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ABSTRACT: We study the 6d N = (0,2) superconformal field theory, which describes mul-
tiple M5-branes, on the product space S? x My, and suggest a correspondence between a
2d N = (0,2) half-twisted gauge theory on S? and a topological sigma-model on the four-
manifold My. To set up this correspondence, we determine in this paper the dimensional
reduction of the 6d N = (0, 2) theory on a two-sphere and derive that the four-dimensional
theory is a sigma-model into the moduli space of solutions to Nahm’s equations, or equiva-
lently the moduli space of k-centered SU(2) monopoles, where k is the number of M5-branes.
We proceed in three steps: we reduce the 6d abelian theory to a 5d Super-Yang-Mills the-
ory on I x My, with I an interval, then non-abelianize the 5d theory and finally reduce
this to 4d. In the special case, when M, is a Hyper-Kahler manifold, we show that the
dimensional reduction gives rise to a topological sigma-model based on tri-holomorphic
maps. Deriving the theory on a general My requires knowledge of the metric of the target
space. For k = 2 the target space is the Atiyah-Hitchin manifold and we twist the theory
to obtain a topological sigma-model, which has both scalar fields and self-dual two-forms.
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1 Introduction

The six-dimensional N = (0, 2) superconformal theory (SCFT) with an ADE type gauge
group is believed to describe the theory on multiple M5-branes. The equations of motion in
six dimensions are known only for the abelian theory [1, 2], and a Lagrangian formulation of
this theory is believed to not exist. However, in the last few years, much progress has been
made in uncovering properties of this elusive theory by considering compactifications to
lower dimensions. Compactification of the 6d theory on a product S¢ x Mg_g has resulted
in correspondences between supersymmetric gauge theories on d-dimensional spheres S¢
and conformal/topological field theories on a 6 — d dimensional manifold Mg_4. The goal
of this paper is to consider the compactification of the 6d theory on a four-manifold My
times a two-sphere S? and to determine the topological theory on My. The particular
background that we consider is a half-topological twist along the 52, together with a Vafa-
Witten-like twist on My, and we will find that the theory on My is a twisted version of
a sigma-model into the moduli space of SU(2) monopoles with k centers, where k is the
number of M5-branes, or equivalently, the moduli space of Nahm’s equations [3] with certain
singular boundary conditions. This suggests the existence of a correspondence between this
topological sigma-model on My and a two-dimensional (0, 2) theory, with a half-twist. This
fits into the correspondences studied in the last years, which we shall now briefly summarize.

For d = 4, the Alday-Gaiotto-Tachikawa (AGT) correspondence [4] connects 4d N = 2
supersymmetric gauge theories on S* with Liouville or Toda theories on Riemann surfaces
Ms. Correlation functions in Toda theories are equal to the partition function of an N = 2
supersymmetric gauge theory, which depends on the Riemann surface My. Such 4d N = 2
gauge theories obtained by dimensional reduction of the 6d N = (0, 2) theories were first



studied by Gaiotto in [5], generalizing the Seiberg-Witten construction [6]. For d = 3,
a correspondence between 3d supersymmetric gauge theories, labeled by three-manifolds
M3, and complex Chern-Simons theory on Ms was proposed in [7, 8], also refered to
as the 3d-3d correspondence. This correspondence has a direct connection to the AGT
correspondence by considering three-manifolds, which are a Riemann surface Ms times an
interval I, M3 = Mj x I, whose endpoints are identified modulo the action of an element ¢
of the mapping class group of M. On the dual gauge theory side, the mapping class group
action translates into a generalized S-duality, and the three-dimensional gauge theories,
dual to complex Chern-Simons theory are obtained on duality defects in the 4d N = 2
Gaiotto theory. The 3d-3d correspondence was ultimately derived from a direct dimensional
reduction of the 6d (0,2) theory on a three-sphere via 5d by Cordova and Jafferis [9, 10].

Other dimensional reductions concern the case of T% x Mg_4. The circle-reduction is
known to give rise to N = 2 5d Super-Yang-Mills (SYM) [11]. The case of d = 2 gives
rise to N =4 SYM with the Vafa-Witten twist [12] along My [13], which yields a duality
between a 2d N = (0,2) gauge theory on T2 and the Vafa-Witten theory on M. Some
results on twisted Mb5-branes have appeared in [14].

Both the AGT and 3d-3d correspondences uncovered very deep and surprising rela-
tions between supersymmetric gauge theories and two/three-manifolds, their geometry and
moduli spaces. In view of this a very natural question is to ask, whether we can obtain
insights into four-manifolds, as well as the dual two-dimensional gauge theories obtained
by dimensional reduction of the 6d (0, 2) theory. Here, unlike the AGT case, the theory on
the four-manifold is a topological theory, and the gauge theory lives in the remaining two
dimensions and has (half-twisted) N = (0, 2) supersymmetry. A schematic depiction of this
is given in figure 1. More precisely, we propose a correspondence between a 4d topological
sigma-model and a 2d half-twisted N = (0,2) gauge theory. In particular we expect that
topological observables in the 4d theory can be mapped to the partition function and other
supersymmetric observables of the 2d theory. Note that the S? partition function defined
with the topological half-twist [15] is ambiguous as explained in [16]. However the analysis
of counter-terms (and therefore ambiguities) must be revisited in the context of the embed-
ding in 6d conformal supergravity, which is our set-up. In particular, the 2d counterterms
should originate from 6d counter-terms. Recent results on localization in 2d (0, 2) theories
have appeared in [17], albeit only for theories that have (2,2) loci. The theories obtained
from the reduction in this paper do not necessarily have such a (2,2) locus.

From a brane picture, the theory we consider can be obtained by compactifying k
Mb5-branes on a co-associated cycle in Gg [18, 19]. The two-dimensional theory that is
transverse to the co-associative cycle has (0,2) supersymmetry, and we consider this on a
two-sphere, with an additional topological half-twist.

The first question in view of this proposal is to determine what the topological theory
on My is. There are various ways to approach this question. The simplest case is the
abelian theory, which on 52 x RY3 gives rise to a 4d free N = 2 hyper-multiplet [20],
which we shall view as a sigma-model into the one-monopole moduli space. On a general
four-manifold My, we will show that in the topologically twisted reduction, the abelian
theory integrates indeed to a “twisted version” of a hyper-multiplet, where the fields are a
compact scalar and self-dual two-form on Mj.
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Figure 1. 4d-2d correspondence between the reduction of the 6d (0,2) theory on M, to a 2d
(0,2) SCFT on S2, and the ‘dual’ 4d topological sigma-model from My into the Nahm or monopole
moduli space, which is obtained in this paper by reducing the 6d theory on a two-sphere.

6d N=(0,2)
Sl
5d SYM onl )
with Nahm poles 5
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\ Y

4d Topological o-model into My,gnopole

Figure 2. The dimensional reduction of the 6d N = (0,2) theory on an S?, viewed as a circle-
fibration along an interval I, is determined by dimensional reduction via 5d SYM. The scalars of
the 5d theory satisfy the Nahm equations, with Nahm pole boundary conditions at the endpoints
of the interval. The 4d theory is a topological sigma-model into the moduli space of solutions to
these Nahm equations, or equivalently the moduli space of monopoles.

For the general, non-abelian case, this 4d-2d correspondence can in principle be con-
nected to the 3d-3d correspondence by considering the special case of My = M3 x I, where
I is an interval, similar to the derivation of the 3d-3d correspondence from AGT. In this
paper we will refrain from considering this approach, and study instead the reduction via
5d SYM, in the same spirit as [9, 10].

We first consider the dimensional reduction on flat My, and then topologically twist
the resulting 4d N = 2 theory. We restrict to the U(k) gauge groups, but in principle the
analysis holds also for the D and E type. To determine the flat space reduction, we view the
S? in terms of a circle-fibration over an interval, where the circle-fiber shrinks to zero-radius
at the two endpoints. We determine the 5d supergravity background, which corresponds
to the dimensional reduction of the 6d theory on S?. The resulting theory is 5d SYM on
an interval, where the scalars satisfy Nahm pole boundary conditions [21, 22]. Further
dimensional reduction to 4d requires to consider scalars, that satisfy Nahm’s equations.



The resulting theory is a 4d sigma-model into the moduli space of solutions of Nahm’s
equations, which is isomorphic to the moduli space of k-centered monopoles [23] and has
a natural Hyper-Kéhler structure. Much of the geometry of the moduli space is known,
in particular for one- or two-monopoles [24], and a more algebraic formulation in terms of
Slodowy-slices exists following [25-27]. The latter description is particularly amenable for
the characterization of N = 2 Gaiotto theories with finite area for the Riemann surface as
studied in [22]. Figure 2 summarizes our dimensional reduction procedure.

The 4d N = 2 supersymmetric sigma-model for flat M, falls into the class of models
obtained in [28, 29]. We find that the coupling constant of the 4d sigma-model is given in
terms of the area of the two-sphere. To define this sigma-model on a general four-manifold
requires topologically twisting the theory with the R-symmetry of the 4d theory. One of the
complications is that the SU(2) R-symmetry of the 4d theory gets identified with an SU(2)
isometry of the Hyper-Kéhler target. The twisting requires thus a precise knowledge of how
the coordinates of the monopole moduli space transform under the SU(2) symmetry. This
is known only in the case of one- and two-monopoles, where a metric has been determined
explicitly [24]. In these cases, we shall describe in section 6 the topological sigma-models,
which have both scalars and self-dual two-form fields on M. The sigma-model into the
one-monopole moduli space S' xR3, corresponding to the reduction of the abelian theory to
a free 4d hypermultiplet, gives rise upon twisting to a (free) theory on M, with a compact
scalar and a self-dual two-form, and belongs to the class of 4d A-model of [30]. The sigma-
model into the two-monopole moduli space, which is closely related to the Atiyah-Hitchin
manifold, gives rise to an exotic sigma-model of scalars and self-dual two-forms obeying
constraints. Sigma-models in 4d are non-renormalizable and infrared free, however, the
observables of the topologically twisted theory are independent of the RG flow and can in
principle be computed in the weak coupling regime.

In the case of My a Hyper-Kéhler manifold, the holonomy is reduced and the twisting
does not require knowledge of the R-symmetry transformations of the coordinate fields.
This is discussed in section 5.1, and the topological sigma-model that we find upon twisting
is the one studied in [31] by Anselmi and Fre for almost quaternionic target spaces.

In this paper we focus on the reduction of the 6d (0, 2) theory on a two-sphere, however,
as we emphasize in section 3, the reduction would proceed in the same way with the
addition of two arbitrary ‘punctures’ on the two-sphere, characterizing BPS defects of the
6d non-abelian theory. In the intermediate 5d theory, it would result in different Nahm-
pole boundary conditions for scalar fields at the two ends of the interval and the final flat
space four-dimensional theory would be a sigma-model into the moduli space of solutions
of Nahm'’s equations with these modified Nahm-pole boundary conditions.

We should also remark upon the connection of our results to the paper by Gadde,
Gukov and Putrov [13], who consider the torus-reduction of the M5-brane theory. The
topological twist along M, is the same in their setup as in our construction. Thus, the
dictionary to the data of the 2d theory as developed in [13], such as its dependence on
the topological/geometric data of My, should hold in our case as well. For instance, the
rank of the 2d gauge group is determined by b?(My). The key difference is however,
that we consider this 2d theory on S?, and topologically twist the chiral supersymmetry.



Interestingly, the reduction of the 6d theory on either 72 or S? with half-twist gives rather
distinct 4d topological theories: in the former, the 4d N = 4 SYM theory with Vafa-Witten
twist, in the latter, we find a four-dimensional topological sigma-model into the monopole
moduli space, which for general M, has both scalars as well as self-dual two-forms. The
appearance of self-dual two-forms is indeed not surprising in this context, as the topological
twist along My is precisely realized in terms of M5-branes wrapping a co-associative cycle
in G, which locally is given in terms of the bundle of self-dual two-forms Q%+ (My) [32].

The plan of the paper is as follows. We begin in section 2 by setting up the various
topological twists of the 6d N = (0,2) theory on S? x My, and provide the supergravity
background and Killing spinors, for the S? reduction with the half-twist. In section 3
we dimensionally reduce the 6d theory to 5d SYM on an interval times R?, with Nahm
pole boundary conditions for the scalar fields. In particular we study this with a generic
squashed metric on S? and in a special ‘cylinder’ limit. The reduction to 4d is then
performed in section 4, where we show that the fields have to take values in the moduli
space of Nahm’s equations, and determine the N = 2 supersymmetric sigma-model on R*.
The action can be found in (4.30), as well as in the form of the models of [28, 29] in (4.35). In
sections 5 and 6 we study the associated topological sigma-models: in section 5 we consider
the case of My a Hyper-Kéahler manifold, and show that this gives rise to the topological
sigma-model in [31]. The action can be found in (5.12). We furthermore connect this to
the dimensional reduction of the topologically twisted 5d SYM theory and show that both
approaches yield the same 4d sigma-model in appendix F. In section 6, we let My be a
general four-manifold, but specialize to the case of one- or two- monopole moduli spaces,
and use the explicit metrics to determine the topological field theory. In this case, the
bosonic fields are scalars and self-dual two-forms on My. The action for k = 1 is (6.12) and
for k = 2 we obtain (6.35). We close with some open questions in section 7, and provide
details on our conventions and computational intricacies in the appendices.

2 Topological twists and supergravity backgrounds

This section serves two purposes: firstly, to explain the possible twists of the 6d N =
(0,2) theory on a two-sphere S?, and secondly, to determine the supergravity background
associated to the topological half-twist on S2.

2.1 Twists of the M5-brane on My

We consider the compactification of the M5-brane theory, i.e. the six-dimensional N = (0, 2)
theory, on M, x S2, where M, is a four-dimensional manifold. More generally, we can
consider the twists for reductions on general Riemann surfaces ¥ instead of S?. We will
determine the 4d theory that is obtained upon dimensional reduction on the S$2, and
consider this theory on a general four-manifold My. Supersymmetry of this theory requires
that certain background fields are switched on, which correspond to twisting the theory
— both along My as well as along S?. The twisting procedure requires to identify part
of the Lorentz algebra of the flat space theory with a subalgebra of the R-symmetry. The



R-symmetry and Lorentz algebra of the M5-brane theory on R® are!
sp(4)r ©so(6)r (2.1)

The supercharges transform in the (4,4) spinor representation (the same representation
as the fermions in the theory, see appendix A). The product structure of the space-time
implies that we decompose the Lorentz algebra as

s50(6), — s0(4)p Pso(2)r X su(2)y P su(2), dso(2)L. (2.2)

We can consider the following twists of the theory along M. Either we identify an su(2)
subalgebra of both Lorentz and R-symmetry, or we twist with the full so(4).

On M, there are two su(2) twists that we can consider. In the first instance consider
the decomposition of the R-symmetry as

sp(d)r  — su(2)gr dso(2)r (2.3)

and the su(2), is twisted by su(2)g. That is we replace su(2), by the diagonal su(2)wist C
su(2)y @ su(2)r and define the twisted su(2) generators by

1
fwist = 9 (Tea + T}%) ) (2'4)
so that the twisted theory has the following symmetries

Twist 1 : sp(4)r Dso(6)r  —  sU(2)twist D su(2), D s0(2)r Dso(2)r. (2.5)

This twist is reminiscent of the Vafa-Witten twist of 4d N = 4 SYM [12]. The supercharges
decompose under (2.2) and (2.3) as

sp(4)r Dso(6), — su(2)r ®so(2)r ®su(2), ®su(2), Gso(2)r

(2.6)
(47 4) — (2+1 @ 2717 (27 1)71 53] (17 2)1) 5
which after the twist becomes
sp(d)p ®so(6)r  —  su(2)twist D su(2), Dso(2)gr ®so(2)r 27)

(4,4) - (103,1);-0(1®3,1)__®(2,2)14+D(2,2)_4.

This yields two scalar supercharges on My, which are of the same negative 2d chirality
under s0(2),
(171)+* S (171)**' (28)

Upon reduction on My, this twist leads to a 2d theory with N = (0,2) supersymmetry. In
this paper we are not concerned with the reduction on My, but focus on the reverse, namely
the theory on M. This twist is compatible with a further twist along S? or more generally
an arbitrary Riemann surface ¥, which identifies s0(2)7 with the remaining R-symmetry

'In the dimensional reduction via 5d SYM, we will in fact consider the Lorentzian theory to derive the
theory on RY3. As we have in mind a compactification on a compact four-manifold My, we will discuss
here the Euclidean version.



50(2)r. This is the setup that we will study in this paper. In the following we will first
perform the reduction (and topological twisting) along the S2, and then further twist the
resulting four-dimensional theory on Mj.

Finally, let us briefly discuss alternative twists. We can use a different su(2) R-
symmetry factor to twist the theory along My, namely we can use su(2); C su(2)1PSsu(2)g ~
50(4)r C sp(4)r decomposed as

sp(d)rp —  su(2); ®su(2)s. (2.9)
This twist leads upon reduction on My to a 2d theory with N = (0, 1) supersymmetry.

Twist 2:  sp(4)r @ 50(6)r, — 5U(2)twist D 5u(2)2 ® su(2), ®s0(2)r (2.10)
4 '

(4 — (3@17171)—@(27172)4—@(2)271)—@(112)2)4-
We can in fact further twist the su(2)y with the remaining su(2), Lorentz symmetry on

M,. This corresponds to a total twist of the full so(4)r with so(4);, and is analogous to
the geometric Langlands (or Marcus) twist of 4d N =4 SYM theory on My [33, 34]

Twist 3: sp(4)r @ s0(6)r, — 50(4)twist D 50(2)1 (2.11)
(4,4) - 30 1,1)- ®(2,2); ©(2,2)- @ (1,10 3)4, '
which has two scalar supercharges of opposite 2d chiralities
(17 1)+ ©® (17 1)* ) (212)

so that this twist leads upon reduction on My to a 2d theory with N = (1,1) supersym-
metry. It is not compatible with a further topological twist on S2. Interestingly it was
found in [35] that supersymmetry can be preserved by turning on suitable background
supergravity fields on M4. We will not study this background in this paper, but will return
to this in the future.

We will now consider the setup of twist 1 and carry out the reduction of the 6d
N = (0,2) theory on S? x My. As explained in the introduction our strategy is to find the
6d supergravity background corresponding to the twisted theory along S?, taking M, = R*
to begin with, and carry out the reduction to 4d, where we will finally twist the theory
along an arbitrary Mjy.

2.2 Twisting on S2

For our analysis we first consider the theory on S? x R* and the twist along S?. The Lorentz
and R-symmetry groups reduce again as in (2.2) and (2.3). The twist is implemented by
identifying s0(2) g with s0(2); and we denote it 50(2)wist =~ W(1)twist, whose generators are
given by

Uiwist = Ur, + Up. (2.13)

As we have seen this is compatible with the twist 1, discussed in the last subsection.

S? Twist : 50(6)L @sp(d)r = Gres = 5u(2)p ®su(2), ®su(2)p S u(l)wist - (2.14)



The residual symmetry group and decomposition of the supercharges and fermions is then

50(6>L S 5p(4)R —  Ores = ﬁu(2)€ 2] ﬁu(z)r @ 5u(2)R 5> u(l)twist

- (2.15)
(474) - (271,2)0@(2a1>2)72€9(1a272)2@(17232)0-

There are eight supercharges transforming as singlets on S? and transforming as Weyl
spinors of opposite chirality on M, and doublets under the remaining R-symmetry. The
fields of the 6d (0,2) theory decompose as follows

50(6)Bsp(4)r—su(2); B su(2), dsu(2)pdu(l), u(l)r
™M = (1,5)—(1,1,1)02 @ (1,1,1)p,2 ® (1,1,3)0,0
P = (4,4)—(1,2,2)11,-15(1,2,2)41419(2,1,2)1,18(2,1,2) 1 41
Bap=(15,1)—(1,1,1)00%(3,1,1)00®(1,3,1)0,0$(2,2,1)2,09(2,2,1)_20.

(2.16)

Note from the point of view of the 4d N = 2 superalgebra, some of these fields transform
in hyper-multiplets, however with a non-standard transformation under the R-symmetry,
under which some of the scalars form a triplet. The standard transformation of the hyper-
multiplet can be obtained using an additional SU(2) symmetry [36]. However, in the present
situation, we have to use the R-symmetry as given in the above decomposition. Twisting
with the su(2), Lorentz with the remaining su(2)p, i.e.

SU(2)pwist = diag(su(2), @ su(2)r) (2.17)

the resulting topological theory has the following matter content

50(6), ®Bsp(d)r  — 9 5u(2)twist D sU(2)r D u(1)twist
@mf — (}, 5 — (1,1)2@®(1,1)2®(3,1) 2.18)
pm=(44) — (2,2)09(2,2):0(183,1) 23 (163,1)
Bap=(15,1) — (1,1)0®(3,1)0® (1,3)0 ® (2,2)2 D (2,2)-2.

In the following it will be clear that the 6d scalars ® give rise to scalars and a self-dual two-
form on My. The fermions give rise to either vectors, or scalars and self-dual two-forms as
well. The fields appearing in the decomposition of the two-form B are not all independent
due to the constraint of self-duality of H = dB. They will give rise to a vector field and a
scalar on M,. This matter content will be visible in the intermediate 5d description that
we reach later in section 3, however, after reducing the theory to 4d and integrating out
massive fields, the matter content of the final 4d theories will be different.

2.3 Supergravity background fields

Before describing the details of the reduction, we should summarize our strategy. Our goal
is to determine the dimensional reduction of the 6d (0,2) theory with non-abelian u(k)
gauge algebra. For the abelian theory, the dimensional reduction is possible, using the
equations of motions in 6d [1, 2]. However, for the non-abelian case, due to absence of a 6d
formulation of the theory, we have to follow an alternative strategy. Our strategy is much



alike to the derivation of complex Chern-Simons theory as the dimensional reduction on an
S3 in [10]. First note, that the 6d theory on S! gives rise to 5d N = 2 SYM theory. More
generally, the dimensional reduction of the 6d theory on a circle-fibration gives rise to a
5d SYM theory in a supergravity background [9] (for earlier references see [37, 38]). This
theory has a non-abelian extension, consistent with gauge invariance and supersymmetry,
which is then conjectured to be the dimensional reduction of the non-abelian 6d theory.

More precisely, this approach requires first to determine the background of the 6d
abelian theory as described in terms of the N = (0,2) conformal supergravity theory [39,
40]. The 5d background is determined by reduction on the circle fiber, and is then non-
abelianized. We can further reduce the theory along the remaining compact directions
to determine the theory in 4d. For S3, there is the Hopf-fibration, used in [10] to derive
the Chern-Simons theory in this two-step reduction process. In the present case of the
two-sphere, we will fiber the S* over an interval I, and necessarily, the fibers will have to
become singular at the end-points.

In the following we will prepare the analysis of the supergravity background. By re-
quiring invariance under the residual group of symmetries g...s preserved by the topological
twist on S2, we derive ansitze for the background fields in 6d N = (0, 2) off-shell conformal
supergravity fields. In the next section we will consider the Killing spinor equations and
fix the background fields completely.

To begin with, the 6d metric on S? x R* is given by

ds? = dsii +1r2d0? + 0(0)? dp? (2.19)

with £(0) = rsin(f) for the round two-sphere and 6 € I = [0, 7]. More generally, ¢(f) can
be a function, which is smooth and interpolates between

@NH, for 6 —0, @NT(—H, for 6 — 7. (2.20)
r r
We choose the frame
e = da?, e’ =rdb, b =10(0)de. (2.21)

The corresponding non-vanishing components of the spin connection are
(6
N () do. (2.22)
r

In the following the index conventions are such that all hatted indices refer to the R-
symmetry, all unhatted ones are Lorentz indices. The background fields for the off-shell
gravity multiplet are summarized in table 1. Underlined Roman capital letters are flat 6d
coordinates, underlined Greek are curved space indices in 6d, and middle Roman alphabet
underlined indices are 6d spinors. All our conventions are summarized in appendix A.
Before making the ansétze for the background fields, we note the following decomposi-
tions of representations that these background fields transform under, first for the Lorentz



Label Field sp(4)r Properties
eﬁ Frame 1
Vfc R-symmetry gauge field 10 Vfa =— ACB
Tﬁ;ﬁ] Auxiliary 3-form 5 g —
D(gé) Auxiliary scalar 14 D35 = Dg3, D:: =
ba Dilatation gauge field 1

Table 1. The bosonic background fields for the 6d (0,2) conformal supergravity.

symmetry,
s0(6), — su(2);dsu(2), pu(l)L
A: 6 — (2,2)0®(1,1)2®(1,1)_2
[BCDI) . 10 —  (2,2)0®(3,1)2®(1,3) 2
BC]: 15 — (2,2)26(2,2)-2@ (3,1)0@ (1,3)0@ (1,1)o

and also for the R-symmetry

so(b)p —

A 5 —
[BC]: 10 —
(BC): 14 —

su(2)r ®u(l)r

30012D1 2

3093203 21

5003203 2012®1 2D 1g.

(2.23)

(2.24)

The bosonic supergravity fields of 6d off-shell conformal maximal supergravity were deter-
mined in [9, 37, 39-41]. They are the frame eﬁ and

T

[BCDIA > 4

A[BC)

- (dv)[ﬁl [CD) D zpy ba — (db)(am ; (2.25)

where dV and db denote the field strength of the R-symmetry and dilatation gauge fields,

respectively. Furthermore T[ BCD)A is anti-self-dual? and D( ) is traceless

AB

T

[BCD]A — T

AB
[BCD](H) A 07Dz =0. (2.26)

We shall now decompose these in turn under the residual symmetry group gres == s1(2)y @
su(2), ®su(2)p Bu(l)wist and determine the components that transform trivially, and thus
can take non-trivial background values.

1. T[ BCD)A" the decomposition under g,.s is given by

(10,5) = (2,2,3)2)B(3,1,3)(2)®(1,3,3)(_2)®(2,2,1)(42)(3,1,1)(4)

(2.27)
® (3a 1, 1)(0) ® (17 3, 1)(0) @ (1a 3, 1)(—4) :

2In Euclidean signature, T[BCD]X can be complexified and taken to satify T' =i x T

~10 -



This tensor product does not contain any singlet under g,.s, so the backgrounds we

consider have T[ BCDIA = 0.
2. VA[E@]: we are looking for components of the field strength (dV)[ AB|[CD)] invariant

under g,.s. The decomposition of (dV)[ AB(ED] is:

(157 10) - (27 2, 3)(i2)@(37 1, 3)(0)@(17 3, 3)(0)@(17 1, 3)(0)@(27 2, 3)(i4)
®2x (2a 2’ 3)(0) D (37 15 3)(i2) D (17 3a 3)(i2) D (17 15 3)(i2) (228)
©(2,2,1)(12) @ (3,1,1)0) ©(1,3,1)0) © (1,1,1) gy -

We see that we have a singlet that corresponds to turning on a flux on the S? and
an ansatz for V is given by

1
Vzg = 5 v(0) €35 » (2.29)
where Z,¥y run over the components B ,é = 4,5, and the other components of V

vanish.
3. ba: the field strength (db)[@] decomposes under g,.s as
(157 1) - (27 2, 1)(:t2) ® (37 1, 1)(0) ® (1’ 3, 1)(0) @ (17 1, 1)(0) . (230)

There is a singlet, which corresponds to turning on a field strength on the S2. In
the following we will not consider this possibility. Note that any other choice can
always be obtained by a conformal transformation with K, which shifts by [40]. In
the following we thus set

ba=0. (2.31)

4. D ;

(AB)’ the decomposition under g,.s is given by

(17 14) — (17 17 5)(0) S (17 17 3)(i2) S (17 17 1)(i2) S (17 17 1)(0) . (232)

There is one singlet corresponding to the ansatz

3
Dag = dfsag, Dgg = —5 d5g§, (2-33)

with other components vanishing. The relative coefficients are fixed by the traceless-
ness condition on D( AB)
2.4 Killing spinors

With the ansétze for the supergravity background fields we can now determine the condi-
tions on the coefficients v and d, to preserve supersymmetry. The background of the 6d
supergravity is summarized in section 2.3 and the Killing spinor equations (B.1) and (B.7)
are solved in appendix B. In summary the background with T, (BCD]A = ba = 0 preserves
half the supersymmetries if

v(0) = == (2.34)
2.3
3 0"(6
4(6) = 2r2e((e)) ’

- 11 -



where for the round two-sphere £(f) = rsin(f), and the Killing spinor € is constant and
satisfies the following constraint

(TB)Piz e _ P36 — (2.35)

The value of the R-symmetry gauge field V6 = —@d(ﬁ = w"% and the fact that the pre-
served supersymmetries are generated by constant spinors indicates that this supergravity
background realizes the topological twist on S?, as expected.

Finally, recall that we chose a gauge for which b4 = 0. Note that the background field
ba can be fixed to an arbitrary other value by a special conformal transformation (see [40]).
The special conformal transformation does not act on the other background fields (they
transform as scalars under these transformations), nor on the spinor €, however it changes
the spinor ™ parametrizing conformal supersymmetry transformations. Indeed one can
show that the Killing spinor equations (B.1) and (B.7) are solved for an arbitrary by by
the same solution €™ together with

. 1 .
o= —ibéréem. (2.36)

In this way one can recover the gauge choice b, = oflaﬁa (with e = 1// in our conventions)
of 9], although we will keep our more convenient choice by = 0. For our gauge choice, the
dimensional reduction to 5d is rederived in appendix C.

3 From 6d (0,2) on S? to 5d SYM

We now proceed with the dimensional reduction of the six dimensional N = (0,2) theory
on S! to obtain 5d maximally supersymmetric Yang-Mills theory, as in [9, 37]. The main
distinction in our case arises in subtle boundary conditions, which will have to be imposed
on the fields along the 5d interval. All our conventions are summarized in appendix A.
We should remark on an important point in the signature conventions: the reduction
to the 5d SYM theory is accomplished in Lorentzian signature, R* — R'3, where fields
admit 6d reality conditions, however it would go through in Euclidean signature upon
complexifying the fields in 6d and then imposing reality conditions in 5d. This amounts to
Wick-rotating the Lorentzian 5d theory. In later sections, when we study the 5d theory on
a generic My, we adopt the Euclidean signature, which is compatible with the twist on Mj.

3.1 The 6d (0, 2) theory

The abelian 6d N = (0,2) theory contains a tensor multiplet, which is comprised of a
two-form B with field strength H = dB, five scalars ®;;, and four Weyl spinors p@ of
negative chirality, which are symplectic Majorana. The scalars satisfy ®55; = —@amgnd
Q" ® 5= = 0. The equations of motion are (we will use the conventions of [40))

S U
1 1 o
D@y — 15 Dia®rs + ng[ﬁT% =0 (3.1)
1
Dp" = 5 Twe™ 0 = 0.

- 12 —



Here H* = 1/2(H 4 xH) and the R-symmetry indices of the background fields have
been transformed from A — mn using the Gamma-matrices as in (B.3). The covariant
derivatives are defined as follows

. 5 1 I TP
Dup™ = (au — St 4w;‘BrAB> = SV
D, @™ = (9, — 2b,) @™ + V1@ (3.2)

D277 = (94— 3p4 + W) D@ 4 VAT D@77 - %@m .

Here Rgq is the 6d Ricci scalar. These equations are invariant under the following super-

symmetry transformations

OBy = —emfﬂpm
SO — gl i) _ T, (3.3)
m_ Loy twem L pamn o
op" = @HwFLe + ZlD@ er — P""n; .

The dimensional reduction of these equations yields abelian 5d SYM in a general super-
gravity background. We will perform this reduction in a gauge choice where by = 0, which
is for instance different from the choice in [9]. The details of this general reduction are
given in appendix C. The 6d supergravity fields decompose as follows

H — F=dA

e, el =0 R 0
& = AT P - (3.4)
- eg 0 e =a ipmm

MmN N (I)ﬁlﬁ 7

where we used again the index conventions in appendix A. The action of abelian 5d SYM
theory in a general background is

Ss54 = SF + Sscalar + Sp (3.5)
where
Sp = —/[aFA*5dF+C/\F/\F]
Secalar = — / &z /gl o (D w®TADA P 4 AT TAB @mﬁ(M@%ﬁqﬁ?)
Sp=— [ Povla g (0 77 + (4,385 (3.6)
with all mass matrices defined in appendix C and F is defined as

F=F— ~35,T™ (3.7)

~13 -



3.2 5d SYM in the supergravity background

We can now specialize to the 6d background R* x 2, including the background supergravity
fields of section 2 and determine the 5d SYM theory in the background, which corresponds
to the 6d (0,2) theory on S?, by performing the dimensional reduction along the circle
fiber. As shown in section 2.3, the only background fields for the 5d SYM theory, which
are compatible with the residual symmetry group, are D%ﬁ and V(fm = S With these
background fields, and the action of the 5d SYM theory in a general background, that we
derived in appendix C in the gauge by = 0, we can now determine the non-abelian 5d
action in our background.
For our background the metric, graviphoton, C4/, and the dilaton, «, are given by

1
ds? = dsgs +12d0*, Ca =0, =55y 0<#<m, (3.8)

which means that G = dC = 0. Imposing these conditions and turning on only the
background fields Df}ﬁ and S™" the full action is given by?

S = SF + Sscalar + Sp + Sint ) (3'9)

where

Sp = _411/6(10) Tr(F A x54F)
Secalar = % / @z /gl 60) Tr (97" D20 + O™ (Mo 055 (3.10)
5= — [ o VIO T (1o 7™ + pue (M) )
Here, we non-abelianized the theory, and the covariant derivatives and mass matrices

Dy ®™ = 0y + [Ay, @7

/
D™ = 9’ D, ™ 4 £6) Do®™™ 4 [A,y, 0" &™) 4 [A,y, [AF, &7
r20(0)
Dyp™ = O p™ + (A, p™] (3.11)
an_ 20'00) 5w 1 Mo of o s L ma
(Mae)7s" = 5200y O %9 + 300y (5753 — 707 — 35 DR
O TS DS () PSS
My — (S gmagm 1 ) g oy
( p) n 6(0) <2S n + 27“ (’y5)n ) ’

where the five dimensional Ricci scalar vanishes, because we have a flat metric on the
interval. In the non-abelian case we can add the following interaction terms

3 e ~ PPN N ~ /
S = /d% |gTr(“9) D, 7 [@rs, 7] 4 ) g SR D] — 0(0)2pyr [0, i ]),

64 24
(3.12)

3The ratios of numerical prefactors are determined by supersymmetry. Note that our convention for the
scalar fields and gauge fields is that they are anti-hermitian.

— 14 —



where the non-vanishing background fields are

;r\/ﬁ _ 6,(9) (F45)@
n r n

3.13)
an 30(0) BB\ pds\Al sl oA oma (

where ¢ and ¢” denote first and second derivatives of £ with respect to . The action is

invariant under the following supersymmetry transformations®

(514 ’ :€(9) Gﬁq/#/pm
SOM — 426[7",0"} — zQAAe?pr (3.14)

5pfh ‘uy/,}/uu m+ Eq)mn

7 e L p(0) Q0™ 7.
86(9) r 67’7, 86(9) TLT‘[ ) ]68

i
46(9)
Note that the Killing spinor 6%/ satisfies the relation (2.35) which now reads

(TP’ = i)y e ™ (3.15)
So far we have kept the sp(4)r R-symmetry indices explicit. However the background
breaks the R-symmetry to su(2)r ®s0(2)z. To make the symmetry of the theory manifest,
we decompose the scalar fields @™ into a triplet of scalars @a, transforming in the 3¢ of
su(2)r @ s0(2) R, and the complex field ¢, which is a singlet 11. This can be achieved as
follows

(3.16)

Dty %) ™

A a5
p=p tip 4

The spinors pgz decompose into the two doublets p(A ), p(A) transforming in (2)1 @& (2)_1,
as detailed in appendix A.3. We also split the gauge ﬁeld (singlet of the R-symmetry) into
the components A,, along R* and the component Ay along the interval.

The spinor €; parametrizing supersymmetry transformations decomposes under the R-
symmetry subalgebra su(2)r @ so(2)r into two su(2)r doublets of opposite s0(2)r charge:

€m — e(A) e(A) (see appendix A.3). The projection condition (3.15) becomes

) — el =0, €D 1452 =0. (3.17)
For any 5d spinor x we define
1
X = 5(x£17%), (3.18)
as the four-dimensional chirality. The action for the gauge field is
1 1
Sr =3 / ol g™ (FWF’“’ +2F QFW) (3.19)

“Note that the spinor variation would have a 1/16 instead of 1/8 in the naive dimensional reduction
from the abelian 6d theory. However, the non-abelianized version is only invariant under the variation as
given in the following equation. This coefficient is not fixed in the abelian theory, but is required to be 1/8
in the non-abelian one. This is also consistent with [9].
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and for the scalars we find
Sscalar (320)
1 ~ 1 5 1
=71 /d5xv lgl€(0) Tr <D“90aDusﬁa + D" oD, ¢ + ﬁDesﬁaDaﬁpa + ﬁDQ@Dﬁcﬁ + mi@ﬁ) )

with the mass term

U'(6)* — £(6)0"(6)
r20(6)2 ’

= cot(6)?/r? and diverges at the endpoints of the interval.

my(0)? = (3.21)

2
)

We will return to this matter when discussing the boundary conditions. The action for the

which for the round sphere is m

fermions is

, 5 5 1 51 5
Sp = —2 / d’z+/|g| £(0) Tr (p,%)'v“Dup@)p +pm D P + ;pSﬁDep(f)p - rpﬁf)Dep(”p) :
(3.22)
Finally, the interaction terms in this decomposition read as follows

Svukawa = —/d5x\/m5(9)2 Tr [2(0’5)@’02%2_) [sﬁa,pg_)} + 2(08)1’;}’{%%? [SDE,P(%E]
(o2 o) [ ] o2 o] [ )

Squartic = _% /d5x\/m€(9)3 Tr <[(paa 90] [Qpav 95] + 1[9067 90’1;] [cp?i’ So/b\] - 1[9@ 95] [907 @])

2 4
Soie = —3 [ o /lgl LD o r (pal ) (3.29
The complete 5d action is
S54 = SF + Sscalar +Sp + Svukawa + Squartic + Scubic » (3.24)

and the supersymmetry variations for this action, decomposed with regards to the R-
symmetry, are summarized in appendix D. The action above should be supplemented with
appropriate boundary terms, which ensure that supersymmetry is preserved and that the
action is finite. This will be addressed subsequently.

We need to determine the boundary conditions of the 5d fields at the endpoints of the
6 interval. To proceed we first notice that the complex scalar ¢ has a mass term m(6)?
which diverges at the boundaries § = 0, 7°

A 6 —0,
m(0) =< (3.25)

m, 9—)7'['

Finiteness of the action requires that ¢ behaves as

[ o), #-o0,
0

a (m—0), 0—m. (3.26)

®This follows from the regularity conditions (2.20) on £.
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The boundary conditions on the other fields are most easily determined by the requirement
(1) (2)

of preserving supersymmetry under the transformations generated by & and €& presented
in appendix D. We obtain at 8 = 0:
P =000), pP =00), A,=00?), (3.27)

and the counterpart at 0 = .
The fields ¢, Ay are constrained by supersymmetry to obey modified Nahm’s equations
as they approach the boundaries, given by

1 SO
Dyp® — 57‘6(9)6“36[4,017, ©°l=0. (3.28)

These equations are compatible with a singular boundary behaviour of the fields at the
endpoints of the #-interval. For simplicity let us assume the gauge Ag = 0 in a neighborhood
of # = 0, then the above modified Nahm’s equations are compatible with the polar behavior
at =0

¢ = 27‘?2(;) +0(1), (3.29)
where
0: su(2) — u(k) (3.30)

denotes a Lie algebra homomorphism from su(2) to u(k), see e.g. in [21, 22] and 7% are
related to the Pauli matrices 0@ as follows

0= g%, (3.31)

Moreover the O(1) term is constrained to be in the commutant of g in u(k). The reduc-
tion that we study, from a smooth two-sphere to the interval, corresponds to ¢ being an
irreducible embedding [22].

More generally the Nahm pole boundary condition (3.28) is compatible with any ho-
momorphism ¢ and is associated with the presence of ‘punctures’ — or field singularities
— at the poles of the two-sphere in the 6d non-abelian theory [5]. An embedding ¢ can
be associated to a decomposition of the fundamental representation k under su(2) and can
be recast into a partition [ni,ng,---] of k. The irreducible embedding is associated to the
partition ¢ = [k] and corresponds to the absence of punctures in 6d, and is therefore the
sphere reduction that we consider here. The boundary conditions at § = 7 are symmetric
to the ones at # = 0 and are also characterized by Nahm pole behaviour with irreducible
embedding o = [k].

The remaining fermions p(_l), pf) appear in the supersymmetry variations of ¢® and
hence are of order O(1) at § =0

pl =00, P =o0(), (3.32)
and similarly at 6 = .

The boundary condition (3.29) for the scalars ¢ introduces two difficulties: the super-

symmetry variation of the action results in a non-vanishing boundary term and the poles
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of the scalar fields make the action diverge. These two problems are cured by the addition
of the following boundary term

g . (6)° da/Tga] T (€ "
bary = | 5 z/|ga| Tr (€ pales, ¢el .

= /d&&e [afj/d“x |g4|Tr<653€<Pa[%a @2])] ,

The second line gives Syqry as a total -derivative and we shall take this as the definition

(3.33)

of the boundary term. This additional term ensures supersymmetry and makes the 5d
action finite, this is shown in appendix D where boundary terms arising from preserving
supersymmetry are given. In particular, taking the derivative along 6 we find,
(O)'(0) abe U0 st
Sbdry = /dsx |91 [ or ™ Tr (ales, edl) + A " Tr (Dppaley wel) | o (3:34)
where the first piece cancels the cubic scalar interaction in the 5d action and the second
term combines to give

1

1 _
~ 1z d°z+/|g|¢(0) Tr (DW“DWa + r2€(9)22
,

a2l 7] = rtO) T Oualen o]
1 5 1 b @ ?
= 42 d fﬂx/mTr <D0806 - 57’6(9)%33[90 )y P ]) )

(3.35)
which is the square of modified Nahm’s equations. The 5d action is finite since the scalar
fields ¢® obey modified Nahm’s equations at the boundaries.

We notice that the modified Nahm’s equations (3.28) can be recast into the form of
standard Nahm’s equations by a change of coordinate to

r

~ 1
6= /0 dzx l(z). (3.36)

One obtains R
Dy — 57"26”35[905’, ¢l =0, )
N 3.37
o~ a o~
1“2g0“ = L(Z ) + 0(90) ,
0
and a similar Nahm pole behavior at the other end of the 0 interval. We conclude then
that the moduli space of solutions of the modified Nahm’s equations is the same as the

moduli space of solution of the standard Nahm’s equations.

3.3 Cylinder limit

For general hyperbolic Riemann surfaces, with a half-topological twist, the dimensional re-
duction depends only on the complex structure moduli [5]. The two-sphere has no complex
structure moduli, however, there will be a metric-dependence in terms of the area of the
sphere, which enters as the coupling constant of the 4d sigma-model [22]. We do not expect
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the reduction to depend on the function ¢(0), except through the area of the sphere. This
can be checked explicitly by performing the reduction keeping ¢(6) arbitrary. However,
for simplicity we consider here the special singular limiting case, when the two-sphere is
deformed to a thin cylinder. This is achieved by taking the metric factor £(6) as follows

(0) =€ =constant  for e< O <7m—¢,
£(0) — smooth caps for §<e, T—e<@,

and then taking the limit ¢ — 0. The limit is singular at the endpoints of the -interval,
since at finite €, the two-sphere has smooth caps, ¢(6) ~ 76, while at ¢ = 0, £(0) = £ is
constant on the whole 6 interval and describes the metric on a cylinder, or a sphere with
two punctures. One may worry that such a singular limit is too strong and would change
the theory itself. We will argue below in section 3.4 that the reduction of the theory with ¢
constant leads to the same four dimensional sigma model as for arbitrary ¢(¢). The reason
for choosing ¢ constant is only to simplify the derivation.
We rescale the fields as follows

i 13 1 m_, 1w @ _, 1 @
Pl e e Mpi, P Epi- (3.38)

The action in this limit simplifies to
2
SF = 86 d9d4$ |g4‘ Tr (FHVFHV + ﬁ(auAg — 8914“ + [AH’ Ag])2>

. 1 _ 1
Secalar = —— | dOd*x |g4| Tr | D*@* D,z + D*9D@ + — Dop® Dopg + — Do D@
4r€ r2 r2

2 2 1 2 1 2 1 295
Sp = *ﬁ dod*z+/]ga| Tr (p;h Dup®" + pp)y Dupi)”+ 51 Dop " — p%_)Dep(_)”>

SN 2( d0d*z\/ga] Tr (2,0( ) [90 (1)} + 2p(2) {90 7,0( )] (3.39)
i (o5 [0 2] + 050 (2,70 ] = 02 (0,072 | = ) |02

S = 5 [ s |g4m(2m,wmo 1+ o, 116" 0] - 310l 01

Shdry = =y /d9d4x\/ﬁae Tr( abc@a¢b<ﬁc>

The supersymmetry variations of the 5d action summarized in appendix D simplify in the
cylinder limit and for the bosonic fields are

1 ~ N
=L () 50

p
§Ap = — (6(1>ﬁp<gl _ 6(2)51)%11 )
5 — i <€<1)ﬁ(ga)ﬁapgl _ 6(2)1?(0&);7@[)%11) (3.40)
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and for the fermions

1 & 1 / &5 G
505) = e — - Dupr# e + 1 Dolell) — (15, 5l (00) 1) ~ilp, glel))

8 47“ 8r
() ) (1) @_ 1. 4.0
op;_ 4Fu oMes’ + 4D,u§0 R Desoe = 5 le el
1 1 7 _ 1. _ &
5,0%?_:*1 MG’YME(E) — ZD#9027“6(A2) + ZDQ(,OGI%) - 4—[90, gp‘i]e(}) (3.41)
@ _T w2 pe® Ly a@ L G G.(2) @)
Opp_ =g Fw" ey + 4Du90’y &+ g Dovies 87,( [va, pyl(oe)pes” +ily, Pleg ) ~

The theory we obtain is nothing else than the maximally supersymmetric N = 2 SYM
in 5d. A similar reduction of the 6d (0,2) theory on a cigar geometry was considered
in [21]. This five-dimensional SYM theory is defined on a manifold with boundaries, which
are at the end-points of the #-interval and half of the supersymmetries are broken by the
boundary conditions. It is key to study the boundary terms and boundary conditions in
detail, which will be done in the next subsection.

3.4 Nahm’s equations and boundary considerations

The boundary conditions at the two ends of the # interval are affected by the singular cylin-
der limit. They can be worked out in the same way as in section 3.2 by enforcing supersym-
metry at the boundaries. In the cylinder limit of the two-sphere ¢(0) — ¢ the mass term
m(6)? goes to zero everywhere along the f-interval except at the endpoints § = 0, 7 where
it diverges, forcing the scalar ¢ to vanish at the boundary, as before. The other bound-
ary conditions are found by requiring supersymmetry under the eight supercharges. This
requires that the scalars ¢® obey the standard Nahm’s equations close to the boundaries

s la 3 &
Dypp® — Segle" ¢ = 0. (3.42)

Furthermore, the boundary behavior of the fields in the gauge Ag = 0 around = 0 are
(although this is not the gauge we will choose later)

o(t%)

P =00), sl =00), L =00), P =0(0),

where ¢ : su(2) — u(k) is an irreducible embedding of su(2) into u(k), with 7 as in (3.31).
There are similar boundary conditions at § = w. The constant term cp?o) in the ¢
expansion is constrained to be in the commutant of embedding o. With ¢ = [k] the
irreducible embedding, this commutant is simply the diagonal u(1) C u(k), so 90?0) is a
constant diagonal matrix. This condition propagates by supersymmetry to the other fields.

The maximally supersymmetric configurations are vacua of the theory preserving eight
supercharges and are given by solutions to the BPS equations

DU N,
Dyp® — egle" ¢ =0

D,U«gpazoa
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with all fermions vanishing. The 5d action is minimized and vanishes for supersymmetric
field configurations (3.44). Moreover there is the additional constraint that the scalars ®
have poles at # = 0,7 both characterized by the partition/embedding ¢ = [k]. The first
equation in (3.44) is Nahm’s equation for the fields (¢%, Ap) and the boundary behaviour
of ¢% are standard Nahm poles.

We can now address the validity of the singular cylinder limit ¢(6) = ¢ constant. In
the following we will reduce the theory on the interval and find that the dominant field
configurations are given by solutions of Nahm’s equations. The resulting four-dimensional
theory will be a sigma model into the moduli space of solutions of Nahm’s equations. It
is easy to see that for arbitrary ¢(6) describing a smooth two-sphere metric, the same
dimensional reduction will be dominated by field configurations satisfying the modified
Nahm’s equations (3.28). We can then reasonably expect that the reduction will lead to
a four-dimensional sigma model into the moduli space of the modified Nahm’s equations.
However we argued at the end of section 3.2 that this moduli space is the same as the
moduli space of standard Nahm’s equations, so the reduction for arbitrary £(6) would lead
to the same sigma model.

Finally, let us comment on generalizations of the Nahm pole boundary conditions with
two arbitrary partitions g9 and g, for the scalar fields at the two boundaries § = 0,
respectively, as described in [22]. The polar boundary behavior at # = 0 is given by (3.43)
with 0 — gp and the subleading constant piece cp?o) takes values in the commutant of gg (i.e.
matrices commuting with the image of gp). These boundary conditions preserve the same
amount of supersymmetry and admit global symmetry groups Hy x H; C SU(k) x SU(k)
acting by gauge transformations at the end-points of the f-interval. Hy and H, are the
groups, whose algebras hg, b, are respectively the commutants of gy and o, in su(k). These
global transformations leave the gg and o, boundary conditions invariant. In the reduction
to 4d, only a subgroup of Hy x H, can be preserved (see the discussion in section 2 of [22]).

The general (0o, 0r) boundary conditions correspond to inserting singularities or ‘punc-
tures’ of the type oo at one pole of the two-sphere and of the type o, at the other pole in
the 6d (0,2) theory. All our results can be directly generalized to having general (oo, or)
Nahm poles at the boundaries of the #-interval. In this case we would obtain sigma-models
into a different moduli space: the moduli space of Nahm’s equations with (g, o) boundary
conditions.

For the sphere with two punctures labeled by two arbitrary partitions g, o, it is very
natural to consider the metric describing a cylinder, since this is the topology of a sphere
with two punctures, and the reduction, whether with the sphere or the cylinder metric, is
expected to lead to the same four-dimensional theory. From this point of view, the sphere
without punctures, or “trivial punctures”, is simply a subcase corresponding to the specific
partitions g9 = or = [k], and we may take the cylinder metric, as for any other choice of
punctures.
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4 Nahm’s equations and 4d sigma-model

In the last section we have seen that the 5d SYM in the background corresponding to the
S? reduction of the 6d (0, 2) theory requires the scalars ¢ to satisfy Nahm’s equations, and
the supersymmetric boundary conditions require them to have Nahm poles (3.43) at the
boundary of the interval. The four-dimensional theory is therefore dependent on solutions
to Nahm’s equations. To dimensionally reduce the theory, we pass to a description in
terms of coordinates on the moduli space M, of solutions to Nahm’s equations and find
the theory to be a four-dimensional sigma-model into M}, with the action

1 . = 1 ~ -
Sya = ., /d4x\/ |94 [GIJ (%XI@MXJ - 225(1)11’0“7?”51(32)‘]) - 2RzJKLf(l)Ipﬁl(;l)J§(2)Kq§é2)L]
(4.1)
with X the coordinates on the moduli space

X My — Mg, (4.2)

and €@, where i = 1,2, Grassmann-valued sections of the pull-back of the tangent bundle
to My
€12 e T(X*TM,;, @ SF), (4.3)

where S* is the spin bundle of & chirality on M. The sigma-model for My = R? is
supersymmetric, with N = 2 supersymmetry in 4d. The coupling constant for the sigma-
model is proportional to the area of the two-sphere, which is ~ r£, as anticipated.

4.1 Poles and monopoles

Before studying the dimensional reduction to 4d, we summarize a few well-known useful
properties of the moduli space M. The moduli space My, of solutions to Nahm’s equations,
on an interval with Nahm pole boundary conditions given by the irreducible embedding
o = [k], is well-known to be isomorphic to the moduli space of (framed) SU(2) magnetic
monopoles of charge k [23, 24, 42, 43], which is 4k-dimensional and has a Hyper-Kéhler
structure. The metric of the spaces My, is not known in explicit form, other than for the
cases M; ~ R3? x S! (which is the position of the monopole in R? and the large gauge
transformations parametrized by S') and for the case

Sl X MAH

~ R3
./\/lg X Z2

(4.4)
where My is the Atiyah-Hitchin manifold [24]. A detailed description of the metric in the
latter case will be given in section 6.2. Hitchin showed the equivalence of SU(2) monopoles
of charge k with solutions of Nahm’s equations [43]

ar; 1

where T; are matrix-valued, depending on 6 € [0, 7] and have poles at the endpoints of the
interval, the residues of which define representations of su(2). Furthermore, Donaldson [23]
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identified Nahm’s equations in terms of the anti-self-duality equation Fy = — % F4 of a
connection

A=Tpd0+ ) Tida, (4.6)

on R?, where Ty, the gauge field along the interval, can be gauged away and the 7} are
taken independent of the 2’ coordinates. The metric of the solution-space (modulo gauge
transformations) has a Hyper-Kahler structure [44, 45].

This Nahm moduli space (or monopole moduli space) takes the form [24]

Stx M9

~ R3
My, X Zn ,

(4.7)
where R? parameterizes the center of mass of the k-centered monopole. A particularly
useful characterization of the reduced Nahm moduli space M% is in terms of Slodowy-
slices. Kronheimer has shown that the solutions of Nahm’s equations with no poles at
the boundaries have a moduli space given by the cotangent bundle of the complexified
gauge group, T*Gc = gc X Ge, which has a natural Hyper-Kéhler structure. Furthermore,
Bielawski showed in [26, 27], that the moduli space of solutions with Nahm pole boundary
conditions for k-centered SU(2) monopoles is given in terms of

M; 2= {(g,X) € SUN)c x su(N)c; X € Sy N g™ Spyg} € T*SU(k)c, (4.8)
where the Slodowy slice for an embedding p : su(2) — u(k) is

Sp={p(r") +a € su(k)c: [p(77),z] = 0}. (4.9)
Here 7+ = 7! 4972 are the raising/lowering operators of su(2). The Hyper-Kihler metric
on M, will play a particularly important role in section 6, where this will be discussed in
more detail.

4.2 Reduction to the 4d sigma-model

To proceed with the reduction on the #-interval to four dimensions, we take the limit where
the size of the interval, r, is small.5 The terms in the action (3.39) are organized in powers

" n = 2,3, must vanish

of r, and in the limit, the divergent terms which are of order r~
separately. The terms of order 7—! contain the four-dimensional kinetic terms and lead to
the 4d action. The terms of order r”, n > 0 are subleading and can be set to zero. To
perform this reduction we must expand the fields in powers of 7, ® = &g+ P17+ Por? 4 - -,
and compute the contribution at each order. We find that only the leading term &g

contributes to the final 4d action for each field, except for the ‘massive’ scalars ¢, and
1 (2
+p? P,p N
with the overall coupling .

spinors p whose leading contribution arise at order r. The final 4d action will arise

5By r small, we mean that we consider the effective theory at energies small compared to %
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Let us now proceed with detailing the dimensional reduction. At order r—3 we find
the term

_ 1 4
S = 37 /d@d /|94l (4.10)

1 5 o) - I
x Tr [(Decp — 3¢ “le, wc]> +lva Pll", @l + DopDog — 1[0, @l ¢l
This term is minimized (and actually vanishes),” up to order O(r~!) corrections, upon
imposing the following constraints: ¢, ¢ vanish at order 0,

p=¢=0(r), (4.11)

and the fields ¢® and Ay obey Nahm’s equations, up to order O(r) corrections,

a/\

[h o =0, (4.12)

with Nahm pole behaviour ¢ = [k] at the two ends of the interval. The four-dimensional
theory then localizes onto maps X : R* — My, where M, is the moduli space of u(k)
valued solutions of Nahm’s equations on the interval with g-poles at the boundaries, or
equivalently the moduli space of k-centered SU(2) monopoles, as reviewed in section 4.1.
The fields satisfying Nahm’s equations can be written in terms of an explicit dependence
on the point X' in the moduli space Mj,

G0, 2 = (0, X (")), Agl6,a") = Ag(6, X (a")). (4.13)
Furthermore, we choose the gauge fixing

OpAp = 0. (4.14)

The terms at O(r~2) vanish by imposing the spinors p](;}r, pgz to have no O(r?) term

1
A =00), o =o0(). (4.15)
The kinetic term of these spinors becomes of order r and can be dropped in the small r

limit. The fermions p(AlJ)r, p(A) become Lagrange multipliers and can then be integrated out,

leading to the constraints on the fermions p](?l, p1(32n)t

Dop' 2y +ilel, p7 =0

(4.16)
Dep( ) ‘H[SOA, (1)] 0,

which are supersymmetric counterparts to Nahm’s equations (3.42). We will use these
localizing equations below to expand the fermionic fields in terms of vectors in the tangent
space to the moduli space of Nahm’s equations, M.

"To avoid possible confusions about the positivity of the action, we remind that our conventions are
such that the fields are anti-hermitian.
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Finally we drop the order r kinetic terms of the 4d gauge field and scalars ¢, ¢ (which
contribute only at order ), and we are left with the terms of order % which describe the 4d
action. The remaining task is to express this action in terms of the fields X = {X'} and the
massless fermionic degrees of freedom, and to integrate out the 4d components of the gauge
field A, and the scalars ¢, ¢, which appear as auxiliary fields in the 4d action. The sublead-
ing terms (at order r) in the ©® expansion can similarly be integrated out without producing
any term in the final 4d action, so we ignore these contributions in the rest of the derivation.

In addition one should integrate over the one-loop fluctuations of the fields around their
saddle point configurations. We will assume here that the bosonic and fermionic one-loop
determinants cancel, as is frequently the case in similar computations [46], and now turn
to deriving the 4d action. Some of the technical details have been relegated to appendix E.

4.2.1 Scalars

We will now describe the 4d theory in terms of ‘collective coordinates’ X', similar to the
approach taken in e.g. [46] for the dimensional reduction of 4d SYM theories on a Riemann
surface resulting in a 2d sigma-model into the Hitchin moduli space. Related work can also
be found in [47, 48]. The resulting theory is a (supersymmetric) sigma-model (4.2), where
for this part of the paper we will consider My = R*. The three scalar fields ¢; and Ag are
expanded in the collective coordinates as follows

5p® = Te5x!
oo (4.17)
0Ap =176 X",
where I = 1,...,4k. Here, the basis of the cotangent bundle of My is given by
9t _
17 = if + [Er, ¢
gﬁ' (4.18)
i
Y7 =51~ Dokr,

where Er defines a u(k) connection V; = 0 + [Er,.] on My. The T?, T? satisfy linearized
Nahm'’s equations R

Do+ | X9,6%| = ™ [ 5, 05] (4.19)
The metric on My, can be expressed in terms of these one-forms as

Gry=— / 4O Tr(T3Y 5 + 1979 (4.20)

The Hyper-Kahler structure on My, can be made manifest in this formulation, by defining
the three symplectic forms (see for instance [49])

wld; = / de Tr(ﬁfrﬁng + 797% — 1oy, (4.21)
Some useful properties of these are summarized in appendix E.1. Using the expansion (4.18)
we obtain
1 .
Ssealars = =7 / dfd*z+\/|ga| Tr (aIAeaJAe + 51@”&]%) g X" oM x7. (4.22)

This will combine with terms arising from integrating out the gauge field to give the usual

sigma-model kinetic term.
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4.2.2 Fermions

The fermions satisfy the equation (4.16), which is the supersymmetry variation of Nahm’s
equations. The spinors therefore take values in the cotangent bundle to the moduli space
M, and we can expand them in the basis that we defined in (4.18)

( ) _ ~a (1 (0)y (DI
p5= Y¢(o ) )\ +1iY; )\ﬁ (4.23)
() Ta( ) )\(2)1+ T( )\@1 '
Pip = H1\%alp P
where )\(1)1 )\(2)1 are spacetime spinors, valued in T My. The identities (E.2) imply that

the fermlomc ﬁelds obey the constraints

W AV = i(0®)IANDT (4.24)

The expansion in (4.23) can be seen to satisfy the equation of motion for the spinors (4.16)
by making use of (4.19) and the gauge fixing condition (E.6). Then substituting in the
kinetic term for the spinors and making use of the expression for the metric on My, (4.20),
the symplectic forms w¢, and the constraint (4.24), we find

8i "
Spkin = ;/dlix ‘94‘ I:GIJ)\(l)Ip'Y'uaM)‘I(?Q)J (4'25)
- / deTr(T%JTKa+T§")3JT§§))A<1>I%MA§)K6MXJ .

4.3 4d sigma-model into the Nahm moduli space

Finally, we need to integrate out the gauge field and the scalars ¢, ¢, which is done in
appendix E.2. The conclusion is that, in addition to giving the standard kinetic term for
the scalars, this covariantizes the fermion action and results in a quartic fermion interaction
that depends on the Riemann tensor of the moduli space. In summary we find the action

1 1 ~
S= /d4a: |94 [4GUaHXIaMXJJrgiGU)\(l)Ip,yuDM)\I(g)J
(4.26)

C39RykL ()\(1)113)\1(?1)J) ()\(Q)Kq)\g)L)] ’

where DH)\%Q)I = (9u/\]%2)1 + )\Z(?Q)Jng@MXK. The final step is to decompose the spinors A%,
as explained in appendix A.2, into 4d Weyl spinors

(W1
(e 1/ 0
UL 4( 2 ) a1l (552”) , (4.27)

obeying the reality conditions
(€ =g, (£@Pyr = £, (4.28)

and the constraint ‘
wr (4.29)
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The 4d sigma-model action from flat My into the monopole moduli space My, is then given
by

1 e
S1a= 1 / d*z+/]94] [G] 7 (8#X18“XJ - 22.5“)%@“5;2“ )

, (4.30)
- 2R[JKLﬁ(I)Ipﬁl(gl)Jf(z)qué})L} :
The supersymmetry transformations are
X1 = — <e(2)ﬁ§§)l + 6(1)13{}(?2)1)
1 _ .
seV! = 1 (8MXI otell) —iw 5(05)50, X7 0“6571)> — Thox7eR (4.31)

2)1 1 L@ . @ 7 (2 2)K
060" = = (0,XT7e? — i s (03) 50, X el ) —ThpeaxTeD"
We have thus shown, that the M5-brane theory reduced on an S? gives rise to a four-
dimensional sigma-model with N = 2 supersymmetry, based on maps from R?* into the
moduli space My, of Nahm’s equations (with ¢ = [k] boundary conditions).

4.4 Relation to the Bagger-Witten model

There is an equivalent description of the sigma-model in (4.30), which relates it to the
models in [28, 29]. In this alternative description we make use of the reduced holonomy of
the Hyper-Kéhler target My. We will consider an (Sp(k) x Sp(1))/Za subgroup of SO(4k),
under which the complexified tangent bundle of a Hyper-Kéhler space decomposes into a
rank 2k vector bundle V and a rank 2 trivial bundle S. The index I decomposes under this
into ip, where i = 1,--- , 2k labels the 2k-dimensional representation of sp(k) and p = 1,2
is the doublet index of sp(1) = su(2)g. The map I — ip is realized by the invariant tensors
fP; [50], which satisfy

fPrflo=04, fPrfls;= 53'557 2P fia = 5§5q£ + iW?J(Ua)g- (4.32)
The alternative description of the sigma-model is obtained by defining the fields

. . S TN
¢Wi = f@plgg)f, §(2)z55f2p[§i(f)f ' (4.33)

DN | =

which can be inverted, by using the constraint on the fermions (4.29)
I ; 2)1 ;
60T = flpe®i, €D = 1@ (134)

Using this decomposition the 4d untwisted sigma-model action into the monopole moduli
space My, can be re-expressed in terms of the fermionic fields (4.33)

1 1 . ; 1 )
S=— / d'/]ga| [4G1Jauxfaﬂxj—zgij£<” ot Dy — S Wi (6T (€@Re@N |
(4.35)
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where the covariant derivative is
D@ = 9,6t 4 @iy ig xT. (4.36)

The tensors 'U}[ji and Wjjp, are the Sp(k) connection on V' and the totally symmetric
curvature tensor, respectively. These are expressed in terms of the Christoffel connection
and Riemann tensor as

R
wr? =5 f7% Orf 5+ T %)

1 ~ (4.37)
Wikl = iflpifJﬁijqkaquRIJKL :
The supersymmetry transformations are
sx!I — —i€(2)ﬁfliﬁ§(1)i _ ie(l)ﬁfliﬁ (2)i
5ei — %fiﬁjauXIUueg) w5 X eV (4.38)

. 1 . ) .
e — - FP10,X 516 — wy, X eI

It is natural to ask how this sigma-model can be extended to general, oriented four-
manifolds My. Using the topological twist 1 in section 2.1, we will now consider this
generalization.

5 4d topological sigma-models: hyper-Kahler M,

So far we have discussed the five-dimensional theory on flat I x R*, where I is the @ interval,
reducing it to a sigma-model in four-dimensional flat space. The goal in the following is
to define a 4d topological sigma-model on a general four-manifold. We first describe the
twist in terms of the 4d theory in section 5.1.

As we shall see, for the target space a Hyper-Kéahler manifold, as is the case for the
Nahm moduli space, and general gauge group, we determine a general form of the sigma-
model for the case of Hyper-Kihler My. For compact My, this comprises 7% and K3
varieties. We will discuss the special reductions for the abelian case and the two-monopole
case for general M, later on.

5.1 Topological twist

Twist 1 in section 2.1 was formulated for the 6d theory. We now briefly summarize how
this twist acts in 4d. From now on we switch to Euclidean signature.®

Recall, that in 6d, we twist the su(2), C su(2), ® su(2), of the 4d Lorentz algebra
with the su(2)r C su(2)r @ s0(2)r C sp(4)r. From the point of view of the 4d theory, we
start with the R-symmetry su(2)g and twist this with the Lorentz symmetry of My, which

generically is s0(4), = su(2), & su(2),, resulting in

gad = SU2Q)rp Dso(4)r, = Gtwist = SU(2)twist D 5U(2), . (5.1)

8For this twist we change from Lorentzian to Euclidean signature. In what follows 7o as defined in
appendix A.2 is replaced with 7o = i7y0, where the prime will be omitted.
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(1)

In terms of 4d representations, € and ¢

3
chirality respectively. We adopt the convention that negative/positive chirality spinors

are Weyl spinors of positive and negative

correspond to doublets of su(2),/su(2), respectively. After the twisting, 61(32) has one scalar
component under su(2)wist @ s1(2),, which is selected by the projections

)l =0, a~a=1,23, (5.2)

hSIYESH

(70&52 + Z'(Ga)

where the indices a and @ are identified in the twisted theory. The spinor ¢?? parametrizes
the preserved supercharge and can be decomposed as

PP — & (5.3)

where u is a complex Grassmann-odd parameter and €P is a Grassmann-even spinor nor-
malized so that

Py

e =1. (5.4)

We can associate the u(1)p charge —1 to the parameter v and consider & as uncharged.

The su(2)r R-symmetry with which we twist rotates the complex structures of the
target and therefore is identified with the sp(1) C so(4k) of the Hyper-Kéhler target. This
means that SU(2)r/Zs is mapped to an SO(3) isometry of the metric on My. In order to do
the twist one needs to know how the coordinates X! transform under this sp(1) = su(2)xg.
For the monopole moduli space with charge 1 and 2, M; and My, where the explicit metric
on the moduli space is known, the coordinates split into two sets transforming respectively
in the trivial and adjoint representation of su(2)g. This suggests that this property could
hold for moduli spaces My, with k& > 2. Under the twist, the coordinates transforming
in the adjoint of su(2)r become self-dual two forms on My and the resulting theory is
a sigma-model, whose bosonic fields are maps into a reduced target space and self-dual
two-forms. We shall study the M; and My cases in section 6.

A simplification occurs when the bundle of self-dual two-forms on My is trivial i.e. when
My is Hyper-Kéhler. In this case, all the coordinates transform as scalars on My after the
twist and therefore the twist can be performed without knowledge of the metric on M. In
this situation, the twisting procedure is simply a re-writing of the theory, making manifest
the transformation of the fields under the new Lorentz group. This is done in the next
section and gives a topological sigma-model on Hyper-Kahler My.

5.2 Topological sigma-model for hyper-Kahler M,

The 4d sigma-model into the Nahm moduli space (4.30) can be topologically twisted for
Hyper-Kéahler M4. We now show that this reduces to the 4d topological theory by Anselmi
and Fre [31], for the special target space given by the moduli space of Nahm’s equations.
This topological theory describes tri-holomorphic maps from My into My

X ={x1}: My — My, (5.5)
which satisfy the triholomorphicity constraint

0, X1 — ("), 0, X7 wf =0, (5.6)
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where the index a = 1,2, 3 is summed over and j* and w® are triplets of complex struc-
tures on My and My, respectively, which define the Hyper-Kéahler structures. We will also
comment in section 5.3 on how this can be obtained by first topologically twisting the 5d
SYM theory, and then dimensionally reducing this to 4d. This alternative derivation from
the twisted 5d SYM theory can be found in appendix F.

We now turn to the topological twisting of the 4d sigma-model into the Nahm moduli
space (4.30), by the twist of section 5.1. The fields of the 4d sigma-model become forms
on My, with the degree depending on their transformations under giwist

Field| g4q giwist | L'wisted Field

X |a,1,1)] (1,1) X!

e(2,2,1)|(1@3,1)] A XL, (5.7)
e27(2,1,2)] (2.1) Kl

Despite the fact that the index I transforms non-trivially under the R-symmetry SO(3)g,
this will not play a role in the twist for the Hyper-Kéahler four-manifold My: the holonomy
is reduced to su(2), and the su(2), connection that we twist with vanishes. To be even
more concrete, the covariant derivatives acting on fields with an index I will not pick up
any su(2)wist connection because the connection vanishes, so we may treat I as an external
index. This is of course not true for non-Hyper-Kahler My.

The most general decomposition of the spinors into twisted fields is given by

1
55” = (AI + a“”xfw> €p

4
D"~ 5iile,

(5.8)

I
w

form and a one-form, valued in the pull-back of the tangent bundle of the target space

where the Grassmann-odd fields M\ ,XII“,,H are respectively a scalar, a self-dual two-

X*TMy. However the components of Eg T are not all independent as they satisfy the

constraint (4.29). This constraint on the components of fg M translates into

I J T
w/,LI/ J>\ _X/u/7

(5.9)
wWIJﬁ”J = —3@1”
where W;w[ 7= —0% Wwal 7. As the self-dual two-form xfw is not an independent degree

of freedom we shall consider the decomposition of 51()\1)1 just in terms of the fermionic scalar
M. with a convenient normalization,

g (5.10)
gf(;?)l = — Eguﬁigﬁ

Note that this decomposition of 51(71)1 solves the constraint (4.29) automatically, and thus

all components of A’ are independent. However, this is not the case for 51(32)1 and we need to
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impose upon the fermionic one-form m,{ the constraint (5.9), which can be re-expressed as

1 - 1% a
K, + §<J )KL f=0. (5.11)

The action in terms of the twisted fields takes the form

1 1
Sux = — | dz/|ga] [GUBMXI@“XJ — 2G 179" N'Dyk) + gRUKw,{ng MNENE

4re
(5.12)
and is invariant under the supersymmetry transformations
X1 =uN
SN =0 (5.13)

5fi£ =u (8HXI - wWIJal’XJ) - F{;KéXJmf.

This is precisely the form of the topological sigma-model of [31] for Hyper-Kéhler My. The
action takes a simpler form than in the model presented in [31] since the target space My
is also Hyper-Kahler (i.e. has a covariantly constant quaternionic structure).

The topological BRST transformation Q (with d, = uQ) squares to zero @Q* = 0
on-shell. To make the algebra close off-shell, we can introduce an auxiliary one-form bﬁ
valued in the pull-back of the tangent space to My, b € I(X*TM ®@ Q') and satisfying the
constraint

1
b+ 5 ()W) =0, (5.14)
We then define the BRST transformation to be
QX' =\
QX' =0
Qi = bl — Tl AT S (5.15)
1
Qb = Ry LA N ki = Ty A by
The action (5.12) can then be recast in the form
goftshell — g/ .. (5.16)
where S’ and St are Q-exact and topological, respectively, given by
1 1
S'=Q 27 /d4m\/]g4] G[ngwlili o,X7 — ~b!
rl 8 (5.17)
1 . '
Sp = o /d4m\/|g4| (JHH w?JauXI&,XJ.
Integrating out b{L
bl = 9, X" — (), 0 X w7 (5.18)

we recover the on-shell action (5.12). The term St is ‘topological’, in the sense that it is
invariant under Hyper-K&hler deformations, and can be written as

1

=500 )y,

JEA X*w, (5.19)
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where X*w? is the pull-back of the Kéahler forms on My, and for Hyper-Kéhler My, j* are
the Kéhler forms. From this form it is clear that the term is invariant under Hyper-Kéahler
deformations, but not deformations, that break the Hyper-Kéahlerity.

Finally, to show that the theory is topological, meaning independent of continuous
deformations of the metric (which preserve the Hyper-Kéhler structure), we must check that
the energy-momentum tensor 7}, associated with S’ part of the action is @Q-exact. We find

2 49’
Vg ogH”

where L is the Lagrangian density in (5.17). This can be expressed as

Ty =

1 1
= Gub}, <&,XJ — 8bg> + Gpsbl <8MXJ - Sbj) — gk, (5.20)

T =Q {Gmﬁ <8,,XJ—;bi> +Grykl <6#XJ—;bi> — g Gryrl? <apXJ—;bg> } .
(5.21)
Clearly it is of interest to study further properties of these theories, in particular observ-
ables, which will be postponed to future work. Some preliminary results for sigma-models
that localize on tri-holomorphic maps have appeared in [31], however only in terms of
simplified setups, where the target is the same as Mjy.

5.3 Relation to topologically twisted 5d SYM

The topological sigma-model (5.12) for the Hyper-Kéhler case, can also be obtained by first
topologically twisting the 5d SYM theory on an interval obtained in section 3, with the
twist described in section 5.1. The derivation is quite similar to the analysis in section 4,
and we summarize the salient points here. The details are provided for the interested reader
in appendix F. There, we also discuss the topological twist 1 in the context of the 5d SYM
theory. The action for the bosonic fields, and some analysis of the boundary conditions
in terms of Nahm data, has appeared in [21]. The supersymmetric version has appeared
in [51], albeit without the supersymmetric boundary conditions.

The topologically twisted 5d SYM theory can be written in terms of the fields B,,,,
which is a self-dual two-form defined in (F.3), a complex scalar field ¢, the gauge field A,
and fermions, which in terms of the twisted fields have the following decomposition

P = Ve, P =vpPe;
= <n“) + iv“”x&lﬁ) & )= <n(2) + %v“”xff) > &- 522
Nahm’s equations in terms of the self-dual two-forms are
DyB,,, — %[BHP, B, ] =0. (5.23)

The supersymmetric vacuum configurations which satisfy this, are again characterized in
terms of maps into the moduli space of solutions to the equations (5.23), which is the
k-centered monopole moduli space, when M, is Hyper-Kahler. The 4d topological theory
is obtained by expanding the fields B,,, Ay and the fermions in terms of coordinates on
the moduli space, much like in section 4, and the resulting 4d topological sigma-model is
precisely the one we obtained by twisting the flat space sigma-model in (5.12).
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6 Sigma-models with self-dual two-forms

Having understood the Hyper-Kahler My case, we can finally turn to the case of general My.
The reduction proceeds in the same way as for the Hyper-Kéhler case, but the situation
is somewhat complicated by the fact that part of the coordinates X! become sections of
QF (M), namely self-dual two-forms. We consider in detail the abelian case with target
space M; ~ R3 x S! and the first non-trivial case, corresponding to the reduction of the
5d U(2) theory, with target space My ~ R3 x 5125\43, where M3 is the Atiyah-Hitchin
manifold.

In the case of an arbitrary (oriented) four-manifold My, there is no Hyper-Kéahler
structure, only an almost quaternionic structure [52]. One could anticipate dimensionally
reducing the twisted 5d SYM theory, as discussed in section 5.3 and appendix F.1. However,
this requires that Nahm’s equations for the self-dual two-forms B,

1
DyB,,, — Q[Bup’ B, =0, (6.1)

to be solved locally on patches in My and the patching must be defined globally, according
to the transformation of B on overlaps. Generically this means that part of the mapping co-
ordinates X' will transform from one patch to the other and therefore belong to non-trivial
SU(2), bundles over My. A similar situation appears in [46] appendix B, when twisting the
sigma-model into the Hitchin moduli space. To understand precisely, which coordinates
X1 become sections of SU(2), bundles on My, we require a detailed understanding of the
metric on My, and the action of the SU(2), isometries. In the following, we will address
this in the case of k£ = 1,2, where the metrics are known.

We provide here the analysis in the case of the reduction of the abelian theory, as a
warm-up, and then the reduction of the U(2) theory, which is the first non-trivial case. In
these cases we find that the four-dimensional theory is a topological sigma-model with part
of the coordinates X' on the target space transforming as self-dual two-forms on Mj.

6.1 Abelian theory

Recall that the dimensional reduction on S? of the untwisted single M5-brane theory gives
a free hyper-multiplet in R'3. We shall now discuss this in the context of the topologically
twisted theory on S? x M, and determine the sigma-model into the one-monopole moduli
space Mp—1 = R? x S!, with R? the position of the center and S parametrizing a phase
angle. As the metric is known, we can identity the coordinates parametrising the position
of the center as those which transform under the su(2)r and the twist gives a topological
model for general My. In fact, we find the abelian version of a model in [30] in the context
of 4d topological A-models. The 4d field content is the self-dual two-form B,,, the scalar
¢ and (twisted) for the fermions, a scalar 7, a vector 1, and a self-dual two-form x .

We begin by decomposing the target space index I — (a, ¢), with a = 1,2,3. Under
this decomposition the constraints on the spinors 5;(; ) can be solved as

ég)a — Z(gd)%fé})‘ﬁ , (62)
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leaving only fg )% as the unconstrained fermions in the theory. Under the twist the fields

become
Field| g4q Otwist | L'wisted Field
X ((1,1,1)] (1,1) ¢
X* |(3,1,1) (3,1) B, (6.3)
92,211 e3,1)]  nxw
£72.1,2) 272 Uy

where the twisted fermions are obtained from the decompositions

. 1 _
gV =i ('n + 40“”xuu) %

y (6.4)
51’(52)¢ — _Eaﬂwugﬁ .

The scalars X are decomposed in terms of the self-dual two-form B, by making use of
the invariant tensors jj,

. i 5
By =~ 9" = 2 (0 )5ze™ (6.5)

The action for the k£ = 1 topological sigma-model from flat space into the monopole moduli
space M is then

1 1
S = 47 / '0\/19al(0u90" 9 + 10, Bprd B — 26 0um + 20,0,") . (6.6)

and it is invariant the supersymmetry transformations

0 = un
0B, =u
p = (6.7)
om=3dx=0
0y = u(0up + 0" Byy) .
To show that this action is topological we introduce the auxiliary field
P,=0,0+0"B,,, (6.8)

so that 6P, = 0 and d¢, = uP,. The action can be written as the sum of a Q-exact term
and a topological term by noting that J§, = uQ

1
Sm, =QV + 37 /M4 de NdB, (6.9)
where )
V=7 | deV1gl (<" By + 20" (046 +0"Buy)) (6.10)
My

For M, without boundary, the second term in (6.9) vanishes upon integrating by parts.
This action can then be generalised to arbitrary M, by covariantising the derivatives, and
add curvature terms

RuvpeB" B, R, B". (6.11)
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The resulting theory is a (free) topological sigma-model based on the map ¢ : My —
U(1), together with a self-dual two-form B and fermionic fields and is given by

1
Sm, = “/(*d¢/\d¢>—|—*dB/\dB+2w/\(*dn—dx)) . (6.12)
r
The supersymmetric vacua, which are the saddle points of the action, satisfy

dp++dB =0, (6.13)

which implies that ¢ and B are harmonic, and in particular then d¢ = 0 and dB = 0. Thus,

¢ is a constant scalar, and B is a self-dual 2-form in a cohomology class of H?T(My).
Note, likewise one can obtain the same abelian theory starting with the 5d twisted

theory for curved My as discussed in section 5.3 and appendix F.1. The reduction can be

2) and n(?, and taking the leading

done straight forwardly, integrating out the fields (1), !
1/r terms in the action. The match to the action in (6.12) can be found by defining the

fields in the 4d reduction as

Ap=¢, n=qY, ¢, =4i0®, xu=xY. (6.14)

The scalar ¢ is actually defined in a gauge invariant way as ¢ = foﬂ dfAgy. Moreover it takes
values in iR/Z = U(1),” where the Z-quotient is due to the large gauge transformations
5([ Ag) = 2min, n € Z.1°

6.2 U(2) theory and Atiyah-Hitchin manifold

In this section we study the simplest non-abelian case, corresponding to two Mb-branes
wrapped on S2, or equivalently we study the reduction of the 5d U(2) theory to 4d on
an interval with Nahm pole boundary conditions. The flat 4d theory is given by a map
into the 2-monopole moduli space Ma, with the action given in (4.30). For the curved
space theory we find a description in terms of a sigma-model into S x R>( supplemented
by self-dual two-forms obeying some constraints. We provide a detailed analysis of the
geometrical data entering the sigma-model and we give the bosonic part of the topological
sigma-model on an arbitrary four-manifold Mjy.

The 2-monopole moduli space has been studied extensively in the literature (see for
instance [24, 53-56]), starting with the work of Atiyah and Hitchin [24]. It has the product
structure
St x Man

=R?
My X Z

(6.15)
where R? parametrizes the position of the center of mass of the 2-monopole system, and
Mg is the Atiyah-Hitchin manifold, which is a four-dimensional Hyper-Kéahler manifold.
The metric on R x S* is flat, it is associated to the abelian part of the theory U(1) C U(2).

9The factor ¢ is due to our conventions in which Ay is purely imaginary.
0T hese transformations correspond to gauge group elements g = €'*(®) with a(0) = 0 and a(mr) = 2mn.
The quantization of n is required for g to be trivial at the endpoints of the 6 interval.
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The non-trivial geometry is carried by the Atiyah-Hitchin (AH) manifold [24], whose Hyper-
Kéhler metric (AH metric) is given by

dsiyg = f(r)%dr® 4 a(r)?o? + b(r)%o2 + c(r)%03 (6.16)
where f,a,b, c are functions of r € R>g and o; are SO(3) left invariant one-forms

ol = —sintdf + cos(1) sin(0)de
02 = coshdh + sin(vp) sin(8)d¢ (6.17)
o? = cos(0)d¢ + di

with0 <0 <7, 0<¢ <2mand 0 <Y < 2m, with ¢ ~ ¢+ 2x. In addition the coordinates
are subject to the following identifications [53],

0, 0,9) ~ (m =0, 0+ m, =), (B¢)~(B+my+m), (6.18)

where the second identification accounts for the Zo quotient in (6.15), 8 € [0, 27| being the
angle coordinate on the S'. The one-forms obey

dot =% Ao, (6.19)

and cyclic permutations of 1,2,3. The metric has an SO(3) = SO(3)ap isometry (leaving

the one-form >3 invariant). The function f can be fixed to any desirable value by a
reparametrization of r (usual choices are f = abc or f = —b/r). The functions a, b, c obey
the differential equation

da [ e 2 2

—=——1b —a”—2b 6.20

dr  2bc b+ —a ) (6:20)

and cyclic permutations of a,b,c. More details on the geometry of My, including the
explicit Riemann tensor, can be found in [55].

The geometry is Hyper-Kéhler and therefore possesses three complex structures J¢,
a = 1,2,3. These three complex structures transform as a triplet of the SO(3) oy isometry.
They extend naturally to complex structures on the full Ms geometry and then transform
as a triplet of SO(3) a1, =diag(SO(3)an X SO(3)abe1), Where SO(3)apel is the rotation group
of R3. In the untwisted sigma-model (4.30), this SO(3) o, isometry is identified with the
SO(3)r R-symmetry of the 4d theory,

Untwisted theory: SO(3)a, ~ SO3)r. (6.21)

In the twisted sigma-model SO(3) rq, gets identified with the SO(3), left Lorentz rotations
on the base manifold My,

Twisted theory: SO(3)a, >~ SO(3),. (6.22)

Because of this identification, some coordinates on My acquire SO(3), Lorentz indices and
become forms on My. To make the action of SO(3), on the My coordinates explicit and
manageable, we need to choose appropriate coordinates.
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The treatment of the R? x S coordinates is identical to the abelian case. We have
coordinates ¢%, a = 1,2, 3, parametrizing R3, transforming as a triplet of SO(3)r4,, and 3
parametrizing S!, scalar under SO(3) r,. Here and in the rest of the section we identify the
indices @ and @, namely we implement the 4d twisting which identifies SO(3) g and SO(3),.

The treatment of the coordinates on My is more involved. Here we propose to intro-
duce the coordinates y"® = y%;, with a,i = 1,2, 3, forming an SO(3) matrix (y%;) € SO(3)

—sin sin ¢ + cos 0 cos ¢ cosP — cos Y sin g — cos b cos psiny  cos ¢psin b

(y%) = | —sin cos ¢ — cosBsin ¢ cos) — cos 1) cos ¢ + cosfsin ¢sint) — sin ¢ sin O
cos 1 sin 6 — sin 6 sin ¢ —cosf
(6.23)
The SO(3)am, isometries act on the matrix (y%;) by left matrix multiplication, so that

2,a
)

the three vectors y%, y>% ¢3¢ transform as three triplets of SO(3)rq,. The identifica-

tions (6.18) become

(/87 y17a7 y27a7 Z/3’a> ~ (67 y17a7 _y27a7 _yg’a) ) (57 yLaa y27a7 yg’a) ~ (ﬂ—i_ﬂ—? _yl’aa _y27a7 Z/B’G) .
(6.24)
We can express the AH metric in terms of the y»® coordinates by using the relations

1

(‘71)2 = 2( ‘dyl’adyl’a + dyQ’adyz’a + dyg’adyg’a)
1

(02)2 = 3 (dyl’“dyl’a - dy2’“dy2’a + dy3’ady3’a) (6.25)
1

(03)2 9 (dyl’adyl’a + dyQ’adQQ’a - dys’adys’a) )

where the index a is summed over. The AH metric (6.16) is then understood as the pull-
back of the metric

dtsiH = f2dr? + vidy"2dyt?® + vady®dy®® + vady>dy>® (6.26)
where
1 1 1
v = 5(—CL2 + 02 +c?), vy = E(a2 v +?), vy = i(a2 + 1% —?). (6.27)

As already mentioned the AH manifold My admits three complex structures J¢, a =
1,2, 3, preserved by the above metric, and satisfying the quaternionic relations

(Ja)IJ(Jb)JK = —(5ab5§( + 6abc(JC)IK , (6.28)

where the indices I,.J, K run over the four coordinates of the AH metric.!! Lowering
an index with the AH metric Gy (6.16), we define the three Kéhler forms (Q%)r; =

G1r(J*)X ;. These forms can be nicely expressed as the pull-back of the forms Q¢ on the

1This is a small abuse of notation compared to the convention of previous sections where I,.J, K run
over all the coordinates on M.
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space parametrized by the r,4%% coordinates:'?

1
Q¢ = §€abc (—a+b4c) fyPdr A dy 4+ (a—b4c) fy20dr A dy*C+(a+b—c) fy>ldr A dy>©

— bedy™? A dy™© — acdy®® A dy*© — abdy®® A dy®c| . (6.29)

These forms can be further simplified by using the functions wi = be, we = ca, ws = ab,

which obey
dw1 - de . dw3 .
= =—f(-a+b+c), o flc+a—0b), o = f(b—c+a). (6.30)
We obtain the nice expression
= —fe be Z d(wiy®) A dy® . (6.31)

1=1,2,3

The pull-backs Q% are complex structures on M a, hence they obey dQ2* = 0. This descrip-
tion of the complex structures is convenient, because it is much simpler than the expression
in terms of the Euler angles 0, ¢, v, but more importantly because it makes manifest the
fact that the three Kahler forms 2%, or the three complex structures J¢, transform as a
triplet under the SO(3) ¢, isometry.

After this preliminary work we can express the bosonic part of the flat space sigma-
model action (4.30) in terms of the new coordinates 3, $%,r,y"?, describing the maps
My — Ms. Fixing f(r) = 1 for simplicity, we obtain

SMabos = 1 /d4x |94 (8“68u,6+6ab8“¢“8u¢b+8“r8 r+zv, Sap 0ty 0, y" ) :
=1
(6.32)

where the sigma-model coordinates y“® are constrained to form an SO(3) matrix (6.23)
and to obey (6.24). These constraints can be stated explicitly

6byza ]b_éij’ Ebylay2by3c_1. (633)

The coordinate r is also constrained to be positive r» > 0.

Having described the (bosonic) action of the twisted theory on flat space we can easily
derive the (bosonic) action on an arbitrary My. The fields 3, r are scalars on My, so their
kinetic term is unchanged. The fields ¢®, y*® are triplets of SO(3),. They are mapped to
self-dual two-forms

bw/ = _jzz/(rba? yfw = _sz/yi@ . (6.34)

Their kinetic term gets covariantized by adding suitable curvature terms and we obtain

dB A xdB + db A xdb + dr A xdr + Z vi (r)dy® A *dy’ . (6.35)
=1

SMz,bos = 4 f

The constraints (6.33) become Yy l,y“”’ = 46" and y1 Va2, py3 M =4,

12We found the expression of one complex structure in [54] in terms of the Euler angles 6, ¢,v and

worked out the re-writing in terms of 4. The other two complex structures were easily obtained by cyclic

i,a

permutation of the y"“ coordinates.
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The fermionic part of the action Spy, ferm that is obtained from the untwisted ac-
tion (4.30), is somewhat more involved, due to the presence of the four-Fermi interaction
and the constraint (4.29) on the fields €. From the abelian part of the U(2) theory
we obtain the fermionic field content of the abelian model (6.12). In the following we
describe only the fermions related to M 4. Explicitly we can define the push-forward of
the fermionic fields

€T~ pryTeltP €T = gy T (6.36)

where the index I runs over r, (i,a). In the twisted theory we identify the su(2), and su(2)g
doublet indices ¢ and g and the fermionic fields of the resulting sigma model are a vector
Ku, a scalar 7 and self-dual two-forms N ~ nfw satisfying the constraints

5 byza ]b — _5 by]a Zb Zy]7a‘77]7b Zy]b ja (6-37)
J

The other fields appearing after the twisting are expect to be expressed in terms the above
fields by solving the constraints (4.29). However the computation is rather involved and
we do not provide an explicit expression here.

The sigma-model we obtain seems to be different from the sigma-models studied in
the literature so far. It is a sigma-model with target S' x R>o with constrained self-dual
two-forms. To study this sigma-model, and in particular to show that it defines a topolog-
ical theory, one would need to work out the details of the fermionic part of the Lagrangian
and the action of the preserved supersymmetry (or BRST) transformation on the fields.
We leave this for future work.

To conclude we can see how the bosonic action (6.35) compares with the bosonic action
of the topological model that we obtained for Hyper-Kahler My (5.12). More precisely we
would like to know how the action (6.35) decomposes into Q-exact plus topological terms
asin (5.17). For this we simply evaluate St for the sigma-model into Ma, using the explicit
form of the Q2 (6.31). The terms involving the fields ¢ and b vanish upon integration by
parts as in the abelian case, assuming M, has no boundary. When the theory is defined
on an generic four-manifold My, the remaining contribution is

1 1
Sr=55 / A = / 7* Adat Ada¥ () yD X Dy X7 + curv.,  (6.38)

where D), is covariant with respect to the Christoffel connection and SU(2), Lorentz rota-
tions (in the tangent space), and “+curv.” denotes extra curvature terms, which appear
when we consider a general curved My and covariantize Sp. Replacing X! — r,y»% we

-39 —



obtain

3
1 . A A
St =— ; Y /dw“ Adz” A dzP A dw”e“bc(]a)poDH(wiyb’Z)Dl,y” + curv.

3
1 . T/ * ; .
- Z 16714 /d4x\/§6uupa (]b)p (]C)TUDu(wiyb’l)Dyyc’l -+ curv.
=1
3
=1

3
! vpo T i
=2 761 / d'x\/ge"*7 (wiy,") DDy yry + curv.
=1

=0.

(6.39)

1 A A
607 /d4x\/§e“”pUDu(wiy’pT)D,,yig + curv.

From the third to the fourth line we have integrated by parts assuming M, has no bound-
ary. The result on the fourth line can be recognized as containing only curvature terms
(no derivatives on the fields 7, yfw) which must cancel each-other. This is necessary for
supersymmetry to be preserved (since this term must be supersymmetric by itself). We
conclude that the sigma-model action (6.35) must be @-exact, without an extra topological
term. Clearly, studying topological observables and further properties of this model are
interesting directions for future investigations.

7 Conclusions and outlook

In this paper we determined the dimensional reduction of the 6d N = (0,2) theory on
5?2, and found this to be a 4d sigma-model into the moduli space M}, of k-centered SU(2)
monopoles. There are several exciting follow-up questions to consider:

1. 4d-2d correspondence:

let us comment now on the proposed correspondence between 2d N = (0, 2) theories
with a half-topological twist, and four-dimensional topological sigma-models into M.
The setup we considered, much like the AGT and 3d-3d correspondences, implies a
dependence of the 2d theory on the geometric properties of the four-manifold. In [13]
such a dictionary was setup in the context of the torus-reduction, which leads to the
Vafa-Witten topological field theory in 4d. It would be very important to develop such
a dictionary in the present case. From the point of view of the 2d theory, the twist
along M, is the same, and thus the dictionary developed between the topological data
of M, and matter content of the 2d theory will apply here as well. The key difference
is that we consider this theory on a two-sphere, and the corresponding ‘dual’ is not the
Vafa-Witten theory, but the topological sigma-model into the Nahm moduli space.

2. Observables in 2d (0, 2) theories:
recently much progress has been made in 2d (0, 2) theories, both in constructing new
classes of such theories [13, 57-59] as well as studying anomalies [60] and computing
correlation functions using localization [17]. In particular, the localization results are
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based on deformations of N = (2, 2) theories and the associated localization computa-
tions in [61, 62]. The theories obtained in this paper from the compactification of the
Mb5-brane theory do not necessarily have such a (2,2) locus and thus extending the
results on localization beyond the models studied in [17] would be most interesting.

3. Observables in the 4d topological sigma-model:

an equally pressing question is to develop the theory on My, determine the coho-
mology of the twisted supercharges, and compute topological observables. For the
case of Hyper-Kéahler My, with the target also given by My, some observables of
the topological sigma-model were discussed in [31]. However, we find ourselves in a
more general situation, where the target is a specific 4k dimensional Hyper-Kéahler
manifold. For the general M, case we clearly get a new class of theories, which have
scalars and self-dual two-forms. The only place where a similar theory has thus far
appeared that we are aware of, is in [30] in the context of 4d topological A-models.
We have studied the topological sigma-models for £ = 1,2, and the explicit topolog-
ical sigma-models for k£ > 3 remain unknown. It would certainly be one of the most
interesting directions to study these.

4. Generalization to spheres with punctures:
the analysis in this paper for the sphere reduction can be easily generalized to spheres
with two (general) punctures, i.e. with different boundary conditions for the scalars in
the 5d SYM theory. We expect the 4d theory to be again a topological sigma-model,
however, now into the moduli space of Nahm’s equations with modified boundary con-
ditions. Studying this case may provide further interesting examples of 4d topological
field theories, which seem to be an interesting class of models to study in the future.

5. Reduction to three-dimensions and 3d duality:

the four-dimensional sigma-model that we found by compactification of the 6d (0,2)
theory on a two-sphere, can be further reduced on a circle S to give rise to a
three-dimensional sigma-model into the same M} target space. Similarly the twisted
sigma-model on a manifold S! x Mjz reduces along S' to a twisted sigma-model on
Ms. On the other hand the compactification of the twisted 6d (0,2) Ay theory on
52 x S1 x Mj can be performed by reducing first on S', obtaining 5d /" = 2 SYM
theory on S? x Mj, and then reducing on S?. We expect this reduction to yield a
different three-dimensional theory, which would be dual to the 3d sigma model into
My, for My = R3, or twisted sigma model, for general Ms, that we studied in this
paper. This new duality would be understood as an extension of 3d mirror symme-
try [63] to topological theories. To our knowledge the reduction of 5d SYM on the
topologically twisted S? has not been studied.'® It would be very interesting to study
it and to further investigate these ideas in the future.

13Note that the reduction of 5d SYM on a two-sphere, but in a different supersymmetric background,
has been considered in [64, 65], in relation with the 3d-3d correspondence [7, 66], and leads to an SL(k,C)
Chern-Simons theory on M3 with a complex Chern-Simons coupling.
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Lorentz indices 6d 5d 4d 3d 2
Curved vector v w, v 1,V

Flat vector A B A, B’ A B a,b xz,y

Spinors m,n m',n’' D, q; Dy 4

(4of su(4)r) (4ofsp(4)r) (2 of su(2)y; 2 of su(2),)
Table 2. Spacetime indices in various dimensions.
s05)r sp(4)r s0(3)r su(2)g so(2)r
Index for the fundamental rep 27 B m,n a,Z D, q z,y
Table 3. R-symmetry indices.
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A Conventions and spinor decompositions

A.1 Indices

Our index conventions, for Lorentz and R-symmetry representations, which are used
throughout the paper are summarized in the following tables. Note that R-symmetry
indices are always hatted. Furthermore, note that m = 1,--- .8, however only four com-
ponents are independent for Weyl spinors in 6d.

A.2 Gamma-matrices and spinors: 6d, 5d and 4d

We work with the mostly + signature (—,+,---,+). The gamma matrices T'4 in 6d, fyA/
in 5d and 44 in 4d, respectively, are defined as follows:

I'h=1i0a®100, = 11RQ01

o= 01®01®01 = 12®o0;
'3 = 01®02®01 = 1301
Iy= 01 ®03®01 = 1u®o0;
I's= —03®13®01 = 5380
Tg= 1,01y ® 09, (A1)
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with the Pauli matrices

01:<01>, 02:<9_i>, ng(l 0 ) (A.2)
10 1 0 0-1

The 6d gamma matrices satisfy the Clifford algebra

{La, T} =245, (A.3)

and similarly for the 5d and 4d gamma matrices.
Futhermore we define

PAidz Ay = pldidsAn] - i' > (—1)rdem PAee | P (A.4)
n:
weSy

and similarly for all types of gamma matrices.
The chirality matrix in 4d is 75 = —03 ® 12 and in 6d is defined by

[;=T2...T0 = 1LR1,o3. (A.5)
The charge conjugation matrices in 6d, 5d and 4d are defined by

C(Gd):U3®U2®U2 =C

Cisa)y = Cuay = —iog®@oy =C. (A.6)
They obey the identities
(14" = —cric, A=1,- 6.
('YA')T = CyYe ™, A'=1,--- 5.
() = cyict, A=1,- 4. (A.7)

To define irreducible spinors we also introduce the B-matrices

B(6d) =101 ® 09 R 03
B(5d) = B(4d) = 10102, (A.8)

which satisfy

AN* Ap-—1
(04)" = B(6d)1LB(6d) ) A=1--.6
A\ A -1
(7 ) = _B(5d)7 B(5d) ) A =15
(") = —Buar* B3y » A=1,-- 4 (A.9)

The 6d Dirac spinors have eight complex components. Irreducible spinors have a
definite chirality and have only four complex components. For instance a spinor p of positive
chirality satisfies I'vp = p. Similarly Dirac spinors in 4d have four complex components
and Weyl spinors obey a chirality projection, for instance st = ¢ for positive chirality,
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and have two complex components. The components of positive and negative, chirality
spinors in 4d are denoted with the index p = 1,2 and p = 1, 2, respectively.

The indices of Weyl spinors in 6d can be raised and lowered using the SW/NE (South-
West /North-East) convention:

pm = pggma Pm = prﬂu (A.IO)

with (C™"*) = (C,,,,) = C. There is a slight abuse of notation here: the indices m, n go from
1 to 8 here (instead of 1 to 4), but half of the spinor components are zero due to the chirality

condition. When indices are omitted the contraction is implicitly SW/NE. For instance

PP = pmp™,  pIAp = pp(T4) 2™, (A.11)

with (T'4)2,, the components of T'4 as given above.

The conventions on 5d and 4d spinors are analogous: indices are raised and lowered us-
ing the SW/NE convention with (C"") = (Cyprmr) = C in 5d and with the epsilon matrices
Pl = €,y = P9 = ¢4, with €!2 = 1. They are contracted using the SW/NE convention.

We also introduce gamma matrices T4 for the sp(4)r = s0(5) g R-symmetry
F1201®03, 1—‘2202@03, F3203®03, F4:12®02, 1—‘5:12@01. (A.12)

For the R-symmetry indices we use the opposite convention compared to the Lorentz in-
dices, namely indices are raised and lowered with the NW/SE convention:

pi = 0", P =g (A.13)

with (Qn7) = (™) = ioy ® 01. When unspecified, R-symmetry indices are contracted
with the NW/SE convention, so that we have for instance pp = pﬁﬁ%

A collection of Weyl spinors pg in 6d transforming in the 4 of sp(4)g can further
satisfy a Symplectic-Majorana condition (which exists in Lorentzian signature, but not in

Euclidean signature)
(pm)" = Bsayr™ - (A.14)

In 5d the Symplectic-Majorana condition on spinors is similarly

(pm)" = Bayp™ - (A.15)

In 4d the Weyl spinors are irreducible, however 4d Dirac spinor can obey a Symplectic-
Majorana condition identical to (A.15).

Let us finally comment on the conventions for the supersymmetries and their chiralities
in 6d. The fermions and supercharges have the same chirality, which we will chose to be
4 of 50(6) 1, and we consider an N = (0,2) theory in 6d. Subsequently, from the invariant
contraction of spinors (A.11) and (A.10), it follows since {T'7, C} = 0 and CT = C, that the
supersymmetry transformation parameters are of opposite chirality, i.e. left chiral spinors
transforming in 4.
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A.3 Spinor decompositions

m

6d to 5d. A Dirac spinor in 6d decomposes into two 5d spinors. A 6d spinor p = (p™)
(eight components) of positive chirality reduces to a single 5d spinor p = (p™'), with the
embedding

p= p® <3) | (A.16)

For a 6d spinor of negative chirality, the 5d spinor is embedded in the complementary four
spinor components. The 6d Symplectic-Majorana condition (A.14) on Pr reduces to the
5d Symplectic-Majorana condition (A.15) on pg if P has positive chirality, or reduces to
the opposite reality condition (extra minus sign on the right hand side of (A.15)), if Pe
has negative chirality.

5d to 4d. A 5d spinor p = (pm/) decomposes into two 4d Weyl spinors ¢, 1 of opposite
chiralities, with the embedding

Qoo () w

If p™ obeys the 5d Symplectic-Majorana condition (A.15), the spinors 1/@,1/@ are not
independent. They form four-component spinors which obey a 4d Symplectic-Majorana

(von) =pllia) s

With these conventions, we obtain for two 5d spinors p, p the decomposition of bilinears

condition:

PP = P P™ = ¥ — s = b — i
PV = i (V)™ B = Yy + = s+t
PV B = Pap (TP + o (TH)Pph, = by + -7 (A.19)
with (7—17 72,73, 7—4) == (_127 01,02, 03) and (7__17 7_—27 7_—37 7_—4) - (_127 —01, —02, _03)'

R-symmetry reduction. In this paper we consider the reduction of the R-symmetry
group
sp(d)p — su(2)r Bso(2)r. (A.20)

The fundamental index m of sp(4)r decomposes into the index (p, z) of su(2)g @ so0(2)r.
A (collection of) spinors ps in any spacetime dimension can be gathered in a column
four-vector p with each component being a full spinor. The decomposition is then

p=pPe (é) +pP <(1)) : (A.21)

with p(1) = (p()5) transforming in the (2)11 of su(2)r ® s0(2)r and p? = (p(?5) trans-
forming in the (2)_;. So the four spinors pz get replaced by the four spinors p(l)f,, p(2)§.
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From the sp(4)p invariant tensor Qz7, with = € ® 01, and the explicit gamma matri-
ces (A.12) we find the bilinear decompositions. For instance

R e e D A R GRS
= pPWeip — W65 G =123,
Another useful identity is

(DA D)rg = 4617675 — QT Oy . (A.22)
B Killing spinors for the S2 background

In this appendix we determine the solutions to the Killing spinor equations for the S2
background of section 2.3.

B.1 6y =0

The supersymmetry transformations of conformal supergravity are parametrized by two
complex eight-component spinors €™, 7™, of positive chirality and negative chirality, respec-
tively,'* with an index 7 transforming in the 4 of sp(4) . The first Killing spinor equation is

_ 1 _
0=0yf =Dac™ + (T™BEDT popT geq + Dan™ (B.1)
with
D,e™ = 9,e™ + 1b €+ 1@EFBCGm — leAeﬁ
&EA*B = 262@8[&%51 — eB[AeE]Qegageﬁ + Qe[fbﬁ] = wﬁAfB + Qe[ﬁébﬁ] ,

where the background fields have been converted to sp(4)r representations with

Vi = Ve Thtp = Tigep(T)™ . D™= D50 " ().
(B.3)
We choose to set n = 0. After inserting our ansatz, in particular T g‘gD = by = 0, we obtain
1 1 —
0=20 m_7£/0F56m_7 0 F45mAn
b = ol O — u(6) () e -
0= 0™, W=t 2?23 20,
We find solutions for constant spinors €™ subject to the constraint
0 = —TI%m 4 (Fﬁ)mﬁ€ﬁ7 (B.5)
with oo
v(f) =— (9) . (B.6)
r

The condition (B.5) projects out half of the components of a constant spinor, leaving eight
real supercharges in Lorentzian signature, or eight complex supercharges in Euclidean
signature.

141n Lorentzian signature these spinors obey a Symplectic-Majorana condition, leaving 16416 real super-
charges.
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B.2 6x?ﬁ =

The second Killing spinor equation is given by

0= ox27 (B.7)
) 15 1 -~ - 5
= 33 (DA ) rBCDpA. GFBCR?CT Y — ZDm"?ges + 8T FBC 77 — traces,
with

D ThEp = . ThEp + 30y s leBE — b Thp + V[m Then (B35)

vy

Rm” =20}, Ve

V]
Here, ‘traces’ indicates terms proportional to invariant tensors Qmﬁ,éﬁ,érﬁ. Again the
background ﬁelds are converted to sp(4)r representations using (B.3).

With T7 B¢ p = 0, we obtain the simpler conditions

15 A ah 5
0= FBCRB;nCT 7l D™e® — traces. (B.9)

The R-symmetry field strength has a single non-vanishing component, corresponding to a
flux on S?

E//(G)

RJ = —RIJ = — ri)ma, B.10
00 60 () (B.10)
In flat space indices this becomes
i mn__ U'(0) 3
Rse" = —Res” = r20(0) (™) (B.11)
Moreover our ansitze for D 75 (2.33) can be re-expressed in sp(4)r indices as:
D™ s = d|5(I) (0Bl - 6157 — 0] (B.12)

where the two last terms lead only to “trace” contributions in (B.9) and hence drop from
the equations. We obtain

15 £(0)
T2 r20(6)

56 (D487 _¢Pl _ 5q(1 %)M (D95)A) 5 (B.13)

Using (B.5), we solve the equations without further constraints on €™ if

(B.14)

The background we found corresponds to the twisting u(1), @ u(1)g — u(1) on S2%. It
preserves half of the supersymmetries (and no conformal supersymmetries) of the flat space
theory, and corresponds to the topological half-twist of the 2d theory.
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C 6d to 5d reduction for b, =

In this appendix we detail the reduction of the six dimensional equations of motion on an
S'. This is done following [9, 37] however we choose to gauge fix b, = 0, which is possible
without loss of generality. -

We start by decomposing the six dimensional frame as

4 ¢ _ A’ 6 _ —1
wo €y =—Cy B €, ey =a Cy
R A e B S O v e
€6 €6 =

€y = 0 eg =a
where the 5d indices are primed. We work in the gauge b, = 0, which is achieved by fixing

=[x

the special conformal generators, K 4. Note that this choice is different from the gauge
fixing of b, in [9, 37], in particular « is not covariantly constant in our case. Furthermore,
we fix the conformal supersymmetry generators to ensure ¥5 = 0, which means that eg =0
is invariant under supersymmetry transformations. For a general background the bosonic
supergravity fields descend to 5d fields as

mn mn
D — D

. Vi A6
Vit - 47 (C.2)
T, = Tk =Tih .
The components of the spin connection along the ¢ direction are given by
A6 _ 1 w A a A'B" 1 GA’B' A6 _ 1 V’A’G C ay
We 0426 o, Wy _ﬁ , Wy = %e W,/—i— M/e
(C.3)
where G = dC, and can be derived from the six dimensional vielbein using
wﬁl = 263@8[&65} - eB[AeE]Qegaﬁe@ . (C4)
C.1 Equations of motion for B
The 6d equations of motion for the three-form H are given by
dH =0
B P (C.5)
We decompose H into 5d components
1 / ! ! 1 / !
H = gHA/B/C/GA AePAC +§HD/E/6€D Ael Ael. (C.6)
We can solve the second equation of motion by setting
Hapis = aFap
(C.7)

1 %
HA’B’C" = §€A/B/C/DE (aFD’E’ - (I)mn D’E’) )
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where F),s is a two-form in five dimensions. Substituting this into the expansion of H and
reducing to 5d we obtain

1

H = a*5q (F— a@ﬁlﬁTﬁlﬁ> +F/\C+F/\dg0. (CS)

The equations of motion dH = 0 imply
dF =0, F/\dc+d(a*5qu>%*5Tﬁﬁ), (C.9)

which can be integrated to the 5d action

SF:—/(ﬂthF+CAFAF), (C.10)

where 1
F=F— —®5;T™. (C.11)

[0

Together with the constraint dF' = 0, which identifies F' with the field strength of a five-
dimensional connection A, given by F,,» = 0,y Ay — 0 A,y

C.2 Equations of motion for the scalars

The dimensionally reduced 6d scalar equations of motion are
D™ 4 2F 0 p TAB 1 (My) 2™ =0, (C.12)
where

Dy ®™ = 9y + V@™

D2™ = (94 + wh A ) Dy @™ + VI DH o7 (C.13)
P Reqd ma. 1 . maar 1 i oh) | of ol i [ 'B' i
(Mg)ZP = _75; 5§]+EO“ B, S o™ +§a2(s,i, s — stsimaly — DR - TAP T,

The 6d Ricci scalar Rgg can be rewritten of course in terms of the 5d fields. This equation
of motion can be integrated to the following action

7S

S@:—/d5x |9|a—1 (DA,@mﬁDA@er%mFA/B,T%B/_(I)m(Mq))%ﬁ@r ) . (C.14)

C.3 Equations of motion for the fermions

The 6d fermions are decomposed as follows

- 0

Then for a general background the six dimensional equation of motion reduces to

[~ 1=

i 4 (M) T =, (C.16)

n
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From this we obtain the action
50= = [ vl o (1070 + (37 (©18)

D Supersymmetry variations of the 5d action

The supersymmetry variations (3.14), which leave the 5d action (3.24) invariant, can be
decomposed with respect to the R-symmetry, following appendix A.3. This decomposition
will be useful in further proceeding to four dimensions. The scalar and gauge field variations
are then

§A, = —0(9) ( (Do) 4 Dy, 1) )
649 = —re(9) ((D7p) — (@)
P (6(1)]3(06)@? 2 6(2)1?(03)15@[)((?12)
S = _26(1)ﬁp%1J)r7 55 — 26(2);7'0%22
and for the fermions we find

5 = g P = 1Duer e + Do) = S (o, (o) — oAl
opt) = 4Tg(9)Fu07”6f31) + %DM"N rell) 4 ZT (D9w+ g((g)) @) e ET) [, 9L (D.2)
5p2) = #(Q)qug;;) ~ 1D+ L (Dasz + i((g)) @) &~ @wg}egﬁ)
ops) = 8@) e 4 4D,LW rel) + 41 Dyple?) — @ (ﬁf{wa,%]w)i 2 tilp, el ))

where 57 = Y2 0% (0®)57.
The supersymmetry variations of the different pieces of the 5d action are given by

5y — _,/d% MTY[( WP, @ 4 (@, <1>)D FWJFT( WP, _ (@5 <1>)D o
1 ~
<57 (PP + P Dofe(0)0}) |
3 Squartic = /d%\/lgf °Tr [ (e pl) — el pl2)) ([[s@m, @), ¢l + ™, @],sﬁ])
+2(ies) o — iel o) ipa, 0%, PN + 26 VP ) [i0a, [0, ]
07 @) W5, @7 ,(2)

o2 lea, 0", @l + VP13, [p, 1) + €Po [, i, ]
e = —5 [ /Il D 10 [ 02) — 20) g ]
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ésscalar = — = /d5$\/ |g [ [QZDHSD@? (Gél)Dupc(liz Z)Dupg\l_))

—20(0) D" (6“”% (02, 0a) + € PPy, 05, 0 }) — 2P D" p) D, o + 2P DM oD, pY

~00)Dup (P [0 ] + PP plL) ) = £0) Dyp (VP 102, 8] + PP [0, ]

+%Dwﬁq( D Dyp) 6;2>D9p5712) n @Dwa (_6(1)17[/)%)7@&] + @7, ;1)7%])
—%e“ﬁDepgﬁDe@ + ﬁemﬁDepnge‘P + @De@ (6(2>5[p%12, 0] — e(l)p[pﬁz, <p])
85, = f2i/d5x\/\?ﬁ { 10(0) v ( (1)’y"p(2> + e(z)p'yup<1)) + i‘e@)ﬁDMpg_)D“go

/L v Z v
g[F;w’SO] (2)1’7# p1<92—> 8 (1)17 i EQ[F;W:@] Degopqe(l) 7)) p(2)

£(0 abe
D <pp‘1D ppl_g,y# (2>+ (8)6 b [‘Pﬁv@d( )P ((1) 55 p(2)+e(2> 35 p(l))

(0 _ 5 5 ~ ~
+7é g4l (=M Dup) + Py Dpll)) + 74 w2 e (eM7p2) — e27pl)

1 pq 1 Pq- v v
+7Dug™ (6%2>Dup571_) _El(?l)DHpgg) + 5B, 7] ( @y p1) _ (D yn pg)
i’ (0)
4rL(0)

Do (e@P1p0, @] — VP [p), ) — 2m?eVPpll)p + 2m2¢6(2>5p§_)]

1)pD”p(1)DHLP +

L @papp 2 Wip, oM
—EDggoe V' Dupgy — EDQ(’OG Dypg-
£(0 55 £00) . _
+ (4)[<P7<qu]€;(;2)7“DuPé2+)+%[<P7¢pq] <1)’y“D p(l _|_ D 906(2)? 5 p<2)

1 55 0(0) z32 (0 _
——Detppqeg)Depg + 7;) eabc[cpa,cpg]( )pq (I)D 2) —( )[cp, ap]e(l)ngng

( Dugoe(Z)p w (2) - D SOE(I)p’y“p(l)

)

4r2? Pa+ Sr
b op (L N L h pa@ e ) b b2 o p )
arz€ 7 e (e(e) wo ) = g DoDue™ s pgy & qa Daee Topy
- mr,mp, (CO N _ L o)z, ) W0 4 LD P Dyt
472 Pt £(0) 4r ’ a+ gyt P
a%e IRC) P
53 Do e Dopgl — é ) e [soa,sob]( 2)1el Dopl) ;r)[w,@]e(z)pDepgl
_L W7 ,@ p, Foo D Dy eV pp® — L p2oc@s @
47,2 € (((9) oLy Y pq_ 47"2 0 PE Pp_
i . ~ A
a0 (55 ) 0)le. o™ Def pi2 — (O (VT — D7), o]

2 2 1 1 q 2 q 1 2)p:
+(O)p (07 - <2> >””1 1O) PG (VT upg? + €D Typfl)), o)

P (€D, pff_) + e(Q)q’vupffﬁ) 7]

@) u (1)

v { _
IS utawa = = /d5ﬂfx/lg€ Tr{ 4((9)[ i @167 0 + 2 (D, el 7 oy

~ - i -
+§De¢a[sﬁ“7e(2)"p§3]—76“b( a)" Doy, peley py) —

i0()
4

2 (1)

‘P
g )H 1731\7 905]7410 ]EA qu,

P i . 5
"7, [, @lles” 2 + (677, FyaleDn" o2 + ipa, Dl WPy o2
3r0(0) 3

i’ (6)

T abe, _\pd ey (2) pa @) <2
+5¢7(0a)" w5, Dupeley +2 (9", Dogles +W( )[so

é n m n m
0 o, 167, @02+ 200 EPeDT (202, 0™~ 2", o0)

2 Dn  (I)m DHn  (I)m { 2 1
~2ip3 27 (200, o] — o070 ~ 2z o 767"

+

2 2
] ;)pfl_)
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1 a 1 a c Pq 2 1 E 9 — a p (1
+ 5[%,0#@ Je®Py 5] + 5e T (04) o, DupelePy" ol — (2)[[%%],@ JeMPplY)
pay . L'(0)
1 1 — 2 2)n 1)m 2)n 1)m
+ ; eV plt) ([Dew,w”“] OLdd PI ) 4 2ip(PP DT (2[/);2 S = 102 oY) ])
2 n (L)m Dn  (L)m 1 53 1) v (2
— 2P (2, 7] = 7, A7) = ol Fu e )
40(0)
7 B8 1 7 abe 56
- g[sﬁpq7Du¢}69)7”p(2) + 5. [va, Dog" P2 4 7€ bc(Ua)pq[Sﬁg,Do@c]ﬁg)ﬁ'(z)
il(0) 3, P Z5(9) ) @) (WP (1) ~
_ Wip
+ 5 lva [0 "G gy + (7%, [, @lles) il + 5 2r£(0) Yy [Fuo, @]
i AW, 4 L @5 A
D, P4 (QIZ D
5 Due™, Pleg v g + 5 e oy ([ 0, ] + 0 o, 2]
+i13(9)6<3>pg>“ 7, 5] + 2i[p™P, oD (D7) - LW (R, g
2 P Pe-l9? - = 40(0) o
1 @ n,0ip o m mrp i g4 U0 )
Vo D, @] = 5oep pe [Do™, @l + = ppille, @), @]
1 . 1
+2i[p 7, )] (e <2)qpf,2>) + o ey ) EL, o] — — PPyt o2 D3, o]
10(0) 2
i . 00) (25 -
+om6 P [Dog™, o] + 72)6(2)%@[[% @l ¢l + 2i[p27, p2)(e VL)
L @pp,® @) (2 p7 L wp,@ . o).
- F S 14 D rq _ p D
@ VP L [Fuo, 0] — 26 7" e Due™, ¢l = oo Pppy | [Do, ] + 0 (@, ¢]
i(0) 1) 2 2 1
_ ;) D 213,67, 0] + 207, s (VD) | (D.3)

The terms in the supersymmetry variation of the 5d action cancel up to the following
boundary terms

«0) s "
Sextra = [/d x\/|ga| Tr (_ /LP(Q) + 6(2)p (JR)FMO + %(6(1)%%1421)9@ + 6(2);001(?2,)1)990)
e, s " il(0)? 50 o T
SO so]<e<1>ppg‘2+e(2>pp§2>+—(4 gm0 DAL o) )| . (D)
0

Taking into consideration the boundary behaviour of the fields discussed in section 3.2 and
the fact that €M), ¢(?) are constants the only non-vanishing boundary term is

[3¢(6 "
Sextra = /d4x\/ |94 Tr( [‘PEv vel (€5 3 )p((]—) 61(71);)((??))}
L 0
i 5(9)2/ 4 abe "
= |—— [ d*z/|ga| Tr (€0 pz]7, el (D.5)
i ( epvel) |
[ o) / 4 abe "
= | =50 | ' VI]gal Tr ™ paley, pel
T (ealen oel) |

This term can be cancelled, to make the action supersymmetric at the boundaries of the

interval, by adding the term

0(6)2 . T
Shdry = {<12) / d*z+/]ga| Tr (6“”0%[%, %])L

/deag V( /d4 V0gal Tr (% b,cpc})] ,

to the 5d action.
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E Aspects of the 4d sigma-model

In this appendix we collect several useful relations for the sigma-model reduction, as well
as give details on integrating out the gauge field and the scalars ¢ and @, which appear
only algebraically in the » — 0 limit of the 5d action.

E.1 Useful relations

We now summarize properties of the sigma-model defined in section 4. The three symplectic
structures (4.21) of the Hyper-Kéhler target can be used to define the three complex
structures w%l = w% JG’J I which satisfy

waf‘]ng —0 (51 + €W 5K (E.1)

The complex structures exchange the cotangent vectors T}‘E and T? in the following fashion

EJTQ — _Ta
(E.2)
JTb _ 5abTI + eabchg.
We introduce a complete set of functions, satisfying the completeness relations [48]
GIJTaa Tbﬁ + Z \Ilaa 52{1)\ 5(15 5(0 _ 7_)
GIJTOQ T@ﬁ + Z \11904 \1195 504,8 5(9 . T) (E3)
GIJTaa T9ﬁ + Z \Ijacx —0.

Here, «, 8 are indices labeling the generators of the gauge algebra. These functions satisfy
the orthogonality relations

/ 073 (9)0" (6 / o5 (0)v(9) = 0. (E.4)

E.2 Integrating out fields

In this appendix we discuss how the scalars ¢, ¢ and the 4d gauge field A, are integrated
out in the sigma-model reduction. The equation of motions for ¢, and A, are

D+ |va, |67, ¢]] = —irlo), o7
Dig + |¢a [¢% 8] | = 4irlpZ, p27) (E:5)
Di A+ [, [#° Au]| = (40,0140 0, X" + |03, 016%| 0,XT = 4ilp"), 7,07
We adopt a convenient gauge for the connection Ej
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which can be re-expressed as
DgEI + [9057 [Qoaa EI]] = [AG) 8[149] + [9067 a]wa] ) (E7)

where we have used the gauge fixing condition dpAy = 0. Using the expansion for the
spinors (4.23) and the constraints (4.24), we evaluate the spinor bilinears in (E.5) to give

[0, p7%] = —a ([, ga] + [r4, 5] ) A A7
[p(f%, pf)ﬂ =4 ([ ?Tm} + [T?,T?,D LIA@IP (E.8)
I

[0 upPP] = —a (15,0 + [ T8, 75] ) A A @7

)

—

We note that the curvature
@]JZ[V],VJ], (EQ)

where V; = 07 + [Ey, -], satisfies the equation
i1y + s [¢°, @1s]) = 2 ([T ra, X5) + [T, 75 ). (E.10)
It can be used to solve the equations of motion by

p = 8ir® A AL
p = —8ird NI NP (E.11)
Ay = B9, X" 4 8i0p 2y AP

Inserting this back in the action the terms with ¢, ¢ results in

16 - ~ .
Se =, /d9d41‘ |ga| Tr (Deq)IJDO(I)KL + [P, 9" ][PrL 806]) ADIPADT \@KTDE.

(E.12)
The terms we obtain by integrating out A, will be grouped into three types of terms. The
first type are such that X! appear quadratically

1 .
Stypel = —— [ dd*z\/|gs| Tr (DOEIDBEJ — 201 AgDyEy + 2019 [Ey, @3]
drt (E.13)

+ [E1, @) [Es, pa] ) 0,X 04X

These terms combine with terms in the scalar action (4.22) to give the usual sigma-model
kinetic term

1
Sscalars T SA, 1ype1 = yn /d4x./g4y GUauXIauXJ, (E.14)
Terms of type 2 are linear in X' and covariantise the kinetic terms of the spinor

43 5 5
Siivper = = | dod*s\/lga] T (20F(Ey, Y cal + 2T[E,, Th) AV PyrP 0, X7

(E.15)
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The terms involving the connection E; are promoted to covariant derivatives V; when
combined with the terms in the spinor action (4.25). Using the identities
. 1 .
V]Ta = FﬁTCIL{ + i[q)jj, goa]
1 (E.16)
VY =1E1s — 5Do%1

where

Trx = — / a0 (Y5 V(1 gy + Tk V0% ) (E.17)

the kinetic term in the spinor action is covariantised. Lastly, the terms of type 3 give rise
to the quartic fermion interaction. Using (E.10) these terms simplify to

16 4 a
= —— Tr ( Dy PryDyd P [P 5
Sy iypes 7 | ¢ wdf |94 ( 0P1 Dy @k + [Pry, 0% KL,%]) (£.18)
v )\(1)1'177#)\1(32”)\(1)1((?%)\((?2” )
Using various identities, including Fierz-type identities,
()\(1);6[[)\1(71)»7})()\(2)6[K>\((?2)L]) _ 2()\(1);?[[)\(1)]}6)()\1(?2)[K)\5?2)L])
a K 0 a
Wit Vi Ty =Vl (E.19)
AoV a\ay ()] .
Vi TG = v 10 (o)A
VTV T aAd A0 = 39,78 Vi 1 A A

it can be shown that this quartic fermion interaction combines with the term (E.12) to
make the Riemann tensor of the target space appear

32 = &
SA,“typES + S(p,gz = _ﬁ /d4$ V ‘94‘ RIJKL(A(l)IpAg)J)()‘(Q)Kq)‘f’]‘z)L> ’ (E2O)

where the Riemann tensor is given by
RijkL — — / d0 Tr <2v[IT§]v[KTL]a + VY5 VT e — Vi Th Vi Tr
PRV VXY + VT VT - Vi TV )
- / 40 T (2051, Dy, + 2017, )@ xcr. (B.21)
+ D@1k D@y, + (@15, 0] [ @1, 3l

— Dg®1.Dy® s — [®11, 0% [P ke, @a]) .

Combining all the terms we obtain the final sigma-model (4.26).

F Sigma-model for hyper-Kahler M, from 5d SYM

In this appendix we provide a comprehensive discussion of the topological twist of the 5d
SYM on an interval with Nahm pole boundary conditions, and its dimensional reduction to
4d for M4 a Hyper-Kéhler manifold. This results in the same 4d topological sigma-model
as we obtained in section 5.2, by twisting the 4d sigma-model on flat Mjy.
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F.1 Topological twist

Let us first consider the topological twist 1 of section 2.1 applied to the 5d SYM theory.
From now on we switch to Euclidean signature.!”
considered in [21, 51].

Twist 1 of the 6d N = (0, 2) theory identifies su(2), C su(2);®su(2), of the 4d Lorentz
algebra with the su(2)r C su(2)r @ s0(2)g C sp(4)r. Under dimensional reduction to 5d

the symmetries after the twist are

The twisted 5d theory was already

Ep(4)R 2 50(5)L —  BGtwist = 57vl(2)'cwist @ 5u(2)r ©® u(l)R . (Fl)

The fields of the 5d theory become forms in the twisted theory, according to their trans-
formations with respect to the giwist, as summarized in the following table:

Field Jtwist Representation Twisted Field
Ap (2,2)o Ay
P (1,1)2 @
¢ (1,1)— @
©® (3,1)o B (F.2)
oy (2.2)1 vl
Pf) (2,2) 1 ff)
o (L1 (3.1 (1, X))
o (1,1)-1 (3, 1) (1 X))

The fields A, p, ¢ do not carry su(2)p charge and are thus unaffected. The scalars o
transform as a triplet of su(2) . In the twisted theory they become a triplet ¢ of su(2)wist,
defining a self-dual two-form B, on Mj:

By = ()", (F.3)

where the three local self-dual two-forms ja transforming as a triplet of su(2)¢wist. They

can be defined in a local frame eﬁ as (§%)w = eﬁef(j“)AB, a=1,2,3, with

(ja)Ob = —5(? ) (ja)bc == _eabC7 a, b7 cC= 17 27 3. (F4)
In this local frame we have
BOa = (pa’ Bab = Eabc(pca a, ba c= 17 27 3. (F5)

The self-dual tensors j* are used to map the vector index a of so(3) to the self-dual two-
form index [AB]T. The tensors (j*)", define an almost quaternionic structure, since they
satisfy

(ja)up(jb)pu = _5ab55 =+ €abc(j6)uu . (Fﬁ)

15For this twist we change from Lorentzian to Euclidean signature. In what follows ~o as defined in
appendix A.2 is replaced with =y = i70, where the prime will be omitted.
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The spinor fields transform as doublets of s1(2)g. They become scalar, self-dual two-
forms and one-form fields on My as indicated in the table. The explicit decomposition,
is obtained using the Killing spinor associated to the scalar supercharge in the twisted
theory. This Killing spinor can be found as follows. The spinor €, generating the preserved
supersymmetry is a constant spinor and is invariant under the twisted Lorentz algebra

S5U(2) twist D 5u(2),. As explained in section 3.2 and in appendix A.3 €5 decomposes under
@ (2

sp(4)r — su(2) g D u(1)R into two spinors doublets of su(2)g: €7 — €57, €5, satisfying the
projections (3.17)

m _ 5.0 _ (2, 5.2 _

& —7e =0, & +77e¢ =0. (F.7)

) has one scalar component under s1(2)wist D s1(2), selected

As explained in section 5.1, €

out by the projections

)l =0, a~a=1,23, (F.8)

D))

(Y003 + (o)

where the indices @ and @ gets identified in the twisted theory. The spinor ¢(?? parametriz-
ing the preserved supercharge is then decomposed as

PP =y (F.9)
where u is complex Grassmann-odd parameter and € is a Grassmann-even spinor with unit
normalisation. The decomposition of the spinors into the twisted fields is then given by

1 -
plh = yNes
2 -
Py ="00%
1 1 - F.10
P = (77(1) + 47“”)(,(}”)) & (£-10)
2 | .
P2 = (77(2) + 57" XE?J) & -
F.2 Twisted 5d action

We rewrite now the action in terms of the twisted fields and provide the preserved su-
persymmetry transformations. The bosonic part of this action has appeared in [21], and
related considerations regarding the supersymmetric versions of the twisted model can be
found in [51].

The action in (3.39) in terms of the twisted fields takes the form

_r
8¢

1 4 / 1 o 1 o
Ssca]ars = _TM /d@d x |g4| Tr <4DMBPU-D#BP —+ pDQBpgDQBp

2
Sp = dfd*z+\/|gs| Tr (FWF‘“’ + T—2(8HA9 — OgA, + [AM,AQ])2>

1
+D"pD,p + TQDMPDM)

.
S, = 772 /d9d4x |ga| Tr [T,@)Dmum — §OD, XD 4 VD@ _ @ D,y e
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+% (%1)1)91/,(2)# DDy — 4xf”Dex( e )]
Svuann = 7 [ a0l o (= B [1 0] 4 3 [ 12
_% By, [X@)m (1)”7] _2B,, [W”‘,w(”"}
@ [nmmm} +ig [xf}y),x( )W} . |:¢£L1)’1/)(1)H}
~ [X,(fy) , X Pm } — [w;ﬁ%w@ﬂ])

— [n(”,n(”}

1 _ _ _
Sawtic =~ gorag | W8N GTT (] (B BB, B4 B 561 = [l 6]

1
1
1
4

Svary = 75 3E/d9d4x |ga| Tr (0p B, [B**, B” ,)) . (F.11)
The supersymmetry transformations of this 5d topologically twisted SYM theory are
54, = ==yl 549 = un™
0B = qu(J,];/)
dp =0 op = 2un(2)
sylV) = —%DMP 52 = - 'ZLDVBV# (F.12)
o't = ZfDew o = - lp. @l
o) = — ol Bl 6 = SUEL + S DoBu — o Bur, B
where the self-dual part of the gauge field is defined as
Ft = 1(1 +%)F. (F.13)

2
To define the twisted action for curved My, in addition to covariantising the derivatives,

the curvature terms
RB,,B" and R e B" B, (F.14)

must be added to the action in order to preserve supersymmetry. These terms can be
repackaged with the kinetic term for B, changing the action for the scalars to

(F.15)

Sscalars

1 1 1 :
=17 | @d'eVlgl ™ (DHBWDVBVP ~ 3FuwB"s B + 45 DoBg Dy B + D" (p’Du/gZ> :

where D is defined to be covariant with respect to the curvature connection on M, and the
gauge connection. The 5d twisted action on curved My can be written in the form

SSd = QV + SSd,top s (Flﬁ)

where the Q-exact and topological terms are given by

1 v : 1 1
V= ~ 7 /d0d4x lg| Tr [X(Q)“ <PW —1 (TFMV + o <DHBW - Z[BW’B ]>)>
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. y . _ 1 1 _
+20 " (2P, +i(Fup + D" Byy)) + "D — 50 ®ip, @] — —n'V Dy

i (Dpvr
X (@, Bu]

O=m

r 1

Ssdtop = TrFA*FU TrF/\B} , (F.17)
P A0 aga 2rt | ), 9—0

where P, and P, are auxiliary fields. The supersymmetry transformations are

1
QA = _FQ/);(LI) QAg =Y QB = XLIV)
Qe =0 Qg =2
i i
QP, = 47[%2)7 ¢ QP = ZT[X;(EI/)? ] (F.18)
V= Do QU =—1Dwp Qi) =~ e Bl
i
Q' =—ledl QU =P, QX2 = P -

The auxiliary fields are integrated out by

i 14
Py = =5 (Fu+ D"Byy)
ir . 1 . (F.19)
PHV = EF'U‘V + E <D9BMV - §[BuT7Bl/ ]) .

We can now proceed with the dimensional reduction to four-dimensions.

F.3 Triholomorphic sigma-model with hyper-Kahler M,
We now reduce the twisted 5d SYM theory to 4d on Hyper-Kéhler M4. We proceed

similar to the analysis in section 4.2 and in appendix E, and expand all fields in powers
of r and demand that the leading order terms in % in the action (F.11) vanish. This sets
¢ =@ = 0(r) and leads to Nahm’s equations for the self-dual two-forms

DGB,LW - [B,upy Byp] =0, (F20)

1
2
with ¢ = [k] Nahm pole boundary condition. Locally this is the same situation as in the
untwisted theory, but not globally. In the untwisted theory the scalars ¢® were scalar fields
on R4 and the solutions to the Nahm’s equations are described by a map R* — M. In the
twisted theory B belongs to the bundle Q**(My) and the global solutions to (F.20) are
generically more involved. However this complication does not happen when the bundle
of self-dual two-forms Q%% (M) is trivial, namely when B transforms as a scalar. In this
case one can regard the components B, as scalars on M, and the solutions to (F.20) are
again given in terms of a map

X : My = My, (F.21)

where My, is the moduli space of solutions to Nahm’s equations with ¢ Nahm pole boundary
conditions. As before we define coordinates X = {X'} on M. The case when Q%% (My)
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is trivial corresponds to My having reduced holonomy SU(2), C SU(2), x SU(2),, which is
the definition of a Hyper-K&ahler manifold.
The zero modes around a solution By, (X!) can be expressed as

0B, = T1,u0X!

F.22
6Ag = Y95X1, (-22)
where the expansion is in terms of the cotangent vectors T, which satisfy
Y7, =01Bu + |Er, B
Iy IDpw [ I, Pp ] (F.23)

T? = aIAG - aHEI - [A97EI] s

with F; defining a gauge connection on Mpy. We will choose the convenient ‘gauge fixing

condition’ )
DyYY — 10t B = 0. (F.24)
The equations obeyed by the cotangent vectors T4, T9 are
1
DeTI,;w + [T§a Bw] D) ([TLIJ«P’ Bl/p] - [TI,Vpa Bup]) =0. (F-25)
A natural metric on My can be defined as
1
Gry= _/de Tr <4T§WTJ,W+T§T§) . (F.26)
Similarly we can write down an expression for the three symplectic forms w?;; (see e.g. [49]),
repackaged into wy, 17 = —(j*)ww?rs, as
1 1
W 1] = — / df Tr (2T1,upTqu — iTLVPTqu — Y Y+ T?TJJW) : (F.27)

These provide the Hyper-Kéhler structure of the moduli space My. The quaternionic
relations on the three complex structures w®! ; becomes
wupJ‘]wy”JK = ZwWJK — 39“1,5}(. (F.28)

Using the orthogonality of the T4*, T? modes we derive the relations

T8
W, 1" Ty = =T

F.29
Wup, " T = 201" + 35ZT§ : ( )

At order r—2 in the 5d action we find terms involving fermions. They vanish upon imposing

n® =0(r), vP=0(@r), x@=0(). (F.30)

The 4d action arises with overall coupling 4%6 and at this order in r the above fermions
appear as Lagrange multipliers and can be integrated out to give the constraints

1
Dox(+in", ] = 5 (i B = ). Bu’]) = 0

1
Don™ — S [x), B =0 (F-31)
Dy — [0, B] = 0.
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These equations are solved using the basis of the contangent bundle, which obey (F.25)
and (F.24), with the following relations

X/(}V) = TI;WAI + T?C/iu + TIO’[/I,CIUV]

1
M =i\ — ZTI#VCI“V (F.32)
G =1,y = Ty,

where the fields A’ ,/iﬁ and C/{l, are Grassmann-odd scalars, vectors and self-dual two-
forms on My, respectively. The identities (F.29) imply that the fermionic fields obey the

constraints N ;
Wyy JAT = é,uy
WMJIJEJVU = 25[;1/ - 35uu/\l (F33)
W g = —3/<a£.
or more generally
wm/IJﬁg = gp,a"f;{ - guaﬁi + euuap"fi . (F34)

This decomposition satisfies the fermion equtaions of motion, which can be seen by using
the identity

- 1 - -
Q27 = ZQPUQMQW Q¥ (F.35)
where €, QW are self-dual two-forms.

F.4 Dimensional reduction to 4d sigma-model

After reduction to four dimensions the bosonic fields of the theory will be the collective
coordinates X! describing a map M, — M, and the fermionic fields will be the scalars A,
one-forms ! and self-dual two-forms ¢ l{,/, which are valued in the pull-back of the tangent
bundle to M,

A e (X T My)

ke D(X*TM;, @0 (F.36)

CET(X*TM;, 2 0% .
The bosonic and fermionic zero modes lead to a four-dimensional effective action with
overall coupling constant ﬁ for the fields X7, N, /il]“ ¢ l{w A, and the scalars ¢, .

As mentioned previously the kinetic term for A, namely Fiu is of order r and drops
from the action in the small r limit. The gauge field A, becomes an auxiliary field and
can be integrated out using its equation of motion, and likewise for the scalars ¢ and @.
Their equations of motion are

1 v . 1 ,
D2@+1[BMV,[B“ 730]] = dir <[77(1)777(1)] "‘1[ SI/),X(I)'U‘ ])
254 w B = —dir (@ O
D3 + £ (B, 1B, ] = —air ([P, w¥]) -

1 1
D}A, + 7 [Bup: (B, Ayl = [Ag, 01 Ag] 9, X"+ 1 [Bup: 01B"] a1

+4i([n™, @] — &), @)
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The spinor bilinears can be further simplified by applying the expansion for the
spinors (F.32)

1 y 1 v 1 -
0+ 0] = ([0 4 G T51) (XN 4 1,6 )
1 o
60 = =4 ([0, 05] 4 (Y T ) (F.38)

v 1 v
[77(1),%(;2)] - [x&l,Z,w@) ]=-4 ([Taa 9]+ Z[Tlupﬂ TJP]> /\I’f;{'
To solve these equations we note that the curvature
15 =1[V1, V], (F.39)

where Vi = 0 + [Ey, -], satisfies the equation

1 1 ,
D2®r; + Z[Byp, (B, &;,]] = im”'”’ T+ 2[79,79]. (F.40)

Combining the information above the solutions are
o = 8ir® AN\ + 2ir® ¢l
Q= —8iT(I)]JHI€HHJ (F.41)
Ay = E10, X" = 8i®;(N k] — ¢ k7).

Replacing the fermionic and bosonic zero modes in the action one obtains

1 1
Sscalars = T4l /d0d4$ |94 [Tl" <3IA0(9JA9 + 4313,00(9]BW> @qua“X‘]}

21 v o
Sfermions = +ﬁ d4$ |g4| [(GIJguV - W?J) ()‘Iaﬂﬁl{ - glﬂ aaﬁl{) (F42)

1
— (01 g7 —w %) Tr <4TK,W@JT§T +T§(8JT%> O X7 (BN KL —510%5)] :

Substituting in the solution for the gauge field (F.41) we obtain three different types of
terms, which we address in turn. Terms of type 1 are proportional to d,X 19,X”7 and
combine with the terms in the scalar action to give

1

Sscalars + SA#,typel = m

/ d*z+/|gs| Gr19" 0, X0, X7 . (F.43)
Terms of type 2 combine with terms from the action of the fermions to give
21 1 -
Satypez == dfd*z+/|ga] (65 g7 — w %) Tr <4TK,)TVJT'Z + T%Vﬂ%) X’
X (OGN RE — ¢l miEy (F.44)

Using the identities

v v 1
VY =T8T + 5[<I>U,B/“/]
; (F.45)
VIT?I = Ff]ﬁf% — §D0(I)IJ7
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where

ik = /d9 Tr ( T“VV(]TJ)/W + 719 V([TG)) (F.46)

these terms simplify to

SAl“typeQ e d9d4$ \94\ (G]JgUV — wJV]J>F}7<L8uXK<(Sg/\I/€5 — 510’%5) . (F.47)

and covariantise the kinetic terms for the fermions. Lastly the terms of type three con-
tribute towards quartic fermion interactions. These take the form

16 1
SA, types = 7 dOd*z+/|ga| Tr (DG(I’]KDG(I’JL + Z[(I)IK; Bu[®r, BW])
1
INJ K L’T Jpo K L’T
()\ A K + - 150 C )
8 1 v
=7 /d9d4xv |ga] Tr <D9‘I’1KD9<I>JL + 5[ ®1xc, B[ @1, B (F.48)

1
— Dg®r1.Dg® i + Z[‘I)ILv B[k, BW])
% ()\I}\J K L’T+ Cpg(Jpo K LT) ,

where we have made use of the identity
leMIV[ITg] = —wMVJIV[IT?\/H s (F.49)

and the analogous relation for T#”, and antisymmetrized in KL indices. To obtain a
quartic fermion interaction involving the Riemann tensor of the target we need to combine
the terms in (F.48) with the term which arises from integrating out ¢ and ¢

16 1
Se/p = dfd*z+/|ga| Tr <D9‘I’1JD0‘I>KL + - [‘PIJ,BW] (@1, B ])

I
(F.50)
<)\I)\J K LT + C CJPU K LT)
po :
Combining (F.50) and (F.48), as well as the fact that the Riemann tensor on the target is
given by
1 uv 1 "z 1 uv
Rrjxrp =— [ dO'Tr iv[ITJ] V[KTL};W + ZV[ITK}V[JTL]/W — ZV[ITL} V[JTK]MV
+ 2V Y Vi XY + Vi T Vi T — v[lri]v[ﬂ‘;ﬂ) , (F.51)

we obtain the four fermi interaction

32
Sfermit = —M/d‘*m\/@Rum (/\IX] PRI 4 C,JUCJ’” & LT) : (F.52)

— 63 —



The final action upon combining all the above terms is

1 1
S = ﬁ /d4:L’ ‘94‘ |:4GIJ9MV8MX18VXJ + 2 (G]]g‘ul/ — w’;f;) (/\IDNHZ — CIMU'DU/'QI{)
1
—32R]JKL (/\I)\Jlfi{/iLT + 4C/{JCJPJI€5/€LT>] s (F.53)
where
Dty = ks, + D0, X ) (F.54)

The action can be further simplified by using relations between the complex structures
wy!y and the fermions (F.33) to eliminate the self-dual two-form Clil,. In addition we
know that the target space My is Hyper-Kéhler, which means that the three complex
structures wm,l J define covariantly constant on My

Drw’k =0. (F.55)

This in turn implies the relations with the Riemann tensor on Mjy
Rrox™wuwmr = RiyrMwuw v, (F.56)
and other relations obtained using the standard symmetries of the Riemann tensor.

With (F.33) and (F.56), and after rescaling A — 3\’ and k, — -k, the action sim-
plifies to

1 1
SHK = — d4(£ |g4| GUg“”E)uXI&,XJ — 2G]Jguyl<L1DV)\J + *g“VR]JKLHIHiAKAL .
4rf B 8 #

(F.57)
The constraint on the fermions nﬁ can be re-expressed as
I 1 ca\ v, J, a1
i+ () Ryt =0, (F.58)
The supersymmetry transformations are
oXT =uN
A =0 (F.59)

5/<a£ =u (9, X" — ()"0, X w ) T) — quK)\JK,ff.

This dimensional reduction of the 5d topologically twisted SYM theory, thus gives precisely
the same action we obtained in (5.12), by topologically twisting the 4d sigma-model for
Hyper-Kahler My.
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