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Abstract: We study the 6d N = (0, 2) superconformal field theory, which describes mul-

tiple M5-branes, on the product space S2 ×M4, and suggest a correspondence between a

2d N = (0, 2) half-twisted gauge theory on S2 and a topological sigma-model on the four-

manifold M4. To set up this correspondence, we determine in this paper the dimensional

reduction of the 6d N = (0, 2) theory on a two-sphere and derive that the four-dimensional

theory is a sigma-model into the moduli space of solutions to Nahm’s equations, or equiva-

lently the moduli space of k-centered SU(2) monopoles, where k is the number of M5-branes.

We proceed in three steps: we reduce the 6d abelian theory to a 5d Super-Yang-Mills the-

ory on I ×M4, with I an interval, then non-abelianize the 5d theory and finally reduce

this to 4d. In the special case, when M4 is a Hyper-Kähler manifold, we show that the

dimensional reduction gives rise to a topological sigma-model based on tri-holomorphic

maps. Deriving the theory on a general M4 requires knowledge of the metric of the target

space. For k = 2 the target space is the Atiyah-Hitchin manifold and we twist the theory

to obtain a topological sigma-model, which has both scalar fields and self-dual two-forms.
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1 Introduction

The six-dimensional N = (0, 2) superconformal theory (SCFT) with an ADE type gauge

group is believed to describe the theory on multiple M5-branes. The equations of motion in

six dimensions are known only for the abelian theory [1, 2], and a Lagrangian formulation of

this theory is believed to not exist. However, in the last few years, much progress has been

made in uncovering properties of this elusive theory by considering compactifications to

lower dimensions. Compactification of the 6d theory on a product Sd×M6−d has resulted

in correspondences between supersymmetric gauge theories on d-dimensional spheres Sd

and conformal/topological field theories on a 6 − d dimensional manifold M6−d. The goal

of this paper is to consider the compactification of the 6d theory on a four-manifold M4

times a two-sphere S2 and to determine the topological theory on M4. The particular

background that we consider is a half-topological twist along the S2, together with a Vafa-

Witten-like twist on M4, and we will find that the theory on M4 is a twisted version of

a sigma-model into the moduli space of SU(2) monopoles with k centers, where k is the

number of M5-branes, or equivalently, the moduli space of Nahm’s equations [3] with certain

singular boundary conditions. This suggests the existence of a correspondence between this

topological sigma-model on M4 and a two-dimensional (0, 2) theory, with a half-twist. This

fits into the correspondences studied in the last years, which we shall now briefly summarize.

For d = 4, the Alday-Gaiotto-Tachikawa (AGT) correspondence [4] connects 4d N = 2

supersymmetric gauge theories on S4 with Liouville or Toda theories on Riemann surfaces

M2. Correlation functions in Toda theories are equal to the partition function of an N = 2

supersymmetric gauge theory, which depends on the Riemann surface M2. Such 4d N = 2

gauge theories obtained by dimensional reduction of the 6d N = (0, 2) theories were first

– 1 –
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studied by Gaiotto in [5], generalizing the Seiberg-Witten construction [6]. For d = 3,

a correspondence between 3d supersymmetric gauge theories, labeled by three-manifolds

M3, and complex Chern-Simons theory on M3 was proposed in [7, 8], also refered to

as the 3d-3d correspondence. This correspondence has a direct connection to the AGT

correspondence by considering three-manifolds, which are a Riemann surface M2 times an

interval I, M3 = M2×ϕI, whose endpoints are identified modulo the action of an element ϕ

of the mapping class group of M2. On the dual gauge theory side, the mapping class group

action translates into a generalized S-duality, and the three-dimensional gauge theories,

dual to complex Chern-Simons theory are obtained on duality defects in the 4d N = 2

Gaiotto theory. The 3d-3d correspondence was ultimately derived from a direct dimensional

reduction of the 6d (0, 2) theory on a three-sphere via 5d by Cordova and Jafferis [9, 10].

Other dimensional reductions concern the case of T d ×M6−d. The circle-reduction is

known to give rise to N = 2 5d Super-Yang-Mills (SYM) [11]. The case of d = 2 gives

rise to N = 4 SYM with the Vafa-Witten twist [12] along M4 [13], which yields a duality

between a 2d N = (0, 2) gauge theory on T 2 and the Vafa-Witten theory on M4. Some

results on twisted M5-branes have appeared in [14].

Both the AGT and 3d-3d correspondences uncovered very deep and surprising rela-

tions between supersymmetric gauge theories and two/three-manifolds, their geometry and

moduli spaces. In view of this a very natural question is to ask, whether we can obtain

insights into four-manifolds, as well as the dual two-dimensional gauge theories obtained

by dimensional reduction of the 6d (0, 2) theory. Here, unlike the AGT case, the theory on

the four-manifold is a topological theory, and the gauge theory lives in the remaining two

dimensions and has (half-twisted) N = (0, 2) supersymmetry. A schematic depiction of this

is given in figure 1. More precisely, we propose a correspondence between a 4d topological

sigma-model and a 2d half-twisted N = (0, 2) gauge theory. In particular we expect that

topological observables in the 4d theory can be mapped to the partition function and other

supersymmetric observables of the 2d theory. Note that the S2 partition function defined

with the topological half-twist [15] is ambiguous as explained in [16]. However the analysis

of counter-terms (and therefore ambiguities) must be revisited in the context of the embed-

ding in 6d conformal supergravity, which is our set-up. In particular, the 2d counterterms

should originate from 6d counter-terms. Recent results on localization in 2d (0, 2) theories

have appeared in [17], albeit only for theories that have (2, 2) loci. The theories obtained

from the reduction in this paper do not necessarily have such a (2, 2) locus.

From a brane picture, the theory we consider can be obtained by compactifying k

M5-branes on a co-associated cycle in G2 [18, 19]. The two-dimensional theory that is

transverse to the co-associative cycle has (0, 2) supersymmetry, and we consider this on a

two-sphere, with an additional topological half-twist.

The first question in view of this proposal is to determine what the topological theory

on M4 is. There are various ways to approach this question. The simplest case is the

abelian theory, which on S2 × R1,3 gives rise to a 4d free N = 2 hyper-multiplet [20],

which we shall view as a sigma-model into the one-monopole moduli space. On a general

four-manifold M4, we will show that in the topologically twisted reduction, the abelian

theory integrates indeed to a “twisted version” of a hyper-multiplet, where the fields are a

compact scalar and self-dual two-form on M4.

– 2 –
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6d (0,2) on S2 x M4

(0,2) SCFT on S2Topological 
 -model on M4

   Vol(S2)      0 Vol(M4)      0

Figure 1. 4d-2d correspondence between the reduction of the 6d (0, 2) theory on M4 to a 2d

(0, 2) SCFT on S2, and the ‘dual’ 4d topological sigma-model from M4 into the Nahm or monopole

moduli space, which is obtained in this paper by reducing the 6d theory on a two-sphere.

6d N=(0,2) 

5d SYM on I 
with Nahm poles

S1

I

4d Topological -model into Mmonopole 

S2

Figure 2. The dimensional reduction of the 6d N = (0, 2) theory on an S2, viewed as a circle-

fibration along an interval I, is determined by dimensional reduction via 5d SYM. The scalars of

the 5d theory satisfy the Nahm equations, with Nahm pole boundary conditions at the endpoints

of the interval. The 4d theory is a topological sigma-model into the moduli space of solutions to

these Nahm equations, or equivalently the moduli space of monopoles.

For the general, non-abelian case, this 4d-2d correspondence can in principle be con-

nected to the 3d-3d correspondence by considering the special case of M4 = M3×ϕ I, where

I is an interval, similar to the derivation of the 3d-3d correspondence from AGT. In this

paper we will refrain from considering this approach, and study instead the reduction via

5d SYM, in the same spirit as [9, 10].

We first consider the dimensional reduction on flat M4, and then topologically twist

the resulting 4d N = 2 theory. We restrict to the U(k) gauge groups, but in principle the

analysis holds also for the D and E type. To determine the flat space reduction, we view the

S2 in terms of a circle-fibration over an interval, where the circle-fiber shrinks to zero-radius

at the two endpoints. We determine the 5d supergravity background, which corresponds

to the dimensional reduction of the 6d theory on S2. The resulting theory is 5d SYM on

an interval, where the scalars satisfy Nahm pole boundary conditions [21, 22]. Further

dimensional reduction to 4d requires to consider scalars, that satisfy Nahm’s equations.

– 3 –
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The resulting theory is a 4d sigma-model into the moduli space of solutions of Nahm’s

equations, which is isomorphic to the moduli space of k-centered monopoles [23] and has

a natural Hyper-Kähler structure. Much of the geometry of the moduli space is known,

in particular for one- or two-monopoles [24], and a more algebraic formulation in terms of

Slodowy-slices exists following [25–27]. The latter description is particularly amenable for

the characterization of N = 2 Gaiotto theories with finite area for the Riemann surface as

studied in [22]. Figure 2 summarizes our dimensional reduction procedure.

The 4d N = 2 supersymmetric sigma-model for flat M4 falls into the class of models

obtained in [28, 29]. We find that the coupling constant of the 4d sigma-model is given in

terms of the area of the two-sphere. To define this sigma-model on a general four-manifold

requires topologically twisting the theory with the R-symmetry of the 4d theory. One of the

complications is that the SU(2) R-symmetry of the 4d theory gets identified with an SU(2)

isometry of the Hyper-Kähler target. The twisting requires thus a precise knowledge of how

the coordinates of the monopole moduli space transform under the SU(2) symmetry. This

is known only in the case of one- and two-monopoles, where a metric has been determined

explicitly [24]. In these cases, we shall describe in section 6 the topological sigma-models,

which have both scalars and self-dual two-form fields on M4. The sigma-model into the

one-monopole moduli space S1×R3, corresponding to the reduction of the abelian theory to

a free 4d hypermultiplet, gives rise upon twisting to a (free) theory on M4 with a compact

scalar and a self-dual two-form, and belongs to the class of 4d A-model of [30]. The sigma-

model into the two-monopole moduli space, which is closely related to the Atiyah-Hitchin

manifold, gives rise to an exotic sigma-model of scalars and self-dual two-forms obeying

constraints. Sigma-models in 4d are non-renormalizable and infrared free, however, the

observables of the topologically twisted theory are independent of the RG flow and can in

principle be computed in the weak coupling regime.

In the case of M4 a Hyper-Kähler manifold, the holonomy is reduced and the twisting

does not require knowledge of the R-symmetry transformations of the coordinate fields.

This is discussed in section 5.1, and the topological sigma-model that we find upon twisting

is the one studied in [31] by Anselmi and Frè for almost quaternionic target spaces.

In this paper we focus on the reduction of the 6d (0, 2) theory on a two-sphere, however,

as we emphasize in section 3, the reduction would proceed in the same way with the

addition of two arbitrary ‘punctures’ on the two-sphere, characterizing BPS defects of the

6d non-abelian theory. In the intermediate 5d theory, it would result in different Nahm-

pole boundary conditions for scalar fields at the two ends of the interval and the final flat

space four-dimensional theory would be a sigma-model into the moduli space of solutions

of Nahm’s equations with these modified Nahm-pole boundary conditions.

We should also remark upon the connection of our results to the paper by Gadde,

Gukov and Putrov [13], who consider the torus-reduction of the M5-brane theory. The

topological twist along M4 is the same in their setup as in our construction. Thus, the

dictionary to the data of the 2d theory as developed in [13], such as its dependence on

the topological/geometric data of M4, should hold in our case as well. For instance, the

rank of the 2d gauge group is determined by b2(M4). The key difference is however,

that we consider this 2d theory on S2, and topologically twist the chiral supersymmetry.

– 4 –
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Interestingly, the reduction of the 6d theory on either T 2 or S2 with half-twist gives rather

distinct 4d topological theories: in the former, the 4d N = 4 SYM theory with Vafa-Witten

twist, in the latter, we find a four-dimensional topological sigma-model into the monopole

moduli space, which for general M4 has both scalars as well as self-dual two-forms. The

appearance of self-dual two-forms is indeed not surprising in this context, as the topological

twist along M4 is precisely realized in terms of M5-branes wrapping a co-associative cycle

in G2, which locally is given in terms of the bundle of self-dual two-forms Ω2+(M4) [32].

The plan of the paper is as follows. We begin in section 2 by setting up the various

topological twists of the 6d N = (0, 2) theory on S2 ×M4, and provide the supergravity

background and Killing spinors, for the S2 reduction with the half-twist. In section 3

we dimensionally reduce the 6d theory to 5d SYM on an interval times R4, with Nahm

pole boundary conditions for the scalar fields. In particular we study this with a generic

squashed metric on S2 and in a special ‘cylinder’ limit. The reduction to 4d is then

performed in section 4, where we show that the fields have to take values in the moduli

space of Nahm’s equations, and determine the N = 2 supersymmetric sigma-model on R4.

The action can be found in (4.30), as well as in the form of the models of [28, 29] in (4.35). In

sections 5 and 6 we study the associated topological sigma-models: in section 5 we consider

the case of M4 a Hyper-Kähler manifold, and show that this gives rise to the topological

sigma-model in [31]. The action can be found in (5.12). We furthermore connect this to

the dimensional reduction of the topologically twisted 5d SYM theory and show that both

approaches yield the same 4d sigma-model in appendix F. In section 6, we let M4 be a

general four-manifold, but specialize to the case of one- or two- monopole moduli spaces,

and use the explicit metrics to determine the topological field theory. In this case, the

bosonic fields are scalars and self-dual two-forms on M4. The action for k = 1 is (6.12) and

for k = 2 we obtain (6.35). We close with some open questions in section 7, and provide

details on our conventions and computational intricacies in the appendices.

2 Topological twists and supergravity backgrounds

This section serves two purposes: firstly, to explain the possible twists of the 6d N =

(0, 2) theory on a two-sphere S2, and secondly, to determine the supergravity background

associated to the topological half-twist on S2.

2.1 Twists of the M5-brane on M4

We consider the compactification of the M5-brane theory, i.e. the six-dimensional N = (0, 2)

theory, on M4 × S2, where M4 is a four-dimensional manifold. More generally, we can

consider the twists for reductions on general Riemann surfaces Σ instead of S2. We will

determine the 4d theory that is obtained upon dimensional reduction on the S2, and

consider this theory on a general four-manifold M4. Supersymmetry of this theory requires

that certain background fields are switched on, which correspond to twisting the theory

— both along M4 as well as along S2. The twisting procedure requires to identify part

of the Lorentz algebra of the flat space theory with a subalgebra of the R-symmetry. The

– 5 –
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R-symmetry and Lorentz algebra of the M5-brane theory on R6 are1

sp(4)R ⊕ so(6)L . (2.1)

The supercharges transform in the (4, 4̄) spinor representation (the same representation

as the fermions in the theory, see appendix A). The product structure of the space-time

implies that we decompose the Lorentz algebra as

so(6)L → so(4)L ⊕ so(2)L ∼= su(2)` ⊕ su(2)r ⊕ so(2)L . (2.2)

We can consider the following twists of the theory along M4. Either we identify an su(2)

subalgebra of both Lorentz and R-symmetry, or we twist with the full so(4).

On M4 there are two su(2) twists that we can consider. In the first instance consider

the decomposition of the R-symmetry as

sp(4)R → su(2)R ⊕ so(2)R (2.3)

and the su(2)` is twisted by su(2)R. That is we replace su(2)` by the diagonal su(2)twist ⊂
su(2)` ⊕ su(2)R and define the twisted su(2) generators by

T atwist =
1

2
(T a` + T aR) , (2.4)

so that the twisted theory has the following symmetries

Twist 1 : sp(4)R ⊕ so(6)L → su(2)twist ⊕ su(2)r ⊕ so(2)R ⊕ so(2)L . (2.5)

This twist is reminiscent of the Vafa-Witten twist of 4d N = 4 SYM [12]. The supercharges

decompose under (2.2) and (2.3) as

sp(4)R ⊕ so(6)L → su(2)R ⊕ so(2)R ⊕ su(2)` ⊕ su(2)r ⊕ so(2)L

(4,4) → (2+1 ⊕ 2−1, (2,1)−1 ⊕ (1,2)1) ,
(2.6)

which after the twist becomes

sp(4)R ⊕ so(6)L → su(2)twist ⊕ su(2)r ⊕ so(2)R ⊕ so(2)L

(4, 4̄) → (1⊕ 3,1)+− ⊕ (1⊕ 3,1)−− ⊕ (2,2)++ ⊕ (2,2)−+ .
(2.7)

This yields two scalar supercharges on M4, which are of the same negative 2d chirality

under so(2)L
(1,1)+− ⊕ (1,1)−− . (2.8)

Upon reduction on M4, this twist leads to a 2d theory with N = (0, 2) supersymmetry. In

this paper we are not concerned with the reduction on M4, but focus on the reverse, namely

the theory on M4. This twist is compatible with a further twist along S2 or more generally

an arbitrary Riemann surface Σ, which identifies so(2)L with the remaining R-symmetry

1In the dimensional reduction via 5d SYM, we will in fact consider the Lorentzian theory to derive the

theory on R1,3. As we have in mind a compactification on a compact four-manifold M4, we will discuss

here the Euclidean version.

– 6 –
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so(2)R. This is the setup that we will study in this paper. In the following we will first

perform the reduction (and topological twisting) along the S2, and then further twist the

resulting four-dimensional theory on M4.

Finally, let us briefly discuss alternative twists. We can use a different su(2) R-

symmetry factor to twist the theory along M4, namely we can use su(2)1 ⊂ su(2)1⊕su(2)2 '
so(4)R ⊂ sp(4)R decomposed as

sp(4)R → su(2)1 ⊕ su(2)2 . (2.9)

This twist leads upon reduction on M4 to a 2d theory with N = (0, 1) supersymmetry.

Twist 2 : sp(4)R ⊕ so(6)L → su(2)twist ⊕ su(2)2 ⊕ su(2)r ⊕ so(2)L

(4, 4̄)→ (3⊕1,1,1)−⊕(2,1,2)+⊕(2,2,1)−⊕(1,2,2)+ .
(2.10)

We can in fact further twist the su(2)2 with the remaining su(2)r Lorentz symmetry on

M4. This corresponds to a total twist of the full so(4)R with so(4)L and is analogous to

the geometric Langlands (or Marcus) twist of 4d N = 4 SYM theory on M4 [33, 34]

Twist 3 : sp(4)R ⊕ so(6)L → so(4)twist ⊕ so(2)L

(4, 4̄)→ (3⊕ 1,1)− ⊕ (2,2)+ ⊕ (2,2)− ⊕ (1,1⊕ 3)+ ,
(2.11)

which has two scalar supercharges of opposite 2d chiralities

(1,1)+ ⊕ (1,1)− , (2.12)

so that this twist leads upon reduction on M4 to a 2d theory with N = (1, 1) supersym-

metry. It is not compatible with a further topological twist on S2. Interestingly it was

found in [35] that supersymmetry can be preserved by turning on suitable background

supergravity fields on M4. We will not study this background in this paper, but will return

to this in the future.

We will now consider the setup of twist 1 and carry out the reduction of the 6d

N = (0, 2) theory on S2×M4. As explained in the introduction our strategy is to find the

6d supergravity background corresponding to the twisted theory along S2, taking M4 = R4

to begin with, and carry out the reduction to 4d, where we will finally twist the theory

along an arbitrary M4.

2.2 Twisting on S2

For our analysis we first consider the theory on S2×R4 and the twist along S2. The Lorentz

and R-symmetry groups reduce again as in (2.2) and (2.3). The twist is implemented by

identifying so(2)R with so(2)L and we denote it so(2)twist ' u(1)twist, whose generators are

given by

Utwist = UL + UR . (2.13)

As we have seen this is compatible with the twist 1, discussed in the last subsection.

S2 Twist : so(6)L ⊕ sp(4)R → gres ∼= su(2)` ⊕ su(2)r ⊕ su(2)R ⊕ u(1)twist . (2.14)

– 7 –
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The residual symmetry group and decomposition of the supercharges and fermions is then

so(6)L ⊕ sp(4)R → gres ∼= su(2)` ⊕ su(2)r ⊕ su(2)R ⊕ u(1)twist

(4,4) → (2,1,2)0 ⊕ (2,1,2)−2 ⊕ (1,2,2)2 ⊕ (1,2,2)0 .
(2.15)

There are eight supercharges transforming as singlets on S2 and transforming as Weyl

spinors of opposite chirality on M4 and doublets under the remaining R-symmetry. The

fields of the 6d (0, 2) theory decompose as follows

so(6)L⊕sp(4)R→su(2)` ⊕ su(2)r ⊕ su(2)R ⊕ u(1)L ⊕ u(1)R

Φm̂n̂ = (1,5)→(1,1,1)0,2 ⊕ (1,1,1)0,−2 ⊕ (1,1,3)0,0

ρm̂m = (4,4)→(1,2,2)+1,−1⊕(1,2,2)+1,+1⊕(2,1,2)−1,−1⊕(2,1,2)−1,+1

BAB=(15,1)→(1,1,1)0,0⊕(3,1,1)0,0⊕(1,3,1)0,0⊕(2,2,1)2,0⊕(2,2,1)−2,0 .

(2.16)

Note from the point of view of the 4d N = 2 superalgebra, some of these fields transform

in hyper-multiplets, however with a non-standard transformation under the R-symmetry,

under which some of the scalars form a triplet. The standard transformation of the hyper-

multiplet can be obtained using an additional SU(2) symmetry [36]. However, in the present

situation, we have to use the R-symmetry as given in the above decomposition. Twisting

with the su(2)` Lorentz with the remaining su(2)R, i.e.

su(2)twist
∼= diag(su(2)` ⊕ su(2)R) (2.17)

the resulting topological theory has the following matter content

so(6)L ⊕ sp(4)R → g̃ ∼= su(2)twist ⊕ su(2)r ⊕ u(1)twist

Φm̂n̂ = (1,5) → (1,1)2 ⊕ (1,1)−2 ⊕ (3,1)0

ρm̂m = (4,4) → (2,2)0 ⊕ (2,2)2 ⊕ (1⊕ 3,1)−2 ⊕ (1⊕ 3,1)0

BAB = (15,1) → (1,1)0 ⊕ (3,1)0 ⊕ (1,3)0 ⊕ (2,2)2 ⊕ (2,2)−2 .

(2.18)

In the following it will be clear that the 6d scalars Φ give rise to scalars and a self-dual two-

form on M4. The fermions give rise to either vectors, or scalars and self-dual two-forms as

well. The fields appearing in the decomposition of the two-form B are not all independent

due to the constraint of self-duality of H = dB. They will give rise to a vector field and a

scalar on M4. This matter content will be visible in the intermediate 5d description that

we reach later in section 3, however, after reducing the theory to 4d and integrating out

massive fields, the matter content of the final 4d theories will be different.

2.3 Supergravity background fields

Before describing the details of the reduction, we should summarize our strategy. Our goal

is to determine the dimensional reduction of the 6d (0, 2) theory with non-abelian u(k)

gauge algebra. For the abelian theory, the dimensional reduction is possible, using the

equations of motions in 6d [1, 2]. However, for the non-abelian case, due to absence of a 6d

formulation of the theory, we have to follow an alternative strategy. Our strategy is much
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alike to the derivation of complex Chern-Simons theory as the dimensional reduction on an

S3 in [10]. First note, that the 6d theory on S1 gives rise to 5d N = 2 SYM theory. More

generally, the dimensional reduction of the 6d theory on a circle-fibration gives rise to a

5d SYM theory in a supergravity background [9] (for earlier references see [37, 38]). This

theory has a non-abelian extension, consistent with gauge invariance and supersymmetry,

which is then conjectured to be the dimensional reduction of the non-abelian 6d theory.

More precisely, this approach requires first to determine the background of the 6d

abelian theory as described in terms of the N = (0, 2) conformal supergravity theory [39,

40]. The 5d background is determined by reduction on the circle fiber, and is then non-

abelianized. We can further reduce the theory along the remaining compact directions

to determine the theory in 4d. For S3, there is the Hopf-fibration, used in [10] to derive

the Chern-Simons theory in this two-step reduction process. In the present case of the

two-sphere, we will fiber the S1 over an interval I, and necessarily, the fibers will have to

become singular at the end-points.

In the following we will prepare the analysis of the supergravity background. By re-

quiring invariance under the residual group of symmetries gres preserved by the topological

twist on S2, we derive ansätze for the background fields in 6d N = (0, 2) off-shell conformal

supergravity fields. In the next section we will consider the Killing spinor equations and

fix the background fields completely.

To begin with, the 6d metric on S2 × R4 is given by

ds2 = ds2
R4 + r2dθ2 + `(θ)2 dφ2 , (2.19)

with `(θ) = r sin(θ) for the round two-sphere and θ ∈ I = [0, π]. More generally, `(θ) can

be a function, which is smooth and interpolates between

`(θ)

r
∼ θ , for θ → 0 ,

`(θ)

r
∼ π − θ , for θ → π . (2.20)

We choose the frame

eA = dxA , e5 = r dθ , e6 = `(θ) dφ . (2.21)

The corresponding non-vanishing components of the spin connection are

ω56 = −ω65 = −`
′(θ)

r
dφ . (2.22)

In the following the index conventions are such that all hatted indices refer to the R-

symmetry, all unhatted ones are Lorentz indices. The background fields for the off-shell

gravity multiplet are summarized in table 1. Underlined Roman capital letters are flat 6d

coordinates, underlined Greek are curved space indices in 6d, and middle Roman alphabet

underlined indices are 6d spinors. All our conventions are summarized in appendix A.

Before making the ansätze for the background fields, we note the following decomposi-

tions of representations that these background fields transform under, first for the Lorentz
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Label Field sp(4)R Properties

e
A
µ Frame 1

V B̂Ĉ
A R-symmetry gauge field 10 V B̂Ĉ

A = −V ĈB̂
A

T Â[BCD] Auxiliary 3-form 5 T Â = − ? T Â

D
(ÂB̂)

Auxiliary scalar 14 D
ÂB̂

= D
B̂Â

, DÂ
Â

= 0

bA Dilatation gauge field 1

Table 1. The bosonic background fields for the 6d (0, 2) conformal supergravity.

symmetry,

so(6)L → su(2)` ⊕ su(2)r ⊕ u(1)L

A : 6 → (2,2)0 ⊕ (1,1)2 ⊕ (1,1)−2

[BCD](+) : 10 → (2,2)0 ⊕ (3,1)2 ⊕ (1,3)−2

[BC] : 15 → (2,2)2 ⊕ (2,2)−2 ⊕ (3,1)0 ⊕ (1,3)0 ⊕ (1,1)0

(2.23)

and also for the R-symmetry

so(5)R → su(2)R ⊕ u(1)R

Â : 5 → 30 ⊕ 12 ⊕ 1−2

[B̂Ĉ] : 10 → 30 ⊕ 32 ⊕ 3−2 ⊕ 10

(B̂Ĉ) : 14 → 50 ⊕ 32 ⊕ 3−2 ⊕ 12 ⊕ 1−2 ⊕ 10 .

(2.24)

The bosonic supergravity fields of 6d off-shell conformal maximal supergravity were deter-

mined in [9, 37, 39–41]. They are the frame e
A
µ and

T
[BCD]Â

, V
A [B̂Ĉ]

→ (dV )
[AB] [ĈD̂]

, D
(ÂB̂)

, bA → (db)[AB] , (2.25)

where dV and db denote the field strength of the R-symmetry and dilatation gauge fields,

respectively. Furthermore T
[BCD]Â

is anti-self-dual2 and D
(ÂB̂)

is traceless

T
[BCD]Â

= T
[BCD](+)Â

, δÂB̂D
ÂB̂

= 0 . (2.26)

We shall now decompose these in turn under the residual symmetry group gres ∼= su(2)` ⊕
su(2)r⊕su(2)R⊕u(1)twist and determine the components that transform trivially, and thus

can take non-trivial background values.

1. T
[BCD]Â

: the decomposition under gres is given by

(10,5)→ (2,2,3)(2)⊕(3,1,3)(2)⊕(1,3,3)(−2)⊕(2,2,1)(±2)⊕(3,1,1)(4)

⊕ (3,1,1)(0) ⊕ (1,3,1)(0) ⊕ (1,3,1)(−4) .
(2.27)

2In Euclidean signature, T[BCD]Â can be complexified and taken to satify T = i ? T .
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This tensor product does not contain any singlet under gres, so the backgrounds we

consider have T
[BCD]Â

= 0.

2. V
A[B̂Ĉ]

: we are looking for components of the field strength (dV )
[AB] [ĈD̂]

invariant

under gres. The decomposition of (dV )
[AB] [ĈD̂]

is:

(15,10)→ (2,2,3)(±2)⊕(3,1,3)(0)⊕(1,3,3)(0)⊕(1,1,3)(0)⊕(2,2,3)(±4)

⊕ 2× (2,2,3)(0) ⊕ (3,1,3)(±2) ⊕ (1,3,3)(±2) ⊕ (1,1,3)(±2)

⊕ (2,2,1)(±2) ⊕ (3,1,1)(0) ⊕ (1,3,1)(0) ⊕ (1,1,1)(0) .

(2.28)

We see that we have a singlet that corresponds to turning on a flux on the S2 and

an ansatz for V is given by

Vφ x̂ŷ =
1

2
v(θ) εx̂ŷ , (2.29)

where x̂, ŷ run over the components B̂, Ĉ = 4, 5, and the other components of V

vanish.

3. bA: the field strength (db)[AB] decomposes under gres as

(15,1)→ (2,2,1)(±2) ⊕ (3,1,1)(0) ⊕ (1,3,1)(0) ⊕ (1,1,1)(0) . (2.30)

There is a singlet, which corresponds to turning on a field strength on the S2. In

the following we will not consider this possibility. Note that any other choice can

always be obtained by a conformal transformation with K, which shifts bA [40]. In

the following we thus set

bA = 0 . (2.31)

4. D
(ÂB̂)

: the decomposition under gres is given by

(1,14)→ (1,1,5)(0) ⊕ (1,1,3)(±2) ⊕ (1,1,1)(±2) ⊕ (1,1,1)(0) . (2.32)

There is one singlet corresponding to the ansatz

D
âb̂

= d δ
âb̂
, Dx̂ŷ = −3

2
d δx̂ŷ , (2.33)

with other components vanishing. The relative coefficients are fixed by the traceless-

ness condition on D
(ÂB̂)

.

2.4 Killing spinors

With the ansätze for the supergravity background fields we can now determine the condi-

tions on the coefficients v and d, to preserve supersymmetry. The background of the 6d

supergravity is summarized in section 2.3 and the Killing spinor equations (B.1) and (B.7)

are solved in appendix B. In summary the background with T
[BCD]Â

= bA = 0 preserves

half the supersymmetries if

v(θ) = −`
′(θ)

r

d(θ) =
3

2

`′′(θ)

r2`(θ)
,

(2.34)
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where for the round two-sphere `(θ) = r sin(θ), and the Killing spinor ε is constant and

satisfies the following constraint

(Γ4̂5̂)m̂n̂ε
n̂ − Γ56εm̂ = 0 . (2.35)

The value of the R-symmetry gauge field V 56 = − `′(θ)
r dφ = ω56 and the fact that the pre-

served supersymmetries are generated by constant spinors indicates that this supergravity

background realizes the topological twist on S2, as expected.

Finally, recall that we chose a gauge for which bA = 0. Note that the background field

bA can be fixed to an arbitrary other value by a special conformal transformation (see [40]).

The special conformal transformation does not act on the other background fields (they

transform as scalars under these transformations), nor on the spinor εm̂, however it changes

the spinor ηm̂ parametrizing conformal supersymmetry transformations. Indeed one can

show that the Killing spinor equations (B.1) and (B.7) are solved for an arbitrary bA by

the same solution εm̂ together with

ηm̂ = −1

2
bAΓAεm̂ . (2.36)

In this way one can recover the gauge choice bµ = α−1∂µα (with α = 1/` in our conventions)

of [9], although we will keep our more convenient choice bµ = 0. For our gauge choice, the

dimensional reduction to 5d is rederived in appendix C.

3 From 6d (0, 2) on S2 to 5d SYM

We now proceed with the dimensional reduction of the six dimensional N = (0, 2) theory

on S1 to obtain 5d maximally supersymmetric Yang-Mills theory, as in [9, 37]. The main

distinction in our case arises in subtle boundary conditions, which will have to be imposed

on the fields along the 5d interval. All our conventions are summarized in appendix A.

We should remark on an important point in the signature conventions: the reduction

to the 5d SYM theory is accomplished in Lorentzian signature, R4 → R1,3, where fields

admit 6d reality conditions, however it would go through in Euclidean signature upon

complexifying the fields in 6d and then imposing reality conditions in 5d. This amounts to

Wick-rotating the Lorentzian 5d theory. In later sections, when we study the 5d theory on

a generic M4, we adopt the Euclidean signature, which is compatible with the twist on M4.

3.1 The 6d (0, 2) theory

The abelian 6d N = (0, 2) theory contains a tensor multiplet, which is comprised of a

two-form B with field strength H = dB, five scalars Φm̂n̂, and four Weyl spinors ρm̂m of

negative chirality, which are symplectic Majorana. The scalars satisfy Φm̂n̂ = −Φn̂m̂ and

Ωm̂n̂Φm̂n̂ = 0. The equations of motion are (we will use the conventions of [40])

H−µνσ −
1

2
Φm̂n̂T

m̂n̂
µνσ = 0

D2Φm̂n̂ −
1

15
Dr̂ŝ
m̂n̂Φr̂ŝ +

1

3
H+
µνσT

µνσ

m̂n̂ = 0

/Dρm̂ − 1

12
T m̂n̂µνσΓµνσρn̂ = 0 .

(3.1)
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Here H± = 1/2(H ± ?H) and the R-symmetry indices of the background fields have

been transformed from Â → m̂n̂ using the Gamma-matrices as in (B.3). The covariant

derivatives are defined as follows

Dµρ
m̂ =

(
∂µ −

5

2
bµ +

1

4
ωABµ ΓAB

)
ρm̂ − 1

2
V m̂
µn̂ρ

n̂

DµΦm̂n̂ = (∂µ − 2bµ)Φm̂n̂ + V
[m̂
µr̂ Φn̂]r̂

D2Φm̂n̂ =
(
∂A − 3bA + ω

BA
B

)
DAΦm̂n̂ + V

A[m̂
r̂ DAΦn̂]r̂ − R6d

5
Φm̂n̂ .

(3.2)

Here R6d is the 6d Ricci scalar. These equations are invariant under the following super-

symmetry transformations

δBµν = −εm̂Γµνρm̂

δΦm̂n̂ = −4ε[m̂ρn̂] − Ωm̂n̂εr̂ ρr̂

δρm̂ =
1

48
H+
µνσΓµνσεm̂ +

1

4
/DΦm̂n̂εn̂ − Φm̂n̂ηn̂ .

(3.3)

The dimensional reduction of these equations yields abelian 5d SYM in a general super-

gravity background. We will perform this reduction in a gauge choice where bA = 0, which

is for instance different from the choice in [9]. The details of this general reduction are

given in appendix C. The 6d supergravity fields decompose as follows

e
µ

A →

(
eµ
′

A′ eφA′ ≡ CA′
eµ
′

6 ≡ 0 eφ6 ≡ α

) H → F = dA

ρmm̂ →

(
0

iρm
′m̂

)
Φm̂n̂ → Φm̂n̂ ,

(3.4)

where we used again the index conventions in appendix A. The action of abelian 5d SYM

theory in a general background is

S5d = SF + Sscalar + Sρ , (3.5)

where

SF = −
∫

[αF̃ ∧ ?5dF̃ + C ∧ F ∧ F ]

Sscalar = −
∫
d5x

√
|g|α−1

(
DA′Φ

m̂n̂DA′Φm̂n̂ + 4Φm̂n̂FA′B′T
A′B′

m̂n̂ − Φm̂n̂(MΦ)m̂n̂r̂ŝ Φr̂ŝ
)

Sρ = −
∫
d5x
√
|g|α−1ρm′m̂

(
i /D

m′

n′ ρ
n′m̂ + (Mρ)

m′m̂
n′n̂ ρn

′n̂
)
, (3.6)

with all mass matrices defined in appendix C and F̃ is defined as

F̃ = F − 1

α
Φm̂n̂T

m̂n̂ . (3.7)
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3.2 5d SYM in the supergravity background

We can now specialize to the 6d background R4×S2, including the background supergravity

fields of section 2 and determine the 5d SYM theory in the background, which corresponds

to the 6d (0, 2) theory on S2, by performing the dimensional reduction along the circle

fiber. As shown in section 2.3, the only background fields for the 5d SYM theory, which

are compatible with the residual symmetry group, are Dm̂n̂
r̂ŝ and V m̂n̂

φ ≡ Sm̂n̂. With these

background fields, and the action of the 5d SYM theory in a general background, that we

derived in appendix C in the gauge bA = 0, we can now determine the non-abelian 5d

action in our background.

For our background the metric, graviphoton, CA′ , and the dilaton, α, are given by

ds2
5 = ds2

R4 + r2dθ2 , CA′ = 0 , α =
1

`(θ)
, 0 ≤ θ ≤ π , (3.8)

which means that G = dC = 0. Imposing these conditions and turning on only the

background fields Dm̂n̂
rs and Sm̂n̂ the full action is given by3

S = SF + Sscalar + Sρ + Sint , (3.9)

where

SF = −1

4

∫
1

`(θ)
Tr(F ∧ ?5dF )

Sscalar =
1

16

∫
d5x

√
|g| `(θ) Tr

(
Φm̂n̂D2Φm̂n̂ + Φm̂n̂(MΦ)r̂ŝm̂n̂Φr̂ŝ

)
Sρ = −

∫
d5x

√
|g| `(θ) Tr

(
iρm′m̂ /D

m′

n′ ρ
n′m̂ + ρm′m̂(Mρ)

m̂n̂m′
n′ ρ

n′

n̂

)
.

(3.10)

Here, we non-abelianized the theory, and the covariant derivatives and mass matrices

Dµ′Φ
m̂n̂ = ∂µ′ + [Aµ′ ,Φ

m̂n̂]

D2Φm̂n̂ = ∂µ
′
Dµ′Φ

m̂n̂ +
`′(θ)

r2`(θ)
DθΦ

m̂n̂ + [Aµ′ , ∂
µ′Φm̂n̂] + [Aµ′ , [A

µ′ ,Φm̂n̂]]

Dµ′ρ
m̂ = ∂µ′ρ

m̂ + [Aµ′ , ρ
m̂]

(MΦ)m̂n̂r̂ŝ =
2`′′(θ)

5r2`(θ)
δm̂[r̂ δ

n̂
ŝ] +

1

2`(θ)2

(
Sm̂[r̂ S

n̂
ŝ] − S

n̂
t̂
S t̂[r̂δ

m̂
ŝ]

)
− 1

15
Dm̂n̂
r̂ŝ

(Mρ)
m̂n̂m′

n′ =
1

`(θ)

(
1

2
Sm̂n̂δm

′
n′ +

i`′(θ)

2r
Ωm̂n̂(γ5)m

′
n′

)
,

(3.11)

where the five dimensional Ricci scalar vanishes, because we have a flat metric on the

interval. In the non-abelian case we can add the following interaction terms

Sint =

∫
d5x
√
|g|Tr

(
`(θ)3

64
[Φm̂n̂,Φ

n̂r̂][Φr̂ŝ,Φ
ŝm̂] +

`(θ)

24
Sm̂n̂Φm̂r̂[Φn̂ŝ,Φr̂ŝ]− `(θ)2ρm′m̂[Φm̂n̂, ρm

′

n̂ ]

)
,

(3.12)

3The ratios of numerical prefactors are determined by supersymmetry. Note that our convention for the

scalar fields and gauge fields is that they are anti-hermitian.
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where the non-vanishing background fields are

Sm̂n̂ = −`
′(θ)

r
(Γ4̂5̂)m̂n̂

Dm̂n̂
r̂ŝ =

3`′′(θ)

2r2`(θ)

[
5(Γ4̂5̂)

[m̂
r̂ (Γ4̂5̂)

n̂]
ŝ − δ

[m̂
r̂ δ

n̂]
ŝ − Ωm̂n̂Ωr̂ŝ

]
,

(3.13)

where `′ and `′′ denote first and second derivatives of ` with respect to θ. The action is

invariant under the following supersymmetry transformations4

δAµ′=`(θ) εm̂γµ′ρ
m̂

δΦm̂n̂=−4iε[m̂ρn̂] − iΩm̂n̂εr̂ ρr̂

δρm̂=
i

8`(θ)
Fµ′ν′γ

µ′ν′εm̂+
1

4
/DΦm̂n̂εn̂+

i

4`(θ)
S

[m̂
r̂ Φn̂]r̂εn̂−

i

8
`(θ)Ωn̂r̂[Φ

m̂n̂,Φr̂ŝ]εŝ .

(3.14)

Note that the Killing spinor εm
′

m̂ satisfies the relation (2.35) which now reads

(Γ4̂5̂)m̂n̂εm
′

n̂ = −i(γ5)m
′

n′ ε
n′m̂ . (3.15)

So far we have kept the sp(4)R R-symmetry indices explicit. However the background

breaks the R-symmetry to su(2)R⊕ so(2)R. To make the symmetry of the theory manifest,

we decompose the scalar fields Φm̂n̂ into a triplet of scalars ϕâ, transforming in the 30 of

su(2)R ⊕ so(2)R, and the complex field ϕ, which is a singlet 11. This can be achieved as

follows

ϕâ =
1

4
(Γâ)m̂n̂Φm̂n̂ , â = 1, 2, 3

ϕ = ϕ4 + iϕ5 =
1

4

(
Γ4 + iΓ5

)
m̂n̂

Φm̂n̂ .

(3.16)

The spinors ρm̂ decompose into the two doublets ρ
(1)
p̂ , ρ

(2)
p̂ , transforming in (2)1 ⊕ (2)−1,

as detailed in appendix A.3. We also split the gauge field (singlet of the R-symmetry) into

the components Aµ along R4 and the component Aθ along the interval.

The spinor εn̂ parametrizing supersymmetry transformations decomposes under the R-

symmetry subalgebra su(2)R ⊕ so(2)R into two su(2)R doublets of opposite so(2)R charge:

εm̂ → ε
(1)
p̂ , ε

(2)
p̂ (see appendix A.3). The projection condition (3.15) becomes

ε
(1)
p̂ − γ

5ε
(1)
p̂ = 0 , ε

(2)
p̂ + γ5ε

(2)
p̂ = 0 . (3.17)

For any 5d spinor χ we define

χ± =
1

2
(χ± γ5χ) , (3.18)

as the four-dimensional chirality. The action for the gauge field is

SF = −1

8

∫
d5x
√
|g| 1

`(θ)
Tr
(
FµνF

µν + 2FµθF
µθ
)
, (3.19)

4Note that the spinor variation would have a 1/16 instead of 1/8 in the naive dimensional reduction

from the abelian 6d theory. However, the non-abelianized version is only invariant under the variation as

given in the following equation. This coefficient is not fixed in the abelian theory, but is required to be 1/8

in the non-abelian one. This is also consistent with [9].
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and for the scalars we find

Sscalar (3.20)

= −1

4

∫
d5x
√
|g|`(θ) Tr

(
DµϕâDµϕâ +DµϕDµϕ̄+

1

r2
Dθϕ

âDθϕâ +
1

r2
DθϕDθϕ̄+m2

ϕϕϕ̄

)
,

with the mass term

mϕ(θ)2 =
`′(θ)2 − `(θ)`′′(θ)

r2`(θ)2
, (3.21)

which for the round sphere is m2
ϕ = cot(θ)2/r2 and diverges at the endpoints of the interval.

We will return to this matter when discussing the boundary conditions. The action for the

fermions is

Sρ = −2i

∫
d5x
√
|g| `(θ) Tr

(
ρ

(1)
p̂+γ

µDµρ
(2)p̂
− + ρ

(1)
p̂−γ

µDµρ
(2)p̂
+ +

1

r
ρ

(1)
p̂+Dθρ

(2)p̂
+ − 1

r
ρ

(2)
p̂−Dθρ

(1)p̂
−

)
.

(3.22)

Finally, the interaction terms in this decomposition read as follows

SYukawa = −
∫
d5x
√
|g| `(θ)2 Tr

[
2(σâ)p̂q̂ρ

(2)
p̂−

[
ϕâ, ρ

(1)
q̂−

]
+ 2(σâ)p̂q̂ρ

(2)
p̂+

[
ϕâ, ρ

(1)
q̂+

]
+i
(
ρ

(1)
p̂−

[
ϕ̄, ρ

p̂(1)
−

]
+ ρ

(1)
p̂+

[
ϕ̄, ρ

p̂(1)
+

]
− ρ(2)

p̂−

[
ϕ, ρ

p̂(2)
−

]
− ρ(2)

p̂+

[
ϕ, ρ

p̂(2)
+

])]
Squartic = −1

4

∫
d5x
√
|g| `(θ)3 Tr

(
[ϕâ, ϕ][ϕâ, ϕ̄] +

1

2
[ϕâ, ϕb̂][ϕ

â, ϕb̂]− 1

4
[ϕ, ϕ̄][ϕ, ϕ̄]

)
Scubic = −1

6

∫
d5x
√
|g| `(θ)`

′(θ)

r
εâb̂ĉ Tr

(
ϕâ[ϕb̂, ϕĉ]

)
. (3.23)

The complete 5d action is

S5d = SF + Sscalar + Sρ + SYukawa + Squartic + Scubic , (3.24)

and the supersymmetry variations for this action, decomposed with regards to the R-

symmetry, are summarized in appendix D. The action above should be supplemented with

appropriate boundary terms, which ensure that supersymmetry is preserved and that the

action is finite. This will be addressed subsequently.

We need to determine the boundary conditions of the 5d fields at the endpoints of the

θ interval. To proceed we first notice that the complex scalar ϕ has a mass term m(θ)2

which diverges at the boundaries θ = 0, π5

m(θ)2 '

 1
θ2
, θ → 0 ,

1
(π−θ)2 , θ → π .

(3.25)

Finiteness of the action requires that ϕ behaves as

ϕ =

{
O(θ) , θ → 0 ,

O(π − θ) , θ → π .
(3.26)

5This follows from the regularity conditions (2.20) on `.
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The boundary conditions on the other fields are most easily determined by the requirement

of preserving supersymmetry under the transformations generated by ε
(1)
p̂ and ε

(2)
p̂ presented

in appendix D. We obtain at θ = 0:

ρ
(1)
p̂+ = O(θ) , ρ

(2)
p̂− = O(θ) , Aµ = O(θ2) , (3.27)

and the counterpart at θ = π.

The fields ϕâ, Aθ are constrained by supersymmetry to obey modified Nahm’s equations

as they approach the boundaries, given by

Dθϕ
â − 1

2
r`(θ)εâ

b̂ĉ
[ϕb̂, ϕĉ] = 0 . (3.28)

These equations are compatible with a singular boundary behaviour of the fields at the

endpoints of the θ-interval. For simplicity let us assume the gauge Aθ = 0 in a neighborhood

of θ = 0, then the above modified Nahm’s equations are compatible with the polar behavior

at θ = 0

ϕâ =
2%(τ â)

r2θ2
+O(1) , (3.29)

where

% : su(2) → u(k) (3.30)

denotes a Lie algebra homomorphism from su(2) to u(k), see e.g. in [21, 22] and τ â are

related to the Pauli matrices σâ as follows

τ â =
i

2
σâ . (3.31)

Moreover the O(1) term is constrained to be in the commutant of % in u(k). The reduc-

tion that we study, from a smooth two-sphere to the interval, corresponds to % being an

irreducible embedding [22].

More generally the Nahm pole boundary condition (3.28) is compatible with any ho-

momorphism % and is associated with the presence of ‘punctures’ — or field singularities

— at the poles of the two-sphere in the 6d non-abelian theory [5]. An embedding % can

be associated to a decomposition of the fundamental representation k under su(2) and can

be recast into a partition [n1, n2, · · · ] of k. The irreducible embedding is associated to the

partition % = [k] and corresponds to the absence of punctures in 6d, and is therefore the

sphere reduction that we consider here. The boundary conditions at θ = π are symmetric

to the ones at θ = 0 and are also characterized by Nahm pole behaviour with irreducible

embedding % = [k].

The remaining fermions ρ
(1)
− , ρ

(2)
+ appear in the supersymmetry variations of ϕâ and

hence are of order O(1) at θ = 0

ρ
(1)
p̂− = O(1) , ρ

(2)
p̂+ = O(1) , (3.32)

and similarly at θ = π.

The boundary condition (3.29) for the scalars ϕâ introduces two difficulties: the super-

symmetry variation of the action results in a non-vanishing boundary term and the poles
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of the scalar fields make the action diverge. These two problems are cured by the addition

of the following boundary term

Sbdry =

[
`(θ)2

12

∫
d4x
√
|g4|Tr

(
εâb̂ĉϕâ[ϕb̂, ϕĉ]

)]π
0

=

∫
dθ ∂θ

[
`(θ)2

12

∫
d4x
√
|g4|Tr

(
εâb̂ĉϕâ[ϕb̂, ϕĉ]

)]
,

(3.33)

The second line gives Sbdry as a total θ-derivative and we shall take this as the definition

of the boundary term. This additional term ensures supersymmetry and makes the 5d

action finite, this is shown in appendix D where boundary terms arising from preserving

supersymmetry are given. In particular, taking the derivative along θ we find,

Sbdry =

∫
d5x
√
|g|
[
`(θ)`′(θ)

6r
εâb̂ĉ Tr

(
ϕâ[ϕb̂, ϕĉ]

)
+
`(θ)2

4r
εâb̂ĉ Tr

(
∂θϕâ[ϕb̂, ϕĉ]

)]
, (3.34)

where the first piece cancels the cubic scalar interaction in the 5d action and the second

term combines to give

− 1

4r2

∫
d5x
√
|g|`(θ) Tr

(
Dθϕ

âDθϕâ + r2`(θ)2 1

2
[ϕâ, ϕb̂][ϕ

â, ϕb̂]− r`(θ)εâb̂ĉ∂θϕâ[ϕb̂, ϕĉ]
)

= − 1

4r2

∫
d5x
√
|g|Tr

(
Dθϕâ −

1

2
r`(θ)ε

âb̂ĉ
[ϕb̂, ϕĉ]

)2

,

(3.35)

which is the square of modified Nahm’s equations. The 5d action is finite since the scalar

fields ϕâ obey modified Nahm’s equations at the boundaries.

We notice that the modified Nahm’s equations (3.28) can be recast into the form of

standard Nahm’s equations by a change of coordinate to

θ̃ =
1

r

∫ θ

0
dx `(x) . (3.36)

One obtains

D
θ̃
ϕâ − 1

2
r2εâ

b̂ĉ
[ϕb̂, ϕĉ] = 0 ,

r2ϕâ =
%(τ â)

θ̃
+O(θ̃0) ,

(3.37)

and a similar Nahm pole behavior at the other end of the θ̃ interval. We conclude then

that the moduli space of solutions of the modified Nahm’s equations is the same as the

moduli space of solution of the standard Nahm’s equations.

3.3 Cylinder limit

For general hyperbolic Riemann surfaces, with a half-topological twist, the dimensional re-

duction depends only on the complex structure moduli [5]. The two-sphere has no complex

structure moduli, however, there will be a metric-dependence in terms of the area of the

sphere, which enters as the coupling constant of the 4d sigma-model [22]. We do not expect
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the reduction to depend on the function `(θ), except through the area of the sphere. This

can be checked explicitly by performing the reduction keeping `(θ) arbitrary. However,

for simplicity we consider here the special singular limiting case, when the two-sphere is

deformed to a thin cylinder. This is achieved by taking the metric factor `(θ) as follows

`(θ) = ` = constant for ε < θ < π − ε ,
`(θ)→ smooth caps for θ < ε , π − ε < θ ,

and then taking the limit ε → 0. The limit is singular at the endpoints of the θ-interval,

since at finite ε, the two-sphere has smooth caps, `(θ) ∼ rθ, while at ε = 0, `(θ) = ` is

constant on the whole θ interval and describes the metric on a cylinder, or a sphere with

two punctures. One may worry that such a singular limit is too strong and would change

the theory itself. We will argue below in section 3.4 that the reduction of the theory with `

constant leads to the same four dimensional sigma model as for arbitrary `(θ). The reason

for choosing ` constant is only to simplify the derivation.

We rescale the fields as follows

ϕâ → 1

r`
ϕâ , ϕ→ 1

r`
ϕ , ρ

(1)
± →

1

r`
ρ

(1)
± , ρ

(2)
± →

1

r`
ρ

(2)
± . (3.38)

The action in this limit simplifies to

SF = − r

8`

∫
dθd4x

√
|g4|Tr

(
FµνF

µν +
2

r2
(∂µAθ − ∂θAµ + [Aµ, Aθ])

2

)
Sscalar = − 1

4r`

∫
dθd4x

√
|g4|Tr

(
DµϕâDµϕâ +DµϕDµϕ̄+

1

r2
Dθϕ

âDθϕâ +
1

r2
DθϕDθϕ̄

)
Sρ = −2i

r`

∫
dθd4x

√
|g4|Tr

(
ρ

(1)
p̂+γ

µDµρ
(2)p̂
− + ρ

(1)
p̂−γ

µDµρ
(2)p̂
+ +

1

r
ρ

(1)
p̂+Dθρ

(2)p̂
+ − 1

r
ρ

(1)
p̂−Dθρ

(2)p̂
−

)
SYukawa = − 1

r2`

∫
dθd4x

√
|g4|Tr

(
2ρ

(2)
p̂−

[
ϕp̂q̂, ρ

(1)
q̂−

]
+ 2ρ

(2)
p̂+

[
ϕp̂q̂, ρ

(1)
q̂+

]
(3.39)

+i
(
ρ

(1)
p̂−

[
ϕ̄, ρ

p̂(1)
−

]
+ ρ

(1)
p̂+

[
ϕ̄, ρ

p̂(1)
+

]
− ρ(2)

p̂−

[
ϕ, ρ

p̂(2)
−

]
− ρ(2)

p̂+

[
ϕ, ρ

p̂(2)
+

]))
Squartic = − 1

4r3`

∫
dθd4x

√
|g4|Tr

(
1

2
[ϕâ, ϕb̂][ϕ

â, ϕb̂] + [ϕâ, ϕ][ϕâ, ϕ̄]− 1

4
[ϕ, ϕ̄][ϕ, ϕ̄]

)
Sbdry =

1

6r3`

∫
dθd4x

√
|g4|∂θ Tr

(
εâb̂ĉϕâϕb̂ϕĉ

)
.

The supersymmetry variations of the 5d action summarized in appendix D simplify in the

cylinder limit and for the bosonic fields are

δAµ = −1

r

(
ε(1)p̂γµρ

(2)
p̂− + ε(2)p̂γµρ

(1)
p̂+

)
δAθ = −

(
ε(1)p̂ρ

(2)
p̂+ − ε

(2)p̂ρ
(1)
p̂−

)
δϕâ = i

(
ε(1)

p̂(σ
â)p̂q̂ρ

(2)
q̂+ − ε

(2)
p̂(σ

â)p̂q̂ρ
(1)
q̂−

)
δϕ = −2ε(1)p̂ρ

(1)
p̂+

δϕ̄ = +2ε(2)p̂ρ
(2)
p̂−

(3.40)

– 19 –



J
H
E
P
0
9
(
2
0
1
6
)
1
2
0

and for the fermions

δρ
(1)
p̂+ =

ir

8
Fµνγ

µνε
(1)
p̂ −

i

4
Dµϕγ

µε
(2)
p̂ +

1

4r
Dθϕ

q̂
p̂ε

(1)
q̂ −

1

8r

(
εâb̂ĉ[ϕâ, ϕb̂](σĉ)

q̂
p̂ε

(1)
q̂ −i[ϕ, ϕ̄]ε

(1)
p̂

)
δρ

(1)
p̂−=

i

4
Fµθγ

µε
(1)
p̂ +

1

4
Dµϕ

q̂
p̂ γ

µε
(1)
q̂ +

i

4r
Dθϕε

(2)
p̂ −

1

4r
[ϕ,ϕq̂p̂]ε

(2)
q̂

δρ
(2)
p̂+ =− i

4
Fµθγ

µε
(2)
p̂ −

1

4
Dµϕ

q̂
p̂ γ

µε
(2)
q̂ +

i

4r
Dθϕ̄ε

(1)
p̂ −

1

4r
[ϕ̄, ϕq̂p̂]ε

(1)
q̂ (3.41)

δρ
(2)
p̂−=

ir

8
Fµνγ

µνε
(2)
p̂ +

i

4
Dµϕ̄γ

µε
(1)
p̂ +

1

4r
Dθϕ

q̂
p̂ε

(2)
q̂ −

1

8r

(
εâb̂ĉ[ϕâ, ϕb̂](σĉ)

q̂
p̂ε

(2)
q̂ +i[ϕ, ϕ̄]ε

(2)
p̂

)
.

The theory we obtain is nothing else than the maximally supersymmetric N = 2 SYM

in 5d. A similar reduction of the 6d (0,2) theory on a cigar geometry was considered

in [21]. This five-dimensional SYM theory is defined on a manifold with boundaries, which

are at the end-points of the θ-interval and half of the supersymmetries are broken by the

boundary conditions. It is key to study the boundary terms and boundary conditions in

detail, which will be done in the next subsection.

3.4 Nahm’s equations and boundary considerations

The boundary conditions at the two ends of the θ interval are affected by the singular cylin-

der limit. They can be worked out in the same way as in section 3.2 by enforcing supersym-

metry at the boundaries. In the cylinder limit of the two-sphere `(θ) → ` the mass term

m(θ)2 goes to zero everywhere along the θ-interval except at the endpoints θ = 0, π where

it diverges, forcing the scalar ϕ to vanish at the boundary, as before. The other bound-

ary conditions are found by requiring supersymmetry under the eight supercharges. This

requires that the scalars ϕâ obey the standard Nahm’s equations close to the boundaries

Dθϕ
â − 1

2
εâ
b̂ĉ

[ϕb̂, ϕĉ] = 0 . (3.42)

Furthermore, the boundary behavior of the fields in the gauge Aθ = 0 around θ = 0 are

(although this is not the gauge we will choose later)

ϕ = O(θ) , Aµ = O(θ) , ϕâ =
%(τ â)

θ
+ ϕâ(0) +O(θ) ,

ρ
(1)
p̂− = O(1) , ρ

(2)
p̂+ = O(1) , ρ

(1)
p̂+ = O(θ) , ρ

(2)
p̂− = O(θ) ,

(3.43)

where % : su(2)→ u(k) is an irreducible embedding of su(2) into u(k), with τ as in (3.31).

There are similar boundary conditions at θ = π. The constant term ϕâ(0) in the ϕâ-

expansion is constrained to be in the commutant of embedding %. With % = [k] the

irreducible embedding, this commutant is simply the diagonal u(1) ⊂ u(k), so ϕâ(0) is a

constant diagonal matrix. This condition propagates by supersymmetry to the other fields.

The maximally supersymmetric configurations are vacua of the theory preserving eight

supercharges and are given by solutions to the BPS equations

Dθϕ
â − 1

2
εâ
b̂ĉ

[ϕb̂, ϕĉ] = 0

ϕ = ϕ̄ = Fµν = Fµθ = 0

Dµϕâ = 0 ,

(3.44)
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with all fermions vanishing. The 5d action is minimized and vanishes for supersymmetric

field configurations (3.44). Moreover there is the additional constraint that the scalars ϕâ

have poles at θ = 0, π both characterized by the partition/embedding % = [k]. The first

equation in (3.44) is Nahm’s equation for the fields (ϕâ, Aθ) and the boundary behaviour

of ϕâ are standard Nahm poles.

We can now address the validity of the singular cylinder limit `(θ) = ` constant. In

the following we will reduce the theory on the interval and find that the dominant field

configurations are given by solutions of Nahm’s equations. The resulting four-dimensional

theory will be a sigma model into the moduli space of solutions of Nahm’s equations. It

is easy to see that for arbitrary `(θ) describing a smooth two-sphere metric, the same

dimensional reduction will be dominated by field configurations satisfying the modified

Nahm’s equations (3.28). We can then reasonably expect that the reduction will lead to

a four-dimensional sigma model into the moduli space of the modified Nahm’s equations.

However we argued at the end of section 3.2 that this moduli space is the same as the

moduli space of standard Nahm’s equations, so the reduction for arbitrary `(θ) would lead

to the same sigma model.

Finally, let us comment on generalizations of the Nahm pole boundary conditions with

two arbitrary partitions %0 and %π for the scalar fields at the two boundaries θ = 0, π,

respectively, as described in [22]. The polar boundary behavior at θ = 0 is given by (3.43)

with %→ %0 and the subleading constant piece ϕâ(0) takes values in the commutant of %0 (i.e.

matrices commuting with the image of %0). These boundary conditions preserve the same

amount of supersymmetry and admit global symmetry groups H0 ×Hπ ⊂ SU(k)× SU(k)

acting by gauge transformations at the end-points of the θ-interval. H0 and Hπ are the

groups, whose algebras h0, hπ are respectively the commutants of %0 and %π in su(k). These

global transformations leave the %0 and %π boundary conditions invariant. In the reduction

to 4d, only a subgroup of H0×Hπ can be preserved (see the discussion in section 2 of [22]).

The general (%0, %π) boundary conditions correspond to inserting singularities or ‘punc-

tures’ of the type %0 at one pole of the two-sphere and of the type %π at the other pole in

the 6d (0, 2) theory. All our results can be directly generalized to having general (%0, %π)

Nahm poles at the boundaries of the θ-interval. In this case we would obtain sigma-models

into a different moduli space: the moduli space of Nahm’s equations with (%0, %π) boundary

conditions.

For the sphere with two punctures labeled by two arbitrary partitions %0, %π, it is very

natural to consider the metric describing a cylinder, since this is the topology of a sphere

with two punctures, and the reduction, whether with the sphere or the cylinder metric, is

expected to lead to the same four-dimensional theory. From this point of view, the sphere

without punctures, or “trivial punctures”, is simply a subcase corresponding to the specific

partitions %0 = %π = [k], and we may take the cylinder metric, as for any other choice of

punctures.
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4 Nahm’s equations and 4d sigma-model

In the last section we have seen that the 5d SYM in the background corresponding to the

S2 reduction of the 6d (0, 2) theory requires the scalars ϕâ to satisfy Nahm’s equations, and

the supersymmetric boundary conditions require them to have Nahm poles (3.43) at the

boundary of the interval. The four-dimensional theory is therefore dependent on solutions

to Nahm’s equations. To dimensionally reduce the theory, we pass to a description in

terms of coordinates on the moduli space Mk of solutions to Nahm’s equations and find

the theory to be a four-dimensional sigma-model into Mk with the action

S4d =
1

4r`

∫
d4x
√
|g4|

[
GIJ

(
∂µX

I∂µXJ − 2iξ(1)Ip̂σµDµξ(2)J
p̂

)
− 1

2
RIJKLξ

(1)Ip̂ξ
(1)J
p̂ ξ(2)Kq̂ξ

(2)L
q̂

]
(4.1)

with XI the coordinates on the moduli space

X : M4 → Mk , (4.2)

and ξ(i), where i = 1, 2, Grassmann-valued sections of the pull-back of the tangent bundle

to Mk

ξ(1,2) ∈ Γ(X∗TMk ⊗ S±) , (4.3)

where S± is the spin bundle of ± chirality on M4. The sigma-model for M4 = R4 is

supersymmetric, with N = 2 supersymmetry in 4d. The coupling constant for the sigma-

model is proportional to the area of the two-sphere, which is ∼ r`, as anticipated.

4.1 Poles and monopoles

Before studying the dimensional reduction to 4d, we summarize a few well-known useful

properties of the moduli spaceMk. The moduli spaceMk of solutions to Nahm’s equations,

on an interval with Nahm pole boundary conditions given by the irreducible embedding

% = [k], is well-known to be isomorphic to the moduli space of (framed) SU(2) magnetic

monopoles of charge k [23, 24, 42, 43], which is 4k-dimensional and has a Hyper-Kähler

structure. The metric of the spaces Mk is not known in explicit form, other than for the

cases M1 ' R3 × S1 (which is the position of the monopole in R3 and the large gauge

transformations parametrized by S1) and for the case

M2 ' R3 × S1 ×MAH

Z2
, (4.4)

whereMAH is the Atiyah-Hitchin manifold [24]. A detailed description of the metric in the

latter case will be given in section 6.2. Hitchin showed the equivalence of SU(2) monopoles

of charge k with solutions of Nahm’s equations [43]

dTi
dθ
− 1

2
εijk[Tj , Tk] = 0 , i = 1, 2, 3 , (4.5)

where Ti are matrix-valued, depending on θ ∈ [0, π] and have poles at the endpoints of the

interval, the residues of which define representations of su(2). Furthermore, Donaldson [23]

– 22 –



J
H
E
P
0
9
(
2
0
1
6
)
1
2
0

identified Nahm’s equations in terms of the anti-self-duality equation FA = − ? FA of a

connection

A = Tθdθ +
∑
i

Tidxi , (4.6)

on R4, where Tθ, the gauge field along the interval, can be gauged away and the Ti are

taken independent of the xi coordinates. The metric of the solution-space (modulo gauge

transformations) has a Hyper-Kähler structure [44, 45].

This Nahm moduli space (or monopole moduli space) takes the form [24]

Mk ' R3 ×
S1 ×M0

k

Zk
, (4.7)

where R3 parameterizes the center of mass of the k-centered monopole. A particularly

useful characterization of the reduced Nahm moduli space M0
k is in terms of Slodowy-

slices. Kronheimer has shown that the solutions of Nahm’s equations with no poles at

the boundaries have a moduli space given by the cotangent bundle of the complexified

gauge group, T ∗GC ≡ gC×GC, which has a natural Hyper-Kähler structure. Furthermore,

Bielawski showed in [26, 27], that the moduli space of solutions with Nahm pole boundary

conditions for k-centered SU(2) monopoles is given in terms of

M0
k
∼= {(g,X) ∈ SU(N)C × su(N)C; X ∈ S[k] ∩ g−1S[k]g} ⊂ T ∗SU(k)C , (4.8)

where the Slodowy slice for an embedding ρ : su(2)→ u(k) is

Sρ = {ρ(τ+) + x ∈ su(k)C; [ρ(τ−), x] = 0} . (4.9)

Here τ± ≡ τ1 ± iτ2 are the raising/lowering operators of su(2). The Hyper-Kähler metric

on Mk will play a particularly important role in section 6, where this will be discussed in

more detail.

4.2 Reduction to the 4d sigma-model

To proceed with the reduction on the θ-interval to four dimensions, we take the limit where

the size of the interval, r, is small.6 The terms in the action (3.39) are organized in powers

of r, and in the limit, the divergent terms which are of order r−n, n = 2, 3, must vanish

separately. The terms of order r−1 contain the four-dimensional kinetic terms and lead to

the 4d action. The terms of order rn, n ≥ 0 are subleading and can be set to zero. To

perform this reduction we must expand the fields in powers of r, Φ = Φ0 +Φ1r+Φ2r
2 + · · · ,

and compute the contribution at each order. We find that only the leading term Φ0

contributes to the final 4d action for each field, except for the ‘massive’ scalars ϕ, ϕ̄ and

spinors ρ
(1)
+p̂, ρ

(2)
−p̂, whose leading contribution arise at order r. The final 4d action will arise

with the overall coupling 1
r` .

6By r small, we mean that we consider the effective theory at energies small compared to 1
r
.
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Let us now proceed with detailing the dimensional reduction. At order r−3 we find

the term

S = − 1

4r3`

∫
dθd4x

√
|g4| (4.10)

× Tr

[(
Dθϕ

â − 1

2
εâ
b̂ĉ

[ϕb̂, ϕĉ]

)2

+ [ϕâ, ϕ][ϕâ, ϕ̄] +DθϕDθϕ̄−
1

4
[ϕ, ϕ̄][ϕ, ϕ̄]

]
.

This term is minimized (and actually vanishes),7 up to order O(r−1) corrections, upon

imposing the following constraints: ϕ, ϕ̄ vanish at order r0,

ϕ = ϕ̄ = O(r) , (4.11)

and the fields ϕâ and Aθ obey Nahm’s equations, up to order O(r) corrections,

Dθϕ
â −

εâ
b̂ĉ

2
[ϕb̂, ϕĉ] = 0 , (4.12)

with Nahm pole behaviour % = [k] at the two ends of the interval. The four-dimensional

theory then localizes onto maps X : R4 → Mk, where Mk is the moduli space of u(k)

valued solutions of Nahm’s equations on the interval with %-poles at the boundaries, or

equivalently the moduli space of k-centered SU(2) monopoles, as reviewed in section 4.1.

The fields satisfying Nahm’s equations can be written in terms of an explicit dependence

on the point XI in the moduli space Mk

ϕâ(θ, xµ) = ϕâ(θ,X(xµ)) , Aθ(θ, x
µ) = Aθ(θ,X(xµ)) . (4.13)

Furthermore, we choose the gauge fixing

∂θAθ = 0 . (4.14)

The terms at O(r−2) vanish by imposing the spinors ρ
(1)
p̂+, ρ

(2)
p̂− to have no O(r0) term

ρ
(1)
p̂+ = O(r) , ρ

(2)
p̂− = O(r) . (4.15)

The kinetic term of these spinors becomes of order r and can be dropped in the small r

limit. The fermions ρ
(1)
p̂+, ρ

(2)
p̂− become Lagrange multipliers and can then be integrated out,

leading to the constraints on the fermions ρ
(1)
p̂−, ρ

(2)
p̂+

Dθρ
(2)
+p̂ + i[ϕp̂q̂ , ρ

(2)
+q̂ ] = 0

Dθρ
(1)
−p̂ + i[ϕp̂q̂ , ρ

(1)
−q̂ ] = 0 ,

(4.16)

which are supersymmetric counterparts to Nahm’s equations (3.42). We will use these

localizing equations below to expand the fermionic fields in terms of vectors in the tangent

space to the moduli space of Nahm’s equations, Mk.

7To avoid possible confusions about the positivity of the action, we remind that our conventions are

such that the fields are anti-hermitian.
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Finally we drop the order r kinetic terms of the 4d gauge field and scalars ϕ, ϕ̄ (which

contribute only at order r), and we are left with the terms of order 1
r which describe the 4d

action. The remaining task is to express this action in terms of the fields X = {XI} and the

massless fermionic degrees of freedom, and to integrate out the 4d components of the gauge

field Aµ and the scalars ϕ, ϕ̄, which appear as auxiliary fields in the 4d action. The sublead-

ing terms (at order r) in the ϕâ expansion can similarly be integrated out without producing

any term in the final 4d action, so we ignore these contributions in the rest of the derivation.

In addition one should integrate over the one-loop fluctuations of the fields around their

saddle point configurations. We will assume here that the bosonic and fermionic one-loop

determinants cancel, as is frequently the case in similar computations [46], and now turn

to deriving the 4d action. Some of the technical details have been relegated to appendix E.

4.2.1 Scalars

We will now describe the 4d theory in terms of ‘collective coordinates’ XI , similar to the

approach taken in e.g. [46] for the dimensional reduction of 4d SYM theories on a Riemann

surface resulting in a 2d sigma-model into the Hitchin moduli space. Related work can also

be found in [47, 48]. The resulting theory is a (supersymmetric) sigma-model (4.2), where

for this part of the paper we will consider M4 = R4. The three scalar fields ϕâ and Aθ are

expanded in the collective coordinates as follows

δϕâ = Υâ
IδX

I

δAθ = Υθ
IδX

I ,
(4.17)

where I = 1, . . . , 4k. Here, the basis of the cotangent bundle of Mk is given by

Υâ
I =

∂ϕâ

∂XI
+ [EI , ϕ

â]

Υθ
I =

∂Aθ
∂XI

−DθEI ,

(4.18)

where EI defines a u(k) connection ∇I ≡ ∂I + [EI , .] onMk. The Υâ
I ,Υ

θ
I satisfy linearized

Nahm’s equations

DθΥ
â
I +

[
Υθ
I , ϕ

â
]

= εâb̂ĉ
[
Υ
Ib̂
, ϕĉ
]
. (4.19)

The metric on Mk can be expressed in terms of these one-forms as

GIJ = −
∫
dθTr(Υâ

IΥJâ + Υθ
IΥ

θ
J) . (4.20)

The Hyper-Kähler structure on Mk can be made manifest in this formulation, by defining

the three symplectic forms (see for instance [49])

ωâIJ =

∫
dθTr(εâb̂ĉΥ

Ib̂
ΥJĉ + Υâ

IΥ
θ
J −Υθ

IΥ
â
J) . (4.21)

Some useful properties of these are summarized in appendix E.1. Using the expansion (4.18)

we obtain

Sscalars = − 1

4r`

∫
dθd4x

√
|g4|Tr

(
∂IAθ∂JAθ + ∂Iϕ

â∂Jϕâ

)
∂µX

I ∂µXJ . (4.22)

This will combine with terms arising from integrating out the gauge field to give the usual

sigma-model kinetic term.
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4.2.2 Fermions

The fermions satisfy the equation (4.16), which is the supersymmetry variation of Nahm’s

equations. The spinors therefore take values in the cotangent bundle to the moduli space

Mk and we can expand them in the basis that we defined in (4.18)

ρ
(1)
−p̂ = Υâ

I (σâ)
q̂
p̂λ

(1)I
q̂ + iΥ

(θ)
I λ

(1)I
p̂

ρ
(2)
+p̂ = Υâ

I (σâ)
q̂
p̂λ

(2)I
q̂ + iΥ

(θ)
I λ

(2)I
p̂ ,

(4.23)

where λ
(1)I
p̂ , λ

(2)I
p̂ are spacetime spinors, valued in TMk. The identities (E.2) imply that

the fermionic fields obey the constraints

ωâIJλ
(i)J
p̂ = i(σâ)q̂p̂λ

(i)I
q̂ . (4.24)

The expansion in (4.23) can be seen to satisfy the equation of motion for the spinors (4.16)

by making use of (4.19) and the gauge fixing condition (E.6). Then substituting in the

kinetic term for the spinors and making use of the expression for the metric on Mk (4.20),

the symplectic forms ωâIJ and the constraint (4.24), we find

Sρkin =
8i

rl

∫
d4x
√
|g4|

[
GIJλ

(1)Ip̂γµ∂µλ
(2)J
p̂ (4.25)

−
∫
dθTr

(
Υâ
I∂JΥKâ + Υ

(θ)
I ∂JΥ

(θ)
K

)
λ(1)Ip̂γµλ

(2)K
p̂ ∂µX

J

]
.

4.3 4d sigma-model into the Nahm moduli space

Finally, we need to integrate out the gauge field and the scalars ϕ, ϕ̄, which is done in

appendix E.2. The conclusion is that, in addition to giving the standard kinetic term for

the scalars, this covariantizes the fermion action and results in a quartic fermion interaction

that depends on the Riemann tensor of the moduli space. In summary we find the action

S =
1

r`

∫
d4x
√
|g4|
[

1

4
GIJ∂µX

I∂µXJ+8iGIJλ
(1)Ip̂γµDµλ(2)J

p̂

− 32RIJKL

(
λ(1)Ip̂λ

(1)J
p̂

)(
λ(2)Kq̂λ

(2)L
q̂

)]
,

(4.26)

where Dµλ(2)I
p̂ = ∂µλ

(2)I
p̂ +λ

(2)J
p̂ ΓIJK∂µX

K . The final step is to decompose the spinors λ(i),

as explained in appendix A.2, into 4d Weyl spinors

λ
(1)I
p̂ =

1

4

(
ξ

(1)I
p̂

0

)
, λ

(2)I
p̂ =

1

4

(
0

ξ
(2)I
p̂

)
, (4.27)

obeying the reality conditions

(ξ(1)p)∗ = ξ
(2)
ṗ , (ξ(2)ṗ)∗ = ξ(1)

p , (4.28)

and the constraint

ωâIJξ
(i)J
p̂ = i(σâ)q̂p̂ξ

(i)I
q̂ . (4.29)
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The 4d sigma-model action from flat M4 into the monopole moduli spaceMk is then given

by

S4d =
1

4r`

∫
d4x
√
|g4|
[
GIJ

(
∂µX

I∂µXJ − 2iξ(1)Ip̂σµDµξ(2)J
p̂

)
− 1

2
RIJKLξ

(1)Ip̂ξ
(1)J
p̂ ξ(2)Kq̂ξ

(2)L
q̂

]
.

(4.30)

The supersymmetry transformations are

δXI = −i
(
ε(2)p̂ξ

(1)I
p̂ + ε(1)p̂ξ

(2)I
p̂

)
δξ

(1)I
p̂ =

1

4

(
∂µX

Iσµε
(1)
p̂ − iω

âI
J(σâ)

q̂
p̂∂µX

Jσµε
(1)
q̂

)
− ΓIJKδX

Jξ
(1)K
p̂

δξ
(2)I
p̂ = −1

4

(
∂µX

I σ̄µε
(2)
p̂ − iω

âI
J(σâ)

q̂
p̂∂µX

J σ̄µε
(2)
q̂

)
− ΓIJKδX

Jξ
(2)K
p̂ .

(4.31)

We have thus shown, that the M5-brane theory reduced on an S2 gives rise to a four-

dimensional sigma-model with N = 2 supersymmetry, based on maps from R4 into the

moduli space Mk of Nahm’s equations (with % = [k] boundary conditions).

4.4 Relation to the Bagger-Witten model

There is an equivalent description of the sigma-model in (4.30), which relates it to the

models in [28, 29]. In this alternative description we make use of the reduced holonomy of

the Hyper-Kähler targetMk. We will consider an (Sp(k)×Sp(1))/Z2 subgroup of SO(4k),

under which the complexified tangent bundle of a Hyper-Kähler space decomposes into a

rank 2k vector bundle V and a rank 2 trivial bundle S. The index I decomposes under this

into ip̂, where i = 1, · · · , 2k labels the 2k-dimensional representation of sp(k) and p̂ = 1, 2

is the doublet index of sp(1) = su(2)R. The map I → ip̂ is realized by the invariant tensors

f ip̂I [50], which satisfy

f ip̂If
J
ip̂ = δIJ , f ip̂I f

I
jq̂ = δijδ

p̂
q̂ , 2f ip̂I f

J
iq̂ = δIJδ

p̂
q̂ + iωâI

J(σâ)
p̂
q̂ . (4.32)

The alternative description of the sigma-model is obtained by defining the fields

ξ(1)i ≡ 1

2
f ip̂I ξ

(1)I
p̂ , ξ(2)i ≡ 1

2
f ip̂I ξ

(2)I
p̂ . (4.33)

which can be inverted, by using the constraint on the fermions (4.29)

ξ
(1)I
p̂ = f I ip̂ ξ

(1)i , ξ
(2)I
p̂ = f I ip̂ ξ

(2)i . (4.34)

Using this decomposition the 4d untwisted sigma-model action into the monopole moduli

space Mk can be re-expressed in terms of the fermionic fields (4.33)

S =
1

r`

∫
d4x
√
|g4|

[
1

4
GIJ∂µX

I ∂µXJ − igijξ(1)iσµDµξ
(2)j − 1

4
Wijkl(ξ

(1)iξ(1)j)(ξ(2)kξ(2)l)

]
,

(4.35)
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where the covariant derivative is

Dµξ
(2)i = ∂µξ

(2)i + ξ(2)jwIj
i∂µX

I . (4.36)

The tensors wIj
i and Wijkl are the Sp(k) connection on V and the totally symmetric

curvature tensor, respectively. These are expressed in terms of the Christoffel connection

and Riemann tensor as

wIi
j =

1

2
f jp̂J

(
∂If

J
ip̂ + ΓJIKf

K
ip̂

)
Wijkl =

1

2
f Ip̂if

J
p̂jf

Kq̂
kf

L
q̂lRIJKL .

(4.37)

The supersymmetry transformations are

δXI = −iε(2)p̂f I ip̂ξ
(1)i − iε(1)p̂f I ip̂ξ

(2)i

δξ(1)i =
1

2
f ip̂I∂µX

Iσµε
(1)
p̂ − wIj

iδXIξ(1)j

δξ(2)i = −1

2
f ip̂I∂µX

I σ̄µε
(2)
p̂ − wIj

iδXIξ(2)j .

(4.38)

It is natural to ask how this sigma-model can be extended to general, oriented four-

manifolds M4. Using the topological twist 1 in section 2.1, we will now consider this

generalization.

5 4d topological sigma-models: hyper-Kähler M4

So far we have discussed the five-dimensional theory on flat I×R4, where I is the θ interval,

reducing it to a sigma-model in four-dimensional flat space. The goal in the following is

to define a 4d topological sigma-model on a general four-manifold. We first describe the

twist in terms of the 4d theory in section 5.1.

As we shall see, for the target space a Hyper-Kähler manifold, as is the case for the

Nahm moduli space, and general gauge group, we determine a general form of the sigma-

model for the case of Hyper-Kähler M4. For compact M4, this comprises T 4 and K3

varieties. We will discuss the special reductions for the abelian case and the two-monopole

case for general M4 later on.

5.1 Topological twist

Twist 1 in section 2.1 was formulated for the 6d theory. We now briefly summarize how

this twist acts in 4d. From now on we switch to Euclidean signature.8

Recall, that in 6d, we twist the su(2)` ⊂ su(2)` ⊕ su(2)r of the 4d Lorentz algebra

with the su(2)R ⊂ su(2)R ⊕ so(2)R ⊂ sp(4)R. From the point of view of the 4d theory, we

start with the R-symmetry su(2)R and twist this with the Lorentz symmetry of M4, which

generically is so(4)L ∼= su(2)` ⊕ su(2)r, resulting in

g4d = su(2)R ⊕ so(4)L → gtwist = su(2)twist ⊕ su(2)r . (5.1)

8For this twist we change from Lorentzian to Euclidean signature. In what follows γ0 as defined in

appendix A.2 is replaced with γ0′ = iγ0, where the prime will be omitted.
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In terms of 4d representations, ε
(1)
p̂ and ε

(2)
p̂ are Weyl spinors of positive and negative

chirality respectively. We adopt the convention that negative/positive chirality spinors

correspond to doublets of su(2)`/su(2)r respectively. After the twisting, ε
(2)
p̂ has one scalar

component under su(2)twist ⊕ su(2)r, which is selected by the projections

(γ0aδ
q̂
p̂ + i(σâ)

q̂
p̂)ε

(2)
q̂ = 0 , a ' â = 1, 2, 3 , (5.2)

where the indices a and â are identified in the twisted theory. The spinor ε(2)p̂ parametrizes

the preserved supercharge and can be decomposed as

ε(2)p̂ = u ε̃p̂ , (5.3)

where u is a complex Grassmann-odd parameter and ε̃p̂ is a Grassmann-even spinor nor-

malized so that

ε̃p̂ε̃p̂ = 1 . (5.4)

We can associate the u(1)R charge −1 to the parameter u and consider ε̃p̂ as uncharged.

The su(2)R R-symmetry with which we twist rotates the complex structures of the

target and therefore is identified with the sp(1) ⊂ so(4k) of the Hyper-Kähler target. This

means that SU(2)R/Z2 is mapped to an SO(3) isometry of the metric onMk. In order to do

the twist one needs to know how the coordinates XI transform under this sp(1) ≡ su(2)R.

For the monopole moduli space with charge 1 and 2,M1 andM2, where the explicit metric

on the moduli space is known, the coordinates split into two sets transforming respectively

in the trivial and adjoint representation of su(2)R. This suggests that this property could

hold for moduli spaces Mk, with k > 2. Under the twist, the coordinates transforming

in the adjoint of su(2)R become self-dual two forms on M4 and the resulting theory is

a sigma-model, whose bosonic fields are maps into a reduced target space and self-dual

two-forms. We shall study the M1 and M2 cases in section 6.

A simplification occurs when the bundle of self-dual two-forms on M4 is trivial i.e. when

M4 is Hyper-Kähler. In this case, all the coordinates transform as scalars on M4 after the

twist and therefore the twist can be performed without knowledge of the metric onMk. In

this situation, the twisting procedure is simply a re-writing of the theory, making manifest

the transformation of the fields under the new Lorentz group. This is done in the next

section and gives a topological sigma-model on Hyper-Kähler M4.

5.2 Topological sigma-model for hyper-Kähler M4

The 4d sigma-model into the Nahm moduli space (4.30) can be topologically twisted for

Hyper-Kähler M4. We now show that this reduces to the 4d topological theory by Anselmi

and Frè [31], for the special target space given by the moduli space of Nahm’s equations.

This topological theory describes tri-holomorphic maps from M4 into Mk

X = {XI} : M4 → Mk , (5.5)

which satisfy the triholomorphicity constraint

∂µX
I − (ja)µ

ν∂νX
JωaJ

I = 0 , (5.6)
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where the index a = 1, 2, 3 is summed over and ja and ωa are triplets of complex struc-

tures on M4 and Mk respectively, which define the Hyper-Kähler structures. We will also

comment in section 5.3 on how this can be obtained by first topologically twisting the 5d

SYM theory, and then dimensionally reducing this to 4d. This alternative derivation from

the twisted 5d SYM theory can be found in appendix F.

We now turn to the topological twisting of the 4d sigma-model into the Nahm moduli

space (4.30), by the twist of section 5.1. The fields of the 4d sigma-model become forms

on M4, with the degree depending on their transformations under gtwist

Field g4d gtwist Twisted Field

XI (1,1,1) (1,1) XI

ξ
(1)Ip
p̂ (2,2,1) (1⊕ 3,1) λI , χIµν

ξ
(2)Iṗ
p̂ (2,1,2) (2,1) κIµ

(5.7)

Despite the fact that the index I transforms non-trivially under the R-symmetry SO(3)R,

this will not play a role in the twist for the Hyper-Kähler four-manifold M4: the holonomy

is reduced to su(2)r and the su(2)` connection that we twist with vanishes. To be even

more concrete, the covariant derivatives acting on fields with an index I will not pick up

any su(2)twist connection because the connection vanishes, so we may treat I as an external

index. This is of course not true for non-Hyper-Kähler M4.

The most general decomposition of the spinors into twisted fields is given by

ξ
(1)I
p̂ =

(
λI +

1

4
σµνχIµν

)
ε̃p̂

ξ
(2)I
p̂ = σ̄µκIµε̃p̂ ,

(5.8)

where the Grassmann-odd fields λI , χIµν , κ
I
µ are respectively a scalar, a self-dual two-

form and a one-form, valued in the pull-back of the tangent bundle of the target space

X∗TMk. However the components of ξ
(i)I
p̂ are not all independent as they satisfy the

constraint (4.29). This constraint on the components of ξ
(i)I
p̂ translates into

ωµν
I
Jλ

J = χIµν ,

ωµν
I
Jκ

νJ = −3κIµ ,
(5.9)

where ωµν
I
J ≡ −(jâ)µνω

âI
J . As the self-dual two-form χIµν is not an independent degree

of freedom we shall consider the decomposition of ξ
(1)I
p̂ just in terms of the fermionic scalar

λI , with a convenient normalization,

ξ
(1)I
p̂ = i

(
λI +

1

4
σµνωµν

I
Jλ

J

)
ε̃p̂

ξ
(2)I
p̂ = −1

4
σ̄µκIµε̃p̂ .

(5.10)

Note that this decomposition of ξ
(1)I
p̂ solves the constraint (4.29) automatically, and thus

all components of λI are independent. However, this is not the case for ξ
(2)I
p̂ and we need to
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impose upon the fermionic one-form κIµ the constraint (5.9), which can be re-expressed as

κIµ +
1

3
(ja)µ

νκJν (ωa)J
I = 0 . (5.11)

The action in terms of the twisted fields takes the form

SHK =
1

4r`

∫
d4x
√
|g4|

[
GIJ∂µX

I∂µXJ − 2GIJg
µνλIDµκJν +

1

8
RIJKLκ

I
µκ

J
νλ

KλL
]
,

(5.12)

and is invariant under the supersymmetry transformations

δXI = uλI

δλI = 0

δκIµ = u
(
∂µX

I − ωµνIJ∂νXJ
)
− ΓIJKδX

JκKµ .

(5.13)

This is precisely the form of the topological sigma-model of [31] for Hyper-Kähler M4. The

action takes a simpler form than in the model presented in [31] since the target space Mk

is also Hyper-Kähler (i.e. has a covariantly constant quaternionic structure).

The topological BRST transformation Q (with δu = uQ) squares to zero Q2 = 0

on-shell. To make the algebra close off-shell, we can introduce an auxiliary one-form bIµ
valued in the pull-back of the tangent space toMk, b ∈ Γ(X∗TM⊗Ω1) and satisfying the

constraint

bIµ +
1

3
(ja)µ

νbJν (ωa)J
I = 0 . (5.14)

We then define the BRST transformation to be

QXI = λI

QλI = 0

QκIµ = bIµ − ΓIJKλ
JκKµ

QbIµ =
1

2
RJK

I
Lλ

JλKκLµ − ΓIJKλ
JbKµ .

(5.15)

The action (5.12) can then be recast in the form

Soff−shell
HK = S′ − ST . (5.16)

where S′ and ST are Q-exact and topological, respectively, given by

S′ = Q

(
1

2r`

∫
d4x
√
|g4|GIJgµνκIµ

(
∂νX

J − 1

8
bJν

))
ST =

1

4r`

∫
d4x
√
|g4| (ja)µνωaIJ∂µXI∂νX

J .

(5.17)

Integrating out bIµ
bIµ = ∂µX

I − (ja)µ
ν∂νX

JωaJ
I , (5.18)

we recover the on-shell action (5.12). The term ST is ‘topological’, in the sense that it is

invariant under Hyper-Kähler deformations, and can be written as

ST =
1

2r`

∫
M4

ja ∧X∗ωa , (5.19)
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where X∗ωa is the pull-back of the Kähler forms on Mk, and for Hyper-Kähler M4, ja are

the Kähler forms. From this form it is clear that the term is invariant under Hyper-Kähler

deformations, but not deformations, that break the Hyper-Kählerity.

Finally, to show that the theory is topological, meaning independent of continuous

deformations of the metric (which preserve the Hyper-Kähler structure), we must check that

the energy-momentum tensor Tµν associated with S′ part of the action is Q-exact. We find

Tµν ≡
2
√
g

δS′

δgµν
= GIJb

I
µ

(
∂νX

J − 1

8
bJν

)
+GIJb

I
ν

(
∂µX

J − 1

8
bJµ

)
− gµνL′ , (5.20)

where L is the Lagrangian density in (5.17). This can be expressed as

Tµν =Q

{
GIJκ

I
µ

(
∂νX

J− 1

8
bJν

)
+GIJκ

I
ν

(
∂µX

J− 1

8
bJµ

)
−gµνGIJκIρ

(
∂ρX

J− 1

8
bJρ

)}
.

(5.21)

Clearly it is of interest to study further properties of these theories, in particular observ-

ables, which will be postponed to future work. Some preliminary results for sigma-models

that localize on tri-holomorphic maps have appeared in [31], however only in terms of

simplified setups, where the target is the same as M4.

5.3 Relation to topologically twisted 5d SYM

The topological sigma-model (5.12) for the Hyper-Kähler case, can also be obtained by first

topologically twisting the 5d SYM theory on an interval obtained in section 3, with the

twist described in section 5.1. The derivation is quite similar to the analysis in section 4,

and we summarize the salient points here. The details are provided for the interested reader

in appendix F. There, we also discuss the topological twist 1 in the context of the 5d SYM

theory. The action for the bosonic fields, and some analysis of the boundary conditions

in terms of Nahm data, has appeared in [21]. The supersymmetric version has appeared

in [51], albeit without the supersymmetric boundary conditions.

The topologically twisted 5d SYM theory can be written in terms of the fields Bµν ,

which is a self-dual two-form defined in (F.3), a complex scalar field ϕ, the gauge field Aµ
and fermions, which in terms of the twisted fields have the following decomposition

ρ
(1)
+p̂ = γµψ(1)

µ ε̃p̂

ρ
(1)
−p̂ =

(
η(1) +

1

4
γµνχ(1)

µν

)
ε̃p̂

ρ
(2)
+p̂ = γµψ(2)

µ ε̃p̂

ρ
(2)
−p̂ =

(
η(2) +

1

4
γµνχ(2)

µν

)
ε̃p̂ .

(5.22)

Nahm’s equations in terms of the self-dual two-forms are

DθBµν −
1

2
[Bµρ, Bν

ρ] = 0 . (5.23)

The supersymmetric vacuum configurations which satisfy this, are again characterized in

terms of maps into the moduli space of solutions to the equations (5.23), which is the

k-centered monopole moduli space, when M4 is Hyper-Kähler. The 4d topological theory

is obtained by expanding the fields Bµν , Aθ and the fermions in terms of coordinates on

the moduli space, much like in section 4, and the resulting 4d topological sigma-model is

precisely the one we obtained by twisting the flat space sigma-model in (5.12).
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6 Sigma-models with self-dual two-forms

Having understood the Hyper-Kähler M4 case, we can finally turn to the case of general M4.

The reduction proceeds in the same way as for the Hyper-Kähler case, but the situation

is somewhat complicated by the fact that part of the coordinates XI become sections of

Ω+
2 (M4), namely self-dual two-forms. We consider in detail the abelian case with target

space M1 ' R3 × S1 and the first non-trivial case, corresponding to the reduction of the

5d U(2) theory, with target space M2 ' R3 × S1×M0
2

Z2
, where M0

2 is the Atiyah-Hitchin

manifold.

In the case of an arbitrary (oriented) four-manifold M4, there is no Hyper-Kähler

structure, only an almost quaternionic structure [52]. One could anticipate dimensionally

reducing the twisted 5d SYM theory, as discussed in section 5.3 and appendix F.1. However,

this requires that Nahm’s equations for the self-dual two-forms Bµν

DθBµν −
1

2
[Bµρ, Bν

ρ] = 0 , (6.1)

to be solved locally on patches in M4 and the patching must be defined globally, according

to the transformation of B on overlaps. Generically this means that part of the mapping co-

ordinates XI will transform from one patch to the other and therefore belong to non-trivial

SU(2)` bundles over M4. A similar situation appears in [46] appendix B, when twisting the

sigma-model into the Hitchin moduli space. To understand precisely, which coordinates

XI become sections of SU(2)` bundles on M4, we require a detailed understanding of the

metric on Mk and the action of the SU(2)` isometries. In the following, we will address

this in the case of k = 1, 2, where the metrics are known.

We provide here the analysis in the case of the reduction of the abelian theory, as a

warm-up, and then the reduction of the U(2) theory, which is the first non-trivial case. In

these cases we find that the four-dimensional theory is a topological sigma-model with part

of the coordinates XI on the target space transforming as self-dual two-forms on M4.

6.1 Abelian theory

Recall that the dimensional reduction on S2 of the untwisted single M5-brane theory gives

a free hyper-multiplet in R1,3. We shall now discuss this in the context of the topologically

twisted theory on S2 ×M4 and determine the sigma-model into the one-monopole moduli

space Mk=1
∼= R3 × S1, with R3 the position of the center and S1 parametrizing a phase

angle. As the metric is known, we can identity the coordinates parametrising the position

of the center as those which transform under the su(2)R and the twist gives a topological

model for general M4. In fact, we find the abelian version of a model in [30] in the context

of 4d topological A-models. The 4d field content is the self-dual two-form Bµν , the scalar

φ and (twisted) for the fermions, a scalar η, a vector ψµ, and a self-dual two-form χµν .

We begin by decomposing the target space index I → (a, φ), with a = 1, 2, 3. Under

this decomposition the constraints on the spinors ξ
(i)I
p̂ can be solved as

ξ
(i)â
p̂ = i(σa)q̂p̂ ξ

(i)φ
q̂ , (6.2)
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leaving only ξ
(i)φ
q̂ as the unconstrained fermions in the theory. Under the twist the fields

become

Field g4d gtwist Twisted Field

Xφ (1,1,1) (1,1) φ

Xa (3,1,1) (3,1) Bµν

ξ
(1)φ
p̂ (2,2,1) (1⊕ 3,1) η, χµν

ξ
(2)φ
p̂ (2,1,2) (2,2) ψµ

(6.3)

where the twisted fermions are obtained from the decompositions

ξ
(1)φ
p̂ = i

(
η +

1

4
σµνχµν

)
ε̃p̂

ξ
(2)φ
p̂ = −1

4
σ̄µψµε̃p̂ .

(6.4)

The scalars Xa are decomposed in terms of the self-dual two-form Bµν by making use of

the invariant tensors jaµν

Bµν = −jaµνϕa ≡
i

2
(σµν)p̂q̂ϕ

p̂q̂ . (6.5)

The action for the k = 1 topological sigma-model from flat space into the monopole moduli

space M1 is then

SM1 =
1

4r`

∫
d4x
√
|g4|(∂µφ∂µφ+

1

4
∂µBρσ∂

µBρσ − 2ψµ∂µη + 2ψµ∂νχ
µν) , (6.6)

and it is invariant the supersymmetry transformations

δφ = uη

δBµν = uχµν

δη = δχ = 0

δψµ = u(∂µφ+ ∂νBνµ) .

(6.7)

To show that this action is topological we introduce the auxiliary field

Pµ = ∂µφ+ ∂νBνµ , (6.8)

so that δPµ = 0 and δψµ = uPµ. The action can be written as the sum of a Q-exact term

and a topological term by noting that δu = uQ

SM1 = QV +
1

2r`

∫
M4

dφ ∧ dB , (6.9)

where

V =
1

4r`

∫
M4

d4x
√
|g4| (−ψµPµ + 2ψµ(∂µφ+ ∂νBνµ)) . (6.10)

For M4 without boundary, the second term in (6.9) vanishes upon integrating by parts.

This action can then be generalised to arbitrary M4 by covariantising the derivatives, and

add curvature terms

RµνρσBµνBρσ , RµνBµν . (6.11)
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The resulting theory is a (free) topological sigma-model based on the map φ : M4 →
U(1), together with a self-dual two-form B and fermionic fields and is given by

SM1 =
1

4r`

∫
(?dφ ∧ dφ+ ?dB ∧ dB + 2ψ ∧ (?dη − dχ)) . (6.12)

The supersymmetric vacua, which are the saddle points of the action, satisfy

dφ+ ?dB = 0 , (6.13)

which implies that φ and B are harmonic, and in particular then dφ = 0 and dB = 0. Thus,

φ is a constant scalar, and B is a self-dual 2-form in a cohomology class of H2,+(M4).

Note, likewise one can obtain the same abelian theory starting with the 5d twisted

theory for curved M4 as discussed in section 5.3 and appendix F.1. The reduction can be

done straight forwardly, integrating out the fields ψ(1), χ(2) and η(2), and taking the leading

1/r terms in the action. The match to the action in (6.12) can be found by defining the

fields in the 4d reduction as

Aθ ≡ φ , η ≡ η(1) , ψµ ≡ 4iψ(2)
µ , χµν ≡ χ(1)

µν . (6.14)

The scalar φ is actually defined in a gauge invariant way as φ =
∫ π

0 dθAθ. Moreover it takes

values in iR/Z = U(1),9 where the Z-quotient is due to the large gauge transformations

δ(
∫
Aθ) = 2πin, n ∈ Z.10

6.2 U(2) theory and Atiyah-Hitchin manifold

In this section we study the simplest non-abelian case, corresponding to two M5-branes

wrapped on S2, or equivalently we study the reduction of the 5d U(2) theory to 4d on

an interval with Nahm pole boundary conditions. The flat 4d theory is given by a map

into the 2-monopole moduli space M2, with the action given in (4.30). For the curved

space theory we find a description in terms of a sigma-model into S1 ×R≥0 supplemented

by self-dual two-forms obeying some constraints. We provide a detailed analysis of the

geometrical data entering the sigma-model and we give the bosonic part of the topological

sigma-model on an arbitrary four-manifold M4.

The 2-monopole moduli space has been studied extensively in the literature (see for

instance [24, 53–56]), starting with the work of Atiyah and Hitchin [24]. It has the product

structure

M2 = R3 × S1 ×MAH

Z2
, (6.15)

where R3 parametrizes the position of the center of mass of the 2-monopole system, and

MAH is the Atiyah-Hitchin manifold, which is a four-dimensional Hyper-Kähler manifold.

The metric on R3×S1 is flat, it is associated to the abelian part of the theory U(1) ⊂ U(2).

9The factor i is due to our conventions in which Aθ is purely imaginary.
10These transformations correspond to gauge group elements g = eiα(θ) with α(0) = 0 and α(π) = 2πn.

The quantization of n is required for g to be trivial at the endpoints of the θ interval.
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The non-trivial geometry is carried by the Atiyah-Hitchin (AH) manifold [24], whose Hyper-

Kähler metric (AH metric) is given by

ds2
AH = f(r)2dr2 + a(r)2σ2

1 + b(r)2σ2
2 + c(r)2σ2

3 , (6.16)

where f, a, b, c are functions of r ∈ R≥0 and σi are SO(3) left invariant one-forms

σ1 = − sinψdθ + cos(ψ) sin(θ)dφ

σ2 = cosψdθ + sin(ψ) sin(θ)dφ

σ2 = cos(θ)dφ+ dψ ,

(6.17)

with 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π and 0 ≤ ψ < 2π, with ψ ∼ ψ+ 2π. In addition the coordinates

are subject to the following identifications [53],

(θ, φ, ψ) ∼ (π − θ, φ+ π,−ψ) , (β, ψ) ∼ (β + π, ψ + π) , (6.18)

where the second identification accounts for the Z2 quotient in (6.15), β ∈ [0, 2π] being the

angle coordinate on the S1. The one-forms obey

dσ1 = σ2 ∧ σ3 , (6.19)

and cyclic permutations of 1, 2, 3. The metric has an SO(3) ≡ SO(3)AH isometry (leaving

the one-form σ1,2,3 invariant). The function f can be fixed to any desirable value by a

reparametrization of r (usual choices are f = abc or f = −b/r). The functions a, b, c obey

the differential equation
da

dr
=

f

2bc

(
b2 + c2 − a2 − 2bc

)
, (6.20)

and cyclic permutations of a, b, c. More details on the geometry of MAH, including the

explicit Riemann tensor, can be found in [55].

The geometry is Hyper-Kähler and therefore possesses three complex structures Ja,

a = 1, 2, 3. These three complex structures transform as a triplet of the SO(3)AH isometry.

They extend naturally to complex structures on the full M2 geometry and then transform

as a triplet of SO(3)M2 =diag(SO(3)AH×SO(3)abel), where SO(3)abel is the rotation group

of R3. In the untwisted sigma-model (4.30), this SO(3)M2 isometry is identified with the

SO(3)R R-symmetry of the 4d theory,

Untwisted theory: SO(3)M2 ' SO(3)R . (6.21)

In the twisted sigma-model SO(3)M2 gets identified with the SO(3)` left Lorentz rotations

on the base manifold M4,

Twisted theory: SO(3)M2 ' SO(3)` . (6.22)

Because of this identification, some coordinates onM2 acquire SO(3)` Lorentz indices and

become forms on M4. To make the action of SO(3)` on the M2 coordinates explicit and

manageable, we need to choose appropriate coordinates.
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The treatment of the R3 × S1 coordinates is identical to the abelian case. We have

coordinates φa, a = 1, 2, 3, parametrizing R3, transforming as a triplet of SO(3)M2 , and β

parametrizing S1, scalar under SO(3)M2 . Here and in the rest of the section we identify the

indices â and a, namely we implement the 4d twisting which identifies SO(3)R and SO(3)`.

The treatment of the coordinates onMAH is more involved. Here we propose to intro-

duce the coordinates yi,a ≡ yai, with a, i = 1, 2, 3, forming an SO(3) matrix (yai) ∈ SO(3)

(yai) =


− sinψ sinφ+ cos θ cosφ cosψ − cosψ sinφ− cos θ cosφ sinψ cosφ sin θ

− sinψ cosφ− cos θ sinφ cosψ − cosψ cosφ+ cos θ sinφ sinψ − sinφ sin θ

cosψ sin θ − sin θ sinψ − cos θ

 .

(6.23)

The SO(3)M2 isometries act on the matrix (yai) by left matrix multiplication, so that

the three vectors y1,a, y2,a, y3,a transform as three triplets of SO(3)M2 . The identifica-

tions (6.18) become

(β, y1,a, y2,a, y3,a) ∼ (β, y1,a,−y2,a,−y3,a) , (β, y1,a, y2,a, y3,a) ∼ (β+π,−y1,a,−y2,a, y3,a) .

(6.24)

We can express the AH metric in terms of the yi,a coordinates by using the relations

(σ1)2 =
1

2
(−dy1,ady1,a + dy2,ady2,a + dy3,ady3,a)

(σ2)2 =
1

2
(dy1,ady1,a − dy2,ady2,a + dy3,ady3,a)

(σ3)2 =
1

2
(dy1,ady1,a + dy2,ady2,a − dy3,ady3,a) ,

(6.25)

where the index a is summed over. The AH metric (6.16) is then understood as the pull-

back of the metric

d̃s
2

AH = f2dr2 + v1dy
1,ady1,a + v2dy

2,ady2,a + v3dy
3,ady3,a , (6.26)

where

v1 =
1

2
(−a2 + b2 + c2) , v2 =

1

2
(a2 − b2 + c2) , v3 =

1

2
(a2 + b2 − c2) . (6.27)

As already mentioned the AH manifold MAH admits three complex structures Ja, a =

1, 2, 3, preserved by the above metric, and satisfying the quaternionic relations

(Ja)IJ(Jb)JK = −δabδIK + εabc(Jc)IK , (6.28)

where the indices I, J,K run over the four coordinates of the AH metric.11 Lowering

an index with the AH metric GIJ (6.16), we define the three Kähler forms (Ωa)IJ =

GIK(Ja)KJ . These forms can be nicely expressed as the pull-back of the forms Ω̃a on the

11This is a small abuse of notation compared to the convention of previous sections where I, J,K run

over all the coordinates on Mk.
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space parametrized by the r, yi,a coordinates:12

Ω̃a =
1

2
εabc

[
(−a+b+c)fy1,bdr ∧ dy1,c+(a−b+c)fy2,bdr ∧ dy2,c+(a+b−c)fy3,bdr ∧ dy3,c

− bc dy1,b ∧ dy1,c − ac dy2,b ∧ dy2,c − ab dy3,b ∧ dy3,c
]
. (6.29)

These forms can be further simplified by using the functions w1 = bc, w2 = ca, w3 = ab,

which obey

dw1

dr
= −f (−a+ b+ c) ,

dw2

dr
= −f (c+ a− b) , dw3

dr
= −f (b− c+ a) . (6.30)

We obtain the nice expression

Ω̃a = −1

2
εabc

∑
i=1,2,3

d(wiy
i,b) ∧ dyi,c . (6.31)

The pull-backs Ωa are complex structures onMAH, hence they obey dΩa = 0. This descrip-

tion of the complex structures is convenient, because it is much simpler than the expression

in terms of the Euler angles θ, φ, ψ, but more importantly because it makes manifest the

fact that the three Kähler forms Ωa, or the three complex structures Ja, transform as a

triplet under the SO(3)M2 isometry.

After this preliminary work we can express the bosonic part of the flat space sigma-

model action (4.30) in terms of the new coordinates β, φa, r, yi,a, describing the maps

M4 →M2. Fixing f(r) = 1 for simplicity, we obtain

SM2,bos =
1

4r`

∫
d4x
√
|g4|

(
∂µβ∂µβ+δab∂

µφa∂µφ
b+∂µr∂µr+

3∑
i=1

vi(r)δab∂
µyi,a∂µy

i,b

)
,

(6.32)

where the sigma-model coordinates yi,a are constrained to form an SO(3) matrix (6.23)

and to obey (6.24). These constraints can be stated explicitly

δaby
i,ayj,b = δij , εabcy

1,ay2,by3,c = 1 . (6.33)

The coordinate r is also constrained to be positive r ≥ 0.

Having described the (bosonic) action of the twisted theory on flat space we can easily

derive the (bosonic) action on an arbitrary M4. The fields β, r are scalars on M4, so their

kinetic term is unchanged. The fields φa, yi,a are triplets of SO(3)`. They are mapped to

self-dual two-forms

bµν = −jaµνφa , yiµν = −jaµνyi,a . (6.34)

Their kinetic term gets covariantized by adding suitable curvature terms and we obtain

SM2,bos = − 1

4r`

∫
dβ ∧ ?dβ + db ∧ ?db+ dr ∧ ?dr +

3∑
i=1

vi(r)dy
i ∧ ?dyi . (6.35)

The constraints (6.33) become yiµνy
jµν = 4δij and y1

µ
νy2

ν
ρy3

ρ
µ = 4.

12We found the expression of one complex structure in [54] in terms of the Euler angles θ, φ, ψ and

worked out the re-writing in terms of yi,a. The other two complex structures were easily obtained by cyclic

permutation of the yi,a coordinates.
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The fermionic part of the action SM2,ferm that is obtained from the untwisted ac-

tion (4.30), is somewhat more involved, due to the presence of the four-Fermi interaction

and the constraint (4.29) on the fields ξ(i)I . From the abelian part of the U(2) theory

we obtain the fermionic field content of the abelian model (6.12). In the following we

describe only the fermions related to MAH . Explicitly we can define the push-forward of

the fermionic fields

ξ
(1)Ĩp
q̂ = ∂Iy

Ĩξ
(1)Ip
q̂ , ξ

(2)Ĩ ṗ
q̂ = ∂Iy

Ĩξ
(2)Iṗ
q̂ , (6.36)

where the index Ĩ runs over r, (i, a). In the twisted theory we identify the su(2)` and su(2)R
doublet indices q and q̂ and the fermionic fields of the resulting sigma model are a vector

κµ, a scalar η and self-dual two-forms ηi,a ∼ ηiµν satisfying the constraints

δaby
i,aηj,b = −δabyj,aηi,b ,

∑
j

yj,aηj,b = −
∑
j

yj,bηj,a . (6.37)

The other fields appearing after the twisting are expect to be expressed in terms the above

fields by solving the constraints (4.29). However the computation is rather involved and

we do not provide an explicit expression here.

The sigma-model we obtain seems to be different from the sigma-models studied in

the literature so far. It is a sigma-model with target S1 × R≥0 with constrained self-dual

two-forms. To study this sigma-model, and in particular to show that it defines a topolog-

ical theory, one would need to work out the details of the fermionic part of the Lagrangian

and the action of the preserved supersymmetry (or BRST) transformation on the fields.

We leave this for future work.

To conclude we can see how the bosonic action (6.35) compares with the bosonic action

of the topological model that we obtained for Hyper-Kähler M4 (5.12). More precisely we

would like to know how the action (6.35) decomposes into Q-exact plus topological terms

as in (5.17). For this we simply evaluate ST for the sigma-model intoM2, using the explicit

form of the Ωa (6.31). The terms involving the fields φ and b vanish upon integration by

parts as in the abelian case, assuming M4 has no boundary. When the theory is defined

on an generic four-manifold M4, the remaining contribution is

ST =
1

2r`

∫
ja ∧X∗(Ωa) =

1

4r`

∫
ja ∧ dxµ ∧ dxν(Ωa)IJDµX

IDνX
J + curv. , (6.38)

where Dµ is covariant with respect to the Christoffel connection and SU(2)` Lorentz rota-

tions (in the tangent space), and “+curv.” denotes extra curvature terms, which appear

when we consider a general curved M4 and covariantize ST . Replacing XI → r, yi,a we

– 39 –



J
H
E
P
0
9
(
2
0
1
6
)
1
2
0

obtain

ST = −
3∑
i=1

1

16r`

∫
dxµ ∧ dxν ∧ dxρ ∧ dxσεabc(ja)ρσDµ(wiy

b,i)Dνy
c,i + curv.

= −
3∑
i=1

1

16r`

∫
d4x
√
gεµνρσ (jb)ρ

τ (jc)τσDµ(wiy
b,i)Dνy

c,i + curv.

= −
3∑
i=1

1

16r`

∫
d4x
√
gεµνρσDµ(wiy

i
ρ
τ )Dνy

i
τσ + curv.

=

3∑
i=1

1

16r`

∫
d4x
√
gεµνρσ(wiy

i
ρ
τ )D[µDν]y

i
τσ + curv.

= 0 .

(6.39)

From the third to the fourth line we have integrated by parts assuming M4 has no bound-

ary. The result on the fourth line can be recognized as containing only curvature terms

(no derivatives on the fields r, yiµν) which must cancel each-other. This is necessary for

supersymmetry to be preserved (since this term must be supersymmetric by itself). We

conclude that the sigma-model action (6.35) must be Q-exact, without an extra topological

term. Clearly, studying topological observables and further properties of this model are

interesting directions for future investigations.

7 Conclusions and outlook

In this paper we determined the dimensional reduction of the 6d N = (0, 2) theory on

S2, and found this to be a 4d sigma-model into the moduli space Mk of k-centered SU(2)

monopoles. There are several exciting follow-up questions to consider:

1. 4d-2d correspondence:

let us comment now on the proposed correspondence between 2d N = (0, 2) theories

with a half-topological twist, and four-dimensional topological sigma-models intoMk.

The setup we considered, much like the AGT and 3d-3d correspondences, implies a

dependence of the 2d theory on the geometric properties of the four-manifold. In [13]

such a dictionary was setup in the context of the torus-reduction, which leads to the

Vafa-Witten topological field theory in 4d. It would be very important to develop such

a dictionary in the present case. From the point of view of the 2d theory, the twist

along M4 is the same, and thus the dictionary developed between the topological data

of M4 and matter content of the 2d theory will apply here as well. The key difference

is that we consider this theory on a two-sphere, and the corresponding ‘dual’ is not the

Vafa-Witten theory, but the topological sigma-model into the Nahm moduli space.

2. Observables in 2d (0, 2) theories:

recently much progress has been made in 2d (0, 2) theories, both in constructing new

classes of such theories [13, 57–59] as well as studying anomalies [60] and computing

correlation functions using localization [17]. In particular, the localization results are
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based on deformations of N = (2, 2) theories and the associated localization computa-

tions in [61, 62]. The theories obtained in this paper from the compactification of the

M5-brane theory do not necessarily have such a (2, 2) locus and thus extending the

results on localization beyond the models studied in [17] would be most interesting.

3. Observables in the 4d topological sigma-model:

an equally pressing question is to develop the theory on M4, determine the coho-

mology of the twisted supercharges, and compute topological observables. For the

case of Hyper-Kähler M4, with the target also given by M4, some observables of

the topological sigma-model were discussed in [31]. However, we find ourselves in a

more general situation, where the target is a specific 4k dimensional Hyper-Kähler

manifold. For the general M4 case we clearly get a new class of theories, which have

scalars and self-dual two-forms. The only place where a similar theory has thus far

appeared that we are aware of, is in [30] in the context of 4d topological A-models.

We have studied the topological sigma-models for k = 1, 2, and the explicit topolog-

ical sigma-models for k ≥ 3 remain unknown. It would certainly be one of the most

interesting directions to study these.

4. Generalization to spheres with punctures:

the analysis in this paper for the sphere reduction can be easily generalized to spheres

with two (general) punctures, i.e. with different boundary conditions for the scalars in

the 5d SYM theory. We expect the 4d theory to be again a topological sigma-model,

however, now into the moduli space of Nahm’s equations with modified boundary con-

ditions. Studying this case may provide further interesting examples of 4d topological

field theories, which seem to be an interesting class of models to study in the future.

5. Reduction to three-dimensions and 3d duality:

the four-dimensional sigma-model that we found by compactification of the 6d (0,2)

theory on a two-sphere, can be further reduced on a circle S1 to give rise to a

three-dimensional sigma-model into the sameMk target space. Similarly the twisted

sigma-model on a manifold S1 ×M3 reduces along S1 to a twisted sigma-model on

M3. On the other hand the compactification of the twisted 6d (0,2) Ak theory on

S2 × S1 ×M3 can be performed by reducing first on S1, obtaining 5d N = 2 SYM

theory on S2 ×M3, and then reducing on S2. We expect this reduction to yield a

different three-dimensional theory, which would be dual to the 3d sigma model into

Mk, for M3 = R3, or twisted sigma model, for general M3, that we studied in this

paper. This new duality would be understood as an extension of 3d mirror symme-

try [63] to topological theories. To our knowledge the reduction of 5d SYM on the

topologically twisted S2 has not been studied.13 It would be very interesting to study

it and to further investigate these ideas in the future.

13Note that the reduction of 5d SYM on a two-sphere, but in a different supersymmetric background,

has been considered in [64, 65], in relation with the 3d-3d correspondence [7, 66], and leads to an SL(k,C)

Chern-Simons theory on M3 with a complex Chern-Simons coupling.
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Lorentz indices 6d 5d 4d 3d 2d

Curved vector µ, ν µ′, ν ′ µ, ν . .

Flat vector A,B A′, B′ A,B a, b x, y

Spinors m,n m′, n′ p, q; ṗ, q̇ . .

(4 of su(4)L) (4 of sp(4)L) (2 of su(2)`; 2 of su(2)r)

Table 2. Spacetime indices in various dimensions.

so(5)R sp(4)R so(3)R su(2)R so(2)R

Index for the fundamental rep Â, B̂ m̂, n̂ â, b̂ p̂, q̂ x̂, ŷ

Table 3. R-symmetry indices.
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A Conventions and spinor decompositions

A.1 Indices

Our index conventions, for Lorentz and R-symmetry representations, which are used

throughout the paper are summarized in the following tables. Note that R-symmetry

indices are always hatted. Furthermore, note that m = 1, · · · , 8, however only four com-

ponents are independent for Weyl spinors in 6d.

A.2 Gamma-matrices and spinors: 6d, 5d and 4d

We work with the mostly + signature (−,+, · · · ,+). The gamma matrices ΓA in 6d, γA
′

in 5d and γA in 4d, respectively, are defined as follows:

Γ1 = iσ2 ⊗ 12 ⊗ σ1 ≡ γ1 ⊗ σ1

Γ2 = σ1 ⊗ σ1 ⊗ σ1 ≡ γ2 ⊗ σ1

Γ3 = σ1 ⊗ σ2 ⊗ σ1 ≡ γ3 ⊗ σ1

Γ4 = σ1 ⊗ σ3 ⊗ σ1 ≡ γ4 ⊗ σ1

Γ5 = −σ3 ⊗ 12 ⊗ σ1 ≡ γ5 ⊗ σ1

Γ6 = 12 ⊗ 12 ⊗ σ2 , (A.1)
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with the Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (A.2)

The 6d gamma matrices satisfy the Clifford algebra

{ΓA,ΓB} = 2ηAB , (A.3)

and similarly for the 5d and 4d gamma matrices.

Futhermore we define

ΓA1A2...An ≡ Γ[A1A2...An] =
1

n!

∑
w∈Sn

(−1)wΓAw(1) ΓAw(2) . . .ΓAw(n) , (A.4)

and similarly for all types of gamma matrices.

The chirality matrix in 4d is γ5 = −σ3 ⊗ 12 and in 6d is defined by

Γ7 = Γ1Γ2 · · ·Γ6 = 12 ⊗ 12 ⊗ σ3 . (A.5)

The charge conjugation matrices in 6d, 5d and 4d are defined by

C(6d) = σ3 ⊗ σ2 ⊗ σ2 ≡ C
C(5d) = C(4d) = −i σ3 ⊗ σ2 ≡ C . (A.6)

They obey the identities(
ΓA
)T

= −CΓAC−1 , A = 1, · · · , 6.(
γA
′
)T

= CγA
′
C−1 , A′ = 1, · · · , 5.(

γA
)T

= CγAC−1 , A = 1, · · · , 4. (A.7)

To define irreducible spinors we also introduce the B-matrices

B(6d) = iσ1 ⊗ σ2 ⊗ σ3

B(5d) = B(4d) = i σ1 ⊗ σ2 , (A.8)

which satisfy (
ΓA
)∗

= B(6d)Γ
AB−1

(6d) , A = 1, · · · , 6.(
γA
′
)∗

= −B(5d)γ
A′B−1

(5d) , A′ = 1, · · · , 5.(
γA
)∗

= −B(4d)γ
AB−1

(4d) , A = 1, · · · , 4. (A.9)

The 6d Dirac spinors have eight complex components. Irreducible spinors have a

definite chirality and have only four complex components. For instance a spinor ρ of positive

chirality satisfies Γ7ρ = ρ. Similarly Dirac spinors in 4d have four complex components

and Weyl spinors obey a chirality projection, for instance γ5ψ = ψ for positive chirality,

– 43 –



J
H
E
P
0
9
(
2
0
1
6
)
1
2
0

and have two complex components. The components of positive and negative, chirality

spinors in 4d are denoted with the index ṗ = 1, 2 and p = 1, 2, respectively.

The indices of Weyl spinors in 6d can be raised and lowered using the SW/NE (South-

West/North-East) convention:

ρm = ρnC
nm , ρm = Cmnρ

n , (A.10)

with (Cmn) = (Cmn) = C. There is a slight abuse of notation here: the indices m,n go from

1 to 8 here (instead of 1 to 4), but half of the spinor components are zero due to the chirality

condition. When indices are omitted the contraction is implicitly SW/NE. For instance

ρρ̃ = ρmρ̃
m , ρΓAρ̃ = ρn(ΓA)nmρ̃

m , (A.11)

with (ΓA)nm the components of ΓA as given above.

The conventions on 5d and 4d spinors are analogous: indices are raised and lowered us-

ing the SW/NE convention with (Cm
′n′) = (Cm′n′) = C in 5d and with the epsilon matrices

εpq = εpq = εṗq̇ = εṗq̇, with ε12 = 1. They are contracted using the SW/NE convention.

We also introduce gamma matrices ΓÂ for the sp(4)R = so(5)R R-symmetry

Γ1̂ = σ1 ⊗ σ3 , Γ2̂ = σ2 ⊗ σ3 , Γ3̂ = σ3 ⊗ σ3 , Γ4̂ = 12 ⊗ σ2 , Γ5̂ = 12 ⊗ σ1 . (A.12)

For the R-symmetry indices we use the opposite convention compared to the Lorentz in-

dices, namely indices are raised and lowered with the NW/SE convention:

ρm̂ = ρn̂Ωn̂m̂ , ρm̂ = Ωm̂n̂ρn̂ , (A.13)

with (Ωm̂n̂) = (Ωm̂n̂) = iσ2 ⊗ σ1. When unspecified, R-symmetry indices are contracted

with the NW/SE convention, so that we have for instance ρρ̃ = ρm̂mρ̃
m
m̂.

A collection of Weyl spinors ρm̂ in 6d transforming in the 4 of sp(4)R can further

satisfy a Symplectic-Majorana condition (which exists in Lorentzian signature, but not in

Euclidean signature)

(ρm̂)∗ = B(6d)ρ
m̂ . (A.14)

In 5d the Symplectic-Majorana condition on spinors is similarly

(ρm̂)∗ = B(5d)ρ
m̂ . (A.15)

In 4d the Weyl spinors are irreducible, however 4d Dirac spinor can obey a Symplectic-

Majorana condition identical to (A.15).

Let us finally comment on the conventions for the supersymmetries and their chiralities

in 6d. The fermions and supercharges have the same chirality, which we will chose to be

4 of so(6)L, and we consider an N = (0, 2) theory in 6d. Subsequently, from the invariant

contraction of spinors (A.11) and (A.10), it follows since {Γ7, C} = 0 and CT = C, that the

supersymmetry transformation parameters are of opposite chirality, i.e. left chiral spinors

transforming in 4.
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A.3 Spinor decompositions

6d to 5d. A Dirac spinor in 6d decomposes into two 5d spinors. A 6d spinor ρ = (ρm)

(eight components) of positive chirality reduces to a single 5d spinor ρ = (ρm
′
), with the

embedding

ρ = ρ⊗
(

1

0

)
. (A.16)

For a 6d spinor of negative chirality, the 5d spinor is embedded in the complementary four

spinor components. The 6d Symplectic-Majorana condition (A.14) on ρ
m̂

reduces to the

5d Symplectic-Majorana condition (A.15) on ρm̂ if ρ
m̂

has positive chirality, or reduces to

the opposite reality condition (extra minus sign on the right hand side of (A.15)), if ρ
m̂

has negative chirality.

5d to 4d. A 5d spinor ρ = (ρm
′
) decomposes into two 4d Weyl spinors ψ+, ψ− of opposite

chiralities, with the embedding

ρ =

(
0

1

)
⊗ ψ+ +

(
1

0

)
⊗ ψ− =

(
ψ−
ψ+

)
. (A.17)

If ρm̂ obeys the 5d Symplectic-Majorana condition (A.15), the spinors ψm̂+ , ψ
m̂
− are not

independent. They form four-component spinors which obey a 4d Symplectic-Majorana

condition: (
ψ−m̂
ψ+m̂

)∗
= B(4d)

(
ψ−

m̂

ψ+
m̂

)
. (A.18)

With these conventions, we obtain for two 5d spinors ρ, ρ̃ the decomposition of bilinears

ρρ̃ = ρm′ ρ̃
m′ = ψ+pψ̃

p
+ − ψ−ṗψ̃

ṗ
− = ψ+ψ̃+ − ψ−ψ̃− ,

ργ5ρ̃ = ρm′(γ
5)m

′
n′ ρ̃

n′ = ψ+pψ̃
p
+ + ψ−ṗψ̃

ṗ
− = ψ+ψ̃+ + ψ−ψ̃−

ργµρ̃ = ψ+p(τ
µ)pṗψ̃

ṗ
− + ψ−ṗ(τ̄

µ)ṗpψ̃
p
+ = ψ+τ

µψ̃− + ψ−τ̄
µψ̃+ , (A.19)

with (τ1, τ2, τ3, τ4) = (−12, σ1, σ2, σ3) and (τ̄1, τ̄2, τ̄3, τ̄4) = (−12,−σ1,−σ2,−σ3).

R-symmetry reduction. In this paper we consider the reduction of the R-symmetry

group

sp(4)R → su(2)R ⊕ so(2)R . (A.20)

The fundamental index m̂ of sp(4)R decomposes into the index (p̂, x̂) of su(2)R ⊕ so(2)R.

A (collection of) spinors ρm̂ in any spacetime dimension can be gathered in a column

four-vector ρ with each component being a full spinor. The decomposition is then

ρ = ρ(1) ⊗
(

1

0

)
+ ρ(2) ⊗

(
0

1

)
, (A.21)

with ρ(1) = (ρ(1)
p̂) transforming in the (2)+1 of su(2)R ⊕ so(2)R and ρ(2) = (ρ(2)

p̂) trans-

forming in the (2)−1. So the four spinors ρm̂ get replaced by the four spinors ρ(1)
p̂, ρ

(2)
p̂.
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From the sp(4)R invariant tensor Ωm̂n̂, with Ω = ε ⊗ σ1, and the explicit gamma matri-

ces (A.12) we find the bilinear decompositions. For instance

ρm̂ρ̃m̂ = ρ(1)p̂ρ̃
(2)
p̂ + ρ(2)p̂ρ̃

(1)
p̂

ρΓâρ̃ ≡ ρm̂(Γâ)m̂
n̂ρ̃n̂ = ρ(2)p̂(σâ)p̂

q̂ρ̃
(1)
q̂ − ρ

(1)p̂(σâ)p̂
q̂ρ̃

(2)
q̂

≡ ρ(2)σâρ̃(1) − ρ(1)σâρ̃(2) , â = 1, 2, 3 .

Another useful identity is

(ΓÂ)m̂n̂(Γ
Â

)r̂ŝ = 4δ[m̂
r̂δ
n̂]
ŝ − Ωm̂n̂Ωr̂ŝ . (A.22)

B Killing spinors for the S2 background

In this appendix we determine the solutions to the Killing spinor equations for the S2

background of section 2.3.

B.1 δψm̂A = 0

The supersymmetry transformations of conformal supergravity are parametrized by two

complex eight-component spinors εm̂, ηm̂, of positive chirality and negative chirality, respec-

tively,14 with an index m̂ transforming in the 4 of sp(4)R. The first Killing spinor equation is

0 = δψm̂A = DAεm̂ +
1

24
(T m̂n̂)BCDΓBCDΓAεn̂ + ΓAη

m̂ (B.1)

with

Dµεm̂ = ∂µε
m̂ +

1

2
bµε

m̂ +
1

4
ω̃BCµ ΓBCε

m̂ − 1

2
V m̂
µ n̂ε

n̂

ω̃ABµ = 2eν[A∂[µeν]
B] − eρ[AeB]σeCµ ∂ρeσC + 2e[A

µ b
B] = ωABµ + 2e[A

µ b
B] ,

(B.2)

where the background fields have been converted to sp(4)R representations with

V m̂
A n̂ = V

AB̂Ĉ
(ΓB̂Ĉ)m̂n̂ , T m̂n̂BCD = T

ÂBCD
(ΓÂ)m̂n̂ , Dm̂n̂

r̂ŝ = D
ÂB̂

(ΓÂ)m̂n̂(ΓB̂)r̂ŝ .

(B.3)

We choose to set η = 0. After inserting our ansatz, in particular T m̂n̂BCD = bA = 0, we obtain

0 = ∂φε
m̂ − 1

2r
`′(θ) Γ56εm̂ − 1

2
v(θ) (Γ4̂5̂)m̂n̂ε

n̂

0 = ∂µ′ε
m̂ , µ′ = x1, x2, x3, x4, θ ,

(B.4)

We find solutions for constant spinors εm̂ subject to the constraint

0 = −Γ56εm̂ + (Γ4̂5̂)m̂n̂ε
n̂ , (B.5)

with

v(θ) = −`
′(θ)

r
. (B.6)

The condition (B.5) projects out half of the components of a constant spinor, leaving eight

real supercharges in Lorentzian signature, or eight complex supercharges in Euclidean

signature.

14In Lorentzian signature these spinors obey a Symplectic-Majorana condition, leaving 16+16 real super-

charges.
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B.2 δχm̂n̂r̂ = 0

The second Killing spinor equation is given by

0 = δχm̂n̂r̂ (B.7)

=
5

32

(
DAT m̂n̂BCD

)
ΓBCDΓAεr̂ −

15

16
ΓBCR

[m̂
BC r̂ε

n̂] − 1

4
Dm̂n̂

r̂ŝε
ŝ +

5

8
T m̂n̂BCDΓBCDηr̂ − traces ,

with

DµT m̂n̂BCD = ∂µT
m̂n̂
BCD + 3ω̃

E
µ[BT

m̂n̂
CD]E − bµ T

m̂n̂
BCD + V

[m̂
µr̂ T

n̂]r̂
BCD

Rm̂n̂µν = 2∂[µV
m̂n̂
ν] + V

r̂(m̂
[µ V

n̂)
ν]r̂ .

(B.8)

Here, ‘traces’ indicates terms proportional to invariant tensors Ωm̂n̂, δm̂r̂ , δ
n̂
r̂ . Again the

background fields are converted to sp(4)R representations using (B.3).

With T m̂n̂BCD = 0, we obtain the simpler conditions

0 = −15

4
ΓBCR

[m̂
BC r̂ε

n̂] −Dm̂n̂
r̂ŝε

ŝ − traces . (B.9)

The R-symmetry field strength has a single non-vanishing component, corresponding to a

flux on S2

Rm̂n̂θφ = −Rm̂n̂φθ = −`
′′(θ)

r
(Γ4̂5̂)m̂n̂ . (B.10)

In flat space indices this becomes

Rm̂n̂56 = −Rm̂n̂65 = − `′′(θ)

r2`(θ)
(Γ4̂5̂)m̂n̂ . (B.11)

Moreover our ansätze for D
ÂB̂

(2.33) can be re-expressed in sp(4)R indices as:

Dm̂n̂
r̂ŝ = d

[
5(Γ4̂5̂)[m̂

r̂(Γ
4̂5̂)n̂]

ŝ − δ[m̂
r̂δ
n̂]
ŝ − Ωm̂n̂Ωr̂ŝ

]
, (B.12)

where the two last terms lead only to “trace” contributions in (B.9) and hence drop from

the equations. We obtain

0 =
15

2

`′′(θ)

r2`(θ)
Γ56(Γ4̂5̂)[m̂

r̂ε
n̂] − 5d(Γ4̂5̂)[m̂

r̂(Γ
4̂5̂)n̂]

ŝε
ŝ . (B.13)

Using (B.5), we solve the equations without further constraints on εm̂ if

d =
3

2

`′′(θ)

r2`(θ)
. (B.14)

The background we found corresponds to the twisting u(1)L ⊕ u(1)R → u(1) on S2. It

preserves half of the supersymmetries (and no conformal supersymmetries) of the flat space

theory, and corresponds to the topological half-twist of the 2d theory.
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C 6d to 5d reduction for bµ = 0

In this appendix we detail the reduction of the six dimensional equations of motion on an

S1. This is done following [9, 37] however we choose to gauge fix bµ = 0, which is possible

without loss of generality.

We start by decomposing the six dimensional frame as

e
µ

A =

(
eµ
′

A′ eφA′ = −CA′
eµ
′

6 = 0 eφ6 = α

)
eAµ =

(
eA
′

µ′ e6
µ′ = α−1Cµ′

eA
′

φ = 0 e6
φ = α−1

)
, (C.1)

where the 5d indices are primed. We work in the gauge bµ = 0, which is achieved by fixing

the special conformal generators, KA. Note that this choice is different from the gauge

fixing of bµ in [9, 37], in particular α is not covariantly constant in our case. Furthermore,

we fix the conformal supersymmetry generators to ensure ψ5 = 0, which means that e
µ

6 = 0

is invariant under supersymmetry transformations. For a general background the bosonic

supergravity fields descend to 5d fields as

Dm̂n̂
r̂ŝ → Dm̂n̂

r̂ŝ

V m̂n̂
A →

{
V m̂n̂
A′ A 6= 6

Sm̂n̂ A = 6

T m̂n̂ABC → T m̂n̂A′B′6 ≡ T m̂n̂A′B′ .

(C.2)

The components of the spin connection along the φ direction are given by

ωA
′6

φ =
1

α2
eµ
′A′∂µ′α , ωA

′B′
φ = − 1

2α2
GA

′B′ , ωA
′6

µ′ =
1

2α
eν
′A′Gµ′ν′ +

1

α2
Cµ′e

A′
ν′ ∂

ν′α ,

(C.3)

where G = dC, and can be derived from the six dimensional vielbein using

ωABµ = 2eν[A∂[µe
B]
ν] − e

ρ[AeB]σeCµ ∂ρeσC . (C.4)

C.1 Equations of motion for B

The 6d equations of motion for the three-form H are given by

dH = 0

H−ABC −
1

2
Φm̂n̂T

m̂n̂
ABC = 0 .

(C.5)

We decompose H into 5d components

H =
1

3!
HA′B′C′e

A′ ∧ eB′ ∧C′ +
1

2
HD′E′6e

D′ ∧ eE′ ∧ e6 . (C.6)

We can solve the second equation of motion by setting

HA′B′6 = αFA′B′

HA′B′C′ =
1

2
εA′B′C′

D′E′
(
αFD′E′ − Φm̂n̂T

m̂n̂
D′E′

)
,

(C.7)
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where Fµ′ν′ is a two-form in five dimensions. Substituting this into the expansion of H and

reducing to 5d we obtain

H = α ?5d

(
F − 1

α
Φm̂n̂T

m̂n̂

)
+ F ∧ C + F ∧ dϕ . (C.8)

The equations of motion dH = 0 imply

dF = 0 , F ∧ dC + d
(
α ?5 F − Φm̂n̂ ?5 T

m̂n̂
)
, (C.9)

which can be integrated to the 5d action

SF = −
∫ (

αF̃ ∧ ?5dF̃ + C ∧ F ∧ F
)
, (C.10)

where

F̃ = F − 1

α
Φm̂n̂T

m̂n̂ . (C.11)

Together with the constraint dF = 0, which identifies F with the field strength of a five-

dimensional connection A, given by Fµ′ν′ = ∂µ′Aν′ − ∂ν′Aµ′ .

C.2 Equations of motion for the scalars

The dimensionally reduced 6d scalar equations of motion are

D2Φm̂n̂ + 2FA′B′T
A′B′

m̂n̂ + (MΦ)m̂n̂r̂ŝ Φr̂ŝ = 0 , (C.12)

where

Dµ′Φm̂n̂ = ∂µ′ + V
[m̂
µ′r̂Φ

n̂]r̂

D2Φm̂n̂ = (∂A
′
+ ωB

′A′

B′ )DA′Φm̂n̂ + V
[̂m
µ′r̂D

µ′
Φn̂]r̂ (C.13)

(MΦ)m̂n̂r̂ŝ = −R6d

5
δ

[m̂
r̂ δ

n̂]
ŝ +

1

α
Cµ

′
∂µ′αS

[m̂
r̂ Φn̂]r̂ +

1

2
α2(S

[m̂
r̂ S

n̂]
ŝ − S

t̂
ŝS

[m̂

t̂
δ
n̂]
r̂ )− 1

15
Dm̂n̂
r̂ŝ − TA

′B′

r̂ŝ T m̂n̂A′B′ .

The 6d Ricci scalar R6d can be rewritten of course in terms of the 5d fields. This equation

of motion can be integrated to the following action

SΦ =−
∫
d5x

√
|g|α−1

(
DA′Φ

m̂n̂DA′Φm̂n̂+4Φm̂n̂FA′B′T
A′B′

m̂n̂ −Φm̂n̂(MΦ)m̂n̂r̂ŝ Φr̂ŝ
)
. (C.14)

C.3 Equations of motion for the fermions

The 6d fermions are decomposed as follows

ρmm̂ →

(
0

iρm
′m̂

)
. (C.15)

Then for a general background the six dimensional equation of motion reduces to

i /Dρm
′m̂ + (Mρ)

m′m̂
n′n̂ ρn

′n̂ = 0 , (C.16)
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where

Dµ′ρ
m′m̂ =

(
∂µ′ +

1

4
ωA
′B′

µ′ γA′B′

)
ρm
′m̂ − 1

2
V m̂
µ′n̂ρ

n̂

(Mρ)
m′m̂
n′n̂ = α

(
−1

2
Sm̂n̂ δ

m′
n′ +

1

8α2
GA′B′(γ

A′B′)m
′

n′ δ
m̂
n̂ −

i

2α2
eµ
′A′∂µ′α(γA′)

m′
n′ δ

m̂
n̂

)
+

1

2α2
(γµ

′
γν
′
)m
′

n′ δ
m̂
n̂ Cµ′∂ν′α+

1

2
TA′B′

m̂
n̂(γA

′B′)m
′

n′ .

(C.17)

From this we obtain the action

Sρ = −
∫
d5x
√
|g|α−1ρmm̂

(
i /D

m
n ρ

nm̂ + (Mρ)
mm̂
nn̂ ρnn̂

)
. (C.18)

D Supersymmetry variations of the 5d action

The supersymmetry variations (3.14), which leave the 5d action (3.24) invariant, can be

decomposed with respect to the R-symmetry, following appendix A.3. This decomposition

will be useful in further proceeding to four dimensions. The scalar and gauge field variations

are then
δAµ = −`(θ)

(
ε(1)p̂γµρ

(2)
p̂− + ε(2)p̂γµρ

(1)
p̂+

)
δAθ = −r`(θ)

(
ε(1)p̂ρ

(2)
p̂+ − ε

(2)p̂ρ
(1)
p̂−

)
δϕâ = i

(
ε(1)

p̂(σ
â)p̂q̂ρ

(2)
q̂+ − ε

(2)
p̂(σ

â)p̂q̂ρ
(1)
q̂−

)
δϕ = −2ε(1)p̂ρ

(1)
p̂+ , δϕ̄ = 2ε(2)p̂ρ

(2)
p̂−

(D.1)

and for the fermions we find

δρ
(1)
p̂+ =

i

8`(θ)
Fµνγ

µνε
(1)
p̂ −

i

4
Dµϕγ

µε
(2)
p̂ +

1

4r
Dθϕ

q̂
p̂ε

(1)
q̂ −

`(θ)

8

(
εâb̂ĉ[ϕâ, ϕb̂](σĉ)

q̂
p̂ε

(1)
q̂ − i[ϕ, ϕ̄]ε

(1)
p̂

)
δρ

(1)
p̂− =

i

4r`(θ)
Fµθγ

µε
(1)
p̂ +

1

4
Dµϕ

q̂
p̂ γ

µε
(1)
q̂ +

i

4r

(
Dθϕ+

`′(θ)

`(θ)
ϕ

)
ε
(2)
p̂ −

`(θ)

4
[ϕ,ϕq̂p̂]ε

(2)
q̂ (D.2)

δρ
(2)
p̂+ = − i

4r`(θ)
Fµθγ

µε
(2)
p̂ −

1

4
Dµϕ

q̂
p̂ γ

µε
(2)
q̂ +

i

4r

(
Dθϕ̄+

`′(θ)

`(θ)
ϕ̄

)
ε
(1)
p̂ −

`(θ)

4
[ϕ̄, ϕq̂p̂]ε

(1)
q̂

δρ
(2)
p̂− =

i

8`(θ)
Fµνγ

µνε
(2)
p̂ +

i

4
Dµϕ̄γ

µε
(1)
p̂ +

1

4r
Dθϕ

q̂
p̂ε

(2)
q̂ −

`(θ)

8

(
εâb̂ĉ[ϕâ, ϕb̂](σĉ)

q̂
p̂ε

(2)
q̂ + i[ϕ, ϕ̄]ε

(2)
p̂

)
,

where ϕp̂
q̂ =

∑
â ϕ

â(σâ)p̂
q̂.

The supersymmetry variations of the different pieces of the 5d action are given by

δSF = −1

2

∫
d5x
√
|g|Tr

[(
ε(1)p̂γνρ

(2)
p̂− + ε(2)p̂γνρ

(1)
p̂+

)
DµF

µν + r
(
ε(1)p̂ρ

(2)
p̂+ − ε

(2)p̂ρ
(1)
p̂−

)
DµF

µθ

× 1

`(θ)

(
ε(1)p̂γµDθ(`(θ)ρ

(2)
p̂−) + ε(2)p̂γµDθ(`(θ)ρ

(1)
p̂+

)
Fµθ

]
δSquartic = −1

4

∫
d5x
√
|g|`(θ)3 Tr

[
(iε

(2)
p̂ ρ

(1)
q̂− − iε

(1)
p̂ ρ

(2)
q̂+)

(
[[ϕp̂q̂, ϕ̄], ϕ] + [[ϕp̂q̂, ϕ], ϕ̄]

)
+2(iε

(2)
p̂ ρ

(1)
q̂− − iε

(1)
p̂ ρ

(2)
q̂+)[ϕâ, [ϕ

â, ϕp̂q̂]] + 2ε(1)p̂ρ
(1)
p̂+[ϕâ, [ϕ

â, ϕ̄]]

−2ε(2)p̂ρ
(2)
p̂−[ϕâ, [ϕ

â, ϕ]] + ε(1)p̂ρ
(1)
p̂+[ϕ̄, [ϕ, ϕ̄]] + ε(2)p̂ρ

(2)
p̂−[ϕ, [ϕ, ϕ̄]]

]
δScubic = − i

2

∫
d5x
√
|g| `(θ)`

′(θ)

r
Tr
[
εâb̂ĉ(σâ)p̂q̂(ε

(1)
p̂ ρ

(2)
q̂+ − ε

(2)
p̂ ρ

(1)
q̂−)[ϕb̂, ϕĉ]

]
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δSscalar = −1

4

∫
d5x
√
|g|`(θ) Tr

[
2iDµϕ

p̂q̂
(
ε
(1)
p̂ Dµρ

(2)
q̂+ − ε

(2)
p̂ Dµρ

(1)
q̂−

)
−2`(θ)Dµϕ

â
(
ε(1)p̂γµ[ρ

(2)
p̂−, ϕâ] + ε(2)p̂γµ[ρ

(1)
p̂+, ϕâ]

)
− 2ε(1)p̂Dµρ

(1)
p̂+Dµϕ̄+ 2ε(2)p̂DµϕDµρ

(2)
p̂−

−`(θ)Dµϕ̄
(
ε(1)p̂γµ[ρ

(2)
p̂−, ϕ] + ε(2)p̂γµ[ρ

(1)
p̂+, ϕ]

)
− `(θ)Dµϕ

(
ε(1)p̂γµ[ρ

(2)
p̂−, ϕ̄] + ε(2)p̂γµ[ρ

(1)
p̂+, ϕ̄]

)
+

2i

r2
Dθϕ

p̂q̂
(
ε
(1)
p̂ Dθρ

(2)
q̂+ − ε

(2)
p̂ Dθρ

(1)
q̂−

)
+

2`(θ)

r
Dθϕ

â
(
−ε(1)p̂[ρ(2)p̂+, ϕâ] + ε(2)p̂[ρ

(1)
p̂−, ϕâ]

)
− 2

r2
ε(1)p̂Dθρ

(1)
p̂+Dθϕ̄+

2

r2
ε(2)p̂Dθρ

(2)
p̂−Dθϕ+

`(θ)

r
Dθϕ̄

(
ε(2)p̂[ρ

(1)
p̂−, ϕ]− ε(1)p̂[ρ(2)p̂+, ϕ]

)
+
`(θ)

r
Dθϕ

(
ε(2)p̂[ρ

(1)
p̂−, ϕ̄]− ε(1)p̂[ρ(2)p̂+, ϕ̄]

)
− 2m2ε(1)p̂ρ

(1)
p̂+ϕ̄+ 2m2ϕε(2)p̂ρ

(2)
p̂−

]
δSρ = −2i

∫
d5x
√
|g|`(θ) Tr

[
i

4`(θ)
DµFµν

(
ε(1)γνρ

(2)
p̂− + ε(2)p̂γνρ

(1)
p̂+

)
+
i

4
ε(2)p̂Dµρ

(2)
p̂−D

µϕ

− i
4
ε(1)p̂Dµρ

(1)
p̂+Dµϕ̄+

i

8
[Fµν , ϕ]ε(2)p̂γµνρ

(2)
p̂− −

i

8
ε(1)p̂γµνρ

(1)
p̂+[Fµν , ϕ̄]− 1

4r
Dθϕ

p̂q̂ε
(1)
p̂ γµDµρ

(2)
q̂−

− 1

4r
Dθϕ

p̂q̂Dµρ
(1)
p̂+γ

µε
(2)
q̂ +

`(θ)

8
εâb̂ĉ[ϕâ, ϕb̂](σĉ)

p̂q̂
(
ε
(1)
p̂ γµDµρ

(2)
q̂− + ε

(2)
p̂ γµDµρ

(1)
q̂+

)
+
i`(θ)

8
[ϕ, ϕ̄]

(
−ε(1)p̂γµDµρ(2)p̂− + ε(2)p̂γµDµρ

(1)
p̂+

)
+

i

4r`(θ)
DµFµθ

(
ε(1)p̂ρ

(2)
p̂+ − ε

(2)p̂ρ
(1)
p̂−

)
+

1

4
Dµϕ

p̂q̂
(
ε
(2)
p̂ Dµρ

(1)
q̂− − ε

(1)
p̂ Dµρ

(2)
q̂+

)
+

1

8
[Fµν , ϕ

p̂q̂]
(
ε
(2)
p̂ γµνρ

(1)
q̂− − ε

(1)
p̂ γµνρ

(2)
q̂+

)
− i

4r
Dθϕε

(2)p̂γµDµρ
(2)
p̂+ −

i

4r
Dθϕ̄ε

(1)p̂γµDµρ
(1)
p̂− −

i`′(θ)

4r`(θ)

(
−Dµϕε(2)p̂γµρ(2)p̂+ −Dµϕ̄ε

(1)p̂γµρ
(1)
p̂−

)
+
`(θ)

4
[ϕ,ϕp̂q̂]ε

(2)
p̂ γµDµρ

(2)
q̂+ +

`(θ)

4
[ϕ̄, ϕp̂q̂]ε

(1)
p̂ γµDµρ

(1)
q̂− +

i

4r
Dµϕε

(2)p̂γµDθρ
(2)
p̂+

− 1

4r2
Dθϕ

p̂q̂ε
(1)
p̂ Dθρ

(2)
p̂+ +

`(θ)

8r
εâb̂ĉ[ϕâ, ϕb̂](σĉ)

p̂q̂ε
(1)
p̂ Dθρ

(2)
q̂+ −

i`(θ)

8r
[ϕ, ϕ̄]ε(1)p̂Dθρ

(2)
p̂+

− i

4r2
ε(2)p̂γµρ

(1)
p̂+Dθ

(
1

`(θ)
Fµθ

)
− 1

4r
DθDµϕ

p̂q̂ε
(2)
p̂ γµρ

(1)
q̂+ +

i

4r2
D2
θϕ̄ε

(1)p̂ρ
(1)
p̂+

+
i

4r2
ε(1)p̂ρ

(1)
p̂+Dθ

(
`′(θ)

`(θ)
ϕ̄

)
− 1

4r
Dθ(`(θ)[ϕ̄, ϕ

p̂q̂])ε
(1)
p̂ ρ

(1)
q̂+ +

i

4r
Dµϕ̄ε

(1)p̂γµDθρ
(1)
p̂−

+
1

4r2
Dθϕ

p̂q̂ε
(2)
p̂ Dθρ

(1)
q̂− −

`(θ)

8r
εâb̂ĉ[ϕâ, ϕb̂](σĉ)

p̂q̂ε
(2)
p̂ Dθρ

(1)
q̂− −

i`(θ)

8r
[ϕ, ϕ̄]ε(2)p̂Dθρ

(1)
p̂−

− i

4r2
ε(1)p̂γµρ

(2)
p̂−Dθ

(
1

`(θ)
Fµθ

)
− 1

4r
DθDµϕ

p̂q̂ε
(1)
p̂ γµρ

(2)
q̂− −

i

4r2
D2
θϕε

(2)p̂ρ
(2)
p̂−

− i

4r2
ε(2)p̂ρ

(2)
p̂−Dθ

(
`′(θ)

`(θ)
ϕ

)
+

1

4r
Dθ(`(θ)[ϕ,ϕ

p̂q̂])ε
(2)
p̂ ρ

(2)
q̂− − `(θ)ρ

(1)
p̂+[(ε(1)q̂ρ

(2)
q̂+ − ε

(2)q̂ρ
(1)
q̂−), ρ

(2)p̂
+ ]

+`(θ)ρ
(2)
p̂−[(ε(1)q̂ρ

(2)
q̂+ − ε

(2)q̂ρ
(1)
q̂−), ρ

(1)p̂
− ]− `(θ)ρ(1)p̂+γ

µ[(ε(1)q̂γµρ
(2)
q̂− + ε(2)q̂γµρ

(1)
q̂+), ρ

(2)p̂
− ]

−ρ(1)p̂−γ
µ[(ε(1)q̂γµρ

(2)
q̂− + ε(2)q̂γµρ

(1)
q̂+), ρ

(2)p̂
+ ]

]
δSYukawa = −

∫
d5x
√
|g|`(θ)2 Tr

[
− i

4`(θ)
[Fµν , ϕ

p̂q̂]ε
(2)
p̂ γµνρ

(1)
q̂− +

i

2
[Dµϕ̄, ϕ

p̂q̂]ε
(1)
p̂ γµρ

(1)
q̂−

+
1

2r
Dθϕâ[ϕâ, ε(2)p̂ρ

(1)
p̂−]− i

2r
εâb̂ĉ(σâ)p̂q̂[Dθϕb̂, ϕĉ]ε

(2)
p̂ ρ

(1)
q̂− −

i`(θ)

2
[[ϕp̂q̂, ϕâ], ϕâ]ε

(2)
p̂ ρ

(1)
q̂−

+
i`(θ)

4
[ϕp̂q̂, [ϕ, ϕ̄]]ε

(2)
p̂ ρ

(1)
q̂− +

i

2r`(θ)
[ϕp̂q̂, Fµθ]ε

(1)
p̂ γµρ

(2)
q̂− +

1

2
[ϕâ, Dµϕ

â]ε(1)p̂γµρ
(2)
p̂−

+
i

2
εâb̂ĉ(σâ)p̂q̂[ϕb̂, Dµϕĉ]ε

(1)
p̂ γµρ

(2)
q̂− +

i

2r
[ϕp̂q̂, Dθϕ]ε

(2)
p̂ ρ

(2)
q̂− +

i`′(θ)

2r`(θ)
[ϕp̂q̂, ϕ]ε

(2)
p̂ ρ

(2)
q̂−

+
`(θ)

2
[ϕâ, [ϕ

â, ϕ]]ε(2)p̂ρ
(2)
p̂− + 2iρ

(2)p̂
m− ε

(1)q̂
n

(
2[ρ

(2)n
p̂+ , ρ

(1)m
q̂− ]− [ρ

(2)n
q̂+ , ρ

(1)m
p̂− ]

)
−2iρ

(2)p̂
m− ε

(2)q̂
n

(
2[ρ

(1)n
p̂− , ρ

(1)m
q̂− ]− [ρ

(1)n
q̂− , ρ

(1)m
p̂− ]

)
− i

2r`(θ)
[Fµθ, ϕ

p̂q̂]ε
(2)
p̂ γµρ

(1)
q̂+
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+
1

2
[ϕâ, Dµϕ

â]ε(2)p̂γµρ
(1)
p̂+ +

i

2
εâb̂ĉ(σâ)p̂q̂[ϕb̂, Dµϕĉ]ε

(2)
p̂ γµρ

(1)
q̂+ −

`(θ)

2
[[ϕ̄, ϕâ], ϕâ]ε(1)p̂ρ

(1)
p̂+

+
i

2r
ε
(1)
p̂ ρ

(1)
q̂+

(
[Dθϕ̄, ϕ

p̂q̂] +
`′(θ)

`(θ)
[ϕ̄, ϕp̂q̂]

)
+ 2iρ

(2)p̂
m+ ε

(1)q̂
n

(
2[ρ

(2)n
p̂+ , ρ

(1)m
q̂+ ]− [ρ

(2)n
q̂+ , ρ

(1)m
p̂+ ]

)
− 2iρ

(2)p̂
m+ ε

(2)q̂
n

(
2[ρ

(1)n
p̂− , ρ

(1)m
q̂+ ]− [ρ

(1)n
q̂− , ρ

(1)m
p̂+ ]

)
− i

4`(θ)
[ϕp̂q̂, Fµν ]ε

(1)
p̂ γµνρ

(2)
q̂+

− i

2
[ϕp̂q̂, Dµϕ]ε

(2)
p̂ γµρ

(2)
q̂+ +

1

2r
[ϕâ, Dθϕ

â]ε(1)p̂ρ
(2)
p̂+ +

i

2r
εâb̂ĉ(σâ)p̂q̂[ϕb̂, Dθϕĉ]ε

(1)
p̂ ρ

(2)
q̂+

+
i`(θ)

2
[ϕâ, [ϕ

â, ϕp̂q̂]]ε
(1)
p̂ ρ

(2)
q̂+ +

i`(θ)

4
[ϕp̂q̂, [ϕ, ϕ̄]]ε

(1)
p̂ ρ

(2)
q̂+ +

1

2r`(θ)
ε(1)p̂γµρ

(1)
p̂−[Fµθ, ϕ̄]

− i
2

[Dµϕ
p̂q̂, ϕ̄]ε

(1)
p̂ γµρ

(1)
q̂− +

1

2r
ε(2)p̂ρ

(1)
p̂−

(
[Dθϕ, ϕ̄] +

`′(θ)

`(θ)
[ϕ, ϕ̄]

)
+
i`(θ)

2
ε
(2)
p̂ ρ

(1)
q̂−[[ϕ,ϕp̂q̂], ϕ̄] + 2i[ρ

(1)p̂
− , ρ

(1)
p̂−](ε(2)q̂ρ

(2)
q̂−)− 1

4`(θ)
ε(1)p̂γµνρ

(1)
p̂+[Fµν , ϕ̄]

−1

2
ε(2)p̂γµρ

(1)
p̂+[Dµϕ, ϕ̄]− i

2r
ε
(1)
p̂ ρ

(1)
q̂+[Dθϕ

p̂q̂, ϕ̄] +
`(θ)

4
ε(1)p̂ρ

(1)
p̂+[[ϕ, ϕ̄], ϕ̄]

+2i[ρ
(1)p̂
+ , ρ

(1)
p̂+](ε(2)q̂ρ

(2)
q̂−) +

1

4`(θ)
ε(2)p̂γµνρ

(2)
p̂−[Fµν , ϕ]− 1

2
ε(1)p̂γµρ

(2)
p̂−[Dµϕ̄, ϕ]

+
i

2r
ε
(2)
p̂ ρ

(2)
q̂−[Dθϕ

p̂q̂, ϕ] +
`(θ)

4
ε(2)p̂ρ

(2)
p̂−[[ϕ, ϕ̄], ϕ] + 2i[ρ

(2)p̂
− , ρ

(2)
p̂−](ε(1)q̂ρ

(1)
q̂+)

+
1

2r`(θ)
ε(2)p̂γµρ

(2)
p̂+[Fµθ, ϕ]− i

2
ε
(2)
p̂ γµρ

(2)
q̂+[Dµϕ

p̂q̂, ϕ]− 1

2r
ε(1)p̂ρ

(2)
p̂+

(
[Dθϕ̄, ϕ] +

`′(θ)

`(θ)
[ϕ̄, ϕ]

)
− i`(θ)

2
ε
(1)
p̂ ρ

(2)
q̂+[[ϕ̄, ϕp̂q̂], ϕ] + 2i[ρ

(2)p̂
+ , ρ

(2)
p̂+](ε(1)q̂ρ

(1)
q̂+)

]
. (D.3)

The terms in the supersymmetry variation of the 5d action cancel up to the following

boundary terms

Sextra =

[∫
d4x
√
|g4|Tr

(
− 1

2r
(ε(1)p̂γµρ

(2)
p̂− + ε(2)p̂γµρ

(1)
p̂+)Fµθ +

`(θ)

2r
(ε(1)p̂ρ

(1)
p̂+Dθϕ̄+ ε(2)p̂ρ

(2)
p̂−Dθϕ)

−`(θ)
2

4
[ϕ, ϕ̄](ε(1)p̂ρ

(2)
p̂++ε(2)p̂ρ

(1)
p̂−)+

i`(θ)2

4
εâb̂ĉ[ϕâ, ϕb̂](σĉ)

p̂q̂(ε
(2)
p̂ ρ

(1)
q̂−−ε

(1)
p̂ ρ

(2)
q̂+)

)]π
0

. (D.4)

Taking into consideration the boundary behaviour of the fields discussed in section 3.2 and

the fact that ε(1), ε(2) are constants the only non-vanishing boundary term is

Sextra =

[
i`(θ)2

4

∫
d4x
√
|g4|Tr

(
εâb̂ĉ(σâ)

p̂q̂[ϕ
b̂
, ϕĉ](ε

(2)
p̂ ρ

(1)
q̂− − ε

(1)
p̂ ρ

(2)
q̂+)
)]π

0

=

[
−`(θ)

2

4

∫
d4x
√
|g4|Tr

(
εâb̂ĉδϕâ[ϕb̂, ϕĉ]

)]π
0

=

[
−`(θ)

2

12
δ

∫
d4x
√
|g4|Tr

(
εâb̂ĉϕâ[ϕb̂, ϕĉ]

)]π
0

.

(D.5)

This term can be cancelled, to make the action supersymmetric at the boundaries of the

interval, by adding the term

Sbdry =

[
`(θ)2

12

∫
d4x
√
|g4|Tr

(
εâb̂ĉϕâ[ϕb̂, ϕĉ]

)]π
0

=

∫
dθ ∂θ

[
`(θ)2

12

∫
d4x
√
|g4|Tr

(
εâb̂ĉϕâ[ϕb̂, ϕĉ]

)]
,

(D.6)

to the 5d action.
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E Aspects of the 4d sigma-model

In this appendix we collect several useful relations for the sigma-model reduction, as well

as give details on integrating out the gauge field and the scalars ϕ and ϕ̄, which appear

only algebraically in the r → 0 limit of the 5d action.

E.1 Useful relations

We now summarize properties of the sigma-model defined in section 4. The three symplectic

structures (4.21) of the Hyper-Kähler target can be used to define the three complex

structures ωâK
I = ωâKJG

JI , which satisfy

ωâI
Jω

b̂J
K = −δ

âb̂
δKI + ε

âb̂ĉ
ωĉI

K . (E.1)

The complex structures exchange the cotangent vectors Υâ
I and Υθ

I in the following fashion

ωâI
JΥθ

J = −Υâ
I

ωâI
JΥb̂

J = δâb̂Υθ
I + εâb̂ĉΥIĉ .

(E.2)

We introduce a complete set of functions, satisfying the completeness relations [48]

GIJΥâα
I (θ)Υb̂β

J (τ) +
∑
i

Ψâα
i (θ)Ψb̂β

i (τ) = δâb̂ δαβ δ(θ − τ)

GIJΥθα
I (θ)Υθβ

J (τ) +
∑
i

Ψθα
i (θ)Ψθβ

i (τ) = δαβ δ(θ − τ)

GIJΥâα
I (θ)Υθβ

J (τ) +
∑
i

Ψâα
i (θ)Ψθβ

i (τ) = 0 .

(E.3)

Here, α, β are indices labeling the generators of the gauge algebra. These functions satisfy

the orthogonality relations∫
dθΥâα

I (θ)Ψb̂β
i (θ) = 0 ,

∫
dθΥθα

I (θ)Ψθβ
i (θ) = 0 . (E.4)

E.2 Integrating out fields

In this appendix we discuss how the scalars ϕ, ϕ̄ and the 4d gauge field Aµ are integrated

out in the sigma-model reduction. The equation of motions for ϕ, ϕ̄ and Aµ are

D2
θϕ+

[
ϕâ,
[
ϕâ, ϕ

]]
= −4ir[ρ

(1)
−p̂, ρ

(1)p̂
+ ]

D2
θ ϕ̄+

[
ϕâ,
[
ϕâ, ϕ̄

]]
= 4ir[ρ

(2)
+p̂, ρ

(2)p̂
− ]

D2
θAµ +

[
ϕâ,
[
ϕâ, Aµ

]]
= [Aθ, ∂IAθ] ∂µX

I +
[
ϕâ, ∂Iϕ

â
]
∂µX

I − 4i[ρ
(1)
−p̂, γµρ

(2)p̂
+ ] .

(E.5)

We adopt a convenient gauge for the connection EI

DθΥθ
I + [ϕâ,Υ

â
I ] = 0 , (E.6)
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which can be re-expressed as

D2
θEI + [ϕâ, [ϕ

â, EI ]] = [Aθ, ∂IAθ] + [ϕâ, ∂Iϕ
â] , (E.7)

where we have used the gauge fixing condition ∂θAθ = 0. Using the expansion for the

spinors (4.23) and the constraints (4.24), we evaluate the spinor bilinears in (E.5) to give[
ρ

(1)
−p̂, ρ

(1)p̂
−

]
= −4

([
Υâ
I ,ΥJâ

]
+
[
Υθ
I ,Υ

θ
J

])
λ

(1)I
p̂ λ(1)Jp̂[

ρ
(2)
+p̂, ρ

(2)p̂
+

]
= −4

([
Υâ
I ,ΥJâ

]
+
[
Υθ
I ,Υ

θ
J

])
λ

(2)I
p̂ λ(2)Jp̂[

ρ
(1)
−p̂, γµρ

(2)p̂
+

]
= −4

([
Υâ
I ,ΥJâ

]
+
[
Υθ
I ,Υ

θ
J

])
λ

(1)I
p̂ γµλ

(2)Jp̂ .

(E.8)

We note that the curvature

ΦIJ = [∇I ,∇J ] , (E.9)

where ∇I = ∂I + [EI , · ], satisfies the equation

D2
θΦIJ + [ϕâ, [ϕ

â,ΦIJ ]] = 2
(

[ΥIâ,Υ
â
J ] + [Υθ

I ,Υ
θ
J ]
)
. (E.10)

It can be used to solve the equations of motion by

ϕ = 8irΦIJλ
(1)I
p̂ λ(1)Jp̂

ϕ̄ = −8irΦIJλ
(2)I
p̂ λ(2)Jp̂

Aµ = EI∂µX
I + 8iΦIJλ

(1)I
p̂ γµλ

(2)Jp̂ .

(E.11)

Inserting this back in the action the terms with ϕ, ϕ̄ results in

Sϕ,ϕ̄ =
16

r`

∫
dθd4x

√
|g4|Tr

(
DθΦIJDθΦKL + [ΦIJ , ϕ

â][ΦKL, ϕâ]
)
λ(1)Ip̂λ

(1)J
p̂ λ(2)Kq̂λ

(2)L
q̂ .

(E.12)

The terms we obtain by integrating out Aµ will be grouped into three types of terms. The

first type are such that XI appear quadratically

SAµ,type 1 = − 1

4r`

∫
dθd4x

√
|g4|Tr

(
DθEIDθEJ − 2∂IAθDθEJ + 2∂Iϕ

â[EJ , ϕâ]

+ [EI , ϕ
â][EJ , ϕâ]

)
∂µX

I∂µXJ .

(E.13)

These terms combine with terms in the scalar action (4.22) to give the usual sigma-model

kinetic term

Sscalars + SAµ,type 1 =
1

4r`

∫
d4x
√
|g4|GIJ∂µXI∂µXJ . (E.14)

Terms of type 2 are linear in XI and covariantise the kinetic terms of the spinor

SAµ,type 2 = −4i

r`

∫
dθd4x

√
|g4|Tr

(
2Υâ

I [EJ ,ΥKâ] + 2Υθ
I [EJ ,Υ

θ
K ]
)
λ(1)Ip̂γµλ

(2)K
p̂ ∂µX

J .

(E.15)
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The terms involving the connection EI are promoted to covariant derivatives ∇I when

combined with the terms in the spinor action (4.25). Using the identities

∇IΥâ
J = ΓKIJΥâ

K +
1

2
[ΦIJ , ϕ

â]

∇IΥθ
J = ΓKIJΥθ

K −
1

2
DθΦIJ ,

(E.16)

where

ΓIJ,K = −
∫
dθTr

(
Υâ
K∇(IΥJ)â + Υθ

K∇(IΥ
θ
J)

)
, (E.17)

the kinetic term in the spinor action is covariantised. Lastly, the terms of type 3 give rise

to the quartic fermion interaction. Using (E.10) these terms simplify to

SAµ,type 3 = −16

r`

∫
d4xdθ

√
|g4|Tr

(
DθΦIJDθΦKL + [ΦIJ , ϕ

â][ΦKL, ϕâ]
)

× λ(1)Ip̂γµλ
(2)J
p̂ λ(1)Kq̂γµλ

(2)L
q̂ .

(E.18)

Using various identities, including Fierz-type identities,

(λ(1)p̂[Iλ
(1)J ]
p̂ )(λ(2)q̂[Kλ

(2)L]
q̂ ) = 2(λ(1)p̂[Iλ(1)J ]q̂)(λ

(2)[K
p̂ λ

(2)L]
q̂ )

ωâI
K∇[KΥθ

J ] = ∇[IΥ
â
J ]

∇[IΥ
â
J ]λ

(i)J
p̂ = i∇[IΥ

θ
J ](σ

â)q̂p̂λ
(i)J
q̂

∇[IΥ
â
J ]∇[KΥL]âλ

(i)J
p̂ λ

(i)L
q̂ = 3∇[IΥ

θ
J ]∇[KΥθ

L]λ
(i)[J
p̂ λ

(i)L]
q̂ ,

(E.19)

it can be shown that this quartic fermion interaction combines with the term (E.12) to

make the Riemann tensor of the target space appear

SAµ,type 3 + Sϕ,ϕ̄ = −32

r`

∫
d4x
√
|g4|RIJKL(λ(1)Ip̂λ

(1)J
p̂ )(λ(2)Kq̂λ

(2)L
q̂ ) , (E.20)

where the Riemann tensor is given by

RIJKL = −
∫
dθTr

(
2∇[IΥ

â
J ]∇[KΥL]â +∇[IΥ

â
K]∇[JΥL]â −∇[IΥ

â
L]∇[JΥK]â

+2∇[IΥ
θ
J ]∇[KΥθ

L] +∇[IΥ
θ
K]∇[JΥθ

L] −∇[IΥ
θ
L]∇[JΥθ

K]

)
= −1

4

∫
dθ Tr

(
2DθΦIJDθΦKL + 2[ΦIJ , ϕ

â][ΦKL, ϕâ]

+DθΦIKDθΦJL + [ΦIK , ϕ
â][ΦJL, ϕâ]

−DθΦILDθΦJK − [ΦIL, ϕ
â][ΦJK , ϕâ]

)
.

(E.21)

Combining all the terms we obtain the final sigma-model (4.26).

F Sigma-model for hyper-Kähler M4 from 5d SYM

In this appendix we provide a comprehensive discussion of the topological twist of the 5d

SYM on an interval with Nahm pole boundary conditions, and its dimensional reduction to

4d for M4 a Hyper-Kähler manifold. This results in the same 4d topological sigma-model

as we obtained in section 5.2, by twisting the 4d sigma-model on flat M4.

– 55 –



J
H
E
P
0
9
(
2
0
1
6
)
1
2
0

F.1 Topological twist

Let us first consider the topological twist 1 of section 2.1 applied to the 5d SYM theory.

From now on we switch to Euclidean signature.15 The twisted 5d theory was already

considered in [21, 51].

Twist 1 of the 6d N = (0, 2) theory identifies su(2)` ⊂ su(2)`⊕su(2)r of the 4d Lorentz

algebra with the su(2)R ⊂ su(2)R ⊕ so(2)R ⊂ sp(4)R. Under dimensional reduction to 5d

the symmetries after the twist are

sp(4)R ⊕ so(5)L → gtwist = su(2)twist ⊕ su(2)r ⊕ u(1)R . (F.1)

The fields of the 5d theory become forms in the twisted theory, according to their trans-

formations with respect to the gtwist, as summarized in the following table:

Field gtwist Representation Twisted Field

Aµ (2,2)0 Aµ

ϕ (1,1)2 ϕ

ϕ̄ (1,1)−2 ϕ̄

ϕâ (3,1)0 Bµν

ρ
(1)
+ (2,2)1 ψ

(1)
µ

ρ
(2)
+ (2,2)−1 ψ

(2)
µ

ρ
(1)
− (1,1)1 ⊕ (3,1)1 (η(1), χ

(1)
µν )

ρ
(2)
− (1,1)−1 ⊕ (3,1)−1 (η(2), χ

(2)
µν )

(F.2)

The fields Aµ, ϕ, ϕ̄ do not carry su(2)R charge and are thus unaffected. The scalars ϕâ

transform as a triplet of su(2)R. In the twisted theory they become a triplet ϕa of su(2)twist,

defining a self-dual two-form Bµν on M4:

Bµν = −(jâ)µνϕ
â , (F.3)

where the three local self-dual two-forms jâ transforming as a triplet of su(2)twist. They

can be defined in a local frame eAµ as (ja)µν = eAµ e
B
ν (ja)AB, a = 1, 2, 3, with

(ja)0b = −δab , (ja)bc = −εabc , a, b, c = 1, 2, 3 . (F.4)

In this local frame we have

B0a = ϕa, Bab = εabcϕ
c, a, b, c = 1, 2, 3 . (F.5)

The self-dual tensors ja are used to map the vector index a of so(3) to the self-dual two-

form index [AB]+. The tensors (ja)µν define an almost quaternionic structure, since they

satisfy

(ja)µρ(j
b)ρν = −δabδµν + εabc(j

c)µν . (F.6)

15For this twist we change from Lorentzian to Euclidean signature. In what follows γ0 as defined in

appendix A.2 is replaced with γ0′ = iγ0, where the prime will be omitted.
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The spinor fields transform as doublets of su(2)R. They become scalar, self-dual two-

forms and one-form fields on M4 as indicated in the table. The explicit decomposition,

is obtained using the Killing spinor associated to the scalar supercharge in the twisted

theory. This Killing spinor can be found as follows. The spinor εm̂ generating the preserved

supersymmetry is a constant spinor and is invariant under the twisted Lorentz algebra

su(2)twist ⊕ su(2)r. As explained in section 3.2 and in appendix A.3 εm̂ decomposes under

sp(4)R → su(2)R⊕u(1)R into two spinors doublets of su(2)R: εm̂ → ε
(1)
p̂ , ε

(2)
p̂ , satisfying the

projections (3.17)

ε
(1)
p̂ − γ

5ε
(1)
p̂ = 0 , ε

(2)
p̂ + γ5ε

(2)
p̂ = 0 . (F.7)

As explained in section 5.1, ε
(2)
p̂ has one scalar component under su(2)twist⊕su(2)r selected

out by the projections

(γ0aδ
q̂
p̂ + i(σâ)

q̂
p̂)ε

(2)
q̂ = 0 , a ' â = 1, 2, 3 , (F.8)

where the indices a and â gets identified in the twisted theory. The spinor ε(2)p̂ parametriz-

ing the preserved supercharge is then decomposed as

ε(2)p̂ = u ε̃p̂ , (F.9)

where u is complex Grassmann-odd parameter and ε̃p̂ is a Grassmann-even spinor with unit

normalisation. The decomposition of the spinors into the twisted fields is then given by

ρ
(1)
+p̂ = γµψ(1)

µ ε̃p̂

ρ
(2)
+p̂ = γµψ(2)

µ ε̃p̂

ρ
(1)
−p̂ =

(
η(1) +

1

4
γµνχ(1)

µν

)
ε̃p̂

ρ
(2)
−p̂ =

(
η(2) +

1

4
γµνχ(2)

µν

)
ε̃p̂ .

(F.10)

F.2 Twisted 5d action

We rewrite now the action in terms of the twisted fields and provide the preserved su-

persymmetry transformations. The bosonic part of this action has appeared in [21], and

related considerations regarding the supersymmetric versions of the twisted model can be

found in [51].

The action in (3.39) in terms of the twisted fields takes the form

SF = − r

8`

∫
dθd4x

√
|g4|Tr

(
FµνF

µν +
2

r2
(∂µAθ − ∂θAµ + [Aµ, Aθ])

2

)
Sscalars = − 1

4r`

∫
dθd4x

√
|g4|Tr

(
1

4
DµBρσDµB

ρσ +
1

4r2
DθBρσDθB

ρσ

+DµϕDµϕ̄+
1

r2
DθϕDθϕ̄

)
Sρ =

2i

r`

∫
dθd4x

√
|g4|Tr

[
η(2)Dµψ

(1)µ − ψ(1)
µ Dνχ

(2)µν + η(1)Dµψ
(2)µ − ψ(2)

µ Dνχ
(1)µν
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+
1

r

(
ψ(1)
µ Dθψ

(2)µ − η(1)Dθη
(2) − 1

4
χ(1)
µνDθχ

(2)µν

)]
SYukawa = − i

r2`

∫
dθd4x

√
|g4|Tr

(
−1

2
Bµν

[
η(2), χ(1)µν

]
+

1

2
Bµν

[
η(1), χ(2)µν

]
−1

2
Bµν

[
χ(2)µτ , χ(1)ν

τ

]
− 2Bµν

[
ψ(2)µ, ψ(1)ν

]
+ϕ̄

[
η(1), η(1)

]
+

1

4
ϕ̄
[
χ(1)
µν , χ

(1)µν
]

+ ϕ̄
[
ψ(1)
µ , ψ(1)µ

]
−ϕ

[
η(2), η(2)

]
− 1

4
ϕ
[
χ(2)
µν , χ

(2)µν
]
− ϕ

[
ψ(2)
µ , ψ(2)µ

])
Squartic = − 1

16r3`

∫
dθd4x

√
|g4|Tr

(
1

4
[Bµρ, Bν

ρ] [Bµσ, B
νσ] + [Bµν , ϕ][Bµν , ϕ̄]− [ϕ, ϕ̄][ϕ, ϕ̄]

)
Sbdry =

1

16r3`

∫
dθd4x

√
|g4|Tr (∂θBµν [Bµρ, Bνρ]) . (F.11)

The supersymmetry transformations of this 5d topologically twisted SYM theory are

δAµ = −u
r
ψ(1)
µ δAθ = uη(1)

δBµν = uχ(1)
µν

δϕ = 0 δϕ̄ = 2uη(2)

δψ(1)
µ = − iu

4
Dµϕ δψ(2)

µ = − iu
4
Fµθ −

iu

4
DνBνµ

δη(1) =
iu

4r
Dθϕ δη(2) = − iu

8r
[ϕ, ϕ̄]

δχ(1)
µν = − iu

4r
[ϕ,Bµν ] δχ(2)

µν =
iur

2
F+
µν +

iu

4r
DθBµν −

iu

8r
[Bµτ , Bν

τ ] ,

(F.12)

where the self-dual part of the gauge field is defined as

F+ =
1

2
(1 + ∗)F . (F.13)

To define the twisted action for curved M4, in addition to covariantising the derivatives,

the curvature terms

RBµνBµν and RµνρσBµνBρσ , (F.14)

must be added to the action in order to preserve supersymmetry. These terms can be

repackaged with the kinetic term for Bµν changing the action for the scalars to

Sscalars (F.15)

= − 1

4r`

∫
dθd4x

√
|g|Tr

(
DµBµρDνBνρ −

1

2
FµνB

µ
σB

νσ +
1

4r2
DθBρσDθB

ρσ +Dµ
′
ϕDµ′ ϕ̄

)
,

where D is defined to be covariant with respect to the curvature connection on M4 and the

gauge connection. The 5d twisted action on curved M4 can be written in the form

S5d = QV + S5d,top , (F.16)

where the Q-exact and topological terms are given by

V = − 1

r`

∫
dθd4x

√
|g|Tr

[
χ(2)µν

(
Pµν − i

(
rFµν +

1

2r

(
DθBµν −

1

2
[Bµτ , Bν

τ ]

)))
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+2ψ(2)µ (2Pµ + i(Fµθ +DνBνµ)) + iψ(1)µDµϕ̄−
i

2r
η(2)[ϕ, ϕ̄]− i

r
η(1)Dθϕ̄

+
i

4r
χ(1)µν [ϕ̄, Bµν ]

]
S5d,top =

r

4`

∫
M4×I

TrF ∧ ∗F − 1

2r`

[∫
M4

TrF ∧B
]θ=π
θ=0

, (F.17)

where Pµν and Pµ are auxiliary fields. The supersymmetry transformations are

QAµ = −1

r
ψ(1)
µ QAθ = η(1) QBµν = χ(1)

µν

Qϕ = 0 Qϕ̄ = 2η(2)

QPµ =
i

4r
[ψ(2)
µ , ϕ] QPµν =

i

4r
[χ(2)
µν , ϕ]

Qη(1) =
i

4r
Dθϕ Qψ(1)

µ = − i
4
Dµϕ Qχ(1)

µν = − iu
4r

[ϕ,Bµν ]

Qη(2) = − i

8r
[ϕ, ϕ̄] Qψ(2)

µ = Pµ , Qχ(2)
µν = Pµν .

(F.18)

The auxiliary fields are integrated out by

Pµ = − i
4

(Fµθ +DνBνµ)

Pµν =
ir

2
F+
µν +

i

4r

(
DθBµν −

1

2
[Bµτ , Bν

τ ]

)
.

(F.19)

We can now proceed with the dimensional reduction to four-dimensions.

F.3 Triholomorphic sigma-model with hyper-Kähler M4

We now reduce the twisted 5d SYM theory to 4d on Hyper-Kähler M4. We proceed

similar to the analysis in section 4.2 and in appendix E, and expand all fields in powers

of r and demand that the leading order terms in 1
r in the action (F.11) vanish. This sets

ϕ = ϕ̄ = O(r) and leads to Nahm’s equations for the self-dual two-forms

DθBµν −
1

2
[Bµρ, Bν

ρ] = 0 , (F.20)

with % = [k] Nahm pole boundary condition. Locally this is the same situation as in the

untwisted theory, but not globally. In the untwisted theory the scalars ϕâ were scalar fields

on R4 and the solutions to the Nahm’s equations are described by a map R4 →Mk. In the

twisted theory B belongs to the bundle Ω2,+(M4) and the global solutions to (F.20) are

generically more involved. However this complication does not happen when the bundle

of self-dual two-forms Ω2,+(M4) is trivial, namely when B transforms as a scalar. In this

case one can regard the components Bµν as scalars on M4 and the solutions to (F.20) are

again given in terms of a map

X : M4 →Mk , (F.21)

whereMk is the moduli space of solutions to Nahm’s equations with % Nahm pole boundary

conditions. As before we define coordinates X = {XI} on Mk. The case when Ω2,+(M4)
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is trivial corresponds to M4 having reduced holonomy SU(2)r ⊂ SU(2)`× SU(2)r, which is

the definition of a Hyper-Kähler manifold.

The zero modes around a solution Bµν(XI) can be expressed as

δBµν = ΥI,µνδX
I

δAθ = Υθ
IδX

I ,
(F.22)

where the expansion is in terms of the cotangent vectors Υ, which satisfy

ΥI,µν = ∂IBµν + [EI , Bµν ]

Υθ
I = ∂IAθ − ∂θEI − [Aθ, EI ] ,

(F.23)

with EI defining a gauge connection on MN . We will choose the convenient ‘gauge fixing

condition’

DθΥ
θ
I −

1

4
[ΥI,µν , B

µν ] = 0 . (F.24)

The equations obeyed by the cotangent vectors Υµν
I , Υθ

I are

DθΥI,µν + [Υθ
I , Bµν ]− 1

2
([ΥI,µρ, Bν

ρ]− [ΥI,νρ, Bµ
ρ]) = 0 . (F.25)

A natural metric on MN can be defined as

GIJ = −
∫
dθTr

(
1

4
Υµν
I ΥJ,µν+Υθ

IΥ
θ
J

)
. (F.26)

Similarly we can write down an expression for the three symplectic forms ωaIJ (see e.g. [49]),

repackaged into ωµν,IJ = −(ja)µνω
a
IJ , as

ωµν,IJ = −
∫
dθTr

(
1

2
ΥI,µρΥJ

ρ
ν −

1

2
ΥI,νρΥJ

ρ
µ −ΥI,µνΥθ

J + Υθ
IΥJ,µν

)
. (F.27)

These provide the Hyper-Kähler structure of the moduli space Mk. The quaternionic

relations on the three complex structures ωaIJ becomes

ωµρ,I
Jων

ρ
J
K = 2ωµν,I

K − 3gµνδ
K
I . (F.28)

Using the orthogonality of the Υµν
I , Υθ

I modes we derive the relations

ωµν,I
JΥθ

J = −ΥI,µν

ωµρ,I
JΥνρ

J = 2ΥI,µ
ν + 3δνµΥθ

I .
(F.29)

At order r−2 in the 5d action we find terms involving fermions. They vanish upon imposing

η(2) = O(r), ψ(1)
µ = O(r), χ(2)

µν = O(r) . (F.30)

The 4d action arises with overall coupling 1
4r` and at this order in r the above fermions

appear as Lagrange multipliers and can be integrated out to give the constraints

Dθχ
(1)
µν+[η(1), Bµν ]− 1

2

(
[χ(1)
µρ , Bν

ρ]− [χ(1)
νρ , Bµ

ρ]
)

= 0

Dθη
(1) − 1

4
[χ(1)
µν , B

µν ] = 0

Dθψ
(2)
µ − [ψ(2)

ν , Bµ
ν ] = 0 .

(F.31)
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These equations are solved using the basis of the contangent bundle, which obey (F.25)

and (F.24), with the following relations

χ(1)
µν = ΥI µνλ

I + Υθ
Iζ
I
µν + ΥI σ[µζ

I σ
ν]

η(1) = Υθ
Iλ

I − 1

4
ΥI µνζ

I µν

ψ(2)
µ = ΥI µ

νκIν −Υθ
Iκ

I
µ ,

(F.32)

where the fields λI , κIµ and ζIµν are Grassmann-odd scalars, vectors and self-dual two-

forms on M4, respectively. The identities (F.29) imply that the fermionic fields obey the

constraints
ωµν

I
Jλ

J = ξIµν

ωµσ
I
Jξ

J
ν
σ = 2ξIµν − 3δµνλ

I

ωµν
I
Jκ

Jν = −3κIµ .

(F.33)

or more generally

ωµν
I
Jκ

J
σ = gµσκ

I
ν − gνσκIµ + εµνσ

ρκIρ . (F.34)

This decomposition satisfies the fermion equtaions of motion, which can be seen by using

the identity

ΩρµΩ̃ρ
ν =

1

4
ΩρσΩ̃ρσgµν + Ωρ[µΩ̃ρ

ν] , (F.35)

where Ωµν , Ω̃µν are self-dual two-forms.

F.4 Dimensional reduction to 4d sigma-model

After reduction to four dimensions the bosonic fields of the theory will be the collective

coordinates XI describing a map M4 →Mk and the fermionic fields will be the scalars λI ,

one-forms κI and self-dual two-forms ζIµν , which are valued in the pull-back of the tangent

bundle to Mk

λ ∈ Γ(X∗TMk)

κ ∈ Γ(X∗TMk ⊗ Ω1)

ζ ∈ Γ(X∗TMk ⊗ Ω2) .

(F.36)

The bosonic and fermionic zero modes lead to a four-dimensional effective action with

overall coupling constant 1
r` for the fields XI , λI , κIµ, ζIµν , Aµ and the scalars ϕ, ϕ̄.

As mentioned previously the kinetic term for Aµ, namely F 2
µν is of order r and drops

from the action in the small r limit. The gauge field Aµ becomes an auxiliary field and

can be integrated out using its equation of motion, and likewise for the scalars ϕ and ϕ̄.

Their equations of motion are

D2
θϕ+

1

4
[Bµν , [B

µν , ϕ]] = 4ir

(
[η(1), η(1)] +

1

4
[χ(1)
µν , χ

(1)µν ]

)
D2
θ ϕ̄+

1

4
[Bµν , [B

µν , ϕ̄]] = −4ir
(

[ψ(1)
µ , ψ(1)µ]

)
D2
θAµ +

1

4
[Bνρ, [B

νρ, Aµ]] = [Aθ, ∂IAθ] ∂µX
I +

1

4
[Bνρ, ∂IB

νρ] ∂µX
I

+ 4i([η(1), ψ(2)
µ ]− [χ(1)

νµ , ψ
(2)ν ]) .

(F.37)
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The spinor bilinears can be further simplified by applying the expansion for the

spinors (F.32)

[η(1), η(1)] +
1

4
[χ(1)
µν , χ

(1)µν ] = 4

(
[Υθ

I ,Υ
θ
J ] +

1

4
[ΥIµν ,Υ

µν
J ]

)(
λIλJ +

1

4
ζIσρζ

Jσρ

)
[ψ(1)
µ , ψ(1)µ] = −4

(
[Υθ

I ,Υ
θ
J ] +

1

4
[ΥIσρ,Υ

σρ
J ]

)
κIµκ

Jµ

[η(1), ψ(2)
µ ]− [χ(1)

νµ , ψ
(2)ν ] = −4

(
[Υθ

I ,Υ
θ
J ] +

1

4
[ΥIνρ,Υ

νρ
J ]

)
λIκJµ .

(F.38)

To solve these equations we note that the curvature

ΦIJ = [∇I ,∇J ] , (F.39)

where ∇I = ∂I + [EI , · ], satisfies the equation

D2
θΦIJ +

1

4
[Bνρ, [B

νρ,ΦIJ ]] =
1

2
[ΥIνρ,Υ

νρ
J ] + 2[Υθ

I ,Υ
θ
J ] . (F.40)

Combining the information above the solutions are

ϕ = 8irΦIJλ
IλJ + 2irΦIJζ

I
µνζ

Jµν

ϕ̄ = −8irΦIJκ
I
µκ

µJ

Aµ = EI∂µX
I − 8iΦIJ(λIκJµ − ζIνµκJν) .

(F.41)

Replacing the fermionic and bosonic zero modes in the action one obtains

Sscalars = − 1

4r`

∫
dθd4x

√
|g4|

[
Tr

(
∂IAθ∂JAθ +

1

4
∂IBρσ∂JB

ρσ

)
∂µX

I∂µXJ

]
Sfermions = +

2i

r`

∫
d4x
√
|g4|

[ (
GIJg

µν − ωµνIJ
)

(λI∂µκ
J
ν − ξIµσ∂σκJν ) (F.42)

−(δKI g
σν−ωσνIK)Tr

(
1

4
ΥK ρτ∂JΥρτ

L +Υθ
K∂JΥθ

L

)
∂µX

J(δµσλ
IκLν −ξIσµκLν )

]
.

Substituting in the solution for the gauge field (F.41) we obtain three different types of

terms, which we address in turn. Terms of type 1 are proportional to ∂µX
I∂νX

J and

combine with the terms in the scalar action to give

Sscalars + SAµ,type 1 =
1

4r`

∫
d4x
√
|g4|GIJgµν∂µXI∂νX

J . (F.43)

Terms of type 2 combine with terms from the action of the fermions to give

SAµ,type 2 = −2i

r`

∫
dθd4x

√
|g4| (δKI gσν − ωσνIK)Tr

(
1

4
ΥK ρτ∇JΥρτ

L + Υθ
K∇JΥθ

L

)
∂µX

J

× (δµσλ
IκLν − ξIσµκLν ) . (F.44)

Using the identities

∇IΥµν
J = ΓKIJΥµν

K +
1

2
[ΦIJ , B

µν ]

∇IΥθ
J = ΓKIJΥθ

K −
1

2
DθΦIJ ,

(F.45)
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where

ΓIJ,K = −
∫
dθTr

(
1

4
Υµν
K ∇(IΥJ)µν + Υθ

K∇(IΥ
θ
J)

)
, (F.46)

these terms simplify to

SAµ,type 2 =
2i

r`

∫
dθd4x

√
|g4| (GIJgσν − ωσνIJ)ΓJKL∂µX

K(δµσλ
IκLν − ξIσµκLν ) . (F.47)

and covariantise the kinetic terms for the fermions. Lastly the terms of type three con-

tribute towards quartic fermion interactions. These take the form

SAµ,type 3 =
16

r`

∫
dθd4x

√
|g4|Tr

(
DθΦIKDθΦJL +

1

4
[ΦIK , Bµν ][ΦJL, B

µν ]

)
×
(
λIλJκKτ κ

Lτ +
1

4
ζIρσζ

JρσκKτ κ
Lτ

)
=

8

r`

∫
dθd4x

√
|g4|Tr

(
DθΦIKDθΦJL +

1

4
[ΦIK , Bµν ][ΦJL, B

µν ]

−DθΦILDθΦJK +
1

4
[ΦIL, Bµν ][ΦJK , B

µν ]

)
×
(
λIλJκKτ κ

Lτ +
1

4
ζIρσζ

JρσκKτ κ
Lτ

)
,

(F.48)

where we have made use of the identity

ωµνM
I∇[IΥ

θ
J ] = −ωµνJ I∇[IΥ

θ
M ] , (F.49)

and the analogous relation for Υµν
I , and antisymmetrized in KL indices. To obtain a

quartic fermion interaction involving the Riemann tensor of the target we need to combine

the terms in (F.48) with the term which arises from integrating out ϕ and ϕ̄

Sϕ/ϕ̄ =
16

r`

∫
dθd4x

√
|g4|Tr

(
DθΦIJDθΦKL +

1

4
[ΦIJ , Bµν ][ΦKL, B

µν ]

)
×
(
λIλJκKτ κ

Lτ +
1

4
ζIρσζ

JρσκKτ κ
Lτ

)
.

(F.50)

Combining (F.50) and (F.48), as well as the fact that the Riemann tensor on the target is

given by

RIJKL = −
∫
dθTr

(
1

2
∇[IΥ

µν
J ]∇[KΥL]µν +

1

4
∇[IΥ

µν
K]∇[JΥL]µν −

1

4
∇[IΥ

µν
L]∇[JΥK]µν

+ 2∇[IΥ
θ
J ]∇[KΥθ

L] +∇[IΥ
θ
K]∇[JΥθ

L] −∇[IΥ
θ
L]∇[JΥθ

K]

)
, (F.51)

we obtain the four fermi interaction

Sfermi4 = −32

r`

∫
d4x
√
|g4|RIJKL

(
λIλJκKτ κ

Lτ +
1

4
ζIρσζ

JρσκKτ κ
Lτ

)
. (F.52)
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The final action upon combining all the above terms is

S =
1

r`

∫
d4x
√
|g4|

[
1

4
GIJg

µν∂µX
I∂νXJ + 2i

(
GIJg

µν − ωµνIJ
)

(λIDµκ
J
ν − ζIµσDσκJν )

−32RIJKL

(
λIλJκKτ κ

Lτ +
1

4
ζIρσζ

JρσκKτ κ
Lτ

)]
, (F.53)

where

Dµκ
I
ν = ∂µκ

I
ν + ΓIJK∂µX

JκKν . (F.54)

The action can be further simplified by using relations between the complex structures

ωµν
I
J and the fermions (F.33) to eliminate the self-dual two-form ζIµν . In addition we

know that the target space Mk is Hyper-Kähler, which means that the three complex

structures ωµν
I
J define covariantly constant on Mk

DIωµν
J
K = 0 . (F.55)

This in turn implies the relations with the Riemann tensor on Mk

RIJK
Mωµν,ML = RIJL

Mωµν,MK , (F.56)

and other relations obtained using the standard symmetries of the Riemann tensor.

With (F.33) and (F.56), and after rescaling λ → 1
4λ

I and κµ → i
16κµ, the action sim-

plifies to

SHK =
1

4r`

∫
d4x
√
|g4|
(
GIJg

µν∂µX
I∂νX

J − 2GIJg
µνκIµDνλ

J +
1

8
gµνRIJKLκ

I
µκ

J
νλ

KλL
)
.

(F.57)

The constraint on the fermions κIµ can be re-expressed as

κIµ +
1

3
(ja)µ

νκJνω
a
J
I = 0 , (F.58)

The supersymmetry transformations are

δXI = uλI

δλI = 0

δκIµ = u
(
∂µX

I − (ja)µ
ν∂νX

JωaJ
I
)
− uΓIJKλ

JκKµ .

(F.59)

This dimensional reduction of the 5d topologically twisted SYM theory, thus gives precisely

the same action we obtained in (5.12), by topologically twisting the 4d sigma-model for

Hyper-Kähler M4.
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