF196972.4 AF196972.9 AF213884.1 AF224669.3 AF241726.2

	AF241726.4	AF241726.6	AFF1 AL031	311.1 AL1361	37.1	AL353691.1	AL356741.1	AL591378.1	AL591394	.1
	AL592043.1	AL627402.1	ALPK2	ANXA3	APOF	ARAF	ARD1B	ARHGAP24	ARHGEF16	6 ATP9B
	AVIL	BCL2	BEST3	BMX	C18orf22	C4orf36	CA5B	CA5BP	CASK	CBLN2
	CDH19	CDH7	CDK4	CEP152	CHST7	CHTF8P	COPS2 CTD	-2522E6.4	CTDP1	
	CTDSP2	CXorf24	CXorf36	CXorf58 CYF	P27B1	CYP2A6	DNAJC12	DUSP21	EBP	
	EIF2S3	ELAC1 FAM	47A	FGF5	FIGF	FRAS1	FTLP16	FTSJ1	GALK2	
	GALR1	GPR34 GPR	82	GRPR	GS1-541M1.	1	GS1-541M1.	2	GS1-594A	7.3
	GS1-594A7.	5	HERC4 HMG	GA1L1	hsa-mir-221	hsa-mir-222	hsa-mir-26a-	2	hsa-mir-55	51a
	HSBP1L1 IL	1RAPL1	INE1	KAL1	KCNG2	KDM6A	KDSR	KIAA1468	KLHL15	KLHL8
	KRT8P14	L1CAM	MALT1	MANBA	MAOA	MAOB	MAPK10 Ma	rch9 MBP	ME2	
	MEGF6	MEX3C	NDP	NDUFB11	NFATC1	NFKB1 NTS	NUAK1	NUS1P1	OTC	
	PARD6G	PCTK1	PIGN	PIR	PORCN PPF	21R2P9	PQLC1	PRDM8	PTCHD2	
	PTPN13	RAB3IP RAS	GEF1B	RASSF9	RBM10	RBM19	RBM3	RNF152	RP11-10L	12.1
	RP11-10L12	.2	RP11-10L12	.4	RP11-10L12	.5	RP11-10L12	.6	RP11-114	8L6.5
RP11-1148L	6.6	RP11-126O1	.1	RP11-149B9	.2	RP11-162A1	2.1 RP11-162	2K6.1	RP11-204	C16.4
	RP11-245M2	24.1	RP11-281B1	.2	RP11-305F1	8.1	RP11-342D1	4.1	RP11-344	N17.11
	RP11-344N1	7.12	RP11-344N1	7.13	RP11-344N1	7.2	RP11-344N1	7.3	RP11-344	N17.6
	RP11-344N1	7.7	RP11-344N1	7.8	RP11-344N1	7.9	RP11-377B2	.2	RP11-377	G16.2
	RP11-38O23	3.3	RP11-38O23	3.4	RP11-38O23	3.5	RP11-38O23	3.7	RP11-397	E7.1
	RP11-397E7	.2	RP11-397E7	.3	RP11-397E7	.4	RP11-438E5	.1	RP11-474	D14.2
	RP11-476C8	3.2	RP11-479I1.	4	RP11-524P6	.1	RP11-540L1	1.2	RP11-545	D19.1
	RP1-154K9.2	2	RP11-552E4	.2	RP11-552E4	.3	RP11-552E4	.4	RP11-552	E4.5
	RP11-571E6	5.1	RP11-571E6	.3	RP11-571E6	.4	RP11-57G10).6	RP11-617	O8.1
	RP11-640A1	.1	RP11-644A7	.1	RP11-652N1	7.1	RP11-689K5	.3	RP11-692	P14.1
	RP11-702C7	' .1	RP11-702C7	.2	RP11-75A9.2	2	RP11-75A9.3	3	RP11-778	J15.1
	RP11-792D2	21.1 RP11-792	2D21.2	RP11-9H16.	1	RP1-22N22.	1	RP1-290C9.	2	
	RP13-202B6	5.2	RP13-479F1	7.2	RP13-928P6	.3	RP1-50A13.	1	RP1-50A1	3.2
	RP1-54B20.7	7	RP1-69M21.	2	RP1-71L16.1	RP1-71L16.2	2RP1-71L16.6	8RP3-326l13	.1	RP3-
393P12.2 RF	2-393P12.3	RP4-733D15	5.1	RP5-1174J2	1.1	RP5-1174J2	1.2 RP5-972E	316.2	RP6-105D	16.1
	RP6-218J18	.3	RP6-99M1.1	RPGR	RPL12P8 RT	TN SALL3	SERPINB5	SHC4	SIRT1	
	SLC10A6	SLC38A5	SLC9A7	SMAD4 SNC	RA11	SNORA25	SNORA31	SNORA68	SNORD56	6
	snoU13 SOC	S6 SPACA5	SPACA5B	SSX1	SSX3	SSX4	SSX4B	SSX5	SSX6	
	SSX9	STAT2 SYN	1	TBC1D25	TIMP1	TMEM27	TNFRSF11A	TSHZ1	TSPAN7	
	TXNL1 TXNI	_4A	U1	U2	U52112.12	U6	U7	U8	UBA1	
	UBE2D3 US	P11 VCX3B	VENTXP1	WAS	WDR13	WDR7	Y_RNA	Z98304.1	ZADH2 Z	ZCCHC2
	ZFX	ZNF157	ZNF182	ZNF236	ZNF407	ZNF41 ZNF5	516	ZNF532	ZNF630	
	ZNF673	ZNF674	ZNF81							

PANTHER analysis: 138 mapped ids are found, 179 mapped ids are not found.

5.8.10.6 Total Loss of Triple Negative DCIS Compared to Total Loss in Triple Negative Invasive Breast Disease

There were total losses present in TN DCIS (n=13/19) that are not observed from TN invasive breast disease (n=0/7).

1. p-values < 0.05;

A gene list is mapped from 150 genomic regions found on chromosomes 3, 4,
 5, 6, 8, 9, 13, 14, 15, 17, 18, 22 & X;

3. These regions encompass 419 genes altered in TN DCIS;

Genes:

5S_r	RNA	7SK	AARSD1	AB019438.5	5	AB019438.6	3	AB019438.6	6 AB019	439.3	ABCD4
	AC002117.1	AC003043.1	AC003043.2	AC003102.3	AC003963.2	AC004222.1	AC004596.1	AC004968.1	AC004968.2	AC005399	9.1
	AC006059.1	AC006349.1	AC006445.1	AC006445.6	AC006445.7	AC006445.8	AC007126.1	AC007722.1	AC008105.1	AC011193	3.1
	AC012409.1	AC015936.1	AC015936.3	AC016251.1	AC019131.2	AC020704.1	AC021205.1	AC025287.1	AC025287.2	ACC	25287.3
AC02	5287.4	AC026202.1	AC026202.5	AC027139.2	AC027139.3	AC027139.4	AC027708.1	AC027807.1	AC027807.2	AC036222	2.1
	AC044797.1	AC044797.2	AC044797.3	AC055813.1	AC055873.1	AC068400.1	AC079915.1	AC084809.2	AC084809.3	AC084882	2.1
AC08	7650.1	AC087742.1	AC092047.1	AC092048.1	AC092421.1	AC098830.1	AC100793.2	AC102948.1	AC102948.2	AC1	03702.1
AC10	3965.1	AC104260.1	AC105750.1	AC107982.4	AC109357.1	AC112693.1	AC113171.1	AC114477.1	AC121253.1	AC124789	9.1
	AC134669.1	AC138150.3	AC138150.4	AC183087.1	AC183087.2	ACBD4	ACTR10 AD	AM11	ADAM3A AD	AM5P AD	AMTSL3
	ADH4	ADH5	AGBL1	AKAP6 AL00	8582.1 AL035	5659.2 AL035	659.4 AL0356	659.6	AL079307.3	AL079307	.4
AL079	307.5	AL132989.2	AL135978.1	AL136359.1	AL139021.2	AL139089.1	AL162377.1	AL162377.2	AOC2 AO	C3 APC	000351.4
	ARAP2	ARHGAP23	ARID4A	ARL4D	ARRDC4	ASB16	ASPN	ATXN7L3	Y269186.1	AY269186	.2 AZI2
BBS1	2	BOD1L	BRCA1	BTF3	C14orf149	C14orf166 C	14orf38 C14o	rf54	C17orf102	C17orf104	1
	C17orf105	C17orf46 C1	7orf53 C17orf	65 C1QL1	C4orf37	CA10	CARTPT	CCDC103	CCDC43	CD300LG	CDC6
CECF	2 CECR9	CENPP	CETN4P CH	ADL CMC1	CSMD1 CTD	-2015H6.1	CTD-2015H6	6.2	CTD-2015H6	3.3CTNS	CWC25
	DBF4B	DCAKD DDT	DDX52	DHRS11	DHX8 DTHD	1	DUSP3	ECM2	EDEM1 E	FTUD2 I	EIF4BP4
	EIF4E	EP300	ETV4	EVI2A	EVI2B	FAM149B2	FAM151B FA	M169B FAM	171A2	FAM177A	2
	FAM187A	FAM18B	FAM19A1	FBXL2	FBXO33 FBX	(W10	FGF2	FLT3	FMNL1	FOXD1	FRMD6
FZD2	G6PC G6PC	3	GFAP	GJC1 GNG2	GOLGA8B	GPATCH8	GPC5	GPHN	GPR179		GRN
	GSTT2 HDA	C5 HEXIM1	HEXIM2 HIG	D1B	HMGB1L14	HOXB7 HOX	B9	hsa-mir-1233	3hsa-mir-1281	hsa-mir-14	469hsa-
mir-19)6a-1	hsa-mir-2117	hsa-mir-759	HSP90AB2P	IFI35	IGHV1-45	IGHV1-46	IGHV3-33-	2 IGHV3	3-35 IC	GHV3-36
	IGHV3-37	IGHV3-38	IGHV3-41	IGHV3-42 IG	HV3-43 IGHV	'3-47 IGHV4-:	34	IGHV4-39	IGHV7-34-1	IGHV7-40	IGHVII-
33-1	IGHVII-40-1	IGHVII-43-1	IGHVII-44-2	IGHVII-46-1	IGHVIII-38-1	IGHVIII-44 IC	GHVIV-44-1 Ik	ZF3 IPO11	ITGA2B	ITGAE	
	JKAMP	KCNH5	KIAA0586	KIF18B KIF2	A KLHL5	L3MBTL2	LECT1	LIN52	LPAR4		LRRC70
	LSM12	LYZL4	MAP3K14 M	CTP2 MEOX1	METAP1	MITF	MPP2	MPP3	MPP5	MRM1	
	MRPL45 MY	O1D NAGS	NF1 NID2	NKTR	NKX3-2	NMT1	NR2F2	NUDT6	OCLN_2	OLFM4	OMD
	OMG	P2RX5	PARK2 PCD	H8 PDCD6IP	PDS5B	PIP5K2B PL	CD3 PPY	PRPSAP2	PSMA3	PSMB3	PSME3
	PYY	RAB28	RAD51L1 RA	NGAP1	RGS6 RHCG	RNF180	RP11-1072C	15.1 RP11-12	280N14.3	RP11-128	0N14.4
	RP11-1299A	16.1	RP11-1299A	16.2 RP11-12	2M9.4	RP11-159J2	1 RP11-159J	2.2	RP11-170N1	6.1	
	RP11-170N1	6.2	RP11-18707	7.1	RP11-209K1	0.1	RP11-219I21	.1	RP11-223D1	8.1	
	RP11-241P3	.2	RP11-248N6	i.1	RP11-248N6	.2 RP11-24H	2.1	RP11-24H2.	2	RP11-301	J16.5
	RP11-30C8.	1	RP11-30C8.2	2	RP11-327P2	.5 RP11-3410	G5.1	RP11-357H1	4.4	RP11-360	F5.1
	RP11-360F5	.2	RP11-360F5	.3	RP11-369I16	6.1 RP11-380	34.2	RP11-428B4	.2	RP11-431	M7.2
	RP11-431M7	.3	RP11-431O2	22.2	RP11-442J1	7.4 RP11-474	L7.4	RP11-475D8	3.1	RP11-48B	814.1
	RP11-520F2	4.1 RP11-520)F24.2	RP11-520F2	4.3 RP11-522	B15.1	RP11-522B1	5.2	RP11-571L1	9.2	
	RP11-571L1	9.4	RP11-696N1	4.1	RP11-799A1	2.1 RP11-799	A12.2 RP11-	79P5.2	RP11-79P5.3	3 RP1'	1-79P5.5
	RP11-79P5.6	3	RP11-79P5.7	7 RP11-79P5.	8 RP11-81N1	3.1	RP11-85I21.	1	RP11-880O3	1.1	
	RP11-95I19.	1 RP11-95I19	0.2 RP1-85F18	8.4	RP1-85F18.5	5RP1-85F18.6	8RP4-613B23	.1	RP4-756G23	3.5 RPL27	7 RTN1
	RUNDC1 RU	INDC3A SEC	22C SHISA6	SHPK	SIPA1L1	SLC25A21 S	LC25A39	SLC4A1	SMN1		SMOC1
	SNORA18	SNORA40	SNORD56 S	NORD74 sno	U13 snoZ178	SOCS7 SOS	т	SPATA5	SPATA8 S	PRED1	SRCIN1
	SS18L2	SUCLG2	SYNRG	SYT16	TAX1BP3	TBC1D3 TEF	TIMM9	TMEM101	TMEM132E	TMEM93	

279

TMEM98	TMUB2 TO	OMM20L TRPV1 TRPV3	TSPAN5	U3	U6	U7	UBP1 UBTF VAT1	VSX2
WIPF2	WSCD1	Y_RNA ZBTB47	ZC3H7B	ZCCHC5	ZCWPW	2 ZFYVE16		

PANTHER analysis: 194 mapped ids are found, 225 mapped ids are not found.

There were total losses present in TN invasive breast (n=7/7) disease that are not observed in TN DCIS (n=0/19).

- 1. p-values < 0.05;
- 2. A gene list is mapped from 98 genomic regions found on chromosomes 3, 4,

5, 9, 10, 12, 13, 14, 15, 17;

3. These regions encompass 479 genes altered in TN invasive breast disease;

5S_rR	NA	7SK	AATF	AB019437.56	6	ABHD12B	ABLIM2 ABR	AC003664.1	AC005277.1	AC005304	.1
	AC005304.2	AC005304.3	AC005324.1	AC005324.2	AC005324.4	AC005324.6	AC005324.7	AC005358.1	AC005358.3	AC005517	.1
AC00	5517.2	AC005517.3	AC005703.2	AC005703.3	AC005772.2	AC005773.1	AC005838.2	AC005863.1	AC005863.2	AC007686	.1
	AC013248.1	AC013248.2	AC015842.1	AC015922.1	AC015922.2	AC015922.7	AC024610.1	AC027045.1	AC073940.1	AC087742	.1
	AC087742.2	AC090283.1	AC090283.3	AC090516.1	AC090516.2	AC090519.1	AC090519.1	D	AC090519.1	1	
	AC090519.2	AC090519.3	AC090519.4	AC090519.5	AC090519.6	AC090519.7	AC090519.8	AC090519.9	AC091487.1	AC093819	.1
	AC093824.1	AC098487.1	AC103560.1	AC104650.2	AC108477.2	AC123769.1	ACCN1	ADCK1	AE000658.6	AE000659	.1
AE000	0659.10	AE000659.12	2	AE000659.13	3	AE000659.1	4	AE000659.1	5	AE000659	.16
AE000	0659.17	AE000659.18	В	AE000659.19	9	AE000659.2	3	AE000659.6	AE000659.8	AE0	00659.9
	AF111168.1	AF111168.3	AGPAT9	AHSA1	AL049775.1	AL121768.1	AL133223.1	AL133413.1	AL136160.1	AL137024	.1
	AL139041.1	AL157702.1	AL158058.1	AL162727.1	AL353141.1	AL353782.1	AL353805.1	AL354751.2	AL354751.3	AL354896	.1
	AL356214.2	AL357172.1	AL358334.1	AL358334.2	AL359180.1	AL359392.1	AL360004.1	AL365364.1	AL732479.1		ALDOB
	ALKBH1	AMBP	ANKFY1	ANKRD40	ANKS6	ARD1B AST	N2	ATAD1	ATP5C1P1	BAAT	
	C10orf4	C13orf23	C13orf36	C14orf148 C	14orf156	C14orf174	C14orf178	C14orf184	C14orf23	C4orf41 C	9orf107
C9orf	109	C9orf110	C9orf125	C9orf147	C9orf170	C9orf30 C9o	rf44 C9orf80	CACNA1G	CASC4	CATSPER	В
	CDC20P	CDKN2AIP C	DRT1	CDRT4	CDRT7	CEP55	CNOT6L	COL27A1	CTC-448D22	2.1	
	CTC-507E12	.1	CTD-2158P2	2.1	CTD-2158P2	2.2	CTD-2158P2	2.4	CTD-2175M	1.1	
	CTDSPL2	CYB5D2	CYP26A1	CYP26C1 D	AB2IP	DBC1	DDIT4L	DHRS7C	DKK2	DLEU1	
	DLEU2	DTWD2 DYN	ILL1P1	ELAC2	EML5	EXOC6	FAM154A	FAM170A	FAM175A	F	AM18B2
	FAM190	FAM190A	FAM33B	FKBP15	FLRT2	FOXG1 FRM	ID5	FYTTD1P1	GABBR2	GALNT12	
	GALNTL6	GAPDHP34	GAS1 GAS7	GK2	GLP2R	GMPSP	GNG5P5	GPM6A	GPR107	GPR120	GRID1
	GRIN3A	GSTZ1	HELT	HS3ST3A1	hsa-mir-1260)hsa-mir-15a	hsa-mir-16-1	hsa-mir-346	hsa-mir-455	hsa-mir-54	8h-3
	hsa-mir-95	HSD17B4 HS	SDL2 HTRA3	IGHV1-67	IGHV1-68	IGHV1-69	IGHV2-70	IGHV3-62 IG	HV3-63	IGHV3-64	
	IGHV3-65	IGHV3-66	IGHV3-71	IGHV3-72	IGHV3-73 IG	HV4-61	IGHVII-60-1	IGHVII-62-1	IGHVII-65-1	IGHVII-67-	·1
	IGHVIII-67-2	IGHVIII-67-3	IGHVIII-67-4	IL6STP1	ING2	ISM2	KIAA1737	KIAA1958 KI	F12 KRT222	KRT24	
	KRT25	KTN1	LGI1	LHFP	LHX6	LMO7	MEIS3P1	MITF MMRN	1	MORN5	
	MRPL50	MRRF	MURC	MYOCD	MYOF	NDUFA8 NG	в	NHLRC3	NRXN3	NTN1	NXN
	OR1B1	OR1H1P	OR1J2 OR1.	J4	OR1L1	OR1L3	OR1L4	OR1L6	OR1L8	OR1N1	
	OR1N2	OR1Q1 OR7	E94P PAPPA	PAPSS1	PAPSS2	PDE6C	PDZRN3	PMP22 POM	IT2 PPP3R2	PYGL	
	RASGEF1B	RBM18	RBP4	RCVRN	RFXAP RGS	3 RNF20	ROR2	RP11-100G1	5.10	RP11-100	G15.2
	RP11-100G1	5.3	RP11-100G1	5.4	RP11-100G1	5.5	RP11-100G1	5.6	RP11-100G1	5.7	
	RP11-115D1	9.1	RP11-115G5	5.1	RP11-118F2	.2	RP11-118F2	.3	RP11-122F1	4.4	RP11-
1258F	18.1	RP11-127L2	1.1	RP11-127L2	1.2	RP11-15B17	.1	RP11-162D1	6.4	RP11-168	K11.2

	RP11-168K11.3 RP11-16L6.3RP11-181F		3RP11-181F1	2.1 RP11-18	316.1	RP11-18B16	5.2	RP11-197L7	.2		
	RP11-20012	2.1	RP11-226P1	1.1	RP11-234K1	9.1	RP11-234K1	9.2	RP11-24E1.	1	
	RP11-264C	15.2 RP11-27	6E15.4	RP11-276H1	19.1	RP11-276H1	19.2	RP11-276H1	9.4	RP1	1-280G19.1
	RP11-280G	19.2	RP11-296L2	.0.1	RP11-299L1	7.1	RP11-32M23	3.4	RP11-332E3	3.2	
	RP11-348J1	2.2	RP11-349E4	1.1	RP11-34F20	.4	RP11-34F20	.5	RP11-352E6	6.1	
	RP11-352E6	6.2	RP11-35N6.	1 RP11-35N6	.3	RP11-35N6.	4	RP11-35N6.	6	RP11-3	367N14.1
	RP11-367N	14.2 RP11-38	5D13.1	RP11-386B1	3.1	RP11-386B1	13.3	RP11-386B1	3.4	RP11-3	388N2.1
	RP11-394D2	2.1	RP11-395D3	3.1	RP11-397J1	8.1	RP11-408O1	9.3	RP11-421P1	11.5	
	RP11-438E5	5.1	RP11-44F21	.4	RP11-452B1	8.1 RP11-452	2B18.2	RP11-45A16	6.3	RP11-4	45A16.4
	RP11-45I20	.1	RP11-462C2	21.1	RP11-477L1	6.2	RP11-478K1	5.1	RP11-478K1	15.2	
	RP11-478K1	15.3	RP11-478K1	15.4	RP11-478K1	5.5	RP11-480P3	3.1	RP11-490D ²	19.6	
	RP11-490D ²	19.8	RP11-499E1	18.1	RP11-51N22	2.1	RP11-51N22	2.2	RP11-521H	3.1	
	RP11-524G2	24.2	RP11-527F1	5.1	RP11-534l8.	1	RP11-542G1	1.1	RP11-542G	1.2	
	RP11-542G	1.3	RP11-545P6	5.1	RP11-545P6	5.2	RP11-54K22	2.1	RP11-565F1	9.1	
	RP11-567N4	4.2	RP11-567N4	4.3	RP11-576C1	2.1	RP11-588P8	3.1	RP11-58C3.	2	
	RP11-598G2	2.1	RP11-6100	8.1	RP11-616K2	2.1	RP11-61P7.	3 RP11-624A	4.1	RP11-6	624L12.1
	RP11-626E1	13.1	RP11-64P14	4.7 RP11-67K	19.3	RP11-67M1.	.1	RP11-689K5	5.3	RP11-6	692E14.1
	RP11-701P1	16.3 RP11-70	1P16.4	RP11-713M	5.1	RP11-713M	6.2	RP11-722P1	5.1	RP1	1-765K14.1
	RP11-806K1	15.1	RP11-84H6.	1	RP11-88G17	7.2	RP11-92C4.	3 RP11-94C2	4.10	RP11-9	94C24.11
	RPL10P3	RPS3AP5	RWDD4A SI	EPT7P7	SH3TC1	SLC31A2	SLC39A8	SLC46A2	SLC4A4 S	MAD9	SMARCE1
	SNCA	SNORA26	SNORA31	SNORA32	SNORA46	SNORA70 S	NORA74	SNORD112	SNORD65	snoU1	3
	snoU83B	SNW1	SNX30 SOR	BS2	SPRY2	SPTLC1	SPTLC2	STOML3	STON2	STOX2	STX8
	TBC1D26	TEKT3	TIMM22	TLK1P1	TMED8	TMEFF1 TM	IEM20 TMEM	63C	TRIM16	TRIM3	2
	TTC8	TTLL11	U1	U3	U4	U6 U7	UBE2G1	USP43	VEGFC	VIPAR	
	WDR16	WDR20	Y_RNA ZDH	IHC22	ZFP37	ZNF189	ZNF286	ZNF29P	ZNF618	ZNF88	3
ZYG1	1AP1	ZZEF1									

PANTHER analysis: 160 mapped ids are found, 319 mapped ids are not found.

5.8.10.7 CdLOH of Triple Negative DCIS Compared to CdLOH in Triple Negative Invasive Breast Disease.

There is considerable overlap between CdLOH in TN DCIS (n=1/19) and CdLOH in TN invasive breast disease (n=3/7).

- 1. p-values < 0.05;
- A gene list is mapped from 55 genomic regions found on chromosomes 1, 10, 11, 12, 18, 19, X;
- These regions encompass 133 genes altered in TN DCIS and TN invasive breast disease;

Genes:

Mar09 AC005184.1 AC009731.1 AC011260.2 AC022046.2 AC025263.1 AC036176.2 AC064801.1 AC083805.1 AC083805.2 AC090666.1 AC090666.1 AC100783.1 AC100843.1 AC139100.1 AC139100.2 AL031311.1 AL136137.1 AL353691.1

	AL356741.1	AL627402.1	ALPK2	ARHGEF16	AVIL	BCL2	BEST3	C10orf100 C	ASK CBLN2	CD226	
		CDK4	CHEK1	CHTF8P	CTDSP2	CXorf36	CXorf58 CYF	P27B1	CYP2A6	DNAJC12	DOK6
		DUSP21	EIF2S3	ELAC1 GPR	34	GPR82	GRPR	GS1-541M1.	1	GS1-541M	1.2
		HERC4 HMG	GA1L1 hsa-mi	r-26a-2	hsa-mir-551a	alL1RAPL1	KAL1	KDM6A	KDSR	KIAA1468	
	KLHL15	L1CAM	MALT1	MAOA	MAOB	MBD2	ME2	MEGF6	NDP	N	IEDD4L
		NRG3	NTS NUAK1	OS9	PARD6G	PHLPP1	PIGN PPP1F	R2P9 RAB3IP	RASSF9	RBM19	
		RNF152 RP11-126O1.1		RP11-149B9.2 RP11-202D18.2		RP11-204C16.4		RP11-20E23.1			
		RP11-342D14.1 RP11-37		7B2.2 RP11-472N6.1		5.1	RP11-474D14.2		RP11-479I1.4		
		RP11-514F8	.2 RP11-524F	P6.1 RP11-540L11.2 RP1-154K9.2			RP11-57G10.6		RP11-61708.1 RP11-640A		340A1.1
		RP11-652N1	7.1	RP11-702C7.1 RP11-702C7.2			RP11-9H16.1		RP1-22N22.1 RF		RP1-
	290C9.2	RP1-50A13.	1	RP1-50A13.2 RP3-326I13.1		.1	RP5-1174J2	1.1	RP5-1174J2	1.2	RP6-
	105D16.1	RP6-218J18	.3	RPL12P8 RT	TN SCN8A	SERPINB5	SH2D4B	SIRT1	SNORA68	snoU13	
	TNFRSF11A	TXNL1	U1 U2	U52112.12	U6	U8	VCX3B	VENTXP1	VPS4B	WDR7	Y_RNA
ZCCHC2 ZFX ZNF407			ZNF532								

PANTHER analysis: 65 mapped ids are found, 68 mapped ids are not found.

There are some similarities between CdLOH in TN invasive breast disease (n=4/7) and CdLOH in TN DCIS (n=1/19).

- 1 p-values < 0.05;
- A gene list is mapped from 71 genomic regions found on chromosomes 1, 10, 11, 12, 18, 19, X;
- 3 These regions encompass 167 genes altered in TN DCIS and TN invasive breast disease;

Mar0	9 5S_rRNA	AC005184.1	AC008245.1	AC009731.1	AC011260.2	AC022046.2	AC025263.1	AC036176.2	AC064801.1	AC083805	.1
	AC083805.2	AC090360.1	AC090393.1	AC090666.1	AC090669.1	AC091551.1	AC091643.1	AC100783.1	AC100843.1	AC114688	.1
	AC139100.1	AC139100.2	ADNP2	AF196972.3	AF196972.4	AL031311.1	AL136137.1	AL353691.1	AL356741.1	AL627402.	1
ALP	(2	ARHGEF16	ATP9B	AVIL	BCL2	BEST3	C10orf100	C18orf22	CASK		CBLN2
CD226 CDH19 CDH7		17	CDK4	CHEK1	CHTF8P	CTDSP2 CXorf36 CX		orf58	CYP27B1		
	CYP2A6	DNAJC12 D	OK6 DUSP21	EIF2S3 ELA	C1 FTSJ1	GPR34	GPR82	GRPR	GS1-541M1	.1	
	GS1-541M1	.2	HERC4 HMC	GA1L1 hsa-mi	r-26a-2	hsa-mir-551a	aHSBP1L1	IL1RAPL1	KAL1	KDM6A	KDSR
	KIAA1468 K	LHL15	L1CAM	MALT1	MAOA	MAOB	MBD2	MBP	ME2 MEG	F6 MEX3C	NDP
	NEDD4L	NFATC1	NRG3	NTS	NUAK1	OS9 PARD6	g phlpp1 pi	GN	PPP1R2P9	PQLC1	
	RAB3IP RASSF9 RBM19 RNF152		RP11-126O1.1		RP11-149B9.2 RP11-162A12.1		A12.1	RP11-202D	18.2	RP11-	
204C	16.4	RP11-20E23	3.1	RP11-342D1	4.1	RP11-377B2	2.2 RP11-380	23.5 RP11-38	8023.7	RP11-472	N6.1
	RP11-474D'	014.2 RP11-479I1		.4 RP11-514F8		8.2 RP11-524P6.1 RP11-540		40L11.2 RP1-154		2	
	RP11-552E4.2		RP11-552E4.3		RP11-57G10).6 RP11-617	08.1 RP11-64	IOA1.1	RP11-652N17.1 RP11-		702C7.1
	RP11-702C7	7.2	RP11-9H16.	1	RP1-22N22.	1	RP1-290C9.3	2	RP1-50A13.	1	RP1-
50A1	3.2	RP3-326113	.1	RP5-1174J2	1.1 RP5-1174	J21.2	RP6-105D16	i.1	RP6-218J18	.3	
	RPL12P8	RTTN	SALL3	SCN8A	SERPINB5 S	SH2D4B	SIRT1	SLC38A5	SNORA68	snoU13	

	SOCS6	SSX5 TNFRSF11A	TSHZ1 TX	NL1	TXNL4A	U1	U2	U52112.12	U6	U7
U8	VCX3B	VENTXP1 VPS4B WDR7	Y_RNA	ZADH2	ZCCHC2 Z	FX	ZNF236	ZNF407	ZNF532	

PANTHER analysis: 83 mapped ids are found, 84 mapped ids are not found.

5.8.10.8 CnLOH of Triple Negative DCIS Compared to CnLOH in Triple Negative Invasive Breast Disease

There is CnLOH present in TN DCIS (n=18/19) that are not observed in TN invasive breast disease (n=0/7). This represents CnLOH for TN DCIS.

- 1. P-values <0.0001;
- 2. A gene list is mapped from 78 genomic regions found on chromosomes 1, 2, 3, 6, 7, 10, 20, 21;
- 3. These regions encompass 529 genes altered in TN DCIS;

Genes:

sept7	5S_rRNA	7SK	ABHD11	AC004455.1	AC004691.5	AC005154.5	AC005189.6	AC005537.2	AC005582	.1	
	AC006022.4	AC006466.5	AC006478.1	AC006960.7	AC006978.1	AC007392.3	AC007403.1	AC007403.2	AC009474	.1	
AC009474.2	AC010132.1	C	AC010132.1	1	AC010132.9	AC011738.4	AC018685.2	AC027269.2	AC063927	.2	
	AC063927.3	AC063927.4	AC063927.5	AC063927.6	AC063927.7	AC063927.8	AC063927.9	AC073464.1	1		
	AC073464.9	AC073846.1	AC073846.2	AC073846.3	AC078784.1	AC078811.1	AC087069.2	AC092265.1	AC0	92898.1	
	AC093168.1	AC107027.2	AC108729.1	AC117477.1	AC121332.1	ADCYAP1R1	ADPRHL2	AF064859.2	AF127577	.10	
	AF127577.11	I	AF127577.12	2 AF127577.8	AF127936.3	AF127936.5	AF127936.6	AF127936.7	AF127936	.8	
AF130358.5	AF165138.6	AF165138.7	AIF1	AIM1L	AJ006998.2	AJ009632.3	AL022170.1	AL023807.1	AL031655	.1	
	AL031655.2	AL034372.1	AL034449.2	AL035670.1	AL049570.1	AL050322.1	AL121988.1	AL133268.1	AL136230	.1	
AL138724.3	AL138889.1	AL139044.1	AL139044.2	AL139286.1	AL160037.2	AL160400.1	AL160400.2	AL162579.1	AL355877	.1	
	AL589723.1	AL590062.1	AL591845.1	AL645811.1	ANKRD20B	ANLN	AOAH	AP000304.12	2		
	AP000313.1	AP000313.2	AP000318.2	AP000569.2	AP000569.8	AP001347.1	AP001347.5	AP001347.6	AP001466	.1	
	AP001466.7	AP001634.5	APOM	AQP1	ARHGAP31	ASS1P1	ASTE1	ATP2C1	ATP5LP2		
	ATP5O	ATP6V1G2	B4GALT4 BAK1		BAT1	BAT2	BAT3	BAT4	BAT5	5	
	BCL7B	BIN1	BLVRA	BPESC1 BR	WD1 BZW1L1		C1orf113	C1orf212	C1orf216		
	C20orf187	C21orf81 C3	orf16 C3orf30 C3orf72		C6orf125 C6orf15		C6orf227	C6orf25 0	C6orf26	C6orf27	
	C6orf47	C7orf25	C7orf44 CAMK1D		CAP2 CATSPER4 CCDC2		1	CCHCR1	CD52		
	CDSN	CEP70	CHCHD6	CLDN3	CLDN4 CLIC	:1	CLSPN	CMAH	CNKSR1		
	COL21A1	COL6A6	COL8A2 CO	MMD2	CPNE4	CRHR2	CSF3R	CSNK2B	CST2		
	CST5 CSTP	1	CTD-2021J1	5.1	CTD-2021J1	5.2	CYCSP42	CYP39A1	DDAH2 D)HFRP2	
	DLGAP3	DNAJC30	EEF1A1P25	EIF2C1	EIF2C3 EIF2	C4 ENTPD6	EPDR1	ERLEC1P1	ESYT3		
	EXTL1	FABP7	FAIM	FAM176B FA	M188B	FAM65B	FAM8A1	FAT1P1	FGFR3P		
	FOXL2	FTLP18 GAP	DHP39	GARS	GGNBP1	GGTLA4	GHRHR	GJA4	GJB3		
	GJB4 GJB5	GLI3	GMNN	GPR116	GRRP1 GS1-179L18		.1	GS1-278J22	.1		
	GS1-278J22	.2	GSTO3P	HCG27	HCP5	HECW1	HIST1H1A H	IST1H1PS2 F	ILA-B	HLA-	
с	HLA-DQA1	HLA-DQB1	HLA-S	HMGCS2	hsa-mir-548a	a-1 HSF2BP I	GSF11	INMT	IP6K3		

283

	ITPR3	ITSN1	KDM1B	KIAA0319L	KIF13A LEM	1D2 LIPI	LRRC16A	LSAMP	LSM10		
	LST1	LTA	LTB	LY6G5B	LY6G5C LY	6G6C	LY6G6D	LY6G6E	LY6G6F		
	MAP7D1	MCCD1 ME	P1A MICA	MICB	MLN	MLXIPL	MME	MRAS	MRPL3		
	MRPL32	MRPS15 MF	RPS22	MRPS24	MRPS6	MSH5	MT-ATP6	MT-CO1	MT-CO3		
MTCO3P1	MT-ND1	MT-ND2	MT-ND3	MT-ND4	MT-ND4L	MT-ND5	MT-ND6	NCDN	NCR3		
	NCRNA002	40	NEK11	NF1L1	NFKBIL1 NF	ILRC1 NRIP1	NUDT16	NUDT16P	NUP153		
	OR2AD1P	OR2W1	OSCP1 PA2	G4P2	PABPC1P10) PAFAH2	PCBP2P1	PCCB	PDIK1L		
	PFN2 PHG	ЭН	PIK3CB	PIK3R4	PKIB	PLA2G7	PLCB1	PLCH1	PLXNA1		
POLR2CP	POLR2LP	POM121L3F	P POU5F1	PPIAP9	PRIM2	PRR23A PR	R23B	PRR23C	PSMA2		
	PSMB2	PSMG1	PSORS1C1	PSORS1C2	PSORS1C3	RAD23BLP	RBM11	RBM24	RBPMSLP		
RCAN2	RHOT1P2	RNF13	RNF144B	RP11-102J1	4.1	RP11-1150	13.1 RP11-11	7F22.1	RP11-117L	.15.1	
	RP11-14H3	.3	RP11-153N	17.1	RP11-167H	9.3	RP11-167H	9.4	RP11-191A	15.1	
	RP11-191A	15.2	RP11-191A	15.3	RP11-191A	15.4	RP11-201E	B.1	RP11-221J	22.1	
	RP11-221J2	22.2	RP11-231P2	20.2	RP11-231P2	20.3	RP11-232M	24.1	RP11-2380	013.1	
	RP11-255N	4.2	RP11-255N	4.3	RP11-263A2	24.1	RP11-265F	19.1	RP11-268F	[:] 1.2	
	RP11-268F	1.3	RP11-280F2.1		RP11-280F2.2		RP11-280H	21.1	RP11-	30519.1	
	RP11-306L	14.1	RP11-324H4.1		RP11-367G6.1		RP11-384F	7.1	RP11-384F7.2		
	RP11-394D	14.1	RP11-39E3.3		RP11-39E3.4		RP11-39E3.5		RP11-39E3.6		
	RP11-40M23.1		RP11-435D7.3		RP11-446F17.3 RP11-446		6H18.3 RP11-451G4		4.2		
	RP11-451G4.3		RP11-463H24.1		RP11-484M3.4		RP11-484M3.5		RP11-517B11.2		
	RP11-517B11.4		RP11-517B11.6		RP11-548O	RP11-548O1.1		RP11-548O1.3		RP11-561O4.1	
	RP11-569G9.7		RP11-605F1	14.3	RP11-622P	13.2	RP11-631B	21.1	RP11-631E	321.2	
	RP11-639F1.1		RP11-639F1.2		RP11-639F	1.3	RP11-63E1	6.1	RP11-649A	16.1	
	RP11-651P	23.2	RP11-651P23.3		RP11-651P2	RP11-651P23.4		23.5	RP11-651F	23.6	
	RP11-768G	7.1	RP11-768G7.2		RP11-768G7.3		RP11-779P15.1		RP11-779F	°15.2	
	RP11-795J1	1.1	RP11-795J1.2 RP11-810F		H18.1 RP11-933H2		2.4	RP11-93B2	1.1		
	RP11-96L14	4.7	RP1-245M18.2		RP1-273P12.1		RP1-273P12.3		RP1-278022.2		
	RP1-71H19	.2	RP3-347E1.2		RP3-425P12.1		RP3-425P12.2		RP3-425P12.4		
RP3-425P1	2.5	RP3-437l16	.1	RP3-468B3.	2	RP3-501N1	2.3	RP3-522P1	3.1 RP3-522P13.2		
	RP3-522P1	3.3	RP3-525L6.	2RP4-564O4	1 RP4-635B5.		1 RP4-665N4.4		RP4-665N4.5		
	RP4-697P8	.2	RP4-697P8.	3	RP4-718N1	7.1	RP4-718N17.2		RP4-728D4	1.2	
	RP4-728D4	.3	RP4-738P15	5.1	RP4-738P1	5.4 RP4-765A	10.1	RP4-765A1	0.2	RP4-	
79618.1	RP5-1100l6	5.1	RP5-1100l6	.2	RP5-877J2.	1 RP5-983H2	1.3	RP5-997D1	6.2		
	RPL15P4	RPL3P2 RR	P1B SAMSN	I SCARNA17	SCARNA18	SCGN	SEPT7P3	SFRP4	SH3BGRL3		
SLC25A27	SLC30A2	SLC5A3	SMPDL3A	SNORA38	SNORA58 S	NORA63	SNORA73	SNORD45	SNORD83		
	snoU13	STAG1 STK	40 STX1A	TBL2	TCF19	TDRD6	TEKT2	TFAP2E	THRAP3		
	TMEM45A 1	INF TPMT	TRAPPC3	TRIM38	TRIM63	TXNDC3	U1	U3	U4	U5	
U6	U7	UBXN11	UPK1B	UQCRHP1	URGCP	USP25	USP8P VAF	RS	VN1R11P		
	VN1R13P	VPS37D	WASF5P	WBSCR22	WBSCR26 \	WBSCR27	WBSCR28	WWTR1	XXbac-		
BPG181B23	3.4	XXbac-BPG	181B23.6 XXI	bac-BPG248L	.24.10	XXbac-BPG	248L24.11 XXbac-BPG		3248L24.12 XXbac-		
BPG254F23	3.5	XXbac-BPG	254F23.6	XXbac-BPG	254F23.7	XXbac-BPG	296P20.14	6P20.14 XXbac-BPG296F			
	XXbac-BPG	299F13.14	XXbac-BPG	32J3.18	XXbac-BPG	3 J3.19	XXyac-YX60D10.1 Y_RNA				
	Z93017.1	ZDHHC20P	2 ZMYM4 ZNF	-593 ZNF683	ZPLD1						

PANTHER analysis: 208 mapped ids are found, 321 mapped ids are not found.

There is CnLOH present in TN invasive breast disease (n=6/7) that are not observed in TN DCIS (n=0/19).

- 1. p-values < 0.05;
- A gene list is mapped from 40 genomic regions found on chromosomes 1, 2,
 3, 10, 11, 12, 19, 20;
- 3. These regions encompass 291 genes altered in TN invasive breast disease;

Genes:

ZSWIM4 5S	_rRNA 7SK	ABRA AC00	4016.1 AC00	4016.2	AC005082.1	AC005082.1	2 AC005082.2	2 AC006039.	1 AC006039.4	AC00603	9.5
	AC008686.2	AC009908.1	AC011118.2	AC011626.1	AC016405.1	AC017084.1	AC017084.6	AC021876.	3 AC021876.4	AC02202	1.2
	AC022201.4	AC023590.1	AC023632.1	AC025370.1	AC025370.2	AC025647.3	AC027238.1	AC027419.	1 AC048346.1	AC	064807.1
AC068228.4	AC068228.5	AC084083.1	AC084083.2	AC084114.1	AC090192.1	AC090192.2	AC090193.2	AC090802.	1 AC090811.1	AC09092	1.
AC090922.1	AC099680.1	AC103816.1	AC104212.2	AC120053.1	ADD2 AL04	9651.1 AL136	985.2 AL1602	287.2	AL161932.2	AL451107	7.1
	AL512654.1	ANGPT1 AN	IKRD46 ANX	A13 AP00042	8.1	AP002852.1	AP002907.1	AP003550.	10 APBB1IP	ARHGAP12	2 ATAD2
ATP6V1G1F	P4	BAALC	BRD7P6	C10orf50	C7orf30 C7o	orf31	C8orf37	C8orf39	C8orf54	C8orf56	C8orf76
	C8orf85 CA	CHD1	CCND1	CCNY	CDH17	CLSTN2	COLEC10	CREM	CSDA	CSGA	LNACT2
	CSTF2T	CTC-788C1	.1	CTHRC1	CUL2	CYB5P4 CY	CS DCAF13	DEPDC1 D	ERL1 DFNA5	EXT1	
	EYA1	FABP5	FAM159A	FAM83A FA	M91A1	FAM92A1 F	BXO32 FBXC	43	FER1L6	FGF19	
	FXYD4	FZD6	GAPDP2 GE	EM	GLUDP5	GPNMB	GPX7 HAS2	HAS2AS	HNRNPF	hsa-mir-1	273hsa-
mir-23a	hsa-mir-24-2	2 hsa-mir-27a	hsa-mir-548	d-1	IAPP	IGF2BP3	KB-1137H10).1	KB-1247B1.	1KB-1554H	110.1
	KB-1615E4.	1KB-1980E6.	1 KIAA0196 K	IF5B	KLF10	KLHL38	KLHL7	KRT18P3	MACROD1	MAL2	MED30
	MPP7 MTSS	61	MYSM1	NCALD	NDUFB9	NIPAL2	NOV	NRP1	NSMCE2	NUPL2	ODF1
	ORAOV1	OSBPL3	OVCH1	OXR1	PABPC1 PC	DH15	PCMTD1	PDP1 PDS	S1 PDZK1IP1	PIK3C2G	
	POP1	PRB3 PRH1	PRH2	PRKG1	PRR4	RAD54B RA	SGEF1A RA	/ER2	RBM12B	RET	RGS22
	RNF139	RNF19A	RP11-1082L	.8.1	RP11-1110.	J8.1RP11-128	B16.3 RP11-	13L2.1	RP11-13L2.	2RP11-140	222.3
	RP11-14C22	2.4 RP11-14C	22.6	RP11-152P1	17.1 RP11-16	11-16706.2 RP11-168L22.2			RP11-16802	22.1	RP11-
189G24.2	RP11-200A1	13.1	RP11-200A	13.2RP11-241	120.1	RP11-24112	0.3	RP11-24112	20.4	RP11-241	120.5
	RP11-273P3	3.1	RP11-297A	16.2 RP11-30	P9.1	RP11-318G	8.1	RP11-32412	22.2	RP11-342	2D11.2
RP11-351M	16.1	RP11-351M	16.2 RP11-3	51M16.3 RP1	1-359G22.2	RP11-414D1	7.1 RP11-47	2N13.3 RP1	1-484J3.1 RF	211-51B10.	3 RP11-
51B10.4	RP11-539E1	17.1 RP11-66	8N23.1	RP11-68L1.	1RP11-68L1.	2RP11-778D	12.1 RP1-18D	14.2	RP1-18D14.	3	RP1-
18D14.4	RP11-941H	19.1	RP11-941H	19.2	RP11-95911	5.1 RP13-16H	111.1	RP13-16H11.2		RP13-16	111.5
	RP13-16H1	1.6 RP13-16H	111.7	RP3-388N13	3.1	RP4-694A7.	2	RP4-694A7	.3	RP4-694/	47.4
	RP4-753D10	0.3	RP4-753D1	0.5 RP4-794H	19.2	RP5-1033K	19.2	RPE65	RRM2B		RSPO2
	SAMD12	SLC25A32	SLC30A8 SI	_CO1A2	SLCO1B1	SNORA20 S	NORA31	SNORA32	SNORD77	snoU13	SNX31
	SPAG1	SQLE	SSTR4 STY	K1	TAS2R10	TAS2R13	TAS2R14	TAS2R19 T	AS2R20	TAS2R31	
TAS2R42	TAS2R50	TAS2R7	TAS2R8	TAS2R9	TASP1 TAT	DN1 TCEB1P	18	TGFA	THBD	TMEM65	
	TMEM67	TMEM74 TM	ITC1 TNFRS	F11B TPD52	TRHR	TRIB1	TRIM42	TRMT12	TRPS1	U3	U4
	U6 U6atac I	I7 UBR5	WAC	WDR67	WDYHV1	Y RNA	ZFPM2	ZHX1	ZHX2 ZNF5	72	

PANTHER analysis: 140 mapped ids are found, 151 mapped ids are not found.

5.8.11 Copy Number Aberrations for HER2 Positive DCIS Compared to Oestrogen Receptor Positive DCIS and Triple Negative DCIS.

These series examines the difference between Her2 positive pure DCIS and oestrogen receptor positive DCIS and triple negative positive DCIS

Frequency plots showing copy number aberrations between HER2 positive DCIS compared to oestrogen receptor positive DCIS and triple negative DCIS were provided by Breakthrough Breast Cancer/Research Oncology, King's College London Bioinformatics Department (Figure 44).

Figure 44: Frequency plots showing copy number aberrations between HER2 positive pure DCIS compared to oestrogen positive dcis and triple negative DCIS (amplifications, duplications, gains, Sc gains, losses, total losses CdLOH and CnLOH,) (pages 279-282).

5.8.11.1 Amplification in HER2 Positive DCIS Compared to ER Positive DCIS and Triple Negative DCIS.

There are overlaps between the amplifications found in HER2 positive pure DCIS (n=6/7) and all other pure DCIS (TN and ER n=4/17).

- 1. p-values < 0.05;
- 2. A gene list is mapped from 7 regions on chromosome 17;
- 3. These regions encompass 45 genes altered in HER2 positive DCIS;

Genes:

AC002094.1	AC002094.2	AC002094.3	AC002094.4	AC002094.5	AC015917.1	AC015917.2	AC015917.3	AC061975.1	AC061975.2
AC061975.3	AC061975.4	AC061975.5	AC061975.6	AC079199.1	AC079199.2	AC087491.2	C17orf37	CRKRS	EFCAB5
ERBB2	GRB7	IFT20 IKZF3	NEUROD2	PGAP3	PNMT	POLDIP2	PPP1R1B	PPY2	PYY2
RP11-338L2	22.1	SARM1 SLC	13A2 SLC46/	A 1	snoU13	SSH2	STARD3	TCAP	TMEM199
TMEM97	TNFAIP1	U6	VTN	ZPBP2					

PANTHER analysis: 20 mapped ids are found, 25 mapped ids are not found.

5.8.11.2 Duplication of HER2 Positive DCIS Compared to Oestrogen Positive DCIS and Triple Negative DCIS.

There were duplications present in HER2 positive DCIS (n=3/7) not observed in ER and TN pure DCIS (n=0/17).

- 1. p-values < 0.05;
- 2. A gene list is mapped from 14 regions found on chromosomes 1, 3, 8, 17;
- 3. These regions encompass 91 genes altered in HER2 positive DCIS;

Genes:

5S_	rRNA	AC005746.1	AC005901.1	AC011118.2	AC083928.1	AC092811.1	AC104958.1	AC120042.2	AC120053.1	AP003357.	3
	ARFGEF1	ARL14 BCAS	S3 C17orf82	C1orf46	C1orf68	C8orf39	C8orf44	C8orf46	COL14A1	COPS5	
	CSMD3	CSPP1	CTC-820M8	1 DEPDC6 E	NAH14 ENA	н	FAM92A1	GGH	IVL	KB-1589B1	.1KB-
1683	C8.1	KPRP	LAPTM4B	LBR	LCE1A	LCE1B LCE	1C LCE1D	LCE1E	LCE1F	LCE2A	
	LCE2B	LCE2C	LCE2D	LCE3A	LCE3B	LCE3C	LCE3D	LCE3E	LCE4A		LCE6A
	LRRC67	MATN2	MRPL13	MTBP	MTDH	MYBL1	PDP1	RBM12B	RP11-145A3	.1	
	RP11-145A3	3.2 RP11-145/	A3.4	RP1-13P20.	6	RP11-453N1	8.1	RP11-496N1	2.6	RP1-20N18	8.4
	RP1-43017.	1	RP1-43017.	2	RP1-52J10.9	RP3-388N13	3.1	SMCP	SNORA31	SNTB1	
	SPRR1A	SPRR1B	SPRR2A SP	RR2B SPRR2	2D	SPRR2E	SPRR3	SPRR4	SRP9	TBX2	
	TBX4	TMEM67	TTPA	U6	U7	VCPIP1 Y_R	ł				

PANTHER analysis: 58 mapped ids are found, 33 mapped ids are not found.

5.8.11.3 Genomic Gains in HER2 Positive DCIS Compared to Oestrogen Positive DCIS and Triple Negative DCIS.

There are genomic gains in HER2 positive pure DCIS (n=4/7) not present in ER and TN pure DCIS (n=0/17).

- 1. p-values < 0.05;
- A gene list is mapped from 10 genomic regions found on chromosomes 1, 5, 6, 20;
- 3. These regions encompass 92 genes altered in HER2 positive pure DCIS;

Genes:

AAC	SL AC022096	6.2	AC027317.2	AC027317.2	AC091934.1	AC104115.1	AC104117.1	AC104117.2	AC136940.3	AC145098.1
	AC145098.2	AC145098.3	AC146507.1	ADAMTS2	AGXT2L2	AL050329.1	AL589736.1	CNOT6	COL23A1	CTB-129O4.1
	CTC-573N18	B.1	CTD-2301A4	4.1	CTD-2301A4	4.3	DBN1	DDX41	DMRTA2	DOK3
	EIF4E1B	EYS	F12	FAF1	FAM193B	FGFR4	FGFR4	FKBP1C	FLT4	GCNT1P4
	GFPT2	GRK6	GRM6	HNRNPAB	LGSN	LMAN2	MACROD2	MAPK9	MXD3	NSD1

	OR2AI1P	OR2Y1	PDLIM7	PFN3	PHF3	PRELID1	PRR7	PTP4A1	RAB24	RASGEF1C	
	RGS14	RP11-1334A	24.4	RP11-1334A	24.5	RP11-1334A	24.6	RP11-164N2	20.1	RP11-183G2	2.1
	RP11-183G2	22.2	RP11-183G2	2.3	RP11-184C2	3.1	RP11-184C2	3.3	RP11-184C2	23.4	
	RP11-252l14	1.1	RP11-349P1	9.1	RP11-442B1	2.1	RP11-448N1	1.2	RP11-451H2	3.1	
	RP11-451H2	23.2	RP11-451H2	3.3	RP11-59D5_	_B.2	RP11-59D5_	_B.3	RP3-407E4.2	2	RP3-
407E4	1.3	RP3-407E4.4	4	RP5-1148A2	:1.1	SCGB3A1	SLC34A1	SNCB	TSPAN17	U1	U1
	U6	ZFP2	ZNF346	ZNF346	ZNF354A	ZNF354B	ZNF354C	ZNF454	ZNF879		

PANTHER analysis: 47 mapped ids are found, 45 mapped ids are not found.

There are genomic gains in TN and ER pure DCIS (n=5/17) with associated genomic gains in HER2 positive pure DCIS (n=6/7).

- 1. p-values < 0.05;
- A gene list is mapped from 14 genomic regions found on chromosomes 1,8,17.
- These regions encompass 129 genes altered in TN v DCIS, ER pure DCIS and HER2 positive pure DCIS.

Genes:

5S_rl	RNA	AC012533.1	AC016057.1	AC016240.1	AC022598.1	AC022861.1	AC022861.2	AC022861.3	AC022861.4	AC022861.5	
	AC022861.6	AC022861.7	AC023644.1	AC024367.1	AC027006.1	AC037450.1	AC083928.1	AC087491.2	AC091175.1	AC099805.1	
	AC103816.1	AC104012.1	AC104212.2	AC110998.1	AC132219.1	AC132219.2	AF121898.1	AL592492.2	ARFGEF1	C8orf44	
	C8orf45	C8orf46	CHMP4C	CNBD1	COPS5	CPA6	CSPP1	DCAF4L2	E2F5	ERBB2	
	EYA1	FABP12	FABP4	FABP5	FABP9	FAM164A	HEY1	IKZF3	IL7	IMPA1	
	JPH1	LRRC67	LRRCC1	LY96	MMP16	MRPS28	MSC	MYBL1	NBPF10	NBPF14	
	NBPF15	NBPF16	NEUROD2	PAG1	PGAP3	PKIA	PMP2	PNMT	PPIAL4A	PPP1R1B	
	PTTG3P	RALYL	RP11-289I10).1	RP11-289I10).2	RP11-34M16	5.1	RP11-34M16	3.2	
	RP11-367C1	12.1	RP11-367E1	2.1	RP11-453N1	8.1	RP11-48B3.4	1	RP11-495P1	0.1	
	RP11-495P1	0.2	RP11-508K1	9.1	RP11-656G2	20.1	RP11-666A1	.1	RP11-666A1	.2	
	RP11-666A1	.3	RP11-666A1	.4	RP11-666A1	.5	RP11-69I13.	1	RP11-6l2.1	RP11-763B2	22.2
	RP11-763B2	2.3	RP11-763B2	2.4	RP11-7F18.1	IRP11-89F3.2	2RP11-89F3.3	3RP11-91G11	.1	RP11-941H1	19.1
	RP11-941H1	19.2	RP11-98H4.	1	RP6-74O6.1	SGK3	SLC10A5	SNHG6	SNORA20	SNORD87	
	snoU13	SNX16	STARD3	STMN2	TCAP	TCEB1	TMEM70	TPD52	TRPA1	U1	U11
	U2	U6	U7	U8	VCPIP1	WWP1	Y_RNA	ZBTB10	ZFAND1	ZFHX4	
	ZNF704										

PANTHER analysis: 56 mapped ids are found, 73 mapped ids are not found.

5.8.11.4 Genomic Sc Gains in HER2 Positive DCIS Compared to Oestrogen Positive DCIS and Triple Negative DCIS.

There were Sc gains present in HER2 positive pure DCIS (n=6/7) and ER and TN pure DCIS (n=4/17).

- 1. p-values < 0.05;
- 2. A gene list is mapped from 10 regions found on chromosomes 1, 3, 5, 8, 20;
- These regions encompass 188 genes altered in HER2 positive pure DCIS and ER and TN pure DCIS;

Genes:

5S_	rRNA	7SK	A4GNT	AACSL	AADAC	AADACL2	AC022096.2	AC026320.2	AC027317.2	AC087667.	1
	AC091934.1	AC092965.1	AC104117.1	AC104117.2	AC104629.1	AC104629.2	AC104629.3	AC104629.4	ADAMTS2	ARMC8	
	C3orf36	C3orf55	C3orf72	CCDC50 CC	RL1 CDV3	CEP63	CEP70	CLDN18	DBR1	DEFB121	
	DEFB122	DEFB123	DEFB124	DHX36	DMRTA2	DNAJC13 DZ	ZIP1L EEF1A	1P25	EIF4E1B	EPHB1	
	ESYT3	FAF1	FAIM	FGF12	FGFR4	FOXL2	GAPDHP39	GFM1	GPR149	GPR79	GRM6
	HM13	IL20RB	IQCJ	KY	LXN	MFSD1	MLF1	MRAS	MSL2	NCK1	
	NCRNA0002	28 NPHP3	OSTN	OTTHUMG0	0000159780	PCCB	PDCD10	PHC3	PIK3CB	PPP2R3A	
	PRKCI	PYDC2	RAB6B RAR	RES1 REM1	RP11-102M1	1.1	RP11-113A1	1.1	RP11-117F2	2.1	
	RP11-12N13	3.1	RP11-12N13	3.2	RP11-12N13	.3 RP11-12N	13.4	RP11-12N13	.5	RP11-12N1	13.6
	RP11-167H9	9.1	RP11-183G2	22.1	RP11-183G2	2.2	RP11-183G2	2.3	RP11-192K2	.3	
	RP11-197K6	6.1	RP11-202A1	3.1	RP11-202A1	3.2	RP11-206M1	1.4	RP11-206M1	1.7	RP11-
217E	22.1	RP11-217E2	2.2	RP11-217E2	2.5	RP11-237P2	1.1	RP11-23D24	.1	RP11-23D2	24.2
	RP11-278L1	5.1	RP11-278L1	5.2	RP11-290K4	.1	RP11-290K4	.2	RP11-293N1	.1	
	RP11-2A4.1	RP11-2A4.3	RP11-2G17.	1 RP11-305O	4.1	RP11-305O4	.2	RP11-333H9	.6	RP11-379F	4.1
	RP11-379F4	1.4	RP11-404G1	16.1	RP11-404G1	6.2	RP11-413G2	2.2	RP11-440K2	2.1	
	RP11-450H	5.1	RP11-452B4	.1	RP11-454C1	8.1	RP11-454C1	8.2 RP11-463	3H24.1	RP11-463F	124.4
	RP11-468F1	8.2	RP11-538P1	8.1	RP11-538P1	8.2	RP11-548O1	.1	RP11-548O1	.3	
	RP11-575C	1.1	RP11-576M8	3.2	RP11-598P1	2.1	RP11-642L1	1.1	RP11-64D22	1	
	RP11-64D22	2.2 RP11-64D	22.5	RP11-655G2	2.1	RP11-655G2	2.2	RP11-656G9	.3	RP11-6570	09.1
	RP11-65E22	2.3	RP11-731C1	7.1	RP11-785G3	3.1	RP11-79L9.2	RP11-79M21	.2	RP11-79M	21.3
	RP11-85F14	l.1	RP11-85F14	.5	RP11-85F14	.6	RP11-91K8.2	2	RP13-8108.	1	RP3-
324C	017.4	RSRC1	RYK	SERPINI1	SERPINI2	SHOX2 SLC	O2A1 SNCB	SNORA33	snoU13	SOX14	
	SRPRB	STAG1	SUCNR1	TF	TM4SF1	TM4SF18	TMEM22	TOPBP1 TS	PAN17 TXND	C6	U1
	U6	U7	U8	UBA5	UTS2D	VEPH1	WDR49	Y_RNA	ZBBX	ZFP2	ZNF346
ZNF3	854B	ZNF354C	ZNF454	ZNF879							

PANTHER analysis: 82 mapped ids are found, 106 mapped ids are not found.

5.8.11.5 Losses in HER2 Positive DCIS Compared to Oestrogen Positive DCIS and Triple Negative DCIS.

There were losses present in HER2 positive pure DCIS (n=3/7) not observed in ER and TN positive pure DCIS (n=0/17).

- 1. p-values < 0.05;
- 2. A gene list is mapped from 9 regions found on chromosomes 1, 8, 15, 16, X;
- 3. These regions encompass 87 genes altered in HER2 positive pure DCIS;

Genes:

AC00	09113.1	AC009113.2	AC009113.3	AC010531.1	AC010531.2	AC027702.2	AC092139.1	AC092139.2	AC092384.1	AC092384	1.2
	AC099524.1	AC116552.1	AC136285.1	AC138028.1	AC138028.2	AC138028.3	ACSF3	AGPAT6	AHDC1	AL049610	.1
	ANK1	AP3M2	APRT	C16orf81 C1	6orf85 CBFA	2T3	CD164L2	CDH15	CDT1	CTU2	
	CYBA	FAM38A	FBXO31	FCN3	GALNS	GAN	GINS4GLRA	4 GOLGA7	GPR3	hsa-mir-48	36
	IKBKB	IL17C	LL0XNC01-2	250H12.2	LL0XNC01-2	250H12.3	MAP1LC3B	MAP3K6	MORF4L2	MVD	MYST3
	NGFRAP1	NKX6-3	PABPN1L	PLAT	PLCG2	PLP1	RAB40A	RAB9B	RNF166	RP11-173	M1.1
	RP11-178L8	.1	RP1-144C9.2	2	RP11-589C2	21.1	RP1-159A19	.4	RP4-752l6.1	RP5-1055	C14.4
	RP5 1055C1	4.6	RP5-1055C1	4.7	RP5-1142A6	5.2	SLC20A2	SNAI3	SNORD112	snoU13	
	snoU13	SYTL1	TCEAL1	TCEAL3	TCEAL4 TM	EM31	TRAPPC2L	WASF2 Y_R	NA	Z73964.1	
	ZC3H18	ZCCHC14	ZFPM1	ZNF469	ZNF778						

PANTHER analysis: 50 mapped ids are found, 37 mapped ids are not found.

There were losses present in ER and TN pure DCIS (n=10/17) not observed in any HER2 positive pure DCIS (n=0/24).

- 1. P-values < 0.05;
- 2. A gene list is mapped from 3 genomic regions from chromosome 19;
- 3. These regions encompass 3 genes altered in non HER2 DCIS;

Genes:

MUC16 AC008734.1 AC008734.2

PANTHER analysis: 1 mapped ID found, 2 mapped ids are not found.

5.8.11.6 Total Loss in HER2 Positive DCIS Compared to Oestrogen Positive DCIS and Triple Negative DCIS.

There were total losses present in HER2 positive pure DCIS (n=7/7) also present in some ER and TN pure DCIS (n=4/17).

- 1. p-values < 0.05;
- 2. A gene list is mapped from 28 regions found on chromosomes 3, 6, 16, 17;
- These regions encompass 293 genes altered in HER2 positive pure DCIS and ER and TN pure;

Genes:

5S_rR	NA	7SK	AARS	AC000003.1	AC003664.1	AC003958.1	AC003958.2	AC003958.5	AC003958.6	AC004223.2	
	AC004675.1	AC005224.2	AC005277.1	AC005304.1	AC005304.2	AC005304.3	AC005358.1	AC005358.3	AC005410.2	AC006070.1	1
	AC006070.1	2	AC006070.1	3	AC006070.7	AC009060.1	AC009060.2	AC009060.3	AC011193.1	AC012184.1	
	AC015842.1	AC015849.1	AC015849.4	AC019349.4	AC024610.1	AC025335.1	AC025518.1	AC026468.1	AC026954.6	AC027045.1	
	AC069363.1	AC087742.1	AC091178.1	AC100793.1	AC100808.1	0	AC100808.7	AC104581.1	AC107993.1	AC113189.5	
	AC123769.1	AC126327.1	AC126327.4	AC129492.6	AC131056.1	AC135178.7	ACADVL	ACAP1	ACCN1	ALOX12B	
	ALOX15B	ALOXE3	AMAC1L3	ANKFY1	ARHGEF15	ARL5C	ATP6V0A1	AURKB	BECN1	C17orf102	
	C17orf44	C17orf59	C17orf61	C17orf68	C17orf74	C17orf81	C17orf96	C17orf98	CACNB1	CCDC56	
	CCL1	CCL11	CCL13	CCL14	CCL15	CCL16	CCL18	CCL2	CCL23	CCL3	
	CCL3L1	CCL4	CCL4L1	CCL4L2	CCL7	CCL8	CCR10	CCT6B	CD68	CDRT15	
	CDRT15P	CHD3	CHRNB1	CISD3	CLDN7	CLEC18A	CLEC18C	CNTD1	CNTNAP1	CNTROB	
	COASY	COG4	COX10	CTB-75G16.	1	CTD-2303K1	1.1	CTD-3193K9	9.1	CWC25	
	CYB5D1	CYB5D2	DDX19A	DDX19B	DHRS11	DHRS7C	DLG4	DNAH2	DNAH9	DULLARD	
	DUSP7	DVL2	EFNB3	EIF4A1	EIF5A	ELAC2	EXOSC6	EZH1	FAM134C	FBXO47	
	FGF11	FNDC8	FUK	FXR2	GABARAP	GAS7	GGNBP2	GPS2	GUCY2D	HES7	
	HS3ST3A1	hsa-mir-140	hsa-mir-1972	hsa-mir-324?	hsa-mir-548h	1-3	hsa-mir-744	HSD17B1	HSD17B1P1	KCNAB3	
	KCTD11	KDM6B	KRBA2	KRT31	KRT33A	KRT33B	KRT34	KRT37	KRT38	KRTAP16-1	
	KRTAP17-1	KRTAP2-1	KRTAP2-4	KRTAP29-1	KRTAP4-1	KRTAP4-12	KRTAP4-14	KRTAP4-2	KRTAP4-3	KRTAP4-4	
	KRTAP4-5	KRTAP4-6	KRTAP4-7	KRTAP4-8	KRTAP4-9	KRTAP9-1	KRTAP9-2	KRTAP9-3	KRTAP9-4	KRTAP9-6	
	KRTAP9-7	KRTAP9-8	KRTAP9-9	LASP1	LIG3	LSMD1	LYZL6	MAP2K4	MLLT6	MLX	
	MPDU1	MRM1	MYH10	MYO19	MYOCD	NAGLU	NDEL1	NEURL4	NLE1	NLGN2	
	ODF4	PCGF2	PDXDC2	PER1	PFAS	PHF23	PIGW	PIP5K2B	PLEKHH3	PLSCR3	
	PLXDC1	POLR2A	PSMB3	PSMC3IP	PSME3	PTRF	RAD51L3	RAMP2	RANGRF	RDM1	
	RFFL	RNF222	RP11-106J2	3.1	RP11-1096G	320.1	RP11-462C2	1.1	RP11-554D1	5.1	
	RP11-554D1	5.3	RP11-554D1	5.4	RP11-565F1	9.1	RP11-713H1	2.1	RP5-837J1.1	RPL19	
	RPL23	RPL26	RPS27P26	SCARNA21	SENP3	SLC25A35	SLC2A4	SNORA21	SNORA48	SNORA67	
	SNORA69	SNORA74	snoU13	snoU6-77	SOX15	SPEM1	ST3GAL2	STAC2	STAT3	STX8	
	TBC1D3B	TBC1D3C	TBC1D3G	TBC1D3H	TMEM102	TMEM107	TMEM132E	TMEM88	TMEM95	TNFSF12	
	TNFSF12-TN	NFSF13	TNFSF13	TNK1	TP53	TRAPPC1	TUBG1	TUBG2	U11	U6	U7
	U8	UBE2G1	USP43	VAMP2	Vault	VPS25	WDR16	WDR51A	WNK4	WRAP53	
	WWP2	Y RNA	YBX2	ZBTB4	ZNF18	ZNF830	ZNHIT3	ZZEF1			

PANTHER analysis: 192 mapped ids are found, 101 mapped ids are not found.

There were total losses present in more than half of the ER pure DCIS and TN pure DCIS (n=11/17) not present in any of the HER2 positive pure DCIS cases (n=0/7)

- 1. p-values < 0.05;
- A gene list is mapped from 42 genomic regions found on chromosomes 6,11,13,17, 19.
- These regions encompass 67 genes altered in ER pure DCIS and TN pure DCIS.

Genes:

5S_	rRNA	AC008734.1	AC008734.2	AC087498.1	AC090282.1	AC097370.1	ACRV1	ACTL9	ADAMTS10	AL136359.1	
	AL137001.1	AP001482.1	AP003027.2	ASPA	C11orf87	CEP164	CHEK1	CTD-2557P1	19.1	DDX25	
	GRAMD1B	GRM5	hsa-mir-1253	3	HYLS1 MUC	16 OLFM4	OR10D1P	OR10D3P	OR1A1	OR1A2	
	OR1D2	OR1D5	OR1E1	OR1E2	OR1G1	OR2Z1 OR3	A1 OR3A2 OF	R3A3	OR3A4	OR6X1	
	OR8D1	OR8D2	OR8F1P	OR8G2P	OR8G5	PARK2	PATE1	PATE2	PATE3	PATE4	PUS3
	RAP1GAP2	RP11-24H2.	1	RP11-24H2.:	2	RP11-301J1	6.2	RP11-301J1	6.3	RP11-301J1	16.5
RP11	-301J16.7	RP11-442J1	7.4	SCN3B	SPATA22	TRPV3	U1	U6	VWA5A	WSCD1	
	ZNF202										

Genes PANTHER analysis: 39 mapped ids are found, 28 mapped ids are not found.

5.8.11.7 CdLOH in HER2 Positive DCIS Compared to Oestrogen Positive DCIS and Triple Negative DCIS.

There is CdLOH present in HER2 positive pure DCIS (n = 4/7) not observed in any of the ER and TN pure DCIS (n = 0/17).

- 1. p-values < 0.05;
- A gene list is mapped from 13 regions found on chromosomes 1, 5, 8, 10, 16, 17, X;
- 3. These regions encompass 83 genes altered in HER2 positive pure DCIS;

Genes:

AC00	9113.1	AC009113.2	AC009113.3	AC010531.1	AC010531.2	AC092139.1	AC092139.2	AC092384.1	AC092384.2	AC099	524.1
	AC116552.1	AC136285.1	AC138028.1	AC138028.2	AC138028.3	ACSF3	AGPAT6	AHDC1	AL049610.1	ANK1	
	APRT	ATAD1	C16orf81	C16orf85 CB	FA2T3 CD16	4L2	CDH15	CDT1	CFLP1	CTU2	
	CYBA	FAM38A	FBXO31	FCN3	GALNS	GAN	GINS4 GLR	4 GOLGA7	GPR3	hsa-mi	r-486
	IKBKB	IL17C	LL0XNC01-2	50H12.2	LL0XNC01-2	50H12.3	MAP1LC3B	MAP3K6	MORF4L2	MVD	NGFRAP1
	NKX6-3	PABPN1L	PAPSS2	PLAT	PLCG2	PLP1	RAB40A	RAB9B	RNF166	RP11-1	173M1.1
	RP11-178L8	.1	RP1-144C9.2	2	RP1-159A19	.4	RP4-752l6.1	RP5-1055C1	4.4	RP5-10	055C14.6

RP5-1055C14.7	RP5-1142A6.2	SLC20A2 SNAI3	snoU13	SYTL1	TCEAL1	TCEAL3
TCEAL4 TMEM31	TRAPPC2L WASF2	Z73964.1 ZC3H18 ZCCł	HC14	ZFPM1	ZNF469	

PANTHER analysis: 50 mapped ids are found, 33 mapped ids are not found.

There is CdLOH present in ER pure DCIS (n= 9/17) not observed in HER2 Positive pure DCIS (n=0/7)

- 1. p-values < 0.05;
- 2. A gene list is mapped from 1 genomic regions found on chromosomes 19;
- 3. These regions encompass 1 gene altered in ER pure DCIS;

Gene: Muc16

PANTHER analysis: 1 mapped id is found.

5.8.11.8 CnLOH in HER2 Positive DCIS Compared to Oestrogen Positive DCIS and Triple Negative DCIS.

There is CnLOH present in HER2 positive pure DCIS (n=7/7) not observed in ER and TN pure DCIS (n=0/17)

- 1. p-values < 0.05;
- 2. A gene list is mapped from 14 regions found on chromosomes 1, 2, 12, X;
- 3. These regions encompass 104 genes altered in HER2 positive pure DCIS;
- 4. Genes: AC117494.155_rRNA AC004074.1 AC004074.3 AC004074.4 AC004673.1 AC092198.1 AC117517.1 AF241726.2

	AF241726.4	AF241726.6	AL031115.1	AL121578.2	AL161779.1	AL591845.1	AL627402.1	ATP6AP2	BCOR	
	C1orf113	C2orf55	CASK	CTD-2324A2	24.1 CXorf38	CYBB	DDX3X	DDX53	DYNLT3	
	FAM176B	FAM3C2	FTLP16	GS1-433O24	4.1	GS1-590J15	.1 hsa-let-7f-2	hsa-mir-492	hsa-mir-98	
	HSD17B10	HUWE1	IQSEC2	LSM10	MED14	MID1IP1	MKRNP5	NAP1L2	NAV3	NYX
	OSCP1	OTC	PTCHD1	PTCHD1	RIBC1	RP11-126D1	7.1	RP11-126D1	7.4	
	RP11-157D2	23.1 RP11-15	7D23.2	RP11-169L1	7.2	RP11-169L1	7.3	RP11-169L1	7.5	
	RP11-1850	17.3	RP11-204C1	6.4 RP11-26	5P11.1	RP11-265P1	1.2	RP11-272G2	22.1	
	RP11-272G2	22.2	RP11-272G2	22.3	RP11-320G2	24.1 RP11-40	F8.2	RP11-469E1	9.1	
	RP11-478112	2.1	RP11-494l9.	.1	RP11-494l9.	2	RP11-540L1	1.2	RP11-654E1	7.2
	RP1-169l5.4	RP11-77G22	2.2	RP11-77G22	2.3	RP13-126P2	1.1	RP13-13A3.	1	
	RP13-444K1	9.1 RP3-339/	A18.3	RP3-339A18	.6	RP4-646N3.	1	RP4-646N3.	3	RP5-
1172N10.2	RP5-972B16	6.2 RP5-972B	16.2	RP6-186E3.	1	RP6-29D12.	2	RP6-29D12.	3	RP6-
29D12.4	RPGR	SLC6A15 SM	MC1A SNORA	31	SNORA63	snoU13	snoU13	STK40	SYT1	
	THRAP3	TSPAN7	U4	U6	U6	U6 U7 USP9	х	Vault	Y_RNA	
	Y_RNA	ZXDB								

PANTHER analysis: 30 mapped ids are found, 74 mapped ids are not found.

There is CnLOH present in ER and TN pure DCIS (n=017/17) not observed in HER2 positive pure DCIS (n=0/7).

- 1. p-values < 0.05;
- 2. A gene list is mapped from 84 genomic regions found on chromosomes 1, 2,

3, 4, 6, 7, 9, 10, 11, 12, 18, 20, 21;

 These regions encompass 630 genes altered in ER pure DCIS and TN pure DCIS;

Genes:

7	7SK	AACS	ABCB11	ABHD11	ABTB2	AC007556.3	AC009336.1	AC009336.2	1	AC009336.2	3	
		AC009336.2	4	AC009475.2	AC010145.2	AC010145.3	AC010148.1	AC011998.2	AC011998.4	AC011998.5	AC016739.1	
		AC016739.2	AC016757.1	AC017048.1	AC017048.2	AC017048.3	AC017048.4	AC026366.1	AC026366.2	AC055713.1	AC064874.1	
		AC068706.1	AC068799.1	AC069209.1	AC069214.1	AC069234.1	AC073069.2	AC073846.1	AC073846.2	AC073846.3	AC078875.1	
		AC090670.1	AC091609.1	AC091611.1	AC092162.1	AC092576.1	AC095030.1	AC096536.1	AC097713.2	AC097713.3	AC097713.4	
		AC099680.1	AC104169.1	AC104387.1	AC104837.1	AC114486.1	AC114814.2	AC114814.3	AC114814.4	AC117503.2	AC122688.1	
		AC125603.1	AC126309.2	AC127164.1	AC131263.2	AC132216.1	ACADS	ACOT11	ACTL8	ADAMTSL2	ADH5P2	
		AFG3L2	AGAP1	AK3L1	AK5	AL031427.1	AL033381.1	AL033381.2	AL034344.1	AL035400.1	AL035706.1	
		AL049710.1	AL049710.2	AL049710.4	AL049745.2	AL109843.1	AL136324.1	AL137855.1	AL138781.1	AL139244.1	AL157773.1	
		AL158068.1	AL158167.1	AL160060.2	AL161452.1	AL161740.1	AL161915.1	AL162579.1	AL353771.1	AL353898.1	AL353898.2	
		AL353898.3	AL353898.4	AL354946.1	AL355574.1	AL357054.1	AL358512.1	AL390994.1	AL391728.1	AL512329.1	AL512329.2	
		AL512329.3	ALDH4A1	ANAPC5	ANKRD13C	ANXA10	AP000302.5	В	AP005264.2	ARHGEF10L	ARHGEF19	
		ARL4C	ATP5GP1	ATP6V0A2	BAG2	BBS5	BCAS2	BEND6	BMP6	BRDT	BRI3BP	
		BSND	BTBD8	C11orf74	C12orf43	C12orf49	C1orf134	C1orf141	C1orf168	C1orf175	C1orf177	
		C1orf191	C1orf224	C1orf64	C1orf83	C1orf89	C2orf19	C6orf142	C6orf195	C8A	C8B	
		C9orf116	C9orf62	C9orf69	CABP1	CAGE1	CAMKK2	CAMSAP1	CAPN10	CAPRIN1	CCDC73	
		CCDC92	CDC7	CDCP2	CIDEA	CLCNKA	CLCNKB	CLDN3	CLDN4	COL5A1	COX6B1P7	
		CR392000.1	CR392000.2	CRISP1	CRYZ	CST1	CST2	CST4	CST5	CSTP1	CSTP2	СТН
		CYB5RL	DAB1	DBH	DCLRE1B	DDI2	DDX55	DDX60	DEFB110	DEFB112	DEFB113	
		DEFB114	DEFB133	DENND2C	DEPDC1	DEPDC7	DHCR24	DHRS9	DHX37	DIO1	DIRAS3	
		DNAH10	DNAJC30	DOK7	DSP	DST	EEF1E1	EIF2B1	EIF2S2P5	EIF3M	ELTD1	
		ENTPD8	EPHX4	ESPNL	EVX2	EXD3	EXOC2	FAM101A	FAM131C	FAM132B	FAM151A	
		FAM163B	FAM83B	FASTKD1	FBLIM1	FBXO21	FBXO3	FBXO42	FBXW8	FCN1	FCN2	
		FOXC1	FOXF2	FOXQ1	FTLP17	G6PC2	GDI2P2	GFRAL	GLIS1	GLT6D1	GMDS	
		GOT2L1	GPR177	GPR35	GREB1L	GTF2H3	HCRTR2	HECW2	HHLA3	HIPK1	HNF1A	
		HOXD1	HOXD10	HOXD11	HOXD12	HOXD13	HOXD3	HOXD4	HOXD8	HOXD9	HRK	hsa-
mir-1)b	hsa-mir-1262	2hsa-mir-1290	hsa-mir-604)	hsa-mir-938	HSP90B3P	HSPB11	HSPB7	HUS1B	IFFO2	IFI44
		IFI44L	IFNGR2	IGSF21	IL12RB2	IL17A	IL23R	ILKAP	IRF4	KBTBD10	KCNT1	
		KDM2B	KIAA0649	KIAA1586	KLHL30	KLHL31	KSR2	LASS6	LCN1	LCN9	LDLRAD1	
		LHX3	LIN28AP3	LMO2	LPAR3	LPCAT2BP	LPHN2	LRP2	LRPAP1	LRRC1	LRRC40	
		LRRC42	LRRC7	LYZL1	MACROD2	MAP1LC3B2	MCOLN2	MCOLN3	MIER1	MLEC	MRPL37	

299

	MRPS11P1	MRPS2	MTL1	MTX2	MUTED	MYCN	MYCNOS	MYLK4	NACC2	NAT10	
	NCOR2	NCRNA001	18	NCRNA0015	59	NCRNA0017	73	NEGR1	NELF	NOS1	
	NOSTRIN	NOXA1	NRARP	OASL	OBP2A	OFCC1	OLFM1	OMA1	ORAI1	OSBPL6	
	P2RX4	P2RX7	PADI2	PAEP	PARS2	PAX7	PCSK9	PDE11A	PEBP1	PGAM3P	
	PGK2	PIGK	PIN1L	PIP5K1P1	PKHD1	PLEKHM2	PNPLA7	PPAP2B	PRIM2	PRKAA2	
	PRPF31	PRRG4	PTGFR	QSER1	QSOX2	RAB23	RAMP1	RAPGEF4	RBM45	RFC5	
	RILPL1	RIOK1	RNF34	RNFT2	RP11-101C1	11.1	RP11-109l2.	.3	RP11-124G	5.1	
	RP11-124I4.	2	RP11-129K24.3 RP11-157J24.1		RP11-129K24.4 RP11-159J16.1		RP11-12C17.2 RP11-169K16.4		RP11-139O18.1		
	RP11-145H9	9.3							RP11-169K16.6		
	RP11-169K16.7 RP11-180O5.2 RP11-203H2.2 RP11-240G22.1 RP11-288G3.4 RP11-320E2.1 RP11-343L14.2 RP11-378I13.1		RP11-169K16.8		RP11-169K16.9		RP11-175G14.1		RP11-17E13.3		
			RP11-181B18.1		RP11-192N10.2		RP11-203B9.4		RP11-203H2.1		
			RP11-213P13.1		RP11-218C14.5		RP11-240D10.2		RP11-240D10.4		
			RP11-243M12.1		RP11-263F14.3		RP11-288G3.2		RP11-288G3.3		
			RP11-288l21.1 RP11-324K6.1 RP11-363H12.1 RP11-380J14.1		RP11-292O17.1 RP11-335E14.1 RP11-375A5.1 RP11-380L11.1		RP11-2B19.1 RP11-338K17.1 RP11-377K22.2 RP11-393N21.1		RP11-310I9.1 RP11-339A11.1 RP11-377K22.3 RP11-397G17.1		
	RP11-399H11.2		RP11-399H11.3		RP11-407P2.1		RP11-411K7.1		RP11-411K7.2		
	RP11-411K7.4		RP11-411K7.5		RP11-426A6.5		RP11-426A6.7		RP11-426A6.8		
	RP11-426A6.9		RP11-42015.2		RP11-432J22.2		RP11-447M12.2		RP11-473A10.2		
	RP11-47506.1		RP11-478C1.6		RP11-478C1.7		RP11-478C1.8		RP11-47K11.2		
	RP11-47K11.3		RP11-518D3.1		RP11-518D3.3		RP11-518D3.4		RP11-524H19.1		
	RP11-524H19.2		RP11-524K22.1		RP11-529E10.8		RP11-532F6.2		RP11-534G20.3		
	RP11-548C21 1		RP11-54919.1		RP11-550H2.1		RP11-550H2.2		RP11-555H7.2		
	RP11-5P18.	1	RP11-5P18.10		RP11-5P18.2		RP11-5P18.3		RP11-5P18.5		
	RP11-614L 17 1		RP11-622P13.2		RP1-167A19.5		RP11-67L3.3	- 2RP11-67L3.4	4RP11-67L3.5RP11-67L3.6		
	RP11-69L16	.4	RP11-69L16.5 RP11-779P15.2 RP11-08L5 2RP11-08L5		RP11-69L16.6 RP11-79N23.1		RP11-719J20.1 RP1-181J22.1		RP11-724O16.1 RP11-82L20.1		
	RP11-779P1	51									
	RP11-01111	1									
	DD13 476500 4		RP1-71H19.2		RP3-334F4 1RP3-334F4 1		2RP3-335N17 2		RP3-336K20 B 2 RP3-		
368B0	868B0 1 RP3-380B4		1 RP3-417L20		.3 RP3-417L20		.4 RP3-44501(0.1 RP3-510B21.1		
00020	RP4-55201:	22	RP4-591B8	2	RP4-609E1	2	RP4-609E1	3	RP4-621B10	13	RP4-
633H	17.2	RP4-641G1	73	- RP4-641G1	24	- RP4-654H10	2	RP4-660H1	1	RP4-677H1	5.2
00011	DD4_677U1F	101-041012 54	PP4-60447	2		2	PP4-60447	4	PD4-705E10	1	DD4-
70551	0.2	PP4-706A16	2 RP4-706416		3 RP4-710M1		3.2 RP4-726F1 ²		1PP4-733M16.2 PP		PD4
7340	19.2	RP4-753D5	2 RP4-706A16		1 RP4-758 124		4 RP4-763G1		1 PD4_763C1 2		2
1040	RP5-1033K1	a 2	RP5-10730	3.7	RP5-1077H	22 1	.T	13	RP5-1177M	21.1	PP5-
8270	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DD5-931K1F	1 TRF 5-107 50	DD5-936 13 /	1 PD5-937124	1	PD5-937124	1.J	PD5-937124	2	PP5-
0270	9.1 4.4		5.1 RP5-636J3.		C DE 9661 20		DDE 9661 20				KF3-
03/12				1 5 DDc 10201					DDEce	DDQ11D1	
	RF3-997D24	+.J	RF3-997D24	+.J			CEDDD4	2.1		RESTIET	
	RP517P5	RPODL	CNODAG	SARDH	SUCARDI	SULT	SERDP1	5FK511		SLC25A34	
	SLC35D1	SNUKASI	SNURASS	SNORA70	SNUKAS	SNORDTIZ	SNORDIIS	Shou 13		SURLIT	
	SURDSZ	SF023	STEN	33073	JOK I	JOAZIP	TODALIA	TOTNO	TESO	TEADOD	
	JIATA	30083	SVIL	TMEDO	TASTR2	TMENTER			THENCO	TRINGS	
	TTOOO	IGFBR3	TTU	THED2			IMEM59	I MEM61		I KIM33	
	11022			I UBB6	I XNDC5	IYW3	U4atac	U5	U6	Ubatac	υ/
	UBAC1	UBC	UBE2F	UNC119B	USP24	VPS37D	VSIG10	WBSCR22	WBSCR26	WDR63	
	WDR78	WSB2	ххуас-ҮХ60	10.1 טונטו	Y_KNA	YIPE1	ZB1B17	∠⊦YVE28	ZNF326	∠NF385B	
	ZNF451 ZNF664										

PANTHER analysis: 292 mapped ids are found, 338 mapped ids are not found;

5.9 Summary and Discussion of Genomic Differences between Pure DCIS and DCIS Associated with Invasive Breast Disease

This section addresses point 2 of the study aims (page 67): "To undertake an analysis of archival DCIS samples to identify genomic variation, abnormalities and changes between different pure DCIS lesions and DCIS lesions associated with invasion" and refers to pure ER positive DCIS compared to ER positive DCIS associated with invasive tumour (5.8.4) and pure TN DCIS compared to TN DCIS associated with invasive tumour (5.8.8)

Comparisons of copy number aberrations were used to produce charts highlighting molecular functions, biological processes and protein classes were generated. Examples are given within this chapter; however the majority of charts are saved to the accompanying disc.

In this initial analysis of the genomic data, only regions showing complete differences are examined. Caution should be taken in this series when looking at CnLOH in the samples analysed here due to the lack on corresponding normal tissues. Samples were normalised against a standard via Affymetrix, but not against associated normal tissues from the same sample.

5.9.1 Genomic Differences found in Oestrogen Receptor Positive Pure DCIS Versus Oestrogen Receptor Positive DCIS Associated with Invasive Breast Disease

(See section 5.8.4)

The frequency plots for ER pure DCIS and ER positive DCIS associated with invasion show a high degree of heterogeneity with ER pure DICS having some homologous regions but mainly distinct and separate CNAs compared to ER positive DCIS associated with invasive breast disease. There are no amplifications present in ER positive pure DCIS whereas ER positive DCIS associated with invasive breast disease shows amplification found on chromosomes 6 and 8. CdLOH are varied, with ER pure DCIS showing loss of heterozygosity found on chromosomes 3, 5, 7, 9, 10, 11, 12, 11, 16, 17 and X. CdLOH is present on chromosome 5, 7, 10, 11, 12, 16, 17, 19, X in ER positive DCIS associated with tumour. ER positive pure DCIS shows duplication on chromosome 8 although this is not seen in the ER positive DCIS associated with invasive breast disease.

There are a large number of gains seen in ER positive DCIS associated with invasive breast disease across all chromosomes (except 13, X) whilst ER positive pure DCIS show gains less frequently on all, except certain regions found on chromosomes 1, 2, 4, 5, 6, 9, 11, 12, 16, 17, 18, 19 and 20. There are no gains on 12, 14 or 20.

As with pure TN DCIS versus TN DCIS associated with invasive breast disease, it may be that for ER positive lesions further genomic changes maybe either required or assist in the pathway to invasive disease.

There are amplifications identified in ER positive DCIS associated with invasive breast disease which we did not observe in ER positive pure DCIS. PANTHER analysis reveals 29 mapped genes. Of these, 13 are histones with epigenetic post translational modifications of histones being described as hallmarks of cancer (226). Elsheikh et al have correlated global histone modifications with breast tumour phenotypes, prognostic factors and patient outcome in invasive breast cancer. Utilising IHC on TMAs they identified; "Variations in bulk histone modifications in different grades, morphologic types, and phenotype classes of invasive breast tumors. Furthermore, we have identified hypomodified and hypermodified tumor clusters, which correlate with known prognostic factors and clinical outcome" (227).

In this series there are duplications in the ER positive pure DCIS but not in ER positive DCIS associated with invasive breast disease. PANTHER analysis reveals a single gene, ASPH, which has been shown to be amplified in breast tumours in one previous study (228). Kadota et al (228) describe ASPH as one of four potentially novel oncogenes although they did not investigate ASPH further.

For gains in ER positive pure DCIS and ER positive DCIS associated with invasive breast disease there is considerable overlap in the gene patterns with no specific gains identified, and therefore these have not been further examined in this initial analysis.

Sc gains were found in ER positive pure DCIS not present in ER positive DCIS associated with invasive breast disease. PANTHER analysis reveals 8 mapped genes. Of these 2 are tyrosine kinases, one of these, tyrosine kinases (PTK2), has been previously shown to be up-regulated in DCIS (229). Also known as FAC Lightfoot et al (234) describe this kinase as a mediator of several functions including proliferation adhesion and survival. They found overexpression in DCIS in 66% of cases (n=34/51) and 33% of invasive lesion (n=6/18) but no expression in fibrocystic disease. They suggest that FAK has an active role in DCIS and survival in tumourigeneis. Other Sc gains were found in ER positive DCIS associated with invasive breast disease not observed in ER positive pure DCIS. PANTHER analysis reveals 62 know genes with a variety of molecular, biological and protein classes (see

PANTHER analysis) is used to create pie charts and radar map for molecular functions, biological processes and protein class (Figures 45-47).

Figure 45: Molecular functions associated with Sc gains in ER positive DCIS associated with invasive breast diseases and ER positive pure DCIS.

Figure 46: Biological processes associated with Sc gains in ER positive DCIS associated with invasive breast disease and ER positive pure DCIS

Figure 47: Protein classes associated with ER positive DCIS associated with invasive breast disease and ER positive pure DCIS.

Oh the 62 genes, TNFRSF4 (a tumour necrosis factor) has been previously described in both invasive disease and DCIS (230). Also known by the alias OX40, this membrane-bound member of the tumour-necrosis-factor-receptor (TNFR) superfamily, plays an important role in proliferation, survival and infiltration of activated T cells via binding to OX40L (230). Xie et al suggest that high OX40 expression may be associated with malignant transformation, progression, invasion and metastasis in breast cancer biology (230).

There are losses in ER positive DCIS associated with invasive breast disease not observed in ER positive pure DCIS. PANTHER analysis reveals 42 mapped genes, of which 6 are zinc finger proteins. Losses include NRG3 which encodes for the EGF containing ligands that mediate binding to ERBB receptor tyrosine kinases (231). NRG is reported to regulate mammary phenotype (232). Total losses in pure ER positive DCIS include RB1 (retinoblastoma gene) that has tumour suppressor function. It has been shown to be frequently altered in breast carcinomas leading to loss of expression (233). Total Losses seen in DCIS associated with invasive breast disease but not in pure DCIS are far more common (Figures 49-51). PANTHER analysis reveals 219 mapped genes. There is a wide variation in the genes and the molecular functions with total loss. Of these MAP2K4 (mitogen activated protein kinase) whose deletion has been suggested as one of a set of putative cancer genes (234).

Figure 48: Molecular functions associated with total loss in ER positive DCIS associated with invasive breast disease.

Figure 49: Biological processes associated with total loss in ER positive DCIS associated with invasive breast disease

Figure 50: Protein classes associated with ER positive DCIS associated with invasive breast disease.

There is CdLOH present in ER positive pure DCIS not observed in ER positive DCIS associated with invasive breast disease. PANTHER analysis reveals 176 mapped

genes with a variety of molecular functions and protein classes. A number matrix metalloproteases or MMPs (MMP1, MMP3, MMP 7, MMP8, MMP10, MMP13, MMP20, MMP27, PTGFD) have CdLOH ER positive pure DCIS. Loss of Matrix metalloproteases (MMPs) activity may result in a wide range of diseases including cancer (235).

CdLOH present in ER positive DCIS associated with invasive breast disease has similarities to the ER pure DCIS with no speicifc changes identified and is not examined further in this initial analysis.

There is CnLOH present in ER positive pure DCIS not observed in ER positive DCIS associated with invasive breast disease. PANTHER analysis reveals 248 mapped genes

representing a wide variety of molecular functions (Figures 51-53). ERBB 2, MDM2 (a regulator of p53) and Notch2 have CnLOH. MDM2 (236) and Notch2 (237) have been suggested as candidate genes in breast cancer progression.

Figure 52: Biological processes associated with CnLOH in ER positive pure DCIS

Figure 53: Protein classes associated with CnLOH in ER positive pure DCIS

There is CnLOH in ER positive DCIS associated with invasive breast disease which is not observed in ER positive pure DCIS. PANTHER analysis reveals 64 mapped genes. In this series the gene S100z shows CnLOH whereas in one previous study it was reported to be up-regulated (238).

5.9.2 Genomic Differences found in Triple Negative Pure DCIS Versus Triple Negative DCIS Associated with Invasive Breast Disease

The frequency plots for CNAs show that samples of triple negative DCIS associated with invasion in this series exhibit many more genomic aberrations at the chromosomal level than pure triple negative DCIS. CdLOH, gains, losses and Sc gains all show a higher frequency of aberrations for the DCIS associated with invasive breast disease than pure DCIS which has not progressed. There are some homology present with CnLOH (see below) and total losses in TN pure DCIS and TN DCIS associated with breast disease. CdLOH are also located on distinctly separate chromosomal and loci for pure TN DCIS (chromosome 7, 16) compared to CdLOH on chromosome 3, 4, 5, 8, 9, 13, 14, 15, X for TN DCIS associated with invasive disease. Aberrations in both are located on chromosome 17 but in different regions. Gains are present found on chromosomes 1 and 8 for both types of lesion, but at a lower frequency for TN pure DCIS. Gains are found only on chromosome 3, 6, 11, 13, 18, 21 for TN DCIS associated with invasive breast disease. Losses show a similar pattern, with pure TN DCIS having distinct losses on chromosome 7, 16, and 19 compared to distinct losses on 4, 5, 8, 9, 14, X in TN DCIS associated with invasive breast disease. Sc gains on chromosome 1, 2, 5, 6, 8, 9 are more abundant in TN DCIS associated with invasive breast disease with pure DCIS only showing Sc gains on chromosome 1.

These differences in TN pure DCIS and TN DCIS associated with invasive breast disease may indicate that although a cancerous phenotype exists within pure TN DCIS several further copy number aberrations may be necessary to switch to an invasive TN phenotype. Both gains and losses are present in TN DCIS associated with invasion which are not seen in pure TN DCIS in this series. There is a degree of homology in some chromosomal changes such as gains on chromosome 1 and losses on chromosome 4 in both pure TN DCIS and TN DCIS associated with invasive breast disease. However, there are few gains and losses present found in pure DCIS alone.

Comparison of TN pure DCIS and TN DCIS associated with invasive breast disease shows no amplifications or duplications found in either process.

Comparing the chromosomal gains in TN pure DCIS and in TN DCIS associated with invasion there is some homology present, with pure TN DCIS cases having gains comparable to those seen in the TN DCIS associated with invasion in 5/9 cases. However, the TN DCIS associated with invasion shows additional gains not present in the TN pure DCIS. PANTHER analysis of the genes identifies 16 known genes with a range of biological functions associated with several protein classes (Figure 54-56). Of these, one - NFIB has been previously identified as associated with ER negative invasive breast cancer (239) and proposed as a genomically distinct TN subgroup mainly composed of adenoid cystic carcinomas (240).

Figure 54: Molecular functions associated with the genomic gains identified in TN DCIS associated with invasive breast cancer.

Figure 55: Biological processes associated with the gains identified in TN DCIS associated with invasive breast cancer.

Figure 56: Protein classes associated with the genomic gains identified in TN DCIS associated with invasive breast cancer.

Sc gains were present in TN DCIS associated with invasive breast disease but not in TN pure DCIS. PANTHER analysis maps 86 of the 350 genes giving a range of molecular and biological functions associated with several protein classes (Figure 57-59)

Figure 57: Molecular functions associated with Sc gains for TN DCIS associated with invasive breast disease.

Figure 58: Biological processes associated with Sc gains for TN DCIS associated with invasive breast disease.

Figure 59: Protein classes associated with Sc gains in TN DCIS associated with invasive breast disease.

The genes showing Sc gains in TN DCIS associated with invasive breast disease but not observed in TN pure DCIS include PTP1B (Protein tyrosine phosphatase 1B) which has been reported to have both tumour suppressor and tumour promoting roles (241). Similarly ADAMTS-12, a secreted metalloprotease, shows both oncogenic and tumour-suppressive effects has Sc gains in this series (242). PLK3 also shows Sc gain; this is a member of the pololike kinases and whilst is involved in cell cycle regulation its expression remains steady throughout the cell cycle. It has been shown to be widely expressed in cancer cell lines (243). Some cadherin's (CDNH) 6 (K-cadherin), 9 (T1 cadherin) 12 (n-cadherin), 18 (ungrouped) show Sc gains in this series.

As opposed to the Sc gains seen in the TN DCIS associated with invasive compared to the pure form of TN DCIS, losses in TN pure DCIS not observed in TN DCIS associated with invasive disease are noted, with six genes mapped by PANTHER analysis. Three of these are in the type 1 keratins (14, 16, 17) which are structural components of the cytoskeleton.

Conversely, 7 gene losses are mapped by PANTHER analysis in TN DCIS associated with invasive breast disease showing a variety of molecular functions.

Total losses for pure DCIS not observed in TN DCIS associated with invasive disease reveal 40 genes mapped by PANTHER analysis. These include BRCA1, zinc finger like proteins (333 and 558) and olfactory receptor (OR) gene. Previous studies have shown up-regulation of ten OR genes in breast cancer cell lines clustered in 11q12.1 (244).

Total losses for TN DCIS associated with invasive breast but not observed in TN pure DCIS associated with invasive disease reveal 46 genes mapped by PANTHER analysis. These include metalloproteases, protease zinc finger protein, and extra cellular matrix protein. In this series there is total loss of the apoptotic marker PDCD6IP (3p23) in some cases of TN DCIS. Previously copy number analysis has reported that amplification of this gene is associated with an increased risk of

315

recurrence in invasive breast disease when considered as part of a trio of markers (*CYP24/PDCD6IP/BIRC*) for ER/PR-positive cancers. Individually PDCD6IP is reported to have no significant correlation in invasive breast cancer prognosis but does when associated with CYP24 and BIRC (245) highlighting the complex interactions of different genomic markers.

CdLOH for TN DCIS associated with invasive disease not observed in TN pure DCIS revealed 12 genes mapped by PANTHER analysis. These include a kinase suppressor of Ras1 (KSR1) which has been identified as a potential tumour suppressor in BRCA1 tumours (246). CnLOH for TN DCIS associated with invasive disease show similarities in 5/9 cases with the CnLOH in pure DCIS. However, there are 10/10 cases showing CdLOH observed in TN pure DCIS not observed in TN DCIS associated with invasive disease. PANTHER analysis reveals genes mapped by PANTHER analysis. Conversely, CdLOH for TN pure DCIS not observed in TN DCIS associated with invasive disease revealed 4 altered genes mapped by PANTHER analysis of which 3 are keratins -14, 16,17.

5.7.3 Observations on Genomic Analysis of Pure DCIS Compared to DCIS Associated with Invasive Breast Disease.

In this series the following observations can be made regarding analyses:

Amplifications and duplications between pure DCIS and DCIS associated with invasive disease show no similarity regardless of subtype.

Gains and losses show similarity for all types of DCIS with regard to chromosomal region, however the number of genomic gains or losses in DCIS associated with tumours is greater than those found in pure DCIS. In addition there are gains present in tumour associated DCIS not seen in pure DCIS lesions. This would fit with a hypothesis that further downstream genetic mutations occur post DCIS and lead certain credence to the possibility that not all pure DCIS is not wholly committed to an

invasive phenotype. Downstream events post establishment of pure DCIS may be required to for the initiation of invasive potential. SC gains show no overall pattern between these two cohorts.

Total losses between pure DCIS and DCIS associated with tumour show few matching genetic aberrations. As with amplifications and duplications and Sc gains these differences may indicate drivers in pure DCIS that inhibit the progression to invasive disease or in DCIS associated with invasion they may indicate invasive promoting genes. An alternative approach is that these differences could indicate increased heterogeneity giving rise to unidentified subtypes.

Copy neutral and copy deletion loss of hetereozygosity is marked in both sets of data regardless of tumour subtype. The use of MIP arrays used control tissue of normal human breast as a reference point to give a baseline for the samples analysed. Ideally the control reference would have been taken from normal tissue from the same patient. The lack of normal tissue availability prevented this approach so it is acknowledged that there may be a certain amount of background "noise" which gives a higher number of comparative genomic differences than expected as there would be a disparity between the normal tissue of different individuals.

5.10 Summary of Genomic Differences between DCIS and Invasive Breast Disease

This section addresses point 4 in the study aims: "To identify any protein and/or genomic changes in all DCIS (pure and that associated with invasion) compared to invasive breast disease to determine potential biomarkers responsible for progression to an invasive state".

317

In this series only those copy number aberrations seen in one series and absent in the second set, i.e. present in pure DCIS but not in invasive carcinoma, and vice versa, are addressed in this initial analysis.

5.10.1 Genomic Difference between ER Positive DCIS and ER Positive Invasive Breast Disease. (See section 5.8.4).

The frequency plots for CNAs in all ER positive DCIS compared to ER positive invasive disease show a mixed pattern, with some homology and a degree of heterogeneity. CdLOH shows similar aberrations on regions of chromosomes 8, 10, 11, 13, 15, 19, 20 X for both sample sets although ER positive DCIS has a lower frequencies. However, there are exclusive CnLOH regions found on chromosomes 1, 3, 4, 7, 10, 14, 15, 18, X in ER positive invasive breast cancer not seen in ER positive DCIS. There are duplications seen only in ER positive invasive disease, found on chromosomes 1, 8, 9, 10, 17, 21 not present in ER positive DCIS. The gains found show homology on chromosome 6 and 16 with a lower frequency in DCIS. There are losses on chromosomes 1, 2, 5, 7, 8, 11, 13, 15, 16, 19, 21 X found in both sample sets with a lower frequency found in ER positive DCIS. The exception is chromosome 11 where ER positive DCIS samples have greater losses than ER positive tumours. Sc gains are seen at similar frequencies but, as with other CNAs, the frequency in DCIS is lower. For total loss there are many more aberrations in ER positive invasive breast disease than ER positive DCIS. Again, there are some homologous regions (chromosomes 2, 6, 8, 8, 10, 13, 14, 16, 17, x) and regions of exclusive total loss for ER breast disease (chromosomes 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 19, 20, 21, X). These data all indicate that further genomic differences are present in invasive breast disease not present in DCIS.

There are no amplifications in the comparison of ER positive DCIS versus ER positive invasive breast disease.

Duplications found in ER DCIS are also present in ER positive invasive breast disease and are not addressed in this initial analysis. Conversely, there are duplications in ER positive invasive disease not present in ER positive DCIS. PANTHER analysis reveals 137 mapped genes. In this series the gene loss or CnLOH of PTPRD is found in both pure ER positive DCIS and ER DCIS associated with invasion. In this series Muc1 is also duplicated; this has previously been shown to be elevated in ER positive invasive breast disease (247) but having less frequent expression (i.e. fewer cases) in ER positive DCIS (248). Notch2 also show duplications (236).

There are genomic similarities in the pattern of gains, Sc gains and losses in ER positive DCIS and ER positive invasive breast disease which have not been analysed in this preliminary study.

There are total losses of genes present in ER positive DCIS that are not present in ER positive invasive breast disease. PANTHER analysis reveals 40 genes showing total loss. Total loss in this series includes BRCA1 and several olfactory receptor genes.

CdLOH found in ER DCIS are also present in duplications for ER positive invasive breast disease and are not examined in this thesis.

There is CnLOH present in ER positive DCIS not observed in ER positive invasive breast disease. PANTHER analysis reveals 42 mapped genes. Of these genes MACROD2 has been suggested as a possible cause of Tamoxifen resistance when overexpressed in metastatic tumours (249). PANTHER analysis of the converse, CnLOH present in ER positive invasive breast disease not observed in ER positive DCIS, reveals 37 mapped genes. Of these genes TIMELESS, one of the core circadian genes, has been proposed as an epigenetic risk factor by possibly regulating hormone functions. Its overexpression is reported to influence breast carcinogenesis (250) and warrants

5.10.2 Genomic Difference between Triple Negative DCIS and Triple Negative Invasive Breast Disease.

The frequency plots for CNAs show that there is a high degree of homology between TN DCIS and TN invasive tumours. DCIS lesions show similar but less complex copy number aberrations to the invasive disease. This concurs with the findings by Johnson et al who performed a similar MIP analysis on 21 cases of invasive ductal carcinoma with synchronous DCIS although with no phenotypic subgrouping (251). In the present series, a high degree of total loss is apparent found on chromosomes 3, 13, 14, 15 and 17. Gains found on chromosomes 3 and 6 are also identified in both TN DCIS and in TN invasive carcinoma, whilst gains in TN invasive breast cancer are seen in chromosome 11 although this is not apparent in TN DCIS. CdLOH is seen in both TN DCIS and TN invasive breast disease found on chromosomes 4, 12, 18 and X. However, for CnLOH TN DCIS shows a higher degree of complexity than TN invasive disease. CnLOH for TN DCIS are present more frequently found on chromosomes 1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 19 20, and X. CNLOH is present in TN DCIS found on chromosomes 5, 13, 16 and 21, where no CnLOH is found in TN invasive breast.

Gains and (and Sc gains) show very similar patterns between DCIS and invasive breast disease with regard to chromosome number. The level of complexity is raised in the invasive samples.

There are no amplifications in the comparison of TN DCIS versus TN invasive breast disease.

There are duplications found in TN invasive breast cancer not present in TN DCIS. PANTHER analysis reveals 62 mapped genes. Of these, protein tyrosine kinases PTPRK and PTK7 show duplications. PTPRK has been reported as a potential tumour suppressor (252) whilst positive immunohistochemical expression of antibodies raised against PTK7 has been shown in anthracycline-resistant invasive breast disease (253).

Gains, Sc gains and losses in TN DCIS and TN invasive disease show overlap of genes and are not examined in this initial analysis.

There are total gene losses found in some cases of TN DCIS not observed in some cases of TN invasive disease. PANTHER analysis reveals 205 mapped genes with a variety of molecular functions, biological processes and protein classes (Figures 60-62).

Figure 60: Molecular functions associated with total loss in TN DCIS

Figure 61: Biological processes associated with total loss in TN DCIS

Figure 62: Protein classes associated with total loss in TN DCIS

In this series, FOXD1 shows total genomic loss in some cases of TN DCIS whilst it has been suggested as an upregulated oncogene in breast cancer (254).

There are total losses found in some cases of TN invasive breast disease not seen in some cases of TN pure DCIS. PANTHER analysis reveals 160 mapped genes. Olfactory receptor genes are predominant with 11 showing total loss (OR1B1, OR1J2, OR1J4, OR1L1, OR1L3, OR1L4, OR1L6, OR1L8, OR1N1, OR1N2, OR1Q1). Fonseca-Sanchez et al identify 55 olfactory receptor genes up-regulated in breast cancer cell lines (244). However, the olfactory receptor gene family is the largest in the genome.

There is CnLOH present in TN DCIS that are not observed in TN invasive breast disease. PANTHER analysis reveals 205 mapped genes. Genes showing high levels of CNLOH in invasive breast cancer include, CSNK2B and HLA-DQA1. CSNK2B is a casein kinase a ubiquitous protein kinase which regulates metabolic pathways, signal transduction, transcription, translation, and replication. Kren et al (255) suggest that
down-regulation of casein 2 induces loss of breast cancer cell viability and may be a potential target for triple negative breast cancer therapy. HLA-DQA1 (major histocompatibility complex, class II, DQ alpha 1) is one of the HLA (human leucocyte antigen complex). It encodes for a protein of the major histocompatibility complex (MHC II) which is involved in antigen presentation within the immune system. A variant of HLA-DQA1 has been implicated in increased risk of breast cancer (256).

There is CnLOH present in TN invasive breast disease not observed in TN DCIS. PANTHER analysis reveals 140 mapped genes. Of these, there is CnLOH of a number of taste receptor genes (TAS2R10, TAS2R13, TAS2R14, TAS2R19, TAS2R20, TAS2R31, TAS2R42, TAS2R50, TAS2R7, TAS2R8, TAS2R9). There is no current literature on the significance of these in breast cancer.

5.10.3 Observations on Genomic Analysis of DCIS Compared to DCIS Invasive Breast Disease.

In this series the following observations can be made which are true for all DCIS compared to invasive tumour regardless of subtype (see 5.8.6. and 5.6.10) No amplifications are present for DCIS compared to invasive breast disease. Duplications are more prevalent in invasive breast disease indicating more genomic instability. Invasive breast disease exhibits a greater number of gains and SC gains compared to DCIS further illustrating more complex genetic aberrations. There are also greater losses in invasive breast disease. There is a similar pattern observed in the chromosomal regions of duplications, gains, losses which could in turn be explained as a sampling bias. DCIS and invasive samples from the same patient were included in this cohort and not matched against each other in this analysis. This would result in similar chromosomal regions of instability if the DCIS had similar genetic

aberrations to the associated invasive tumour analysed. The discrepancy in lower signal could be due in part to the pure DCIS samples not showing the same genomic changes as DCIS associated with invasive breast disease. Interestingly cnLOH (unlike cdLOH) shows greater genomic variation in DCIS than invasive breast disease. It may be that these multiple minor variations reduce as clonal expansion takes place of tumour cells with a proliferative advantage. Further research on this dataset is required to illicit the key drivers of these results.

5.11 Summary of Genomic Differences between Pure DCIS versus Invasive Breast Disease

5.11.1 Pure ER Positive DCIS compared to ER Positive Invasive Breast Disease

The frequency plots for CNAs between ER positive pure DCIS and ER positive invasive breast disease exhibit some homologous regions for both gains and losses when compared to invasive breast disease, albeit with much higher frequencies seen in ER positive invasive breast cancers. Gains on chromosome 6, 8 16, 20 and 21 are mirrored between both sets. Similarly losses on regions of chromosomes 8, 9, 11 12, 15, 16, 19, X are also present in both types of sample in this series. There are a greater number of losses on several regions of chromosome 11 in ER positive pure DCIS. Sc gains in this series show little homology, with Sc gains found on chromosomes 1 and 8 in ER pure DCIS and Sc gains found on chromosome 8 for ER pure DCIS also seen in ER positive invasive breast disease. There are Sc gains on chromosome 8 for ER pure DCIS also seen in ER positive invasive breast disease than ER positive pure DCIS.

These finding somewhat contradict the findings seen in the comparison of ER positive pure DCIS and ER positive DCIS associated with invasive breast cancer. ER positive invasive breast cancer samples compared to ER positive pure DCIS seem to have more in common than pure DCIS and DCIS associated with invasive breast disease. It must be acknowledged that this is a small cohort (ER positive pure DCIS n=8, ER positive invasive breast disease n=9) and this may contribute. However, it may be that combinations of genomic changes are required in the progression from DCIS to an invasive phenotype. There may be genomic changes already present in pure DCIS that are required for tumour survival that are uninvolved in progression to an invasive state. These may be conserved in an invasive tumour but play no role in invasion. Conversely these genomic changes may be required to trigger downstream mutations in order for invasion to occur and be conserved as either drivers of invasion or redundant post DCIS mutations.

There are no amplifications in ER positive pure DCIS in this series. There are amplifications in ER positive invasive breast disease. PANTHER analysis reveals 1 gene (*EIF3H*) which has previously been significantly associated with risk of low-grade breast cancer (257). Located on chromosome 8q23 the exact role of E1F3H in cell cycle regulation is unknown(258). The EIF3H gene encodes the eukaryotic translation initiation factor 3 (EIF-3) complex, associated in several steps in protein synthesis initiation and mRNA recruitment. Translational control is a crucial component of cancer development and progression (259), and EIF3H in particular is frequently amplified in breast and prostate cancers (260).

No duplications are found in either ER positive pure DCIS or ER positive invasive breast disease.

There were gains present in both ER positive pure DCIS and ER positive invasive breast cancer and, without significant differences, these are not addressed in this thesis. However, there were gains found in ER positive invasive breast disease not found in ER positive pure DCIS. PANTHER analysis reveals 26 mapped genes. Of these 26 genes, SPIRE1 has been proposed as a possible driver of invasion as under- or over-expression can result in increased or decreased extra cellular matrix degradation (261).

There were Sc gains present in both ER positive pure DCIS and ER positive invasive breast disease which are not analysed in this preliminary assessment.

There are losses present in ER positive pure DCIS and ER positive invasive breast disease not addressed in this initial analysis.

There are total losses of genes which are present in ER positive pure DCIS but not seen in ER positive invasive breast disease. PANTHER analysis reveals 13 mapped genes. Of these, NOX4 is proposed as a contributory gene in the epithelial to mesenchymal transition (EMT) process involved in cancer invasion (262).

There are genes showing total loss in ER positive invasive breast disease not found in ER positive pure DCIS. PANTHER analysis reveals 172 mapped genes. GBJ2 is a gene responsible for cellular adhesion and has also been shown to be present in invasive disease and proposed as a possible cause for invasion, although this is contradicted by the present findings (263).

There is CdLOH present in both ER positive pure DCIS and ER positive invasive breast disease not analysed in this thesis. Similarly there are CnLOH present in both ER positive pure DCIS and ER positive invasive breast disease which are omitted from this preliminary work.

5.11.2 Pure Triple Negative DCIS versus Triple Negative Invasive Breast Disease (See section 5.8.9).

The frequency plots for pure TN DCIS compared to TN invasive breast disease exhibit many more CNAs in the invasive breast disease compared to DCIS although some homology is present the majority of changes exist in TN invasive breast disease alone. The genomic frequencies also show a higher complexity of genomic aberrations across multiple chromosome regions compared to corresponding ER positive DCIS and invasive breast disease. This reveals a much more complex phenotype, which may possibly contain sub-groups within this series. CdLOH is found exclusively on regions of chromosomes 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 18, X for TN invasive breast cancer. Shared regions, although at much lower frequency, are found on chromosomes 4, 5, 14 and 15. Exclusive regions of gain are seen on chromosomes 1, 3, 6, 8, 9, 10, 13 and 20. Sc gains are seen exclusively in TN invasive breast carcinomas in this series found on chromosomes 1, 3 and 8.

These findings are similar to those seen in TN pure DCIS versus TN DCIS associated with invasive breast disease indicating that genomic changes found in invasive breast disease are much more complex than those seen in DCIS.

There are no amplifications in TN pure DCIS or TN invasive breast cancer in this series.

There are similarities in duplication of gene which are seen in both TN pure DCIS and TN invasive breast disease and these are not further addressed in this initial analysis.

There are similarities in gains found in both TN pure DCIS and TN invasive breast disease so these are not specifically addressed in this initial analysis. However, there are genomic gains present in some samples of TN invasive breast disease not observed in TN pure DCIS. PANTHER analysis reveals 5 mapped genes. None of these genes have been linked in previous studies to tumourigenesis or breast cancer.

There are no Sc gains in TN pure DCIS in this series. Sc gains are, however, present in TN invasive breast disease. PANTHER analysis reveals 51 mapped genes. This includes the gene ALDH1L1, loss of function or expression of this gene is associated with decreased apoptosis, increased cell motility, and cancer progression. ALDH1L1 may contribute to ALDH1 activity in breast cancer as high expression of ALDH1A1 mRNA was found to be significantly correlated with poor overall survival in some breast cancer patients (264).

There are similarities found in genomic losses found in TN pure DCIS also present in TN invasive breast disease, these are not examined in this thesis. However, there are genomic losses found in TN invasive breast disease not observed in TN pure DCIS. PANTHER analysis reveals 13 mapped genes. Of these SMAD4 has been suggested as a mediator in the TGF beta pathway acting as a tumour suppressor gene supressing carcinogenesis (265).

There are total genomic losses present in TN pure DCIS not observed in TN invasive breast disease. PANTHER analysis reveals 41 mapped genes. In this group are 13 olfactory related genes (OLFM4, OR2Z1, OR2Z1, OR4C3, OR4C5, OR4S1, OR4X1, OR4X2, OR7A10, OR7A17, OR7A5, OR7C1, OR7C2). The total loss of OLFM4 in this series is contradictory to previous studies where OLFM4 gene product (Olfactomedin-4) is cited as a candidate biomarker for detection or progression for a variety of solid tumours including breast cancer (266, 267).

There are total genomic losses present in TN invasive breast disease not observed in TN pure DCIS. PANTHER analysis reveals 39 mapped genes. These include the loss of 3 genes encoding for keratins (KRT222, KRT24, KRT25). Loss of keratins has been suggested as one of the possible key components in invasion, although it is acknowledged that loss alone of keratins is not sufficient to cause invasion and/or metastasis (268). CdLOH found in TN pure DCIS are also present in TN invasive breast disease and have not been analysed in this thesis. There is CdLOH present in TN invasive breast cancer not observed in TN pure DCIS. PANTHER analysis reveals 165 mapped genes. Genes include BCL2, SMAD4, MLH3, alcohol dehydrogenases (ADH1A, ADH1B, ADH4, ADH5, ADH7, ADNP2) and NFKB1. NFKB1 is one of the down regulated genes proposed as part of a seven-gene signature a panel for predicting distant recurrence in patients with triple-negative breast cancers receiving adjuvant chemotherapy following surgery (269).

PANTHER analysis of the CnLOH seen in TN pure DCIS not observed in TN invasive breast disease reveals 335 mapped genes. These include NEDD9 (270) NRD1(271) TGFBR3(272) which have all been associated with invasion in breast cancer. There is CnLOH present in TN invasive breast disease not observed in TN pure DCIS. PANTHER analysis reveals 152 mapped genes. These include BUB3 (273) MCM7 (274) SPIRE1 (261) TGFBR3 (272) which have all been associated with invasion in breast cancer.

5.11.3 Observations of Genomic Analysis of Pure DCIS Compared to Invasive Breast Disease.

See sections 5.8.5 and 5.8.9. As with other series the genomic aberrations for amplifications, duplications, gains, losses, Sc gains and total loss for invasive ER positive breast disease are more pronounced than compared to pure ER positive DCIS. For TN pure DCIS and TN invasive breast disease this is similar without any amplifications or duplications. However, there is greater variation in the chromosomal regions affected for all the pure DCIS compared to the invasive breast disease. This is partially accounted for by the unmatched samples being excluded in this part of the

analysis. However there may be potential genomic regions of interest that identify markers only found in pure DCIS i.e. lesions that are unlikely to progress. Further work is required to elucidate these potential markers.

5.12 Summary of HER2 positive DCIS versus ER positive DCIS and triple negative DCIS

(See section 5.8.11)

Frequency plots for HER2 positive pure DCIS compared to ER positive pure DCIS and TN positive pure DCIS show a surprising similarity. As expected, amplification on chromosome 17 has a much higher frequency than in TN or ER positive pure DCIS as this is the locus of the ERBB2 gene which encodes for the HER2 protein and thus the definition of HER2 positivity in the series. However, CdLOH found on chromosomes 8 and 17, duplication on 8, gains on 3, 8, 17, 20, 21, losses on 6, 8, 17 Sc gains on 3, 8 and total losses on 13, 17 all have similarities between the two groups, albeit at different frequencies.

These findings may indicate that, whilst there are specific genomic changes that are present in immunohistochemical phenotypes that may be suitable targets for therapeutic decisions, these may be independent of genes that are responsible for either the tumourigenesis of DCIS or its progression to an invasive phenotype.

There are differences, as expected, between the two sets particularly with total losses in HER2 positive DCIS found on chromosomes 1, 3, 5, 6, 8, 9, 10, 13, 18, 19, 21 and X seen in the HER2 cohort. There are similarities between amplifications found in HER2 positive DCIS, ER positive DCIS and TN DCIS. These are not addressed in this initial analysis.

There were duplications present in HER2 positive DCIS not observed in ER and TN DCIS. PANTHER analysis reveals 58 mapped genes. Of these 17 are genes related to the LCE (late cornified envelope) gene cluster within the epidermal differentiation complex on chromosome 1. These have previously been reported in a mouse model of triple negative breast cancer as potential novel driver mutations (275). They have not been previously linked to HER2 positive DCIS.

There are genomic gains in HER2 positive pure DCIS not observed in ER positive and TN pure DCIS. PANTHER analysis reveals 47 mapped genes. Of these genes MACROD2 is has been suggested as a possible cause of Tamoxifen resistance when overexpressed in metastatic tumours (249) but has not been described in association with DCIS.

Genomic gains and Sc gains found in ER positive DCIS, TN DCIS associated with genomic gains in HER2 Pure DCIS demonstrate similar genetic profiles and are not discussed in this work.

There are losses of genes present in HER2 positive DCIS which were not observed in ER and TN positive DCIS. PANTHER analysis reveals 48 mapped genes. One of these CDT1 is an integral part of the pre-replication complex associated with geminin and minichromosome maintenance proteins involved in cellular proliferation (276). Loss of CDT1 expression would be expected to inhibit cellular proliferation and thus may be of importance in preventing further progression of DCIS.

Conversely, there were losses present in ER and TN pure DCIS not observed in HER2 positive pure DCIS. PANTHER analysis identifies 1 gene (MUC16). Increased

serum levels of Ca125 (Muc16) have been shown to correlate with increased pathological grade of breast carcinoma (277).

Total losses in HER2 positive pure DCIS observed in ER and TN pure DCIS show similarity and are not examined in this preliminary research.

There were total losses present in ER pure DCIS and TN pure DCIS not observed in HER2 positive pure DCIS. PANTHER analysis identifies 39 mapped genes. As previously noted (section 5.4.3.2) there are several olfactory genes (OLFM4, OR1A1, OR1A2, OR1D2, OR1E1, OR1E2, OR1G1, OR2Z1, OR2Z1, OR3A1, OR3A2, OR3A3, OR6X1, OR8D1, OR8D2) showing total loss within TN DCIS.

There is CdLOH present in HER2 positive pure DCIS not observed in ER and TN pure DCIS. PANTHER analysis reveals 50 mapped genes. Of these one, IKBKB, was used in a panel of 21 breast cancer related genes compared in DCIS and associated invasive breast disease. The authors state there "were no significant differences in copy number DCIS and adjacent IDC, indicating that DCIS is genetically as advanced as its invasive counterpart" (278).

In the CdLOH analysis comparing ER positive and TN pure DCIS with HER2 positive pure DCIS, one gene (Muc6) is been identified (see total loss in this paragraph).

There is CnLOH present in HER2 DCIS not observed in ER positive and TN DCIS. PANTHER analysis identifies 30 mapped genes. DDX3 is an RNA helicase that has antiapoptotic properties, and promotes proliferation and transformation (279). It has been suggested that the protein product could be a potential therapeutic target as overexpression demonstrated by IHC may indicate an oncogenic role (279). There is CnLOH present in ER and TN pure DCIS not observed in HER2 positive pure DCIS. PANTHER analysis identifies 292 mapped genes. There are several interleukin genes identified (IL12RB2, IL17A, IL23R, ILKAP). Interleukins are key regulators of immune response which may influence increased risk of developing breast cancer (280).

5.12.1 Observations of Genomic Analysis of Pure Her2 DCIS compared to Pure ER positive DCIS and Pure TN DCIS

The frequency plots for pure Her2 DCIS show, unsurprisingly, amplification on chromosome 17 not present in ER positive or TN pure DCIS. However, with the exception of cnLOH the severity of genomic changes (amplification, duplication, gains, Sc gains, losses, total losses and cdLOH) is more marked in HER2 pure DCIS than in either pure ER positive or pure TN DCIS. There is a significant degree of homology in chromosomal regions. This homology could indicate that regardless of subtype that all pure DCIS has common genomic aberrations that either initiate and/or maintain the formation of DCIS. Common gains and losses on the same area e.g. chromosomes 3 and 8 would therefore be candidates for further study. One area of large variation within this series is the number of total losses found in pure Her2 DCIS when compared to other types of pure DCIS. The reason for this comparatively high genomic instability remains elusive.

Chapter 6. Conclusions

6.1 Tissue Microarrays

Tissue microarrays have become an established method for analysing tissue samples from archival formalin fixed paraffin wax embedded samples. In this series using traditional tinctorial staining, immunohistochemistry and in situ hybridisation we have shown the versatility of such a technique. TMAs have increased the number of samples that can be analysed using a variety of biomarkers with a relatively little cost. We have demonstrated that some morphology can be retained with larger cores. However, it is also shown that care and planning is required in using TMAs analysis. Design and planning of TMAs should reflect the scientific question being asked but also enable subsequent further studies on the precious tissue resource. Problems associated with scoring methods for immunohistochemistry and the need for standardisation of TMA research have been highlighted in a publication related to this theses (281). In this series of DCIS samples we have analysed a selection of biomarkers with varying success. This DCIS cohort remains as a TMA resource for further studies.

5.13 6.2 Immunohistochemical Studies of DCIS

The first aim of this thesis was "To determine the expression of a range of immunohistochemical markers in DCIS lesions and determine if these markers can identify molecular subtypes similar to those found in invasive breast cancer." These immunohistochemical studies of DCIS have demonstrated that DCIS can be classified into different phenotypic subgroups which are essentially similar to those found in invasive breast cancer. The frequencies within the groups differ slightly from those seen in the literature regarding invasive breast cancer. This could be due to several factors: the cohort used in this study was obtained from a central London hospital. Compared to other regions in the United Kingdom, at least, there may be differences in the patient demographic as London is a particularly ethnically diverse population. The choice of antibodies to define the phenotypic subgroups and the methods used to score markers also varies from some of those used in other studies of invasive breast cancer. The need to standardise immunohistochemical reporting and staining methods needs further work.

In this study we found that although immunohistochemical assessment may be used to define subgroups this was not related to the propensity for a DCIS lesion to progress to an invasive phenotype or to remain in a pure DCIS form in this series, i.e. in terms of recurrence of the disease. This does not necessarily exclude the possibility that panels of IHC biomarkers could be used to determine either invasive potential or risk of recurrence of DCIS. The choice of IHC markers in this study was based upon those already established in invasive breast cancer and either used to predict treatment options in some instances (ER and HER2) or with some evidence of prognostic significance in the literature. It is possible that there is an immunohistochemical marker, or panel of markers, yet to be discovered that could identify the potential to switch from DCIS to an invasive phenotype. It is also possible that there may not be such a marker or panel and the heterogeneity of DCIS prevents such prediction with this 'routine' technique.

6.3 Genomic Studies of DCIS

The second aim of this study was to create a database of significant size providing information on DCIS samples with genomic, immunohistochemical and demographic data. In this respect the aim has been fulfilled. Chapter 5 contains only a small fraction of the data that is available to be analysed and even in this small subset of the available data there is scope for greater analysis. The entire database has great potential for a number of research questions. Should a researcher wish to examine the role of a single gene of interest and its expression in pure DCIS, DCIS associated with invasion or even its absence then a search of the files can be carried out. Alternatively comparison of groups either currently acknowledged such as the basal-like group or groups not yet identified could be elucidated from this data. This study has produced one of the largest genomic data sets on DCIS created to date. It is hoped that this valuable resource will help define the molecular diversity found in both precursor and invasive breast disease to enable improved treatment options for patients.

One advantage of this dataset is the nature of the information provided. This data is not simply a list of genes that may or may not have potential as biomarkers for therapeutic intervention but also contains demographic data on patients, protein expression, immunohistochemical profiles and a number of genomic identifiers. This includes information on copy neutral loss of heterozygosity which is not produced through previous genomic studies. However, the advent of whole genome profiling at reduced costs does indicate that such data sets for comparison will be available in the future building upon the work produced here. The data is currently being analysed by the King's College bioinformatics team and further insights of how this information can be used are expected.

The third aim of this thesis was to undertake an analysis of archival DCIS samples to identify genomic variation, abnormalities and changes between different pure DCIS

lesions and DCIS lesions associated with invasion. This aim has only been partially fulfilled.

Given the vast amount of data available it is not possible within the realm of this thesis to address each of the possible genes that may, or may not, be involved in progression to an invasive state. The copy number aberrations discussed here are a small subset of all the potential markers identified in this heterogeneous disease. The author also acknowledges that the selection of candidate genes here is based upon a combination of selection based upon literature review of breast cancer pathways and personal choice (see 6.4 Limitations of the Study).

There are few studies have examined the genomic diversity of DCIS in a large number of samples. This is one of the largest to date utilising the relatively new molecular inversion probe array platform. Given the known heterogeneity of DCIS, we focussed upon comparing smaller defined sub-groups of DCIS identified using a surrogate immunopanel for the molecular phenotypes as described in invasive cancer by Perou et al (76). Pure DCIS, DCIS associated with invasive disease and invasive disease have all been compared. Whilst chromosomal changes have been shown across all types of DCIS there with similar frequencies, differences have been identified between DCIS subtypes (triple negative, HER2 positive and oestrogen positive). Some of these are expected (i.e. HER2 gene amplification on chromosome 17) but many others have yet to be fully analysed. Additionally there are also similarities between pure DCIS, DCIS associated with invasion and invasive breast disease. The overall similarity of copy number aberrations in both DCIS and invasive breast cancer indicates that DCIS already has a significant genetic heterogeneity compared to normal mammary epithelium. It may be that the transition from normal tissue to DCIS is where key drivers of tumourigenesis are found. However, further analysis of DCIS at the genomic level has may be required to identify if all key drivers of the invasive phenotype are in place are at the DCIS stage or if further CNVs are required.

338

Differences in different types of DCIS and their associated invasive tumours have demonstrated a vast array of copy number changes and identified a host of genes some of which may be involved in the transition to an invasive state.

The use of this MIP arrays to analyse over 80 DCIS and associated invasive breast disease samples has resulted in a vast amount of genomic data. It has to be acknowledged that this thesis cannot hope to give a robust and systematic analysis of all of this data. This work has outlined a few of the genes that may be of significance in the transition state from DCIS to invasion. Whilst there are possible flaws in the selection criteria for the genes highlighted (see limitations of the study), this work has provided a significant amount of genomic data previously unavailable in such a large series which will prove invaluable for further studies on DCIS. In addition to the large amount of information available this series of samples can be analysed further within distinctive subgroups; analysis of high grade versus low grade DCIS, pure DCIS versus DCIS associated with invasion and invasive breast disease are available for further study. Unlike many previous studies, the DCIS samples studied here are fully classified in terms of histopathological features, immunoprofiling and a large amount of detailed genomic data and therefore can be segregated into a variety of subgroups to help elucidate the changes that give rise to such heterogeneity in DCIS. It is hoped that further work upon this series of genomic data will continue to help further our understanding of DCIS and its subsequent progression to invasive disease thus facilitating the development of better clinical treatments and decisions.

The final aim of this study was to identify any protein and/or genomic changes in all DCIS (pure and that associated with invasion) compared to invasive breast disease to determine potential biomarkers responsible for progression to an invasive state. In this respect the study has fallen short of the stated aim. Identification of specific

proteins and genes still remains elusive. However, this body of work has produced a dataset that could potentially be used in conjunction with other research to help determine such candidates in the future. The author acknowledges that this is a challenging proposition given the diversity shown at the molecular level of both precursor lesions and invasive forms of breast neoplasms.

6.4 Limitations of the Study

In this study, samples of DCIS and associated invasive tissues were examined. Due to the natural progression of breast cancers, the timeframe for collection of these samples had to, by necessity, particularly for the DCIS cases, be over a significant period. The analysis of a large cohort of samples over an extended time period is fraught with certain problems. These include, but may not be exclusive of, the following:

6.4.1 Availability of clinical data

Clinical data over a time period may be lost due to changes in saving such data and changes in the fine details and definitions of the dataset collated. The time period for the samples in this study encompassed the switch from a paper-based system and through different computer-based systems and data from one system may have been incompatible with newer or alternative systems. The King's College Breast Cancer Tissue and Data Bank provided a most thorough examination and upgrade of the clinical data available. However, it has to be acknowledged that the data provided to the bank did have omissions. These gaps could be for a variety of reasons; patients moving to different localities, poor data storage, and lack of details in original patient files. The latter is the most likely cause of missing data; as our understanding of the

complexities of breast cancer have improved the information required and subsequent data collection have become increasingly complicated.

As our understanding of breast cancer has improved, so have treatment options. The introduction of new drugs (new chemotherapy agents such as the taxanes and anthracyclines, trastuzumab, tamoxifen and the aromatase inhibitors) and radiotherapy options have varied over time. Additionally, surgical considerations such as the historical use of mastectomy over wide local excision have reduced the number of cases with follow-up samples.

6.4.2 Technical Considerations

Alongside therapeutic and surgical advances, there have been significant changes in the technical and laboratory treatment of samples. Improved fixation, reduced cold ischaemic times, slicing of large samples, better processing and advances in microscopy have all improved the quality of tissue being analysed. This has led to more accurate and better reporting of disease states.

Immunohistochemistry is widely used as a diagnostic tool in histology. Improvements in antibody clones, immunohistochemical detection methods, antigen retrieval and automation have improved the somewhat capricious nature of this science. Accordingly the introduction of external quality assurance schemes to ensure reproducibly and correct laboratory procedures are followed has improved standardisation of this technique. This does however introduce disparities to samples taken over a long time period. Original reporting and scoring of markers, for example, oestrogen receptor have changed as clones have improved and clinical cut-offs have changed. Historically negative ER cases may now be considered ER positive due to enhanced detection. Re-evaluation may not be entirely accurate as changes in the use of fixatives and processing may produce false negative or even false positive results. Assessment of historical tissue samples should therefore be judged with caution with known positives and negatives from the same time period assessed in the modern setting.

6.4.3 Genomics

The science of genomics has moved at an astonishing pace since the release of the first human genome in 2000 AD. Whole genome analysis is now both available within a relatively short timeframe at much reduced costs. This has huge benefits for research. However this has raised issues regarding the interpretation of such vast amounts of data. This study has undertaken one of the larger genomic studies of DCIS to date using MIP array analysis of over eighty samples. This created a vast amount of bioinformatics data giving almost whole genome wide information on all of these samples. It is beyond the scope of a single PhD thesis to analyse such data, so a compromise on the best approach had to be taken. In this study comparison of different types of DCIS was first undertaken. This created gene lists of often of thousands of possible genes to analyse for each particular genomic aberration (amplification, duplication, CdLOH, CnLOH, gains, losses, total losses, Sc gains). It was after discussion with the bioinformatics team decided appropriate to concentrate on those samples that showed the greatest variation between each other i.e. where copy number differences occurred in one set of samples (e.g. ER positive pure DCIS) but not another (e.g. TN pure DCIS). This gave a slightly more manageable subset ranging from an estimated 1% to 10% of data to be analysed, dependent upon the particular CNA comparison. Even with this reduction, there were still hundreds of possible genes to analyse. Those suggested here have no basis in selection other than they have been cited previously in the literature. This does raise the possibility of exclusion based upon literary bias. In defence of the selection criteria is the understanding at the outset that that this work was never destined to be a stand-alone

study and that further analysis would be essential. This thesis may therefore be regarded as an initial analysis.

6.5 Further Work

As mentioned to in the previous sections, there is a significant amount of further work that may be undertaken beyond this study. For the immunohistochemical analysis there are many antibody markers that could be assessed in the remaining TMA series. In the selection for this study, certain markers of interest in apoptosis (BCL2, TUNEL, survivin), stem cell markers (ALDH1, CD44, CD24), proliferation markers (geminin) were all omitted based solely on considerations of time and cost. These are just a few of the hundreds of markers already available, not including those in development. One of the advantages of the TMA construction in this series is that there is a reserve of tissue that has already has pathological and genomic analysis performed. This will hopefully help define the suitability of this cohort for use with a particular marker of interest.

The genomic component of this thesis has yielded a comprehensive resource for over eighty samples of DCIS lesions. The analysis of these data sets has only just begun. In the present study only a fraction of the data has been examined with a limited number of genes identified. The data mining methods here will be evaluated for their suitability in determining progression from pure DCIS to an invasive phenotype as well as differences between various forms of DCIS lesion. Different methods of analysis can be explored and further extraction of DNA from samples will provide an additional resource for future studies. As molecular techniques become further enhanced these data could be used as a comparative set to validate further methods.

References

1. F.P. OM, S.E. P, A.M M. Breast Pathology. 2nd ed. R GJ, editor: Elsevier Saunders; 2011.

2. Kuhl CK, Schrading S, Bieling HB, Wardelmann E, Leutner CC, Koenig R, et al. MRI for diagnosis of pure ductal carcinoma in situ: a prospective observational study. Lancet. 2007;370(9586):485-92.

3. Evans.A, Pinder.S.E, Puroshotham.A, Bundred.N. Uncertainties in the management of screen-detected ductal carcinoma in situ. In: Programs NCS, editor. 1st ed. Sheffield: NHSBSP; July 2008. p. 28.

4. Boughey JC, Gonzalez RJ, Bonner E, Kuerer HM. Current treatment and clinical trial developments for ductal carcinoma in situ of the breast. Oncologist. 2007;12(11):1276-87.

5. Kumar V, Abbas K. MBBS N, Nelson F, J A, K. KVA. Robbins & Contran Pathological Basis of Disease: Saunders; 2010. 1464 p.

6. Program NHSBS. NHS Breast Screening Programme Review 2012. NHSBHP: <u>http://www.cancerscreening.nhs.uk/breastscreen/publications/nhsbspannualreview2012.pdf;</u> 2012.

7. Breast Cancer Statistics <u>http://www.cancerresearchuk.org/cancer-info/cancerstats/types/breast/2014</u> [

8. **NIH Consensus and State-of-the-Science Statements**. September 22-24 ed2009.

9. SEER Report Cancer Statistics. In: (NPCR) NPoCR, editor. National Program of Cancer Registries (NPCR)2010.

10. Joslyn SA. Ductal carcinoma in situ: trends in geographic, temporal, and demographic patterns of care and survival. Breast J. 2006;12(1):20-7.

11. Pappo I, Wasserman I, Halevy A. Ductal carcinoma in situ of the breast in men: a review. Clin Breast Cancer. 2005;6(4):310-4.

12. Smith KL, Adank M, Kauff N, Lafaro K, Boyd J, Lee JB, et al. BRCA mutations in women with ductal carcinoma in situ. Clin Cancer Res. 2007;13(14):4306-10.

13. Hwang ES, McLennan JL, Moore DH, Crawford BB, Esserman LJ, Ziegler JL. Ductal carcinoma in situ in BRCA mutation carriers. J Clin Oncol. 2007;25(6):642-7.

14. Kerlikowske K, Barclay J, Grady D, Sickles EA, Ernster V. Comparison of risk factors for ductal carcinoma in situ and invasive breast cancer. Journal of the National Cancer Institute. 1997;89(1):76-82.

15. Claus EB, Stowe M, Carter D. Breast carcinoma in situ: risk factors and screening patterns. J Natl Cancer Inst. 2001;93(23):1811-7.

16. Kabat GC, Kim M, Shikany JM, Rodgers AK, Wactawski-Wende J, Lane D, et al. Alcohol consumption and risk of ductal carcinoma in situ of the breast in a cohort of postmenopausal women. Cancer Epidemiol Biomarkers Prev. 2010;19(8):2066-72.

17. Kabat GC, Kim M, Kakani C, Tindle H, Wactawski-Wende J, Ockene JK, et al. Cigarette smoking in relation to risk of ductal carcinoma in situ of the breast in a cohort of postmenopausal women. Am J Epidemiol. 2010;172(5):591-9.

18. Claus EB, Stowe M, Carter D. Oral contraceptives and the risk of ductal breast carcinoma in situ. Breast Cancer Res Treat. 2003;81(2):129-36.

19. Phillips LS, Millikan RC, Schroeder JC, Barnholtz-Sloan JS, Levine BJ. Reproductive and hormonal risk factors for ductal carcinoma in situ of the breast. Cancer Epidemiol Biomarkers Prev. 2009;18(5):1507-14.

20. The Nurses Health Study <u>http://www.channing.harvard.edu/nhs/?page_id=70</u>

21. Collins LC, Tamimi RM, Baer HJ, Connolly JL, Colditz GA, Schnitt SJ. Outcome of patients with ductal carcinoma in situ untreated after diagnostic biopsy: results from the Nurses' Health Study. Cancer. 2005;103(9):1778-84.

22. Betsill WL, Rosen PP, Lieberman PH, Robbins GF. Intraductal carcinoma. Long-term follow-up after treatment by biopsy alone. JAMA. 1978;239(18):1863-7.

23. Evans A. The diagnosis and management of pre-invasive breast disease: radiological diagnosis. Breast Cancer Res. 2003;5(5):250-3.

24. Yamada T, Mori N, Watanabe M, Kimijima I, Okumoto T, Seiji K, et al. Radiologic-pathologic correlation of ductal carcinoma in situ. Radiographics. 2010;30(5):1183-98.

25. Cho KR, Seo BK, Kim CH, Whang KW, Kim YH, Kim BH, et al. Non-calcified ductal carcinoma in situ: ultrasound and mammographic findings correlated with histological findings. Yonsei Med J. 2008;49(1):103-10.

26. Breast Pathology. 2nd ed. Philadelphia: Elsevier Saunders; 2011.

27. Boetes C, Mann RM. Ductal carcinoma in situ and breast MRI. Lancet. 2007;370(9586):459-60.

28. Schnitt SJ. The diagnosis and management of pre-invasive breast disease: flat epithelial atypia--classification, pathologic features and clinical significance. Breast Cancer Res. 2003;5(5):263-8.

29. O'Malley FP, Mohsin SK, Badve S, Bose S, Collins LC, Ennis M, et al. Interobserver reproducibility in the diagnosis of flat epithelial atypia of the breast. Mod Pathol. 2006;19(2):172-9.

30. Bombonati A, Sgroi DC. The molecular pathology of breast cancer progression. J Pathol. 2011;223(2):307-17.

31. Lopez-Garcia MA, Geyer FC, Lacroix-Triki M, Marchió C, Reis-Filho JS. Breast cancer precursors revisited: molecular features and progression pathways. Histopathology. 2010;57(2):171-92.

32. Pathology Reporting Of Breast Disease. NHSBSP Publication Number 58 January 2005. NHS Cancer Screening Proammes. Report No.: Contract No.

33. Quinn CM, Ostrowski JL. Cytological and architectural heterogeneity in ductal carcinoma in situ of the breast. J Clin Pathol. 1997;50(7):596-9.

34. C FR. Pre-Invasive Disease: Pathogenesis and Clinical Management. 1st ed: Springer; 2011. 520 p.

35. Holland R, Hendriks JH, Vebeek AL, Mravunac M, Schuurmans Stekhoven JH. Extent, distribution, and mammographic/histological correlations of breast ductal carcinoma in situ. Lancet. 1990;335(8688):519-22.

36. Mai KT, Yazdi HM, Burns BF, Perkins DG. Pattern of distribution of intraductal and infiltrating ductal carcinoma: a three-dimensional study using serial coronal giant sections of the breast. Hum Pathol. 2000;31(4):464-74.

37. Thomson JZ, Evans AJ, Pinder SE, Burrell HC, Wilson AR, Ellis IO. Growth pattern of ductal carcinoma in situ (DCIS): a retrospective analysis based on mammographic findings. Br J Cancer. 2001;85(2):225-7.

38. Silverstein MJ, Poller DN, Waisman JR, Colburn WJ, Barth A, Gierson ED, et al. Prognostic classification of breast ductal carcinoma-in-situ. Lancet. 1995;345(8958):1154-7.

39. Silverstein MJ, Lagios MD, Craig PH, Waisman JR, Lewinsky BS, Colburn WJ, et al. A prognostic index for ductal carcinoma in situ of the breast. Cancer. 1996;77(11):2267-74.

40. Tavassoli FA. Ductal carcinoma in situ: introduction of the concept of ductal intraepithelial neoplasia. Mod Pathol. 1998;11(2):140-54.

41. Holland R, Peterse JL, Millis RR, Eusebi V, Faverly D, van de Vijver MJ, et al. Ductal carcinoma in situ: a proposal for a new classification. Semin Diagn Pathol. 1994;11(3):167-80.

42. Sloane JP, Amendoeira I, Apostolikas N, Bellocq JP, Bianchi S, Boecker W, et al. Consistency achieved by 23 European pathologists in categorizing ductal carcinoma in situ of the breast using five classifications. European Commission Working Group on Breast Screening Pathology. Hum Pathol. 1998;29(10):1056-62.

43. Poller DN, Silverstein MJ, Galea M, Locker AP, Elston CW, Blamey RW, et al. Ideas in pathology. Ductal carcinoma in situ of the breast: a proposal for a new simplified histological classification association between cellular proliferation and cerbB-2 protein expression. Mod Pathol. 1994;7(2):257-62.

44. Silverstein MJ. The University of Southern California/Van Nuys prognostic index for ductal carcinoma in situ of the breast. Am J Surg. 2003;186(4):337-43.

45. Shoker BS, Sloane JP. DCIS grading schemes and clinical implications. Histopathology. 1999;35(5):393-400.

46. Pinder SE, Duggan C, Ellis IO, Cuzick J, Forbes JF, Bishop H, et al. A new pathological system for grading DCIS with improved prediction of local recurrence: results from the UKCCCR/ANZ DCIS trial. Br J Cancer. 2010;103(1):94-100.

47. Moran MS, Bai HX, Harris EE, Arthur DW, Bailey L, Bellon JR, et al. ACR Appropriateness Criteria(®) Ductal Carcinoma in Situ. Breast J. 2012;18(1):8-15.

48. Donker M, Litière S, Werutsky G, Julien JP, Fentiman IS, Agresti R, et al. Breast-Conserving Treatment With or Without Radiotherapy in Ductal Carcinoma In Situ: 15-Year Recurrence Rates and Outcome After a Recurrence, From the EORTC 10853 Randomized Phase III Trial. J Clin Oncol. 2013;31(32):4054-9.

49. Holmberg L, Garmo H, Granstrand B, Ringberg A, Arnesson LG, Sandelin K, et al. Absolute risk reductions for local recurrence after postoperative radiotherapy after sector resection for ductal carcinoma in situ of the breast. J Clin Oncol. 2008;26(8):1247-52.

50. Cuzick J, Sestak I, Pinder SE, Ellis IO, Forsyth S, Bundred NJ, et al. Effect of tamoxifen and radiotherapy in women with locally excised ductal carcinoma in situ: long-term results from the UK/ANZ DCIS trial. Lancet Oncol. 2011;12(1):21-9.

51. Julien JP, Bijker N, Fentiman IS, Peterse JL, Delledonne V, Rouanet P, et al. Radiotherapy in breast-conserving treatment for ductal carcinoma in situ: first results of the EORTC randomised phase III trial 10853. EORTC Breast Cancer Cooperative Group and EORTC Radiotherapy Group. Lancet. 2000;355(9203):528-33.

52. Bijker N, Meijnen P, Peterse JL, Bogaerts J, Van Hoorebeeck I, Julien JP, et al. Breast-conserving treatment with or without radiotherapy in ductal carcinoma-insitu: ten-year results of European Organisation for Research and Treatment of Cancer randomized phase III trial 10853--a study by the EORTC Breast Cancer Cooperative Group and EORTC Radiotherapy Group. J Clin Oncol. 2006;24(21):3381-7.

53. Francis A, Thomas J, Fallowfield L, Wallis M, Bartlett JM, Brookes C, et al. Addressing overtreatment of screen detected DCIS; the LORIS trial. Eur J Cancer. 2015;51(16):2296-303.

54. Staley H, McCallum I, Bruce J. Postoperative tamoxifen for ductal carcinoma in situ. Cochrane Database Syst Rev. 2012;10:CD007847.

55. Fisher B, Dignam J, Wolmark N, Wickerham DL, Fisher ER, Mamounas E, et al. Tamoxifen in treatment of intraductal breast cancer: National Surgical Adjuvant Breast and Bowel Project B-24 randomised controlled trial. Lancet. 1999;353(9169):1993-2000.

56. Nath ME, Robinson TM, Tobon H, Chough DM, Sumkin JH. Automated largecore needle biopsy of surgically removed breast lesions: comparison of samples obtained with 14-, 16-, and 18-gauge needles. Radiology. 1995;197(3):739-42.

57. Helbich TH, Rudas M, Haitel A, Kohlberger PD, Thurnher M, Gnant M, et al. Evaluation of needle size for breast biopsy: comparison of 14-, 16-, and 18-gauge biopsy needles. AJR Am J Roentgenol. 1998;171(1):59-63. 58. Houssami N, Ciatto S, Ellis I, Ambrogetti D. Underestimation of malignancy of breast core-needle biopsy: concepts and precise overall and category-specific estimates. Cancer. 2007;109(3):487-95.

59. Shah VI, Raju U, Chitale D, Deshpande V, Gregory N, Strand V. Falsenegative core needle biopsies of the breast: an analysis of clinical, radiologic, and pathologic findings in 27 concecutive cases of missed breast cancer. Cancer. 2003;97(8):1824-31.

60. Londero V, Zuiani C, Furlan A, Nori J, Bazzocchi M. Role of ultrasound and sonographically guided core biopsy in the diagnostic evaluation of ductal carcinoma in situ (DCIS) of the breast. Radiol Med. 2007;112(6):863-76.

61. Rutstein LA, Johnson RR, Poller WR, Dabbs D, Groblewski J, Rakitt T, et al. Predictors of residual invasive disease after core needle biopsy diagnosis of ductal carcinoma in situ. Breast J. 2007;13(3):251-7.

62. Chan MY, Lim S. Predictors of invasive breast cancer in ductal carcinoma in situ initially diagnosed by core biopsy. Asian J Surg. 2010;33(2):76-82.

63. Hahn M, Kagan KO, Siegmann KC, Krainick-Strobel U, Kraemer B, Fehm T, et al. Mammotome versus ATEC: a comparison of two breast vacuum biopsy techniques under sonographic guidance. Arch Gynecol Obstet. 2010;281(2):287-92.
64. Philpotts LE, Shaheen NA, Carter D, Lange RC, Lee CH. Comparison of rebiopsy rates after stereotactic core needle biopsy of the breast with 11-gauge vacuum suction probe versus 14-gauge needle and automatic gun. AJR Am J

Roentgenol. 1999;172(3):683-7.

65. Shi SR, Cote RJ, Taylor CR. Antigen retrieval techniques: current perspectives. J Histochem Cytochem. 2001;49(8):931-7.

66. Park K, Han S, Kim HJ, Kim J, Shin E. HER2 status in pure ductal carcinoma in situ and in the intraductal and invasive components of invasive ductal carcinoma determined by fluorescence in situ hybridization and immunohistochemistry. Histopathology. 2006;48(6):702-7.

67. Borgquist S, Zhou W, Jirström K, Amini RM, Sollie T, Sørlie T, et al. The prognostic role of HER2 expression in ductal breast carcinoma in situ (DCIS); a population-based cohort study. BMC Cancer. 2015;15:468.

68. Kononen J, Bubendorf L, Kallioniemi A, Bärlund M, Schraml P, Leighton S, et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med. 1998;4(7):844-7.

69. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860-921.

70. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. The sequence of the human genome. Science. 2001;291(5507):1304-51.

71. Tuna M, Knuutila S, Mills GB. Uniparental disomy in cancer. Trends Mol Med. 2009;15(3):120-8.

72. Maciejewski JP, Tiu RV, O'Keefe C. Application of array-based whole genome scanning technologies as a cytogenetic tool in haematological malignancies. Br J Haematol. 2009;146(5):479-88.

73. Stankiewicz P, Lupski JR. Structural variation in the human genome and its role in disease. Annu Rev Med. 2010;61:437-55.

74. Mardis ER. A decade's perspective on DNA sequencing technology. Nature. 2011;470(7333):198-203.

75. Hardenbol P, Banér J, Jain M, Nilsson M, Namsaraev EA, Karlin-Neumann GA, et al. Multiplexed genotyping with sequence-tagged molecular inversion probes. Nat Biotechnol. 2003;21(6):673-8.

76. Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747-52.

77. Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98(19):10869-74.

78. Zhao H, Langerød A, Ji Y, Nowels KW, Nesland JM, Tibshirani R, et al. Different gene expression patterns in invasive lobular and ductal carcinomas of the breast. Mol Biol Cell. 2004;15(6):2523-36.

79. Cheang MC, van de Rijn M, Nielsen TO. Gene expression profiling of breast cancer. Annu Rev Pathol. 2008;3:67-97.

80. Cheang MC, Voduc D, Bajdik C, Leung S, McKinney S, Chia SK, et al. Basallike breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin Cancer Res. 2008;14(5):1368-76.

81. Livasy CA, Karaca G, Nanda R, Tretiakova MS, Olopade OI, Moore DT, et al. Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod Pathol. 2006;19(2):264-71.

82. Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z, et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res. 2004;10(16):5367-74.

83. Zhao X, Rødland EA, Sørlie T, Naume B, Langerød A, Frigessi A, et al. Combining gene signatures improves prediction of breast cancer survival. PLoS One. 2011;6(3):e17845.

84. Rakha E, Reis-Filho JS. Basal-like breast carcinoma: from expression profiling to routine practice. Arch Pathol Lab Med. 2009;133(6):860-8.

85. Livasy CA, Perou CM, Karaca G, Cowan DW, Maia D, Jackson S, et al. Identification of a basal-like subtype of breast ductal carcinoma in situ. Hum Pathol. 2007;38(2):197-204.

86. Dabbs DJ, Chivukula M, Carter G, Bhargava R. Basal phenotype of ductal carcinoma in situ: recognition and immunohistologic profile. Mod Pathol. 2006;19(11):1506-11.

87. Bryan BB, Schnitt SJ, Collins LC. Ductal carcinoma in situ with basal-like phenotype: a possible precursor to invasive basal-like breast cancer. Mod Pathol. 2006;19(5):617-21.

88. Norum JH, Andersen K, Sørlie T. Lessons learned from the intrinsic subtypes of breast cancer in the quest for precision therapy. Br J Surg. 2014;101(8):925-38.

89. Xu J, Wu X, Zhou WH, Liu AW, Wu JB, Deng JY, et al. Aurora-A identifies early recurrence and poor prognosis and promises a potential therapeutic target in triple negative breast cancer. PLoS One. 2013;8(2):e56919.

90. Yamamoto S, Yamamoto-Ibusuki M, Yamamoto Y, Fujiwara S, Iwase H. A comprehensive analysis of Aurora A; transcript levels are the most reliable in association with proliferation and prognosis in breast cancer. BMC Cancer. 2013;13:217.

91. Ali HR, Dawson SJ, Blows FM, Provenzano E, Leung S, Nielsen T, et al. A Ki67/BCL2 index based on immunohistochemistry is highly prognostic in ER-positive breast cancer. J Pathol. 2012;226(1):97-107.

92. Callagy GM, Webber MJ, Pharoah PD, Caldas C. Meta-analysis confirms BCL2 is an independent prognostic marker in breast cancer. BMC Cancer. 2008;8:153.

93. Dawson SJ, Makretsov N, Blows FM, Driver KE, Provenzano E, Le Quesne J, et al. BCL2 in breast cancer: a favourable prognostic marker across molecular subtypes and independent of adjuvant therapy received. Br J Cancer. 2010;103(5):668-75.

94. Pinder SE, Ellis IO. The diagnosis and management of pre-invasive breast disease: ductal carcinoma in situ (DCIS) and atypical ductal hyperplasia (ADH)-- current definitions and classification. Breast Cancer Res. 2003;5(5):254-7.

95. Buerger H, Simon R, Schäfer KL, Diallo R, Littmann R, Poremba C, et al. Genetic relation of lobular carcinoma in situ, ductal carcinoma in situ, and associated invasive carcinoma of the breast. Mol Pathol. 2000;53(3):118-21.

96. Abd El-Rehim DM, Ball G, Pinder SE, Rakha E, Paish C, Robertson JF, et al. High-throughput protein expression analysis using tissue microarray technology of a large well-characterised series identifies biologically distinct classes of breast cancer confirming recent cDNA expression analyses. Int J Cancer. 2005;116(3):340-50.

97. Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thürlimann B, Senn HJ, et al. Strategies for subtypes--dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol. 2011;22(8):1736-47.

98. Zhou W, Jirström K, Amini RM, Fjällskog ML, Sollie T, Lindman H, et al. Molecular subtypes in ductal carcinoma in situ of the breast and their relation to prognosis: a population-based cohort study. BMC Cancer. 2013;13:512.

99. Camp RL, Neumeister V, Rimm DL. A decade of tissue microarrays: progress in the discovery and validation of cancer biomarkers. J Clin Oncol. 2008;26(34):5630-7.

100. Kyndi M, Sørensen FB, Knudsen H, Overgaard M, Nielsen HM, Andersen J, et al. Tissue microarrays compared with whole sections and biochemical analyses. A subgroup analysis of DBCG 82 b&c. Acta Oncol. 2008;47(4):591-9.

101. Zhang D, Salto-Tellez M, Putti TC, Do E, Koay ES. Reliability of tissue microarrays in detecting protein expression and gene amplification in breast cancer. Mod Pathol. 2003;16(1):79-84.

102. Ruiz C, Seibt S, Al Kuraya K, Siraj AK, Mirlacher M, Schraml P, et al. Tissue microarrays for comparing molecular features with proliferation activity in breast cancer. Int J Cancer. 2006;118(9):2190-4.

103. Graham AD, Faratian D, Rae F, Thomas JS. Tissue microarray technology in the routine assessment of HER-2 status in invasive breast cancer: a prospective study of the use of immunohistochemistry and fluorescence in situ hybridization. Histopathology. 2008;52(7):847-55.

104. Bhargava R, Lal P, Chen B. Feasibility of using tissue microarrays for the assessment of HER-2 gene amplification by fluorescence in situ hybridization in breast carcinoma. Diagn Mol Pathol. 2004;13(4):213-6.

105. Sapino A, Marchiò C, Senetta R, Castellano I, Macrì L, Cassoni P, et al. Routine assessment of prognostic factors in breast cancer using a multicore tissue microarray procedure. Virchows Arch. 2006;449(3):288-96.

106. Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK, Bateman A, et al. InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res. 2012;40(Database issue):D306-12.

107.McDowallJ.EstrogenReceptorshttps://www.ebi.ac.uk/interpro/potm/2003_4/Page_1.htm2011[

108. Jones P, Binns D, McMenamin C, McAnulla C, Hunter S. The InterPro BioMart: federated query and web service access to the InterPro Resource. Database (Oxford). 2011;2011:bar033.

109. Kumar R, Thompson EB. The structure of the nuclear hormone receptors. Steroids. 1999;64(5):310-9.

110. Kumar R, Zakharov MN, Khan SH, Miki R, Jang H, Toraldo G, et al. The dynamic structure of the estrogen receptor. J Amino Acids. 2011;2011:812540.

111. Enmark E, Gustafsson JA. Oestrogen receptors - an overview. J Intern Med. 1999;246(2):133-8.

112. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schütz G, Umesono K, et al. The nuclear receptor superfamily: the second decade. Cell. 1995;83(6):835-9.

113. Pike AC, Brzozowski AM, Hubbard RE, Bonn T, Thorsell AG, Engström O, et al. Structure of the ligand-binding domain of oestrogen receptor beta in the presence of a partial agonist and a full antagonist. EMBO J. 1999;18(17):4608-18.

114. Segars JH, Driggers PH. Estrogen action and cytoplasmic signaling cascades. Part I: membrane-associated signaling complexes. Trends Endocrinol Metab. 2002;13(8):349-54.

115. McDevitt MA, Glidewell-Kenney C, Jimenez MA, Ahearn PC, Weiss J, Jameson JL, et al. New insights into the classical and non-classical actions of estrogen: evidence from estrogen receptor knock-out and knock-in mice. Mol Cell Endocrinol. 2008;290(1-2):24-30.

116. Anderson E. The role of oestrogen and progesterone receptors in human mammary development and tumorigenesis. Breast Cancer Res. 2002;4(5):197-201.

117. Gown AM. Current issues in ER and HER2 testing by IHC in breast cancer. Mod Pathol. 2008;21 Suppl 2:S8-S15.

118. Payne SJ, Bowen RL, Jones JL, Wells CA. Predictive markers in breast cancer--the present. Histopathology. 2008;52(1):82-90.

119. Pike MC, Spicer DV, Dahmoush L, Press MF. Estrogens, progestogens, normal breast cell proliferation, and breast cancer risk. Epidemiol Rev. 1993;15(1):17-35.

120. Kerlikowske K, Molinaro AM, Gauthier ML, Berman HK, Waldman F, Bennington J, et al. Biomarker expression and risk of subsequent tumors after initial ductal carcinoma in situ diagnosis. J Natl Cancer Inst. 2010;102(9):627-37.

121. Provenzano E, Hopper JL, Giles GG, Marr G, Venter DJ, Armes JE. Biological markers that predict clinical recurrence in ductal carcinoma in situ of the breast. Eur J Cancer. 2003;39(5):622-30.

122. Zhou W, Johansson C, Jirström K, Ringberg A, Blomqvist C, Amini RM, et al. A Comparison of Tumor Biology in Primary Ductal Carcinoma In Situ Recurring as Invasive Carcinoma versus a New In Situ. Int J Breast Cancer. 2013;2013:582134.

123. Pritchard KI. Breast cancer prevention with selective estrogen receptor modulators: a perspective. Ann N Y Acad Sci. 2001;949:89-98.

124. Arpino G, Weiss H, Lee AV, Schiff R, De Placido S, Osborne CK, et al. Estrogen receptor-positive, progesterone receptor-negative breast cancer: association with growth factor receptor expression and tamoxifen resistance. J Natl Cancer Inst. 2005;97(17):1254-61.

125. Howell A, Cuzick J, Baum M, Buzdar A, Dowsett M, Forbes JF, et al. Results of the ATAC (Arimidex, Tamoxifen, Alone or in Combination) trial after completion of 5 years' adjuvant treatment for breast cancer. Lancet. 2005;365(9453):60-2.

126. Cuzick J, Sestak I, Baum M, Buzdar A, Howell A, Dowsett M, et al. Effect of anastrozole and tamoxifen as adjuvant treatment for early-stage breast cancer: 10-year analysis of the ATAC trial. Lancet Oncol. 2010;11(12):1135-41.

127. Salomon DS, Brandt R, Ciardiello F, Normanno N. Epidermal growth factorrelated peptides and their receptors in human malignancies. Crit Rev Oncol Hematol. 1995;19(3):183-232.

128. Moasser MM. The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene. 2007;26(45):6469-87.

129. Burgess AW, Cho HS, Eigenbrot C, Ferguson KM, Garrett TP, Leahy DJ, et al. An open-and-shut case? Recent insights into the activation of EGF/ErbB receptors. Mol Cell. 2003;12(3):541-52.

130. Zhang X, Gureasko J, Shen K, Cole PA, Kuriyan J. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell. 2006;125(6):1137-49.

131. Hubbard SR, Miller WT. Receptor tyrosine kinases: mechanisms of activation and signaling. Curr Opin Cell Biol. 2007;19(2):117-23.

132. Arkhipov A, Shan Y, Kim ET, Dror RO, Shaw DE. Her2 activation mechanism reflects evolutionary preservation of asymmetric ectodomain dimers in the human EGFR family. Elife. 2013;2:e00708.

133. Eccles SA, Modjtahedi H, Box G, Court W, Sandle J, Dean CJ. Significance of the c-erbB family of receptor tyrosine kinases in metastatic cancer and their potential as targets for immunotherapy. Invasion Metastasis. 1994;14(1-6):337-48.

134. Woodburn JR. The epidermal growth factor receptor and its inhibition in cancer therapy. Pharmacol Ther. 1999;82(2-3):241-50.

135. Kamath S, Buolamwini JK. Targeting EGFR and HER-2 receptor tyrosine kinases for cancer drug discovery and development. Med Res Rev. 2006;26(5):569-94.

136. Flynn JF, Wong C, Wu JM. Anti-EGFR Therapy: Mechanism and Advances in Clinical Efficacy in Breast Cancer. J Oncol. 2009;2009:526963.

137. Walker RA, Bartlett JM, Dowsett M, Ellis IO, Hanby AM, Jasani B, et al. HER2 testing in the UK: further update to recommendations. J Clin Pathol. 2008;61(7):818-24.

138. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57-70.

139. Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown. J Cell Physiol. 2000;182(3):311-22.

140. Gerdes J, Schwab U, Lemke H, Stein H. Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. Int J Cancer. 1983;31(1):13-20.

141. Brown DC, Gatter KC. Ki67 protein: the immaculate deception? Histopathology. 2002;40(1):2-11.

142. Rahmanzadeh R, Hüttmann G, Gerdes J, Scholzen T. Chromophore-assisted light inactivation of pKi-67 leads to inhibition of ribosomal RNA synthesis. Cell Prolif. 2007;40(3):422-30.

143. Endl E, Gerdes J. The Ki-67 protein: fascinating forms and an unknown function. Exp Cell Res. 2000;257(2):231-7.

144. Schlüter C, Duchrow M, Wohlenberg C, Becker MH, Key G, Flad HD, et al. The cell proliferation-associated antigen of antibody Ki-67: a very large, ubiquitous nuclear protein with numerous repeated elements, representing a new kind of cell cycle-maintaining proteins. J Cell Biol. 1993;123(3):513-22.

145. Hofmann K, Bucher P. The FHA domain: a putative nuclear signalling domain found in protein kinases and transcription factors. Trends Biochem Sci. 1995;20(9):347-9.

146. Chelsky D, Ralph R, Jonak G. Sequence requirements for synthetic peptidemediated translocation to the nucleus. Mol Cell Biol. 1989;9(6):2487-92.

147. Dingwall C, Laskey RA. Nuclear targeting sequences--a consensus? Trends Biochem Sci. 1991;16(12):478-81.

148. Silver PA. How proteins enter the nucleus. Cell. 1991;64(3):489-97.

149. Bullwinkel J, Baron-Lühr B, Lüdemann A, Wohlenberg C, Gerdes J, Scholzen T. Ki-67 protein is associated with ribosomal RNA transcription in quiescent and proliferating cells. J Cell Physiol. 2006;206(3):624-35.

150. Darb-Esfahani S, Loibl S, Müller BM, Roller M, Denkert C, Komor M, et al. Identification of biology-based breast cancer types with distinct predictive and prognostic features: role of steroid hormone and HER2 receptor expression in patients treated with neoadjuvant anthracycline/taxane-based chemotherapy. Breast Cancer Res. 2009;11(5):R69.

151. Jones RL, Salter J, A'Hern R, Nerurkar A, Parton M, Reis-Filho JS, et al. The prognostic significance of Ki67 before and after neoadjuvant chemotherapy in breast cancer. Breast Cancer Res Treat. 2009;116(1):53-68.

152. Cheang MC, Chia SK, Voduc D, Gao D, Leung S, Snider J, et al. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst. 2009;101(10):736-50.

153. Altintas S, Lambein K, Huizing MT, Braems G, Asjoe FT, Hellemans H, et al. Prognostic significance of oncogenic markers in ductal carcinoma in situ of the breast: a clinicopathologic study. Breast J. 2009;15(2):120-32.

154. Ruiz Martín J, Pérez Sánchez C, de las Heras Camino A. Three molecular classifications surrogate to four immunohistochemical markers in 374 invasive breast carcinomas with long follow-up: which is better? Pathol Res Pract. 2013;209(6):337-44.

155. Bochman ML, Schwacha A. The Mcm complex: unwinding the mechanism of a replicative helicase. Microbiol Mol Biol Rev. 2009;73(4):652-83.

156. Madine MA, Swietlik M, Pelizon C, Romanowski P, Mills AD, Laskey RA. The roles of the MCM, ORC, and Cdc6 proteins in determining the replication competence of chromatin in quiescent cells. J Struct Biol. 2000;129(2-3):198-210.

157. Maine GT, Sinha P, Tye BK. Mutants of S. cerevisiae defective in the maintenance of minichromosomes. Genetics. 1984;106(3):365-85.

158. Takahashi K, Yamada H, Yanagida M. Fission yeast minichromosome loss mutants mis cause lethal aneuploidy and replication abnormality. Mol Biol Cell. 1994;5(10):1145-58.

159. Chong JP, Blow JJ. DNA replication licensing factor. Prog Cell Cycle Res. 1996;2:83-90.

160. Bochman ML, Schwacha A. The Mcm2-7 complex has in vitro helicase activity. Mol Cell. 2008;31(2):287-93.

161. Lei M, Tye BK. Initiating DNA synthesis: from recruiting to activating the MCM complex. J Cell Sci. 2001;114(Pt 8):1447-54.

162. Bell SP, Mitchell J, Leber J, Kobayashi R, Stillman B. The multidomain structure of Orc1p reveals similarity to regulators of DNA replication and transcriptional silencing. Cell. 1995;83(4):563-8.

163. Nishitani H, Lygerou Z, Nishimoto T, Nurse P. The Cdt1 protein is required to license DNA for replication in fission yeast. Nature. 2000;404(6778):625-8.

164. Bochman ML, Bell SP, Schwacha A. Subunit organization of Mcm2-7 and the unequal role of active sites in ATP hydrolysis and viability. Mol Cell Biol. 2008;28(19):5865-73.

165. Gonzalez MA, Pinder SE, Callagy G, Vowler SL, Morris LS, Bird K, et al. Minichromosome maintenance protein 2 is a strong independent prognostic marker in breast cancer. J Clin Oncol. 2003;21(23):4306-13.

166. Sanchez-Berrondo J, Mesa P, Ibarra A, Martínez-Jiménez MI, Blanco L, Méndez J, et al. Molecular architecture of a multifunctional MCM complex. Nucleic Acids Res. 2012;40(3):1366-80.

167. Freeman A, Morris LS, Mills AD, Stoeber K, Laskey RA, Williams GH, et al. Minichromosome maintenance proteins as biological markers of dysplasia and malignancy. Clin Cancer Res. 1999;5(8):2121-32.

168. Sirieix PS, O'Donovan M, Brown J, Save V, Coleman N, Fitzgerald RC. Surface expression of minichromosome maintenance proteins provides a novel method for detecting patients at risk for developing adenocarcinoma in Barrett's esophagus. Clin Cancer Res. 2003;9(7):2560-6.

169. Scott IS, Morris LS, Bird K, Davies RJ, Vowler SL, Rushbrook SM, et al. A novel immunohistochemical method to estimate cell-cycle phase distribution in archival tissue: implications for the prediction of outcome in colorectal cancer. J Pathol. 2003;201(2):187-97.

170. Shetty A, Loddo M, Fanshawe T, Prevost AT, Sainsbury R, Williams GH, et al. DNA replication licensing and cell cycle kinetics of normal and neoplastic breast. Br J Cancer. 2005;93(11):1295-300.

171. Gonzalez MA, Pinder SE, Callagy G, Vowler SL, Morris LS, Bird K, et al. Minichromosome maintenance protein 2 is a strong independent prognostic marker in breast cancer. J Clin Oncol. 2003;21(23):4306-13.

172. Gonzalez MA, Tachibana KE, Chin SF, Callagy G, Madine MA, Vowler SL, et al. Geminin predicts adverse clinical outcome in breast cancer by reflecting cell-cycle progression. J Pathol. 2004;204(2):121-30.

173. Wojnar A, Kobierzycki C, Krolicka A, Pula B, Podhorska-Okolow M, Dziegiel P. Correlation of Ki-67 and MCM-2 proliferative marker expression with grade of histological malignancy (G) in ductal breast cancers. Folia Histochem Cytobiol. 2010;48(3):442-6.

174. Saydam O, Senol O, Schaaij-Visser TB, Pham TV, Piersma SR, Stemmer-Rachamimov AO, et al. Comparative protein profiling reveals minichromosome maintenance (MCM) proteins as novel potential tumor markers for meningiomas. J Proteome Res. 2010;9(1):485-94.

175. Honeycutt KA, Chen Z, Koster MI, Miers M, Nuchtern J, Hicks J, et al. Deregulated minichromosomal maintenance protein MCM7 contributes to oncogene driven tumorigenesis. Oncogene. 2006;25(29):4027-32.

176. Williams GH, Swinn R, Prevost AT, De Clive-Lowe P, Halsall I, Going JJ, et al. Diagnosis of oesophageal cancer by detection of minichromosome maintenance 5 protein in gastric aspirates. Br J Cancer. 2004;91(4):714-9.

177. Wharton SB, Chan KK, Anderson JR, Stoeber K, Williams GH. Replicative Mcm2 protein as a novel proliferation marker in oligodendrogliomas and its relationship to Ki67 labelling index, histological grade and prognosis. Neuropathol Appl Neurobiol. 2001;27(4):305-13.

178. Meng MV, Grossfeld GD, Williams GH, Dilworth S, Stoeber K, Mulley TW, et al. Minichromosome maintenance protein 2 expression in prostate: characterization and association with outcome after therapy for cancer. Clin Cancer Res. 2001;7(9):2712-8.

179. Reena RM, Mastura M, Siti-Aishah MA, Munirah MA, Norlia A, Naqiyah I, et al. Minichromosome maintenance protein 2 is a reliable proliferative marker in breast carcinoma. Ann Diagn Pathol. 2008;12(5):340-3.

180. Nasir A, Chen DT, Gruidl M, Henderson-Jackson EB, Venkataramu C, McCarthy SM, et al. Novel molecular markers of malignancy in histologically normal and benign breast. Patholog Res Int. 2011;2011:489064.

181. Taylor-Papadimitriou J, Stampfer M, Bartek J, Lewis A, Boshell M, Lane EB, et al. Keratin expression in human mammary epithelial cells cultured from normal and malignant tissue: relation to in vivo phenotypes and influence of medium. J Cell Sci. 1989;94 (Pt 3):403-13.

182. Moll R, Franke WW, Schiller DL, Geiger B, Krepler R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell. 1982;31(1):11-24.

183. Jarasch ED, Nagle RB, Kaufmann M, Maurer C, Böcker WJ. Differential diagnosis of benign epithelial proliferations and carcinomas of the breast using antibodies to cytokeratins. Hum Pathol. 1988;19(3):276-89.

184. Cleator S, Heller W, Coombes RC. Triple-negative breast cancer: therapeutic options. Lancet Oncol. 2007;8(3):235-44.

185. Ross JS, Fletcher JA. The HER-2/neu Oncogene in Breast Cancer: Prognostic Factor, Predictive Factor, and Target for Therapy. Oncologist. 1998;3(4):237-52.

186. Zhao J, Wu R, Au A, Marquez A, Yu Y, Shi Z. Determination of HER2 gene amplification by chromogenic in situ hybridization (CISH) in archival breast carcinoma. Mod Pathol. 2002;15(6):657-65.

187. Dowsett M, Nielsen TO, A'Hern R, Bartlett J, Coombes RC, Cuzick J, et al. Assessment of Ki67 in breast cancer: recommendations from the International Ki67 in Breast Cancer working group. J Natl Cancer Inst. 2011;103(22):1656-64.

188. Walker RA, Hanby A, Pinder SE, Thomas J, Ellis IO, Subgroup NCCfBPR. Current issues in diagnostic breast pathology. J Clin Pathol. 2012;65(9):771-85.

189. Poller DN, Snead DR, Roberts EC, Galea M, Bell JA, Gilmour A, et al. Oestrogen receptor expression in ductal carcinoma in situ of the breast: relationship to flow cytometric analysis of DNA and expression of the c-erbB-2 oncoprotein. Br J Cancer. 1993;68(1):156-61.

190. Thomas J, Hanby A, Pinder S, Ellis I, Macartney J, Clements K, et al. Implications of inconsistent measurement of ER status in non-invasive breast cancer: a study of 1,684 cases from the Sloane Project. Breast J. 2008;14(1):33-8.

191. Karayiannakis AJ, Bastounis EA, Chatzigianni EB, Makri GG, Alexiou D, Karamanakos P. Immunohistochemical detection of oestrogen receptors in ductal carcinoma in situ of the breast. Eur J Surg Oncol. 1996;22(6):578-82.

192. Hannemann J, Velds A, Halfwerk JB, Kreike B, Peterse JL, van de Vijver MJ. Classification of ductal carcinoma in situ by gene expression profiling. Breast Cancer Res. 2006;8(5):R61.

193. Thomas J, Evans A, Macartney J, Pinder SE, Hanby A, Ellis I, et al. Radiological and pathological size estimations of pure ductal carcinoma in situ of the breast, specimen handling and the influence on the success of breast conservation surgery: a review of 2564 cases from the Sloane Project. Br J Cancer. 2010;102(2):285-93.

194. Hu Z, Fan C, Oh DS, Marron JS, He X, Qaqish BF, et al. The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics. 2006;7:96.

195. Sørlie T. Molecular portraits of breast cancer: tumour subtypes as distinct disease entities. Eur J Cancer. 2004;40(18):2667-75.

196. Meijnen P, Peterse JL, Antonini N, Rutgers EJ, van de Vijver MJ. Immunohistochemical categorisation of ductal carcinoma in situ of the breast. Br J Cancer. 2008;98(1):137-42.

197. Clark SE, Warwick J, Carpenter R, Bowen RL, Duffy SW, Jones JL. Molecular subtyping of DCIS: heterogeneity of breast cancer reflected in pre-invasive disease. Br J Cancer. 2011;104(1):120-7.

198. Zhou W, Jirström K, Johansson C, Amini RM, Blomqvist C, Agbaje O, et al. Long-term survival of women with basal-like ductal carcinoma in situ of the breast: a population-based cohort study. BMC Cancer. 2010;10:653.

199. Steinman S, Wang J, Bourne P, Yang Q, Tang P. Expression of cytokeratin markers, ER-alpha, PR, HER-2/neu, and EGFR in pure ductal carcinoma in situ (DCIS) and DCIS with co-existing invasive ductal carcinoma (IDC) of the breast. Ann Clin Lab Sci. 2007;37(2):127-34.

200. Tamimi RM, Baer HJ, Marotti J, Galan M, Galaburda L, Fu Y, et al. Comparison of molecular phenotypes of ductal carcinoma in situ and invasive breast cancer. Breast Cancer Res. 2008;10(4):R67.

201. Tang P, Skinner KA, Hicks DG. Molecular classification of breast carcinomas by immunohistochemical analysis: are we ready? Diagn Mol Pathol. 2009;18(3):125-32.

202. Hernandez L, Wilkerson PM, Lambros MB, Campion-Flora A, Rodrigues DN, Gauthier A, et al. Genomic and mutational profiling of ductal carcinomas in situ and matched adjacent invasive breast cancers reveals intra-tumour genetic heterogeneity and clonal selection. J Pathol. 2012;227(1):42-52.

203. Ma XJ, Salunga R, Tuggle JT, Gaudet J, Enright E, McQuary P, et al. Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci U S A. 2003;100(10):5974-9.

204. Buerger H, Otterbach F, Simon R, Poremba C, Diallo R, Decker T, et al. Comparative genomic hybridization of ductal carcinoma in situ of the breast-evidence of multiple genetic pathways. J Pathol. 1999;187(4):396-402.

205. Rydén L, Landberg G, Stål O, Nordenskjöld B, Fernö M, Bendahl PO. HER2 status in hormone receptor positive premenopausal primary breast cancer adds prognostic, but not tamoxifen treatment predictive, information. Breast Cancer Res Treat. 2008;109(2):351-7.

206. Alqaisi A, Chen L, Romond E, Chambers M, Stevens M, Pasley G, et al. Impact of estrogen receptor (ER) and human epidermal growth factor receptor-2 (HER2) co-expression on breast cancer disease characteristics: implications for tumor biology and research. Breast Cancer Res Treat. 2014;148(2):437-44.

207. Vincent-Salomon A, Lucchesi C, Gruel N, Raynal V, Pierron G, Goudefroye R, et al. Integrated genomic and transcriptomic analysis of ductal carcinoma in situ of the breast. Clin Cancer Res. 2008;14(7):1956-65.

208. Yao J, Weremowicz S, Feng B, Gentleman RC, Marks JR, Gelman R, et al. Combined cDNA array comparative genomic hybridization and serial analysis of gene expression analysis of breast tumor progression. Cancer Res. 2006;66(8):4065-78.

209. Gao Y, Niu Y, Wang X, Wei L, Lu S. Genetic changes at specific stages of breast cancer progression detected by comparative genomic hybridization. J Mol Med (Berl). 2009;87(2):145-52.

210. Liao S, Desouki MM, Gaile DP, Shepherd L, Nowak NJ, Conroy J, et al. Differential copy number aberrations in novel candidate genes associated with progression from in situ to invasive ductal carcinoma of the breast. Genes Chromosomes Cancer. 2012;51(12):1067-78.

211. Cowell CF, Weigelt B, Sakr RA, Ng CK, Hicks J, King TA, et al. Progression from ductal carcinoma in situ to invasive breast cancer: revisited. Mol Oncol. 2013;7(5):859-69.

212. Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, et al. Detection of large-scale variation in the human genome. Nat Genet. 2004;36(9):949-51.

213. Shlien A, Malkin D. Copy number variations and cancer. Genome Med. 2009;1(6):62.

214. R ZN. Copy Number Profiling in Normal and Tumour Genomes2012.

215. Ueno T, Emi M, Sato H, Ito N, Muta M, Kuroi K, et al. Genome-wide copy number analysis in primary breast cancer. Expert Opin Ther Targets. 2012;16 Suppl 1:S31-5.

216. Byler S, Goldgar S, Heerboth S, Leary M, Housman G, Moulton K, et al. Genetic and epigenetic aspects of breast cancer progression and therapy. Anticancer Res. 2014;34(3):1071-7.

217. Xu H, Eirew P, Mullaly SC, Aparicio S. The omics of triple-negative breast cancers. Clin Chem. 2014;60(1):122-33.

218. Reis-Filho JS, Simpson PT, Gale T, Lakhani SR. The molecular genetics of breast cancer: the contribution of comparative genomic hybridization. Pathol Res Pract. 2005;201(11):713-25.

219. Martin V, Botta F, Zanellato E, Molinari F, Crippa S, Mazzucchelli L, et al. Molecular characterization of EGFR and EGFR-downstream pathways in triple negative breast carcinomas with basal like features. Histol Histopathol. 2012;27(6):785-92.

220. Ando Y, Iwase H, Ichihara S, Toyoshima S, Nakamura T, Yamashita H, et al. Loss of heterozygosity and microsatellite instability in ductal carcinoma in situ of the breast. Cancer Lett. 2000;156(2):207-14.

221. Johnson CE, Gorringe KL, Thompson ER, Opeskin K, Boyle SE, Wang Y, et al. Identification of copy number alterations associated with the progression of DCIS to invasive ductal carcinoma. Breast Cancer Res Treat. 2011.

222. Lee S, Stewart S, Nagtegaal I, Luo J, Wu Y, Colditz G, et al. Differentially Expressed Genes Regulating the Progression of Ductal Carcinoma in Situ to Invasive Breast Cancer. Cancer Res. 2012.

223. Carraro DM, Elias EV, Andrade VP. Ductal carcinoma in situ of the breast: morphological and molecular features implicated in progression. Biosci Rep. 2013.

224. Vargas AC, Reed AE, Waddell N, Lane A, Reid LE, Smart CE, et al. Gene expression profiling of tumour epithelial and stromal compartments during breast cancer progression. Breast Cancer Res Treat. 2012.

225. Mi H, Muruganujan A, Casagrande JT, Thomas PD. Large-scale gene function analysis with the PANTHER classification system. Nat Protoc. 2013;8(8):1551-66.

226. Seligson DB, Horvath S, Shi T, Yu H, Tze S, Grunstein M, et al. Global histone modification patterns predict risk of prostate cancer recurrence. Nature. 2005;435(7046):1262-6.

227. Elsheikh SE, Green AR, Rakha EA, Powe DG, Ahmed RA, Collins HM, et al. Global histone modifications in breast cancer correlate with tumor phenotypes, prognostic factors, and patient outcome. Cancer Res. 2009;69(9):3802-9.

228. Kadota M, Sato M, Duncan B, Ooshima A, Yang HH, Diaz-Meyer N, et al. Identification of novel gene amplifications in breast cancer and coexistence of gene amplification with an activating mutation of PIK3CA. Cancer Res. 2009;69(18):7357-65.

229. Lightfoot HM, Lark A, Livasy CA, Moore DT, Cowan D, Dressler L, et al. Upregulation of focal adhesion kinase (FAK) expression in ductal carcinoma in situ (DCIS) is an early event in breast tumorigenesis. Breast Cancer Res Treat. 2004;88(2):109-16.

230. Xie F, Wang Q, Chen Y, Gu Y, Mao H, Zeng W, et al. Costimulatory molecule OX40/OX40L expression in ductal carcinoma in situ and invasive ductal carcinoma of breast: an immunohistochemistry-based pilot study. Pathol Res Pract. 2010;206(11):735-9.

231. Howard BA. The role of NRG3 in mammary development. J Mammary Gland Biol Neoplasia. 2008;13(2):195-203.

232. Kogata N, Oliemuller E, Wansbury O, Howard BA. Neuregulin-3 regulates epithelial progenitor cell positioning and specifies mammary phenotype. Stem Cells Dev. 2014;23(22):2758-70.

233. Varley JM, Armour J, Swallow JE, Jeffreys AJ, Ponder BA, T'Ang A, et al. The retinoblastoma gene is frequently altered leading to loss of expression in primary breast tumours. Oncogene. 1989;4(6):725-9.

234. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486(7403):346-52.

235. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003;92(8):827-39.

236. Cao YW, Wan GX, Zhao CX, Hu JM, Li L, Liang WH, et al. Notch1 single nucleotide polymorphism rs3124591 is associated with the risk of development of invasive ductal breast carcinoma in a Chinese population. Int J Clin Exp Pathol. 2014;7(7):4286-94.

237. Yu Q, Li Y, Mu K, Li Z, Meng Q, Wu X, et al. Amplification of Mdmx and overexpression of MDM2 contribute to mammary carcinogenesis by substituting for p53 mutations. Diagn Pathol. 2014;9:71.

238. Carlsson H, Petersson S, Enerbäck C. Cluster analysis of S100 gene expression and genes correlating to psoriasin (S100A7) expression at different stages of breast cancer development. Int J Oncol. 2005;27(6):1473-81.

239. Moon HG, Hwang KT, Kim JA, Kim HS, Lee MJ, Jung EM, et al. NFIB is a potential target for estrogen receptor-negative breast cancers. Mol Oncol. 2011;5(6):538-44.

240. Wetterskog D, Lopez-Garcia MA, Lambros MB, A'Hern R, Geyer FC, Milanezi F, et al. Adenoid cystic carcinomas constitute a genomically distinct subgroup of triple-negative and basal-like breast cancers. J Pathol. 2012;226(1):84-96.

241. Soysal S, Obermann EC, Gao F, Oertli D, Gillanders WE, Viehl CT, et al. PTP1B expression is an independent positive prognostic factor in human breast cancer. Breast Cancer Res Treat. 2013;137(2):637-44.

242. Fontanil T, Rúa S, Llamazares M, Moncada-Pazos A, Quirós PM, García-Suárez O, et al. Interaction between the ADAMTS-12 metalloprotease and fibulin-2 induces tumor-suppressive effects in breast cancer cells. Oncotarget. 2014;5(5):1253-64.

243. Naik MU, Pham NT, Beebe K, Dai W, Naik UP. Calcium-dependent inhibition of polo-like kinase 3 activity by CIB1 in breast cancer cells. Int J Cancer. 2011;128(3):587-96.

244. Fonseca-Sanchéz MA, Pérez-Plasencia C, Fernández-Retana J, Arechaga-Ocampo E, Marchat LA, Rodríguez-Cuevas S, et al. microRNA-18b is upregulated in breast cancer and modulates genes involved in cell migration. Oncol Rep. 2013;30(5):2399-410.

245. Davis LM, Harris C, Tang L, Doherty P, Hraber P, Sakai Y, et al. Amplification patterns of three genomic regions predict distant recurrence in breast carcinoma. J Mol Diagn. 2007;9(3):327-36.

246. Štebbing J, Zhang H, Xu Y, Lit LC, Green AR, Grothey A, et al. KSR1 regulates BRCA1 degradation and inhibits breast cancer growth. Oncogene. 2014;0. 247. Rakha EA, Boyce RW, Abd El-Rehim D, Kurien T, Green AR, Paish EC, et al. Expression of mucins (MUC1, MUC2, MUC3, MUC4, MUC5AC and MUC6) and their prognostic significance in human breast cancer. Mod Pathol. 2005;18(10):1295-304. 248. Do SI, Kim K, Kim DH, Chae SW, Park YL, Park CH, et al. Associations between the Expression of Mucins (MUC1, MUC2, MUC2, MUC3, MUC4, MUC5AC, and MUC6) and Clinicopathologic Parameters of Human Breast Ductal Carcinomas. J Breast Cancer. 2013;16(2):152-8.

249. Mohseni M, Cidado J, Croessmann S, Cravero K, Cimino-Mathews A, Wong HY, et al. MACROD2 overexpression mediates estrogen independent growth and tamoxifen resistance in breast cancers. Proc Natl Acad Sci U S A. 2014;111(49):17606-11.

250. Fu A, Leaderer D, Zheng T, Hoffman AE, Stevens RG, Zhu Y. Genetic and epigenetic associations of circadian gene TIMELESS and breast cancer risk. Mol Carcinog. 2012;51(12):923-9.

251. Johnson CE, Gorringe KL, Thompson ER, Opeskin K, Boyle SE, Wang Y, et al. Identification of copy number alterations associated with the progression of DCIS to invasive ductal carcinoma. Breast Cancer Res Treat. 2012;133(3):889-98.

252. Sun PH, Ye L, Mason MD, Jiang WG. Protein tyrosine phosphatase kappa (PTPRK) is a negative regulator of adhesion and invasion of breast cancer cells, and associates with poor prognosis of breast cancer. J Cancer Res Clin Oncol. 2013;139(7):1129-39.

253. Ataseven B, Gunesch A, Eiermann W, Kates RE, Högel B, Knyazev P, et al. PTK7 as a potential prognostic and predictive marker of response to adjuvant chemotherapy in breast cancer patients, and resistance to anthracycline drugs. Onco Targets Ther. 2014;7:1723-31.

254. Zhao YF, Zhao JY, Yue H, Hu KS, Shen H, Guo ZG, et al. FOXD1 promotes breast cancer proliferation and chemotherapeutic drug resistance by targeting p27. Biochem Biophys Res Commun. 2015;456(1):232-7.

255. Kren BT, Unger GM, Abedin MJ, Vogel RI, Henzler CM, Ahmed K, et al. Preclinical evaluation of cyclin dependent kinase 11 and casein kinase 2 survival kinases as RNA interference targets for triple negative breast cancer therapy. Breast Cancer Res. 2015;17(1):19.

256. Mahmoodi M, Nahvi H, Mahmoudi M, Kasaian A, Mohagheghi MA, Divsalar K, et al. HLA-DRB1,-DQA1 and -DQB1 allele and haplotype frequencies in female patients with early onset breast cancer. Pathol Oncol Res. 2012;18(1):49-55.

257. Purrington KS, Slettedahl S, Bolla MK, Michailidou K, Czene K, Nevanlinna H, et al. Genetic variation in mitotic regulatory pathway genes is associated with breast tumor grade. Hum Mol Genet. 2014;23(22):6034-46.

258. Marchione R, Leibovitch SA, Lenormand JL. The translational factor eIF3f: the ambivalent eIF3 subunit. Cell Mol Life Sci. 2013;70(19):3603-16.

259. Silvera D, Formenti SC, Schneider RJ. Translational control in cancer. Nat Rev Cancer. 2010;10(4):254-66.

260. Nupponen NN, Porkka K, Kakkola L, Tanner M, Persson K, Borg A, et al. Amplification and overexpression of p40 subunit of eukaryotic translation initiation factor 3 in breast and prostate cancer. Am J Pathol. 1999;154(6):1777-83.

261. Lagal V, Abrivard M, Gonzalez V, Perazzi A, Popli S, Verzeroli E, et al. Spire-1 contributes to the invadosome and its associated invasive properties. J Cell Sci. 2014;127(Pt 2):328-40.

262. Boudreau HE, Casterline BW, Rada B, Korzeniowska A, Leto TL. Nox4 involvement in TGF-beta and SMAD3-driven induction of the epithelial-to-mesenchymal transition and migration of breast epithelial cells. Free Radic Biol Med. 2012;53(7):1489-99.

263. Castellana B, Escuin D, Peiró G, Garcia-Valdecasas B, Vázquez T, Pons C, et al. ASPN and GJB2 Are Implicated in the Mechanisms of Invasion of Ductal Breast Carcinomas. J Cancer. 2012;3:175-83.

264. Wu S, Xue W, Huang X, Yu X, Luo M, Huang Y, et al. Distinct prognostic values of ALDH1 isoenzymes in breast cancer. Tumour Biol. 2015.

265. Yang G, Yang X. Smad4-mediated TGF-beta signaling in tumorigenesis. Int J Biol Sci. 2010;6(1):1-8.

266. Guette C, Valo I, Vétillard A, Coqueret O. Olfactomedin-4 is a candidate biomarker of solid gastric, colorectal, pancreatic, head and neck, and prostate cancers. Proteomics Clin Appl. 2015;9(1-2):58-63.

267. Koshida S, Kobayashi D, Moriai R, Tsuji N, Watanabe N. Specific overexpression of OLFM4(GW112/HGC-1) mRNA in colon, breast and lung cancer tissues detected using quantitative analysis. Cancer Sci. 2007;98(3):315-20.

268. Loschke F, Seltmann K, Bouameur JE, Magin TM. Regulation of keratin network organization. Curr Opin Cell Biol. 2015;32C:56-64.

269. Park YH, Jung HH, Do IG, Cho EY, Sohn I, Jung SH, et al. A seven-gene signature can predict distant recurrence in patients with triple-negative breast cancers who receive adjuvant chemotherapy following surgery. Int J Cancer. 2015;136(8):1976-84.

270. Iida J, Dorchak J, Clancy R, Slavik J, Ellsworth R, Katagiri Y, et al. Role for chondroitin sulfate glycosaminoglycan in NEDD9-mediated breast cancer cell growth. Exp Cell Res. 2015;330(2):358-70.

271. Choong LY, Lim SK, Chen Y, Loh MC, Toy W, Wong CY, et al. Elevated NRD1 metalloprotease expression plays a role in breast cancer growth and proliferation. Genes Chromosomes Cancer. 2011;50(10):837-47.

272. Elderbroom JL, Huang JJ, Gatza CE, Chen J, How T, Starr M, et al. Ectodomain shedding of T β RIII is required for T β RIII-mediated suppression of TGF- β signaling and breast cancer migration and invasion. Mol Biol Cell. 2014;25(16):2320-32.

273. Wang P, Wang Y, Yan H, Xie Q, Zhao L, Xu S, et al. Genetic variation in the major mitotic checkpoint genes and risk of breast cancer: a multigenic study on cancer susceptibility. Tumour Biol. 2014;35(7):6701-5.

274. Huang TH, Huo L, Wang YN, Xia W, Wei Y, Chang SS, et al. Epidermal growth factor receptor potentiates MCM7-mediated DNA replication through tyrosine phosphorylation of Lyn kinase in human cancers. Cancer Cell. 2013;23(6):796-810.

275. Johnson JP, Kumar P, Koulnis M, Patel M, Simin K. Crucial and novel cancer drivers in a mouse model of triple-negative breast cancer. Cancer Genomics Proteomics. 2014;11(3):115-26.

276. Gonzalez MA, Tachibana KE, Chin SF, Callagy G, Madine MA, Vowler SL, et al. Geminin predicts adverse clinical outcome in breast cancer by reflecting cell-cycle progression. J Pathol. 2004;204(2):121-30.

277. Zhang SJ, Hu Y, Qian HL, Jiao SC, Liu ZF, Tao HT, et al. Expression and significance of ER, PR, VEGF, CA15-3, CA125 and CEA in judging the prognosis of breast cancer. Asian Pac J Cancer Prev. 2013;14(6):3937-40.

278. Moelans CB, de Weger RA, Monsuur HN, Maes AH, van Diest PJ. Molecular differences between ductal carcinoma in situ and adjacent invasive breast carcinoma: a multiplex ligation-dependent probe amplification study. Anal Cell Pathol (Amst). 2010;33(3):165-73.

279. Bol GM, Raman V, van der Groep P, Vermeulen JF, Patel AH, van der Wall E, et al. Expression of the RNA helicase DDX3 and the hypoxia response in breast cancer. PLoS One. 2013;8(5):e63548.

280. Slattery ML, Herrick JS, Torres-Mejia G, John EM, Giuliano AR, Hines LM, et al. Genetic variants in interleukin genes are associated with breast cancer risk and survival in a genetically admixed population: the Breast Cancer Health Disparities Study. Carcinogenesis. 2014;35(8):1750-9.

281. Pinder SE, Brown JP, Gillett C, Purdie CA, Speirs V, Thompson AM, et al. The manufacture and assessment of tissue microarrays: suggestions and criteria for analysis, with breast cancer as an example. J Clin Pathol. 2012.
Appendices

Appendix 1: Copyright Permissions

JOHN WILEY AND SONS LICENSE TERMS AND CONDITIONS

May 13, 2014

This is a License Agreement between John P Brown ("You") and John Wiley and Sons ("John Wiley and Sons") provided by Copyright Clearance Center ("CCC"). The license consists of your order details, the terms and conditions provided by John Wiley and Sons, and the payment terms and conditions.

All payments must be made in full to CCC. For payment instructions, please see information listed at the
bottom of this form.

License Number	3386970712499
License date	May 13, 2014
Licensed content publisher	John Wiley and Sons
Licensed content publication	The EMBO Journal
Licensed content title	Cell cycle-dependent regulation of the association between origin recognition proteins and somatic cell chromatin
Licensed copyright line	Copyright $\hat{A} \ensuremath{\mathbb{C}}$ 2002 European Molecular Biology Organization
Licensed content author	Wei-Hsin Sun, Thomas R. Coleman, Melvin L. DePamphilis
Licensed content date	Mar 15, 2002
Start page	1437
End page	1446
Type of use	Dissertation/Thesis
Requestor type	University/Academic
Format	Electronic
Portion	Figure/table
Number of figures/tables	1
Original Wiley figure/table number(s)	Figure 8
Will you be translating?	No
Title of your thesis / dissertation	Classification of Ductal Carcinoma in Situ of the Human Breast
Expected completion date	Feb 2015
Expected size (number of pages)	250
Total	BP
	5.15

5.16	Appendix 2: Excel	TMA Maps and IHC Scores
------	-------------------	-------------------------

TMA block	DCIS TMA	FR Average	PR	HFR2	EGER	CK2/6	CK14	K167	МСМ2
папьст	location	LIVAVCIAge			LOIN	CKJ/U		KI07	
DCIS 15A	A1	0	0	0	0	0	1	1	0
DCIS 15A	A2	0	0	0	0	0	0	x	0
DCIS 15A	A4	2	0	0	0	x	10	1	0
DCIS 15A	A5	0	0	1	3	0	5	40	10
DCIS 15A	B1	x	х	x	0	x	х	x	х
DCIS 15A	В3	0	0	0	3	0	0	10	40
DCIS 15A	B4	0	0	0	0	0	0	30	х
DCIS 15A	B5	2	0	0	1	0	0	15	30
DCIS 15A	C2	5	0	0	0	0	0	5	5
DCIS 15A	C3	1	0	1	2	0	0	5	5
DCIS 15A	C4	5	7	2	0	0	0	1	1
DCIS 15A	C5	8	8	0	0	0	0	0	2
DCIS 15A	D1	x	х	х	х	x	Х	х	х
DCIS 15A	D2	x	x	x	x	x	х	x	х
DCIS 15A	D3	0	x	x	Х	X	Х	х	x
DCIS 15A	D4	x	x	х	х	x	Х	x	x
DCIS 15A	E1	2	x	x	x	x	x	x	x

i			i				i	i	i	i
DCIS 15A	E2	0	0		0	0	0	х	0	5
DCIS 15A	E3	5	x	х		х	x	x	x	x
DCIS 15A	E4	8	x		0	0	0	0	1	1
DCIS 16A	A1	0	x	х		х	x	x	x	x
	INVASIVE									
TMA block	TUMOUR			HER2		EGFR				
number	location	ER (Allred)	PR (Allred)	(HER2)		(HER2)	CK5/6 (%)	CK14 (%)	KI67 (%)	MCM
DCIS 16A	A2	8	5	х		0	0	0	1	3
DCIS 16A	A4	7	0		3	0	0	0	1	5
DCIS 16A	A5	2	4		2	0	0	0	0	0
DCIS 16A	B1	3	x	х		Х	x	x	x	x
DCIS 16A	B3	5	8		2	0	0	0	2	5
DCIS 16A	B4	1	x	х		Х	0	0	x	x
DCIS 16A	B5	4	0		0	Х	0	0	20	45
DCIS 16A	C2	5	8		2	Х	0	0	10	25
DCIS 16A	C3	4	0		1	3	0	0	25	30
DCIS 16A	C4	2	0		0	1	0	0	10	25
DCIS 16A	C5	4	0		3	1	0	0	5	35
DCIS 16A	D1	0	0		0	0	0	0	15	40
DCIS 16A	D2	3	x	х		Х	x	x	x	x
DCIS 16A	D3	5	x	х		х	x	x	х	x
DCIS 16A	D4	5	8		0	0	0	0	х	х
DCIS 16A	E1	5	0	х		х	0	0	10	10
DCIS 16A	E2	1	х	3		0	0	0	х	х

DCIS 16A	E3	4	0	3	0	0	0	10	30
DCIS 16A	E4	2	0	2	1	1	0	2	10
DCIS 16A	E5	x	0	х	2	0	0	3	35
INV T 15	A1	0	0	0	3	15	0	8	8
INV T 15	A2	0	0	0	3	0	0	5	2
INV T 15	A4	0	0	0	3	60	95	4	53
INV T 15	A5	0	0	1	3	0	0	50	17
	INVASIVE								
TMA block	TUMOUR			HER2	EGFR				
number	location	ER (Allred)	PR (Allred)	(HER2)	(HER2)	CK5/6 (%)	CK14 (%)	KI67 (%)	MCM
INV T 15	A6	0	0	2	3	0	20	30	17
INV T 15	A7	0	0	0	3	0	100	10	37
INV T 15	B1	0	0	0	0	0	0	50	17
INV T 15	B3	4	0	х	2	0	25	20	15
INV T 15	B4	6	0	1	2	0	0	20	7
INV T 15	B5	8	6	0	0	0	0	3	1
INV T 15	B6	8	7	2	0	0	0	15	5
INV T 15	В7	8	8	0	0	0	0	0	0
INV T 15	C2	8	7	1	0	0	0	15	5
INV T 15	C3	8	8	1	0	0	0	4	1
INV T 15	C4	3	0	0	1	0	0	х	х
INV T 15	C5	8	0	3	1	0	0	5	2
INV T 15	C6	4	0	0	3	0	0	20	7
INV T 15	C7	6	0	0	3	0	0	5	2

INV T 15	D1	8	8	3	0	0	0	8	3
INV T 15	D2	8	7	0	0	0	0	5	2
INV T 15	D3	7	8	2	1	0	0	4	1
INV T 15	D4	8	6	0	1	0	0	3	1
INV T 15	D6	8	6	1	1	0	0	4	1
INV T 15	D7	8	0	3	0	0	0	4	1
INV T 15	E1	8	7	0	0	0	0	0	0
INV T 15	E2	8	8	0	0	0	0	4	1
INV T 15	E3	7	0	3	0	0	0	5	Х
INV T 15	E4	6	0	0	1	0	80	30	37
	INVASIVE								
TMA block	TUMOUR			HER2	EGFR				
number	location	ER (Allred)	PR (Allred)	(HER2)	(HER2)	CK5/6 (%)	CK14 (%)	KI67 (%)	MCM
number INV T 15	location E5	ER (Allred) 8	PR (Allred) 8	(HER2) O	(HER2) 1	CK5/6 (%) 0	CK14 (%) 0	KI67 (%) 5	MCM 2
number INV T 15 INV T 15	location E5 E6	ER (Allred) 8 4	PR (Allred) 8 0	(HER2) 0 0	(HER2) 1 2	CK5/6 (%) 0 0	CK14 (%) 0 0	KI67 (%) 5 35	MCM 2 12
number INV T 15 INV T 15 INV T 15	location E5 E6 E7	ER (Allred) 8 4 0	PR (Allred) 8 0 0	(HER2) 0 0 0	(HER2) 1 2 2	CK5/6 (%) 0 0	CK14 (%) 0 0	KI67 (%) 5 35 20	MCM 2 12 7
number INV T 15 INV T 15 INV T 15 INV T 15	location E5 E6 E7 F1	ER (Allred) 8 4 0 3	PR (Allred) 8 0 0 0	(HER2) 0 0 0 3	(HER2) 1 2 2 0	CK5/6 (%) 0 0 0	CK14 (%) 0 0 0 0	KI67 (%) 5 35 20 x	MCM 2 12 7 x
number INV T 15 INV T 15 INV T 15 INV T 15 INV T 15	location E5 E6 E7 F1 F2	ER (Allred) 8 4 0 3 0	PR (Allred) 8 0 0 0 0 3	(HER2) 0 0 0 3 0	(HER2) 1 2 2 0 0 2	CK5/6 (%) 0 0 0 0 5	CK14 (%) 0 0 0 0 4	KI67 (%) 5 35 20 x 20	MCM 2 12 7 x 10
number INV T 15 INV T 15 INV T 15 INV T 15 INV T 15 INV T 15	location E5 E6 E7 F1 F2 F3	ER (Allred) 8 4 0 3 0 8	PR (Allred) 8 0 0 0 0 3 8	(HER2) 0 0 0 3 0 3	(HER2) 1 2 2 0 0 2 0 0	CK5/6 (%) 0 0 0 0 5 0	CK14 (%) 0 0 0 0 4 4	KI67 (%) 5 35 20 x 20 8	MCM 2 12 7 x 10 3
number INV T 15 INV T 15 INV T 15 INV T 15 INV T 15 INV T 15 INV T 15	location E5 E6 E7 F1 F2 F3 F4	ER (Allred) 8 4 0 3 0 8 8 8	PR (Allred) 8 0 0 0 0 3 8 8 8	(HER2) 0 0 3 0 3 0 3 0	(HER2) 1 2 2 0 0 2 0 0 0	CK5/6 (%) 0 0 0 0 5 5 0 0	CK14 (%) 0 0 0 0 4 0 0 0	KI67 (%) 5 35 20 x 20 20 8 8	MCM 2 12 7 x 10 3 2
number INV T 15 INV T 15	location E5 E6 E7 F1 F2 F3 F3 F4 F5	ER (Allred) 8 4 0 3 0 8 8 8 8 8	PR (Allred) 8 0 0 0 0 3 8 8 8 4	(HER2) 0 0 3 0 3 0 3 0 0 0	(HER2) 1 2 2 0 0 2 0 0 0 0 1	CK5/6 (%) 0 0 0 0 5 5 0 0 0	CK14 (%) 0 0 0 0 4 0 0 0 0	KI67 (%) 5 35 20 x 20 8 8 5 4	MCM 2 12 7 x 10 3 2 2 1
number INV T 15 INV T 15	location E5 E6 E7 F1 F2 F3 F3 F4 F5 F7	ER (Allred) 8 4 0 3 0 8 8 8 8 8 8 8	PR (Allred) 8 0 0 0 0 3 8 8 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(HER2) 0 0 3 0 3 0 3 0 0 0 0 0	(HER2) 1 2 2 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0	CK5/6 (%) 0 0 0 0 5 0 0 0 0 0 0	CK14 (%) 0 0 0 0 4 0 0 0 0 0 0	KI67 (%) 5 35 20 x 20 x 20 8 8 5 4 5	MCM 2 12 7 x 10 3 3 2 1 1 2
number INV T 15 INV T 15	location E5 E6 E7 F1 F2 F3 F3 F4 F5 F7 G1	ER (Allred) 8 4 0 3 0 8 8 8 8 8 8 8 4	PR (Allred) 8 0 0 0 0 3 8 8 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(HER2) 0 0 3 0 3 0 3 0 0 0 0 3 3	(HER2) 1 2 2 0 0 2 0 0 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 1	CK5/6 (%) 0 0 0 0 5 0 0 0 0 0 0 0 0	CK14 (%) 0 0 0 0 4 0 0 0 0 0 0 0 0	KI67 (%) 5 35 20 x 20 8 8 5 5 4 5 5 15	MCM 2 12 7 x 10 3 2 2 1 1 2 5

INV T 15	G3	3	0	0	2	20	0	25	15
INV T 15	G4	0	0	0	2	10	0	40	17
INV T 15	G6	8	0	2	0	0	0	5	2
INV T 15	G7	4	0	0	3	0	0	12	4

5.17 Appendix 3: Tissue Microarray Patient Demographics

					Time between						Chronic			
Research id number	Surgery	Side	Recurrence surgery	Side	specimens (days)	Size (mm)	Margins	Grade	Main	Necrosis	inflammatio n	Recurren	Recurren	Size recoded at median of 15mm
	Excision	Left			(00)3)		Not					v v		
100448	Excision	Loft	Radical mastectomy	Left	5	7.0	Not	High grade	Solid	Marked	Marked	Y	DCIS	Less than 15mm
100453	biopsy Excision	Len	Radical mastectomy	Left	5	16.0	available Not	High grade	Micropapillary	Moderate	Mild	Y	DCIS	15mm or more
100465	biopsy	Right	Simple mastectomy	Right	0	13.0	available	High grade	Solid	Mild	Moderate	Y	DCIS	Less than 15mm
100466	Excision biopsy	Right	Simple mastectomy	Right	7	5.0	Not available	High grade	Cribriform	None	None	Y	DCIS	Less than 15mm
100491	Micdo	Right	Simple mastectomy	Right	14	16.0	Not available	High grade	Micropapillary	Moderate	Moderate	Y	DCIS	15mm or more
100494	Excision	Right	Radical mastectomy	Right	7	29.0	Not available	High grade	Solid	Marked	Marked	Y	DCIS	15mm or more
100404	Excision	Left		i cigitt		20.0	available		Colla	Marked	Marked	, ,	DOIO	
100508	Excision	Dight	Simple mastectomy	Left	35		Not	No DCIS				Y	DCIS	
100523	biopsy	Right	Wide local excision	Right	62	21.0	available Not	High grade	Cribriform	Marked	None	Y	DCIS	15mm or more
100528	Micdo	Left	Simple mastectomy	Left	24	2.0	available	High grade	Papillary	None	None	Y	DCIS	Less than 15mm
100534	Excision biopsy	Left	Simple mastectomy	Left	0	15.0	Not available	High grade	Solid	Marked	Marked	Y	DCIS	15mm or more
100538	Biopsy	Left	Simple mastectomy	Left	9	21.0	Not available	Intermediate grade	Micropapillary	Moderate	Moderate	Y	DCIS	15mm or more
100541	Wide excision	Right	Simple mastectomy	Right	14	20.0	0.0	High grade	Solid	Marked	Moderate	Y	DCIS	15mm or more
100543	Excision biopsy	Right	Simple mastectomy	Right	19	25.0	0.0	High grade	Solid	Marked	Marked	Y	DCIS	15mm or more
100546	Biopsy	Right		Ť	0	19.0	0.0	High grade	Solid	Moderate	Mild	Ν	No	15mm or more
100547	Excision biopsy	Left	Radical mastectomy	Right	0	Na	Not available	Intermediate grade	Cribriform	None	Moderate	Y	DCIS	
								3.000						
	Excision													
	biopsy	Right								Mild				
100548			Wide local excision	Right	21	31.0	0.0	Intermediate	Cribriform		Mild	v	DCIS	15mm or more
100040				rtight	Time	01.0	0.0	giude			WING		0010	
id number	Surgery type	Side	type	Side	between specimens	Size	Margins	Grade	Main architecture	Necrosis	Ci	ce y/n	DCIS	Less than 15mm
100555	Excision biopsy	Left	Wide local excision	Left	12	12.0	0.0	Intermediate grade	Cribriform	Mild	Mild	Y	DCIS	Less than 15mm
100561	Excision	Left	Simple mastectomy	Left	12	18.0	0.0	High grade	Solid	Marked	Marked	Y	DCIS	15mm or more
100562	Excision	Left	Excision biopsy	Left	2126			5 5				Y	DCIS	
100570	Excision	Left	Redical mastastary	1.04	2.20	26.0	0.0	High grade	Solid	Morked	Modorata	v		15mm or more
100572	Excision	Right	Radical mastectomy	Len	29	26.0	Not U.U	Intermediate	50110	warked	woderate	Ť	DCIS	I SINTI OF MORE
100580	biopsy Excision	Right	Wide local excision	Right	15	16.0	available Not	grade Intermediate	Cribriform	Moderate	None	Y	DCIS	15mm or more
100590	biopsy	Right	Simple mastectomy	Right	26	21.0	available	grade	Cribriform	Mild	None	Y	DCIS	15mm or more
100591	Biopsy	Left	Radical mastectomy	Left	19	25.0	0.0	intermediate grade	Cribriform	Marked	Moderate	Y	DCIS	15mm or more

100597	Excision biopsy	Left	Wide local excision	Left	41	22.0	0	High grade	Micropapillary	Marked	Mild	Y	DCIS	Less than 15mm
100601	Excision biopsy	Right	Radical mastectomy	Right	40	8.0	0.0	High grade	Solid	Moderate	Marked	Y	DCIS	Less than 15mm
100602	Referral	Left	Excision biopsy, simple mastectomy	Left	46	3.0	1.0	High grade	Solid	Moderate	Mild	N	N	Less than 15mm
100607	Excision biopsy	Left	Radical mastectomy	Left	27	22.0	0.0	High grade	Cribriform	Moderate	None	Y	DCIS	15mm or more
100609	Excision biopsy	Left	Wide local excision	Left	33	12.0	0.0	High grade	Solid	Marked	Marked	Y	DCIS	Less than 15mm
100611	Excision biopsy	Left	Wide local excision	Left	34	18.0	0.0	Intermediate grade	Cribriform	Mild	Moderate	Y	DCIS	15mm or more
100613	Referral	Right	Excision biopsy	Right	0	11.0	0.0	High grade	Solid	Moderate	Mild	N	N	Less than 15mm
100615	Biopsy	Left	Excision biopsy	Left	33	16.0	0.0	High grade	Cribriform	Moderate	Mild	N	N	15mm or more
100617	Referral	Left	Simple mastectomy	Left	22	21.0	0.0	Intermediate grade	Cribriform	None	None	Y	DCIS	15mm or more
100618	Excision	Right	Wide local excision	Right	30	17.0	0.0	Intermediate	Cribriform	Moderate	Mild	Y	DCIS	15mm or more
100010	Poforral	Loft		rtigitt		17.0	Not	grado	Chomon	modorato	ivind .		2010	
100619	Fusisian	Len	Simple mastectomy	Left	33	21.0	available	High grade	Solid	Marked	Marked	N	N	15mm or more
100621	biopsy	Left	Wide local excision	Left	21	10.0	available	grade	Cribriform	None	Mild	Y	DCIS	Less than 15mm
100630	Referral	Left	Excision biopsy	Left	0	14.0	1.0	Low grade	Cribriform	None	Mild	Ν	Ν	Less than 15mm
Research id number	Surgery type	Side	Recurrence surgery type	Side	Time between specimens (days)	Size (mm)	Margins Not	Grade	Main architecture	Necrosis	Chronic inflammatio n	Recurren ce y/n	Recurren ce type	Size recoded at median of 15mm
100631	Referral		Simple mastectomy	Left	769	15.0	available	High grade	Cribriform	Moderate	Moderate	N	N	15mm or more
100633	Excision biopsy	Right	Wide local excision	Right	36	6.0	0.0	Intermediate grade	Cribriform	None	Na	No rid	DCIS	Less than 15mm
100639	Excision biopsy	Right	Wide local excision	Right	27	15.0	0.0	High grade	Solid	Marked	Marked	No research id number	DCIS	15mm or more

100643	Referral		Excision biopsy	Left	226	20.0	0.0	Intermediate grade	Cribriform	Moderate	Moderate	N	N	15mm or more
100644	Excision biopsy	Right	Wide local excision	Right	43	10.0	0.0	High grade	Cribriform	Mild	Moderate	Y	DCIS	Less than 15mm
100645	Micdo	Right	Simple mastectomy	Right	29	15.0	0.0	High grade	Micropapillary	Mild	Moderate	No research id number		15mm or more
100646	Referral	Left	Excision biopsy	Left	108							Y	DCIS	
100649	Referral	Right	Excision biopsy	Right	36	10.0	Not available	Intermediate grade	Cribriform	Mild	Mild	N	N	Less than 15mm
100650	Referral	Right	Excision biopsy	Right	36	5.0	1.5	High grade	Solid	Mild	Marked	Ν	Ν	Less than 15mm
100651	Excision biopsy	Left	Wide local excision	Left	126	16.0	0.0	High grade	Solid	Marked	Marked	No research id number		15mm or more
100658	Excision biopsy	Left	Wide local excision, simple mastectomy	Left	63	17.0	Not available	High grade	Cribriform	Marked	Moderate	Y	DCIS	15mm or more
100662	Excision biopsy	Right	Simple mastectomy	Right	54	14.0	0.0	High grade	Cribriform	Marked	Marked	Y	DCIS	Less than 15mm
100663	Referral	Right	Simple mastectomy	Right	80	7.0	Not available	Low grade	Cribriform	None	None	N	N	Less than 15mm
100667	Micdo	Right	Simple mastectomy	Right	49	23.0	0.0	High grade	Solid	Marked	Mild	Y	DCIS	15mm or more
100671	Excision biopsy	Left	Wide local excision, simple mastectomy	Left	34	14.0	0.0	Intermediate grade	Cribriform	Mild	Moderate	Y	DCIS	Less than 15mm
100674	Excision biopsy	Right	Wide local excision, simple mastectomy	Right left	50	9.0	0.0	High grade	Cribriform	Mild	Moderate	Y	DCIS	Less than 15mm

NOTE: All patient identifiers and dates have been removed.

Table 32: Patient Demographics: RID= Research Number

Research	Surgery	0.1	Recurrence surgery	0.1	Time between specimens	Size			Main		Chronic inflammatio	Recurren	Recurren	Size recoded at
id number	type	Side	type	Side	(days)	(mm)	Margins	Grade	architecture	Necrosis	n	ce y/n	ce type	median of 15mm
100676	biopsy	Right	Simple mastectomy	Right	36	15.0	Not available	High grade	Micropapillary	Moderate	Marked	Y	DCIS	15mm or more
100679	Excision biopsy	Right	Simple mastectomy	Right	43	27.0	0.0	High grade	Micropapillary	Marked	Marked	Y	DCIS	15mm or more
100696	Micdo	Left	Simple mastectomy	Left	55	8.0	Not available	High grade	Cribriform	None	Mild	N	N	Less than 15mm
100699	Excision biopsy	Left	Simple mastectomy	Left	63			No DCIS						
100701	Excision biopsy	Right	Simple mastectomy	Right left	34	1.0	Not available	High grade	Solid	None	None	N	N	Less than 15mm
100703	Excision biopsy	Right	Simple mastectomy	Right	28	20.0	Not available	High grade	Cribriform	Mild	Mild	No research id number		15mm or more
													N	
117057	Micdo	Right	Simple mastectomy	Right	27	19.0	0.0	High grade	Solid	None	Mild	Y	DCIS	15mm or more
117066			Wide local excision	Right	27	22.0	0.0	Intermediate grade	Cribriform	Mild	Mild	N	N	15mm or more
117079	Excision biopsy	Left	Simple mastectomy	Left	40	16.0	Not available	Intermediate grade	Micropapillary	None	Mild	Y	DCIS	15mm or more
117081	Excision biopsy	Left	Wide local excision	Left	21	20.0	Not available	Intermediate grade	Cribriform	Mild	Mild	Y	DCIS	15mm or more
117088	Excision biopsy	Right	Wide local excision	Right	21	24.0	0.0	High grade	Solid	Marked	Marked	Y	DCIS	15mm or more
117092	Excision biopsy	Left	Simple mastectomy	Left	22	18.0	Not available	Intermediate grade	Papillary	None	Mild	N	N	15mm or more
117098	Micdo	Left	Wide local excision & ancillary clearance	Left	61	Na	Not available	Intermediate grade	Papillary	None	None	Y	DCIS	
117105	Referral	Right	Excision biopsy	Right	?	11.0	Not available	Intermediate grade	Solid	Marked	None	N	N	Less than 15mm
117119	Excision biopsy	Right	Wide local excision	Right	21	12.0	0.0	Intermediate grade	Micropapillary	None	None	Y	DCIS	Less than 15mm
117122	Referral	Right	Simple mastectomy	Right	?	Na	Not available	Low grade	Cribriform	None	None	N	N	
117124	Referral	Left	Simple mastectomy	Left	14	29.0	Not available	High grade	Cribriform	Mod	Mild	N	N	15mm or more
								g. g						

Research id number	Surgery type	Side	Recurrence surgery type	Side	Time between specimens (days)	Size (mm)	Margins	Grade	Main architecture	Necrosis	Chronic inflammatio n	Recurren ce y/n	Recurren ce type	Size recoded at median of 15mm
117125	Excision biopsy	Right	Wide local excision	Right	58	13.0	0.0	Intermediate grade	Cribriform	None	Moderate	No id number	DCIS	Less than 15mm
117130	Referral		Excision biopsy& wide local excision	Left	?	6.0	3.0	High grade	Solid	Marked	Marked	N	N	Less than 15mm
117145	Referral	Right	Simple mastectomy	Right	?	16.0	Not available	High grade	Cribriform	Marked	Moderate	N	N	15mm or more
117147	Wle	Right	Simple mastectomy	Right	62	19.0	Not available	High grade	Solid	Marked	Marked	Y	DCIS	15mm or more
117148	Excision biopsy	Left	Referral	Left	0	9.0	Not available	Intermediate grade	Papillary	None	Mild	Y	DCIS	Less than 15mm
117152	Referral	Left	Simple mastectomy	Left	?	24.0	Not available	High grade	Solid	Mod	None	N	N	15mm or more
117155	Excision biopsy	Right	Wide local excision	Right	20	13.0	0.0	Intermediate grade	Solid	Mild	None	Y	DCIS	Less than 15mm
117159	Wle	Right	Radical mastectomy	Right	26	17.0	Not available	High grade	Solid	Mild	Marked	Y	DCIS	15mm or more
117163	Excision biopsy	Right	Simple mastectomy	Right	28	16.0	0.0	Intermediate grade	Cribriform	Mod	None	Y	DCIS	15mm or more
117174	Sm	Left	Referral	Left	0	21.0	Not available	High grade	Solid	Mod	Marked	Y	DCIS	15mm or more
117176	Referral	Left	Excision biopsy	Left	?	21.0	Not available	Intermediate grade	Solid	Mild	Mild	N	N	
117178	Excision biopsy	Left	Simple mastectomy	Left	14	19.0	0.0	Low grade	Cribriform	None	Mild	Y	DCIS	15mm or more
117181	Excision biopsy	Left	Referral & simple mastectomy	Left	14	20.0	0.0	High grade	Solid	Mod	Moderate	Y	DCIS	15mm or more
117183	Referral	Left	Excision biopsy	Left	?	8.0	Not available	High grade	Solid	None	Mild	N	N	Less than 15mm
117184	Excision biopsy	Right	Ref & wide local excision	Right	43	Na	Not available	High grade	Cribriform	None	Moderate	Y	DCIS	
117185	Referral	Left	Excision biopsy & simple mastectomy	Left	?	27.0	0.0	Intermediate grade	Cribriform	Mild	Mild	N	N	15mm or more
117195	Excision biopsy	Left	Wide local excision	Left	15	19.0	0.0	High grade	Solid	Mod	Marked	Y	DCIS	15mm or more
117204	Excision biopsy	Right	Wide local excision	Right	23	8.0	1.0	Low grade	Cribriform	None	None	No research id number		Less than 15mm
117208	Excision biopsy	Right	Wide local excision	Right	23	27.0	0.0	Intermediate grade	Papillary	Mild	Moderate	Y	DCIS	15mm or more

Research id number	Final HER2 status	Final egfr positive score (any)	Final average er score	Final er status	Final average pr scores	Final pr status	Final highest ck5 scores	Final positive ck5 s (more than 1%)	Final highest ck5/6 score	Ck 5/6 positive (more than 1%)	Final highest ck14 score	Ck14 positive (more than 1%)	Ki67 tma average	Ki67 positive more than 5% (median)	MCM2 tma average (%)	MCM2 Positive (median 27.5%)
100448	0	1	0	0	0	0	0.5	0	1.0	1	1.0	1	7	1	33	1
100453	0	0	5	1	1	0	0.0	0	5.0	1	0.5	0	13	1	40	1
100465	1	1	1	0	0	0	0.5	0	1.0	1	0.5	0	13	1	28	1
100466																
100491	1	0	0	0	0	0	0.0	0	0.0	0	0.0	0	17	1	40	1
100494	1	0	1	0	0	0	1.0	0	5.0	1	5.0	1	45	1	91	1
100508	0	0			2	0			1.0	1	5.0	1	40	1	35	1
100523	0	0	7	1	2	0	0.0	0	0.0	0	0.0	0	10	1	5	0
100528																
100534	1	0	0	0	0	0	0.5	0	2.0	1	20.0	1	13	1	88	1
100538	0	0	4	1	0	0	0.0	0	0.0	0	0.5	0	8	1	30	1
100541	1	0	3	0	0	0	2.0	1	0.0	0	5.0	1	28	1	85	1
100543	1	0	1	0	0	0	0.5	0	1.0	1	2.0	1	18	1	72	1
100546	0	0	8	1	6	1	0.0	0	0.0	0	1.0	1	0	0	4	0
100547	0	0	8	1	6	1	0.0	0	1.0	1	0.0	0	1	0	25	0
100548	1	0	8	1	0	0	0.5	0	0.0	0	0.5	0	2	0	13	0
100550	0	0	6	1	2	0	0.0	0	1.0	1	10.0	1	6	1	48	1
100555	0	0	8	1	7	1	0.5	0	0.0	0	1.0	1	5	1	25	0
100561	1	1	0	0	0	0	0.5	0	0.0	0	0.0	0	7	1	78	1
100562	0				0	0	0.0	0			0.0	0	5	1	5	0

Table 33: IHC scores for TMA cases with associated patient data.

100572	1	0	8	1	0	0	0.5	0	1.0	1	1.0	1	30	1	50	1
Research id number	Final HER2 status	Final egfr positive score (any)	Final average er score	Final er status	Final average pr scores	Final pr status	Final highest ck5 scores	Final positive ck5 s (more than 1%)	Final highest ck5/6 score	Ck 5/6 positive (more than 1%)	Final highest ck14 score	Ck14 positive (more than 1%)	Ki67 tma average	Ki67 positive more than 5% (median)	MCM2 tma average (%)	MCM2 Positive (median 27.5%)
100580	0	0	7	1	7	1	0.0	0	0.0	0	0.0	0	5	1	15	0
100590	0	0	7	1	2	0	0.0	0	0.0	0	0.0	0	6	1	0	0
100597	0	0	8	1	6	1	0.0	0	0.0	0	0.0	0	5	1	13	0
100601	1				0	0	0.0	0			0.0	0			0	0
100602	0	0	8	1	4	1	0.0	0	0.0	0	0.0	0	10	1	70	1
100606	0	0	6	1	6	1	1.0	0	0.5	0	0.5	0	5	1	23	0
100607	1	0	0	0	0	0	1.0	0	10.0	1	5.0	1	40	1	30	1
100609	0	1	0	0	0	0	60.0	1	50.0	1	0.0	0	15	1	18	0
100611	1	0	3	1	0	0	1.0	0	0.0	0	0.0	0	0	0	30	
100613	1	0	5	1	0	0	0.0	0			0.0	0	1	0	35	1
100615	0	0	4	1	0	0	0.0	0	0.0	0	0.0	0	1	0	9	0
100617	0	0	8	1	2	0	0.0	0	0.0	0	0.0	0	0	0	16	0
100618	0	0	8	1	8	1	0.0	0	1.0	1	0.0	0	2	0	15	0
100619	1	0	0	0	0	0	1.0	0	1.0	1	1.0	1	25	1	80	1
100621	0	0	7	1	8	1	1.0	0	0.0	0	0.0	0	7	1	20	0
100630	0	0	7	1	3	1	0.0	0	0.0	0	0.0	0	0	0	5	0
100631	0	1	5	1	1	0	5.0	1	0.0	0	0.0	0	0	0	63	1
100633	0	0	8	1	4	1	0.0	0	0.0	0	0.0	0	0	0	8	0
100637	0	0	6	1	0	0	0.0	0	2.0	1	0.0	0	4	0	53	1
100639	1	0	7	1	5	1	2.0	1	1.0	1	0.0	0	8	1	88	1

100643	0	0	8	1	7	1	0.0	0	0.0	0	0.0	0	0	0	43	1
100644	0	0	8	1	7	1	1.0	0	0.0	0	0.0	0	3	0	30	1
100645	1	0	0	0	0	0	0.0	0	0.0	0	0.0	0	5	1	27	0
100646	1	0	0	0	0	0	1.0	0	0.0	0	0.0	0	10	1	45	1

Research id number	Final HER2 status	Final egfr positive score (any)	Final average er score	Final er status	Final average pr scores	Final pr status	Final highest ck5 scores	Final positive ck5 s (more than 1%)	Final highest ck5/6 score	Ck 5/6 positive (more than 1%)	Final highest ck14 score	Ck14 positive (more than 1%)	Ki67 tma average	Ki67 positive more than 5% (median)	MCM2 tma average (%)	MCM2 Positive (median 27.5%)
100649	0	0	8	1	8	1	0.0	0	0.0	0	0.0	0	5	1	65	1
100650	1	0	0	0	0	0	0.0	0	0.0	0	0.0	0	10	1	70	1
100651	1	0	0	0	0	0	10.0	1	15.0	1	5.0	1	10	1	50	1
100662	1	0	0	0	0	0	0.0	0	1.0	1	0.0	0	7	1	47	1
100663	0	0	8	1	6	1	0.0	0	5.0	1	0.0	0	0	0	7	0
100667	0	0	6	1	6	1	0.0	0	0.0	0	0.0	0	18	1	32	1
100671	1	0	8	1	7	1	2.0	1	1.0	1	0.0	0	10	1	32	1
100674	0	0	6	1	3	1	2.0	1	10.0	1	5.0	1	8	1	23	0
100676	0	0	0	0	0	0	1.0	0	0.0	0	0.0	0	6	1	23	0
100679	1	0	8	1	1	0	1.0	0	1.0	1	0.0	0	5	1	42	1
100696	0	0			7	1	0.0	0	0.0	0	0.0	0	3	0	13	0
100699																
100701																
100703	0	0	8	1	7	1	0.0	0	0.0	0	0.0	0	3	0	29	1
117044	1	0	0	0	0	0	1.0	0	1.0	1	1.0	1	10	1	13	0
117057	0	0	8	1	8	1	5.0	1	2.0	1	2.0	1	0	0	20	0
117061	0	0	8	1	5	1	0.0	0	0.0	0	0.0	0	0	0	10	0
117066	0	0	6	1	0	0	0.0	0	0.0	0	0.0	0	8	1	10	0
117079	0	0	0	0	2	0	5.0	1	1.0	1	0.0	0	10	1	0	0
117081	0	0	7	1	0	0	0.0	0	1.0	1	0.0	0	5	1	27	0
117088	1	0	0	0	0	0	1.0	0	2.0	1	1.0	1	23	1	65	1

117092	0	0	8	1	7	1	1.0	0	0.5	0	0.5	0	3	0	11	0
117098	0	0	8	1	2	0	0.0	0	0.0	0	0.0	0	0	0	0	0

Research id number	Final HER2 status	Final egfr positive score (any)	Final average er score	Final er status	Final average pr scores	Final pr status	Final highest ck5 scores	Final positive ck5 s (more than 1%)	Final highest ck5/6 score	Ck 5/6 positive (more than 1%)	Final highest ck14 score	Ck14 positive (more than 1%)	Ki67 tma average	Ki67 positive more than 5% (median)	MCM2 tma average (%)	MCM2 Positive (median 27.5%)
117105	0	0	8	1	4	1	0.0	0	0.0	0	0.0	0	0	0	10	0
117119	0	0			0	0	0.0	0			0.0	0	1	0	1	0
117122	0				8	1							0	0	1	0
117124	0	0	8	1	4	1	1.0	0	0.0	0	0.0	0	2	0	40	1
117125	0	0	8	1		1	2.0	1	0.0	0	0.0	0	0	0	10	0
117145	0	0	8	1	6	1	0.0	0	0.0	0	0.0	0	2	0	28	1
117147	1	1	1	0	0	0	0.0	0	0.0	0	0.0	0	12	1	82	1
117148	0	0	8	1	8	1	0.0	0	0.0	0	0.0	0				
117152	0	0	8	1	4	1	0.0	0	0.0	0	0.0	0	2	0	10	0
117155	0	0			5	1			1.0	1	0.0	0	2	0	25	0
117159	0	0	0	0	0	0	0.0	0	0.0	0	0.0	0	3	0	35	1
117163	0	0	8	1	6	1	0.0	0	0.0	0	0.0	0	5	1	57	1
117164	0	0	8	1	1	0	5.0	1	5.0	1	5.0	1	20	1	87	1
117174	1	0	0	0	0	0	1.0	0	1.0	1	0.0	0	27	1	75	1
117176	0		8	1	8	1	0.0	0	0.0	0	0.0	0				
117178	0	0	8	1	8	1	0.0	0	1.0	1	0.0	0	5	1	43	1
117181	0	0	8	1	4	1	5.0	1	3.0	1	5.0	1	7	1	23	0
117183	0	0	5	1	5	1	0.0	0	0.0	0	0.0	0			40	1
117184	0	0	6	1	1	0	0.0	0	0.0	0	0.0	0	0	0	10	0
117185	0	0			6	1							0	0	10	0
117195	0	0	8	1	5	1	0.0	0	0.0	0	0.0	0	8	1	35	1
117204	0	0	8	1	7	1	0.0	0	0.5	0	0.0	0	1	0	29	1

117208 0 0 8 1 0 0.0 0 0.0 0 0.0 0 4 0 33 1

5.18 Appendix 4: Immunohistochemistry Protocols

- i) Dewax slides in dewax solution followed by alcohol.
- ii) Epitope retrieval solution according to antibody.
- iii) Peroxidase block, 5 mins.
- iv) Primary antibody incubation, 15 mins.
- v) Post-primary, 8 mins.
- vi) Polymer, 8 mins.
- vii) DAB, 10 mins.
- viii) DAB Enhancer, 10 mins.
- ix) Haematoxylin counterstain, 5 mins.
- x) Rinse in water, dehydrate, clear and mount manually.

Bond wash buffer rinses were carried out by the machine between each of these

steps.

Antibodies were diluted using Bond Antibody Diluent. Bond epitope retrieval solutions

1, & 2 were used where stated at a temperature of 95°C

Antibody	Dilution	Epitope retrieval	Epitope retrieval
		soln	incubation
			(minutes)
ER 6F11	1/100	ER1	30
PR	1/400	ER1	30
CK5/6	1/100	ER1	30
CK5	1/100	ER1	30
CK14	1/100	ER1	30
EGFR	1/50	ER1	20

HER2 IHC was performed using the Bond "Oracle" HER2 kit as per manufacturers instructions.

5.19 Appendix 5: Frequency Tables and Non Parametric Statistical Analysis of DCIS IHC

Frequency Distribution for FINAL HER2 STATUS Row exclusion: DCIS STATVIEW DATASET

	Count	Percent
0	191	77.016
1	57	22.984
Total	248	100.000

Frequency Distribution for FINAL EGFR STATUS Row exclusion: DCIS STATVIEW DATASET

	Count	Percent
0	216	95.154
1	11	4.846
Total	227	100.000

Frequency Distribution for FINAL ER STATUS Row exclusion: DCIS STATVIEW DATASET

	Count	Percent	
0	59	26.339	
1	165	73.661	
Total	224	100.000	

Frequency Distribution for FINAL PR STATUS Row exclusion: DCIS STATVIEW DATASET

	Count	Percent
0	123	52.119
1	113	47.881
Total	236	100.000

Frequency Distribution for FINAL CK5 (AT 1%) Row exclusion: DCIS STATVIEW DATASET

	Count	Percent
0	195	85.903
1	32	14.097
Total	227	100.000

Frequency Distribution for FINAL CK5/6 (AT 1%) Row exclusion: DCIS STATVIEW DATASET

	Count	Percent
0	151	68.636
1	69	31.364
Total	220	100.000

Frequency Distribution for FINAL CK14 (AT 1%) Row exclusion: DCIS STATVIEW DATASET

	Count	Percent
0	193	83.550
1	38	16.450
Total	231	100.000

Frequency Distribution for GRADE Row exclusion: DCIS STATVIEW DATASET

	Count	Percent
HG	98	57.988
IG	58	34.320
LG	13	7.692
Total	169	100.000

Frequency Distribution for ARCH Row exclusion: DCIS STATVIEW DATASET

	Count	Percent
CRIB	68	40.237
MICROPAP	18	10.651
PAP	13	7.692
SOLID	70	41.420
Total	169	100.000

Frequency Distribution for NECROSIS Row exclusion: DCIS STATVIEW DATASET

	Count	Percent
MARKED	42	24.852
MILD	47	27.811
MOD	38	22.485
NONE	42	24.852
Total	169	100.000

Frequency Distribution for Cl Row exclusion: DCIS STATVIEW DATASET

	Count	Percent
MARKED	37	22.156
MILD	59	35.329
MOD	36	21.557
NONE	35	20.958
Total	167	100.000

Frequency Distribution for REC Y/N Row exclusion: DCIS STATVIEW DATASET

	Count	Percent
Ν	140	85.366
γ	24	14.634
Total	164	100.000

Frequency Distribution for REC TYPE Row exclusion: DCIS STATVIEW DATASET

	Count	Percent
BILATERAL INVASIVE CARCINOMA	1	.613
CONTRALATERAL INVASIVE CARCINOMA	3	1.840
IPSILATERAL DCIS	6	3.681
IPSILATERAL INVASIVE CA	7	4.294
NK	6	3.681
NONE	140	85.890
Total	163	100.000

Summary Table for FINAL KI67 (AT MEDIAN, 5%), FINAL HER2 STATUS Row exclusion: DCIS STATVIEW DATASET

Row exclusion: DUIS STA	IVIEW DAT	9
Num. Missing	43	
DF	1	
Chi Square	15.451	
Chi Square P-Value	<.0001	
G-Squared	16.560	
G-Squared P-Value	<.0001	
Contingency Coef.	.250	
Phi	.258	
Cty. Cor. Chi Square	14.255	
Cty. Cor. P-Value	.00 02	
Fisher's Exact P-Value	<.0001	

Observed Frequencies for FINAL KI67 (AT MEDIAN, 5%), FINAL HER2 STATUS Row exclusion: DCIS STATVIEW DATASET

	0	1	Totals
0	87	11	98
1	89	45	134
Totals	176	56	232

Row exclusion: DOIS ST/	ATVIEW DA	TASET		
Num. Missing	53			
DF	1			
Chi Square	4.869			
Chi Square P-Value	.0273			
G-Squared	5.872			
G-Squared P-Value	.0154			
Contingen cy Coef.	.146			
Phi	.148			
Cty. Cor. Chi Square	3.580			
Cty. Cor. P-Value	.0585			
Fisher's Exact P-Value	02.94			

Observed Frequencies for FINAL EGIR STATUS, FINAL KI67 (AT MEDIAN, 5%) Row exclusion: DCIS STATVIEW DATASET

	0	1	Totals
0	90	121	211
1	1	10	11
Totals	91	131	222

Summary Table for FINAL ER STATUS, FINAL KI67 (AT MEDIAN, 5%) Row exclusion: DCIS STAT<u>VIEW DAT</u>ASET

	THEIT DATE
Num. Missing	59
DF	1
Chi Square	23.351
Chi Square P-Value	<.0001
G-Squared	25.940
G-Squared P-Value	<.0001
Contingen cy Coef.	.312
Phi	.329
Cty. Cor. Chi Square	21.868
Cty. Cor. P-Value	<.0001
Fisher's Exact P-Value	<.0001

Observed Frequencies for FINAL ER STATUS, FINAL KI67 (AT MEDIAN, 5%) Row exclusion: DCIS STATVIEW DATASET

0	8	51	59
1	78	79	157
Totals	86	130	216

Summary Table for FINAL PR STATUS, FINAL KI67 (AT MEDIAN, 5%) Row exclusion: DCIS STATVIEW DATASET

low exclusion. Dois STAT	VIEW DAT
Num. Missing	51
DF	1
Chi Square	15.527
Chi Square P-Value	<.0001
G-Squared	15.684
G-Squared P-Value	<.0001
Contingen cy Coef.	.255
Phi	.263
Cty. Cor. Chi Square	14.479
Cty. Cor. P-Value	.0001
Fisher's Exact P-Value	<.0001

Observed Frequencies for FINAL PR STATUS, FINAL KI67 (AT MEDIAN, 5%) Row exclusion: DCIS STATVIEW DATASET

Row exclusion: DCIS STATV					
	0	1	Totals		
0	36	82	118		
1	60	46	106		
Totals	96	128	224		

Row exclusion: DCIS ST	TVIEW DA	TASET
Num. Missing	58	
DF	1	
Chi Square	1.222	
Chi Square P-Value	.2690	
G-Squared	1.254	
G-Squared P-Value	.2629	
Contingen cy Coef.	.075	
Phi	.075	
Cty. Cor. Chi Square	.830	
Cty. Cor. P-Value	.3623	
Fisher's Exact P-Value	.3305	

Observed Frequencies for FINAL CK5 (AT 1%), FINAL KI67 (AT MEDIAN, 5%) Row exclusion: DCIS STATVIEW DATASET

NOW BY	lusio	1. DCI3	STATVIEW	5
	0	1	Totals	
0	77	108	185	

0	11	100	105
1	10	22	32
Totals	87	130	217

NOW EXClusion. Dois 317	TVIEW DA	TASET	
Num. Missing	63		
DF	1		
Chi Square	1.733		
Chi Square P-Value	.1881		
G-Squared	1.756		
G-Squared P-Value	.1851		
Contingen cy Coef.	.090		
Phi	.090		
Cty. Cor. Chi Square	1.358		
Cty. Cor. P-Value	.2439		
Fis her's Exact P-Value	.2279		

Observed Frequencies for FINAL CK5/6 (AT 1%), FINAL KI67 (AT MEDIAN, 5%) Row exclusion: DCIS STATVIEW DATASET

	0	1	Totals	
0	59	84	143	
1	22	47	69	
Totals	81	131	212	

Summary Table for FINAL CK14 (AT 1%), FINAL KI67 (AT MEDIAN, 5%) Row exclusion: DCIS STAT<u>VIEW DA</u>TASET

Row exclusion: DCIS STA	TVIEW DA	T/
Num. Missing	54	
DF	1	
Chi Square	4.985	
Chi Square P-Value	.0256	
G-Squared	5.275	
G-Squared P-Value	.0216	
Contingency Coef.	.149	
Phi	.150	
Cty. Cor. Chi Square	4.209	
Cty. Cor. P-Value	.0402	
Fisher's Exact P-Value	.0290	

Observed Frequencies for FINAL CK1 4 (AT 1%), FINAL KI67 (AT MEDIAN, 5%) Row exclusion: DCIS STATVIEW DATASET

	0	1	Totals
0	79	104	183
1	9	29	38
Totals	88	133	221

Summary Table for FINAL I	MCM2 (AT	MEDIAN, 27,5 %, FINAL KI67 (AT MEDIAN, 5%)
Row exclusion: DCIS STA	IVIEW DAT	ASET
Num. Missing	38	
DF	1	
Chi Square	41.483	
Chi Square P-Value	<.0001	
G-Squared	42.558	
G-Squared P-Value	<.0001	
Contingency Coef.	.386	
Phi	.418	
Cty. Cor. Chi Square	39.807	
Cty. Cor. P-Value	<.0001	
Fisher's Exact P-Value	<.0001	

Summary Table for GRADE, FINAL KI67 (AT MEDIAN, 5%) Row exclusion: DCIS STATVIEW DATASET

Now exclusion. Dolo of AT TIEN			
Num. Missing	121		
DF	2		
Chi Square	13.981		
Chi Square P-Value	.00 09		
G-Squared	14.052		
G-Squared P-Value	.00 09		
Contingency Coef.	.288		
Cramer's V	.301		

Observed Frequencies for GRADE, FINAL KI67 (AT MEDIAN, 5%) TVIEW DATASET

Row exclusion: DCIS STATV				
	0	1	Totals	
HG	26	65	91	
IG	28	24	52	
LG	8	3	11	
Totals	62	92	154	

SummaryTable for ARCH, FINAL KI67 (AT MEDIAN, 5%) Row exclusion: DCIS STATVIEW DATASET

Row exclusion: DCIS STATVIEW				
Num. Missing	121			
DF	3			
Chi Square	12.020			
Chi Square P-Value	.0073			
G-Squared	12.697			
G-Squared P-Value	.0053			
Contingen cy Coef.	.269			
Cramer's V	.279			

Observed Frequencies for ARCH, FINAL KI67 (AT MEDIAN, 5%) Row exclusion: DCIS STATVIEW DATASET

	0	1	Totals
CRIB	34	30	64
MICROPAP	2	13	15
PAP	6	5	11
SOLID	20	44	64
Totals	62	92	154

Summary Table for NECROSIS, FINAL KI67 (AT MEDIAN, 5%) Row exclusion: DCIS STATVIEW DATASET

NOW EXClusion. Dois STATVIEW		
Num. Missing	121	
DF	3	
Chi Square	27.774	
Chi Square P-Value	<.0001	
G-Squared	28.911	
G-Squared P-Value	<.0001	
Contingency Coef.	.391	
Cramer's V	.425	

Observed Frequencies for NECROSIS, FINAL KI67 (AT MEDIAN, 5%) Row exclusion: DCIS STATVIEW DATASET

	0	1	Totals	
MARKED	7	35	42	
MILD	18	25	43	
MOD	12	24	36	
NONE	25	8	33	
Totals	62	92	154	

Summary Table for CI, FINAL KI67 (AT MEDIAN, 5%) Row exclusion: DCIS STATVIEW_DATASET

Row exclusion: DCIS STATVIEW DAT				
Num. Missing	123			
DF	3			
Chi Square	21.210			
Chi Square P-Value	<.0001			
G-Squared	24.603			
G-Squared P-Value	<.0001			
Contingency Coef.	.350			
Cramer's V	.374			

Observed Frequencies for CI, FINAL KI67 (AT MEDIAN, 5%) Row exclusion: DCIS STATVIEW DATASET

	0	1	Totals
MARKED	3	33	36
MILD	27	26	53
MOD	15	20	35
NONE	16	12	28
Totals	61	91	152

Summary Table for FINAL MCN2 (AT MEDIAN, 27.5%, RNAL HER2 STATUS Row exclusion: DCIS STATVIEW DATASET Num. Missing 39 DF 31 ChiSquare 01

Chi Square	19.314
Chi Square P-Value	<.0001
G-Squared	20.682
G-Squared P-Value	<.0001
Contingen cy Coef.	.275
Phi	.286
Cty. Cor. Chi Square	17.992
Cty. Cor. P-Value	<.0001
Fisher's Event P-Value	< 0.001

Observed Frequencies for FINAL MCM2 (AT MEDIAN, 27.5%), FINAL HER2 STATUS Row exclusion: DCIS STATVIEW DATASET

	0	1	Totals
0	94	11	105
1	85	46	131
Totals	179	57	236

Summary Table for FINAL EGFR STATUS, FINAL MCM2 (AT MEDIAN, 27.5%) Row exclusion: DCIS STATVIEW DATASET

Row exclusion: DCIS STA	TVIEW DAT
Num. Missing	50
DF	1
Chi Square	5.588
Chi Square P-Value	.0181
G-Squared	6.671
G-Squared P-Value	.0098
Contingency Coef.	.156
Phi	.158
Cty. Cor. Chi Square	4.217
Cty. Cor. P-Value	.0400
Fisher's Exact P-Value	.0254

Observed Frequencies for FINAL EGFR STATUS, FINAL MCM2 (AT MEXAN, 27.5%) Row exclusion: DCR STATVERV DATASET 0 07 1 Totals 0 11 Totals 11 Totals 127

	-		
0	97	117	2
1	1	10	
Totals	98	127	2

Summary Table for FINAL ER STATUS, FINAL MCM2 (AT MEDIAN, 27.5%) Row exclusion: DCIS STATVIEW DATASET

Num. Missing	56
DF	1
Chi Square	9.119
Chi Square P-Value	.0025
G-Squared	9.500
G-Squared P-Value	.0021
Contingency Coef.	.200
Phi	.204
Cty. Cor. Chi Square	8.215
Cty. Cor. P-Value	.0042
Fisher's Exact P-Value	.00 32

Observed Frequencies for FINAL ER STATUS, FINAL MCM2 (AT MEDIAN, 27.5%) Row exclusion: DCIS STATVIEW DATASET

 0
 1
 Totals

 0
 15
 44
 59

 1
 77
 83
 160

 Totals
 92
 127
 219

Row exclusion: DCIS ST/	TVIEW DA	TASET
Num. Missing	47	
DF	1	
Chi Square	8.977	
Chi Square P-Value	.0027	
G-Square d	9.029	
G-Squared P-Value	.0027	
Contingency Coef.	.195	
Phi	.198	
Cty. Cor. Chi Square	8.196	
Cty. Cor. P-Value	.0042	
Fisher's Exact P-Value	.0033	

Observed Frequencies for FINAL PR STATUS, FINAL MCM2 (AT MEDIAN, 27.5%) Row exclusion: DCIS STATVIEW DATASET

NOW CAU	1051011.	0013 3	
	0	1	Totals
0	42	77	119
1	60	49	109
Totals	102	126	228

Summary Table for FINAL CK5 (AT 1%), FINAL MCM2 (AT MEDIAN, 27.5%) Row exclusion: DCIS STATVIEW DATASET Num. Mssing 54

ROW exclusion: DUIS STAT	VIEW DA
Num. Missing	54
DF	1
Chi Square	.912
Chi Square P-Value	.3396
G-Squared	.928
G-Squared P-Value	.3353
ContingencyCoef.	.064
Phi	.064
Cty. Cor. Chi Square	.581
Cty. Cor. P-Value	.44 60
Fisher's Exact P-Value	.4392

Observed Frequencies for FINAL CK5 (AT 1 %), FINAL MCM2 (AT MEDIAN, 27.5%) Row exclusion: DCIS STATVIEW DATASET

Row exc	lus ior	n: DCIS	STATVIE
	0	1	Totals
0	82	107	189
1	11	21	32
Totals	93	128	221

Summary Table for FINAL CK5/6 (AT 1%), FINAL MCM2 (AT MEDIAN, 27.5%) Row exclusion: DCIS STATVIEW DATASET

Num. Missing	60
DF	1
Chi Square	.898
Chi Square P-Value	.3434
G-Squared	.904
G-Squared P-Value	.3418
Contingency Coef.	.064
Phi	.065
Cty. Cor. Chi Square	.641
Cty. Cor. P-Value	.4235
Fisher's Exact P-Value	.3772

Observed Frequencies for FINAL CK5/6 (AT 1%), FINAL MCM2 (AT MEDIAN, 27.5%) Row exclusion: DCIS STATVIEW DATASET

	0	1	Totals
0	65	81	146
1	26	43	69
Totals	91	124	215

Sur

Row exclusion: DCIS STA	VIEW DA
Num. Missing	50
DF	1
Chi Square	1.624
Chi Square P-Value	.2025
G-Squared	1.655
G-Squared P-Value	.1983
Contingen cy Coef.	.085
Phi	.085
Cty. Cor. Chi Square	1.201
Cty. Cor. P-Value	.2732
Fisher's Exact P-Value	.2151

Summary Table for FINAL KI67 (AT MEDIAN, 5%), FINAL MCM2 (AT MEDIAN, 27.5%) Row exclusion: DCIS STAT<u>VIEW DAT</u>ASET

NOW EXClusion. Dois 31A	I VIEW DAT
Num. Missing	38
DF	1
Chi Square	41.483
Chi Square P-Value	<.0001
G-Squared	42.558
G-Squared P-Value	<.0001
Contingen cy Coef.	.386
Phi	.418
Cty. Cor. Chi Square	39.807
Cty. Cor. P-Value	<.0001
Fisher's Exact P-Value	<.0001

Observed Frequencies for FINAL KI67 (AT MEDIAN, 5%), FINAL MCM2 (AT MEDIAN, 27.5%) Row exclusion: DCIS STATVIEW DATASET

	0	1	Totals
0	70	31	101
1	37	99	136
Totals	107	130	237

Summary Table for GRADE, FINAL MCM2 (AT MEDIAN, 27.5%) Row exclusion: DCIS STATVIEW DATASET

Num. Missing	117
DF	2
Chi Square	21.592
Chi Square P-Value	<.0001
G-Squared	21.981
G-Squared P-Value	<.0001
Contingen cy Coef.	.347
Cramer's V	.370

Observed Frequencies for GRADE, FINAL MCM2 (AT MEDIAN, 27.5%) Row exclusion: DCIS STATVIEW DATASET

	0	1	Totals
HG	28	66	94
IG	36	17	53
LG	7	4	11
Totals	71	87	158
Totals	71	87	158

Summary Table for ARCH, FINAL MCM2 (AT MEDIAN, 27.5%) Row exclusion: DCIS STATVIEW DATASET

CON EXClusion. Doio a	
Num. Missing	117
DF	3
Chi Square	11.396
Chi Square P-Value	.0098
G-Squared	11.601
G-Squared P-Value	.0089
Contingen cy Coef.	.259
Cramer's V	.269

Observed Frequencies for ARCH, FINAL MCM2 (AT MEDIAN, 27.5%) Row exclusion: DCIS STATVIEW DATASET

	0	1	Totals
CRIB	38	27	65
MICROPAP	7	8	15
PAP	6	5	11
SOLID	20	47	67
Totals	71	87	158

Summary Table for NECROSIS, FINAL MCM2 (AT MEDIAN, 27.5%) Row exclusion: DCIS STATVIEW DATASET

Num. Missing	117
DF	3
Chi Square	26.520
Chi Square P-Value	<.0001
G-Squared	27.928
G-Squared P-Value	<.0001
Contingen cy Coef.	.379
Cramer's V	.410

Observed Frequencies for NECROSIS, FINAL MCM2 (AT MEDIAN, 27.5%) Row exclusion: DCIS STATVIEW DATASET

NOW EXClusion. Doil OT AT VILW				
0	1	Totals		
9	33	42		
21	24	45		
14	23	37		
27	7	34		
71	87	158		
	0 9 21 14 27 71	0 1 9 33 21 24 14 23 27 7 71 87		

Summary Table for CI, FINAL MCM2 (AT MEDIAN, 27.5%) Row exclusion: DCIS STATVIEW_DATASET

Num. Missing	119
DF	3
Chi Square	19.049
Chi Square P-Value	.0003
G-Squared	20.421
G-Squared P-Value	.0001
Contingen cy Coef.	.330
Cramer's V	.349

Observed Frequencies for CI, FINAL MCM2 (AT MEDIAN, 27.5%) Row exclusion: DCIS STATVIEW DATASET

Row exclusion: DCIS STATVIEW [
	0	1	Totals	
MARKED	6	31	37	
MILD	31	24	55	
MOD	14	21	35	
NONE	18	11	29	
Totals	69	87	156	

Section 2: Non Parametric Tests- Univariate Paired analysis:

Oestrogen receptor in DCIS, frequencies and paired univariate analysis.

ER and HER2 IHC

Fishers exact test p value < 0.0001

	ER -ve	ER +ve	Total
HER2 -ve	23	145	168
HER2 +ve	36	19	55
Total	59	164	223

ER and EGFR IHC

Fishers exact test p value < 0.0001.

	ER -ve	ER +ve	Total
EGFR -ve	45	159	204
EGFR +ve	10	1	11
Total	55	160	215

ER and PR IHC

Fishers exact test p value <0.0001.

	ER -ve	ER +ve	Total
PR -ve	56	55	111
PR +ve	0	102	102
Total	56	157	213

ER and CK5 IHC

Fishers exact test p value = 0.0033.

	ER -ve	ER +ve	Total
CK5 -ve	41	147	188
CK5 +ve	15	16	31
Total	56	163	219

ER and CK5/6 IHC

Fishers exact test p value = 0.298

	ER -ve	ER +ve	Total
CK5/6 -ve	33	114	147
CK5/6 +ve	25	41	66
Total	58	155	213

ER and CK14 IHC

Fishers exact test p value = 0.0018.

	ER -ve	ER +ve	Total
CK14 -ve	40	142	182
CK14 +ve	18	19	37
Total	58	161	219

ER and Ki67 (>5%) IHC

Fishers exact test p value <0.0001

	ER -ve	ER +ve	Total
Ki67 -ve	8	78	86
Ki67+ve	51	79	130
Total	59	157	216

ER and MCM2 (>5%) IHC

Fishers exact test p value = 0.0032

	ER -ve	ER +ve	Total
MCM2 -ve	15	77	92
MCM2+ve	44	83	127
Total	59	160	219

ER and Histological Grade

Chi Square p value <0.0001

	ER -ve	ER +ve	Total
HG	35	55	90
IG	4	46	50
LG	0	9	9
Total	39	110	149

ER and Histological Architecture

Chi square p Value < 0.0001

	ER -ve	ER +ve	Total
Crib	5	55	60
Micropap	7	6	13
Pap	1	11	12
Solid	26	38	64
Total	39	110	149

ER and Necrosis

	ER -ve	ER +ve	Total
Marked	23	18	41
Mild	6	37	43
Moderate	8	28	36
None	2	27	29
Total	39	110	149

ER and Chronic Inflammation

	ER -ve	ER +ve	Total
Marked	25	10	35
Mild	3	49	52
Moderate	9	25	34
None	1	25	26
Total	38	109	147

Progesterone Receptor in DCIS, frequencies and paired univariate analysis.

PR and HER2

Fishers exact test p value <0.0001

	HER2 -ve	HER2 +ve	Total
PR -ve	70	50	120
PR +ve	104	6	110
Total	174	56	230

PR and EGFR IHC

Fishers exact test p value = 0.0008

	PR -ve	PR +ve	Total
EGFR -ve	102	105	207
EGFR +ve	11	0	11
Total	113	105	218

PR and CK5/6 IHC

Fishers exact test p value = 0.0542

	PR -ve	PR +ve	Total	
CK5/6 -ve	69	76	145	
CK5/6 +ve	42	25	67	
Total	111	101	212	PR and CK5 IHC

Fishers exact test p value = 0.2385

	PR -ve	PR +ve	Total
CK5 -ve	94	92	186
CK5 +ve	19	11	30
Total	113	103	216

PR and CK14 IHC

Fishers exact test p value = 0.2791

	PR -ve	PR +ve	Total
CK14 -ve	94	90	184
CK14 +ve	23	14	37
Total	117	104	221

PR and Ki67 (>5%) IHC

Fishers exact test p value <0.0001

	PR -ve	PR +ve	Total
Ki67 -ve	36	60	96
Ki67+ve	82	46	128
Total	118	106	224

PR and MCM2 (<5%) IHC

Chi squared p value = 0.0027

	PR -ve	PR +ve	Total
MCM2 -ve	42	60	102
MCM2+ve	77	49	126
Total	119	109	228

PR and Histological Grade

Chi Squared p value = 0.0006

	PR -ve	PR +ve	Total
HG	54	37	91
IG	23	33	56
LG	0	10	10
Total	77	80	157

PR and Histological Architecture

Chi squared p value = 0.0011

	PR -ve	PR +ve	Total
Crib	22	43	65
Micropap	12	3	15
Рар	4	8	12
Solid	39	26	65
Total	77	80	157

PR and Necrosis

Chi squared p value 0.0013

	PR -ve	PR +ve	Total
Marked	28	13	41
Mild	20	24	44
Moderate	21	17	38
None	8	26	34
Total	77	80	157

Chi squared p value <0.0001

PR and Chronic Inflammation

	PR -ve	PR +ve	Total
Marked	30	6	36
Mild	17	38	55
Moderate	17	17	34
None	12	18	30
Total	76	79	155

5.20 Appendix 6: DNA Extraction and Purification Protocols

PROTOCOL TO EXTRACT DNA FROM PARAFFIN EMBEDDED TISSUE

DAY 1 - SLIDE PREPARATION

8μm sections (number depending on size of specimen,) cut and mounted on slides.

Air dry overnight

DAY 2 - PARAFFIN REMOVAL & STAINING

Xylene 1 for 5'

Xylene 2 for 5'

100% ETOH 1 for 30"

100% ETOH 2 for 30"

70% ETOH for 30"

Wash in autoclaved water for 2'

Repeat wash with fresh autoclaved water

Stain with nuclear fast red (NFR) 1% - 4'

Wash with autoclaved water for 2'

Repeat wash with fresh autoclaved water

DAY 2 - MICRODISSECTION

Use H&E sections previously prepared and marked by Consultant Pathologists as a guide

Examine NFR stained sections under light microscope and using 12G sterile needle/scalpel scrape away unwanted areas and blow off with air spray Incubate slides in 1M Na Thiocyanate at 37°C overnight.

DAY 3 – COMPLETE MICRODISSECTION AND TISSUE LYSIS

Wash in PBS-A, 10min on shaker, replace PBS then another 10mins on shaker. Air dry.

Label appropriately (top and side) as many 1.5 ml eppendorf tubes as the samples you have (N) and add 180 μ l of DNeasy Buffer ATL to each tube

Pipette 2-5 μ l of ATL buffer at the edge of each section to moisten the tissue and lift using pipette tip or needle

Transfer the tissue in the appropriately labelled tube containing the ATL buffer.

Repeat steps 3-5 for all sections

Once microdissection is completed, add 20 μ l Proteinase K, vortex for 15 seconds and spin.

Seal tubes with parafilm and incubate @56-58°C in a rotisserie/or on shaker in oven overnight.

Day 4 - DNA EXTRACTION

Reagents from Qiagen DNeasy Blood and Tissue Kit

Protocol: Purification of Total DNA from Animal Tissues (Spin-Column Protocol)

At 12 hours check that tissue fully lysed. If so, vortex well for 15 seconds and continue

with DNeasy protocol by adding 200ul Buffer AL etc.

If tissue not fully lysed, add extra 20ul of DNeasy Proteinase K, vortex for 15 seconds and return to oven for 1-4hours, until tissue fully lysed Once fully lysed continue with DNeasy protocol.

NB – Once lysed, samples can remain in buffer at -20 C until extraction proceeds

- Store at -20C after extraction

DCIS DNA Extraction using Qiagen FFPE Kit.

This protocol is adapted from the "QIAamp DNA FFPE Tissue handbook" October 2007. The original protocol is "Isolation of Genomic DNA from FFPE tissue sections" on page 15. This protocol is required AFTER manual microdissection of tissue sections on uncoated slides and follows incubation in 1M sodium thiocyanate prior to proteinase k treatment. It starts at point 14 of the original protocol. The reagents are all (except ETOH) part of the FFPE DNA extraction kit.

Between six and twelve samples should be prepared prior to extracting and be placed in 1.5ml eppendorfs tubes. Place frozen tube on wet ice and proceed with protocol. In an eppendorf holder set out one row of samples followed by 1 set of labelled eluting columns on collecting tubes. Next 2 sets of collecting tubes followed by 2 sets of eppendorfs with labels corresponding to the sample numbers. The final set should be identified in some way as a spare.

Vortex all samples for approx. 15seconds

Add 200 μ l of buffer AL to each sample, if sample had extra proteinase k then add an additional 10-20 μ l. The solution is viscous so pipette slowly. Re-vortex samples.

Add 200µl of 100% alcohol (ETOH) to each sample vortexing each sample immediately. The solution may start to precipitate, if this occurs keep vortexing until an almost clear homogenate is seen.
NB AL and ETOH can be premixed for all samples before adding.

Transfer the entire sample into a corresponding eluting column.

Centrifuge at 8000rpm (6000g) for one minute.

Place each eluting column into a new collection tube and discard the old one and contents.

Add 500µl of AW1 (check solution is correctly made up and ensure there is no precipitate present) to each sample. Spin at 8000rpm (6000g) for one minute. Put eluting column into new collection tube and discard old collecting tube and contents. Add 500µl of AW2 and spin for 3.5 minutes at 13,500 rpm. Remove eluting and collection tubes ensuring that no liquid touches eluting tube membrane. If this occurs then re-spin.

Place eluting column into first labelled eppendorfs (not spare) and discard collecting tube and contents ensuring eluting tube membranes stay dry.

Add 20µl of ATE to eluting column making sure it is placed directly onto the membrane. Do this for all samples and then spin at 8000rpm for 1 minute.

Repeat step twelve spinning into same eppendorf to give total volume of ATE/DNA to 35-40µl.

Place eluting column into second eppendorf (spare) making sure lid is closed on first samples. Add 50µl of AE and spin at 8000rpm for one minute. Remove from centrifuge and discard eluting column and close sample lids.

Test for DNA quality using nanodrop and MultiplexPCR. If yield sufficient proceed to pico green testing and then store samples at -20°C. NB Nandrop deemed to be poor for quality analysis proceed straight to PicoGreen if desired.

Affymetrix ID	Grid Reference	Specimen type	Sample 1 Volume (ul)	Qubit Reading (ug/µl)	Qubit stock conc	Total DNA per original sample (ng per 40μl)
DCISJPB1OK 001	A1	Triple Negative Pure DCIS	40	0.456	91.2	3648
DCISJPB1OK 002	A2	Triple Negative Pure DCIS	40	1.030	206.0	8240
DCISJPB1OK 003	A3	Triple Negative Pure DCIS	40	0.102	20.4	816
DCISJPB1OK 004	A4	Triple negative DCIS associated with tumour	40	0.0479	9.58	383.2
DCISJPB1OK 005	A5	Triple negative Tumour associated with DCIS	40	1.15	230	9200
DCISJPB1OK 006	A6	Triple Negative Pure DCIS	40	0.188	37.6	1504
DCISJPB1OK 007	A7	HER2 Positive	40	0.91	18.2	728
DCISJPB1OK 008	A8	HER2 Positive	40	1.39	27.8	1112
DCISJPB1OK 009	A9	Pure DCIS ER positive	40	1.600	320	12800
DCISJPB1OK 010	A10	Triple negative DCIS associated with tumour	40	0.668	134	5360
DCISJPB1OK 011	A11	Triple negative Tumour associated with DCIS	40	0.917	183	7320
DCISJPB1OK 012	B1	Matched Normal from Triple negative DCIS and Tumour	40	0.818	16.36	654.4
DCISJPB1OK 013	B2	Triple negative DCIS associated with tumour	40	0.858	172	6880

5.21 Appendix 7. Qubit DNA quantities Quality: DNA Quibit Readings for MIP Array Analysis

	20	Triple negative Tumour				
DCISIPBION 014	50	associated with DCIS	40	1.13	226	9040

Affymetrix ID	Grid Reference	Specimen type	Sample 1 Volume (ul)	Qubit Reading (ug/μl)	Qubit stock conc	Total DNA per original sample (ng per 40μl)
DCISJPB1OK 015	B4	Matched Normal from Triple negative DCIS and Tumour	40	1.69	33.8	1352
DCISJPB1OK 016	B5	HER2 Positive	40	0.778	15.56	622.4
DCISJPB1OK 017	B6	Pure DCIS ER positive	40	0.643	128.6	5144
DCISJPB1OK 018	В7	Triple negative DCIS associated with tumour	40	1.24	248	9920
DCISJPB1OK 019	B8	Triple negative Tumour associated with DCIS	40	0.831	166	6640
DCISJPB1OK 020	B9	Triple Negative Pure DCIS	40	0.222	44.4	1776
DCISJPB1OK 021	B10	Pure DCIS ER positive	40	2.510	502	20080
DCISJPB1OK 022	B11	Triple Negative Pure DCIS	40	0.078	15.7	627.2
DCISJPB1OK 023	B12	HER2 Positive	40	1.06	21.2	848
DCISJPB1OK 024	C1	Pure DCIS ER positive	40	1.670	334	13360
DCISJPB1OK 025	C2	HER2 Positive	40	1.46	29.2	1168

DCISJPB1OK 026	С3	Triple negative DCIS associated with tumour	40	0.782	156	6240
DCISJPB1OK 027	C4	Triple negative Tumour associated with DCIS	40	0.936	187	7480
DCISJPB1OK 028	C5	Matched Normal from Triple negative DCIS and Tumour	40	1.59	31.8	1272

	Grid	Specimen type	Sample 1	Qubit Reading	Qubit stock	Total DNA per original sample
Affymetrix ID	Reference		volume (ul)	(ug/μl)	conc	(ng per 40µl)
	CG	Triple negative DCIS				
	0	associated with tumour	40	1.59	318	12720
	67	Triple negative Tumour				
DCISIFBIOK 030		associated with DCIS	40	1.37	274	10960
	C0	Matched Normal from Triple				
DCISIPBIOK 051	6	negative DCIS and Tumour	40	0.297	5.94	237.6
DCISJPB1OK 032	С9	Triple Negative Pure DCIS	40	0.153	30.6	1224
	C10	Triple negative DCIS				
DCI3JF BIOK 033		associated with tumour	40	1.68	336	13440
	C11	Triple negative Tumour				
DCI3JPBIOK 034	CII	associated with DCIS	40	2.68	536	21440
	D1	Matched Normal from Triple				
DCISIABIOK 032	DI	negative DCIS and Tumour	40	1.84	36.8	1472
DCISJPB1OK 036	D2	HER2 Positive	40	0.951	19.02	760.8
DCISJPB1OK 037	D3	HER2 Positive	40	1.75	35	1400

DCISJPB1OK 038	D4	Triple Negative Pure DCIS	40	0.049	9.7	389.6
DCISJPB1OK 039	D5	Matched Normal from Triple negative DCIS and Tumour	40	1.28	25.6	1024
DCISJPB1OK 040	D6	Pure DCIS ER positive	40	0.447	89.4	3576
DCISJPB1OK 041	D7	Triple negative DCIS associated with tumour	40	0.265	53	2120
DCISJPB1OK 042	D8	Triple negative Tumour associated with DCIS	40	1.86	372	14880

Affymetrix ID	Grid Reference	Specimen type	Sample 1 Volume (ul)	Qubit Reading (ug/µl)	Qubit stock conc	Total DNA per original sample (ng per 40µl)
DCISJPB1OK 043	D9	Triple negative DCIS	40	0.647	120	E160
DCISIPB10K 044	D10	Triple negative Tumour	40	0.047	129	5160
		associated with DCIS	40	1.23	246	9840
DCISJPB1OK 045	D11	negative DCIS and Tumour	40	1.86	372	14880
DCISJPB1OK 046	D12	Triple negative DCIS associated with tumour	40	1.13	226	9040
DCISJPB1OK 047	E1	Triple negative Tumour associated with DCIS	40	2.12	434	17360
DCISJPB1OK 048	E2	Matched Normal from Triple negative DCIS and Tumour	40	0.558	11.16	446.4
DCISJPB1OK 049	E3	Pure DCIS ER positive	40	2.330	466	18640

DCISJPB1OK 050	E4	Pure DCIS ER positive	40	1.150	230	9200
DCISJPB1OK 051	E5	DCIS ER positive associated with tumour	40	0.702	140.4	5616
DCISJPB1OK 052	E6	Tumour ER positive associated with DCIS	40	0.780	156	6240
DCISJPB1OK 053	E7	Matched Normal from ER positive DCIS and Tumour	40	0.582	11.64	465.6
DCISJPB1OK 054	E8	DCIS ER positive associated with tumour	40	0.105	21	840
DCISJPB1OK 055	E9	Tumour ER positive associated with DCIS	40	1.190	238	9520

Affymetrix ID	Grid Reference	Specimen type	Sample 1 Volume (ul)	Qubit Reading (ug/µl)	Qubit stock conc	Total DNA per original sample (ng per 40μl)
	E10	Matched Normal from ER				
DCISIFBIOK 050		positive DCIS and Tumour	40	2.06	41.2	1648
	E11	DCIS ER positive associated				
DCI3JEBTOK 037		with tumour	40	0.611	122.2	4888
	E1	Tumour ER positive associated				
DCI3JEBTOK 039	ΓI	with DCIS	40	0.788	157.6	6304
	E2	Matched Normal from ER				
DCI21EDTOK 023	FZ	positive DCIS and Tumour	40	0.0883	1.766	70.64
	E2	DCIS ER positive associated				
DCI31F DTOK 000	r3	with tumour	40	0.367	73.4	2936

DCISJPB1OK 061	F4	Tumour ER positive associated				
		with DCIS	40	1.760	352	14080
	F5	Matched Normal from ER				
DCI3JF BIOK 002	15	positive DCIS and Tumour	40	1.46	29.2	1168
	FC	DCIS ER positive associated				
DCI3JEDTOK 002	FO	with tumour	40	1.150	230	9200
	F7	Tumour ER positive associated				
DCISIPBIOK 064		with DCIS	40	1.350	270	10800
	F8					
	10	Pure DCIS ER positive	40	0.277	55.4	2216
	F9					
	15	Pure DCIS ER positive	40	1.560	312	12480
	F10	DCIS ER positive associated				
DCI3JPBIOK 007	FIU	with tumour	40	0.568	113.6	4544
	Г11	Tumour ER positive associated				
DCISIPBIOK 068	FII	with DCIS	40	0.794	158.8	6352
	C1	Matched Normal from ER				
DCI214RTOK 0/0	GI	positive DCIS and Tumour	40	1.29	25.8	1032

Affymetrix ID	Grid Reference	Specimen type	Sample 1 Volume (ul)	Qubit Reading (ug/µl)	Qubit stock conc	Total DNA per original sample (ng per 40μl)
DCISJPB1OK 069	F12	HER2 Positive	40	2.19	43.8	1752
DCISJPB1OK 071	G2	Pure DCIS ER positive	40	0.571	114.2	4568
DCISJPB1OK 072	G3	Triple Negative Pure DCIS	40	0.062	12.4	494.4

DCISJPB10K 073	G4	Triple Negative Pure DCIS	40	0.400	80.0	3200
DCISJPB1OK 074	G5	Triple Negative Pure DCIS	40	0.835	167.0	6680
DCISJPB1OK 075	G6	Triple Negative Pure DCIS	40	0.085	17.0	680
DCISJPB1OK 076	G7	DCIS ER positive associated with tumour	40	0.628	125.6	5024
DCISJPB1OK 077	G8	Tumour ER positive associated with DCIS	40	0.234	46.8	1872
DCISJPB1OK 078	G9	DCIS ER positive associated with tumour	40	0.095	19.08	763.2
DCISJPB1OK 079	G10	Tumour ER positive associated with DCIS	40	0.189	37.8	1512
DCISJPB1OK 080	G11	Matched Normal from ER	40	1.03	20.6	824
DCISJPB1OK 081	H1	DCIS ER positive associated	40	0.932	186.4	7456
DCISJPB10K 082	H2	Tumour ER positive associated	40	0.875	175	7000
DCISJPB1OK 083	НЗ	Matched Normal from ER positive DCIS and Tumour	40	2.79	55.8	2232

5.22 Appendix 8. MIP Array Analysis- DNA Samples sent to Affymetrix

List of specimens

	PLATE				
UNIQUE IDENTIFER	REFERENCE	Specimen type			
DCISJPB1OK 001	A1	Triple Negative Pure DCIS			
DCISJPB1OK 002	A2	Triple Negative Pure DCIS			
DCISJPB1OK 003	A3	Triple Negative Pure DCIS			
DCISJPB1OK 004	A4	Triple negative DCIS			
DCISJPB1OK 005	A5	Triple negative Tumour			
DCISJPB1OK 006	A6	Triple Negative Pure DCIS			
DCISJPB1OK 007	Α7	HER2 Positive			
DCISJPB1OK 008	A8	HER2 Positive			
DCISJPB1OK 009	A9	Pure DCIS ER positive			
DCISJPB1OK 010	A10	Triple negative DCIS			
DCISJPB1OK 011	A11	Triple negative Tumour			
DCISJPB1OK 012	B1	Matched Normal from Triple negative DCIS and Tumour			
DCISJPB10K 013	B2	Triple negative DCIS			
DCISJPB1OK 014	B3	Triple negative Tumour			
DCISJPB1OK 015	B4	Matched Normal from Triple negative DCIS and Tumour			
DCISJPB1OK 016	B5	HER2 Positive			
DCISJPB1OK 017	B6	Pure DCIS ER positive			
DCISJPB1OK 018	B7	Triple negative DCIS			
DCISJPB1OK 019	B8	Triple negative Tumour			
DCISJPB1OK 020	В9	Triple Negative Pure DCIS			
DCISJPB1OK 021	B10	Pure DCIS ER positive			
DCISJPB1OK 022	B11	Triple Negative Pure DCIS			
DCISJPB1OK 023	B12	HER2 Positive			

DCISJPB1OK 024	C1	Pure DCIS ER positive
DCISJPB1OK 025	C2	HER2 Positive
DCISJPB1OK 026	C3	Triple negative DCIS
	C4	Triple negative
	<u> </u>	Tumour
		Matched Normal from
DCISJPB10K 028	C5	Triple negative DCIS
DCISIPBIOK 029	Co	Triple negative DCIS
DCISJPB1OK 030	C7	Triple negative
		Matched Normal from
	62	Triple negative DCIS
Delast Diok 031		and Tumour
		Triple Negative Pure
DCISJPB1OK 032	C9	DCIS
DCISJPB1OK 033	C10	Triple negative DCIS
	C11	Triple negative
DCISIPBIOK 034	CII	Tumour
		Matched Normal from
DCISJPB1OK 035	D1	Triple negative DCIS
		and Tumour
DCISJPB1OK 036	D2	HER2 Positive
DCISJPB1OK 037	D3	HER2 Positive
DCISJPB10K 038	D4	Triple Negative Pure
		DCIS
	DE	Matched Normal from
DCI216BTOK 038	05	and Tumour
	DE	
		Triple pegative DCIS
DCISIPBION 041	07	Triple negative DCIS
DCISJPB1OK 042	D8	
	٩٦	Triple negative DCIS
	05	Triple negative
DCISJPB1OK 044	D10	Tumour
		Matched Normal from
DCISJPB1OK 045	D11	Triple negative DCIS
		and Tumour
DCISJPB1OK 046	D12	Triple negative DCIS
	E1	Triple negative
	C1	Tumour
		Matched Normal from
DCISJPB1OK 048	E2	Triple negative DCIS
		and Tumour

DCISJPB1OK 049	E3	Pure DCIS ER positive
DCISJPB1OK 050	E4	Pure DCIS ER positive
DCISJPB1OK 051	E5	Tumour ER positive (basal negative)
DCISJPB1OK 052	E6	DCIS ER positive (basal negative)
DCISJPB1OK 053	E7	Matched Normal from ER positive DCIS and Tumour
DCISJPB1OK 054	E8	Tumour ER positive (basal negative)
DCISJPB1OK 055	E9	DCIS ER positive (basal negative)
DCISJPB1OK 056	E10	Matched Normal from ER positive DCIS and Tumour
DCISJPB1OK 057	E11	Tumour ER positive (basal negative)
DCISJPB1OK 058	F1	DCIS ER positive (basal negative)
DCISJPB1OK 059	F2	Matched Normal from ER positive DCIS and Tumour
DCISJPB1OK 060	F3	Tumour ER positive (basal negative)
DCISJPB1OK 061	F4	DCIS ER positive (basal negative)
DCISJPB1OK 062	F5	Matched Normal from ER positive DCIS and Tumour
DCISJPB1OK 063	F6	Tumour ER positive (basal negative)
DCISJPB1OK 064	F7	DCIS ER positive (basal negative)
DCISJPB1OK 065	F8	Pure DCIS ER positive
DCISJPB1OK 066	F9	Pure DCIS ER positive
DCISJPB1OK 067	F10	Tumour ER positive (basal negative)
DCISJPB1OK 068	F11	DCIS ER positive (basal negative)
DCISJPB1OK 069	F12	Matched Normal from ER positive DCIS and Tumour
DCISJPB1OK 070	HER2 Positive	

DCISJPB1OK 071	G2	Triple Negative Pure DCIS
DCISJPB1OK 072	G3	Triple Negative Pure DCIS
DCISJPB1OK 073	G4	Triple Negative Pure DCIS
DCISJPB1OK 074	G5	Triple Negative Pure DCIS
DCISJPB1OK 075	G6	Pure DCIS ER positive
DCISJPB1OK 076	G7	Tumour ER positive (basal negative)
DCISJPB1OK 077	G8	DCIS ER positive (basal negative)
DCISJPB1OK 078	G9	Tumour ER positive (basal negative)
DCISJPB1OK 079	G10	DCIS ER positive (basal negative)
DCISJPB1OK 080	G11	Matched Normal from ER positive DCIS and Tumour
DCISJPB1OK 081	H1	Tumour ER positive (basal negative)
DCISJPB1OK 082	H2	DCIS ER positive (basal negative)
DCISJPB1OK 083	H3	Matched Normal from ER positive DCIS and Tumour

5.23 Appendix 9 MIP Array Charts

-

	case no		normal		DCIS		invasive breast disease
	P123/1998	E07		E06		E05	
	P1310/2004	H03		H02	CONTRACT CONTRACT 1 2	H01	
FR	P168/1999			F07		F06	
	P258/2004			G08		G07	
	P339/2000			F11		F10	
	P367/2004	G11		G10		G09	

	P46/1999	F05		F04	F03	
	P585/1998	E10		E09	E08	
	P769/1998	F02		F01	E11	MINIMA RELATION PROFILE AND PROFILIPANT PROFILIPANT PROFILIPANT PROFILIPANT PR
	P110/1987			A04	A05	
Triple	P126/1997	D11	MANANA ANANA	D09	D10	
ve	P137/1997	E02		D12	E01	
	P220/1990			B07	B08	

P456/1989	B01		A10	(1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,	A11	
P497/1989			B02		B03	
P9/1994	D01	MAMANAAA MATAAAAAAAAAAAAAAAAAAAAAAAAAAAA	C10		C11	
P540/1993	C08		C06			
P730/1992	C05		C03			
P1012/1995	D05	MANUAR (111111111111111111111111111111111111				
P400/2000	F12					

P536/1989	B04		
P1202/1995		D07	