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Abstract 

Guanine-rich nucleic acids can fold into distinctive four-stranded G-quadruplex 

structures which are found in telomeric DNA repeats as well as in sequences in 

the promoter and other regulatory regions of genes, especially those involved in 

cellular proliferation. Small molecules that can selectively bind and stabilize the 

G-quadruplex structure have become of significant interest to researchers, and 

are gaining momentum as a possible new class of anticancer agents. 

This project was based on a previously reported series of novel biaryl 

polyamides with significant selectively toward G-quadruplexes compared to 

duplex DNA, and with modest selectivity between different quadruplex types. 

Using a distamycin scaffold as a starting point, biaryl building blocks were 

introduced in place of pyrroles to switch preference from duplex to quadruplex 

DNA. This alteration in shape ensured that the molecules had low affinity for 

duplex DNA while increasing their interaction with a G-quadruplex structure 

since the ligands have similar 3D structures. The main aim of this project was to 

modify the structure of the previously reported biaryl polyamides (with the help 

of a molecular modelling based approach) through the incorporation of 

benzofused building blocks to improve their affinity for G-quadruplexes, while 

further reducing their affinity for duplex DNA, thereby enhancing their selectivity 

for quadruplex DNA. 

A small, focused benzofused-polyamide library (18 molecules) was initially 

synthesized and evaluated for the ability of members to stabilize G-quadruplex 

structures using a FRET-based DNA thermal denaturation assay and molecular 

dynamics (MD) simulations. However, these compounds failed to stabilize the 

F21T (human telomeric G-quadruplex), c-Kit quadruplexes and Bcl-2 

quadruplexes, and MD simulations suggested that the shape of the molecules 

required further modification to facilitate quadruplex interaction. A second library 

of molecules (43 in total) was then designed and synthesized using a molecular 

modelling-based approach. In this series, the shape of the polyamide fragment 

was changed, while retaining the original scaffold, by introducing benzofused 

moieties with 3,5-substitutions. Evaluation of these molecules in the same 

FRET assay showed a notable increase in stabilization of the F21T quadruplex 

for many library members. For example, compounds 4.93 and 4.71 stabilized 
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the quadruplex by 15°C and 17°C, respectively (at 1 µM concentration), while 

showing insignificant affinity for duplex DNA. Moreover a third set of benzofused 

polyamides (9 in total) has been synthesized by the addition of two consecutive 

benzofused moieties instead of three consecutive benzofused moieties for the 

ideal length of G-quadruplex DNA targeting ligand molecules. These molecules 

were also evaluated by the same FRET-based DNA thermal denaturation 

assay. The overall data showed that benzofused polyamides made of three 

consecutive benzofused moieties had a specific curvature which improved their 

G-quadruplex interacting capacities compared to those with two consecutive 

benzofused moieties. 

Cytotoxicity studies were undertaken on MDA-MB-231 and HeLa cell lines and 

some library members are active at the low micromolar level. Molecule 4.45 has 

emerged as a lead compound, possessing a cytotoxicity of 40nM in MDA-MB-

231. 

Given their low molecular weight (between 422-646 Daltons), reasonable water 

solubility and good cellular penetration properties compared to other known G-

quadruplex inhibitors which are mostly non-drug-like, molecules of this type 

have the potential to be developed into both reagents that can probe DNA 

structure and into novel quadruplex-targeting therapeutic agents. 
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Chapter 1: Introduction 
 

1.1 Cancer 

Cancer is a term that applies to a group of multiple diseases. It is a malignant 

disease caused by alteration of normal cells due to genetic mutations. These 

genetic mutations may either be inherited or be originated by inaccurate DNA 

replication and chromosomal division or by various physiological, chemical and 

environmental factors. These permanent aberrations, either in a single DNA 

base or in a chromosomal fragment, ultimately lead to the divergent functions of 

a gene. Thus cells lose control of their proliferation, resulting in abnormal 

growth. This uncontrolled growth is likely to localise at the early stage of cancer. 

As cell division continues, the cellular mass is no longer fixed in its origin, but 

rather forms tumours which occupy neighbouring cellular spaces and share 

nutrients to make new blood vessels from pre-existing vessels through the 

process of angiogenesis. They invade nearby parts of the body 1 and also start 

to spread throughout the body through the lymphatic and cardiovascular 

pathways, and can eventually prove fatal (Figure-1.1). 

 

Figure 1.1: Diagram representing the growth and spread of cancer cells. 

Malignant cells spread away from their origin to the secondary site through the 

blood and lymph system. [taken from Schroeder A, Heller DA, Winslow MM, 

Dahlman and JE, Pratt GW. Nat. Rev. Cancer. 12(2012):39-50] 2. 
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Indeed, almost 90 percent of cancer-related deaths are due to the tumour 

spreading to secondary sites by a process called metastasis 3. Cancers are 

named mostly according to their origins including the types of cells and organs 

from where they start to get malignant phenotypes.  

 

Figure 1.2: The illustration of the classical hallmarks of cancer cells: 
autonomous cell proliferatin, escaping from apoptosis, angiogenesis, metastasis 
etc. In fact these are the major distinguishing characteristics of malignant cells 
from normal cells.  [taken from Dey I, Rath PC. BBRC. 327(2005):276-86]  4. 
 
 
Malignant cells usually have some distinguishing characteristics, familiar as the 

phenotypic hallmarks of cancers (Figure-1.2). These mainly include 

autonomous replication and proliferation, restriction to cytostatic and apoptotic 

signal, induction of neighbouring tissue invasion, metastasis and angiogenesis 

4. 

 

1.1.1 Treatment of Cancer 
 

There are many therapies including surgery, chemotherapy, radiation treatment, 

stem cell transplant and targeted therapy developed to fight cancer, but it is 

hard to get rid of completely. For example, surgery and chemotherapy are not 

capable of abolishing all of the cancerous cells and these are potentially harmful 

to normal cells as well. In addition, cancer cells can continue their proliferation if 

even a few of them remain in the area of origin and some of them may gain 

resistance to cytotoxic agents and thereby escape apoptosis 5. Thus in most 
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cases, therapies help to prolong the life expectancy of a cancer patient rather 

than (instead of) acting as a total cure. An effective medication can be 

rationalized by considering early accurate diagnosis and choosing an 

appropriate therapy. Indeed, current research places the emphasis on cell 

biology, genetics and biotechnology to understand the molecular mechanisms 

involved in tumorigenesis. However, it is necessary to take the advances in 

distinguishing the characteristics of cancer cells from normal cells and to know 

the genetic changes happening in cancer in order to develop a fruitful strategy 

for anticancer therapeutics. 

 

1.1.2 Cancer Chemotherapy 
 

Chemotherapy began to be used as a cancer therapy in the early stages of the 

20th century. The idea came from World War 2; the naval forces that were 

exposed to nitrogen mustard surprisingly developed reduced white blood cell 

counts. However, chemotherapy is one of the most preferable treatments to 

tackle any type of cancer. Recently a significant number of chemotherapeutic 

agents have been screened out based on their cytotoxic efficacy. They can be 

prescribed alone or be combined with other therapies like radiation, surgery, 

hormone or immune therapies to make them more effective than a single agent. 

They kill the cancer cells by either arresting cell division or through DNA/RNA 

damage so that cells can’t divide anymore and ultimately die. They are of 

different types due to their modes of action and target sites. For example, 

methotrexate and vinca alkaloids kill the cells belonging to a particular part of 

the cell cycle; on the other hand, platinum derivatives are non-specific and have 

a cytotoxic effect in both proliferating and resting phases. However, 

chemotherapy is limited in its action. It mainly targets the fast growing cells, 

thus chemotherapeutics don’t have enough of an effect on cancer cells of 

resting phase and restraint to play any positive role on tumour progression and 

metastasis. In addition, they may kill normal cells as well. It is better to adjust 

the chemotherapeutic dose to minimise this harmful effect on normal cells and 

side effects like bone marrow suppression, alopecia, mucositis, nausea and 

vomiting 6. 
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A better understating of gene and protein expression patterns is supposed to 

help to identify the cancer-specific targets like enzymes, receptors or specific 

molecular targets expressed abnormally in cancer cells compared to normal 

cells.  

1.1.3 DNA as a Molecular Target in Cancer Therapeutics 
 

Mutated or damaged DNA is usually repaired by the normal cellular machinery. 

If a cell fails to repair a genetic abnormality, it results in cellular death through 

apoptosis or programmed cell death. In a malignant neoplasm, the damaged 

DNA remains unrepaired in the cancer cell, and the cell doesn’t die but instead 

proliferates further to generate new cells with the same faulty DNA as the first 

one. DNA and the processes concerning it have long been considered to be 

targets for cancer chemotherapeutics.  

 

Figure-1.3: (a) Represents the periodic road map for discovery and research of 

chemical drugs (i.e. DNA interacting agents) like alkylating agent,   targeting 

DNA molecules. 

 (b) Shows the various conformational modifications within DNA molecules due 

to the interaction of ligand molecules including crosslinking, intercalating and 

double strand breaking agents. 

 (c) Illustrates the different types of structural modifications of DNA in detail 

[taken from Hurley LH. Natural Reviews Cancer. 2 (2002):188-200] 7.  
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Alkylating agents including nitrogen mustards and triazines function in any 

phase of the cell cycle and are widely used against many cancers such as 

leukaemia, multiple myeloma, sarcoma and lymphoma. They directly damage 

DNA by alkylating guanine nucleotides within the DNA helix.  

They usually interact non-specifically and some of them can close down 

tumorigenesis by cross linking guanine bases between two complementary 

DNA strands. These DNA strands cannot be uncoiled and be separated due to 

the cross linkage. As a consequence, the DNA cannot undergo replication and 

cell stops further cell division. Because of their non-specificity, they are harmful 

to normal cells as well.  

Targeting a specific sequence of DNA or higher order DNA structures, like 

minor and major grooves or G-quadruplexes, with small-molecules can result in 

distortion or cleavage of the DNA and this can inhibit gene transcription, 

translation and/or other cellular processes specifically within tumour cells 8. 

More recently, the G-quadruplex secondary structure is attracting scientific 

interest as it represents a new and special architecture as a target for DNA 

interactive ligand molecules. These secondary structures are more frequently 

present in guanine-rich sequences, especially in the single-stranded 3’ 

overhang of telomeres and in promoter regions of various oncogenes like C-

myc, BCL-2, c-kit etc. Thus G-quadruplexes may be better targets against 

which to design drugs to control transcription in malignant neoplasms 7. 

 

1.1.4 DNA Structure 
 

Deoxyribonucleic acid (DNA), a passive library of genetic information, is a 

polymer comprised of nucleotides which are linked to one another by 

phosphodiester linkages (Figures 1.4 and 1.5). As the 2′ position of ribose 

sugar does not have an OH group, it is called deoxyribonucleic acid (DNA). Two 

complementary strands are paired together to make a double helical structure 

and this configuration is supported by hydrogen bonding between the purine 

and pyrimidine bases of both the anti-parallel chains. The ‘double helix model` 

was established by James Watson (b. 1928), Francis Crick (1916–2004), 

Maurice Wilkins (1916–2004), who were jointly awarded the Nobel Prize in 
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Physiology or Medicine in 1962. Together, they developed the idea that the 

fundamental unit of base-sugar-phosphate is an appropriate building block for a 

three dimensional helix 9. 

 

Figure 1.4: Diagram showing the double helical structure of DNA and the 

Watson-Crick base paring between purine and pyrimidine bases. It also 

illustrates the strand directions and the major and minor groove within the 

helical structure. [taken from The Science of Biology. 8th edition, 2008, W.H. 

Freeman] 

 

 

Figure 1.5: Diagram showing the X-ray diffraction studies of DNA done by 

Maurice Wilkins and Rosalind Franklin [taken from King’s College London 

Archive Project Blog, 15 October 2010] 

Francis Crick (left) and 

James Watson (right) 
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Detailed structural studies show that DNA has two grooves in its backbone, 

called major and minor grooves. These are due to the different arrangements of 

nucleotides in opposite directional complementary sequences. Nitrogen and 

oxygen atoms are pointed inward toward the helix in major grooves, whereas in 

minor grooves these atoms are pointed outward. These geometrical patterns 

make them different in size. Major grooves are larger (about 240° in angle) and 

wider compared to the minor grooves (about 120° in angle) (Figure 1.6). Thus 

major grooves can accommodate a pair of water molecules, unlike minor 

grooves. Major grooves are also an easy way for DNA binding proteins to bind 

duplex DNA.  

 

Figure 1.6: Major and minor grooves of DNA with sugar-phosphate backbone. 

The major groove is about two times wider than the minor groove present in the 

right handed duplex DNA [taken from UCLA Chemistry Illustrated Glossary of 

Organic Chemistry] 

 

DNA is a polymer of nucleotides consisting of a deoxyribose, a nitrogenous 

base and a phosphate group. The bases are of two types: purines and 

pyrimidines. Six-membered and five-membered nitrogenous rings are fused 

together to form a purine base. On the other hand, pyrimidines consist of a six-

membered nitrogen-containing ring 10. 
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Figure 1.7: Structures of the purine (i.e. adenine and guanine) and pyrimidine 

(i.e. cytosine, thymine and uracil) bases that constitute DNA and RNA. 

 

Figure 1.8: The phosphodiester bond formation between two consecutive 

nucleotides within a helical structure of DNA strand. Nucleotides are linked 

together through phosphodiester linkages. 

 

Figure 1.9: Diagram showing the hydrogen bonding between base pairs of 

complementary DNA strands. Adenine residue forms two hydrogen bonds with 

thymine base and cytosine residue forms three hydrogen bonds with guanine 

base. 
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The two complementary strands within the double helical structure of DNA are 

associated with each other via hydrogen bonding between the nitrogenous 

bases. Hydrogen bonds can be formed in two ways: between amine and 

carbonyl groups (green in Figure 1.9) or between amine and imine groups (blue 

in Figure 1.9). Adenine forms two hydrogen bonds with thymine and cytosine 

forms three hydrogen bonds with guanine residues (Figure 1.9). The stability of 

the double helical structure is further enhanced by hydrogen bonds between the 

bases and water molecules around the helix. Moreover, the hydrophobic 

interactions and π-π stacking interactions among the bases play an important 

role in stabilising the double helix 11. 

 

1.1.5 Different Forms of DNA 
 

It is believed that DNA can be found in three conformations; A-form, B-form and 

Z-form DNA. The most common one is B-form DNA, the conformation proposed 

by Watson and Crick. A double helix composed of two anti-parallel and 

complementary right-handed strands which are wound around each other and 

remain together through hydrogen bonds between nucleotides of each strands. 

A-form DNA is similar to the most common form (B-form) of DNA, but short in 

size and, unlike B-form, its base pairs are not perpendicular to the DNA axis. 

The third form of DNA, Z-form, is totally different in terms of helical orientation. It 

has left-handed helical structures and is exclusively found in negatively 

supercoiled DNA. 
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Figure 1.10: (A) Intramolecular G-quadruplex, a secondary structure formed by 

by hoogsteen hydrogen bonding among the guanine residues, each of  which 

comes from one of the four  g-tracts of DNA strand.  

(B) t-loop formation, usually telomeric DNA associates with some telomeric 

associated protein collectively called sheterin and form T shaped loop to protect 

the telomeric end of a chromosome.  

 (C) I-motif, a secondary structure which is rich in cytosine residues can form i-

motif by hydrogen bonding among  the cytosine residues. 

 (D) Hairpin end formed by G-C pairing. Blue and green represent the G-rich 

and C-rich stretches of DNA respectively 

 [ Taken from Gilson E, Giraud-Panis M-J and  Pisano S, Frontiers in Oncology. 

3(2013)] 12. 
 

Besides, A-, B- and Z-form double helices, DNA can exist in various structures 

because of different orientations, helical pieces and number of residues per turn 

which ultimately can change the structure of DNA. Although canonical B-DNA is 

considered to be a most common form, detailed analysis shows it does not 

have straight, monotonous, uniform structures. The structural modifications of 

DNA are due to the presence of various types of sequences within a DNA 

sequence. Sometimes DNA may form triple helices, I-motifs or four strands may 

arrange together to form secondary structures (Figure 1.10).  
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Some of these structures are favourable and some are unfavourable in nature 

due to steric hindrance, but still special types of DNA are found to participate in 

different cellular processes. For example, sequences like inverted repeats, 

palindromic repeats, mirror repeats, direct repeats and homo purine-homo 

pyrimidine G-rich or A-T rich regions favour formation of unusual conformations 

13. 

 

1.1.6 Triplex DNA 
 

A triple DNA helix can form at some points of a canonical double helical DNA 

sequence through the accommodation of a third strand within its major groove. 

The three complementary helices are twisted together around a common axis to 

form a special conformation under certain biological conditions. 

 

 

 

 

 

 

 

 

Figure 1.11: Formation of triplex DNA from two duplex DNA strands. [taken 

from Dey I, Rath PC. Biochem Biophys Res Comm. 327(2005):276-86.]  14. 

Triple helical DNA can also be formed from the interactions of two duplex DNA 

strands, where third strand may come from one of these two dsDNA strand. A 

dsDNA strand especially rich in guanine (G) and adenine (A) purines 

nucleotides can often incorporate a third strand to make triplex DNA (Figure 

1.11).  
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Figure 1.12: The mechanism of the Hoogsteen bonds and Watson-Crick base 

pairing between guanine, cytosine, adenine and thymine found in triple helix 

DNA.  

Although purine bases forming hydrogen bonds are involved in Watson-Crick 

base pairing, they still have two additional hydrogen-bonding sites in their major 

groove: N-7 and O-6 for guanine residues, N-7 and 6-N for adenine residues. 

Therefore, besides the Watson-Crick hydrogen bonds, they can also make 

Hoogsteen bonds with cytosine (C) and thymine (T) residues of the 

complementary sequence of a third strand (Figure 1.12). 

The cytosine residues of the third strand need to get protonated to recognize 

the complementary guanine residues of the duplex DNA. Thus the triplex DNA 

can be formed only at low pH. The triple helix is comparatively less stable than 

dsDNA; this is because of electrostatic repulsion between the negatively 

charged phosphate groups on the backbones of the three strands. Bivalent 

cations like Mg2+ can minimise this electrostatic repulsion and stabilise the 

triplex DNA. However, the formation of the triplex structure does not interfere 

with specificity, transcription and translation of dsDNA. 
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1.1.7 G-Quadruplexes 
 

DNA not only acts as a passive storage of genetic information, but is also 

reported to take part significantly in biological processes. Besides the Watson-

Crick duplex, DNA can transiently adopt secondary structures. DNA sequences 

especially rich in guanine residues can tetramerize to form a four-stranded 

architecture which can be stabilized by monovalent and bivalent cations like 

Na+, K+ or Mg2+. DNA may also make a special framework which is structurally 

and functionally different from that of DNA and of RNA (Figure 1.13). 

 

Figure 1.13: Diagram showing Hoogsteen hydrogen bonding among the 

guanine residues in a G-quadruplex quartet. A monovalent cation is 

incorporated with carbonyl (C-6) oxygen atoms of guanine bases within tetrads. 

 

These monovalent alkali metal cations effectively help to form and stabilize the 

quadruplex structure through coordination with the carbonyl (C-6) oxygen atoms 

of guanine bases within tetrads. In every quadruplex, a single alkali metal ion 

sits at the central point between the tetrads, passing through the core of the G-

quartets.  
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Figure 1.14: Topological view of (A) human telomeric G-quadruplex stabilized 

by a potassium cation (K+); 

(B) Telomeric G-quadruplex with anti-parallel strands in the presence of sodium 

(Na+);  

(C) The parallel G-quadruplex of c-Myc sequence (c-Myc);  

(D) G-quadruplex forming telomeric and c-Myc promoter oriented sequences 
labelled with chromophores FAM and TAM at both ends [taken from 
Schoonover M, Kerwin SM. Bioorganic & Medicinal Chemistry. 24(2012):6904-
18.] 15. 
 

The four guanine residues of a G-tetrad are arranged in a rotationally symmetric 

fashion to make a planar platform and thereby self-associate through 

Hoogsteen hydrogen bonding rather than Watson-Crick base-pairing (Figures 

1.13 and 1.14) 16. G-quartets stack together via π- π interactions 17. 

 

 

1.1.8 Sequence and Topology of Different G-Quadruplexes 
 

Guanine bases of a G-tetrad can orient together either in syn or anti glycosidic 

conformations. NMR and crystallographic studies of various G-quadruplexes 

have revealed their diverse topologies. 
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Figure 1.15: (a) The various topologies of bimolecular and tetramolecular 

quadruplexes with different directions of the DNA stands and diferrent 

connecting loops types. (b) The multiple possible ways to form unimolecular 

quadruplexes, giving different topological conformations [taken from Burge S, 

Parkinson GN, Hazel P, Todd AK, Neidle S. Nucleic Acids Res .34( 2006):5402-

15.] 18. 

 
G-quadruplex complexes are found to be formed by either a single 

(unimolecular), two (bimolecular) or four (tetra molecular) different DNA strands 

19. These variations in possible combinations of DNA strands, strand directions, 

loop lengths and sequence contexts are also responsible for the topological 

diversity of different G-quadruplexes (Figure 1.15). Conformational dissimilarity 

due to particular folding patterns and loop types makes each particular type of 

G-quadruplex a unique drug-interacting cavity 19, 20. 
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Quadruplex structures can also be varied because of their stand 

polarities/directions and loop types. Loops do not always connect the strands 

aggregated together to make a quadruplex in the same way. 

Categorically, four types of loops are found to be present in G-quadruplex 

structures. The most common is the propeller type and the other three are 

lateral, diagonal and V-shaped type loops, respectively (Figure 1.16). 

 

 

Figure 1.16: (a) Lateral type connecting two adjacent and anti-parallel strands , 

(b) Diagonal type, , joins the opposite anti-parallel strands as lateral loop 

connect (c) Propeller type connecting two adjacent and parallel strands and (d) 

V-shaped type loops connect two adjacent g-tracts [ taken from Patel DJ, Phan 

AT, Kuryavyi V. Nucleic Acids Res. 35 (2007):7429-55] 21. 

 

Adjacent and parallel strands are linked together via a loop connecting the top 

G-tetrad to the bottom G-tetrad, forming a propeller type loop 22. On the other 

hand, lateral loop types connect between the two anti-parallel adjacent strands 

via linking the top G-tetrad of one strand to the top G-tetrad of another strand 23. 

Diagonal loops are a third type of antiparallel loop, joining the opposite anti-

parallel strands as lateral loop connect 24. V-shaped loops make a connection 

between two consecutive quartets via a guanine residue, but unlike the other 

guanine residues present in G-tracts, this residue has no further connection with 

other guanine residues immediately before or after it 25. 
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A G-quadruplex can be defined in a generalized form as a structure originating 

from the stacking of at least two G-tetrads. G-quadruplexes of four G-tracts 

(tetra molecular) with tetrad guanines adopting anti-glyosidic conformations are 

most commonly parallel-stranded. Oligonucleotide sequences forming a 

potential unimolecular G-quadruplex have already been formulated as shown 

below. 

GmXnGmXoGmXpGm 

Here ‘m’ indicates the number of guanine units in each G-tract, which in turn 

participate directly in Hoogsteen hydrogen bonding to connect with the guanine 

nucleotides of the three other G-tracts. ‘Xn’, ‘Xo’ and ‘Xp’ represent any 

combination of different nucleotide residues, forming a loop type 26. 

 

1.1.9 G-Quadruplex Sequence Occurrences and their Significance as 

Antitumour Targets 
 

G-quadruplex-forming sequences are reported to be present throughout the 

human genome, which includes exons, introns, and untranslated regions of 

genes, promoter sequences and gene deserts, amongst others. As many as 

5,713,900 possible potential quadruplex sequences have been reported by the 

Ensemble database (V20 NCBI assembly 34c) survey to be present in the 

human genome 27. According to bioinformatics and molecular sequence 

analysis reports, G-quadruplexes are found to be overexpressed in some 

particular regions of the genome, especially in the single-stranded overhang 

DNA of telomeres and in the nuclease hyper sensitive element (NHE) of 

promoter regions of several oncogenes 28. G-quadruplexes are also highly 

expressed within cancer-affected cells in regions of genomic damage, like 

translocation hot-spots 29, 30. 

These structures can also originate from the guanine-rich part of messenger 

RNA (mRNA), ribosomal DNA (rDNA) and thrombin-binding aptamer (TBA) 31. 

Recently, the existence of a G-quadruplex within the 5′ untranslated region 

(UTR) of RNA has also been reported 32. 

However, the enzyme telomerase appears to be highly expressed in tumours 

and plays a significant role in proliferation of cancer cells, controlling oncogene 
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transcription33, 34. A number of studies have reported that G-quadruplex 

formation on telomeres prevents telomere extension as they inhibit telomerase 

by displacing it from the telomere. Thus G-quadruplexes are gaining 

prominence as anti-cancer targets because of their genetic context and 

antineoplastic potential35-37. 

1.1.10 Telomere Structure and Function 
 

Telomeres are often likened to the protective plastic caps at both ends of a 

shoelace (Figure 1.17). They protect the ends of human chromosomes from 

deterioration or from fusion with neighbouring chromosomes.  

 

Figure 1.17: Diagrammatic representation of telomeric structure with a single-

stranded overhang at the end of a chromosome in the nucleus. [ taken from 

Wong LSM, van der Harst P, de Boer RA, Huzen J, van Gilst WH, van 

Veldhuisen DJ.Heart Fail Rev. 15(2010):479-86.] 38. 

If cell division were to take place without telomeres, a loss of DNA bases from 

the chromosomal ends would occur along with a potentially lethal loss of 

genetic information 39. 

Across different species, telomeres can reach a length of approximately 15,000 

base pairs and contain regions of highly conserved repetitive sequences. In 

humans, telomeres may extend to 15-20 kb in length at birth and have reduced 

to approximately 8-10 kb in adults. Because of the end replication problem, 

telomeres get shorter in size with each cell division. DNA synthesis goes in the 
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5′-3′ direction, as it requires the 3′-OH group from the template strand to add 

free nucleotides. The RNA primer used in starting the DNA replication provides 

a 3′-OH group and a complementary strand to run the lagging strand synthesis. 

Then, after as the RNA is removed shortly after DNA synthesis starts, the 5′ end 

of the lagging strand is placed inside of the utmost 3′ end of the complementary 

template strand and there is nothing for this piece to attach to. Thus the last 

section of the lagging strand cannot be synthesized, and after several cycles of 

replication, DNA molecules ultimately get shorter and smaller, causing the end 

replication problem. Thus the capacity of human cells to divide is limited and the 

number of cell divisions before the cells enter into senescence is called the Hay 

flick limit 40. 

The 3’ single stranded overhang DNA of telomeres has guanine-rich tandem 

repeats of d (TTAGGG) n sequences. The average length of this single-stranded 

overhang is 150 nucleotides and these stretches of DNA are prone to adopt a 

four-stranded G-quadruplex 21. This unimolecular secondary conformation is 

supported by monovalent cations and Hoogsteen hydrogen bonding between 

four guanine residues from each of the four G-tracts. The DNA strand is folded 

in such a way that four guanine residues of four tandem repeats (i.e. a G-tract) 

are close enough together in the same plane to make hydrogen bonds among 

themselves and form a G-tetrad. Two or more G-tetrads are then stacked 

together to form a G-quadruplex. This special secondary conformation then 

inhibits the enzyme telomerase. This enzyme complex helps to maintain the 

telomere length by synthesizing and adding telomeric DNA repeats and thereby 

protecting the DNA from becoming shortened during cell division. Telomerase 

inhibition through the G-quadruplex formation ultimately inhibits cellular growth 

and makes cells ready to enter apoptosis. 
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Figure 1.18 : (A) Cytosine-cytosine base pairing and (B) i-motif formation 

through base pairing between c-rich tracts; N indicates any nucleotides [ taken 

from Gurung SP, Schwarz C, Hall JP, Cardin CJ, Brazier JA. Chem com. 

51(2015):5630-2] 41. 

 
Thus these G-quadruplexes formed within telomeres are potential therapeutic 

targets for anti-cancer drugs 42. Besides this 3’ single-stranded overhang, 

double-stranded telomeric DNA is found to be incorporated into several 

telomeric proteins. Telomeric DNA in association with these proteins favours 

formation of G-quadruplexes43. On the other hand, telomeric DNA has been 

shown to prefer duplex DNA over quadruplex and i- motif DNA in the absence 

of these proteins 44. 

Like the 3’ overhang, the telomeric duplex is also rich in (TTAGGG/CCCTAA)n 

repeats. Thus the complementary G-rich strand makes a secondary G-

quadruplex whereas the other complementary C-rich strand also makes a four 

stranded architecture which is supported and organised by the cytosine-

cytosine base pairings (Figure 1.18). 

A limited number of detailed structural reports on quadruplexes of topological 

diversity exist to date 45. Among those, crystallographic analyses of telomeric 

quadruplexes have been reported and a few oncogene promoter-oriented G-

quadruplexes have also been reported using NMR spectroscopy. 
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Crystallography of both intra- and intermolecular human telomeric quadruplexes 

(12 and 22 mer sequences shown in Figure 1.19) unveil a totally different 

folding conformation and topology type (Figure 1.20) 22.  

1) d (TAGGGTTAGGGT) 

2) d [AGGG(TTAGGG)3] 

Figure 1.19: 12 and 22 mer sequences of telomeric quadruplexes 46, 47. 

 

 

Figure 1.20: Crystallographic view of the two bimolecular G-quadruplex-

sequences d(G4T3G4). Alkali metal ions (green) are appeared to be 

incorporated with the oxygen atoms of guanine residues within tetrads. 

 a) Two visualisations of head-to-tail G-quadruplexes. b) Two visualisations of 

head-to-head G-quadruplexes.  [ taken from Burge S, Parkinson GN, Hazel P, 

Todd AK, Neidle S. Quadruplex DNA: Nucleic Acids Res . 34(2006):5402-15.] 26 

. 
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1.1.11 Targeting G-Quadruplexes in Gene Promoters 
 

A structure-specific monoclonal antibody targeting G-quadruplexes has been 

engineered and the existing G-quadruples, either of DNA or RNA, have also 

been visualised 48,49. In 1990, G-quadruplexes were reported to be first seen at 

the ends of eukaryotic telomeres 50. Later, Hurley and co-workers revealed a 

potential G-quadruplex structure within the nuclease hypersensitive element 

III1 (NHEIII1) of the promoter of the c-myc oncogene, and they further showed 

that putative G-quadruplex formation induced by a sequence-targeting small 

ligand molecule caused the transcriptional repression of c-myc 51. Further 

studies have reported G-quadruplex-forming sequences are also in the 

promoter sequences of other oncogenes like c-kit 52, KRAS 53, bcl-2 54 and 

VEGF 55 . 

In general, it is now thought that nuclease hypersensitive element III1 (NHEIII1) 

in the promoter regions of most genes contain more guanine-rich quadruplex 

forming sequences relative to the rest of the genome, meaning G-quadruplex 

structures can be one of the regulatory factors affecting the expression of 

genes; they are linked to the processes of replication, transcription and 

recombination of DNA. In addition, these transiently-formed structures are more 

frequently expressed at sites of primary tumours relative to in normal tissues 56. 

Thus many G-quadruplex-containing gene promoters have been reported to 

date 57 and are reported to be highly connected with many diseases 48, 

including cancer 58, diabetes 59 and cardiovascular diseases 60. 

Table 1.1: The base sequences, topology and loop length of C-MYC, KIT1 and 

BCL-2 promoter-oriented G-quadruplexes 61 62. 

Gene Sequence Topology Loop PDB ID Ref 

MYC d[TGAG3TG2TGAG3TG4A2G2 Parallel 3’ P 2A5P 63 

KIT1 d[AG3AG3CGCTG3AG2AG3] Parallel 2’ P 2O3M 63 

BCL-2 D[G3CGCG3AG3A2T2G3CG3] Mixed: 
parallel 
and anti-
parallel 

2’ L 2F8U 54 

 

The discovery of G-quadruplex formation in oncogenic promoter sequences and 

their subsequent role in vital cellular processes, especially in transcription, may 

herald a new era in the development of targeted anti-cancer therapies 20.  
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Figure 1.21: The topological conformations of G-quadruplexes belonging to the 

Myc, Kit and BCL-2 gene promoters and the Myc-TMPyP4 complex 64 through 

NMR studies [ taken from Balasubramanian S, Hurley LH, Neidle S. Nat. Rev. 

drug Disco.24(2011):261-75.] 20. 

The folding patterns of G-quadruplexes in gene promoter regions are not similar 

to those of telomeric G-quadruplexes (figure-1.21) 65. Promoter-oriented G-

quadruplexes are primarily influenced by the duplex nature of genomic DNA 63. 

On the other hand, the telomeric G-quadruplex is more frequently found to form 

on the 3’-end single-stranded overhang of a telomere. 

 

1.1.12 G-quadruplex Sequences Present in C-kit Promoter 
 

c-kit, a proto-oncogene encoding a transmembrane protein with tyrosine kinase 

activity, plays an important role as a cell surface receptor for cytokines to 

regulate cellular surveillance, proliferation and haematopoiesis 66. In response 

to Kit ligands like KITLG/SCF (stem cell growth factors), tyrosine kinase 

phosphorylates several regulatory proteins like PIK3R1 (phosphoinositide-3-

kinase, a regulatory subunit-1) and PLCG1 (phospholipase C, Gamma 1) 

amongst others, thereby ultimately activating the signalling pathway through the 

phosphorylating capacity of the c-kit gene product. This in turn involves the 

phosphorylation of transcription factors including STAT1 and STAT2 67. The 5’ 

flanking region of the human c-kit gene is rich in guanine and cytosine 

nucleotides 68. Putative G-quadruplex-forming G-rich tracts have already been 

recognized in the promoter region of the c-kit gene 62. One of these sequences, 

d(5’-GGG AGG GCG CTG GGA GGA GGG-3’), called c-kit-1, is reported to be 
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located 87bp ahead of transcriptional start site. The second quadruplex-forming 

sequence, d(5’-GGG CGG GCG CGA GGG AGG GG-3’) known as c-kit-2 has 

been identified in a site of core promoter activity 62, 69. G-quadruplex-forming 

sequences and their occurrence in the regulatory region of the c-kit gene make 

them target sites for gastro intestinal tumour therapy 70. 

The d (5’-AGGG AGG GCG CTG GGA GGA GGG-3’) DNA sequence of the c-

kit oncogene forms a four-stranded G-quadruplex architecture, as confirmed by 

the combined efforts of NMR and circular dichroism spectroscopy 52, 63. 

Guanine-rich tracts arrange together to have an intramolecular G-quadruplex 

structure in the presence of K+ ions, thereby giving a distinct topological 

structure with four loops including two propeller loops formed separately by 

nucleotide residues A5 and C9. Residues C11 and U12 together make another 

loop and a relatively long stem loop is formed of nucleotide residues A16-G17-

G18-A19-G20 (Figure 1.22). 

It has been reported that alkali metal ions like K+, Na+ and Li+ take part in 

stabilising G-quadruplexes 71-75. On the other hand, Mg2+ ions have been 

reported to destabilize human telomeric G-quadruplexes 76. Interestingly, 

promoter-based G-quadruplexes are stabilised by Mg2+ ions 77. In addition to K+ 

ions, two Mg2+ ions appear to be included within the loops of G-quadruplex-A. 
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Figure 1.22: (a) A model presentation of two asymmetric and independent c-kit 

quadruplexes (blue coloured A and yellow coloured B). Violet and green 

coloured balls (indicated by arrows) symbolize K+ and Mg2+ ions, respectively. 

(b) The c-kit G-quadruplex topology with a non-G-tract guanine residue (G10)    

[ taken from Wei D, Parkinson GN, Reszka AP, Neidle S. Nucleic Acids Res. 40 

(2012):4691-700] 78. 

In addition to the G-tracts available for the formation of the G-quadruplex, an 

isolated non-G-tract guanine is thought to participate 79. Crystallographic 

analysis of c-kit-1 also reveals that the two independently formed asymmetric 

quadruplexes ( A and B) appear to be stacked upon each other and arranged in 

a head to head fashion, allowing the incorporation of water molecules into the 

structure 78. Therefore, this distinct conformational feature of c-kit oriented G-

quadruplexes makes them attractive as anticancer-specific therapeutic targets 

for ligand molecules. 
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1.1.13 G-quadruplex Sequences Present in Bcl-2 Promoter 
 

Bcl-2 was first identified as an anti-apoptotic gene 80. As many as 25 Bcl-2 

genes have already been found to be present in human chromosomes. Bcl-2 

proto-oncogenes encode a family of proteins which control mitochondrial outer 

membrane permeability (MOMP) and can either be pro-apotopic (including Bax, 

BAD, Bak and Bok) or anti-apoptopic (including Bcl-2 proper and Bcl-w) 81. 

However, the proportional balance between these anti-functional proteins partly 

defines the cellular vulnerability towards entering apoptosis 82. Bcl-2 proto-

oncogenes were first discovered at the breakpoint of chromosome 14, linked to 

B-cell lymphoma-related bcl-2 gene translocation to chromosome 18 83. 

 

Bcl-2 proteins can trigger apoptosis by either inducing pro-apoptotic factors or 

repressing anti-apoptotic factors. They instigate the release of apoptogenic 

factors like cytochrome c into the cytosol which in turn facilitate the process of 

apoptosis through the activation of caspases 84. On the other hand, anti-

apoptotic Bcl-2 proteins may inhibit apoptosis possibly by inhibiting the pro-

apoptotic Bax, BAD,Bak, Bok etc85. However, the upregulated Bcl-2 gene plays 

an important role in the development of many of common cancers and has also 

been reported to have resistance to conventional cancer therapies. Bcl-2 

proteins are also found to coordinate signalling systems to inhibit cell 

proliferation and cell death86-88. 

 

Figure 1.23: Simplistic diagram of the folding pattern of G-tracts in Bcl-2 

quadruplexes. Red and blue coloured boxes indicate guanine residues with anti 

and syn configurations, respectively [ taken from Raghavan SC, Swanson PC, 

Wu X, Hsieh CL, Lieber MR. Nature. 428(2004):88-93.] 89. 
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Guanine-rich regions upstream of the Bcl-2 promoter can potentially form G-

quadruplexes and thereby play an important role in regulating Bcl-2 

transcription. Quadruplexes can also be formed within the G-rich stretches of 

chromosomal translocations83, 89 

A novel folding pattern gives the unimolecular G-quadruplexes of the Bcl-2 gene 

a unique conformation. An intramolecular quadruplex is built through the 

association of both parallel and antiparallel G-tracts to form two lateral and one 

propeller-type loops 54. Three nucleotides (C-G-C) in the non-G-tract region 

make a lateral loop. Another non-G-tract stretch of seven nucleotides (A-G-G-A-

A-T-T) forms a relatively bigger lateral loop. A single nucleotide C connects 

three consecutive G-tetrads and makes a propeller-type loop (Figure 1.23). 

These loops make a similar, but not identical, topology to that seen for the 22 

nucleotide-long telomeric quadruplex42, 90. This special topological feature 

emphasizes the significance of G-quadruplexes of the Bcl-2 gene as targets for 

small ligand molecules in the field of cancer therapeutics. 

 

1.1.14 G-quadruplex Sequences Present in STAT-3 Gene 
 

The Signal Transducer and Activator of Transcription 3 (STAT-3) gene encodes 

a family of proteins acting as transcriptional activators involved in intracellular 

signalling pathways, and thereby plays a substantial role in many cellular 

processes 91. 

It has already been reported that STAT-3 is constitutively active in various 

human cancers and mutated STAT-3 inhibits apoptosis and stimulates cell 

proliferation, angiogenesis, invasion and metastasis. Thus the suppression of 

STAT-3 activation through the stabilisation of G-quadruplexes at its downstream 

flanking region is believed to be a favourable target in the field of anticancer 

therapy 92. 

The STAT-3 G-quadruplex, of sequence d(5’-G3CTG3GATG3GAG3GG-3’), has 

a different type of topological conformation due to its sequence and folding 

pattern. Recently, STAT-3 G-quadruplex folding patterns have been studied 

using a combination of CD spectroscopy and molecular modelling. Loop 

isomers 3:2:2 and 3:3:1 have already been considered as potential G-

quadruplex conformations 93. 
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1.1.15 Therapeutic Significance of Promoter-Oriented G-quadruplex 

Sequences  
 

As anticancer targets, promoter G-quadruplexes has increased in therapeutic 

significance during the last decade. Small molecules capable of selectively 

targeting and interacting with to stabilise the G-quadruplex motif are receiving 

significant interest and gaining momentum as a possible new class of 

anticancer agents. In particular, a number of small ligand molecules have 

already been reported to inhibit transcription of some oncogenes by forming and 

stabilizing G-quadruplexes.  

 

Figure 1.24: c-myc gene operating as a central oncogenic switch for 

oncogenes and the tumour suppressor APC (adenomatous polyposis coli) 

[taken from Dang CV. Molecular and Cell Biology. January 19(1999):1-11.] 94. 

For example, transcriptional repression of the MYC proto-oncogene, which is 

overexpressed in up to 80% of solid tumours, has already been reported 95.The 

Myc gene is found to be mutated in many malignancies such as breast cancer, 

which makes Myc constitutively expressed. This ultimately upregulates the 

expression of numerous genes, such as the genes involving cell proliferation, 

and ultimately develops into cancer (Figures 1.24, 1.25). A number of 

publications provide evidence in support of the presence of parallel-stranded G-

quadruplexes upstream of the P1 and P2 promoters of c-MYC 96. 
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Figure 1.25: Diagram showing c-MYC sensitization of a cell to a number of pro-

apoptotic stimuli. C-Myc may induce apoptosis in three possible ways via 

activating either BAX or p53 or FAS. Apoptosis can be blocked by antiapoptotic 

factor BCl-2 XL and BCL-2 proper via blocking the release of cytochrome c from 

the outer mitochondrial membrane [taken from Stella Pelengaris1 MKAtaGE. 

Nature Reviews Cancer October 2(2002):764-76 97].  

Cytochrome c is released from mitochondria into the cytosol in response to the 

induction of c-MYC; this may be due to the induction of BAX, a pro-apoptotic 

molecule 98-101 (a). Active BAX then alters membrane pores, causing 

mitochondrial-outer-membrane permeabilization (MOMP)101, 102. The 

apoptosome is formed by cytochrome attaching together with procaspase-9 and 

apoptotic protease-activating factor 1 (APAF1)103. This formation is then 

complexed with dATP and ultimately activates the downstream caspase 

pathways involving caspase-3, degrading cell components. C-MYC may induce 

apoptosis in an alternative p53/ARF pathway involving tumour suppressor 

protein p53 activation via ARF, leading to BAX (b) transcription104. An apoptotic 

signal may pass through the FAS ligand binding with prototype death receptor 

CD95. It is then further combined with an intracellular adaptor protein FADD 

(FAS-associated death domain) (c) and ultimately enters into the main caspase 

pathway via activation of caspase-8 (Figure 1.25). C-Myc-mediated apoptosis 

can be blocked by anti-apoptotic proteins such as BCL-2 or BCL-XL in a 
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pathway involving IGF-1 receptor (d). Binding of IGF-1 to its receptor leads to 

activation of RAS and AKT kinase105. Pro-apoptotic protein BAD is activated by 

phosphorylation and subsequently segregated and inactivated by cytosolic 14-

3-3 proteins106. BAX may be sequestered and cytochrome c release blocked by 

BCL2 and BCL-XL 107. 

 

1.1.16 G-quadruplex-Stabilizers as Anti-Cancer Agents 
 

 

 

 

 

 

 

Figure 1.26: Diagram illustrating the effect of promoter-oriented G-quadruplex 

targeting ligands on transcription. The stabilisation of promoter oriented G-

quadruplex with a ligand molecules blocks the transcription of a gene [ taken 

from Ma D-L, Ma VP-Y, Leung K-H, He H-Z, Chan DS-H, Zhong H-J: (2013):01-

24.] 28. 

G-quadruplex-stabilizing ligands can modulate transcription 108 and thereby play 

a major role in proliferation (Figure-1.26). An anthraquinone derivative (Figure 

1.27) was one of the very first small ligand molecules reported to interact with 

G-quadruplex structures in telomeres 109.  

 

 

Figure 1.27: Structures of G-quadruplex-targeting ligands; anthraquinone 

derivatives and fluorenone derivatives.  
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In fact it had been developed to target duplex and triplex DNA, but was 

observed to inhibit the enzyme telomerase (EC50=23 µM) via a mechanism 

involving the binding of G-quadruplex DNA 110. 

A series of structurally-similar molecules including fluorenones (Figure 1.27) 

and acridines111, 112 have been developed on the basis of the molecular motif of 

anthraquinones113. On the other hand, TMPyP4 was the first reported c-myc G-

quadruplex stabilizer that could inhibit c-Myc expression 114. Recently, a number 

of other c-myc G-quadruplex-interacting ligand molecules have been reported. 

For example, quindoline and berberine derivatives 115 and trisubstituted 

isoalloxazines 116, cationic porphyrins 114, BRACO-19, Piper, RHPS4 and 

Quarfloxin (figure 1.28) 117 all show notable interference with oncogenic 

transcription in vitro. Quarfloxin, designed by Cylene Pharmaceuticals, entered 

clinical phase-II trials having been reported to interact with G-quadruplexes in 

vivo 28. 

Trisubstituted acridine (AS1410, with a very similar structure to that of BRACO-

19) has been found to exert cytotoxic effects in two cancer cell lines including 

breast (MCF7) and lung (A549) at sub-cytotoxic concentrations118, 119. It has 

also shown a synergistic action while combining with even a low dose of cis-

platin120. 
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Figure 1.28: Structures of some classical G-quadruplex-interacting ligands with 

their planar and polycyclic aromatic cores 117. 

 

1.1.17 BRACO-19 
 

3, 6, 9-trisubstituted acridine is considered to be the most telomeric G-

quadruplex-interacting ligand amongst all other acridine derivatives reported 121. 

In fact, the molecular structure of BRACO-19 was designed carefully through 

computer modelling to target telomeric quadruplexes; it can fit in three grooves 

in addition to sitting/stacking on to the terminal G-tetrads of the target G-

quadruplex architecture121. Therefore, it is found to provide a significantly high 

degree of stabilisation. Although it has no a significant cytotoxic effect on cancer 

cells, it has been shown to have a great inhibitory impact on the enzyme 

telomerase 36 by displacing it from telomeres, which ultimately produces a 

number of biological responses including the onset of a senescence phenotype, 

telomere shortening, the induction of chromosomal end-to-end fusions 122, 

uncapping of telomeres and reduced expression of human telomerase reverse 
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transcriptase (hTERT) 123. BRACO-19 was found to be a highly active agent 

against various cancer cell lines in vivo. 

In fact, extensive studies of BRACO-19 both in vitro and in vivo helped to 

develop telomeric G-quadruplexes as valid targets for anti–cancer therapy. 

However, in vivo studies reported that BRACO-19 has rapid and significant anti-

tumour effects and it shows remarkable tumour regression in human uterus 

carcinoma UXF1138L xenograft models123. Although BRACO-19 has a number 

of anti-tumour activities, its entry into the cell membrane is a limitation. This 

restriction on membrane permeability gives it therapeutic value to be an anti-

cancer drug 124. Acridines have been structurally modified 125-128 further to get a 

new promising and drug-like lead compound, BSG-17, which has entered pre-

clinical trials as an anti-tumour agent.   

 

1.1.18 PIPER 
 

PIPER is one of the most potent perylene diimides, shown to bind with G-

quadruplex DNA through a π-π stacking interaction with the terminal G-tetrad 

as demonstrated by NMR studies129. Further experiments using single-stranded 

and duplex DNA showed that PIPER is complexed with duplex DNA, limiting its 

selectivity to G-quadruplexes. Later, PIPER was found to stabilize the 

secondary architecture of G-quadruplexes by preventing the unwinding of it 

through the inhibition of G-quadruplex-specific helicases Sgs1 and T-ag 130. 

This result led to further ligand development through a number of studies 

involving side chain optimisation, resulting in new analogues targeted to 

improve their telomerase inhibitory potentials131-133. The biological evaluation of 

these newly-synthesized analogues is not extensively aimed at scrutinising 

them to produce a drug-like molecule, which may be a major drawback in the 

future development of PIPER as a potent anti-cancer agent. 

 

1.1.19 TMPyP4 
 

Cationic porphyrins like TMPyP4 are commonly chosen to use as G-quadruplex 

ligands 134. The ligand TMPyP4 was first reported to interact with DNA 40 years 

ago; it has since been shown to be a G-quadruplex ligand 135, 136 with significant 

interaction; its four cationic side chains were reported to interact with each of 
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the four grooves of G-quadruplexes 136. Since then, the DNA-interacting 

capacity of this ligand has been widely assessed and it has been found to have 

a high level of affinity toward G-quadruplex DNA with poor selectivity 137-139. 

However, sometimes it might be peculiar to show extraordinary responses such 

as the unfolding of quadruplexes in both d(CGG) repeats 140 or antithrombin 

aptamer 141 and RNA sequences r(CGG) repeats 142. Interestingly, this ligand 

has interactions with the wide variety of quadruplexes and shows binding ability 

toward duplex DNA 143, RNA, triplex DNA 144 and DNA-RNA hybrids 145. Thus it 

is still extensively studied and analysed to investigate its interactive mode and 

capacities towards the different forms of DNA 146. Interestingly, crystallographic 

studies revealed that TMPyP4 did not stack to the G-tetrads, but rather 

intercalate into or stack to base pairs formed by the DNA loops 147. This finding 

was found to be consistent with the previous evidence of its poor selectivity 

towards quadruplexes with respect to duplex DNA 137, 138. However, TMPyP4 

and its analogues were found to exhibit their cytotoxic effects against a number 

of cancer cell lines with IC50 values of more than 50µM 136, 148, 149. Moreover, 

they were also shown to downregulate c-MYC 114 and k-ras genes 51. 

 

 

1.1.20 Telomestatin 
 

Unlike chemically-synthesized BRACO-19 and TMPyP-4, telomestatin was first 

extracted from the bacterium Streptomyces anulatus 3533-sv4 150, 151. It has 

been reported to be the most potent telomerase inhibitor to date. It was 

identified as a G-quadruplex ligand based on its unique cyclic aromatic 

structure, resembling the G-quartet plane, which was established by molecular 

modelling studies 152. It is shown to interact with both intra- and intermolecular 

G-quadruplexes with about 70 times more affinity than for duplex DNA. 

Telomestatin has been proved to be a prolific anticancer agent in a number of 

cancer cell lines. It inhibits cellular growth through inhibition of telomerase, 

shortening the telomere, displacing telomerase associated proteins POT1 and 

TRF2 from telomerase and facilitating apoptosis, causing cell death 153, 154. 

However, it is challenging to synthesize this ligand chemically 155. A good 

number of structurally similar and related molecules have been studied in order 

to try and reproduce its potency as a G-quadruplex ligand 156-158. 
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1.1.21 RHPS4 
 

A five-ring-containing polycyclic acridine, RHPS4 was first reported by Gowan’s 

group as a potent telomerase inhibitor and has been shown to interact with G-

quadruplexes by stacking at the end of the G-quadruplex in vitro 159. 

Subsequently, it was demonstrated to exhibit acute cellular cytotoxicity upon 

exposure of 21NT breast cancer and A431 vulval cancer cells with a significant 

reduction of telomerase activity at low concentrations. It has also been shown to 

reduce the cell growth in a number of melanoma cell lines by targeting the 

enzyme telomerase. However, further studies have suggested that the anti-

proliferating effect of RHPS4 was not due to the telomerase shortening but 

rather a dysfunction of telomerase with an alteration of telomeric capping 160. 

This, in turn, causes the interruption of the cell cycle, senescence, apoptosis 

and telomeric fusions. In vivo studies have showed that RHPS4-exposed MCF-7 

cells appear to be more sensitive to a combination therapy such as the 

combination of RHPS4 with taxol or doxorubicin 161. This combinatory effect was 

thought to be caused by the enhanced telomerase dysfunction 162, 163. 

A large number of ligands targeting G-quadruplexes have already been 

reported to date. These molecules have been primarily designed through the 

rational drug design technique 164, 165. The common feature of all these G-

quadruplex interacting ligands is that they have extended planar functionalized 

polycyclic aromatic systems (Table 1.1). They can be categorized into two 

classes: putative groove binders 166 and end polycyclic aromatic chromophores. 

The second class is composed of cationic porphyrins (e.g. TMPyP4), 

anthraquinones or perylenes. 

Polycyclic ring systems within these ligand types are assumed to provide more 

π-π stacking interactions with the terminal quartet of G-quadruplexes. Many of 

them appear to have a positively charged cationic side chain so that they can 

interact with the phosphate backbone of G-quadruplexes. Thus most of the drug 

design process is based on targeting the π-π interactions 134 and introducing 

moieties to interact with the DNA backbone (for example, amidic tails) 121. One 

example of this is the design of the porphyrin TMPyP4. 

Although these ligands molecules can have a higher interactivity toward their 

target sequence G-quadruplex, they are mostly non-drug like and deviate from 
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the Lipinski Rule of Five concerning potential for oral bioavailability 167, 168. This 

is due to their planar surfaces, high molecular weights (∼600 or above), 

lipophilicity and (for some) their significant charge and poor water solubility 169.  

1.1.22 Quarfloxin 
 

To date, CX-3543 or itarnafloxin (generally known as quarfloxin) is the only G-

quadruplex ligand from the large number studied to have progressed to phase II 

clinical evaluation for therapeutic values against malignancies such as 

neuroendocrine tumours 170 171. This G-quadruplex-targeting ligand helps to 

move nucleolin from the nucleolus to the nucleoplasm through redistribution of 

it. This specifically breaks the nucleolin-G-quadruplex entity and thereby inhibits 

Pol I transcription to facilitate apoptosis 172, 173. 

 

Figure 1.29: The synthesis and clinical progression of quarfloxin. This is the 

only molecule developed by Hurley and coworkers, enter into the phase-II 
clinical trails. [ taken from Shankar Balasubramanian LHH, and Stephen Neidle. 
Nature Reviews Drug Discovery. April10( 2011): 261-75.] 58. 
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Figure 1.30: Diagram illustrating the proposed mechanism of action of 

quarfloxin upon the redistribution of transcription coactivator nucleolin into the 

nucleoplasm [taken from Shankar Balasubramanian LHH, and Stephen Neidle. 

Nature Rev Drug Disco. (2011): 261-75.] 58 

After penetrating the nucleus, quarfloxin dissociates nucleolin from the G-

quadruplex. Therefore, nucleolin gets redistributed within the nucleoplasm 

which in turn triggers the process of apoptosis and ultimately inhibits tumour 

growth (Figure 1.30) 28. 

1.1.23 Other G-quadruplex-Targeting Agents Reported 
 

Many other G-quadruplex-targeting potential ligands (Figure 1.31) have already 

been developed to date. These include triazine derivatives, shown to be potent 

inhibitors of telomerase with cytotoxic activity at sub-cytotoxic concentrations 

174, 175, diamidoanthraquinones such as GSU1051, found to show a different 

degree of selectivity and potency towards G-quadruplexes 109, 2,6-pyridine 

dicarboxylate derivatives such as 360A176, shown to bind telomeres in vivo 177, 

and the phenanthroline analogue EDL35 178 and isoalloxazines 35, shown to 

inhibit c-kit expression. Many of these ligand molecules are presently in different 

preclinical stages and some are likely to enter into clinical use. 
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Figure 1.31: Structures of some G-quadruplex-interacting compounds. 

However, newly developed rational and drug-like molecules are being reported 

regularly with relevance to the G-quadruplex area of nucleic acid research. 

Recently published reviews on this issue provide important insights into G-

quadruplex ligands179, 180. 

SYUIQ-05, a quindoline derivative, is reported as a c-myc-oriented G-

quadruplex targeting ligand. Unlike other ligands, it has shown insignificant 

interaction with human telomeric G-quadruplexes. Therefore, it was found to 

inhibit cancer cell proliferation through selective binding with quadruplexes 

formed within the G-rich NHEIII1 (Nuclear hypersensitive element) of the 

promoter region of c-myc 181, 182. It has been reported to induce apoptosis and 

cancer cell senescence183-186. 

Tetrasubstituted naphthalene diimides have been reported to be highly active 

and selective ligands for G-quadruplexes, especially for human telomeric and c-

kit-2 G-quadruplexes 187. They induce G-rich sequences to form G-quadruplex 
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structures with parallel loops and have been shown to prevent hPOT1 and 

topoisomerase IIIα from binding telomeres 188. They also appear to inhibit 

telomerase in MCF7 cells 118. They are highly cytotoxic in a number of cancer 

cell lines with IC50 values of ~0.1 µM. 

Anthracene derivatives have been found to bind with telomeric quadruplexes, 

impairing telomere function, inhibiting cancer cell proliferation and promoting 

senescence 189. 

Both amidoanthraquinone and perylene derivatives have been reported to be 

telomeric G-quadruplex-binding ligands and thereby they inhibit telomerase with 

the inhibition of cancer cell proliferation190-192. 

Macrocyclic pyridyl polyoxazoles are reported to be selective ligands for G-

quadruplexes over duplex DNA 193, 194. 

Triethylene tetramine (TETA) has been reported to interrupt telomerase function 

by inhibiting human telomerase reverse transcriptase (hTERT) expression and 

promoting tumour cell senescence195, 196.  

Bisantrene, synthesized from an anthracene derivative through the substitution 

of two side chains (4, 5-dihydro-1H-imidazol-2-yl-hydrazonic groups) at the 1 

and 5 or 1 and 7 positions of the aromatic ring, has been reported to bind G-

quadruplexes on telomeres and inhibit telomerase 189, 197. 

A tetra-substituted naphthalene-diimine derivative (MM41) (Figure 1.32) has 

been reported as a strong ligand, targeting BCL-2, k-RAS1 and k-RAS1 gene 

promoter-oriented G-quadruplexes, as it shows significant ∆Tm values of 26.4 

°C, 22.5 °C and 19.8°C, respectively, from FRET experiments.  

 

 

Figure 1.32: The structure of MM41. 
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This ligand molecule is found to have significant in vivo anti-tumour potential 

against the MIA PaCa-2 pancreatic cancer xenograft model 198. 

 

Distamycin A, a polyamide chemical compound, is being used as an anti-cancer 

drug 199. This drug prefers A-T rich minor grooves as this groove proves a 

narrow space to achieve tight contact and strong van der Waal’s interactions. 

However, distamycin alters the DNA conformation by changing structural 

dimensions within the particular part of the minor groove, in turn hampering the 

interaction of transcription factors, and ultimately altering genetic control 200. 

 

 

Figure 1.33: Structure of Distamycin A. 

 

Recent NMR studies show that distamycin A (Figure 1.33) also has binding 

affinity towards G-quadruplexes and stacks upon the terminal plane of G-

quadruplex conformations. They either interact as a dimer with two of the four 

grooves of the quadruplex or two molecules of distamycin A sit over each of the 

two G-tetrads planes 201. 

 

Stephen Neidle’s group reported that the pyrrole group’s (specially 2,5 bi-

substituted pyrrole group) inclusion within the distamycin A structure increases 

its affinity towards quadruplexes. They synthesized a number of polyamides by 

linking pyrrole rings based on the distamycin A molecules. Subsequently, they 

evaluated those molecules through the FRET melting assay. Few of these 

structurally modified molecules displayed a higher affinity for G-quadruplex DNA 

over duplex DNA than that of distamycin A 202. 

 

Recently, the Thurston/Rahman Group has reported a new set of G-quadruplex 

selective acyclic bi-aryl polyamides based on a distamycin motif (Figure 1.34) 

203. They replaced pyrroles by introducing biaryl building blocks to switch 

preference to quadruplex DNA from duplex DNA, using the distamycin scaffold 



81 
 

as a molecular backbone. G-quadruplex ligands of this novel class showed a 

high degree of selectivity towards quadruplex DNA over duplex DNA.  

 

 

 

Figure 1.34: A) Structures of the biaryl polyamides synthesized by the 

Thurston/Rahman Group 203. B) Crystal structure based on the molecular model 

of compound 4, which is shown to interact to the terminal G-tetrad (yellow) of a 

human intramolecular telomeric quadruplex–ligand complex, shows the 

distinguishing U shape of the biaryl polyamides [ taken from Rahman KM, 

Reszka AP, Gunaratnam M, Haider SM, Howard PW, Fox KR. Chem comm. 

27( 2009):4097-9.] 203. 

 

Those ligands with relatively large aromatic ring systems can be used as a 

rational scaffold to attempt to make molecules with improved affinity for 

quadruplex DNA while retaining selectivity. The design strategy is to change or 

introduce different functional groups and phenyl rings to target a particular type 

of quadruplex 203. 
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More recently, the Thurston/Rahman Group has identified 13 different drug-like 

chemical scaffolds by screening three different NCI chemical libraries (Figure 

1.35) 117.  

 

 

 

 

 

 

 

Figure 1.35: Structures of the thirteen compounds of diverse chemical structure 

with selective telomeric G-quadruplex-binding activity discovered by the 

Thurston/Rahman Group. 

 

These compounds were screened from a total of 2307 structurally diverse 

molecules and evaluated through a FRET-based melting assay. These 

compounds showed notable binding affinity towards telomeric G-quadruplex 

sequences and it should prove possible to modify them to enhance their affinity 

for different quadruplex sequences.  
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Molecules, especially 1, 3-phenylene-bisbenzothiazole-urea (NSC 319990), a 

reported Chemokine Receptor 2 (CCR2) antagonist, are shown to be more 

selective stabilisers of telomeric G-quadruplex structures. It achieves 22.7°C 

stabilisation of the same at 1 µM concentration. Therefore, it could be a target 

scaffold to achieve structural modification with different benzofused building 

blocks for optimum activity 204. 

 

In fact, a good number of molecules interacting with DNA have already been 

reported, having benzofused rings in their structures. Some of them are 

discussed below. 

         

             

Figure 1.36: Structures of Hoechst 33342 and Hoechst 33358. 

Hoechst stains, particularly Hoechst 33258 and Hoechst 33342 (Figure 1.36), 

are blue fluorescent dyes used for staining DNA in emission or excitation 

spectra205, 206. These minor groove-targeting fluorescent compounds have two 

benzofused rings (benzimidazole rings) linked to one another. These flat 

molecules preferentially bind to AT base pairs and stabilise target DNA through 

hydrogen bonds, Van der Waals and electrostatic interactions 207. 

A lot of structural modification on Hoechst 33258 has already been done to tune 

its activity towards specific DNA sequences208, 209. Maji et al. (2013) reported 

that they synthesized molecules based on Hoechst 33258. 

 

 

 

 

Figure 1.37: Structures of three isomers 2a (o-pyben), 2b (m-pyben) and 2c (p-

pyben). 
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They replaced the phenolic group and piperazine residue at both ends of 

Hoechst 33258 with p-pyben, m-pyben and o-pyben, respectively, to achieve 

positional isomers. The molecules they synthesized, named (2a), (2b) and (2c) 

(Figure 1.37), are found to show selectivity towards telomeric G-quadruplexes 

over duplex DNA 210. 

 

Novel indole derivatives, including bis-indole carboxamide and a derivative 

containing pyridine, (Figure 1.38) have been reported to interact with G-

quadruplex sequences.  

 

Figure 1.38: Structures of cationic bis-indole derivatives 1 and 2. 

These molecules appear to exhibit a high stabilization capsid against F21T, c-

kit-1, c-kit2 and c-myc quadruplex sequences 211.  

 

1.1.24 Biological Consequences of G-quadruplex-Targeting Ligands 
 

Ligands interacting with G-quadruplex DNA are shown to give biological 

responses in vivo; in some cases they are supported by in vitro observations as 

well. There are a number of biological effects including anti-proliferative 

activities at sub-cytotoxic concentrations in various cancer cell lines, inhibition of 

telomerase, induction of senescence and apoptosis, telomere shortening, 

chromosomal end-to-end fusion and DNA damage responses. Many cancer 

xenografts with various models have been found to show anti-tumour activity of 

individual ligands and in combination with other anticancer drugs. Initially, these 

activities shown by using different ligands were explained on the basis of 

telomerase inhibition, but now it is believed that the antitumor activity is not only 

due to the telomerase inhibition; the binding of the ligands to telomeres and the 
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subsequent telomere uncapping are also thought to be responsible for these 

biological effects. 

Recently, it has been evident that telomerase plays an independent role in 

maintaining telomere length during the process of tumorigenesis 212. In fact, 

telomerase at high expression levels is well connected with the development of 

cancer. Differences in both the telomeric lengths of cancer or normal cells and 

the levels of telomerase activity could both be particular indications for the 

selective toxicity effects of particular G-quadruplex ligand molecules in vivo. G-

quadruplex ligands are found to inhibit the expression of several oncogenes20, 

213. 

Human telomerase reverse transcriptase (hTERT) is highly expressed in cancer 

cells. It has been shown that oncogene c-myc-encoded transcription factors 

play a direct role in the upregulation of telomerase activity in cancer cells, as 

they stimulate expression of hTERT among others genes. The reduced 

telomerase activity due to G-quadruplex ligand binding could be correlated with 

reduced expression of oncogenes like c-myc 214. 

Biological evaluations are suggesting that G-quadruplex ligands are mainly 

dual-action molecules. The main mode of action is still thought to be the 

inhibition of telomerase activity. On the other hand, some other biological 

responses implicate an inhibitory role of G-quadruplex ligands in the 

transcription of particular genes. These different findings have attracted 

research into ligands molecules which can discriminate between various G-

quadruplex-forming sequences with different topologies within the human 

genome, with the aim of developing a more selective G-quadruplex ligand to act 

on a specific oncogene for the induction of selective biological responses. 

 

1.1.25 Design of New G-quadruplex Stabilizer 
 

Hurley and co-workers first reported the potential binding of cationic porphyrin 

TMPyP4 with telomeric G-quadruplexes in 1998 215. They proposed that 

TMPyP4 has an appropriate size and shape to stack with the G-tetrads in order 

to stabilise quadruplex DNA after obtaining the structural and conformational 

information of the telomeric G-quadruplex through UV and NMR spectroscopy 
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studies. They investigated the G-quadruplex stabilizing capacity of TMPyP4 

through several techniques and they also evaluated a large number of TMPyP4 

analogues and completed a SAR study to elucidate the mechanism of action 

and to identify the lead porphyrin TMPyP4. This lead molecule has been 

reported to be an effective inhibitor of human telomerase in HeLa cell extract. 

Accordingly, porphyrin TMPyP4 showed an IC50 of 6.5 ±1.4 µM 215. 

Another promising method to design G-quadruplex stabilizing ligands is 

molecular docking. It is a computer-assisted drug design technique to visualise 

three dimensional features and evaluate newly-proposed drugs within their 

receptors. It informs about effective binding between ligand and receptor and at 

the same time helps to choose a rational molecule from a molecular library to fit 

with a specific topological conformation of diversified G-quadruplexes. The 

overall selection process involves several steps (figure 1.39) 28. 

 

Figure 1.39: Sequential drug design process using a molecular docking system 

28. 

This process has been successfully used to develop G-quadruplex-binding 

ligands. The following body of work contains a combined process whereby 

molecular docking and rational design have both been used to develop a library 

of ligands specific for certain types of quadruplex. 
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1.2 Biophysical Evaluation of G-quadruplex-Targeting Ligands 

 

There are many biophysical methods used to study the mode and the 

interaction capacity of ligands molecules towards G-quadruplex secondary 

structures. Experimental methods, especially different spectroscopic 

approaches, are widely used for biophysical evaluation of different chemically 

synthesized G-quadruplex ligand molecules. Some of these techniques are 

described below in short 216. 

 

1.2.1 Circular Dichroism Spectroscopy 
 

Circular Dichroism (CD) spectroscopy has long been used to study for G-

quadruplex structure types and their interactions with targeted ligand molecules. 

Its capacity to show structural signals based on the conformational differences 

of the target makes this method an efficient technique in the field of modern 

biochemistry. The conformational changes observed upon binding of specific 

ligands can be monitored by this method through the measurement of 

absorption differences between left-handed and right-handed polarized light. 

Zero CD intensity shows in the absence of regular structure. Initially, zero CD 

intensity shows as there no regular structure to monitor, but a specific 

conformation/structure produces both positive and negative signals in a 

spectrum. Therefore, it is widely used for the structural analysis of proteins and 

nucleic acids. Any changes including temperature, salt concentration and pH 

can significantly modify the DNA secondary structure and this modification 

exhibits particular signals in the absorption spectrum. It is also useful to know 

the binding mode and affinity of a ligand molecule 217-219. 

 

1.2.2 UV/Fluorescence Technique 
 

UV or fluorescence spectroscopy is a simple technique used to study the 

interaction of G-quadruplexes with their corresponding ligand molecules. It 

gives changes in the intensity and wavelength of the G-quadruplex 

absorption/emission signals upon the addition of the ligand molecules. Ligand 
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molecules in free form in solution show well-characterised absorption bands in 

the visible region. As the drug molecules soon complex with the secondary 

structure, it causes a maximum shift of this band. Therefore this method is an 

easy approach to determine the degree of ligand affinity toward G-quadruplex 

structure. However, these techniques can be used for both qualitative and 

quantitative analyses, like stoichiometry and binding constants of ligand 

molecules with DNA146, 220. 

DNA secondary structure stabilization by a specific ligand molecule can also be 

measured through thermal studies where UV absorbance of different 

temperatures is monitored at a certain wavelength. 

 

1.2.3 Isothermal Titration Calorimetry 
 

Isothermal Titration Calorimetry (ITC) is used for the direct measurement of 

thermodynamic characteristics such as binding affinity constant, enthalpy and 

stoichiometry of interaction between the G-quadruplex DNA and ligands. ITC 

can measure the heat either released or absorbed during DNA-ligand 

interactions. By measuring this heat, it is possible to characterise the total 

thermodynamic profile of a DNA-ligand interaction in a solution. The heat values 

represent the molar ratio between ligand and G-quadruplex and thereby provide 

a parameter to know the degree of interaction of ligand toward G-quadruplex. 

This technique has the capacity to allow direct comparison of a large number of 

ligand molecules like TMPyP4 and acridine in order to study their interaction 

capacity with G-quadruplex secondary structures221, 222. 

 

1.2.4 DNA Footprinting 
 

A method which is used for determining the selectivity and interacting capacity 

of a ligand binding with a target DNA sequence in vitro, DNA footprinting 

involves the target sequence containing radiolabelled DNA fragment being first 

incubated with the ligand. It is then allowed to be digested with the enzyme 

DNase I. DNase I is widely chosen as it can bind with the minor groove and 

break the phosphodiester bonds of the DNA template. This enzyme cuts the 

DNA in a random manner, but the sequence bound by ligand remains 
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protected. The resulting fragments are subjected to polyacrylamide gel 

electrophoresis (PAGE) for separating into different bands. The gel is then 

visualised by phosphor imager screen. The specific ligand-bound part of the 

target DNA can be identified by the absence of fragments corresponding to the 

cleavage of DNA in that region. This is also a simple method to investigate 

whether a ligand can selectively bind to a specific sequence of DNA 223. 

 

1.2.5 Equilibrium Dialysis 
 

It is a simple and convenient method to evaluate the interacting capacity and 

sequence selectivity of a G-quadruplex-targeting ligand molecule. This process 

involves two chambers separated by a selectively semi-permeable membrane 

which allows only ligand but not G-quadruplex to pass through. G-quadruplex 

DNA of known concentrations is placed in each of these two chambers. The 

ligand molecules can easily pass from their own chamber to the other chamber, 

while the G-quadruplex is retained in its chamber224, 225. Therefore, ligand 

molecules move freely between these two chambers and they are supposed to 

interact with the target G-quadruplex in the other chamber. 

The ultimate concentration of free ligand molecules becomes the same in both 

chambers at the equilibrium stage. If the ligand molecules bind with the G-

quadruplex, the ligand concentration will be higher in the G-quadruplex 

chamber. Thus the concentrations of ligands can be varied with their respective 

affinities towards their target G-quadruplex DNA. The concentrations of free and 

DNA-bound ligand are required to determine the equilibrium binding constant. 

One of the major advantages of this tool is to measure the low affinity of a 

ligand molecule which is not detectable by other methods available. 

 

1.2.6 Nuclear Magnetic Resonance 
 

Nuclear Magnetic Resonance has been used for studying the capacity of a 

ligand molecule to bind with a target G-quadruplex. It provides a distinguishing 

set of NMR signals in the proton spectrum upon the binding of the ligand with 

the G-quadruplex. It can also explain the conformational changes that occur 

due to G-quadruplex-ligand complex formation 226. 
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1.2.7 Mass Spectrometry 
 

Mass spectroscopy is a common tool used to determine the interacting 

characteristics between ligands and DNA molecules. The electrospray 

ionization technique can determine the mass of both the G-quadruplex and a G-

quadruplex–ligand complex as this approach allows minimum fragmentation of 

the biomolecules, which ultimately helps to reveal the stoichiometry of the G-

quadruplex-ligand complex 227-230. 

 

1.2.8 Voltammetric Methods 
 

The electrochemical voltammetric approach is also used to investigate the 

interacting capacity of a ligand toward its target G-quadruplex sequences. Data 

obtained from the voltammetric method helps to determine the binding constant 

(K) and binding site size of the target sequence. The binding site size suggests 

the binding area in terms of the number of base pairs covered by the ligand 

molecules. Electroactive species are excited by the application of voltage, which 

then increases the electric current. The intensity of the electric flow depends on 

the concentration of species under study. Ligands molecules with binding 

capacity for DNA reduce the current flow and also reduce the diffusion rate 231, 

232. 

 

1.2.9 Viscosimetry Titration 
 

Binding of a ligand to the target DNA changes the viscosity of the DNA solution. 

The relative specific viscosity coming from the change in the viscosity of the 

DNA solution upon addition of the ligand molecules can be used to study ligand 

binding affinity. A ligand which intercalates or electrostatically binds to a target 

DNA sequence causes conformational distortion in that DNA molecule, which 

ultimately increases DNA length. Therefore, the titration of duplex DNA with 

interacting ligands causes an increase of relative viscosity; it is because of the 

presence of more intercalating agents at the site of base pairs throughout of the 

target sequence. On the other hand, ligands with less intercalating activity 

cause no changes of DNA solution viscosity in aqueous state 233, 234. 
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1.2.10 Melting Experiment 
 

The melting experiment is based on the relative melting temperatures of both 

ligand-bound DNA and the unbound DNA molecules. It is a specific temperature 

at which fifty percent of DNA is denatured and takes a single stranded form. 

Generally ligands have a tendency to stabilize the DNA secondary structure. 

Thus DNA which is bound with a ligand molecule is found to melt at a higher 

temperature relative to the unbound DNA. Therefore, higher affinity of a ligand 

for the DNA results in a higher melting temperature of the ligand-bound DNA. 

The melting experiment can be monitored by a number of techniques like UV, 

CD or fluorescence spectroscopy 235. 

 

1.3 FRET-based DNA Melting Assay 

 

Fluorescence Resonance Energy Transfer (FRET) technology is extensively 

used to evaluate the interacting capacity of ligands towards specific secondary 

DNA structures like G-quadruplexes by measuring an increase in nucleic acid 

melting temperature (ΔTm) 236. The difference between the Tm of the ligand-

bound structure and the Tm of the unbound DNA is termed the ΔTm parameter 

237. One strand of an oligonucleotide is labelled with FAM (fluorescein) as a 

fluorescence donor and complementary strand (or other end of heparin) is 

labelled with TAMRA as an acceptor 238. The intensity of the FAM fluorescence 

upon excitation by heating is then measured as a function of temperature 239. 

1.3.1 Principle of FRET 

FRET is a fluorescence-based spectroscopic method with distance information 

based on structural changes of a molecular complex. It is based on the non-

radiative energy passing between molecules over long distances (10-80°A). The 

donor molecule absorbs photons and then transfers the energy gained to the 

acceptor molecule. The transfer of this energy needs to satisfy two factors: 

proximity and compatibility. The ‘Förster distance’ or R0 (also called the Förster 

radius, R representing the distance between the donor and acceptor 

chromophores) is defined as the characteristic distance between donor and 

acceptor chromophores within which the non-radiative energy transfer is 
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possible. It is usually within 10 - 80 0A. At the same time, the absorbance 

spectrum of the acceptor molecule needs to overlap with the emission spectrum 

of the donor molecule. This donor fluorophore can only then directly excite an 

acceptor fluorophore which ultimately emits energy at a new wavelength. Thus 

activation of the acceptor fluorophore can be detected by emitted energy at a 

new wavelength. Target DNA sequence and a ligand are associated together to 

make a stable complex with lower energy. The interacting affinities of different 

ligands toward target DNA sequence are assessed by the changes in their 

stabilisation through their corresponding melting temperatures. FRET results 

have been shown to correlate with results from UV melting profiles. Melting 

curves following the melting process of DNA-ligand complexes represent the 

corresponding melting temperatures (∆Tm) against various ligands of different 

concentrations. The changes in the melting temperatures due to the DNA bound 

ligands can be measured with respect a melting temperature of respective 

control DNA 240. 

A G-quadruplex-forming oligonucleotide (for example, human telomeric F21T 

sequence) can be labelled with the two fluorescent probes; one is a donor and 

the other an acceptor (Figure 1.40). 

 

 

Figure 1.40: Schematic diagram of the experimental determination of the 

stabilizing effect of a G-quadruplex-binding ligand using FRET Technology. 

  [taken from Renčiuk D, Zhou J, Beaurepaire L, Guédin A, Bourdoncle A, 

Mergny J-L. 57(2012):122-8.] 237. 
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1.3.2 Advantages of the FRET Assay 
 

The FRET technique of DNA melting processes has a couple of advantages 

over other traditional techniques like CD or UV spectroscopy 241. FRET-based 

measurement is a relatively rapid and cheap process to implement, applicable 

to fluorescent derivatives of any molecular system and is an automatable 

process that requires a very small amount of DNA sample to monitor the 

melting process with high precision and accuracy. FRET-based assays with 

specificity for human DNA have been successfully adopted in a high-throughput 

format resulting in the rapid measurement of the quadruplex stabilisation 

potential of synthetic ligands. In contrast, both CD and UV spectroscopy require 

high concentrations of oligonucleotides, resulting in high costs and their 

measurements cannot easily be conducted in a high-throughput format. 

Moreover, the change in absorbance in the UV method is small in comparison 

with the large signal changes observed in the FRET fluorescence technique. 

FRET is also a more sensitive technique to determine the stability of a DNA by 

the means of melting temperature 242. 

 

1.4 Aim of the Current Study 
 

The diversity in shape and nature of G-quadruplex structures could be used to 

enhance selectivity to a particular type. In particular, analysis and exploitation of 

the different grooves and loops that are present in different types of G-

quadruplex DNA, like Telomeric, c-kit-1, c-kit-2, and Bcl-2 G-quadruplexes, has 

not yet been undertaken in a systemic manner from a drug design perspective. 

However, the overall goal of this project is to exploit the recent structural 

information available on human telomeric, bcl-2 and c-kit oncogenic DNA 

quadruplexes to achieve guidelines for the discovery of a novel set of 

quadruplex-specific small-molecule ligands. Based on the promising 

quadruplex-selectivity observed for the reported biaryl polyamides 203, the first 

objective was to synthesize libraries of novel ligands based on this template that 

could have potentially enhanced selectivity and binding affinity for quadruplex 

versus duplex DNA, and selectivity for quadruplexes of different types within the 

specific oncogene sequences. This should provide greater understanding of 

structure-activity relationships for molecules of this type. 
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The specific objectives are as follows: 

 Synthesise novel benzofused polyamide ligands by replacing the 5-

membered heterocycles and central biaryl ring with different benzofused 

groups using solution phase chemistry. 

 Evaluation of the new molecules using the FRET-based DNA thermal 

denaturation assay (including duplex competition) and also circular 

dichroism (CD) spectroscopy for determining their affinity and selectivity 

for a number of different G-quadruplex sequences including the c-Myc 

quadruplex. 

 Evaluation of the novel ligands for cytotoxicity against a panel of relevant 

tumour cell lines such as MDA-MB-231(Triple negative breast cancer cell 

line), HeLa (Cervical cancer cell line) etc. 

 A longer term objective of the project is to select a suitable candidate 

ligand for evaluation in a human tumour xenograft mouse model of a 

specific cancer type associated with the oncogenic quadruplex being 

targeted. Ligands with antitumor activity in this model may be selected 

for further preclinical studies with a view for progression to phase-I 

clinical trials. 
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Chapter 2: Results and Discussion 
 

2.1. Introduction 

A new set of G-quadruplex-selective acyclic biaryl polyamides based on a 

distamycin motif (Figure 2.1) 203 has already been reported by the 

Thurston/Rahman Group. They replaced pyrroles by introducing biaryl building 

blocks to switch preference to quadruplex DNA over duplex, using the 

distamycin scaffold as a molecular backbone. G-quadruplex ligands of this 

novel class showed a high degree of selectivity towards quadruplexes like HT4, 

C-kit-1 and C-kit-2 G-quadruplexes over duplex DNA. 

 

 

 

Figure 2.1: Structure of Distamycin A. 

 
 

The Thurston/Rahman Group has also previously identified 13 different drug-

like chemical scaffolds by screening three different NCI chemical libraries. They 

screened those compounds out from a total of 2307 structurally different 

molecules and they evaluated them through the technique of FRET-based DNA 

melting assay. These compounds showed notable binding affinity towards 

telomeric G-quadruplex sequences. It is possible to modify their structures with 

the help of molecular modelling and bio-physical assay to enhance their affinity 

towards different quadruplex sequences. 
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Figure 2.2: Structure of 1, 3-phenylene-bisbenzothiazole-urea (NSC 319990) 

with benzofused rings (red). 

Molecules, especially 1,3-phenylene-bisbenzothiazole-urea (NSC 319990) 

(Figure 2.2), a reported Chemokine Receptor 2 (CCR2) antagonist, are shown 

to be more selective stabilisers of telomeric G-quadruplex structure. It does 

22.7°C stabilisation of the same at 1 µM concentration. Therefore it could be 

target scaffold to get a structural modification with the different benzofused 

building blocks for optimum activities 204.  

 

In fact a good numbers of molecules interacting DNA have already been 

reported, having benzofused rings in their structures. Some of them are 

discussed below- 

 

 

Figure 2.3: Molecular structures of Hoechst 33342 and Hoechst 33358. 

Benzofused rings are shown as red. 

 

Hoechst stains particularly Hoechst 33258 and Hoechst 33342 (Figure 2.3) are 

blue fluorescent dye, being used for staining DNA in emission or excitation 

spectra 205, 206. These minor groove targeting fluorescent compounds having 

two benzofused rings (benzimidazole rings) linked one after another. These flat 

faced molecules preferentially bind to the AT base pairs and stabilize the target 

DNA by forming hydrogen bonds, Vander Walls and electrostatic interactions207. 

A lot of structural modification on Hoechst 33258 has already been done to tune 

its activity towards specific DNA sequences interested208, 209. Maji et al. 2013 

reported that they synthesized few molecules basing Hoechst 33258.  
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Figure 2.4: Three isomers 2a (o-pyben), 2b (m-pyben) and 2c (p-pyben). 

Benzofused rings are shown as red. 

They replaced the phenolic group and piperazine residue at both ends of 

Hoechst 33258 with p-pyben, m-pyben and o-pyben respectively to have the 

positional isomers. The molecules they synthesized named (2a), (2b) and (2c) 

(Figure 2.4) are found to show the selectivity towards telomeric G-quadruplex 

over duplex DNA 210. 

 

In 2008 Dash and his group has also reported by the synthesis of novel indole 

derivatives including bis-indole carboxamide and a derivative containing 

pyridine to target G-quadruplex sequences (Figure 2.5).  

 

 

Figure 2.5: Cationic bis-indole derivatives 1 and 2 Benzofused rings are shown 

as red. 
 

They evaluated these ligands through FRET-based melting analysis. These 

molecules appear to exhibit high stabilization capacity against F21T, c-kit-1, c-

kit2 and c-myc quadruplex sequences 211.  

Therefore, a novel class of biaryl polyamides developed by the Rahman and 

Thurston group was taken as a template and benzofused building blocks of 

different types were chosen to make another new class of molecules which 

were assumed to be more potent and drug-like G-quadruplex ligands. 

 

2.1.1 Rational Design of Benzofused Polyamide Synthesis 

 

A number of different benzofused polyamides were synthesized based on biaryl 

polyamide as a structural motif. A benzofused building block was initially 
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coupled with a tertiary amine tail through an amide coupling reaction. Then two 

other consecutive benzofused carboxylic acids were coupled in a same way to 

synthesize a benzofused polyamide. Benzofused units were incorporated in 

place of the pyrrole and furan rings of biaryl polyamide motif (Figure 2.6).  

 

Figure 2.6: Benzofused building blocks incorporated in place of the pyrrole and 

furan rings of biaryl polyamide, 4 motifs. 

The idea is that the inclusion of more aromatic ring systems within biaryl 

polyamides is supposed to provide more π electrons to achieve improved π-π 

interaction between the G-quartet and polycyclic ring system of the ligand 

molecules (Figure 2.6). 

2.2 Rational Approaches and Strategies for Designing Different 

Libraries 

As many as 10 libraries of benzofused polyamides were designed and 

synthesized throughout the project period. FRET-based DNA melting assays 

and Molecular Modelling and Molecular Dynamics (MD) Studies on the 

molecules of a previous synthesized library provided the guidelines for 
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designing the structural motifs of the next libraries. These rational strategies 

helped to achieve better G-quadruplex interacting molecules. 

2.2.1 Design and Rationale of Library-1A Molecules 
 

At the beginning of this project, a set of benzofused polyamides (8 in total) were 

synthesized by adding three consecutive 5-nitro-benzofused-2-carboxylic acid 

units through the HOBt-DIC mediated amide coupling reaction with a tertiary 

amino tail via the N1,N1-dimethylpropane-1,3-diamine building block. This 

followed the 5′-2′ substitution reaction. A structural motif of these molecules is 

shown below (Figure 2.7). 

 

 

Figure 2.7: The basic chemical scaffold for 5’-2’ substituted benzofused 

polyamides; X= O or N or S. 

 

2.2.2 Design and Rationale of Library-1B Molecules 

 

As the molecules belonging to library-1A did not show any significant 

interaction towards any of the G-quadruplex sequences used in the FRET-

based analysis, a similar set of molecules (10 in total) were synthesized with 

structural modifications through the replacement of the tails and the functional 

groups at the third benzofused ring; these formed library-1B.  

 

 

Figure 2.8: The basic chemical scaffold for 5’-2’ substituted benzofused 

polyamides; X = O or N or S and R represents the tertiary amine tails including 

4-(pyrrolidin-1-yl) butan-1-amine and 2-(piperidin-1-yl) ethan-1-amine. 
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These modifications were done to investigate whether these molecules gave 

any improved interaction towards G-quadruplex DNA types. A structural motif of 

these molecules is shown below (Figure 2.8). 

2.2.3 Design and Rationale of Library-2 Molecules 
 

As the molecules belonging to both library-1A and 1B did not show a 

significant interaction with G-quadruplex DNA types, a set of new molecules (9 

molecules in total) were synthesized with the help of molecular modelling 

studies (Figure 2.21, 2.22 in sections 2.5). Here, a 5-nitro-benzofused-3 

carboxylic acid was included as a second building block instead of 5-nitro-

benzofused-2-carboxylic acid so that ligand molecules would have relatively 

more curvature in their structures compared to the library-1 ligand molecules. 

Commercially available 5-nitro-indole-3-carboxylic acid was introduced as the 

second building block through the 5′-3′ substitution instead of 5′-2′ substitution 

as used for synthesizing library-1A and 1-B molecules. The structural motif of 

this library is shown below (Figure 2.9). 

 

Figure 2.9: The basic chemical scaffold for library-2 molecules; X= O or N or 

S. 

2.2.4 Design and Rationale of Library-3A Molecules 
 

As the introduction of curvature within the library-2 molecules made the 

benzofused polyamides more potent towards the G-quadruplexes used, it 

encouraged the development of another library of molecules with enhanced 

curvature within the same scaffold. Therefore, two sets of molecules were 

synthesized by including two consecutive molecules of the 5-nitro-benzofused-

3- carboxylic acid unit in a benzofused polyamide structure in two different 

fashions. A first set of molecules was synthesized by coupling two consecutive 
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5-nitro-indole-3-carboxylic acids followed by termination with four different 

benzofused acids (Figure 2.10 (A)). A second set of molecules was then 

synthesized by starting with a 5-nitro-benzofused-2-carboxylic acid, which was 

then immediately coupled with 5-nitroindole-3-carboxylic acid and terminated 

with four different benzofused-3-carboxylic acids (Figure 2.10 (B)).  

 

Figure 2.10: The basic chemical scaffolds for library-3A molecules. (A) and (B) 

represent each set of molecules within this library. Here X = O, N, S. 

 

2.2.5 Design and Rationale of Library-3B Molecules 
 

This library was aimed at investigating the effect of an electron-withdrawing 

nitro-group at the terminal indole unit. Therefore the library-3A molecules were 

modified by keeping the nitro group of the terminal 5-nitro-indole-3-carboxylic 

acid unit without changing the shape of the molecules. The structural motif of 

library-3B is shown (Figure 2.11). 

 

Figure 2.11: Structural motif of library-3B molecules. Here X = O, S, N. 

As one (4.77) of the compounds (Figure 2.39) in this library showed a 

significantly higher interaction with G-quadruplex sequence types, that 
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benzofused polyamide (4.77) was taken as a lead ligand for further structural 

modifications through a structure-activity relationship (SAR) study. The 

structure-activity relationship (SAR) was done with various possible 

modifications of the shape, tail types and functional groups attached to the 

terminal building block as shown on the structural motif. 

It was found that the electron-withdrawing nitro group plays a positive role in 

enhancing the ligand-G-quadruplex interaction and at the same time it was 

apparently found that the indole is comparatively better than any other type of 

nitro-benzofused-acid building blocks used. The most curved molecule was 

found to be the most interactive towards G-quadruplex types as shown in the 

FRET-based DNA melting assay. 

 

2.2.6 Design and Rationale of Library-4A Molecules 

 

Molecular docking studies of molecules containing three consecutive 5’-3’ 

benzofused moieties (for example, 4.93) (Figure 2.39) suggested that the 

inclusion of a third 5’-3’-substituted benzofused moiety should enhance G-

quadruplex stabilisation to a small degree compared to two 5’-3’-substituted 

benzofused moieties (for example, 4.77) (Figure 2.39). 

A new library of molecules containing four different benzofused polyamides was 

synthesized to investigate the relevance of the electron-withdrawing NO2 group 

to the activity of the most active compound 4.93. The common structural motif 

of library-4A molecules is shown here (Figure 2.12). 

 

Figure 2.12: The basic chemical scaffold for library-4A molecules. Here X = O, 

N, S. 
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2.2.7 Design and Rationale of Library-4B Molecules 
 

Here, the most interactive lead ligand 4.93 was optimised through tertiary amine 

tail modifications. Therefore, a set of molecules was synthesized by structural 

modification of lead compound through the substitution of the N1, N1-

dimethylpropane-1,3-diamine tail with different tails including 3-(piperidin-1-

yl)propan-1-amine, 3-(pyrrolidin-1-yl)propan-1-amine, 3-(4-methylpiperazin-1-

yl)propan-1-amine and 3-morpholinopropan-1-amine tails, respectively. 

 

Figure 2.13: The chemical scaffold for 5′-3′ substituted benzofused polyamides 

for Library-4B. Here, R represents the tertiary amine tails including 3-

(pyrrolidin-1-yl) propan-1-amine, 3-(4-methylpiperazin-1-yl) propan-1-amine and 

3-(piperidin-1-yl) propan-1-amine and 3-morpholinopropan-1-amine. 

2.2.8 Design and Rationale of Library-4C Molecules 

 

 

Here, R1 = CN, Cl, –OCH3, -NH2, etc. and R2=–CH3, functional groups. 

Figure 2.14: The structural motif of Library-4C. 
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Here, the functional groups attached to the terminal benzofused unit of the lead 

compound 4.93 were optimised. Thus a set of molecules was made by 

structural modification of 4.93 through the substitution of nitro-groups with 

different functional groups (Figure 2.14). 

 

2.2.9 Design and Rationale of Library-4D Molecules 
 

Here a set of molecules were synthesized through the replacement of indole 

with indazole rings to investigate the preference between indole and indazole as 

a chemical scaffold for G-quadruplex ligands. The structural motif is given below 

(Figure 2.15). 

 

Figure 2.15: The structural motif of Library-4D molecules. 

 

2.2.10 Design and Rationale of Library-5 Molecules 
 

Two sets of molecules were made by using commercially available 5-nitro-

indole-3-carboxylic acid and 5-nitro-indazole-3-carboxylic acid building blocks 

targeting the shape of lead molecule 4.93 (Figure 2.71). This library was 

designed with an aim to check whether benzofused polyamides of three 

consecutive benzofused units were better interactive ligands over benzofused 

polyamides of two consecutive benzofused units. The structural motif of 

Library-5 is show below (Figure 2.16). 

 

Figure 2.16: The structural motif of Library-5 molecules. 
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Library-1A 
 

2.3 Synthetic Scheme for Library-1A Molecules 

 

A set of 8 molecules (Figure 2.18) were synthesized by 5′-2′ substitution of 

benzofuran and benzothiophene building block types. A nitro-benzofused acid 

was initially coupled with a N1, N1-dimethylpropane-1,3-diamine tail to make an 

amide. Then two consecutive benzofused acids were coupled one after another 

through amide coupling reactions to make benzofused polyamides (Figure 

2.17).  

 

 

Figure 2.17: Synthetic scheme of Library-1A molecules. Here X= O or N or S. 

Initially the acid (1.2 eq.) was dissolved in DMF (5 mL for 100 mg of starting 

material) in a round bottom flask fitted with a magnetic stirrer. Then DIC (1.75 

eq.) and HOBt (2.0 eq.) were added to the acid (1.0 eq.) and this mixture was 

allowed to stir at room temperature for the formation of the ester from the acid. 

The amine (1 eq.) was added to the mixture and the mixture allowed stirring 

until the reaction was complete, as indicated by TLC or LCMS. Finally the 
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reaction mixture was applied to a conditioned SCX-2 cartridge and the resultant 

product was purified by the ‘Catch and Release’ method (described in the 

section ‘Methods and Materials’ of Chapter 3). 

 

 

 

Figure 2.18: Structures of benzofused polyamides of library-1A molecules. 

 

2.3.1 Characterisation of Library-1A Benzofused Polyamides through 

Various Spectroscopic Techniques 
 

The benzofused polyamides of this library were purified and fully characterized 

by different spectroscopic techniques including mass spectrometry, both 1H and 

13C NMR, and IR techniques (described in the ‘Experimental’ section of 

Chapter 4). Compounds were primarily identified by LCMS and confirmed using 

high resolution mass spectroscopy (HRMS) (Table 2.1). Finally the 

characterised compounds were evaluated by a FRET-based DNA melting 

assay. 

 



107 
 

Table 2.1: HRMS data for library-1A molecules 

Number Compound code Theoretical mass 
Observed mass 

[M+H]+ 

1 4.5 580.1780 581.1851 

2 4.18 580.1780 581.1851 

3 4.11 596.1552 597.1625 

4 4.12 612.1324 613.1395 

5 4.15 596.1552 597.1625 

6 4.6 564.2121 565.2187 

7 4.24 575.2645 576.2714 

8 4.25 593.2097 594.2169 

 

2.3.2 Purity Analysis of Benzofused Polyamides Synthesized 
 

The purity of the benzofused polyamides of this library was checked by two 

different HPLC methods with two different retention times. Both methods were 

carried out on a Waters Alliance 1695 HPLC Pump with water and acetonitrile 

comprising the mobile phases. The Waters 996 PDA start wavelength was 210 

nm for the 10 minute method (Method A), with a start wavelength of 220 nm and 

end wavelength of 500 nm for the 5 minute method (Method B) (Table 2.2). 

 

Table 2.2: Purity data for library-1A observed by LCMS 

Number Compound code 
Purity 

Method A (10 min)% Method B (5 min)% 

1 4.5 100 100 

2 4.18 100 100 

3 4.11 100 100 

4 4.12 100 100 

5 4.15 100 100 

6 4.6 91 89.09 

7 4.24 100 100 

8 4.25 100 100 
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Figure 2.19: Example of an adapted LCMS profile of Library-1A compound 

4.15 
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Table 2.3: G-quadruplex and duplex DNA stabilization by ligands of library-1A in 

FRET melting experiments at concentrations of 5, 2 and 1 µM respectively (the 

data are means of three technical repeats) 

Compounds Quadruplex types 
∆Tm(°C) ±(s/d) 

5 µM 2 µM 1 µM 

 
4.5 

F21T 0.2±0.21 0.2±0.14 0.0±0.26 

C-kit-1 1.6±0.15 0.9±0.15 1.1±0.20 

C-kit-2 1.5±0.05 1.1±0.49 1.2±0.43 

BCL-2 1.6±0.60 1.5±0.15 1.3±0.15 

Duplex DNA 0.0±0.15 0.0±0.20 0.0±0.17 

 
 

4.18 

F21T 7.0±0.07 2.0±0.36 0.8±0.05 

C-kit-1 3.8±0.26 1.8±0.26 1.6±0.45 

C-kit-2 9.7±0.25 3.8±0.11 2.4±0.26 

BCL-2 5.7±0.1 0.9±0.30 0.6±0.35 

Duplex DNA 1.2±0.11 0.0±0.06 0.0±0.11 

 
 

4.11 

F21T 6.3±0.11 4.7±0.15 2.8±0.23 

C-kit-1 3.5±0.11 1.3±0.20 0.9±0.37 

C-kit-2 8.4±0.30 3.8±0.25 2.5±0.35 

BCL-2 0.8±0.17 0.9±0.16 0.7±0.32 

Duplex DNA 0.0±0.05 0.0±0.25 0.0±0.24 

 
 

4.12 

F21T 1.8±0.05 0.6±0.1 0.7±0.2 

C-kit-1 1.3±0.45 0.7±0.49 0.5±0.39 

C-kit-2 4.1±0.17 1.9±0.45 1.4±0.30 

BCL-2 1.5±0.25 1.2±0.20 1.2±0.25 

Duplex DNA 0.0±0.12 0.0±0.15 0.0±0.07 
 

 

Table 2.4: DNA Stabilization by ligands of library-1A in FRET at concentrations of 

5, 2 and 1 µM respectively (the data are means of three technical repeats) 

Compounds Quadruplex  ∆Tm(°C) ±(s/d) 

  5 µM 2 µM 1 µM 

4.15 

F21T 20.1±0.28 3.6±0.20 2.2±0.25 

C-kit-1 3.1±0.41 1.4±0.30 0.2±0.49 

C-kit-2 9.2±0.25 3.8±0.05 2.3±0.30 

BCL-2 17.5±0.26 1.8±0.37 0.2± 0.32 

Duplex DNA 0.0±0.11 0.0±0.06 0.0±0.07 

4.6 

F21T 20±0.32 4.0±0.12 2.0±0.35 

C-kit-1 1.5±0.25 1.3±0.20 1.1±0.17 

C-kit-2 5.0±0.30 2.5±0.11 1.8±0.25 

BCL-2 5.7±0.60 2.2±0.28 1.2±0.057 

Duplex DNA 0.0±0.10 0.0±0.21 0.0±0.16 

4.24 

F21T 0.8±0.20 0.4±0.31 0.3±0.12 

C-kit-1 1.3±0.40 1.0±0.65 0.7±`0.35 

C-kit-2 3.8±0.45 2.0±0.30 1.3±0.25 

BCL-2 1.2±0.05 0.5±0.25 0.3±0.17 

Duplex DNA 0.0±0.12 0.0±0.07 0.0±0.21 

4.25 

F21T 2.8±0.34 2.5±0.27 1.3±0.25 

C-kit-1 3.7±0.35 1.5±0.36 1.1±0.36 

C-kit-2 9.4±0.51 3.9±0.28 2.1±0.30 

BCL-2 13±0.32 2.7±0.26 1.5±0.25 

Duplex DNA 0.0±12 0.0±0.05 0.0±0.05 
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FRET data analysis (Table 2.3 and 2.4) showed that only 4.11, 4.15 and 4.6 

had moderate but significant interaction with telomeric F21T sequences and C-

kit-2 G-quadruplex sequences. These ligands provided 2.8°C, 2.2°C and 2.0°C 

stabilisation against telomeric F21T sequences and 2.5°C, 2.3°C and 1.8°C 

against C-kit-2 G-quadruplex sequences at 1 µM concentrations but they did not 

show notable interaction with C-kit-1 or Bcl-2 G-quadruplex sequences. 

In contrast, 4.5, 4.18, 4.12, 4.24 and 4.25 showed insignificant interaction 

against all the G-quadruplex sequences used except 4.18 and 4.25 against C-

kit-2 sequence as they provide stabilisations of 2.4°C and 2.1°C respectively.  

It was observed that some of the molecules, including 4.15 and 4.6, show 

significant interactions at higher concentrations (i.e. 5 µM) but suddenly lose 

their stabilisation capacities at lower concentrations (1, 2 µM). These molecules 

are assumed to form dimers at higher concentrations (5 µM) and that dimer may 

interact with the terminal quartet of G-quadruplex architectures. As soon as 

molecular density goes down at subsequent lower concentrations (1, 2 µM), the 

melting temperatures fall sharply (for example, ∆Tm=3.6°C and 2.2°C for 

4.15°C against F21T respectively). This means molecular density is not high 

enough for dimer formation at low concentrations. 

However, all of these ligands are specific toward G-quadruplex sequences as 

none of these molecules have shown any interaction with duplex DNA. 

2.3.3: Key Observations on Library-1A and Library-1B Molecules 
 

A number of conclusions can be drawn from the FRET-based DNA thermal 

denaturation assays conducted on the library-1A molecules. 

 These compounds showed insignificant interaction with the F21T 

(human telomeric G-quadruplex), C-kit-1, C-kit-2 and Bcl-2 G-

quadruplexes. 

 The inclusion of either a benzofuran or benzothiophene building block in 

the structure of these molecules does not make any notable difference. 

 Linear molecules, especially 4.15 and 4.6, are assumed to form dimers 

at higher concentrations (5 µM) and these dimers may interact with the 

terminal quartets of G-quadruplex architectures. 
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Library-1B 

2.4 Synthetic Scheme of Library-1B Molecules 

As a whole, the benzofused polyamides of library 1-A were not capable of 

achieving significant interaction with the G-quadruplex DNA types used. At the 

same time, the alteration of building block types at their respective positions 

didn’t result in impressive ∆Tm values. This means the activity of these ligands 

was not depend on either the benzofuran or benzothiophene building block 

types. 

 

Figure 2.20: Synthetic scheme of Library-1B molecules. Here X = O or N or S 

and R represents the tertiary amine tails including 4-(pyrrolidin-1-yl) butan-1-

amine and 2-(piperidin-1-yl) ethan-1-amine. 

Therefore, further structural modifications using different tail types were done to 

design library-1B (Figure 2.20) in order to investigate whether different tail 

types may have any additional effect on the ligand-quadruplex DNA interaction. 

A nitro-benzofused acid was initially coupled with tail types 4-(pyrrolidin-1-yl) 

butan-1-amine and 2-(piperidin-1-yl) ethan-1-amine, respectively. Then two 
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consecutive benzofused acids were coupled further through amide coupling 

reactions to get benzofused polyamides. This library was comprised of 9 

molecules in total (Figure 2.19). 

Initially, the acid (1.2 eq.) was dissolved in DMF (5 mL for 100 mg of starting 

material) in a round bottom flask fitted with a magnetic stirrer. Then DIC (1.75 

eq.) and HOBt (2.0 eq.) were added to the acid (1.0 eq.) and this mixture was 

allowed to stir at room temperature for the formation of the ester from the acid. 

The amine (1 eq.) was added to the mixture and the mixture allowed to stir until 

the reaction was complete, as indicated by TLC or LCMS. Finally the reaction 

mixture was applied to a conditioned SCX-2 cartridge and the resultant product 

was purified by the ‘Catch and Release’ method (described in the section 

‘Method and Materials’ of Chapter 3). 

 

Figure 2.21: Structures of the library-1B molecules. 

2.4.1 Characterisation of Benzofused Polyamides through Various 

Spectroscopic Techniques 

The benzofused polyamides of library-1B were purified and fully characterized 

by different spectroscopic techniques including mass spectrometry, both 1H and 

13C NMR, and IR techniques (described in the Experimental section of Chapter 
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4). Compounds were primarily identified by LCMS and confirmed using high 

resolution mass spectroscopy (HRMS) (Table 2.5 and 2.6). Finally these well 

characterised compounds were evaluated by FRET based DNA melting assay. 

Table 2.5: HRMS data for library-1B molecules 

Number Compound code Theoretical mass 
Observed mass 

[M+H]+ 

1 4.37 620.2093 621.2155 

2 4.40 636.1865 637.1934 

3 4.36 604.2322 605.2401 

4 4.31 606.1937 607.2010 

5 4.30 590.2165 591.2244 

6 4.42 618.2478 619.2544 

7 4.43 638.1932 639.2006 

8 4.45 633.2410 634.2473 

9 4.41 617.2638 618.2708 

10 4.44 604.2434 605.2511 
 

2.4.2 Purity Analysis of Benzofused Polyamides Synthesized 

The purity of the benzofused polyamides of this library was checked by two 

different HPLC methods with two different retention times. Both methods were 

carried out on a Waters Alliance 1695 HPLC Pump with water and acetonitrile 

comprising the mobile phases. The Waters 996 PDA start wavelength was 210 

nm for the 10 minute method (Method A), with a start wavelength of 220 nm and 

end wavelength of 500 nm for the 5 minute method (Method B) (Tables 2.5 and 

2.6). 

Table 2.6: Purity data for library-1B observed by LCMS 

Number Compound 
code 

Purity 

Method A(10 min)% Method B(5 min)% 

1 4.37 91 89.09 

2 4.40 100 100 

3 4.36 100 100 

4 4.31 94 100 

5 4.30 100 100 

6 4.42 100 100 

7 4.43 100 100 

8 4.45 100 100 

9 4.41 100 94.37 

10 4.44 100 100 
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Figure 2.22: Example of an adapted LCMS profile of Library-1B compound 

4.43 
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Table 2.7: G-quadruplex and duplex DNA stabilization by ligands of library-1B 

in FRET melting experiments at concentrations of 5, 2 and 1 µM respectively 

(the data are means of three technical repeats) 

Compounds Quadruplex types 
∆Tm(°C) ±(s/d) 

5 µM 2 µM 1 µM 

4.37 

F21T 18.1±0.21 1.8±0.31 1.1±0.23 

C-kit-1 2.4±0.15 1.5±0.35 1.2±0.23 

C-kit-2 4.7±0.20 2.8±0.11 1.9±0.40 

BCL-2 5.1±0.36 2.5±0.20 2.1±0.20 

Duplex DNA 0.0±0.20 0.0±0.11 0.0±0.07 

4.40 

F21T 4.1±0.3 2.5±0.13 1.9±0.7 

C-kit-1 1.8±0.26 0.6±0.07 0.5±0.21 

C-kit-2 5.4±0.20 2.8±0.26 2.1±0.17 

BCL-2 2.8±0.40 1.3±0.25 1.4±0.45 

Duplex DNA 0.0±0.07 0.0±0.2 0.0±0.04 

4.36 

F21T 9.3±0.23 2.8±0.13 1.8±0.16 

C-kit-1 3.4±0.15 2.2±0.15 1.5±0.3 

C-kit-2 5.7±0.1 2.8±0.11 2.2±0.15 

BCL-2 4.7±0.34 2.9±0.11 2.7±0.41 

Duplex DNA 0.0±0.06 0.0±0.21 0.0±0.25 

4.31 

F21T 0.5±0.32 0.7±0.12 0.6±0.24 

C-kit-1 0.8±0.15 0.9±0.20 0.8±0.32 

C-kit-2 2.0±0.47 1.1±0.17 0.8±0.05 

BCL-2 1.9±0.20 1.5±0.30 1.5±0.05 

Duplex DNA 0.0±0.16 0.0±0.21 0.0±0.2 
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Table 2.8: G-quadruplex and duplex DNA stabilization by ligands in FRET 

melting experiments at concentrations of 5, 2 and 1 µM respectively               

(the data are means of three technical repeats) 

Compounds 
Quadruplex 

types 

∆Tm(°C) ±(s/d) 

5 µM 2 µM 1 µM 

4.30 

F21T 1.2±0.20 0.5±0.27 0.3±0.31 

C-kit-1 0.9±0.20 1.0±0.15 0.4±0.10 

C-kit-2 2.1±0.20 1.2±0.36 0.9±0.17 

BCL-2 1.7±0.20  0.5±0.30 0.6±0.15 

Duplex DNA 0.0±0.15 0.0±0.34 0.0±0.06 

4.42 

F21T 4.6±0.20 0.9±0.05 0.4±0.05 

C-kit-1 2.9±0.10 1.1±0.32 0.3±0.26 

C-kit-2 6.1±0.11 2.0±0.30 0.9±0.45 

BCL-2 3.9±0.10 1.3±0.14 0.3±0.14 

Duplex DNA 0.0±0.06 0.0±0.20 0.0±0.21 

4.43 
 

F21T 5.1±0.11 2.3±0.41 1.0±0.12 

C-kit-1 1.1±0.20 0.6±0.10 0.7±0.20 

C-kit-2 4.3±0.35 1.9±0.20 1.4±0.20 

BCL-2 2.9±0.23 1.7±0.32 1.4±0.05 

Duplex DNA 0.0±0.31 0.0±0.24 0.0±0.07 

4.45 

F21T 4.1±0.21 1.9±0.23 0.6±0.11 

C-kit-1 3.9±0.25 1.2±0.15 1.3±0.15 

C-kit-2 7.3±0.40 3.7±0.15 2.7±0.21 

BCL-2 6.8±0.14 1.6±0.10 1.5±0.26 

Duplex DNA 0.0±0.06 0.0±0.12 0.0±0.16 

4.41 

F21T 3.1±0.11 2.5±0.32 0.3±0.21 

C-kit-1 2.5±0.34 1.3±0.15 1.0±0.20 

C-kit-2 3.8±0.35 1.8±0.30 1.5±0.20 

BCL-2 3.5±0.32 1.9±0.45 1.6±0.47 

Duplex DNA 0.0±0.32 0.0±0.25 0.0±0.10 

4.44 

F21T 12.1±0.31 3.7±0.18 2.3±0.12 

C-kit-1 3.7±0.32 1.8±0.14 1.5±0.15 

C-kit-2 6.1±0.30 2.9±0.32 2.2±0.40 

BCL-2 7.8±0.20 3.7±0.31 2.9±0.21 

Duplex DNA 0.0±0.31 0.0±0.13 0.0±0.12 
 

Molecules (except 4.44) mentioned in this section (Table 2.7 and 2.8) did not 

show any significant interaction with G-quadruplex sequences. Thus tail 

replacement does not make a notable improvement of the interacting capacity 

of ligand molecules. However, although the ∆Tm values were not significant, it 

is notable that the ligands (4.37, 4.40 and 4.36) possessing 4-(pyrrolidin-1-yl) 

butan-1-amine tail showed better interacting ability than those molecules (4.31 

and 4.30) possessing 2-(piperidin-1-yl) ethan-1-amine tails. 4.37 provided 

1.1°C, 1.2°C, 1.9°C and 2.1°C  stabilisation; 4.40 provided stabilisations of 
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1.9°C, 0.5°C, 2.1°C and 1°C; 4.36 provided 1.8°C, 1.5°C, 2.2°C and 2.7°C 

stabilisation; 4.31 provided 0.6°C, 0.8°C, 0.8°C and 1.5°C stabilisation; 4.30 

provided 0.3°C, 0.4°C, 0.9°C and 0.6°C stabilisation at 1 µM concentration 

against F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex sequences respectively. 

This stabilisation indicates the superiority of the 4-(pyrrolidin-1-yl) butan-1-

amine tail over the 2-(piperidin-1-yl) ethan-1-amine tails. On other hand, 4.37 

and 4.40 are nearly identical in their interactions toward G-quadruplexes. This 

further indicates that the activity of these molecules does not depend on either 

the benzothiophene or benzofuran building blocks types. 

Two similar molecules attached with the preferred 4-(pyrrolidin-1-yl) butan-1-

amine tail were made to get an idea of whether any kind of substitution in these 

structures may have an extra effect. 4.42 and 4.43 were synthesized in the form 

of 4.36 with the exception of a substitution at the terminal building block. 4.42 

possessed the substitution of an electron-pushing methyl (-CH3) group and 4.43 

possessed an electron-pulling chloride (Cl-) group. 

Melting temperatures of these two molecules were not more impressive than 

those of 4.36. This means these substitutions may not have a positive effect on 

ligand activity. But it is assumed that the electron-pulling group (chloride group) 

may have an enhancing effect on G-quadruplex interactivity of the benzofused-

polyamide structure; 4.43 showed stabilisation of 1.0°C, 0.7°C, 1.4°C and 1.4°C 

at 1 µM concentration against F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex 

sequences respectively, which is insignificantly better than 4.42, which itself 

provided ∆Tm values of a 0.4°C, 0.3°C, 0.9°C and 0.3°C at 1 µM concentration 

against F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex sequences. This 

difference of melting temperatures between 4.43 and 4.42 provides a 

preliminary idea that electron-pushing groups like methyl (CH3-) group may 

reduce the interacting capacity of a ligand, whereas electron-pulling group like 

chloride (Cl-) enhance the interacting capacity of ligands towards G-quadruplex 

DNA. These ideas helped to guide further ligand synthesis. 4.44 is slightly more 

interactive than any other molecules of this library, as it provided 2.3°C,1.5°C, 

2.2°C C and 2.9°C stabilisation at 1 µM concentration against F21T, C-kit-1, C-

kit-2 and Bcl-2 G-quadruplex sequences, which is insignificantly better than any 

other members of this library. Therefore, it was assumed that the inclusion of 
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nitrogen-contacting building blocks (i.e. Imidazole) may allow the formation of 

hydrogen bonds with the guanine residues of quadruplex DNA and thereby 

enhance ligand interacting capacity with G-quadruplex structures to a certain 

extent. 

It was observed that some of the molecules, including 4.15, 4.6 and 4.37, were 

found to show significant interaction at higher concentrations (5 µM) but 

suddenly lose their stabilisation capacities at lower concentrations. These 

unexpected higher melting temperatures (for example, 18.1°C for 4.37) were 

assumed to be contributed by the cooperative binding of these molecules at 

high concentrations (5 µM). A dimer of 4.37 may stack together over the 

terminal quartet of a G-quadruplex. As soon as molecular density goes down at 

lower concentrations (1, 2 µM), the melting temperatures fall sharply 

(∆Tm=1.8°C and 1.1°C, respectively). This means the molecular density is not 

great enough to make a dimer at low concentrations of 4.37. 

 

2.4.3: Key Observations on Library-1A and Library-1B Molecules 
 

 These compounds showed insignificant interaction with the F21T, C-kit-

1, C-kit-2 and Bcl-2 G-quadruplexes. 

 The inclusion of either a benzofuran or benzothiophene building block in 

the structure of these molecules does not make any notable difference. 

 N1, N1-dimethyl propane-1, 3-diamine and 4-(pyrrolidin-1-yl) butan-1-

amine are comparatively better than 2-(piperidin-1-yl) ethan-1-amine as 

tails in benzofused-polyamides. 

 Inclusion of N-containing benzofused rings may increase the stabilising 

capacity of benzofused polyamides. 

 Electron-pulling groups like chloride group (Cl-) attached to a 

benzofused ring is better than electron-pushing groups like methyl 

group (-CH3) in conferring activity upon the ligand molecules. 
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2.5 Molecular Modelling of Benzofused Polyamides of Library-

1A and 1-B as G-quadruplex Stabilising Agents 

 

Molecular modelling studies were undertaken in an effort to rationalise the poor 

FRET binding results obtained for the Library 1 molecules.  

Molecular docking experiments were undertaken on the human telomeric 

quadruplex F21T (PDB ID 3CDM). It was immediately evident from visual 

analysis that 5’-2’ substituted benzofused moieties do not have the appropriate 

curvature to stack on the quadruplex interface. 

 

Figure 2.23: Molecular model of the G-quadruplex-interactive biaryl polyamide 

(left panel) showing the curvature of the molecule, which assists the 

stabilisation of DNA. Library-1 molecules (e.g., 4.5, black sticks, right panel) do 

not possess the same curvature, and therefore cannot stabilise quadruplex 

DNA.  

 

 

 

 

*Molecular Modelling Studies were carried out by Dr. Paul Jackson and Mr. Meir 

Touitou. 
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Traditional quadruplex inhibitors such as quarfloxacin and the small molecule 

biaryl polyamides are composed of fused rings and possess a specific curvature 

which enables them to stack on the quadruplex interface (Figure 2.21). 

Library-1 molecules, on the other hand, are linear in structure. For example, 

molecular models of 4.5 (containing benzothiophene and benzofuran building 

blocks) show that the molecule does not stack effectively on the quadruplex 

interface, thereby producing few non-covalent interactions (Figure 2.21). 

FRET binding results also suggest that the introduction of nitrogen-containing 

benzofused groups (i.e., indole and benzimidazole) does not enhance binding 

to the quadruplex interface. Although indole, and particularly benzimidazole, 

contain nitrogen groups capable of forming H-bonding interactions, and 

therefore interacting with amine groups of guanines in the quadruplex, FRET 

binding results suggest that the presence of these moieties does not alter the 

binding capability of the molecule. This is reflected in docking results where 

nitrogen-containing molecules possess similar binding energies to sulphur and 

oxygen-containing compounds. For example 4.15 containing both 

benzothiophene and benzofuran, and 4.6 containing benzimidazole and 

benzofuran groups both have similar GBSA binding energies (i.e., -

66.29kcal/mol and -69.25kcal/mol respectively), thereby suggesting that the 

introduction of nitrogen does not affect binding to the DNA. This is reflected in 

visual analysis of the docked models where the nitrogens of the indole and 

benzimidazole moieties do not form H-bonds with the quadruplex structure. H-

bonds are absent, presumably, due to the lone pairs of the nitrogens not being 

in the appropriate orientation to interact with quadruplex DNA. Furthermore, the 

replacement of the amidic tail of the molecule with a variety of amine tails has 

little effect on the binding of the series of molecules to DNA, and this is reflected 

in GBSA binding calculations. For example, binding calculations are similar to 

other members of Library-1, where GBSA scores are in the region of -

60kcal/mol (e.g., in the case of 4.30 and 4.43, binding energies are -

59.83kcal/mol and -68.54kcal/mol respectively).    

It is evident from modelling analysis that shape-based factors are critical in 

affecting interactivity of benzofused polyamides with G-quadruplex DNA. When 

compared with the highly interactive biaryl polyamide produced by Rahman et al 

(Figure 2.21, left panel), there is a distinct difference in curvature of both sets of 
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molecules. In order to enhance quadruplex binding, it is recommended that the 

5’-2’ substituted central benzofused moiety is replaced with a 5’-3’ substituted 

benzofused moiety. Such a substitution is likely to enhance curvature of the 

molecule and increase binding with the quadruplex structure through efficient 

stacking on the G-tetrad (Figure 2.22). 

 

Figure 2.24: Schematic of Library-1A and 1B molecules (top) and proposed 

modification to generate Library-2 molecules (bottom). 

 

 

 

 

 

 

 

 



122 
 

Library-2 

2.6 Synthetic Scheme for Library-2 Molecules. 

As the molecules belonging to library-1A and library-1B did not show 

significant interaction with G-quadruplex DNA types, a set of new molecules (9 

molecules in total) were synthesized (Figure 2.24) with the help of molecular 

modelling studies (Figure 2.21). Here, a 5-nitro-benzofused-3-carboxylic acid 

was included as a second building block instead of 5-nitro-benzofused-2-

carboxylic acid so that ligand molecules would have relatively more curvature in 

their structures compared to library-1A and 1B ligand molecules. Commercially 

available 5-nitro-indole-3-carboxylic acid was introduced at the middle of the 

benzofused polyamide (Figure 2.23). 

 

Figure 2.25: Synthetic Scheme of Library-2 molecules. Here X = O or N or S. 

5-nitro-benzofused-3-carboxylic acid was used as a second building block, as 

shown as green.  

Initially the acid (1.2 eq.) was dissolved in DMF (5 mL for 100 mg of starting 

material) in a round bottom flask fitted with a magnetic stirrer. Then DIC (1.75 
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eq.) and HOBt (2.0 eq.) were added to the acid (1.0 eq.) and this mixture was 

allowed to stir at room temperature for formation of the ester from the acid. The 

amine (1 eq.) was added to the mixture and the mixture allowed for stirring until 

the reaction was complete, as indicated by TLC or LCMS. Finally the reaction 

mixture was applied to a conditioned SCX-2 cartridge and the resultant product 

was purified by the ‘Catch and Release’ method (described in the section 

‘Method and Materials’ of Chapter 3).  

 

 

Figure 2.26: Structures of the molecules in library-2 
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2.6.1 Characterisation of Benzofused Polyamides through Various 

Spectroscopic Techniques 
 

Molecules of library-2 were purified and fully characterized by different 

spectroscopic techniques including mass spectrometry, both 1H and 13C NMR, 

and IR techniques (described in the Experimental section of Chapter 4). 

Compounds were primarily identified by LCMS and confirmed using high 

resolution mass spectroscopy (HRMS) (Table 2.9). 

Table 2.9: HRMS data for library-2 molecules 

Number Compound code Theoretical mass 
Observed mass 

[M+H]+ 

1 4.48 579.1940 580.2000 

2 4.49 595.1712 596.1771 

3 4.53 592.2257 593.2314 

4 4.54 579.2053 580.2113 

5 4.52 563.2169 564.2230 

6 4.55 579.1940 580.2003 

7 4.57 576.2485 577.2544 

8 4.56 563.2281 564.2340 

9 4.61 562.2329 563.2387 
 

 

2.6.2 Purity Analysis of Benzofused Polyamides Synthesized 
 

The purity of the benzofused polyamides of this library was checked by two 

different HPLC methods with two different retention times. Both methods were 

carried out on a Waters Alliance 1695 HPLC Pump with water and acetonitrile 

comprising the mobile phases. The Waters 996 PDA start wavelength was 210 

nm for the 10 minute method (Method A), with a start wavelength of 220 nm and 

end wavelength of 500 nm for the 5 minute method (Method B) (Table 2.10). 

Table 2.10: Purity data for library-2 molecules as observed by HPLC 

Number Compound code 
Purity 

Method A (10 min)% Method B (5 min)% 

1 4.48 100 100 

2 4.49 100 100 

3 4.53 100 100 

4 4.54 100 100 

5 4.52 100 100 

6 4.55 91 89.09 

7 4.57 100 100 

8 4.56 100 100 

9 4.61 100 100 
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Figure 2.27: Example of an adapted LCMS profile of Library-2 compound 4.52 
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Table 2.11: G-quadruplex and duplex DNA stabilization by ligands in FRET 

melting experiments at concentrations of 5, 2 and 1 µM respectively              

(the data are means of three technical repeats) 

Compounds 
code 

Quadruplex 
types 

∆Tm(°C) ±(s/d) 

5 µM 2 µM 1 µM 

4.48 

F21T 14.3±0.23 6.6±0.20 3.0±0.21 

C-kit-1 19.2±0.15 13.1±0.17 9.6±0.05 

C-kit-2 16.2±0.28 9.2±0.23 6.9±0.05 

BCL-2 13.9±0.20 9.1±0.28 8.4±0.10 

Duplex DNA 0.0±0.15 0.0±0.05 0.0±0.21 

4.49 

F21T 14.6±0.20 7.5±0.14 3.4±0.34 

C-kit-1 13.1±0.25 10.4±0.36 9.9±0.21 

C-kit-2 17.2±0.23 11.7±0.05 11.0±0.20 

BCL-2 12.3±0.15 5.6±0.20 5.3±0.20 

Duplex DNA 0.0±0.23 0.0±0.21 0.0±0.35 

4.53 

F21T 13.8±0.07 8.3±0.23 4.3±0.11 

C-kit-1 14.6±0.17 11.4±0.37 8.2±0.45 

C-kit-2 16.4±0.25 10.3±0.20 9.5±0.15 

BCL-2 13.6±0.45 7.0±0.20 4.6±0.34 

Duplex DNA 0.0±0.10 0.0±0.21 0.0±0.26 

4.54 

F21T 17.0±21 10.4±017 5.5±0.13 

C-kit-1 20.8±0.20 15.1±0.10 12.0±0.40 

C-kit-2 19.6±0.15 12.2±0.30 8.9±0.37 

BCL-2 18.9±0.36 12.0±0.20 9.3±0.23 

Duplex DNA 0.0±0.24 0.0±0.20 0.0±0.25 
 

Here, 4.48 provided 3.0°C, 9.6°C, 6.9°C and 8.4°C stabilisation, 4.49 provided 

3.4°C, 9.9°C, 11.0 °C and 5.3°C stabilisation, 4.53 provided 4.3°C, 8.2°C, 9.5°C 

and 4.6°C stabilisation and 4.54 provided 5.5°C, 12.0°C, 8.9°C and 9.3°C 

stabilisation at 1 µM concentrations against F21T, C-kit-1, C-kit-2 and Bcl-2 G-

quadruplex sequences respectively. 

FRET data analysis showed that, as a whole, the introduction of curvature 

within the library-1A and 1B molecules significantly improved ligand 

interactivity with all G-quadruplex sequences used. 4.54 was found to be the 

most active member of this library, possibly due to the extra nitrogen atom of its 

terminal imidazole ring. This additional electronegative nitrogen may form a 

hydrogen bond with an amine, carbonyl or imine group of the G-quadruplex 

DNA or it may provide an electronic interaction within the ligand molecule which 

may reinforce the π-π stacking interaction. 
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Table 2.12: G-quadruplex and duplex DNA stabilization by ligands in FRET 

melting experiments at concentrations of 5, 2 and 1 µM respectively              

(the data are means of three technical repeats) 

Compound 
code 

Quadruplex 
types 

∆Tm(°C) ±(s/d) 

5 µM 2 µM 1 µM 

4.52 

F21T 6.22±0.41 3.5±0.24 2.4±0.37 

C-kit-1 13.1±0.23 8.5±0.25 7.8±0.15 

C-kit-2 18.0±0.15 10.3±0.40 8.1±0.36 

BCL-2 14.8±0.40 8.3±0.35 5.6±0.36 

Duplex DNA 0.0±0.17 0.0±0.14 0.0±0.22 

4.55 

F21T 12.2±0.11 7.1±0.14 5.0±0.32 

C-kit-1 15.6±0.26 11.1±0.1 10.7±0.10 

C-kit-2 15.8±0.30 9.7±0.30 6.7±0.28 

BCL-2 11.9±0.15 5.7±0.26 3.2±0.26 

Duplex DNA 0.0±0.12 0.0±0.23 0.0±0.31 

4.57 

F21T 10.6±0.10 5.0±0.07 3.9±0.21 

C-kit-1 11.8±0.15 7.8±0.05 3.3±0.26 

C-kit-2 18.2±0.37 8.8±0.25 8.1±0.37 

BCL-2 9.3±0.20 5.7±0.46 3.6±0.23 

Duplex DNA 0.0±0.14 0.0±0.12 0.0±0.17 

4.56 

F21T 17.2±0.23 10.7±0.41 6.6±0.12 

C-kit-1 12.5±0.17 9.8±0.25 8.7±0.15 

C-kit-2 20.6±0.15 14.1±0.15 10.6±0.05 

BCL-2 14.9±0.17 8.3±0.32 6.4±0.37 

Duplex DNA 0.0±0.32 0.0±0.21 0.0±0.27 

4.61 

F21T 18.0±0.20 7.4±0.13 5.2±0.34 

C-kit-1 14.4±0.10 8.8±0.10 7.4±0.32 

C-kit-2 18.1±0.45 11.4±0.20 7.7±0.30 

BCL-2 13.9±0.15 7.6±0.17 4.7±0.30 

Duplex DNA 0.0±0.14 0.0±0.21 0.0±0.15 
 

Here, introduction of curvature improved the interacting capacity of ligand 

molecules in an apparently similar pattern to the first set (Table 2.11). Although 

these molecules were composed differently, as they start with a 

benzothiophene and end with the same benzothiophene building block instead 

of a benzofuran as in the previous set, they were nearly identical in their 

stabilisation capacities. This further indicated that the effect of these two 

different benzofused ring types (benzothiophene and benzofuran) were very 

similar. In more detail, it was found that molecules of this type interacted 

equivalently with F21T (human telomeric quadruplex) and Bcl-2 G-

quadruplexes. They were more active toward C-kit-1 and relatively better 



128 
 

toward C-kit-2 G-quadruplexes. 4.56 is likely to be the most interactive library 

member, again possibly due to the imidazole ring as previously discussed. 

It is interesting to note that although 4.61 was equivalent to 4.52, it provided 

relatively higher melting temperatures of 5.2°C, 7.4°C, 7.7°C and 4.7°C 

stabilisation at 1 µM concentration against F21T, C-kit-1, C-kit-2 and Bcl-2 G-

quadruplex sequences respectively. This indicated the preference of indole 

building blocks over either benzofuran or benzothiophene building blocks with 

regard to G-quadruplex interacting capacities. 

Two equivalent molecules from each of the libraries (for example, 4.15 and 4.18 

of library-1 can be compared directly with 4.49 and 4.52 of library-2) were 

taken and their FRET data subsequently analysed to evaluate the introduction 

of curvature. 

 

Figure 2.28: Structures of 4.15 and 4.49 from library-1 and library-2 

respectively. 

 

Table 2.13: Comparative FRET data analysis between 4.15 and 4.49            

(the data are means of three technical repeats) 

Quadruplex 
types 

∆Tm(°C)±(s/d) 

4.15 4.49 4.15 4.49 4.15 4.49 

5 µM 5 µM 2 µM 2 µM 1 µM 1 µM 

F21T 20.1±0.28 14.6±0.20 3.6±0.2 7.5±0.14 2.2±0.25 3.4±0.34 

C-kit-1 3.1±0.41 13.1±0.25 1.4±0.30 10.4±0.36 0.2±0.49 9.9±0.21 

C-kit-2 9.2±0.25 17.2±0.23 3.8±0.05 11.7±0.05 2.3±0.30 11.0±0.20 

BCL-2 17.5±0.26 12.3±0.15 1.8±0.37 5.6±0.20 0.2± 0.32 5.3±0.20 

Duplex DNA 0.0±0.11 0.0±0.23 0.0±0.06 0.0±0.21 0.0±0.07 0.0±0.35 

 

Here, 4.49 provided 3.4°C, 9.9°C, 11.0°C and 5.3°C stabilisation at 1 µM 

concentration against F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex sequences, 
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respectively. In contrast, 4.15 provided 2.2°C, 0.2°C, 2.3°C and 0.2°C 

stabilisation at 1 µM concentration against F21T, C-kit-1, C-kit-2 and Bcl-2 G-

quadruplex sequences, respectively. This difference in ∆Tm values implicates 

the enhanced curvature in the improved interactivity of the ligands with the G-

quadruplex sequences. Both of these molecules showed a similar degree of G-

quadruplex stabilisation from higher to lower concentrations for all of the G-

quadruplex sequences used. However, 4.15 showed a higher degree of 

stabilisation (∆Tm=20.1°C) at 5 µM for human telomeric G-quadruplex. This 

was higher even than 4.49 (∆Tm=14.6°C). These unexpected higher melting 

temperatures were assumed to be contributed by cooperative binding of 4.15 at 

high concentration. A dimer of 4.15 may stack together over the terminal quartet 

of G-quadruplexes. As soon as molecular density decreases at subsequent 

lower concentrations (1, 2 µM), the melting temperatures fall sharply (∆Tm=3.6 

°C and 2.2 °C, respectively). This means the molecular density is not sufficient 

to make a dimer at low concentrations of 4.15. 

 

Figure 2.29: Structures of 4.18 and 4.52 

 

Table 2.14: Comparative FRET data analysis between 4.18 and 4.52           

(the data are means of three technical repeats) 

Quadruplex 
types 

∆Tm(°C)±(s/d) 

4.18 4.52 4.18 4.52 4.18 4.52 

5 µM 5 µM 2 µM 2 µM 1 µM 1 µM 

F21T 7.0±0.07 6.22±0.41 2.0±0.36 3.5±0.24 0.8±0.05 2.4±0.37 

C-kit-1 3.8±0.26 13.1±0.23 1.8±0.26 8.5±0.25 1.6±0.45 7.8±0.15 

C-kit-2 9.7±0.25 18.0±0.15 3.8±0.11 10.3±0.40 2.4±0.26 8.1±0.36 

BCL-2 5.7±0.1 14.8±0.40 0.9±0.30 8.3±0.35 0.6±0.35 5.6±0.36 

Duplex DNA 1.2±0.11 0.0±0.17 0.0±0.06 0.0±0.14 0.0±0.11 0.0±0.22 
 

Here, 4.18 and 4.52 followed the same pattern of stabilising capacities as for 

4.15 and 4.49. 4.52 gave 2.4°C, 7.8°C, 8.1°C and 5.6°C stabilisation at 1 µM 
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concentration against F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex sequences, 

respectively. In contrast, 4.18 provided 0.8°C, 1.6°C, 2.4°C and 0.6°C 

stabilisation at 1 µM concentration against F21T, C-kit-1, C-kit-2 and Bcl-2 G-

quadruplex sequences, respectively. Therefore, it was further evident that the 

introduction of curvature made the aryl-polyamides more potent towards G-

quadruplexes used. However, 4.49 and 4.52 were more active towards C-kit-2 

compared to the other sequences. The pattern of activation against F21T and 

BCL-2 quadruplex sequences was nearly equivalent. 

2.6.3 Key Observations Based on the Overall FRET Data Analysis of 

Library-2 Molecules 

 

 Introduction of curvature in the benzofused polyamide structural motif 

through the 5′-3′ substitution enhanced the stabilising capacity of the 

benzofused polyamides toward G-quadruplex DNA. 
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2.7 Molecular Modelling of Library-2 Molecules 

It is evident from biophysical studies that the introduction of a 5’-3’ substituted 

moiety instead of a 5’-2’-substituted moiety has a considerable effect on the 

binding of triaryl benzofused molecules to quadruplex DNA. For example, in the 

case of 4.18 and 4.52 (Figure: 2.24), stabilisation is enhanced by 6-7 °C in the 

case of c-kit-1 and c-kit2, and an increase in 2-3°C in other quadruplexes such 

as F21T.  

 

Figure 2.30: Molecular model of 4.18 (left panel) and 4.52 (right panel) bound 

to the telomeric F21T G-quadruplex illustrating the difference in accommodation 

of a Library 1 molecule (4.18) and Library 2 molecule (4.52). In the case of 

4.52 (black sticks), three benzofused molecules are capable of orienting directly 

over guanine bases (blue nucleotide objects), thereby enhancing stabilisation. 

In the case of 4.18, only two benzofused moieties are capable of inducing G-

quadruplex stabilisation. 

Molecular modelling studies suggest that this increase in binding affinity occurs 

due to increased stacking on the quadruplex interface. This is particularly 

evident in docking studies of the human telomeric quadruplex (PDB ID 3CDM), 

where 4.52 stacks effectively on the quadruplex interfaces and enhances 

interaction through pi-pi interactions, whereby 4.18 does not (Figure 2.27). This 

is supported by GBSA calculations which suggest that 4.18 has an affinity of -

67.11kcal/mol, whereas 4.52 has a considerably enhanced binding affinity of -

75.35kcal/mol. Interestingly, a significant selective enhancement of stabilisation 

of both c-kit-1 and c-kit2 was observed over other quadruplexes. Although 
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crystal or NMR structures of the c-kit-1 and c-kit2 sequences used in the 

biophysical study were not available, and therefore relevant docking studies 

could not be undertaken, it is likely that differences in the topologies of c-kit-1 

and c-kit2 allowed greater accommodation of Library-2 molecules over 

Library-1. 

Preliminary docking studies also suggested that the introduction of further 5’-3’-

substituted benzofused moieties to the polyamide core instead of 5’-2’-

benzofused moieties should enhance binding further (Fig. 2.28), and this was 

explored in Library 3A.   

 

Figure 2.31: Schematic of Library-2 molecules (top) and proposed modification 

to generate Library-3 molecules (bottom). 
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Library-3A 
 

2.8 Synthetic Scheme for First Set of Library-3A Molecules 

As evaluated by the DNA modelling studies (Figure 2.27 and Figure 2.28), it 

was suggested to introduce further curvature within the library-2 ligand 

molecules. Thus a set of new molecules (7 in total) were synthesized (Figure 

2.31) by replacing the 1st building block of the library-2 molecules (5-nitro 

benzofused-2-carboxylic acid) with 5-nitro benzofused-3-carboxylic acid). Thus 

the final benzofused polyamides were hoped to have more curvature compared 

to those of library-2. Two sets of molecules were synthesized by including two 

molecules of 5-nitro-benzofused-3- carboxylic acids in benzofused polyamide 

structures in two different fashions. The first set of molecules was made by the 

coupling of two consecutive 5-nitro-indole-3-carboxylic acids followed by 

termination with four different benzofused acids (Figure 2.29). The second set 

of molecules was made by starting with a 5-nitro-benzofuran-2-carboxylic acid 

which was immediately coupled with 5-nitroindole-3-carboxylic acid and 

terminated with different benzofused-3 carboxylic acids (Figure 2.30). 

 

Figure 2.32: The synthetic reaction scheme for the first set of library-3A 

molecules. Here, X = O or N or S. 
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Initially, the acid (1.2 eq.) was dissolved in DMF (5 mL for 100 mg of starting 

material) in a round bottom flask fitted with a magnetic stirrer. Then DIC (1.75 

eq.) and HOBt (2.0 eq.) were added to the acid (1.0 eq.) and this mixture was 

allowed to stir at room temperature for formation of the ester from the acid. The 

amine (1 eq.) was added to the mixture and the mixture allowed stirring until the 

reaction was complete, as indicated by TLC or LCMS. Finally the reaction 

mixture was applied to a conditioned SCX-2 cartridge and the resultant product 

was purified by the ‘Catch and Release’ method (described in the section 

‘Methods and Materials’ of Chapter 3). 

 

2.8.1 Synthetic Scheme for Second Set of Library-3A Molecules 
 

 

Figure 2.33: The synthetic reaction scheme for the second set of library-3A 

molecules. Here X = O or N or S. 

Initially the acid (1.2 eq.) was dissolved in DMF (5 mL for 100 mg of starting 

material) in a round bottom flask fitted with a magnetic stirrer. Then DIC (1.75 

eq.) and HOBt (2.0 eq.) were added to the acid (1.0 eq.) and this mixture was 

allowed to stir at room temperature for formation of the ester from the acid. The 

amine (1 eq.) was added to the mixture and the mixture allowed stirring until the 

reaction was complete, as indicated by TLC or LCMS. Finally the reaction 
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mixture was applied to a conditioned SCX-2 cartridge and the resultant product 

was purified by the ‘Catch and Release’ method (described in the section 

‘Methods and Materials’ of Chapter 3). 

 

 

Figure 2.34: Structures of the library-3A molecules. 

 

2.8.2 Characterisation of Library-3A Molecules through Various 

Spectroscopic Techniques 

 

The benzofused polyamides of library-3A were purified and fully characterized 

by different spectroscopic techniques including mass spectrometry, both 1H and 

13C NMR, and IR techniques (described in the ‘Experimental’ section of 
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Chapter 4). Compounds were primarily identified by LCMS and confirmed using 

high resolution mass spectroscopy (HRMS) (Tables 2.15 and 2.16). 

 

Table 2.15: HRMS data for library-3A molecules 

Number Compound code Theoretical mass 
Observed mass 

[M+H]+ 

1 4.70 562.2329 563.2388 

2 4.71 578.2100 579.1430 

3 4.72 575.2645 576.2703 

4 4.73 562.2441 563.2502 

5 4.74 563.2169 564.2228 

6 4.75 579.1940 580.2000 

7 4.76 563.2281 564.2344 

 

2.8.3 Purity Analysis of Benzofused Polyamides Synthesized 
 

The purity of the benzofused polyamides of this library was checked by two 

different HPLC methods with two different retention times. Both methods were 

carried out on a Waters Alliance 1695 HPLC Pump with water and acetonitrile 

comprising the mobile phases. The Waters 996 PDA start wavelength was 210 

nm for the 10 minute method (Method A), with a start wavelength of 220 nm and 

end wavelength of 500 nm for the 5 minute method (Method B) (Table 2.15 and 

2.16). 

Table 2.16: Purity data for library-3A as observed by HPLC 

Number Compound code 
Purity 

Method A(10 min)% Method B(5 min)% 

1 4.70 100 100 

2 4.71 100 100 

3 4.72 93 94 

4 4.73 100 100 

5 4.74 100 100 

6 4.75 91 89.09 

7 4.76 100 100 
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Figure 2.35: Example of an adapted LCMS profile of Library-3A compound 

4.75 
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Table 2.17: G-quadruplex and duplex DNA stabilization by ligands of library-3A 

in FRET melting experiments at concentrations of 5, 2 and 1 µM respectively 

(the data are means of three technical repeats) 

Compounds Quadruplex 
∆Tm(°C) ±(s/d) 

5 µM 2 µM 1 µM 

4.70 

F21T 13.6±0.37 8.6±0.23 4.89±0.11 

C-kit-1 14.2±0.28 10.7±0.28 9.2±0.34 

C-kit-2 18.3±0.15 11.4±0.11 8.6±0.26 

BCL-2 15.7±0.23 10.4±0.20 7.4±0.20 

Duplex DNA 0.0±0.11 0.0±0.23 0.0±0.25 

4.71 

F21T 17.7±0.2 9.3±0.07 7.2±0.14 

C-kit-1 23.0±0.35 18.3±0.05 15.1±0.17 

C-kit-2 17.7±0.26 11.8±0.15 8.3±0.32 

BCL-2 15.5±0.26 8.9±0.23 5.9±0.14 

Duplex DNA 0.0±0.11 0.0±0.37 0.0±0.11 

4.72 

F21T 9.4±0.17 4.2±20 2.6±0.14 

C-kit-1 12.3±0.17 8.4±0.15 6.8±0.32 

C-kit-2 12.8±0.37 7.2±0.17 5.8±0.30 

BCL-2 10.2±0.11 5.3±0.32 4.2±0.20 

Duplex DNA 0.0±0.23 0.0±0.12 0.0±0.31 

4.73 

F21T 11.5±0.21 7.6±0.34 6.0±0.23 

C-kit-1 15.0±0.0 11.7±0.20 9.7±0.25 

C-kit-2 17.6±0.23 11.4±0.05 8.8±0.11 

BCL-2 15.8±0.05 10.4±0.25 7.8±0.36 

Duplex DNA 0.0±0.32 0.0±0.26 0.0±0.34 
 

All the molecules belonging to this library showed significant interaction with the 

different G-quadruplex sequences used. 4.70 provided 4.89°C, 9.2°C, 8.6°C 

and 7.4°C stabilisation, 4.71 provided a 7.2°C, 15.1°C, 8.3°C and 5.9°C 

stabilisation, 4.72 provided 2.6 °C, 6.8 °C, 5.8 °C and 4.2 °C stabilisation and 

4.73 provided 6.0°C, 9.7°C, 8.8°C and 7.8°C stabilisation at 1 µM 

concentrations against F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex 

sequences, respectively. It is notable that 4.71 showed a significantly higher 

degree of stabilisation against the C-kit-1 quadruplex sequence. Thus 4.71 is 

nearly specific to the C-kit-1 G-quadruplex sequence. 
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Table 2.18: G-quadruplex and duplex DNA stabilization by ligands of library-3A 

in FRET melting experiments at concentrations of 5, 2 and 1 µM respectively    

(the data are means of three technical repeats) 

Compounds 
Quadruplex 

types 

∆Tm(°C) ±(s/d) 

5 µM 2 µM 1 µM 

4.74 

F21T 16.2±0.12 10.2±0.20 5.2±0.23 

C-kit-1 17.0±0.05 13.9±0.35 11.4±0.26 

C-kit-2 22.2±0.28 15.7±0.40 12.5±0.35 

BCL-2 17.1±0.15 11.7±0.28 10.0±0.15 

Duplex DNA 0.0±0.12 0.0±0.07 0.0±0.11 

4.75 

F21T 17.7±0.13 10.6±0.12 7.8±0.31 

C-kit-1 17.8±0.36 15.4±0.25 12.8±0.11 

C-kit-2 24.4±0.05 18.4±0.30 14.6±0.10 

BCL-2 18.7±0.10 13.5±0.25 10.0±0.20 

Duplex DNA 0.0±0.41 0.0±0.14 0.0±0.07 

4.76 

F21T 21.3±0.33 15.2±0.41 12.0±0.11 

C-kit-1 22.4±0.11 18.2±0.11 15.6±0.50 

C-kit-2 22.0±0.11 17.5±0.05 13.6±0.25 

BCL-2 19.3±0.11 13.6±0.15 9.9±0.10 

Duplex DNA 0.0±0.1 0.0±0.23 0.0±0.11 

 

The second set of molecules showed similar interactions to the first set. Here, 

4.74 provided 5.2°C, 11.4°C, 12.5°C and 10.0°C stabilisation, 4.75 provided 

7.8°C, 12.8 °C, 14.6°C and 10.0°C stabilisation and 4.76 provided 12.0°C, 

15.6°C, 13.6°C and 9.9°C stabilisation at 1 µM concentrations against F21T, C-

kit-1, C-kit-2 and Bcl-2 G-quadruplex sequences, respectively. 4.76 was 

relatively more active towards G-quadruplex sequences. This is possibly due to 

the extra nitrogen atom of the terminal benzimidazole building block. However, 

when compared to the molecules from both libraries (library-2 and library-3) 

with equivalent melting temperatures, it would be more convenient to 

investigate the effect of the introduction of additional curvature within the ligand 

molecules.  

FRET data comparison between library-2 and library-3A clearly identified a 

distinguishing feature. Two equivalent molecules (4.52 and 4.49 from library-2 

compared with 4.70 and 4.71 from library-3A) were taken from both libraries to 

compare directly for the effects of curvature. 4.70 started with an indole building 

block instead of benzofuran as in 4.52. In contrast, 4.71 started with an indole 

building block instead of benzothiophene as in 4.49. 
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Figure 2.36: Structures of 4.52 and 4.70. 

 

Table 2.19: Direct comparison between the equivalent molecules of library-2 

and library-3A (the data are means of three technical repeats) 

Quadruplex 
types 

∆Tm(°C) ±(s/d) 

4.52 4.70 4.52 4.70 4.52 4.70 

5 µM 5 µM 2 µM 2 µM 1 µM 1 µM 

F21T 6.22±0.41 13.6±0.37 3.5±0.24 8.6±0.23 2.4±0.37 4.89±0.11 

C-kit-1 13.1±0.23 14.2±0.28 8.5±0.25 10.7±0.28 7.8±0.15 9.2±0.34 

C-kit-2 18.0±0.15 18.3±0.15 10.3±0.40 11.4±0.11 8.1±0.36 8.6±0.26 

BCL-2 14.8±0.40 15.7±0.23 8.3±0.35 10.4±0.20 5.6±0.36 7.4±0.20 

Duplex DNA 0.0±0.17 0.0±0.11 0.0±0.14 0.0±0.23 0.0±0.22 0.0±0.25 

 

FRET data analysis of the benzofused polyamides of library-2 and library-3A 

showed a clear difference in melting temperatures (∆Tm). The introduction of a 

second 5′-3′-benzofused moiety moderately improved the interacting capacity of 

the polyamides. This could be explained by the comparison of ∆Tm values of 

two equivalent molecules (i.e. 4.70 from library-3A and 4.52 from library-2). 

4.70 showed comparatively more stabilising capacity than 4.52; 4.52 provided 

2.4°C, 7.8°C, 8.1°C and 5.6°C stabilisation, whereas 4.70 provided 4.9°C, 

9.2°C, 8.6°C and 7.4°C stabilisation at 1 µM concentrations against F21T, C-kit-

1, C-kit-2 and Bcl-2 G-quadruplex sequences, respectively. This suggested that 

the introduction of more curvature made the ligands more potent. In addition, 

4.52 and 4.70 both showed a nearly identical pattern of stabilisation towards the 

different G-quadruplex sequence types tested against. 
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Figure 2.37: Structures of equivalent molecules 4.49 and 4.71. 

Table 2.20: Direct comparison between the equivalent molecules of library-2 

and library-3A (the data are means of three technical repeats) 

Quadruplex 
types 

∆Tm(°C) ±(s/d) 
4.49 4.71 4.49 4.71 4.49 4.71 

5 µM 5 µM 2 µM 2 µM 1 µM 1 µM 

F21T 14.6±0.20 17.7±0.2 7.5±0.14 9.3±0.07 3.4±0.34 7.2±0.14 

C-kit-1 13.1±0.25 23.0±0.35 10.4±0.36 18.3±0.05 9.9±0.21 15.1±0.17 

C-kit-2 17.2±0.23 17.7±0.26 11.7±0.05 11.8±0.15 11.0±0.20 8.3±0.32 

BCL-2 12.3±0.15 15.5±0.26 5.6±0.20 8.9±0.23 5.3±0.20 5.9±0.14 

Duplex DNA 0.0±0.23 0.0±0.11 0.0±0.21 0.0±0.37 0.0±0.35 0.0±0.11 
 

4.49 and 4.71 also showed the same pattern of stabilisation as 4.52 and 4.70. 

4.71 was found to show comparatively more stabilisation capacity than 4.49; 

4.49 provided 3.4°C, 9.9°C, 11.0°C and 5.3°C stabilisation at 1 µM 

concentration against F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex sequences, 

respectively, whereas 4.71 provided 7.2°C, 15.1°C, 8.3°C and 5.9°C 

stabilisation at 1 µM concentration against F21T, C-kit-1, C-kit-2 and Bcl-2 G-

quadruplex sequences, respectively. 

These obseravations are suggesting an idea that the introduction of more 

curvature within the benzofused polyamides results in a greater stabilisation 

capacity of the ligand molecules. In addition, 4.52 and 4.70 followed a similar 

pattern of stabilizing capacities toward the different G-quadruplex sequence 

types tested. 

These molecules of library-3A were supposed to interact differently as they 

include four different benzofused ring types; however, all of them are following a 

nearly similar pattern of activities. This infers that first and second consecutive 

indole rings might be an interaction capacity-determining factor for these ligand 

molecules. 
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Figure 2.38: Structures of 4.61 and 4.70. 

 

Table 2.21: Direct comparison between first and second degree curvature of 

molecules starting with two consecutive indole rings (the data are means of 

three technical repeats) 

Quadruplex 
types 

∆Tm(°C) ±(s/d) 
4.61 4.70 4.61 4.70 4.61 4.70 

5 µM 5 µM 2 µM 2 µM 1 µM 1 µM 

F21T 18.0±0.20 13.6±0.37 7.4±0.13 8.6±0.23 5.2±0.34 4.89±0.11 

C-kit-1 14.4±0.10 14.2±0.28 8.8±0.10 10.7±0.28 7.4±0.32 9.2±0.34 

C-kit-2 18.1±0.45 18.3±0.15 11.4±0.20 11.4±0.11 7.7±0.30 8.6±0.26 

BCL-2 13.9±0.15 15.7±0.23 7.6±0.17 10.4±0.20 4.7±0.30 7.4±0.20 

Duplex DNA 0.0±0.14 0.0±0.11 0.0±0.21 0.0±0.23 0.0±0.15 0.0±0.25 
 

Here, it was found that 4.70 interacts with G-quadruplex sequences more 

strongly than 4.61; 4.61 provided 5.2°C, 7.4°C, 7.7°C and 4.7°C stabilisation at 

1 µM concentration against F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex 

sequences, respectively, whereas 4.70 provided 4.89°C, 9.2°C, 8.6°C and 

7.4°C stabilisation at 1 µM concentration against the same G-quadruplex 

sequences. This result indicated that 4.61 may be the best ligand out of the 

library in providing G-quadruplex stabilisation, and supports the notion that the 

curvature of the ligand molecules contributes towards an enhanced stabilisation 

of G-quadruplex. 

2.8.4 Key Observations from the Overall Library-3A FRET Melting Data 

Analysis 
 

 Introduction of curvature strongly correlates with increases in the 

stabilisation capacity of ligand molecules. 

 A second degree of curvature is better than a first degree of curvature. 

 Indole, rather than the benzothiophene or benzofuran building blocks, 

appears to be the best scaffold for making more potent ligands. 
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2.9 Molecular Modelling Study of Library-3A Molecules 

Molecular docking studies of the molecules synthesised in Library-3A support 

predictions made during analysis of Library-2 molecules. In general, the 

introduction of a second 5’-3’-benzofused moiety enhanced stabilisation of each 

quadruplex structure. This likely occurs due to an enhanced shape-fit of the 

molecule with DNA. For example, in the case of 4.61 and 4.70 (Figure: 2:24 

and 2.31, Table: 2.12 and 2.17) (which have identical benzofused content and 

only differ by benzofused substitution pattern), G-quadruplex stabilisation was 

increased by up to 2.7°C at 1 μM concentration in the case of BCL-2. Although 

this increase is not as substantial as the increase observed between Libraries 

1 and 2, the increase is nonetheless significant. This difference is reflected in 

binding energies calculated for 4.61 and 4.70 (-74.54kcal/mol and -76.5 

kcal/mol, which suggest that 4.70 should enhance G-quadruplex stabilisation to 

a greater extent than 4.61 (Figure 2.35). 

 

Figure 2.39: Molecular model of 4.61 (left panel) and 4.70 (right panel) bound 

to the telomeric F21T G-quadruplex illustrating the difference in accommodation 

of a Library 2 molecule (4.61) and Library 3 molecule (4.70). In the case of 

4.61 (black sticks), two benzofused molecules are capable of orienting directly 

over guanine bases (blue nucleotide objects), thereby enhancing stabilisation. 

In the case of 4.70, two benzofused moieties are capable of interacting with the 

G-quadruplex, but appear to stack directly over the G tetrad. The amidic tail of 

the molecule also appears to interact with DNA to some degree, thereby 

enhancing stabilisation. 
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Library-3B 
 

2.10 Synthesis of Library-3B Molecules by the Structural 

Modification of Library-3A Molecules 

Initially, 4 molecules (Figure 2.37) were synthesized and evaluated to 

investigate the effect of an electron-withdrawing nitro group on the terminal 

indole unit of library-3A molecules. Then 5 more molecules (Figure 2.37) were 

synthesized further for a structure activity relationship (SAR) of 4.77 through 

modification of the shape of 4.77. Here, 5-nitro-benzofused-2-carboxylic acid 

was chosen to be a capping acid instead of benzofused-3-carboxylic acid in 

order to observe the effect of a nitro group on the G-quadruplex interactive 

capacities of the ligand molecules. 

 

Figure 2.40: Synthetic scheme of library-3B molecules. Here X = O or N or S. 

Two consecutive 5-nitro-indole-3 carboxylic acids were coupled one after 

another and then this intermediate was capped with four different 5-nitro-

benzofused-2-carboxylic acids to get final ligands with the same shape as the 

library-3A molecules (Figure 2.36). In addition to this, 4.80, an equivalent 
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molecule of 4.77, was synthesized to investigate the relative effects of indole 

and indazole as terminal capping acids. 

 

Figure 2.41: Structures of library-3B molecules. 

Initially the acid (1.2 eq.) was dissolved in DMF (5 mL for 100 mg of starting 

material) in a round bottom flask fitted with a magnetic stirrer. Then DIC (1.75 

eq.) and HOBt (2.0 eq.) were added to the acid (1.0 eq.) and this mixture was 

allowed to stir at room temperature for formation of the ester from the acid. The 

amine (1 eq.) was added to the mixture and the mixture allowed to stir until the 

reaction was complete, as indicated by TLC or LCMS. Finally the reaction 

mixture was applied to a conditioned SCX-2 cartridge and the resultant product 

was purified by the ‘Catch and Release’ method (described in the section 

‘Methods and Materials’ of Chapter 3). 
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2.10.1 Characterisation of Benzofused Polyamides through Various 

Spectroscopic Techniques 
 

The benzofused polyamides of library-3B were purified and fully characterized 

by different spectroscopic techniques including mass spectrometry, both 1H and 

13C NMR, and IR techniques (described in the ‘Experimental’ section of 

Chapter 4). Compounds were primarily identified by LCMS and confirmed using 

high resolution mass spectroscopy (HRMS) (Table 2.22 and 2.23). 

Table 2.22: HRMS data for library-3B molecules 

Number 
Compound 

code 
Theoretical 

mass 
Observed mass 

[M+H]+ 

1 4.79 607.2179 608.2244 

2 4.78 623.1951 624.2017 

3 4.77 606.2339 607.2396 

4 4.80 607.2292 608.2362 

5 4.23 606.2339 607.2405 

6 4.66 606.2339 607.2398 

7 4.60 606.2339 607.2400 

8 4.67 606.2339 607.2399 

9 4.93 606.2339 607.2402 

 

2.10.2 Purity Analysis of Benzofused Polyamides Synthesized 
 

The purity of the benzofused polyamides of this library was checked by two 

different HPLC methods with two different retention times. The Waters 996 PDA 

start wavelength was 210 nm for the 10 minute method (Method A), with a start 

wavelength of 220 nm and end wavelength of 500 nm for the 5 minute method 

(Method B) (Table 2.22 and 2.23). 

Table 2.23: Purity data for library-3B molecules as observed by HPLC 

Number Compound code 
Purity 

Method A (10 min)% Method B (5 min)% 

1 4.79 100 100 

2 4.78 100 100 

3 4.77 100 100 

4 4.80 100 100 

5 4.23 100 100 

6 4.66 100 100 

7 4.60 100 100 

8 4.67 100 100 

9 4.93 100 100 
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Figure 2.42: Example of an adapted LCMS profile of Library-3B compound 

4.77 
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Table 2.24: G-quadruplex and duplex DNA stabilization by ligands in FRET 

melting experiments at concentrations of 5, 2 and 1 µM respectively              

(the data are means of three technical repeats) 

Compound 
code 

Quadruplex 
∆Tm(°C) ±(s/d) 

5 µM 2 µM 1 µM 

4.79 

F21T 15.8±0.23 9.9±0.21 6.0±0.20 

C-kit-1 19.5±0.35 12.8±0.34 9.2±0.20 

C-kit-2 19.3±0.20 14.8±0.36 11.2±0.40 

BCL-2 22.9±0.07 11.4±0.35 7.7±0.24 

Duplex DNA 0.0±0.32 0.0±0.21 0.0±0.43 

4.78 

F21T 18.8±0.12 11.6±0.23 8.8±0.07 

C-kit-1 21.6±0.07 14.8±0.28 11.7±0.35 

C-kit-2 27.0±0.32 15.8±0.15 13.0±0.32 

BCL-2 23.9±0.05 14.7±0.10 10.5±0.15 

Duplex DNA 1.0±0.23 0.0±0.12 0.0±0.07 

4.77 

F21T 21.7±0.26 15.6±0.07 12.2±0.23 

C-kit-1 24.5±0.40 16.7±0.26 14.4±0.35 

C-kit-2 27.8±0.36 17.9±0.21 14.7±0.26 

BCL-2 30.8±0.21 15.7±0.28 12.1±0.25 

Duplex DNA 1.0±0.12 0.0±0.1 0.0±0.23 

4.80 

F21T 12.7±0.24 8.4±0.16 4.8±0.21 

C-kit-1 16.2±0.20 11.6±0.32 7.6±0.15 

C-kit-2 22.1±0.20 15.0±0.34 10.2±0.26 

BCL-2 18.6±0.41 10.7±0.40 7.7±0.11 

Duplex DNA 0.0±0.23 0.0±0.31 0.0±0.12 

 

From this FRET data analysis, it is very clear that the introduction of a nitro 

group enhances the interactive capacities of ligand molecules. This could be 

explained in a number of possible ways, including hydrogen bond formation 

between the nitro group and amino, imine or carbonyl groups from guanine 

residues of the G-quartet, the nitro group potentially recruiting potassium ions 

which could help to stack the quartet together, or the nitro group providing 

additional electronic interactions. 

However, it is more convenient to evaluate the effect of the nitro group’s 

inclusion by comparing between equivalent molecules of library-3A and 

library-3B. 
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Figure 2.43: Structures of 4.70 and 4.79. 

 

Table 2.25: Comparative G-quadruplex and duplex DNA stabilization between 

ligands 4.70 and 4.79 in FRET melting experiments at concentrations of 5, 2 

and 1 µM respectively (the data are means of three technical repeats) 

Quadruplex 
types 

∆Tm(°C) ±(s/d) 

4.70 4.79 4.70 4.79 4.70 4.79 

5 µM 5 µM 2 µM 2 µM 1 µM 1 µM 

F21T 13.6±0.37 15.8±0.23 8.6±0.23 9.9±0.21 4.89±0.11 6.0±0.20 

C-kit-1 14.2±0.28 19.5±0.35 10.7±0.28 12.8±0.34 9.2±0.34 9.2±0.20 

C-kit-2 18.3±0.15 19.3±0.20 11.4±0.11 14.8±0.36 8.6±0.26 11.2±0.40 

BCL-2 15.7±0.23 22.9±0.07 10.4±0.20 11.4±0.35 7.4±0.20 7.7±0.24 

Duplex DNA 0.0±0.11 0.0±0.32 0.0±0.23 0.0±0.21 0.0±0.25 0.0±0.43 
 

Here, 4.79 is shown to have a better interacting capacity compared to the 

equivalent ligand 4.70, since 4.70 provided 4.89°C, 9.2°C, 8.6°C and 7.4°C 

stabilisation at 1 µM concentration against F21T, C-kit-1, C-kit-2 and Bcl-2 G-

quadruplex sequences, respectively, whilst 4.79 provided 6.0°C, 9.2°C, 11.2°C 

and 7.7°C stabilisation at 1 µM concentration against the same G-quadruplex 

sequences, respectively. Thus the molecules terminating with benzofuran did 

not show a significant difference in their melting temperatures even though they 

have an electron-withdrawing nitro group in their structures. 

 

Figure 2.44: Structures of equivalent molecules 4.71 and 4.78. 
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Table 2.26: Comparative FRET data analysis between 4.71 and 4.78 (the data 

are means of three technical repeats) 

Quadruplex 
types 

∆Tm(°C) ±(s/d) 

4.71 4.78 4.71 4.78 4.71 4.78 

5 µM 5 µM 2 µM 2 µM 1 µM 1 µM 

F21T 17.7±0.2 18.8±0.12 9.3±0.07 11.6±0.23 7.2±0.14 8.8±0.07 

C-kit-1 23.0±0.35 21.6±0.07 18.3±0.05 14.8±0.28 15.1±0.17 11.7±0.35 

C-kit-2 17.7±0.26 27.0±0.32 11.8±0.15 15.8±0.15 8.3±0.32 13.0±0.32 

BCL-2 15.5±0.26 23.9±0.05 8.9±0.23 14.7±0.10 5.9±0.14 10.5±0.15 

Duplex DNA 0.0±0.11 1.0±0.23 0.0±0.37 0.0±0.12 0.0±0.11 0.0±0.07 
 

Here, 4.71 provided 7.2°C, 15.1°C, 8.3°C and 5.9°C stabilisation at 1 µM 

concentration against F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex sequences, 

respectively, and 4.78 provided 8.8°C, 11.7°C, 13.0°C and 10.5°C stabilisation 

at 1 µM concentration against the same G-quadruplex sequences. Both of them 

were found to be equally interactive towards G-quadruplex sequences. 

Moreover, 4.71 had a tendency to be a partially specific toward C-kit-1 and c-kit-

2. On the other hand, 4.78 tended to show a partial specificity toward-kit-2 

rather than C-kit-1. However, like 4.70 and 4.79, the molecules terminating with 

nitro group-containing thiophenes did not possess significantly improved melting 

temperatures. 

 

Figure 2.45: Structures of 4.72 and 4.77. 

Table 2.27: Comparative FRET data analysis between 4.72 and 4.77 molecules 

(the data are means of three technical repeats) 

Quadruplex 
types 

∆Tm(°C) ±(s/d) 

4.72 4.77 4.72 4.77 4.72 4.77 

5 µM 5 µM 2 µM 2 µM 1 µM 1 µM 

F21T 9.4±0.17 21.7±0.26 4.2±20 15.6±0.07 2.6±0.14 12.2±0.23 

C-kit-1 12.3±0.17 24.5±0.40 8.4±0.15 16.7±0.26 6.8±0.32 14.4±0.35 

C-kit-2 12.8±0.37 27.8±0.36 7.2±0.17 17.9±0.21 5.8±0.30 14.7±0.26 

BCL-2 10.2±0.11 30.8±0.21 5.3±0.32 15.7±0.28 4.2±0.20 12.1±0.25 

Duplex DNA 0.0±0.23 1.0±0.12 0.0±0.12 0.0±0.1 0.0±0.31 0.0±0.23 
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Here, 4.77 provided relatively higher melting temperatures of 12.2°C, 14.4°C, 

14.7°C and 12.2°C stabilisation at 1 µM concentration against F21T, C-kit-1, C-

kit-2 and Bcl-2 G-quadruplex sequences, respectively. On the other hand, an 

equivalent molecule 4.72 lacking the nitro group provided 2.6°C, 6.8°C, 5.8°C 

and 4.2°C stabilisation at 1 µM concentration against F21T, C-kit-1, C-kit-2 and 

Bcl-2 G-quadruplex sequences, respectively. Here, unlike with the benzofuran 

or benzothiophene, the molecules with nitro-indole groups had significantly 

higher melting temperatures compared to the equivalent ligands without the 

nitro group. Therefore, it is evident that the electron-withdrawing nitro group 

plays a positive role in improving the G-quadruplex interacting capacity of these 

ligands. 

 

Figure 2.46: Structures of 4.73 and 4.80. 

Table 2.28: Comparative FRET data analysis between 4.73 and 4.80           

(the data are means of three technical repeats) 

Quadruplex 
types 

∆Tm(°C) ±(s/d) 

4.73 4.80 4.73 4.80 4.73 4.80 

5 µM 5 µM 2 µM 2 µM 1 µM 1 µM 

F21T 11.5±0.21 12.7±0.24 7.6±0.34 8.4±0.16 4.8±0.21 6.0±0.23 

C-kit-1 15.0±0.0 16.2±0.20 11.7±0.20 11.6±0.32 7.6±0.15 9.7±0.25 

C-kit-2 17.6±0.23 22.1±0.20 11.4±0.05 15.0±0.34 10.2±0.26 8.8±0.11 

BCL-2 15.8±0.05 18.6±0.41 10.4±0.25 10.7±0.40 7.7±0.11 7.8±0.36 

Duplex DNA 0.0±0.32 0.0±0.23 0.0±0.26 0.0±0.31 0.0±0.12 0.0±0.34 

 

The overall data analysis showed that 4.77 was better than any other members 

of this library. Therefore 4.77 was taken to be a lead benzofused polyamide for 

a subsequent structure activity relationship (SAR) study.  
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It was possible to find a preferred building block by comparing the two 

equivalent molecules 4.80 and 4.77 (both of them are structurally equivalent 

with the exception of their terminal building block types). 

 

Figure 2.47: Structures of equivalent molecules 4.80 and 4.77. 

 

 

Table 2.29: Comparative FRET data analysis between 4.80 and 4.77 (the data 

are means of three technical repeats) 

Quadruplex 
types 

∆Tm(°C) ±(s/d) 
4.80 4.77 4.80 4.77 4.80 4.77 

5 µM 5 µM 2 µM 2 µM 1 µM 1 µM 

F21T 12.7±0.24 21.7±0.26 8.4±0.16 15.6±0.07 6.0±0.23 12.2±0.23 

C-kit-1 16.2±0.20 24.5±0.40 11.6±0.32 16.7±0.26 9.7±0.25 14.4±0.35 

C-kit-2 22.1±0.20 27.8±0.36 15.0±0.34 17.9±0.21 8.8±0.11 14.7±0.26 

BCL-2 18.6±0.41 30.8±0.21 10.7±0.40 15.7±0.28 7.8±0.36 12.1±0.25 

Duplex DNA 0.0±0.23 1.0±0.12 0.0±0.31 0.0±0.1 0.0±0.34 0.0±0.23 
  

4.77 provided relatively high melting temperature of 12.2°C, 14.4°C, 14.7°C and 

12.2°C stabilisation at 1 µM concentration against F21T, C-kit-1, C-kit-2 and 

Bcl-2 G-quadruplex sequences, respectively, whilst an equivalent 4.80 provided 

relatively low ∆Tm values of 6.0°C, 9.2°C, 11.2°C and 7.7°C stabilisation at 1 

µM concentration against the same G-quadruplex sequences, respectively. It 

was very clear from the overall data analysis that for the molecules belonging to 

library-3B, 4.77 is a more highly G-quadruplex-interactive molecule than 4.80, 

even though 4.80 possessed a terminal nitro-benzimidazole group instead of 

the nitro-indole seen in 4.77. This indicated that indole was a better group 

compared to any of the other building blocks used. At the same time, 4.77 could 

be rationally considered to be a lead ligand for all of G-quadruplex sequences 

used, for further optimisation in order to get a more potent ligand.  
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2.10.3 Structure Activity Relationship of Lead Ligand 4.77 
 

4.77 showed significantly interaction with G-quadruplex sequences; therefore 

this was taken as a lead ligand for further structural modifications. A structural 

activity relationship (SAR) was done including modifications of the shape 

(Figure 2.37, Table 2.30), tail types (Figure 2.55, Table 2.42) and functional 

groups (Figure 2.57, Table 2.45) attached to the terminal indole group. 

 

 

Table 2.30: G-quadruplex and duplex DNA stabilization by ligands (4.23, 4.66, 

4.60, 4.67, 4.77 and 4.93) in FRET melting experiments (the data are means of 

three technical repeats) 

Compound 
Code  

Quadruplex 
type 

∆Tm(°C) ±(s/d) 

5 µM 2 µM 1 µM 

4.23 

F21T 0.5±0.13 0.4±0.34 0.3±0.17 

C-kit-1 0.8±0.2 0.1±0.35 0.4±0.23 

C-kit-2 1.9±0.20 0.7±0.15 0.03±0.23 

BCL-2 0.8±0.36 0.3±0.20 0.5±0.34 

Duplex DNA 0.0±0.15 0.0±0.11 0.0±0.14 

4.66 

F21T 0.6±0.11 0.3±0.32 0.3±0.37 

C-kit-1 10.5±0.25 0.8±0.26 0.3±0.20 

C-kit-2 6.1±0.30 1.3±0.20 1.0±0.30 

BCL-2 5.1±0.25 1.8±0.12 1.3±0.15 

Duplex DNA 1.0±0.34 0.0±0.21 0.0±0.07 

4.60 

F21T 18.2±0.05 7.4±0.07 5.7±0.21 

C-kit-1 18.6±0.15 14.3±0.05 11.5±0.25 

C-kit-2 21.7±0.15 14.0±0.26 10.9±0.20 

BCL-2 17.8±0.15 9.4±5.34 6.6±0.11 

Duplex DNA 0.0±0.27 0.0±0.11 0.0±0.31 

4.67 

F21T 5.6±0.21 2.5±0.41 1.5±0.15 

C-kit-1 10.2±0.20 5.3±0.36 3.1±0.23 

C-kit-2 11.0±0.11 5.7±0.20 4.1±0.35 

BCL-2 17.3±0.36 4.1±0.36 2.2±0.26 

Duplex DNA 1.0±0.10 1.0±0.10 0.0±0.360.05 

4.93 

F21T 21.0±0.17 15.9±0.28 12.6±0.26 

C-kit-1 27.7±0.30 22.1±0.35 17.6±0.28 

C-kit-2 21.3±0.23 14.8±0.20 11.4±0.32 

BCL-2 25.4±0.30 17.8±0.14 13.5±0.20 

Duplex DNA 0.0±0.05 0.0±0.05 0.0±0.05 
 

Here, 4.23 did not show any interaction with the G-quadruplex types used, as 

seen before for similar molecules belonging to library-1. This 5’-2’ substituted 
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molecule was structurally the same as the molecules of library-1. Its FRET data 

further verified that of the library-1 molecules and indicated that 5’-2’ 

substituted ligands do not have sufficient curvature in their structures to fit into 

G-quartets. However, 4.66, a molecule with a first degree of curvature, showed 

very minor interaction with G-quadruplexes, similar to that of 4.23. This 

indicated that the introduction of curvature at the beginning of a ligand through 

5’-3’ substitution started to change the shape correctly so that the molecule 

could fit into the G-quartet. Whereas 4.60 provided 5.7°C, 11.5°C, 10.9°C and 

6.6 °C stabilisation at 1 µM concentration against F21T, C-kit-1, C-kit-2 and Bcl-

2 G-quadruplex sequences, respectively, 4.67 showed 1.5°C, 3.1°C, 4.1°C and 

2.2°C stabilisation at 1 µM concentration against the same G-quadruplex 

sequences. It had better interaction with G-quadruplexes than 4.66, meaning 

that the 5’-3’ substitution at the terminal gave molecules comparatively better 

shapes with which to interact than for the same substitution at the beginning of 

the ligand. However, the sudden change in the melting temperatures for 4.60, 

4.23, 4.66 and 4.67 suggested that a 5’-3’ substitution in the middle of a ligand 

can help to give a molecule a better shape with which to fit onto the G-

quadruplex. 4.77, a molecule of second degree curvature, showed a more 

significant interaction with all types of G-quadruplex sequences used as it 

provided 12.2°C, 14.4°C, 14.7°C and 6.0°C stabilisation at 1 µM concentration 

against F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex sequences, respectively. 

These high interactions were assumed to be due to the introduction of more 

curvature within the structure of this molecule. Finally, the most curved 

molecule, 4.93, a molecule of the third degree of curvature, was made to 

complete all possible shapes based on structural modifications of 4.77. 4.93 

provided ∆Tm of 12.6°C, 17.6°C, 11.4°C and 13.5°C stabilisation at 1 µM 

concentration against F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex sequences, 

respectively. It was obvious that 4.93 was a better interactive ligand than 4.77, 

thus 4.93 was taken as a new lead for further structure activity relationship 

analysis. 
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2.10.4 Key Observations made from the Comparative FRET Data Analysis 

of Library-3B Molecules 
 

 Electron-withdrawing groups (such as the NO2 group) enhance the 

interacting capacity of benzofused polyamides towards G-quadruplex 

DNA. 

 Indole is comparatively better than any other types of nitro-benzofused-

acid building blocks for the enhancement of G-quadruplex interactivity. 

 Compound 4.93 was taken as a new lead for further structure activity 

relationship studies. 

2.11 Shape-Based Assessment of 4.93 Analogues 

Four directly equivalent analogues of 4.77 were assessed using molecular 

docking studies in order to establish a rationale behind the enhanced 

stabilisation of libraries 2, 3 and 4 relative to library 1. The four chosen 

molecules contain the same skeleton (i.e., three indole rings and tail), and differ 

only by shape. 4.23 (containing three 5’-2’ substituted indoles) has a GBSA 

score of -66.48 kcal/mol, which is the lowest calculated binding affinity. Visual 

analysis of the docked complex suggests that the molecule is not positioned 

appropriately on the G-quadruplex for interaction, relative to the highly 

interactive biaryl polyamide (Figure 2.43 left and right panel), thereby providing 

a rationale behind its poor quadruplex stabilisation and FRET binding results. 

 

 

Figure 2.48: Left Panel 4.23 (black) docked on the G-quadruplex interface of 

the Human telomeric quadruplex (PDB ID: 3CDM). The molecule is too straight 
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in nature to bind to the full tetrad. Right Panel shows molecular model of G-

quadruplex-interacting U-shaped biaryl polyamide (blue) based on distamycin A 

motif docked on the Human telomeric quadruplex (yellow). 

Energy calculations also suggest that 4.60, 4.77 and 4.93 (Library- 2, 3 and 4 

respectively) have enhanced binding over 4.23. In particular, 4.93 has the 

greatest calculated binding affinity (-77.20kcal/mol), and this molecule 

possesses three 5’-3’ substituted indole groups. Our hypothesis suggests that 

increasing curvature (i.e., introducing a greater number of 5’-3’ substituted 

benzofused building blocks) should increase DNA binding, and this is reflected 

in the enhanced ΔTm of 17°C at 1 μM observed for 4.93. 4.77 has a similarly 

high ΔTm (i.e., 16 °C at 1 μM), and has a GBSA score which is greater than -70 

kcal/mol. 4.60, which has one 5’-3’ substituted indole group, has a GBSA score 

of -76.81 kcal/mol and ΔTm of 10°C. Visual analysis of the docked molecules 

shows reasons behind their enhanced stabilisation, relative to 4.23. For 

instance, in the case of 4.60, the introduction of a 5’-3’ substitution to the central 

indole (Figure 2.44), orients the ligand over the central G-tetrad, thereby 

inducing stabilisation of the quadruplex. A similar observation can be made with 

4.77 and 4.93 (Figure 2.45 and Figure 2.46), whereby the introduction of 

greater curvature allows the molecules to capture a greater area of the 

quadruplex. 

 

Figure 2.49: 4.60 (black) docked on the G-quadruplex interface of the Human 

telomeric quadruplex (PDB ID: 3CDM). The molecule has a curved shape, and 

is therefore capable of enhancing binding to the quadruplex structure. 
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Figure 2.50: 4.77 (black) docked on the G-quadruplex interface of the Human 

telomeric quadruplex (PDB ID: 3CDM). The molecule has a more enhanced 

curvature than 4.23 and 4.60 and is therefore capable of stabilising the G-

quadruplex structure to a greater extent. 

 

Figure 2.51: Molecular model of 4.93 (black sticks) binding to the G-quadruplex 

interface. It can be seen that the three benzofused components of the molecule 

stack directly over the G-tetrad, thereby stabilising the quadruplex. The 

presence of 5’-3’-substituted to benzofused building blocks help to create a 

sufficient shape of molecule to maximise interaction. 
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Table 2.31: Molecule names, structures, GBSA scores (kcal/mol) and FRET 

melting temperatures for 4.23, 4.60, 4.77 and 4.93. 

 

It is evident from molecular docking results that a clear shape-based rationale 

for enhanced DNA stabilisation can be established. The introduction of a 5’-3’-

substituted indole as the second of three amide-linked benzofused building 

blocks (instead of a 5’-2’-substituted indole) can dramatically enhance binding 

of the triaryl scaffold to the quadruplex. Introduction of further 5’-3’-substituted 

benzofused moieties (for example, in the case of 4.77 and 4.93) can further 

enhance stabilisation, and this occurs due to the presence of aryl structures in 

an appropriate orientation to induce quadruplex stabilisation. 

 

 

 

 

Compound 
code 

Degree of 
curvature 

Structure 

GBSA 
score 
(kcal/m

ol) 

∆Tm(oC)±0.50C 

5 µm 2 µm 1 µm 

4.23 
 

Linear 

 

-66.48 
 

1 
 

0 0 

4.60 
 

First 
degree of 
curveture 

 

-76.81 
 

19 
 

14 
 

10 
 

4.77 
 

second 
degree of 
curveture 

 

-70.20 
 

24 
 

16 
 

15 
 

4.93 
 

Thirds 
degree of 
curveture 

 

-77.20 
27 

 
22 

 
17 
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Library-4A 

2.12 Synthetic Scheme for Library-4A Molecules 

The molecular docking studies of molecules containing three consecutive 5’-3’ 

benzofused moieties (for example, 4.93) suggested that the inclusion of a third 

5’-3’-substituted benzofused moiety should enhance G-quadruplex stabilisation 

to a small degree compared to two 5’-3’-substituted benzofused moieties (for 

example, 4.77). 

 

Figure 2.52: Synthetic scheme of library-4A molecules. Here X = O, N, S. 

A new library of molecules containing four different benzofused polyamides was 

synthesized to investigate the relevance of the electron-withdrawing NO2 group 

to the activity of the most active compound 4.93. The synthesised molecules 

were capped with a benzofused building block containing a carboxylic acid in 

the 3’ position only, instead of a 5-nitro-3-carboxylic acid benzofused building 

block as found in 4.93, to assess this factor. At the same time, the equivalent 

molecules from library-3A and library-4A were directly compared to investigate 

the effect of structural curvature within their structures to provide the interactive 
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capacity towards G-quadruplexes. This would provide a guideline for finding the 

right degree of curvature to fit into G-quadruplex architecture. 

Initially, the acid (1.2 eq.) was dissolved in DMF (5 mL for 100 mg of starting 

material) in a round bottom flask fitted with a magnetic stirrer. Then DIC (1.75 

eq.) and HOBt (2.0 eq.) were added to the acid (1.0 eq.) and this mixture was 

allowed to stir at room temperature for formation of the ester from the acid. The 

amine (1 eq.) was added to the mixture and the mixture allowed for stirring until 

the reaction was complete, as indicated by TLC or LCMS. Finally the reaction 

mixture was applied to a conditioned SCX-2 cartridge and the resultant product 

was purified by the ‘Catch and Release’ method (described in the section 

‘Methods and Materials’ of Chapter 3). 

 

 

Figure 2.53: Structures of the library-4A molecules. 
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2.12.1 Characterisation of Benzofused Polyamides through Various 

Spectroscopic Techniques 
 

Benzofused polyamides of this library were purified and fully characterized by 

different spectroscopic techniques including mass spectrometry, both 1H and 

13C NMR, and IR techniques (described in the Experimental section of Chapter 

4). Compounds were primarily identified by LCMS and confirmed using high 

resolution mass spectroscopy (HRMS) (Table 2.32 and 2.33). 

Table 2.32: HRMS data for library-4A molecules 

Number Compound code Theoretical mass 
Observed mass 

[M+H]+ 

1 4.90 562.2329 563.2388 

2 4.89 578.2100 578.2100 

3 4.91 575.2645 576.2703 

4 4.92 562.2441 563.2498 

 

2.12.2 Purity Analysis of Benzofused Polyamides Synthesized 
 

The purity of the benzofused polyamides of this library was checked by two 

different HPLC methods with two different retention times. Both methods were 

carried out on a Waters Alliance 1695 HPLC Pump with water and acetonitrile 

comprising the mobile phases. The Waters 996 PDA start wavelength was 210 

nm for the 10 minute method (Method A), with a start wavelength of 220 nm and 

end wavelength of 500 nm for the 5 minute method (Method B) (Table 2.32 and 

2.33). 

Table 2.33: Purity data for library-4A molecules as observed by HPLC 

Number Compound code 
Purity 

Method A (10 min)% Method B (5 min)% 

1 4.90 100 95 

2 4.89 100 95 

3 4.91 100 88 

4 4.92 100 100 
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Figure 2.54: Example of an adapted LCMS profile of Library-4A compound 

4.89 
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Table 2.34: G-quadruplex and duplex DNA stabilization by library-4A 

molecules in FRET melting experiments at concentrations of 5, 2 and 1 µM 

respectively (the data are means of three technical repeats) 

Compounds 
Quadruplex 

type 

∆Tm(°C) ±(s/d) 

5 µM 2 µM 1 µM 

4.90 

F21T 8.8±0.07 5.2±0.20 3.2±0.12 

C-kit-1 13.1±0.20 8.7±0.2 4.9±0.25 

C-kit-2 14.8±0.05 7.8±0.23 6.2±0.28 

BCL-2 13.4±0.36 7.4±0.15 4.2±0.11 

Duplex DNA 0.0±0.12 0.0±0.15 0.0±0.08 

4.89 

F21T 8.6±0.10 5.1±0.05 3.5±0.20 

C-kit-1 12.0±0.20 7.7±0.20 5.9±0.20 

C-kit-2 13.2±0.20 7.7±0.25 5.3±0.15 

BCL-2 11.2±0.2 6.0±0.35 3.6±0.21 

Duplex DNA 0.0±0.12 0.0±0.15 0.0±0.18 

4.91 

F21T 10.9±0.13 6.7±0.22 2.9±0.14 

C-kit-1 15.2±0.30 9.9±0.17 8.2±0.25 

C-kit-2 17.2±0.15 11.6±0.05 8.9±0.10 

BCL-2 16.3±0.20 10.4±0.23 7.5±0.14 

Duplex DNA 0.0±0.17 0.0±0.32 0.0±0.31 

4.92 

F21T 17.2±0.21 10.7±0.21 9.3±0.05 

C-kit-1 20.4±0.20 17.1±0.11 15.7±0.17 

C-kit-2 22.1±0.15 15.9±0.26 13.4±0.36 

BCL-2 22.4±0.10 13.4±0.11 10.3±0.30 

Duplex DNA 0.0±0.29 0.0±0.34 0.0±0.16 

 

Here, all of the molecules except 4.92 were found to be moderately interactive 

towards the different G-quadruplex sequence types. 4.92 provided 9.3°C, 15.7 

°C, 13.4°C and 10.3°C stabilisation at 1 µM concentration against F21T, C-kit-1, 

C-kit-2 and Bcl-2 G-quadruplex sequences, respectively. This significant activity 

of 4.92 was due to the effect of the additional nitrogen atom of the terminal 

indazole building block as previously discussed. 

The effect of an electron-withdrawing nitro group on the interaction capacity of 

benzofused polyamides towards G-quadruplex DNA can be shown by the direct 

comparison of the equivalent molecules 4.93 from library-3B and 4.91 from 

libaray-4A. A clear difference in the melting temperatures was observed.  
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Figure 2.55: Structures of 4.91 and 4.93. 

Table 2.35: Direct comparison between molecules 4.91 and 4.93 of library-4A 

and library-3B, respectively (the data are means of three technical repeats) 

Quadruplex 
types 

∆Tm(°C) ±(s/d) 

4.91 4.93 4.91 4.93 4.91 4.93 

5 µM 5 µM 2 µM 2 µM 1 µM 1 µM 

F21T 10.9±0.13 21.0±0.17 6.7±0.22 15.9±0.28 2.9±0.14 12.6±0.26 

C-kit-1 15.2±0.30 27.7±0.30 9.9±0.17 22.1±0.35 8.2±0.25 17.6±0.28 

C-kit-2 17.2±0.15 21.3±0.23 11.6±0.05 14.8±0.20 8.9±0.10 11.4±0.32 

BCL-2 16.3±0.20 25.4±0.30 10.4±0.23 17.8±0.14 7.5±0.14 13.5±0.20 

Duplex DNA 0.0±0.17 0.0±0.05 0.0±0.32 0.0±0.05 0.0±0.31 0.0±0.05 

 

4.91 provided 2.9°C, 8.2°C, 8.9°C and 7.5°C stabilisation at 1 µM concentration 

against F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex sequences, respectively, 

whereas 4.93, a nitro group-containing benzofused polyamide, provided 12.6°C, 

17.6°C, 11.4°C and 13.5°C stabilisation at 1 µM concentration against F21T, C-

kit-1, C-kit-2 and Bcl-2 G-quadruplex sequences, respectively. Thus it was 

obvious that 4.93 was more interactive towards all types of G-quadruplex 

sequences used than 4.91.  

Two other molecules (4.90 and 4.89) were not as interactive as 4.93 towards G-

quadruplex DNA, although they have the same degree of curvature in their 

structure. This observation also supports the positive impact of an electron-

withdrawing nitro group at the terminal benzofused unit on interaction ability 

with G-quadruplex DNA. 

It was important to compare the equivalent molecules from library-3A and 

library-4A to investigate the effect of structural curvature on their G-quadruplex 

interactive capacities - it would provide guidelines for finding the right degree of 

curvature to fit into G-quadruplex architecture. 4.70, a member of library-3A 
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(with a second degree of curvature) was equivalent to 4.90 (with a third degree 

of curvature), a member of library-4A, and the two are directly comparable. 

 

Figure 2.56: Structures of 4.70 and 4.90. 

  

Table 2.36: Direct comparison between molecules 4.70 and 4.90 of library-3A 

and library-4A, respectively (the data are means of three technical repeats) 

Quadruplex 
types 

∆Tm(°C) ±(s/d) 

4.70 4.90 4.70 4.90 4.70 4.90 

5 µM 5 µM 2 µM 2 µM 1 µM 1 µM 

F21T 13.6±0.37 8.8±0.07 8.6±0.23 5.2±0.20 4.89±0.11 3.2±0.12 

C-kit-1 14.2±0.28 13.1±0.20 10.7±0.28 8.7±0.2 9.2±0.34 4.9±0.25 

C-kit-2 18.3±0.15 14.8±0.05 11.4±0.11 7.8±0.23 8.6±0.26 6.2±0.28 

BCL-2 15.7±0.23 13.4±0.36 10.4±0.20 7.4±0.15 7.4±0.20 4.2±0.11 

Duplex DNA 0.0±0.11 0.0±0.12 0.0±0.23 0.0±0.15 0.0±0.25 0.0±0.08 
 

Here, 4.90 provided 3.2°C, 4.9°C, 6.2°C and 4.2°C stabilisation and 4.70 

provided 4.89°C, 9.2°C, 8.6°C and 7.4°C stabilisation at 1 µM concentration 

against F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex sequences, respectively. 

This result suggested that these two molecules were approximately equivalent 

to each other with regards to interaction with G-quadruplex DNA. 

Similarly, molecules 4.71 and 4.89 from library-3A and library-4A, 

respectively, are also directly comparable. 

 

Figure 2.57: Structures of equivalent molecules 4.71 and 4.89. 
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Table 2.37: Direct comparison between 4.71 and 4.89 of library-3 and library-

4, respectively (the data are means of three technical repeats) 

Quadruplex 
type 

∆Tm(°C) ±(s/d) 
4.71 4.89 4.71 4.89 4.71 4.89 

5 µM 5 µM 2 µM 2 µM 1 µM 1 µM 

F21T 17.7±0.2 8.6±0.10 9.3±0.07 5.1±0.05 7.2±0.14 3.5±0.20 

C-kit-1 23.0±0.35 12.0±0.20 18.3±0.05 7.7±0.20 15.1±0.17 5.9±0.20 

C-kit-2 17.7±0.26 13.2±0.20 11.8±0.15 7.7±0.25 8.3±0.32 5.3±0.15 

BCL-2 15.5±0.26 11.2±0.2 8.9±0.23 6.0±0.35 5.9±0.14 3.6±0.21 

Duplex DNA 0.0±0.11 0.0±0.12 0.0±0.37 0.0±0.15 0.0±0.11 0.0±0.18 

 

Here, 4.89 provided 3.5°C, 5.9°C, 5.3°C and 3.6°C stabilisation and 4.71 

provided 7.2°C, 15.1°C, 8.3°C and 5.9°C stabilisation at 1 µM concentration 

against F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex sequences, respectively.  

Molecules 4.72 and 4.91 from library-3A and library-4A, respectively, are also 

directly comparable. 

 

 

Figure 2.58: Structures of 4.72 and 4.91. 

Table 2.38: Direct comparison between equivalent molecules 4.72 and 4.91 of 

library-3A and library-4A, respectively (the data are means of three technical 

repeats) 

Quadruplex 
type 

∆Tm(°C) ±(s/d) 

4.72 4.91 4.72 4.91 4.72 4.91 

5 µM 5 µM 2 µM 2 µM 1 µM 1 µM 

F21T 9.4±0.17 10.9±0.13 4.2±20 6.7±0.22 2.6±0.14 2.9±0.14 

C-kit-1 12.3±0.17 15.2±0.30 8.4±0.15 9.9±0.17 6.8±0.32 8.2±0.25 

C-kit-2 12.8±0.37 17.2±0.15 7.2±0.17 11.6±0.05 5.8±0.30 8.9±0.10 

BCL-2 10.2±0.11 16.3±0.20 5.3±0.32 10.4±0.23 4.2±0.20 7.5±0.14 

Duplex DNA 0.0±0.23 0.0±0.17 0.0±0.12 0.0±0.32 0.0±0.31 0.0±0.31 
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4.91 provided 2.9°C, 8.2°C, 8.9°C and 7.5°C stabilisation whilst 4.72 provided 

2.6°C, 6.8°C, 5.8°C and 4.2°C stabilisation at 1 µM concentration against F21T, 

C-kit-1, C-kit-2 and Bcl-2 G-quadruplex sequences, respectively. 4.91 (relatively 

more curved) was found to be more G-quadruplex interactive than the 

equivalent molecule 4.72 (relatively less curved). This observation suggested 

that the inclusion of a third 5’-3’-substituted benzofused moiety should enhance 

G-quadruplex stabilisation to a small degree compared to two 5’-3’-substituted 

benzofused moieties (Figure 2.39). 

 

Figure 2.59: Structures of the equivalent molecules 4.73 and 4.92. 

 

Table 2.39: Direct comparison between equivalent molecules 4.73 and 4.92 of 

library-3 and library-4, respectively (the data are means of three technical 

repeats) 

Quadruplex 
types 

∆Tm(°C) ±(s/d) 

4.73 4.92 4.73 4.92 4.73 4.92 

5 µM 5 µM 2 µM 2 µM 1 µM 1 µM 

F21T 11.5±0.21 17.2±0.21 7.6±0.34 10.7±0.21 6.0±0.23 9.3±0.05 

C-kit-1 15.0±0.0 20.4±0.20 11.7±0.20 17.1±0.11 9.7±0.25 15.7±0.17 

C-kit-2 17.6±0.23 22.1±0.15 11.4±0.05 15.9±0.26 8.8±0.11 13.4±0.36 

BCL-2 15.8±0.05 22.4±0.10 10.4±0.25 13.4±0.11 7.8±0.36 10.3±0.30 

Duplex DNA 0.0±0.32 0.0±0.29 0.0±0.26 0.0±0.34 0.0±0.34 0.0±0.16 

 

4.92, with a third degree of curvature, provided 9.3°C, 15.7°C, 13.4°C and 

10.3°C stabilisation and the equivalent 4.73, a molecule with a second degree 

of curvature, provided a 6.0°C, 9.7°C, 8.8°C and 7.8°C stabilisation at 1 µM 

concentration against F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex sequences, 

respectively. It is evident that 4.92 had more significant interactions due to 

having an extra electronegative nitrogen atom in the terminal indazole ring. 
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2.12.3 Key Observations from Library-4A 

 

 Results from library 4A suggest that an electron-withdrawing nitro group 

at the terminal benzofused building block enhances G-quadruplex 

stabilisation considerably. 

 The molecules made of three consecutive indole units with a third degree 

of curvature are assumed to fit nicely within the G-quadruplex to provide 

more interaction than the molecules of the same unit with a second 

degree of curvature in their structure. 
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Library-4B 

2.13 Synthetic Scheme for Library-4B Molecules 

 

Figure 2.60: Synthetic scheme of library-4B molecules. 

A set of molecules (4 in total) was next synthesized for the structure activity 

relationship of 4.93 through the modification of the tertiary amine tails initially 
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attached through an amide coupling reaction. These structural modifications of 

4.93 were done by the substitution of the N1, N1-dimethylpropane-1,3-diamine 

tail with different tails including 3-(piperidin-1-yl)propan-1-amine, 3-(pyrrolidin-1-

yl)propan-1-amine, 3-morpholinopropan-1-amine and 3-(4-methylpiperazin-1-

yl)propan-1-amine 

Initially the acid (1.2 eq.) was dissolved in DMF (5 mL for 100 mg of starting 

material) in a round bottom flask fitted with a magnetic stirrer. Then DIC (1.75 

eq.) and HOBt (2.0 eq.) were added to the acid (1.0 eq.) and this mixture was 

allowed to stir at room temperature for formation of the ester from the acid. The 

amine (1 eq.) was added to the mixture and the mixture allowed to stir until the 

reaction was complete, as indicated by TLC or LCMS. Finally the reaction 

mixture was applied to a conditioned SCX-2 cartridge and the resultant product 

was purified by the ‘Catch and Release’ method (described in the section 

‘Methods and Materials’ of Chapter 3). 

Four molecules with the highest curvature were synthesized to investigate the 

effect of tertiary tail types on interaction with G-quadruplex DNA. Here, ligands 

were synthesized by using different tails. 

 

 

Figure 2.61: Structures of library-4B molecules with different tails. 
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2.13.1 Characterisation of Benzofused Polyamides through Various 

Spectroscopic Techniques 

 

Benzofused polyamides of library-4B were purified and fully characterized by 

different spectroscopic techniques including mass spectrometry, both 1H and 

13C NMR, and IR techniques (described in the Experimental section of Chapter 

4). Compounds were primarily identified by LCMS and confirmed using high 

resolution mass spectroscopy (HRMS) (Table 2.40 and 2.41). 

Table 2.40: HRMS data for library-4B molecules 

Number Compound code 
Theoretical 

mass 
Observed mass 

[M+H]+ 

1 4.98 646.2652 647.2709 

2 4.104 632.2496 633.2557 

3 4.109 648.2445 649.2513 

4 4.115 661.2761 662.2820 
 

2.13.2 Purity Analysis of Benzofused Polyamides Synthesized 
 

 

The purity of the benzofused polyamides of this library was checked by two 

different HPLC methods with two different retention times. Both methods were 

carried out on a Waters Alliance 1695 HPLC Pump with water and acetonitrile 

comprising the mobile phases. The Waters 996 PDA start wavelength was 210 

nm for the 10 minute method (Method A), with a start wavelength of 220 nm and 

end wavelength of 500 nm for the 5 minute method (Method B) (Table 2.41 and 

2.42). 

Table 2.41: Purity data for library-4B molecules as observed by HPLC 

Number 
Compound 

code 

Purity 

Method A (10 min)% Method B (5 min)% 

1 4.98 100 100 

2 4.104 100 100 

3 4.109 100 92 

4 4.115 100 100 
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Figure 2.62: Example of an adapted LCMS profile of Library-4B compound 

4.109 
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Table 2.42: G-quadruplex and duplex DNA stabilization by library-4B ligands in 

FRET melting experiments at concentrations of 5, 2 and 1 µM respectively (the 

data are means of three technical repeats) 

Compounds 
Quadruplex 

types 

∆Tm(°C) ±(s/d) 

5 µM 2 µM 1 µM 

4.98 

F21T 18.0±0.11 10.0±0.31 5.0±0.43 

C-kit-1 23.8±0.23 18.7±0.24 15.5±0.32 

C-kit-2 20.5±0.15 13.9±0.17 11.3±0.21 

BCL-2 22.1±0.24 13.0±0.15 9.6±0.22 

Duplex DNA 0.0±0.20 0.0±0.26 0.0±0.23 

4.104 

F21T 16.3±0.11 9.6±0.20 4.8±0.15 

C-kit-1 21.3±0.30 14.5±0.21 12.2±0.26 

C-kit-2 20.4±017 14.2±0.12 11.1±0.27 

BCL-2 17.9±0.42 11.6±0.05 7.8±0.20 

Duplex DNA 0.0±0.12 0.0±0.11 0.0±0.13 

4.109 

F21T 11.6±0.14 7.0±0.15 5.3±0.06 

C-kit-1 14.9±0.17 10.4±0.27 9.1±0.07 

C-kit-2 10.3±0.19 6.7±0.11 4.7±0.22 

BCL-2 11.6±0.11 7.0±0.42 5.6±0.21 

Duplex DNA 0.0±0.32 0.0±0.27 0.0±0.34 

4.115 

F21T 18.2±0.13 10.7±0.21 6.9±0.15 

C-kit-1 22.1±0.06 16.9±0.16 13.9±0.23 

C-kit-2 21.1±0.07 12.6±0.06 11.6±0.27 

BCL-2 20.9±0.20 13.2±0.37 10.8±0.08 

Duplex DNA 0.0±0.25 0.0±0.17 0.0±0.05 

 

4.98 provided 5.9°C, 15.5°C, 11.3°C and 9.6°C stabilisation; 4.104 provided 

4.8°C, 12.2°C, 11.1°C, 7.8°C stabilisation; 4.99 provided 5.3 °C, 9.1 °C, 4.7°C 

5.6°C stabilisation; and 4.115 provided 6.9°C,13.9°C,11.6°C, 10.8°C 

stabilisation at 1 µM concentration against F21T, C-kit-1, C-kit-2 and Bcl-2 G-

quadruplex sequences, respectively. None of them showed better interaction 

with F21T, C-kit-1 and C-kit-2 than 4.93 (12.6°C, 17.6°C and 11.4°C 

stabilisation at 1 µM concentration, respectively). 4.93 was most active towards 

F21T compared to the other G-quadruplex sequences, while the rest of the 

ligand molecules showed only moderate activity towards  the F21T G-

quadruplex. 4.98, 4.104 and 4.115 were equivalent in their interactions with C-

kit-1, C-kit-2 and Bcl-2 sequences and 4.115 showed better interactivity towards 

Bcl-2 G-quadruplexes than the rest of the molecules. 4.109 showed 

comparatively less interactivity towards all of the sequences used. The overall 

data analysis concluded that the N1, N1-dimethylpropane-1, 3-diamine tail 
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provides a better interactive entity within the ligand molecules than any other 

tails types used. It is noticeable that the tail 3-morpholinopropan-1-amine is not 

sufficient to provide interactive capacity for ligand molecules, since 4.109 is not 

as interactive as the other ligands. This may be due to the less electronegative 

oxygen atom in place of more electronegative nitrogen atom as in the other 

ligands, or it may be due to the presence of an electron-withdrawing oxygen 

atom within the cyclic system of this tail; this oxygen atom may attract the 

electron cloud and increase the electronegativity on the nitrogen atom which 

could ultimately hamper the electrostatic balance. 

2.13.3 Key Observations from Library-4B 
 

 The tertiary amine tail n N1, N1-dimethylpropane-1,3-diamine is 

comparatively better than other tails, including 3-(piperidin-1-yl)propan-1-

amine, 3-(pyrrolidin-1-yl)propan-1-amine, 3-morpholinopropan-1-amine 

and 3-(4-methylpiperazin-1-yl)propan-1-amine, at providing the 

interactive capacity of a ligand molecule towards G-quadruplex DNA. 
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Library-4C 

2.14 Synthetic Scheme for Library-4C Molecules. 

Here, a set of four molecules (Figure 2.57) were made by the structural 

modification of 4.93 through the substitution of the nitro group with different 

functional groups for the optimisation of the interacting capacity of the lead 

ligand 4.93.  

 

Figure 2.63: Synthetic scheme of library-4C molecules. Here, R1 = CN, Cl, –

OCH3, -NH2 etc. and R2 = –CH3, functional groups. 
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Initially the acid (1.2 eq.) was dissolved in DMF (5 mL for 100 mg of starting 

material) in a round bottom flask fitted with a magnetic stirrer. Then DIC (1.75 

eq.) and HOBt (2.0 eq.) were added to the acid (1.0 eq.) and this mixture was 

allowed to stir at room temperature for formation of the ester from the acid. The 

amine (1 eq.) was added to the mixture and the mixture allowed to stir until the 

reaction was complete, as indicated by TLC or LCMS. Finally the reaction 

mixture was applied to a conditioned SCX-2 cartridge and the resultant product 

was purified by the ‘Catch and Release’ method (described in the section 

‘Methods and Materials’ of Chapter 3). 

 

Figure 2.64: Structure of library-4C molecules. 

 

2.14.1 Characterisation of Benzofused Polyamides through Various 

Spectroscopic Techniques 
 

The benzofused polyamides were purified and fully characterized by different 

spectroscopic techniques including mass spectrometry, both 1H and 13C NMR, 

and IR techniques (described in the Experimental section of Chapter 4). 
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Compounds were primarily identified by LCMS and confirmed using high 

resolution mass spectroscopy (HRMS) (Table 2.43 and 2.44). 

Table 2.43: HRMS data for library-4C molecules 

Number Compound code 
Theoretical 

mass 
Observed mass 

[M+H]+ 

1 4.99 615.2958 616.3023 

2 4.110 576.2597 577.2668 

3 4.116 591.2594 592.2662 

4 4.117 595.2092 596.2165 

5 4.87 586.2441 587.2508 

 

2.14.2 Purity Analysis of Benzofused Polyamides Synthesized 
 

The purity of the benzofused polyamides of this library was checked by two 

different HPLC methods with two different retention times. Both methods were 

carried out on a Waters Alliance 1695 HPLC Pump with water and acetonitrile 

comprising the mobile phases. The Waters 996 PDA start wavelength was 210 

nm for the 10 minute method (Method A), with a start wavelength of 220 nm and 

end wavelength of 500 nm for the 5 minute method (Method B) (Table 2.43 and 

2.44). 

Table 2.44: Purity data for library-4C molecules as observed by HPLC 

Number Compound code 
Purity 

Method A (10 min)% Method B (5 min)% 

1 4.99 100 94.2 

2 4.110 100 100 

3 4.116 88 93 

4 4.117 91 100 

5 4.87 100 100 
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Figure 2.65: Example of an adapted LCMS profile of Library-4C compound 

4.87 
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Table 2.45: G-quadruplex and duplex DNA stabilization by ligands in FRET 

melting experiments at concentrations of 5, 2 and 1 µM respectively (the data 

are means of three technical repeats) 

Compounds 
Quadruplex 

types 

∆Tm(°C) ±(s/d) 

5 µM 2 µM 1 µM 

4.110 

F21T 7.0±0.21 3.6±0.14 2.1±0.10 

C-kit-1 12.3±0.07 7.8±0.20 5.2±0.17 

C-kit-2 13.3±0.20 8.2±0.17 6.1±0.20 

BCL-2 13.3±0.31 8.2±0.32 5.8±0.32 

Duplex DNA 0.0±0.35 0.0±0.21 0.0±0.41 

4.116 

F21T 14.2±0.41 9.2±0.31 6.8±0.12 

C-kit-1 18.5±0.12 13.5±0.06 10.4±0.27 

C-kit-2 21.1±0.32 16.4±0.29 12.8±0.25 

BCL-2 21.4±0.15 15.6±0.34 12.0±0.05 

Duplex DNA 1.0±0.14 0.0±0.21 0.0±0.31 

4.117 

F21T 12.1±0.15 4.5±0.15 2.9±0.22 

C-kit-1 15.8±0.20 7.2±0.26 4.4±0.12 

C-kit-2 17.8±0.14 10.6±0.12 7.6±0.32 

BCL-2 16.8±0.17 9.5±0.16 5.1±0.41 

Duplex DNA 0.0±0.32 0.0±0.07 0.0±0.36 

4.87 

F21T 16.0±0.37 10.0±0.12 6.4±0.27 

C-kit-1 18.0±0.24 9.8±0.17 2.9±0.10 

C-kit-2 22.2±0.25 15.1±0.14 11.6±0.17 

BCL-2 20.8±0.11 11.9±0.15 8.1±0.20 

Duplex DNA 0.0±0.00 0.0±0.10 0.0±0.05 
 

No compound in this group was as good as 4.93 at interacting with the F21T 

and C-kit-1 G-quadruplex sequences. 4.110 showed moderate interaction with 

all types of G-quadruplex used, providing 2.1°C, 5.2°C, 6.1°C and 5.8°C 

stabilisation against F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex sequences, 

respectively. 4.117 only slightly improved the stabilisation with respect to 4.110. 

On the other hand, 4.116 and 4.87 provided comparatively better stabilisation 

than that of 4.110 or 4.117; 4.116 provided 10.4°C, 12.8°C and 12.0°C 

stabilisation at 1 µM concentration against C-kit-1, C-kit-2 and Bcl-2 G-

quadruplex sequences respectively, but did not show any significant 

stabilisation against the F21T G-quadruplex. In contrast, 4.87 provided 11.6°C 

and 8.1°C stabilisation at 1 µM concentration against C-kit-2 and Bcl-2 G-

quadruplex sequences, respectively, and provided 6.4°C and 2.9°C stabilisation 

at 1 µM concentration against F21T and C-kit-1 G-quadruplex sequences 

respectively. Thus 4.87 is assumed to be more specific to the C-kit-2 sequence. 
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From the overall data analysis, it is concluded that electron-withdrawing nitro 

groups can enhance the interaction between ligands and G-quadruplexes. 

 

Figure 2.66: Craig plot representing σ constants versus π values of aromatic 

substituent groups 

(http://medchem4410.up.n.seesaa.net/medchem4410/image/110926.jpg?d=a1) 

At the same time the comparative FRET data analysis of the different 

benzofused polyamides in this group suggested that electron-withdrawing 

groups like chloride groups (-Cl) for 4.117 and cyanide groups (-CN) for 4.87 

appeared to enhance the interacting capacity whereas electron-donating groups 

like methyl groups (-CH3) for 4.99, methoxy groups (-O-CH3) for 4.116 and 

amino groups (-NH2) for 4.110 appeared to reduce the interacting capacity of 

benzofused polyamides (Table 2.45 and Table 2.46). Moreover, it is interesting 

to note that the comparatively more electron-withdrawing cyanide group (-CN) 

group-containing 4.87 provided more stabilisation than the less electron-

withdrawing chloride group-containing 4.117 (Figure 2.58). Similarly, electron-

donating groups like methyl and methoxy appeared to reduce the interacting 

capacity of benzofused polyamides in proportion to their electron donating 

power (Figure 2.58). 
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2.14.3 Introduction of Electron-Donating Group 
 

Interestingly, the molecule 4.99 was made in the form of 4.98 to further verify 

the nitro group effect previously detailed. Here, the effect of nitro group was 

observed by using a 3-(piperidin-1-yl) propan-1-amine tail instead of a N1, N1-

dimethylpropane-1,3-diamine tail with which this effect had already been 

observed. 

 

Figure 2.67: Structure of 4.99. 

Table 2.67: G-quadruplex and duplex DNA stabilization by ligand 4.99 in FRET 

melting experiments at concentrations of 5, 2 and 1 µM respectively (the data 

are means of three technical repeats) 

Compounds 
Quadruplex 

types 

∆Tm(°C) ±(s/d) 

5 µM 2 µM 1 µM 

4.99 

F21T 7.2±0.11 3.9±0.17 1.3±0.21 

C-kit-1 11.5±0.17 7.9±0.11 1.0±0.16 

C-kit-2 14.0±0.18 8.9±0.35 6.5±0.25 

BCL-2 11.6±0.07 6.0±0.21 4.4±0.31 

Duplex DNA 0.0±0.23 0.0±0.05 0.0±0.06 

 

4.99 provided 1.3 °C, 1.0 °C, 6.5 °C and 4.4 °C stabilisation at 1 µM 

concentration against F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex sequences, 

respectively. These values clearly distinguish the effect of nitro groups, as 4.98 

provided 5.9 °C, 15.5 °C, 11.3 °C and 9.6 °C stabilisation at 1 µM concentration 

against F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex sequences, respectively. 

Thus this further indicated that unlike electron-withdrawing groups, electron-

donating groups like methyl (-CH3) groups play a negative role in the interaction 

of ligand molecules with G-quadruplex sequences. 
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Library-4D 
 

2.15 Synthetic sScheme for Library-4D Molecules. 

A set of molecules (Figure 2.59) was synthesized through the replacement of 

indole with indazole rings by mirroring the structures of 4.77 and 4.93 in order to 

verify the relative abilities of indole or indazole in providing interaction capacity 

for the ligand towards G-quadruplex DNA. 

Figure 2.68: Synthetic scheme of library-4D molecules. 

Initially the acid (1.2 eq.) was dissolved in DMF (5 mL for 100 mg of starting 

material) in a round bottom flask fitted with a magnetic stirrer. Then DIC (1.75 

eq.) and HOBt (2.0 eq.) were added to the acid (1.0 eq.) and this mixture was 

allowed to stir at room temperature for formation of the ester from the acid. The 

amine (1 eq.) was added to the mixture and the mixture allowed stirring until the 

reaction was complete, as indicated by TLC or LCMS. Finally the reaction 
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mixture was applied to a conditioned SCX-2 cartridge and the resultant product 

was purified by the ‘Catch and Release’ method (described in the section 

‘Methods and Materials’ of Chapter 3). 

 

 

Figure 2.69: Structure of library-4D molecules. 

 

2.15.1 Characterisation of Benzofused Polyamides through Various 

Spectroscopic Techniques 

 

These benzofused polyamides were purified and fully characterized by different 

spectroscopic techniques including mass spectrometry, both 1H and 13C NMR, 

and IR techniques (described in the Experimental section of Chapter 4). 

Compounds were primarily identified by LCMS and confirmed using high 

resolution mass spectroscopy (HRMS) (Table 2.47 and 2.48). 
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Table 2.47: HRMS data for library-4D molecules 

Number Compound code 
Theoretical 

mass 
Observed mass 

[M+H]+ 

1 4.85 609.2197 610.2264 

2 4.86 609.2197 610.2258 

3 4.119 608.2244 609.2318 

4 4.88 608.2244 609.2317 

5 4.118 607.2292 608.2354 

 

2.15.2 Purity Analysis of Benzofused Polyamides Synthesized 
 

The purity of the benzofused polyamides of this library was checked by two 

different HPLC methods with two different retention times. Both methods were 

carried out on a Waters Alliance 1695 HPLC Pump with water and acetonitrile 

comprising the mobile phases. The Waters 996 PDA start wavelength was 210 

nm for the 10 minute method (Method A), with a start wavelength of 220 nm and 

end wavelength of 500 nm for the 5 minute method (Method B) (Table 2.48). 

Table 2.48: Purity data for library-4D molecules as observed by HPLC 

Number Compound code 
Purity 

Method A(10 min)% Method B(5 min)% 

1 4.85 100 100 

2 4.86 100 100 

3 4.119 100 92 

4 4.88 91 100 

5 4.118 100 100 
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Figure 2.70: Example of an adapted LCMS profile of Library-4D compound 

4.88 

Two molecules of benzofused polyamides were synthesized by the coupling of 

three consecutive, commercially available 5-nitro-indazole-3-carboxylic acid 

equivalents to produce molecules including 4.93 and 4.77 in order to investigate 

the promise of indole within the chemical scaffold. 
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Figure 2.71: Structure of equivalent molecules 4.85 and 4.86. 

Table 2.49: G-quadruplex and duplex DNA stabilization by ligands 4.85 and 

4.86 in FRET melting experiments at concentrations of 5, 2 and 1 µM 

respectively (the data are means of three technical repeats) 

Compounds 
Quadruplex 

types 

∆Tm(°C) ±(s/d) 

5 µM 2 µM 1 µM 

4.85 

F21T 11.0±0.21 4.3±0.15 1.4±0.32 

C-kit-1 11.8±0.31 8.0±0.20 4.4±0.42 

C-kit-2 17.9±0.11 10.7±0.25 8.2±0.26 

BCL-2 20.8±0.31 7.8±0.33 4.7±0.12 

Duplex DNA 0.0±0.16 0.0±0.31 0.0±0.20 

4.86 

F21T 14.8±0.30 10.5±0.11 8.0±0.06 

C-kit-1 16.9±0.12 13.1±0.36 9.9±0.32 

C-kit-2 21.7±0.04 16.6±0.7 13.1±0.21 

BCL-2 19.9±0.14 13.5±0.20 8.5±0.20 

Duplex DNA 0.0±0.12 0.0±0.17 0.0±0.06 
 

4.85 (structurally equivalent to 4.93) provided 1.4°C, 4.4°C, 8.2 °C and 4.7°C 

stabilisation at 1 µM concentration against F21T, C-kit-1, C-kit-2 and Bcl-2 G-

quadruplex sequences, respectively. These ∆Tm values were significantly less 

than those of 4.93, which indicated that benzofused polyamides made of three 

consecutive indole units (4.93) were preferable over benzofused polyamides 

made of three consecutive indazole units (4.85). However, 4.85 seemed to be 

specific to the C-kit-2 G-quadruplex sequence. 4.86 (structurally equivalent to 

4.77) provided 8.0°C, 9.9°C, 13.1°C and 8.5°C stabilisation at 1 µM 

concentration against F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex sequences 

respectively, thus 4.86 showed significantly more stabilising capacity than 4.85. 

This difference in melting temperature is possibly due to the formation of 

intramolecular hydrogen bonds between proximal amine and imine groups of 

the indazoles in the middle and terminal positions of 4.85. In contrast, in 4.86 

the terminal building block is 5’-2’ substituted rather than 5’-3’ substitution as in 
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4.85, making the amine and imine groups of 4.86 too far from each other, so 

that these groups can only form hydrogen bonds with the guanine residues of 

the G-quadruplex sequences rather making an intramolecular hydrogen bond 

as in 4.85. 

 

Figure 2.72: Structures of equivalent molecules 4.85 and 4.93. 

 

Table 2.50: Comparative stabilising abilities of the equivalent molecules 4.85 

and 4.93 (the data are means of three technical repeats) 

Quadruplex 
types 

∆Tm(°C) ±(s/d) 

4.85 4.93 4.85 4.93 4.85 4.93 

5 µM 5 µM 2 µM 2 µM 1 µM 1 µM 

F21T 11.0±0.21 21.0±0.17 4.3±0.15 15.9±0.28 1.4±0.32 12.6±0.26 

C-kit-1 11.8±0.31 27.7±0.30 8.0±0.20 22.1±0.35 4.4±0.42 17.6±0.28 

C-kit-2 17.9±0.11 21.3±0.23 10.7±0.25 14.8±0.20 8.2±0.26 11.4±0.32 

BCL-2 20.8±0.31 25.4±0.30 7.8±0.33 17.8±0.14 4.7±0.12 13.5±0.20 

Duplex DNA 0.0±0.16 0.0±0.05 0.0±0.31 0.0±0.05 0.0±0.20 0.0±0.05 

 

Here, 4.85 (structurally equivalent to 4.93) provided 1.4°C, 4.4°C, 8.2 °C and 

4.7°C stabilisation at 1 µM concentration against F21T, C-kit-1, C-kit-2 and Bcl-

2 G-quadruplex sequences, respectively. On the other hand, 4.93 provided 

12.6°C, 17.6°C, 11.4°C and 13.5°C stabilisation at 1 µM concentration against 

F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex sequences, respectively. 

From this DNA melting assay comparison, it is evident that 4.93 had far greater 

stabilisation capacity than 4.85 for all the G-quadruplex sequences used, 

reflecting the greater applicability of indole. Even though 4.86 showed a 

significantly higher activity, it did not have a better stabilisation capacity than 

4.77. 
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Figure 2.73: Structures of equivalent molecules 4.86 and 4.77. 

Table 2.51: Comparative stabilising abilities between equivalent molecules 4.86 

and 4.77 (the data are means of three technical repeats) 

Quadruplex 
types 

∆Tm(°C) ±(s/d) 

4.86 4.77 4.86 4.77 4.86 4.77 

5 µM 5 µM 2 µM 2 µM 1 µM 1 µM 

F21T 14.8±0.30 21.7±0.26 10.5±0.11 15.6±0.07 8.0±0.06 12.2±0.23 

C-kit-1 16.9±0.12 24.5±0.40 13.1±0.36 16.7±0.26 9.9±0.32 14.4±0.35 

C-kit-2 21.7±0.04 27.8±0.36 16.6±0.7 17.9±0.21 13.1±0.21 14.7±0.26 

BCL-2 19.9±0.14 30.8±0.21 13.5±0.20 15.7±0.28 8.5±0.20 12.1±0.25 

Duplex DNA 0.0±0.12 1.0±0.12 0.0±0.17 0.0±0.1 0.0±0.06 0.0±0.23 
 

Here, 4.86 (structurally equivalent to 4.77) provided 8.0°C, 9.9°C, 13.1°C and 

8.5°C stabilisation at 1 µM concentration against F21T, C-kit-1, C-kit-2 and Bcl-

2 G-quadruplex sequences, respectively. On the other hand, 4.77 provided 

12.2°C, 14.4°C, 14.7°C and 12.1°C stabilisation at 1 µM concentration against 

F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex sequences, respectively. 

From this DNA melting assay comparison, it is evident that 4.77 had a greater 

stabilisation capacity than 4.86 for all the G-quadruplex sequences used, further 

reflecting the superiority of the indole building block in this application. 

 

2.15.3 Structural Modifications of 4.85 and 4.86 
 

Although the benzofused polyamides made of three consecutive indazole 

carboxylic acids did not have show interactions towards the G-quadruplex 

DNAs than 4.93 and 4.77, they showed significant improved melting 

temperatures. Therefore there is a possibility that structural modifications of 

4.85 and 4.86, specifically capping with 5-nitro-indole-3-carboxylic acid and 5-

nitro-indole-2-carboxylic acid, may improve their interactive capacity. 
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Figure 2.74: Structures of 4.119 and 4.88. 

 

Table 2.52: Comparative G-quadruplex and duplex DNA stabilization between 

ligands 4.119 and 4.88 (the data are means of three technical repeats) 

Compounds 
Quadruplex 

types 

∆Tm(°C) ±(s/d) 

5 µM 2 µM 1 µM 

4.119 

F21T 17.8±0.17 14.8±0.26 13.0±0.35 

C-kit-1 18.2±0.13 14.2±0.23 11.1±0.21 

C-kit-2 20.4±0.23 17.8±0.24 16.4±0.32 

BCL-2 18.1±0.26 14.1±0.05 10.8±0.13 

Duplex DNA 0.0±0.1 0.0±0.05 0.0±0.11 

4.88 

F21T 12.1±0.2 8.1±0.20 6.1±0.11 

C-kit-1 10.8±0.27 6.1±0.36 2.6±0.23 

C-kit-2 18.9±0.15 14.6±0.20 12.8±0.18 

BCL-2 15.3±0.23 8.8±0.20 7.1±0.34 

Duplex DNA 0.0±0.11 0.0±0.10 0.0±0.20 
 

Here, 4.119 (structurally equivalent to 4.85 and 4.93) provided 13.0°C, 11.1°C 

16.4°C and 10.8°C stabilisation at 1 µM concentration against F21T, C-kit-1, C-

kit-2 and Bcl-2 G-quadruplex sequences, respectively. 4.88 (structurally 

equivalent to 4.86 and 4.77) provided 6.1°C, 2.6°C, 12.8°C and 7.1°C 

stabilisation at 1 µM concentration against F21T, C-kit-1, C-kit-2 and Bcl-2 G-

quadruplex sequences, respectively. It is notable that 4.88 was more specific 

towards the C-kit-2 sequence. Therefore, it is evident that indole in place of 

indazole improved the stabilisation capacity of the ligands and the third degree 

of curvature is preferable for fitting into the terminal quartet of the G-quadruplex 

sequence types. The higher activity of 4.119 was assumed to be because the 

distance between the nitrogen atoms of indazole and the terminal indole unit is 

far enough to avoid the intramolecular hydrogen bonding as assumed for 4.85. 
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The comparative melting data analysis indicates the preference of the indole 

over indazole building block at the terminal point of the ligands. 

 

Figure 2.75: Structures of semi-equivalent molecules 4.85 and 4.119. 

Table 2.53: FRET data comparison between 4.85 and 4.119 (the data are 

means of three technical repeats) 

Quadruplex 
types 

∆Tm(°C) ±(s/d) 

4.85 4.119 4.85 4.119 4.85 4.119 

5 µM 5 µM 2 µM 2 µM 1 µM 1 µM 

F21T 11.0±0.21 17.8±0.17 4.3±0.15 14.8±0.26 1.4±0.32 13.0±0.35 

C-kit-1 11.8±0.31 18.2±0.13 8.0±0.20 14.2±0.23 4.4±0.42 11.1±0.21 

C-kit-2 17.9±0.11 20.4±0.23 10.7±0.25 17.8±0.24 8.2±0.26 16.4±0.32 

BCL-2 20.8±0.31 18.1±0.26 7.8±0.33 14.1±0.05 4.7±0.12 10.8±0.13 

Duplex DNA 0.0±0.16 0.0±0.1 0.0±0.31 0.0±0.05 0.0±0.20 13.0±0.35 

 

Here, 4.85 (structurally equivalent to 4.119, only with exception of the terminal 

building block) provided 1.4°C, 4.4°C, 8.2°C and 4.7°C stabilisation at 1 µM 

concentration against F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex sequences, 

respectively. In contrast, 4.119 provided 13.0°C, 11.1°C, 16.4°C and 10.8°C 

stabilisation at 1 µM concentration against the same G-quadruplex sequences, 

respectively. Therefore, it is further evident that the indole, especially at the 

terminal position, is better than the benzimidazole building block at providing 

significant G-quadruplex stabilisation capacity. 

 

Figure 2.76: Structures of 4.86 and 4.88. 
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Table 2.54: FRET data comparison between equivalent molecules 4.86 and 4.88 

(the data are means of three technical repeats) 

Quadruplex 
types 

∆Tm(°C) ±(s/d) 

4.86 4.88 4.86 4.88 4.86 4.88 

5 µM 5 µM 2 µM 2 µM 1 µM 1 µM 

F21T 14.8±0.30 12.1±0.2 10.5±0.11 8.1±0.20 8.0±0.06 6.1±0.11 

C-kit-1 16.9±0.12 10.8±0.27 13.1±0.36 6.1±0.36 9.9±0.32 2.6±0.23 

C-kit-2 21.7±0.04 18.9±0.15 16.6±0.7 
14.6±0.2

0 
13.1±0.21 12.8±0.18 

BCL-2 19.9±0.14 15.3±0.23 13.5±0.20 8.8±0.20 8.5±0.20 7.1±0.34 

Duplex DNA 0.0±0.12 0.0±0.11 0.0±0.17 0.0±0.10 0.0±0.06 0.0±0.20 

 

Here, 4.86 (structurally equivalent to 4.88, only with the exception of the 

terminal building block) provided 8.0°C, 9.9°C, 13.1°C and 8.5°C stabilisation at 

1 µM concentration against F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex 

sequences, respectively. By comparison, 4.88 provided 6.1°C, 2.6°C 12.8°C 

and 7.1°C stabilisation at 1 µM concentration against F21T, C-kit-1, C-kit-2 and 

Bcl-2 G-quadruplex sequences, respectively. Both of them showed equivalent 

∆Tms against the sequences used, but it is notable that 4.119 showed better 

interaction than 4.88, since 4.119 provided 13.0°C, 11.1°C, 16.4°C and 10.8°C 

stabilisation at 1 µM concentration against F21T, C-kit-1, C-kit-2 and Bcl-2 G-

quadruplex sequences, respectively. Therefore, it is evident that third degree 

curved molecules of this type show more interactive capacity than their second 

degree curved equivalents. 

Since a terminal indole in place of an indazole makes a ligand more potent, a 

molecule (4.118 in the form of 4.119) was made by replacing indazole with 

another indole in the middle. 

 

Figure 2.77: Structure of 4.118. 
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Table 2.55: G-quadruplex and duplex DNA stabilization by ligand 4.118 in 

FRET melting experiments at concentrations of 5, 2 and 1 µM respectively    

(the data are means of three technical repeats) 

Compounds 
Quadruplex 

types 

∆Tm(°C) ±(s/d) 

5 µM 2 µM 1 µM 

4.118 

F21T 15.1±0.21 12.2±0.11 10.2±0.16 

C-kit-1 18.6±0.07 14.8±0.12 10.7±0.27 

C-kit-2 19.3±0.35 16.1±0.38 13.9±0.23 

BCL-2 26.4±0.31 15.9±0.06 12.2±0.27 

Duplex DNA 0.0±0.17 0.0±0.20 0.0±0.20 
 

Here, 4.118 (structurally equivalent to 4.119 and 4.93) provided 10.2°C, 10.7°C, 

13.9°C and 12.2°C stabilisation at 1 µM concentration against F21T, C-kit-1, C-

kit-2 and Bcl-2 G-quadruplex sequences, respectively. By comparison, 4.119 

provided 13.0°C, 11.1°C 16.4°C and 10.8°C stabilisation at 1 µM concentration 

against F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex sequences, respectively. 

Although 4.118 showed comparatively better activity towards Bcl-2 G-

quadruplex, 4.119 showed stabilising capacity for the other G-quadruplex types 

used. This indicated that the molecules made of consecutive indole building 

blocks were more potent with regard G-quadruplex interaction. These two 

molecules were equivalent in their G-quadruplex stabilising capacities. Finally, 

the most active molecules from this library were compared with lead ligand 

4.93. 

 

 

Figure 2.78: Structures of 4.119, 4.118 and 4.93. 
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Table 2.56: Comparative FRET data analysis between ligands 4.119, 4.118 and 

4.93 (the data are means of three technical repeats) 

Quadrupl
ex 

types 

∆Tm(°C) ±(s/d) 

5 µM 2 µM 1 µM 

4.119 4.118 4.93 4.119 4.118 4.93 4.119 4.118 4.93 

F21T 17.8±0.1 
15.1±0.

2 
21.0±0.17 14.8±0.2 12.2±0.1 15.9±0.2 13.0±0.35 10.2±0.16 12.6±0.26 

C-kit-1 18.2±0.1 
18.6±0.

0 
27.7±0.30 14.2±0.2 14.8±0.1 22.1±0.3 11.1±0.21 10.7±0.27 17.6±0.28 

C-kit-2 20.4±0.2 
19.3±0.

3 
21.3±0.23 17.8±0.2 16.1±0.3 14.8±0.2 16.4±0.32 13.9±0.23 11.4±0.32 

BCL-2 18.1±0.2 
26.4±0.

3 
25.4±0.30 14.1±0.0 15.9±0.0 17.8±0.1 10.8±0.13 12.2±0.27 13.5±0.20 

Duplex 
DNA 

0.0±0.1 
0.0±0.1

7 
0.0±0.05 0.0±0.05 0.0±0.20 0.0 0.0±0.11 0.0±0.20 0.0 

 

Here, 4.93 is a better ligand for providing stabilisation towards all of the G-

quadruplex sequences; the only exception is for c-kit-2. 4.93 provided 12.6 °C, 

17.6°C and 13.5°C stabilisation at 1 µM concentration against F21T, C-kit-1 and 

Bcl-2 G-quadruplex sequences, respectively; 4.118 and 4.119 showed greater 

melting temperatures (∆Tm=13.9 °C) and (∆Tm=12.2 °C) against the C-kit-2 

sequence. 4.119 had a greater stabilising capacity towards C-kit-2 than 4.118 

and 4.93; therefore it is evident that 4.93 is the ultimate lead ligand against 

F21T, C-kit-1 and Bcl-2 G-quadruplex sequences respectively. 4.93 is most 

active towards F21T compared to the other G-quadruplex sequences. In fact 

the ligands 4.119, 4.118 and 4.93 are interact equivalently and significantly with 

G-quadruplex DNA types. Thus these molecules can be used as structural 

scaffolds for further modification to achieve better G-quadruplex-targeting, drug-

like ligands. Although indazole at certain positions of the benzofused polyamide 

structure improves the ligand’s G-quadruplex interactivity, evidence from a 

variety of experiments previously discussed has established indole as a better 

benzofused unit which has a positive impact on the interaction of benzofused 

polyamides with G-quadruplex DNA by enhancing the stabilising capacity of the 

former. 
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Library-5 

2.16 Synthetic Scheme for Library-5 Molecules 

Library-5 was comprised of 9 compounds (Figure 2.70). Two sets of molecules 

were made by using commercially available 5-nitro-indole-3-carboxylic acid and 

5-nitro-indazole-3-carboxylic acid building blocks by following the structural 

motif of lead molecule 4.93. These molecules were synthesized with the aim to 

check whether benzofused polyamides with three consecutive building blocks 

are better G-quadruplex-interactive ligands than benzofused polyamides with 

two consecutive building blocks. 

 

Figure 2.79: Synthetic scheme of library-5 molecules. 

Initially the acid (1.2 eq.) was dissolved in DMF (5 mL for 100 mg of starting 

material) in a round bottom flask fitted with a magnetic stirrer. Then DIC (1.75 

eq.) and HOBt (2.0 eq.) were added to the acid (1.0 eq.) and this mixture was 

allowed to stir at room temperature for formation of the ester from the acid. The 

amine (1 eq.) was added to the mixture and the mixture allowed to stir until the 

reaction was complete, as indicated by TLC or LCMS. Finally the reaction 

mixture was applied to a conditioned SCX-2 cartridge and the resultant product 
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was purified by the ‘Catch and Release’ method (described in the section 

‘Methods and Materials’ of Chapter 3). 

 

 

Figure 2.80: Structures of library-5 molecules. 

2.16.1 Characterisation of Benzofused Polyamides through Various 

Spectroscopic Techniques 

 

Library-5 is comprised of 9 compounds. These benzofused polyamides were 

purified and fully characterized by different spectroscopic techniques including 
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mass spectroscopy, both 1H and 13C NMR, and IR techniques (see 

Experimental section in Chapter 4). Compounds were primarily identified by 

LCMS and confirmed using high resolution mass spectroscopy (HRMS) (Table 

2.57 and 2.58). 

Table 2.57: HRMS data for library-5 molecules 

Number Compound code Theoretical mass 
Observed mass 

[M+H]+ 

1 4.21 448.1859 449.1924 

2 4.64 448.1859 449.1925 

3 4.68 448.1859 449.1926 

4 4.120 403.2008 404.2072 

5 4.122 450.1764 451.1835 

6 4.83 450.1764 451.1826 

7 4.121 405.1913 406.1980 

8 4.84 420.2022 421.2095 

9 4.69 418.2117 419.2182 

 

2.16.2 Purity Analysis of Benzofused Polyamides Synthesized 
 

The purity of the benzofused polyamides of library-5 was checked by two 

different HPLC methods with two different retention times. Both methods were 

carried out on a Waters Alliance 1695 HPLC Pump with water and acetonitrile 

comprising the mobile phases. The Waters 996 PDA start wavelength was 210 

nm for the 10 minute method (Method A), with a start wavelength of 220 nm and 

end wavelength of 500 nm for the 5 minute method (Method B) (Tables 2.3 and 

2.4). 

Table 2.58: Purity data for library-5 molecules as observed by HPLC 

Number Compound code 
Purity 

Method A (10 min)% Method B (5 min)% 

1 4.21 100 100 

2 4.64 100 100 

3 4.68 100 92 

4 4.120 100 100 

5 4.122 100 100 

6 4.83 100 100 

7 4.121 100 100 

8 4.84 92 87 

9 4.69 100 100 
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Figure 2.81: Example of an adapted LCMS profile of Library-5 compound 4.21  
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Table 2.59: G-quadruplex and duplex DNA stabilization by ligands in FRET 

melting experiments at concentrations of 5, 2 and 1 µM respectively (the data 

are means of three technical repeats) 

Compounds 
Quadruplex 

types 

∆Tm(°C) ±(s/d) 

5 µM 2 µM 1 µM 

4.21 

F21T 3.4±0.11 1.3±0.27 0.5±0.30 

C-kit-1 6.2±0.27 3.1±0.29 1.5±0.07 

C-kit-2 10.8±0.32 5.7±0.21 3.4±0.22 

BCL-2 7.7±0.30 3.9±0.21 2.8±0.15 

Duplex DNA 0.0±0.26 0.0±0.15 0.0±0.18 

4.64 

F21T 4.8±0.25 2.5±0.28 1.2±0.11 

C-kit-1 8.7±0.13 5.9±0.23 3.7±0.26 

C-kit-2 14.2±0.11 9.4±0.14 7.0±0.16 

BCL-2 9.7±0.28 6.1±0.31 3.6±0.05 

Duplex DNA 0.0±0.6 0.0±0.17 0.0±0.27 

4.68 

F21T 10.0±0.13 6.5±0.35 3.9±0.18 

C-kit-1 13.3±0.38 10.2±0.42 7.3±0.45 

C-kit-2 15.7±0.11 12.2±0.17 9.1±0.41 

BCL-2 12.8±0.15 8.8±0.20 5.9±0.12 

Duplex DNA 0.0±0.23 0.0±0.18 0.0±0.28 

4.120 

F21T 2.3±0.31 0.9±0.25 0.4±0.17 

C-kit-1 4.9±0.33 2.8±0.15 1.6±0.06 

C-kit-2 7.7±0.12 5.4±0.27 3.7±.010 

BCL-2 3.9±0.16 1.8±0.20 1.3±0.11 

Duplex DNA 0.0±0.11 0.0±0.10 0.0±0.27 

 

Here, 4.21, a 5’-2’ substituted benzofused polyamide of two consecutive 5-nitro 

indole-2-carboxylic acids, provided 0.5°C, 1.5°C 3.4°C and 2.8°C stabilisation at 

1 µM concentration against F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex 

sequences, respectively. 4.64 (a first degree curved molecule), a 5’-3’ and 5’-2’ 

substituted benzofused polyamide of two consecutive 5-nitro indole-3-carboxylic 

acids and 5-nitro indole-2-carboxylic acid, showed a marginally better G-

quadruplex sequence interacting capacity with 1.2°C, 3.7°C, 7.0°C and 3.6°C 

stabilisation at 1 µM concentration against F21T, C-kit-1, C-kit-2 and Bcl-2 G-

quadruplex sequences, respectively. This difference in melting temperatures 

suggests that the introduction of curvature by the 5′-3′ substitution makes a 

ligand more potent towards the G-quadruplex sequences used in this study. 

This is further justified by FRET data of second degree curved molecule 4.68, 

made through the 5’-3’ substitution of consecutive 5-nitro-indole-3-carboxylic 

acids, which showed 3.9°C, 7.3°C, 9.1°C and 5.9°C stabilisation at 1 µM 
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concentration against F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex sequences, 

respectively.  

It is necessary to investigate the effect of nitro group of a ligand molecule. 

Therefore, 4.120 was made by following the shape of 4.68, capped with indole-

3-carboxylic acid instead of 5-nitro-indole-3-carboxylic acid. The melting 

temperatures against the different G-quadruplex types suddenly decreased as it 

provided stabilisation of 0.4°C, 1.6°C, 3.7°C and 1.3°C at 1 µM concentration 

against F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex sequences, respectively. 

This means the nitro group must play a positive role in increasing the stabilising 

capacity of these ligands. 

A molecule in the form of 4.68 with an electron-donating amino group rather an 

electron-withdrawing nitro group would be expected to enhance the interaction 

capacity of ligand molecules. 

A molecule was made by reducing the nitro group of 4.68 and was assessed by 

FRET melting assay to investigate further the effects of the nitro group. 

 

Figure 2.82: Structure of 4.69. 

Table 2.60: G-quadruplex and duplex DNA stabilization by ligand 4.69 in FRET 

melting experiments at concentrations of 5, 2 and 1 µM respectively (the data 

are means of three technical repeats) 

Compounds 
Quadruplex 

types 

∆Tm(°C) ±(s/d) 

5 µM 2 µM 1 µM 

4.69 

F21T 3.0±0.41 1.7±0.22 1.0±0.18 

C-kit-1 4.8±0.13 2.9±0.33 0.7±0.16 

C-kit-2 7.7±0.15 5.1±0.42 3.6±0.07 

BCL-2 6.5±0.23 3.6±0.13 1.9±0.21 

Duplex DNA 0.0±0.15 0.0±0.15 0.0±0.11 
 

It is evident that the reduced form of the nitro group reduces the stabilisation 

capacity of 4.68 as the melting temperatures were decreased to 1.0°C, 0.7°C, 

3.6°C and 1.9°C stabilisation at 1 µM concentration against F21T, C-kit-1, C-kit-
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2 and Bcl-2 G-quadruplex sequences respectively. However, it would be easier 

to visualise the effect of the nitro group by the direct comparison of the 

stabilisation capacities of both 4.68 and 4.69 in a same table. 

Table 2.61: Comparison of G-quadruplex and duplex DNA stabilization of 

ligands 4.69 and 4.68 in FRET melting experiments at concentrations of 5, 2 

and 1 µM, respectively (the data are means of three technical repeats) 

Quadruplex type 

∆Tm(°C) ±(s/d) 

4.69 4.68 4.69 4.68 4.69 4.68 

5 µM 5 µM 2 µM 2 µM 1 µM 1 µM 

F21T 3.0±0.41 10.0±0.13 1.7±0.22 6.5±0.35 1.0±0.18 3.9±0.18 

C-kit-1 4.8±0.13 13.3±0.38 2.9±0.33 10.2±0.42 0.7±0.16 7.3±0.45 

C-kit-2 7.7±0.15 15.7±0.11 5.1±0.42 12.2±0.17 3.6±0.07 9.1±0.41 

BCL-2 6.5±0.23 12.8±0.15 3.6±0.13 8.8±0.20 1.9±0.21 5.9±0.12 

Duplex DNA 0.0±0.15 0.0±0.23 0.0±0.15 0.0±0.18 0.0±0.11 0.0±0.28 

 

As shown above, 4.68, a 5’-3’ substituted benzofused polyamide with a terminal 

nitro group, provided 3.9°C, 7.3°C, 9.1°C and 5.9°C stabilisation at 1 µM 

concentration against F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex sequences 

respectively, far better than 4.69, a 5’-3’ substituted benzofused polyamide with 

the terminal amino group, which showed stabilisation of 1°C, 0.7°C, 3.6°C and 

1.9°C at 1 µM concentration against the same G-quadruplex sequences 

respectively. 

 

The overall FRET data analysis of this library of molecules suggests the 

following conclusions- 

 Most curved molecules potentially have a greater stabilisation capacity to 

interact with G-quadruplex sequences. This result resembles the findings 

as found for the structure activity relationship of 4.93. 

 Electron-withdrawing groups (for example, nitro groups) play a positive 

role in improving the G-quadruplex-interactive properties of a ligand 

molecule. 
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Table 2.62: G-quadruplex and duplex DNA stabilization by ligands in FRET 

melting experiments at concentrations of 5, 2 and 1 µM respectively (the data 

are means of three technical repeats) 

Compounds 
Quadruplex 

types 

∆Tm(°C) ±(s/d) 

5 µM 2 µM 1 µM 

4.122 

F21T 7.3±0.25 3.9±0.15 1.8±0.25 

C-kit-1 8.5±0.20 6.6±0.24 3.9±0.14 

C-kit-2 16.4±0.11 11.8±0.10 8.1±0.23 

BCL-2 13.8±0.31 8.4±0.37 5.1±0.12 

Duplex DNA 0.0±0.1 0.0±0.05 0.0±0.2 

4.83 

F21T 17.1±0.17 13.3±0.05 10.6±0.15 

C-kit-1 17.4±0.05 13.2±0.21 11.8±0.07 

C-kit-2 23.5±0.11 18.7±0.17 15.8±0.17 

BCL-2 21.1±0.20 16.2±0.23 12.8±0.15 

Duplex DNA 0.0±0.05 0.0±0.07 0.0±0.05 

4.121 

F21T 10.6±0.20 7.2±0.25 5.1±0.25 

C-kit-1 13.0±0.23 9.5±0.14 7.1±0.33 

C-kit-2 15.0±0.34 11.7±0.18 9.3±0.16 

BCL-2 12.5±0.16 9.4±0.35 6.5±0.37 

Duplex DNA 0.0±0.10 0.0±0.10 0.0±0.46 

4.84 

F21T 8.7±0.20 4.8±0.10 2.6±0.18 

C-kit-1 13.0±0.32 9.0±0.15 6.6±0.15 

C-kit-2 15.3±0.23 9.7±0.34 7.9±0.27 

BCL-2 12.6±0.14 6.9±0.16 2.9±0.26 

Duplex DNA 0.0±0.11 0.0±0.10 0.0±0.05 

4.69 

F21T 3.0±0.05 1.7±0.11 1.0±0.2 

C-kit-1 4.8±0.14 2.9±0.17 0.7±0.15 

C-kit-2 7.7±0.20 5.1±0.41 3.6±0.45 

BCL-2 6.5±0.16 3.6±0.18 1.9±0.13 

Duplex DNA 0.0±0.05 0.0±0.05 0.0±0.20 
 

As the indole derivatives did before, the above table illustrates the strong 

correlation between the interactive ability of ligands and both their shape and 

the presence electron-withdrawing groups in their structures. 

4.122, a 5’-3’ and 5’-2’ substituted benzofused polyamide formed of 5-nitro 

indazole-3-carboxylic acid and 5-nitro indazole-2-carboxylic acid, showed G-

quadruplex sequence interacting capabilities of 1.8 °C, 3.9 °C, 8.1 °C and 5.1 

°C at 1 µM concentration against F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex 

sequences, respectively, whereas the most curved molecule 4.83, a 5’-3’ and 

5’-3’ substituted benzofused polyamide of two consecutive indazole-3-

carboxylic acids, showed G-quadruplex sequence stabilisation of 10.6°C, 

11.8°C, 15.8°C and 12.8°C at 1 µM concentration against the same G-
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quadruplex sequences. The significant difference in the melting temperatures of 

each suggests again that the most curved ligands have better shapes with 

which to fit into G-quadruplex sequences. 

Now it is necessary to investigate the effect of the nitro group of the ligand 

molecules. Therefore, 4.121 was made by following the shape of 4.83, but 

capped with indazole-3-carboxylic acid instead of 5-nitro-indole-3-carboxylic 

acid. Melting temperatures against the different G-quadruplex types suddenly 

decreased as it provided stabilisation of 5.1°C, 7.1°C, 9.3°C and 6.5°C at 1 µM 

concentration against F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex sequences, 

respectively. This means the nitro group must play a positive role in increasing 

the stabilising capacity of these ligands. 

Making of a molecule in the form of 4.83 with an electron-donating amino group 

rather than an electron-withdrawing nitro group helped to investigate the effect 

of the nitro group. 

 

Figure 2.83: Structure of 4.84. 

Here, it was evident that the reduced form of the nitro group clearly reduced the 

stabilisation capacity of 4.83 as the melting temperatures decreased. However, 

it is easier to visualise the effect of the nitro group by directly comparing the 

stabilisation capacities of both 4.83 and 4.84 in one table. 

Table 2.63: Comparative FRET data analysis between the equivalent 

molecules 4.83 and 4.84 (the data are means of three technical repeats) 

Quadruplex 
types 

∆Tm(°C) ±(s/d) 

4.84 4.83 4.84 4.83 4.84 4.83 

5 µM 5 µM 2 µM 2 µM 1 µM 1 µM 

F21T 8.7±0.20 17.1±0.17 4.8±0.10 13.3±0.05 2.6±0.18 10.6±0.15 

C-kit-1 13.0±0.32 17.4±0.05 9.0±0.15 13.2±0.21 6.6±0.15 11.8±0.07 

C-kit-2 15.3±0.23 23.5±0.11 9.7±0.34 18.7±0.17 7.9±0.27 15.8±0.17 

BCL-2 12.6±0.14 21.1±0.20 6.9±0.16 16.2±0.23 2.9±0.26 12.8±0.15 

Duplex DNA 0.0±0.11 0.0±0.05 0.0±0.10 0.0±0.07 0.0±0.05 0.0±0.05 
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Here, 4.83, a 5’-3’ and 5’-3’ substituted benzofused polyamide of two 

consecutive 5-nitro indazole-3-carboxylic acids, showed G-quadruplex 

sequence stabilisation of 10.6°C, 11.8°C, 15.8°C and 12.8°C stabilisation at 1 

µM concentration against F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex 

sequences, respectively, which are far better than those of 4.84, a 5’-3’ 

substituted benzofused polyamide with the terminal amino group, which showed 

stabilisation of 2.6°C, 6.6°C, 7.9°C and 2.9°C at 1 µM concentration against the 

same G-quadruplex sequences. 

2.16.3 Comparative Study between Benzofused Polyamides of Two and 

Three Consecutive 5-Nitro-indazole-3-carboxylic acids respectively 

 

The pair of equivalent molecules 4.68 and 4.93 are directly comparable to each 

other. 

 

Figure 2.84: Structures of 4.68 and 4.93. 

Table 2.64: Comparative G-quadruplex and duplex DNA stabilization between 

ligands 4.68 and 4.93 in FRET melting experiments at concentrations of 5, 2 

and 1 µM respectively (the data are means of three technical repeats) 

Quadruplex 
types 

∆Tm(°C) ±(s/d) 

4.68 4.93 4.68 4.93 4.68 4.93 

5 µM 5 µM 2 µM 2 µM 1 µM 1 µM 

F21T 10.0±0.13 21.0±0.17 6.5±0.35 
15.9±0.2

8 
3.9±0.18 12.6±0.26 

C-kit-1 13.3±0.38 27.7±0.30 10.2±0.42 
22.1±0.3

5 
7.3±0.45 17.6±0.28 

C-kit-2 15.7±0.11 21.3±0.23 12.2±0.17 
14.8±0.2

0 
9.1±0.41 11.4±0.32 

BCL-2 12.8±0.15 25.4±0.30 8.8±0.20 
17.8±0.1

4 
5.9±0.12 13.5±0.20 

Duplex DNA 0.0±0.23 0.0±0.05 0.0±0.18 0.0±0.05 0.0±0.28 0.0±0.05 

 

Here, the most potent tri- and bi-aryl benzofused polyamides were taken to 

compare their melting temperatures against the G-quadruplex sequences used. 

It is evident that 4.93 (which provided ∆Tms of 12.6°C, 17.6°C, 11.4°C and 
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13.5°C stabilisation at 1 µM concentration against F21T, C-kit-1, C-kit-2 and 

Bcl-2 G-quadruplex sequences, respectively) showed a significantly higher 

degree of stabilisation than 4.68 (which showed 3.9°C, 7.3 °C, 9.1°C and 5.9°C 

stabilisation at 1 µM concentration against the same G-quadruplex sequences). 

Another pair of equivalent molecules, 4.83 and 4.119, are directly comparable 

to each other. 

 

Figure 2.85: Structures of 4.83 and 4.119. 

 

Table 2.65: Comparative G-quadruplex and duplex DNA stabilization between 

ligands 4.83 and 4.119 in FRET melting experiments at concentrations of 5, 2 

and 1 µM respectively (the data are means of three technical repeats) 

Quadruplex 
types 

∆Tm(°C) ±(s/d) 

4.83 4.119 4.83 4.119 4.83 4.119 

5 µM 5 µM 2 µM 2 µM 1 µM 1 µM 

F21T 17.1±0.17 17.8±0.17 13.3±0.05 14.8±0.26 10.6±0.15 13.0±0.35 

C-kit-1 17.4±0.05 18.2±0.13 13.2±0.21 14.2±0.23 11.8±0.07 11.1±0.21 

C-kit-2 23.5±0.11 20.4±0.23 18.7±0.17 17.8±0.24 15.8±0.17 16.4±0.32 

BCL-2 21.1±0.20 18.1±0.26 16.2±0.23 14.1±0.05 12.8±0.15 10.8±0.13 

Duplex DNA 0.0±0.05 0.0±0.1 0.0±0.07 0.0±0.05 0.0±0.05 0.0±0.11 

 

Here, 4.83 (which showed G-quadruplex sequence stabilisation of 10.6°C, 

11.8°C, 15.8°C and 12.8°C at 1 µM concentration against F21T, C-kit-1, C-kit-2 

and Bcl-2 G-quadruplex sequences, respectively) is nearly equivalent to 4.119 

(provided 13.0°C, 11.1°C, 16.4°C and 10.8°C stabilisation at 1 µM 

concentration against the same G-quadruplex sequences) with regards to their 

interactions towards the different G-quadruplex sequences. Thus there are 

opportunities to optimise this benzofused polyamide scaffold through both 

structural and functional group modifications. 
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An overall data comparison of these ligands suggests that benzofused 

polyamides made of three consecutive 5’-3’ substituted nitro indole carboxylic 

acids have a significantly higher ability to interact with and stabilise G-

quadruplex sequences than benzofused polyamides of two consecutive nitro 

indole carboxylic acids. On the other hand, benzofused polyamides made of 

three consecutive 5’-3’ substituted nitro indazole carboxylic acids have almost 

equivalent abilities to interact with G-quadruplex sequences types to 

benzofused polyamides of two consecutive nitro indazole carboxylic acids. 

 

2.17 Conclusions Based on the FRET Data Analysis of the 

Benzofused Polyamides of Libraries 1-5. 

 

Using a distamycin scaffold as a starting point, different types of benzofused 

building blocks were introduced in place of pyrroles with the help of a rational 

molecular modelling approach to improve the affinity of benzofused polyamides 

for G-quadruplexes while further reducing their affinity for duplex DNA in order 

to enhance their selectivity for quadruplex versus duplex DNA. 

A series of benzofused polyamides (18 molecules in total) (Library-1A and 

Library-1B) were initially synthesized through the 5′-2′ substitution of amide 

coupling reactions using different nitro-benzofused-carboxylic acids as building 

blocks and they were subsequently evaluated by FRET-based DNA thermal 

denaturation assays. However, these compounds failed to stabilize the G-

quadruplexes as much as expected. Though the molecules of library-1A and 

1B did not show significant interaction capacities toward G-quadruplex DNA 

types, the detailed FRET data analysis (i.e. ∆Tm values) of individual molecules 

provided some of the following preliminary ideas which in turn helped to design 

a new set of molecules. 

 Molecules including 4.15, 4.6 and 4.37 were found to show significant 

interaction at higher concentrations (5 µM) but they suddenly lost their 

stabilisation capacities at subsequent lower concentrations. These 

unexpected higher melting temperatures (for example, 4.37 provided 

18.1°C for F21T) were assumed to be contributed to by cooperative 
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binding of this molecule at high concentrations (5 µM). A dimer of 4.37 

may stack together over the terminal quartet of G-quadruplexes. As soon 

as molecular density decreases at the subsequent lower concentrations 

(i.e. 2 and 1 µM), the melting temperatures fall sharply (∆Tm=1.8 °C and 

1.1 °C, respectively). This means the molecular density of this molecule 

is not sufficient to make a dimer at low concentrations of 4.37 (Tables 

2.3, 2.4 and 2.7). 

 

 4.44 was slightly more interactive than any other molecules, as it 

provided stabilisation of 2.3°C, 1.5°C, 2.2°C and 2.9°C at 1 µM 

concentration against F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex 

sequences, respectively (Table 2.8). Thus it was assumed that the 

inclusion of nitrogen-containing building blocks (i.e. imidazole) may allow 

the possibility of hydrogen bond formation with guanine residues of the 

quadruplex and thereby enhance the ligand capacity to interact with the 

G-quadruplex structure to a certain extent. 

 

 Two structurally equivalent molecules (4.42 and 4.43) were synthesized 

to investigate whether an electron-withdrawing (Cl-) or donating group (-

CH3) on the 3rd building block could have any impact on their interacting 

capacities towards G-quadruplexes. Though the melting temperatures of 

these two molecules were not impressive, the minor differences between 

the ∆Tm values of these two molecules suggested that an electron-

withdrawing functional group may have a enhancing impact on their G-

quadruplex-interacting capacities; 4.43 showed stabilisation of 1.0°C,  

0.7°C, 1.4°C and 1.4°C at 1 µM concentration against F21T, C-kit-1, C-

kit-2 and Bcl-2 G-quadruplex sequences, respectively, which was 

insignificantly better than that of 4.42 (provided ∆Tm values of 0.4°C, 

0.3°C, 0.9°C and 0.3°C at 1 µM concentration against F21T, C-kit-1, C-

kit-2 and Bcl-2 G-quadruplex sequences, respectively) (Table 2.8). 

The benzofused polyamides of library-1A and library-1B were assumed to 

have more π-π interactions with terminal G-quartets than previously reported 

biaryl polyamides117, 203 but this was not reflected in the FRET-based DNA 

melting assay. Therefore molecular modelling studies were done on library-1A 
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and 1B molecules to rationalise their poor FRET-based meting temperatures 

(∆Tm) with the aim of designing a chemical scaffold for a series of library-2 

benzofused polyamides. Molecular docking experiments were undertaken on 

the human telomeric quadruplex F21T (PDB ID 3CDM) (Section 2.5). 

Molecular modelling of the G-quadruplex-interactive biaryl benzofused 

polyamide helps assess the curvature of molecules (left panel of Figure 2.21), 

which assists in the stabilisation of DNA by covering the terminal quartet. 

Library-1 molecules (e.g., 4.5) do not possess the requisite curvature, and 

therefore cannot cover the central core of the G-quadruplex DNA to stabilise 

quadruplex DNA (Figure 2.21). They are linear in structure. For example, 

molecular models of 4.5 (containing benzothiophene and benzofuran building 

blocks) showed that the molecule does not stack effectively on the quadruplex 

interface, thereby producing few non-covalent interactions (Figure 2.21). These 

studies recommended that the 5’-2’ substituted central benzofused moiety be 

replaced with a 5′-3’ substituted benzofused moiety to introduce curvature within 

the benzofused polyamide molecules (Figure 2.22). Therefore a set of new 

molecules (library-2) was synthesized by including 5-nitro-benzofused-3-

carboxylic acid as a second building block instead of 5-nitro-benzofused-2-

carboxylic acid through 3′-5′ substitution. Commercially available 5-nitro-indole-

3-carboxylic acid was introduced in the middle of the polyamides. 

FRET data analysis of library-2 molecules clearly indicated that the introduction 

of curvature within benzofused polyamides dramatically improves their 

interacting capacity towards different G-quadruplex DNA used. Equivalent 

molecules from each of the libraries (i.e. 4.18 of library-1 can be compared 

directly with 4.52 of library-2) were taken and their FRET data subsequently 

analysed to evaluate the impact of the introduction of curvature on their 

stabilization capabilities. 4.18 provided 0.8°C, 1.6°C, 2.4°C and 0.6°C 

stabilisation; in contrast, the relatively curved 4.52 showed 2.4 °C, 7.8 °C, 8.1°C 

and 5.6°C stabilisation at 1 µM concentration against F21T, C-kit-1, C-kit-2 and 

Bcl-2 G-quadruplex sequences respectively (Table 2.11 and 2.12). 

Molecular modelling of 4.18 (library-1 molecule) and 4.52 (library-2 molecule) 

bound to the telomeric F21T G-quadruplex illustrated the difference in the 

accommodation of library 1 molecules (4.18) and library 2 molecules (4.52). In 
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the case of 4.52, three benzofused molecules are capable of orienting directly 

over guanine bases, thereby enhancing stabilisation (Figure 2.27). 

Preliminary docking studies also suggested that the introduction of further 5’-3’-

substituted benzofused moieties to the polyamide core instead of 5’-2’-

benzofused moieties should enhance binding further (Fig. 2.28), and this was 

explored in library 3A. 

Here, a set of new molecules (library-3A) were synthesized by introducing 5-

nitro-indole-3-carboxylic acid in place of 5-nitro-benzofused-2-carboxylic acid 

either at the first or third building block positions of the library-2 molecules. 

Thus the final benzofused polyamides had more curvature compared to those of 

library-2. 

In general, the introduction of a second 5’-3’-benzofused moiety enhanced G-

quadruplex stabilisation. This is likely to have occured due to an enhanced 

shape-fit of the molecule within G-quadruplex DNA. FRET data analysis of the 

benzofused polyamides of library-2 and library-3A showed a clear difference 

in melting temperatures (∆Tm) between the two. The introduction of second 5’-

3’-benzofused moiety moderately improves the interacting capacity of 

polyamides. This can be explained through the comparison of ∆Tm values of 

two equivalent molecules - for example, 4.70 from library-3A and 4.52 from 

library-2. 4.70 showed comparatively more stabilising capacity than 4.52; the 

latter provided 2.4°C, 7.8°C, 8.1°C and 5.6°C stabilisation whilst the former 

provided 4.9°C, 9.2°C, 8.6°C and 7.4°C stabilisation at 1 µM concentration 

against F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex sequences, respectively 

(Tables 2.12, 2.17). This suggested that the introduction of additional curvature 

makes the ligand more potent. In addition, 4.52 and 4.70 both follow a nearly 

identical pattern of stabilisation towards the different G-quadruplex sequences 

used. However, molecular modelling of library-3A molecules suggested that 

the introduction of 5′-3′ substitution in the second of three consecutive building 

blocks (i.e. (5′-2′)-(5′-3′)-(5′-2′)) is more critical for the enhanced G-quadruplex 

stabilisation compared to the introduction of two 3′-5′ substitutions (i.e. (5′-3′)-

(5′-3′)-(5′-2′) or (5′-2′)-(5′-3′)-(5′-3′)) as seen in library-2 and library-3, 

respectively. Docking studies of the library-3A benzofused polyamides (such 

as 4.70) also suggested that the two 3′-5′ substituted benzofused moieties are 
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capable of interacting with the G-quadruplex, but appear to stack directly over 

the G tetrad (Section 2.9, Figure 2.35). The amidic tail of the molecule also 

appears to interact with DNA to some degree, thereby enhancing stabilisation. 

Therefore the curvature of library-3A molecules was taken as a molecular 

scaffold to investigate the electron-withdrawing nitro group at the 5′ position of 

the terminal building block, as it was observed from the previous library-1 

molecules (i.e. 4.42) that an electron-withdrawing functional group may have a 

positive impact on G-quadruplex interacting capacities. Therefore, a set of 

molecules (library-3B) were made through the modification of library-3A 

molecules by introducing a nitro group at the 5′ position of third building block. 

The synthesised molecules were capped with four different 5-nitro-3-carboxylic 

acid benzofused building blocks instead of benzofused building blocks 

containing a carboxylic acid in the 3’ position only (Figure 2.37). 

FRET data analysis suggested that the introduction of nitro group enhanced the 

interactive capacities of ligand molecules. This could be rationalised a number 

of ways, including by the formation of a hydrogen bond formation between nitro 

group of the ligand and amino, imine or carbonyl groups of the guanine residues 

of the G-quartet, by the potentially ability of the nitro group to recruit potassium 

ions which could help to stack the quartet together, or through possible 

electronic interactions provided by the addition of the nitro group. 

However, it is more convenient to evaluate the effect of nitro group inclusion by 

comparing between equivalent molecules of library-3A and library-3B. For 

example, 4.79 (a molecule of Library-3B) evidently showed better interacting 

capacity compared to the equivalent ligand 4.70 (a molecule of library-3A), 

since 4.70 provided 4.89°C, 9.2°C, 8.6°C, 7.4°C stabilisation and 4.79 provided 

6.0°C, 9.2°C, 11.2°C and 7.7°C stabilisation at 1 µM concentration against 

F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex sequences, respectively. 

Similarly, the other equivalent molecules, including 4.78, 4.77 and 4.80 

(molecules of library-3B), showed nearly the same pattern of interaction 

compared to their equivalent molecules, 4.71, 4.72 and 4.73, respectively. 4.77 

showed a significant stabilising capacity for G-quadruplex DNA, providing 

stabilisation of 12.2 °C, 14.4 °C, 14.7 °C and 12.2 °C stabilisation at 1 µM 

concentration against F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex sequences, 

respectively. It is also notable that 4.77 is a more G-quadruplex interacting 
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benzofused polyamide than any other structurally equivalent molecules of 

library-3B. Even the molecule 4.80, which was capped with an additional 

nitrogen atom-containing benzimidazole, provided relatively low ∆Tm values of 

6.0°C, 9.2°C, 11.2°C and 7.7°C stabilisation at 1 µM concentration against 

F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex sequences, respectively (Tables 

2.17, 2.24). Thus it is evident that indole is preferable as a third building block to 

enhance the stabilising capacity of ligands relative to the other benzofused 

building blocks tested. 

Therefore 4.77 was rationally considered to be a lead ligand for all of the G-

quadruplex sequences used and, accordingly, this specific polyamide was 

subjected to structural modifications via a structure-activity relationship to get a 

more potent ligand. Four additional molecules, including 4.23, 4.66, 4.60, 4.67 

and 4.93, were synthesized with all possible shape modifications of 4.77 

through changing the degree of curvature within their structures. It was 

observed that the linear molecule 4.23, made of three consecutive 5-nitro-

indole-2-caboxylic acids (through the three consecutive 5′-2′ substitutions 

(i.e.(5′-2′)-(5′-2′)-(5′-2′)), showed minimum G-quadruplex interactions (i.e. 0.3°C, 

0.4 °C, 0.03°C and 0.5°C stabilisation at 1 µM concentration against F21T, C-

kit-1, C-kit-2 and Bcl-2 G-quadruplex sequences, respectively) compared to any 

other molecules which had been selected for SAR. The subsequent molecules 

with increasing degrees of curvature because of 5′-3′ substitutions were found 

to be increasingly more interactive towards G-quadruplex DNA. For example, 

relatively curved molecules 4.66 (i.e. (5′-3′)-(5′-2′)-(5′-2′)), 4.60 (i.e.(5′-2′)-(5′-3′)-

(5′-2′)) and 4.67 (i.e. (5′-2′)-(5′-2′)-(5′-3′)), with 5’-3’ substitutions of 5-nitro-

benzofused-3-carboxylic acid at different positions of nitro-benzofused 

polyamides, showed relatively more interacting capacities than the relatively 

linear 4.23 molecule (Table 2.30). However, it is notable that the molecule 4.60, 

with a 3′-5′ substitution at the middle, showed the most significant ∆Tm values 

(5.7°C, 11.5°C, 10.9°C and 6.6°C stabilisation at 1 µM concentration against 

F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex sequences, respectively) among 

the molecules with a single 3′-5′ substitution as in 4.66 and 4.67 (i.e. at the first 

or third of three consecutive building blocks). This supported the previous 

observations (as seen in the comparative analysis of library-2 and library-3A 

molecules) that the introduction of 5′-3′ substitution in the second of three 
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consecutive building blocks (i.e. (5′-2′)-(5′-3′)-(5′-2′)) is more critical for 

enhanced G-quadruplex stabilisation. 

Accordingly, a molecule 4.77 (i.e. (5′-3′)-(5′-3′)-(5′-2′)) was found to be more 

interactive than the less curved 4.60 (i.e. (5′-2′)-(5′-3′)-(5′-2′)). Finally, molecule 

4.93 (i.e. (5′-3′)-(5′-3′)-(5′-3′)), with the highest degree of curvature because of 

three consecutive 5′-3′ substitution of 5-nitro-indole-3-carboxylic acids, was 

found to show a more significant interaction towards G-quadruplex DNA than 

that of 4.77; 4.93 provided 12.6°C, 17.6°C, 11.4°C and 13.5°C stabilisation at 1 

µM concentration against F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex 

sequences, respectively (Table 2.30). This is strong evidence for the idea that 

the greater the degree of curvature, the greater the interactions towards G-

quadruplex DNA, and this trend can be simplified as 4.93˃4.77˃4.60˃4.23 

(Figure 2.76). Finally, this structure-activity relationship (SAR) was then 

rationalised by the shape-based assessment of 4.93 analogues (Section 2.11) 

(i.e. the molecular modelling studies of benzofused polyamides 4.23 (Figure 

2.43), 4.60 (Figure 2.44), 4.77 (Figure 2.45) and 4.93 (Figure 2.46) (Table 

2.31)). 

 

Figure 2.86: Graph of the relationship between degree of curvature and ∆Tm 

values for different G-quadruplex DNA. 

A new library of molecules (library-4A) containing four different benzofused 

polyamides was synthesized to investigate the relevance of the electron-
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withdrawing NO2 group to the activity of the most active compound 4.93. The 

synthesised molecules were capped with a benzofused building block 

containing a carboxylic acid in the 3’ position only, instead of a 5-nitro-3-

carboxylic acid benzofused building block as found in 4.93, to further assess 

this factor. At the same time, the equivalent molecules from library-3A and 

library-4A were directly compared to investigate the effect of structural 

curvature within their structures on interactive capacity towards G-

quadruplexes. All of these molecules except 4.92 were found to be moderately 

interactive towards the different G-quadruplex sequence types; 4.92 provided 

9.3°C, 15.7°C, 13.4°C and 10.3°C stabilisation at 1 µM concentration against 

F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex sequences respectively (Table 

2.34). The significant activity of 4.92 is due to the effect of the additional 

nitrogen atom of the terminal indazole building block, as discussed previously. 

The effect of the nitro group can be evaluated by the direct comparison of 

molecules 4.91 and 4.93 of library-4A and library-3B, respectively. The 

molecule 4.91, without a nitro group, provided 2.9°C, 8.2°C, 8.9°C and 7.5°C 

stabilisation, whereas the molecule 4.93 containing nitro group provided 12.6°C, 

17.6°C, 11.4°C and 13.5 °C stabilisation at 1 µM concentration against F21T, C-

kit-1, C-kit-2 and Bcl-2 G-quadruplex sequences, respectively. Thus it is 

obvious that 4.93 is more interactive towards G-quadruplex sequences of all 

types used than 4.91. Therefore it is strongly evident that the nitro group play an 

important role in the improvement of ligand interacting capacities (Table 2.30 

and 2.34). 

Direct comparison between equivalent molecules 4.72 and 4.91 of library-3A 

and library-4A evaluate the effect of additional curvature due to the introduction 

of third benzofused (i.e. as 4.91) building block through the 5′-3′ substitution. 

4.91 provided 2.9°C, 8.2°C, 8.9°C and 7.5°C stabilisation while the equivalent 

4.72 provided 2.6°C, 6.8°C, 5.8°C and 4.2°C stabilisation at 1 µM concentration 

against F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex sequences respectively 

(Table 2.38). Thus molecule 4.91 (the more curved of the two) was found to be 

more G-quadruplex interactive than 4.72 (less curved). This observation 

suggests that the inclusion of a third 5’-3’-substituted benzofused moiety should 

enhance G-quadruplex stabilisation to a small degree compared to two 5’-3’-

substituted benzofused moieties (Figure 2.52). 



213 
 

Hence the most interactive compound 4.93 was then taken as a new lead for 

further structure-activity relationship studies. Accordingly, new sets of molecules 

were synthesized through the modification of the tertiary amine tails (i.e library-

4B) and functional groups (i.e library-4C) attached with the third benzofused 

building block of 4.93. A total of 4 molecules (i.e library-4B) were synthesized 

through the replacement of the N1, N1-dimethylpropane-1,3-diamine tertiary 

amine tail of 4.93. These molecules included 4.98, with a tail of 3-(piperidin-1-yl) 

propan-1-amine, 4.104, with a tail of 3-(pyrrolidin-1-yl)propan-1-amine, 4.109, 

with a tail of 3-morpholinopropan-1-amine, and 4.115, with a tail of 3-(4-

methylpiperazin-1-yl)propan-1-amine. 

FRET data analysis showed that these four molecules with different tails did not 

show the stabilising capacity like 4.93 showed. For example, 4.98 provided 

5.9°C, 15.5°C, 11.3°C and 9.6°C stabilisation, whereas 4.93 provided 12.6°C, 

17.6°C and 11.4°C stabilisation at 1 µM concentration. This suggested that the 

N1, N1-dimethylpropane-1, 3-diamine tail was better than any other tails used in 

improving the interacting capacities of benzofused polyamides.  

Library-4C molecules were synthesized (Figure 2.57) by the structural 

modification of 4.93 through the substitution of the nitro group with different 

functional groups for optimisation of the interacting capacity of lead ligand 4.93.  

Molecules, including 4.99 with a methyl group (-CH3), 4.110 with an amino 

group (-NH2), 4.116 with a methoxy group (-O-CH3), 4.117 with a chloride group 

(-Cl) and 4.87 with cyanide group (-CN), did show moderate interactions but not 

as significant as for 4.93. For example, 4.110 provided 2.1°C, 5.2°C, 6.1°C and 

5.8°C stabilisation, whereas 4.93 provided 12.6°C, 17.6°C and 11.4°C 

stabilisation at 1 µM concentration (Table 2.45). This suggests that the electron 

pulling nitro group is essential for improving the interacting capacity of 

benzofused polyamides. 

At the same time, the comparative FRET data analysis among the different 

benzofused polyamides in this group suggested that electron-withdrawing 

groups, like the chloride group (-Cl) for 4.117 and cyanide group (-CN) for 4.87,  

appeared to enhance interacting capacity whereas electron-donating groups 

like methyl groups (-CH3) for 4.99, methoxy groups (-O-CH3) for 4.116 and 

amino groups (-NH2) for 4.110, appeared to reduce the interacting capacity of 
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benzofused polyamides (Tables 2.45 and 2.46). Moreover, it is interesting that 

the comparatively more electron-withdrawing cyanide group-containing 4.87 

provided more stabilisation than the relatively less electron-withdrawing chloride 

group-containing 4.117 (Figure 2.58). Similarly, electron-donating group-

containing ligands, like 4.99 and 4.116, follow an equivalent degree of reduction 

in interacting capacity according to the strength of their electron-donating group 

(Figure 2.58). 

Since 4.92 of library-4A showed more significant interaction (i.e 9.3°C, 15.7°C, 

13.4°C and 10.3°C stabilisation at 1 µM concentration against F21T, C-kit-1, C-

kit-2 and Bcl-2 G-quadruplex sequences, respectively) (Table 2.34). compared 

to the other library members (i.e. molecules which have been capped with 

indole, such as 4.91, benzofuran, such as 4.90, and benzothiophine-3 

carboxylic acids, such as 4.89, respectively), it is necessary to verify the effect 

of indazole over indole in improving the interacting capacity of benzofused 

polyamides of three consecutive nitro-benzofused-acids. Therefore, a set of 5 

molecules (Library-4D) (Figure 2.61) were synthesized through the 

replacement of indole with indazole rings by following the structures of 4.77 and 

4.93 to verify the preference of either indole or indazole in providing interacting 

capacity of ligand towards G-quadruplex DNA. Benzofused polyamidse of three 

consecutive indazole units were supposed to provide a significant interaction 

but the FRET data analysis on the equivalent molecules 4.85 (i.e. molecule of 

three consecutive indazole units) and 4.93 (i.e. a molecule of three consecutive 

indole units) showed that 4.85 is less G-quadruplex interactive than 4.93. 4.85 

provided 1.4°C, 4.4°C, 8.2°C and 4.7°C stabilisation at 1 µM concentration 

against F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex sequences, respectively 

(Table 2.50). On the other hand, the molecule 4.86 (equivalent to 4.77) 

provided much better interaction (i.e. 8.0°C, 9.9°C, 13.1°C and 8.5°C of 

stabilisation at 1 µM concentration against F21T, C-kit-1, C-kit-2 and Bcl-2 G-

quadruplex sequences respectively) than 4.85 (Table 2.49). 

This difference in melting temparature is possibly due to the formation of 

intramolecular hydrogen bonds between proximal amine and imine groups of 

the indazole at the middle and terminal positions of 4.85. In contrast, in 4.86 the 

terminal building block is 5’-2’ substituted rather than 5’-3’ substitution as in 

4.85. This makes the amine and imine group of 4.86 too far away from each 
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other, so that these groups can only form hydrogen bonds with the guanine 

residues of G-quadruplex sequences rather making an intramolecular 

haydrogen bond as in 4.85. Thus three other molecules including 4.119 (i.e. 

equivalent to the shape of 4.93 and capped with nitro indole), 4.118 (i.e. 

equivalent to the shape of 4.93 but with a second building block of indole and 

capped with nitro indole) and 4.88 (i.e. equivalent to the shape of 4.77 and 

capped with nitro indole) were synthesized. 

The comparative FRET data analysis on 4.119, 4.118 and 4.93 showed that 

these molecules were significantly interactive towards G-quadruplex DNA types. 

As 4.119, 4.118 and 4.93 provided 13.0°C, 11.1°C 16.4°C and 10.8°C 

stabilisation, 10.2°C, 10.7°C, 13.9°C and 12.2°C stabilisation and 12.6°C, 

17.6°C, 11.4°C and 13.5 °C at 1 µM concentration against F21T, C-kit-1, C-kit-2 

and Bcl-2 G-quadruplex sequences respectively (Table 2.52, 2.55 and 2.59). 

This result suggests that replacement of the indazole unit with an indole unit in 

the middle and terminal positions of 4.118 and 4.119 makes the amine and 

imine groups far enough away from each other that these groups cannot 

participate in the formation of intramolecular hydrogen bonds. The overall data 

analysis of this library suggests that indole is a better building block for 

benzofused polyamides of three consecutive units than indazole. But it is also 

important to remember that indazole could be a better building block to make 

these compounds if these building blocks can be separated by an indole unit in 

such a way that they cannot form intramolecular hydrogen bonds. 

Lastly, two sets of molecules (9 compounds in total) (library-5) with varying 

degrees of structural curvature were synthesized using commercially available 

5-nitro-indole-3-carboxylic acid and 5-nitro-indazole-3-carboxylic acid building 

blocks by following the structural motif of lead molecule 4.93 (Figure 2.70). 

These molecules were synthesized with the aim of checking whether 

benzofused polyamides of three consecutive building blocks are better 

interactive ligands than benzofused polyamides of two consecutive building 

blocks. At the same time, the effect of electron-withdrawing and donating 

groups was also verified. FRET data analysis of 4.68 (molecule of two indole 

units with a nitro group at 5′ position of the second building block unit) and 

4.122 (molecule of two indole units without a nitro group at 5′ position of the 

second building block unit) clearly showed an extra effect of the nitro group, as 
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4.68 provided 3.9°C, 7.3°C, 9.1°C and 5.9°C stabilisation, compared to 0.4°C, 

1.6°C, 3.7°C and 1.3°C stabilisation from 4.122 (1 µM concentration against 

F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex sequences, respectively). This 

extra nitro group effect was further verified through observing exactly the same 

tendency in 4.83 (molecule of two indazole units with a nitro group at 5′ position 

of the second building block unit) versus 4.121 (molecule of two indazole units 

without a nitro group at 5′ position of the second building block unit) (Table 2.59 

and 2.62). 

The ∆Tm values of 4.21 (i.e. a molecule of (5′-2′)-(5′-2′) substitution), 4.64 (i.e. a 

molecule of (5′-3′)-(5′-2′) substitution) and 4.68 (i.e. a molecule of (5′-3′)-(5′-3′) 

substitution) showed that the linear-shaped 4.21 is less interactive than the 

relatively curved 4.64. Furthermore, the most curved molecule 4.68 was found 

to show the most significant interaction. This suggests that interacting activity 

increases with the degree of curvature in ligand molecules. The molecules of 

equivalent curvature 4.122 (i.e. a molecule of (5′-3′)-(5′-2′) substitution) and 4.83 

(i.e. a molecule of (5′-3′)-(5′-3′) substitution) also showed the same trend of 

interacting capacities as found for the benzofused polyamides of two 

consecutive indole units (Table 2.62). However, it is notable that 4.83 provided 

more significant stabilisation (i.e. 10.6°C, 11.8°C, 15.8°C and 12.8°C 

stabilisation at 1 µM concentration against F21T, C-kit-1, C-kit-2 and Bcl-2 G-

quadruplex sequences, respectively) than 4.68. This means that a third indazole 

unit, as in 4.85, might be responsible for forming intramolecular hydrogen bonds 

and thereby reducing the stabilising capacity of ligand molecules. 

The reduction of electron-withdrawing nitro groups to the electron-donating 

amino groups sharply decreased the interacting capacity of ligand molecules 

(Tables 2.61 and 2.63). These molecules, including 4.69 (reduced form of 4.68) 

and 4.84 (reduced form of 4.83) showed far less significant ∆Tm values than 

their nitro group-containing parent molecules. Therefore, the data obtained from 

the library-5 molecules were found to be totally supportive to the observations 

made from the previous libraries. 
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 Conclusive remarks on overall FRET data analysis of all of the libraries- 

 Benzofused polyamides (i.e. library-1A and library-1B) of three 

consecutive 5-nitro-indole-2-caboxylic acids, synthesised through three 

consecutive 5′-2′ substitutions (i.e. (5′-2′)-(5′-2′)-(5′-2′)), showed minimum 

G-quadruplex interactions against F21T, C-kit-1, C-kit-2 and Bcl-2 G-

quadruplex sequences, respectively. These molecules (for example, 4.5) 

do not cover the central core of the quadruplex interface and therefore 

cannot stack effectively upon it. Thus they produce few non-covalent 

interactions. 

 

 It is evident from biophysical and molecular modelling studies that the 

introduction of a 5’-3’ substituted moiety (i.e. library-2 molecules of (5′-

2′)-(5′-3′)-(5′-2′) substitutions) instead of a 5’-2’-substituted moiety, as in 

library-2, had a significant effect on the binding of benzofused polyamide 

molecules to quadruplex DNA. This introduction of a 5’-3’ substituted 

benzofused molecule (for example, 4.52) in the middle of the benzofused 

polyamides dramatically improved their interacting capacity towards G-

quadruplex DNA. 

 

 The inclusion of either a first or third 5’-3’-substituted benzofused moiety 

enhanced G-quadruplex stabilisation to a small degree compared to 

inclusion of a second substituted benzofused molecule. 

 

 Introduction of 5-nitro-indole-3-carboxylic acid in place of 5-nitro-

benzofused-2-carboxylic acid either at the first or third building block of 

the library-2 molecules enhanced stabilisation of each quadruplex 

structure to a small degree. This likely occurs due to an enhanced 

shape-fit of the molecule within G-quadruplex DNA. However, the 

introduction of 5′-3′ substitution in the second of the three consecutive 

building blocks (i.e. (5′-2′)-(5′-3′)-(5′-2′)) is more critical to enhanced G-

quadruplex stabilisation compared to the introduction of two 3′-5′ 

substitutions (i.e. (5′-3′)-(5′-3′)-(5′-2′) or (5′-2′)-(5′-3′)-(5′-3′)) as seen in 

library-2 and library-3, respectively.  
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 The introduction of electron-withdrawing groups, especially nitro groups, 

at the 5’ position of the third benzofused building block significantly 

enhanced the interacting capacity of ligands. On the other hand, 

electron-donating groups, especially amino groups, significantly reduced 

the interacting capacity of ligands. 

 

 

 Benzofused polyamides (for example 4.93) with the highest degree of 

curvature (i.e. (5′-3′)-(5′-3′)-(5′-3′)) because of three consecutive 5′-3′ 

substitution of 5-nitro-indole-3-carboxylic acids (i.e. (5′-3′)-(5′-3′)-(5′-3′)) 

were found to show the most significant interaction towards G-

quadruplex DNA. 

 

 Benzofused polyamides of three consecutive building blocks (i.e. 4.93) 

(i.e. (5′-3′)-(5′-3′)-(5′-3′)) were found to be more significantly interactive 

ligands than the benzofused polyamides (i.e. 4.68) (i.e. (5′-3′)-(5′-3′)) of 

two consecutive building blocks. 

 

 Indole was found to be the preferable building block for relatively 

significant interactive capacity of benzofused polyamide of three 

benzofused carboxylic acids. 

 

 Indazole is a preferable building block for relatively significant interactive 

capacity of benzofused polyamides of two benzofused carboxylic acids. 

 

 Indazole might be the preferable building block for benzofused 

polyamides of three units when they are substituted as first and second 

building blocks. 

 

 The tertiary amine tail N1, N1-dimethylpropane-1,3-diamine was found to 

be better than any other tails at improving the interacting capacities of 

benzofused polyamides. 
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2.18 Cytotoxicity Test using the MTT Assay 

The MTT assay was used to evaluate the cell-killing ability of the synthesised 

molecules. The IC50 (the concentration of compound at which 50% of cells die) 

of selected molecules was calculated over 96 hour incubation. 

The newly synthesized compounds were evaluated in two human cancer cell 

lines, namely MDA-MB-231(triple negative breast cancer cell line) and HeLa 

(cervical cancer cell line). 

In total, seventy compounds were evaluated for their cytotoxic efficacy in the 

MDA-MB-231 cancer cell line through a preliminary MTT assay screen at a 

concentration of 25 µM. The nine molecules with the lowest IC50 were then 

selected for further cytotoxic studies in HeLa cell line. An upper limit of 50μM 

was set in the preliminary screen and compounds with IC50 values of 50 µM or 

more were considered to be poor leads for further analysis.  

 

2.18.1 MTT Assay Results with the MDA-MB-231 Cell Line (Breast Cancer 

Cell Line) and HeLa cell Line. 

 

According to the IC50 values described in Tables 2.66 and 2.67, the selected 

compounds (9 in total) from different libraries had the most significant 

cytotoxicity in the MDA-MB-231 cell line compared to the other molecules 

synthesized in different libraries. The compounds including 4.37, 4.41, 4.45, 

4.40, 4.11, 4.18 and 4.71 were found to show a significant cytotoxicity in 

significant cytotoxicity in the MDA-MB-231 cell line. On the other hand, four 

compounds including 4.45, 4.40, 4.11 and 4.18 were found to show a significant 

cytotoxicity in the HeLa cell line at different concentrations. 
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Figure 2.87:  Dose Response Curves indicating the survival percentages of 

MDA-MB-231 cells at various concentrations of compounds 4.37, 4.41, 4.45, 

4.40, 4.11, 4.18 and 4.71 respectively. 
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 Figure 2.88:  Dose Response Curves indicating the survival percentages of 

Hela cells at various concentrations of compounds 4.45, 4.40, 4.11 and 4.18 

respectively. 

Table 2.66: Cytotoxic effect of compounds with their IC50 concentrations in the 

MDA-MB-231 cell line (the data presented here are means of three technical 

repeats)  

Library Compound code 
IC50 values (µM)± (s/d) 

Mean(n=3) 

Standard 

Deviations 

Library-1 

4.37 58 11.01514 

4.41 9.12 2.940204 

4.45 0.040 1.980034 

4.40 12.75 3.085585 

4.11 21.82 6.838431 

4.18 86.75 10.87524 

Library-3A 4.71 86.75 9.381942 
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Table 2.67: Cytotoxic effect of compounds with their IC50 concentrations in the 

HeLa cell line (the data presented here are means of three technical repeats)   

 

Library Compound code 
IC50 values (µM)± (s/d) 

Mean(n=3) 
Standard Deviations 

Library-1 

4.45 9.12 2.989671 

4.40 61.29 8.443619 

4.11 21.17 3.423395 

4.18 120 16.44182 
 

It is noteworthy that Library-2, 3 and 4 molecules, all showed interactivity with 

G-quadruplex through biophysical studies (i.e. FRET based DNA melting 

assay). However, the FRET results did not correlate with cytotoxicities. A 

number of the least interactive molecules with the G-quadruplex exhibited the 

most potent cytotoxicities. For example, compound 4.45 possesses a 

cytotoxicity of 40nM, but biophysical studies suggest insignificant binding to the 

G-quadruplex (i.e., ∆Tm values of 0.6°C, 1.3°C, 2.7°C and 1.5°C at 1 µM 

concentration against F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex sequences, 

respectively). This suggests a potential alternative mechanism of action to G-

quadruplex stabilisation. 

Compound 4.71, on the other hand, was shown to be a potent quadruplex 

binding agent, with ∆Tm values of 7.2°C, 15.1°C, 8.3°C and 5.9°C at 1 µM 

concentration against F21T, C-kit-1, C-kit-2 and Bcl-2 G-quadruplex sequences 

observed in FRET binding studies. However, this molecule showed insignificant 

cytotoxicity towards MDA-MB 231 (i.e., IC50 values of 86.75 µM against MDA-

MB 321 cell line).  

In general, it is evident that increasing molecule curvature and enhancing G-

quadruplex stabilisation does not result in enhanced cytotoxicity in the case of 

triaryl benzofused polyamides.  
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2.19 Conclusion Based on the MTT Assay Results for the 

Benzofused Polyamides (Libraries 1-5). 

 

It is evident from the results of the cytotoxicity assay that there is a little 

correlation between the biophysical studies and the MTT assay results. 

The most cytotoxic molecules have a similar 3-dimensional shape (i.e., three 

5’/2’-substituted benzofused polyamide building blocks), suggesting that this 

particular shape may be associated with the cytotoxic effect. A similar cytotoxic 

effect is not observed for members of the other libraries which have different 3-

dimensional shapes.   For example, most of the cytotoxic molecules (i.e., 4.41, 

4.45 and 4.40), possess a 3-(pyrrolidin-1-yl) propan-1-amine fragment as an 

amidic tail, suggesting that this component may play a role in the cytotoxicity of 

these molecules. 

A degree of selectivity of the lead cytotoxic molecules between the MDA-MB-

231 and HeLa cell lines is evident. For example, the lead cytotoxic molecule 

4.45 has IC50 values of 0.040 µM and 9.12 µM for the MDA-MB-231 and HeLa 

cell lines, respectively. 

 

It should be noted that the dose response curves obtained for the HeLa cell line 

were not optimal, and so accurate IC50’s could not be obtained from these 

curves. Further cytotoxicity studies to improve the reliability of these results 

could not be carried out due to time constraints and technical issues relating to 

the cell culture facility in Britannnia House, so further studies will be undertaken 

in the future.  
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2.20 Future Work 

Although a number of potent G-quadruplex stabilising agents have been 

generated during this study, a distinct lack of correlation between cytotoxicity 

and biophysical studies was observed. Therefore, in terms of a screening 

strategy, these results suggest that it is better to synthesize and test for 

cytotoxicity rather than undertake biophysical evaluation to aid selection of 

molecules for cytotoxicity testing. As such, in the case of the triaryl benzofused 

polyamides, a focused library should be generated around molecule 4.45 and a 

mechanism of action should be established. It is also necessary to modify the 

lead molecule structurally with the optimisation of amidic tail, functional group, 

benzofused building block types, solubility and other pharmacokinetic 

parameters.  Different techniques such as gene expression studies, bio-physical 

studies (including circular dichroism or RT-PCR) may be undertaken in the 

future to understand how the molecule induces cell-killing. Once the mechanism 

of action is established, a suitable lead candidate should be selected for 

progression to human tumour xenograft mouse model study in an appropriate 

human cancer type. 

It will also be necessary to study the mechanism of action of the cytotoxicity of 

4.45 and related molecules in the WI 38 cell line (a known cell line of normal 

human tissue). Once the mechanism of action is established, a suitable lead 

candidate should be selected for progression to human tumour xenograft 

mouse model study in an appropriate human cancer type, which will further 

progress for phase-1 clinical trials. 

Finally, a number of potent stabilisers of the G-quadruplex have been generated 

(e.g., compounds 4.93, 4.77), and it may be possible for these molecules to be 

used as probes for the study of G-quadruplex structure and function. 
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Chapter 3: Materials  and Methods  
 

3.1 Chemical Sources 

All the chemicals and reagents used in this project were purchased from 

commercial companies including Sigma-Aldrich, Fluorochem, Maybridge, Acros, 

Alfa Aesar, Fluka and Fisher Scientific. 

 

3.2 Analytical Tools 

The Liquid Chromatography-Mass Spectroscopy (LC-MS) technique was widely 

employed to monitor the reaction progression and identification of newly 

synthesized molecules. LC-MS was performed on a Waters Alliance 2695 with 

water and acetonitrile as the mobile phases. Formic acid (0.1%) was used with 

acetonitrile to maintain acidic conditions during the course of chromatographic 

analysis. The gradient conditions were acetonitrile/water (95%) for 2 minutes 

which was increased to 50% acetonitrile over 3 minutes. The gradient was then 

held at 50% acetonitrile for 1 minute and then increased to 95% acetonitrile 

over 1.5 minutes. The quantity of acetonitrile was then returned to 5% over 1.5 

minutes and held for 0.5 minutes. The total duration of each run was 10 

minutes. The flow rate was 1.5 mL/minute; 200µL was split via a zero dead 

volume T-piece which passed into the mass spectrometer. The wavelength 

range of the UV detector was 220-400 nm. A diode array (535 scans) was 

functionalised with the system. A monolithic (C-18, 50X4.60 mm) column was 

used in the system. 

Proton NMR (1H) and carbon NMR (13C) experiments were carried out on a 

Bruker Avance 400 MHz spectrophotometer. Chemical shifts (δH) were cited in 

ppm (parts per million) and referenced to deuterated dimethyl sulfoxide (DMSO-

d6, residual signal 1Hδ=2.54, 13Cδ=41.45) or deuterated methanol (MeOD, 

residual signal 1Hδ=3.31, 13Cδ=49.00). Multiplicities in 1H NMR spectra are 

quoted as s=singlet, d= doublet, t=triplet, m=multiplet, dd= doublet of doublets, 

ddd (doublet of doublet of doublets, dt=doublet of triplets, td=triplet of doublets, 

sp=septet and br=broad. The code (0) in 13C NMR spectra denotes the 

presence of quaternary carbon. 
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High Resolution Mass Spectrometry (HRMS) was carried out on a Thermo 

Navigator mass spectrometer coupled with liquid chromatography (LC) using 

electrospray ionisation (ES) and time-of-flight (TOF) mass spectrometry. Infra -

red spectra (IR) were recorded on a Perkin Elmer spectrum 1000 instrument. 

Every single reaction was checked by analytical thin layer chromatography 

(TLC) performed on E. Merck silica gel-60 F254 layered plates (0.25 mm). TLC 

plates were visualised under UV light (254 or 360 nm) and/or by staining the 

plates with vanillin spray or potassium permanganate solution followed by 

heating. 

3.3 General Synthetic Scheme of Benzofused Polyamides 

Initially, 5-amino benzofused-2-carboxylic acid was used to make a coupling 

reaction with a tertiary amine tail including 3-amino-N-methyl-N-

methylenepropan-1-aminium, 2-(piperidin-1-yl) ethan-1amine and 4-(pyrrolidin-

1-yl) butan-1-amine.  

 

Figure 3.1: General reaction scheme for the ligands synthesized. Here X = O, S 

or N.  

But this reaction did not work properly as the amino-benzofused carboxylic acid 

could couple with itself to make an aryl adduct. Thus in every reaction, 
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nitrobenzofused carboxylic acid was used in place of amino benzofused acid. 

Therefore, the synthesis involved the reduction of the nitro-group to an amino 

group through hydrogenation after each amide coupling reaction, so that 

subsequent coupling reactions had a free amino group to react with the next 

nitro benzofused carboxylic acid. A general reaction scheme using a N1,N1-

dimethylpropane-1,3-diamine tail is shown above (Figure 3.1).  

 

3.4 Amide Formation through the Coupling Reaction 

 

 

 

Figure 3.2: The mechanism for the HOBt-DIC-mediated amide coupling 

reaction.  

DIC (Diisopropylcarbodiimide) and HOBt (Hydroxybenzotriazole) are commonly 

used amide coupling reagents. These reagents act together to accelerate amide 
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coupling by activating the carboxylic acid into an ester to enhance its reactivity 

towards amines (Figure 3.2). 

However, amide formation using DIC may lead to partial racemization of the 

acid. In addition to ester formation, HOBt helps to minimize side reactions. 

Initially, the acid (1.2 eq.) was dissolved in DMF (5 mL for 100 mg of starting 

material) in a round bottom flask fitted with a magnetic stirrer. Then DIC (1.75 

eq.) and HOBt (2.0 eq.) were added to the acid (1.0 eq.) and this mixture was 

allowed to stir at room temperature for formation of the ester from the acid. The 

amine (1 eq.) was added to the mixture and the mixture allowed to stir until the 

reaction was complete, as indicated by TLC or LCMS. Finally, the reaction 

mixture was applied to a conditioned SCX-2 cartridge and the resultant product 

was purified by the ‘Catch and Release’ method. 

 

3.5 Purification by ‘Catch and Release’ Method 
 

All reaction intermediates and final products containing tertiary amine tails were 

purified by the ‘Catch and Release’ method using SCX-2 cartridges. These are 

packed with silica-based sulfonic acid cationic exchange resins. Due to the 

presence of tertiary nitrogens in the products, they are retained in the cartridge. 

The SCX-2 cartridges were activated by washing under vacuum with DCM (2x) 

and methanol (2x), and the reaction mixture allowed to pass through the column 

under gravity. The cartridges were subsequently washed with DCM (3x), DMF 

(3x) and MeOH (2x) under vacuum to remove impurities. Finally the product is 

released from the cartridge using 2M NH3 in MeOH. Excess MeOH was 

removed using a rotary evaporator. Structures of the synthesized compounds 

were confirmed by 1H NMR and LCMS. The purity of compounds was 

established using LCMS, and the target purity for each compound prior to 

biological evaluation was 90% or greater. 
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Figure 3.3: “Catch and Release” purification procedure using SCX-2 cartridge 

(Image courtesy: Silicycle, ultra-pure silica gels) 243. 

 

3.6 Hydrogenation Reaction 

The nitrobenzofused intermediate was dissolved in 20 mL of ethanol and added 

to a hydrogenation reaction bottle. 20 mg of 10% Pd (palladium on activated 

carbon) was added into the reaction vessel and mixed well. The reaction bottle 

was sealed and connected to a hydrogen reservoir. Air from the reaction bottle 

was removed by applying a vacuum, and was then flushed with hydrogen. 

Typically, a hydrogen pressure of approximately 40 psi was applied from the 

reservoir, and the bottle was then shaken vigorously to initiate the reaction. 

Progress of the reaction was monitored by TLC and LCMS, and on completion 

of the reaction the shaker was stopped, the bottle vented and the product 

recovered by means of filtration using Celite. Finally, the product is 

concentrated using a rotary evaporator. 
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3.7 Biological Evaluation of Synthesized Molecules 

Preliminary assessment of G-quadruplex DNA stabilization was carried out with 

a FRET-based DNA melting assay using four different quadruplex sequences: 

human telomeric F21T, c-kit-1, c-kit-2 and Bcl-2 G-quadruplex sequences, and 

a hairpin duplex structure as a control. 

 

Implicit solvent molecular dynamics simulations were conducted over a 10ns 

time-frame using the human telomeric G-quadruplex sequence (PDB ID: 3CDM) 

and results were assessed visually and through free energy of binding 

calculations. Finally, G-quadruplex ligands were evaluated biologically through 

cytotoxicity testing via MTT assays. 

3.7.1 FRET-based DNA Melting Assay 

Fluorescence Resonance Energy Transfer (FRET) technology is widely 

employed for the evaluation of ligands and their capacities to interact with 

specific secondary DNA structures like G-quadruplexes. It is measured through 

an increase in nucleic acid melting temperature (ΔTm) 236. The difference 

between the Tm of the ligand-bound DNA and the Tm of the unbound DNA is 

defined as the ΔTm parameter 237. One strand of an oligonucleotide is labelled 

with FAM (fluorescein) as a fluorescent donor and a complementary strand (or 

other end of heparin) is labelled with TAMRA as an acceptor 238. The intensity of 

the FAM fluorescence upon excitation by heating is then measured as a 

function of temperature 239. 

3.7.2 Materials and Methods for FRET Melting Assay 

 

Quadruplex sequences used 

 

F21T: FAM-d (G3 [TTAG3]3-TAMRA)  

C-kit-1: FAM-d (G3AG3CGCTG3AG2AG3)-TAMRA. 

C-kit-2: FAM-d (G3CG3CGCGAG3AG4)-TAMRA. 

Bcl-2: FAM-d (G3CGC-G3-AG3AA-TTG3CG3-TAMRA) 

Duplex control: [FAM-(TA)2 GC(TA)2T6(TA)2GC(TA)2-TAMRA] 
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3.7.3 FRET Buffer Preparation 

 

Buffer solutions of 50 mM and 10 mM concentrations (500 mL each) were made 

with potassium hydroxide (1M) and potassium chloride (1M) and adjusted to pH 

7.4 by the drop-wise addition of cacodylic acid. These were stored at -20 oC in a 

freezer. 

 

3.7.4 DNA Annealing 

 

100µM of fluorescence-labelled F21T, STAT3 and control DNA duplexes 

(Eurogentec) were diluted with sterile DEPC water (DNA Grade, Fisher 

Scientific) to provide 20 µM solutions. 400nM solutions of each sequence were 

prepared by serial dilution using FRET buffer. They were annealed by heating 

to 85 oC for 5 minutes followed by cooling to room temperature over 2-4 hours 

using a Grant Bio PCH-2 Dry Block Heating/Cooling System. 

 

3.7.5 Ligand Solution 
 

5mM of stock solution was prepared for each ligand in dimethyl sulfoxide 

(99.9%, A.C.S. spectrophotometric grade, Sigma-Aldrich). Working solutions of 

100µM, 10µM, 4µM and 2µM were prepared by serially diluting with FRET 

buffer. 

3.7.6 Plate Preparation 
 

50µl of annealed sequence was added to each single well of a plate (Bio-Rad 

Laboratories), followed by 50µl of ligand solution. For each ligand of each 

concentration level, this process was repeated in triplicate. The same volume of 

pure FRET buffer was added to first line (A) of a 96 well plate to serve as a 

blank control. The plate was then processed in the DNA Engine Option 

(Continuous Fluorescence Detector, MJ Research) after 15 minutes of 

incubation at room temperature. The fluorescence measurement was made 

over a temperature range of 30 oC to 100 oC at intervals of 0.5 oC. The 

temperature was kept constant for 30 seconds before each measurement. The 
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incident radiation was set to 450-495 nm, and emitted radiation was measured 

at 515-545 nm. 

 

3.7.7 Data Processing 
 

The data was analysed using Scientific Graphing and Analysis Software 

(Version 7.0, Origin Lab Corp.). An increase in melting temperature (∆Tm) was 

determined by subtracting the value of the blank from the measured value for 

each sample. For each concentration of each ligand, an average ∆Tm value 

was calculated from the three corresponding wells and plotted against the 

concentration of ligand. 

 

3.8 Molecular Modelling and Molecular Dynamics (MD) Studies 

 

Molecular Modelling is a combinatory method of both theoretical and 

computational studies which is widely used to design, model or study a 

chemical scaffold targeting specific sequences of DNA and proteins. In fact, it 

covers the areas of Computational Chemistry, Drug Design, Computational 

Biology and Material Sciences. This technique mainly helps to explain the 

molecular and binding nature of a chemical compound at an atomistic level. 

These methods also contribute to determining x-ray crystallographic structures 

with the help of NMR experiments. 

Molecular Modelling and Molecular Dynamics (MD) Studies deal with the 

shape-fit of ligand molecules with their corresponding targets and thereby 

determines the binding affinity between the ligand and the receptor. Therefore, 

it is considered to be a competent method with which to study in detail the 

structure-activity relationships between libraries of novel ligand molecules 

synthesized in the field of drug discovery. Molecular docking calculations 

concern the use of static crystal structure, and are particularly useful in 

determining shape-fit in a receptor. On the other hand, the molecular dynamic 

simulation is based on the physical movement of individual atom in a molecule 

and of the molecule itself and the calculation involves the time-dependent 

behaviour of molecular scaffolds. Therefore, it provides valuable information on 
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the conformational changes of a molecular system (i.e. proteins or nucleic 

acids) as predicted over a certain time course.  

Thus molecular modelling and molecular dynamics simulations are gaining 

more significance and expanding their field through technological advancement. 

The speed of computers has doubled every two years (Moor’s Law 244) for the 

past number of years, and the use of specialised GPUs and super computers 

has allowed the docking of large libraries of molecules and simulation of large 

macro molecules. 

Molecular dynamic simulations provide the microscopic information including 

the positions of atoms and their velocities. Statistical mechanics convert the 

microscopic data to macroscopic variables such as pressure, energy and heat 

capacities. Statistical mechanics is able to calculate the changes of free energy 

for binding of a specific molecular system (i.e. ligand) and thereby determine 

the energetics and changes in the conformations. Thus the thermodynamic 

properties and the kinetics of a chemical scaffold can easily be determined 

using these techniques. In the field of drug discovery, the simulation of a 

chemical compound within its target receptor is supposed to provide the 

conformation of ligand-receptor complex with a lowest energy 245. 

 

3.8.1 Receptor Preparation 
 

The F21T quadruplex structure was downloaded from the Protein Data Bank 

(PDB ID: 3CDM). The quadruplex was then subjected to a number of steps of 

preparation in Chimera, including assignment of partial charges (AMBER 

ff98SB) and removal of hydrogens using the DockPrep module of AMBER, 

followed by writing to mol2 and pdb files. A molecular surface of the receptor 

was generated using write dms. 

3.8.2 Ligand Preparation 

 

All ligands were constructed and energy minimised using ChemBioOffice and 

exported in pdb format and converted into the Sybyl format mol2 using Chimera 

246. The DockPrep module in Chimera was then used to assign partial charges 

to each molecule (AM1-BCC charges in this instance), and atom types were 
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subsequently assigned via the AMBER GAFF force-field using 

ANTECHAMBER.    

3.8.3 Docking 
 

Docking experiments were undertaken using the DOCK6 software suite and the 

F21T quadruplex (PDB ID: 3CDM) was used in the study. In each case, the 

quadruplex interface was used as the receptor and the ligand used in the 

crystallography study was used as a guide for the docking site.  

The receptor was prepared (outlined above) and a number of steps were 

undertaken in DOCK6 to isolate the binding pocket of interest. Firstly, spheres 

were generated around the surface of the molecule using sphgen and 

Sphere_selector was then used to filter results. Spheres within 15Å of the ligand 

were selected for further analysis. This resulted in the assessment of the full 

quadruplex. 

Finally, every ligand was automatically positioned into the spheres with the 

maximum number of conformations set at a high level (500) to explore a large 

amount of conformational space, thus producing a docked ligand:DNA 

structure. 

3.8.4 Evaluation of Ligand Binding 

 

The ligand was evaluated based on the DOCK scoring function MMGBSA. 

During the docking process, a grid was created around the receptor. The grid 

was then used to allow rapid score evaluation in DOCK. Prior to scoring, 

orientations of the ligand which exhibited significant steric interactions with the 

receptor molecule were discarded using the bump filter.  

In evaluating ligand-DNA interactions, two factors were considered crucial; 

shape-fit of the molecule to the DNA receptor, and positioning of the molecule 

on the DNA-binding interface. The latter was considered particularly relevant as 

in order to stabilise the quadruplex structure, it is known that ligands must bind 

to the G-tetrad. 
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3.9 Cytotoxicity Test with the MTT Assay 

 

Cytotoxicity is the capacity of a drug or chemical compound to be toxic or 

growth inhibitory against a target cell line. Cytotoxicity studies are widely done 

to identify toxic compounds through the screening of a library of molecules. This 

tool is rationally designed to ensure that the newly synthesized molecules are 

toxic only to the desired cell line (for example, Breast Cancer Cell Line, MDA-

MB-231) but non-toxic or safe for the normal healthy cells at the same time. 

Thus, this method provides information with which to help avoid any kind of 

adverse effect on a normal cell line. 

A preliminary high-throughput screening was carried out to look for cytotoxic 

compounds which in turn aimed to develop more drug-like therapeutic agents 

through scrutinising and modifications. Therefore, this study defined the 

conditions to avoid any undesirable cytotoxic effect. 

MTT assay is based on the reduction of an MTT dye named 3-(4, 5-

dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide by the NAD(P)H 

dependent enzyme oxidoreductase. MTT is reduced due to the NADH formed 

by the metabolically active cells present. Therefore, this colorimetric reaction 

under certain conditions is correlated with viable cell potential as this enzyme 

reduces the MMT dye to an insoluble purple coloured formazan crystal which 

can easily be visible under a spectrophotometer (usually between 500 and 600 

nm). This colour change directly reflects the number of viable cells present 

under cytotoxic conditions247, 248. 
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Figure 3.4: Schematic diagram showing the conversion of MTT to formazan in 

the presence of the electron acceptor 1-methoxy phenazine.  

 

As MTT dye is sensitive to light, the assay is usually carried out in dark 

conditions. NAD (P)H is mostly formed within the mitochondria of the cell, thus 

1-methoxy-phenazine methosulfate is used as an electron carrier to transfer the 

reduction equivalent from the mitochondrial matrix into the medium. However, 

the MTT assay can only detect the live cells because of its mechanism of 

action. 

The assays using tetrazolium dye are used to assess cytotoxicity (loss of viable 

cells) or the cytostatic efficacy (modification from proliferation to latency of living 

cells) of prospective drug-like molecules and toxic materials.  

 

3.9.1 Cell Lines Used for the MTT Assay 
 

HeLa (Cervical cancer), MDA-MB-231 (triple negative breast cancer) and NCI 

H1975 (non-small cell lung cancer) cell lines were used in this assay, which 

were obtained from American Type Culture Collection (Manassas, VA). 
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3.9.2 Methods and Materials for MTT assay 

 

The MTT assay is comprised of a number of crucial steps, from cell splitting to 

96-well plate reading in a spectrophotometer. The following steps were followed 

to process the MTT assay for each type of cell line; 

 

3.9.3Cell Culture 
 

HeLa and MDA-MB-231 cell lines were cultivated in Dulbecco’s modified eagle 

medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 1% 

penicillin and streptomycin and 1% MEMNEAA (200x) non-essential amino 

acids. NCI H1975 cell lines were grown in RPMI-1640 supplemented with 10% 

fetal bovine serum (FBS) and 1% penicillin and streptomycin. These three cell 

lines were maintained in an incubator at 37°C with 5% CO2. 

 

3.9.4 Cell Passaging 

 

Cell passaging or splitting is a procedure that allows cells to be kept alive and 

growing under cultured conditions for a prolonged period of time. Cells should 

be passaged when they are 90-100% confluent. In this process a small number 

of confluent cells are transferred into a new vessel since a high density of 

rapidly dividing cells is related to cells entering senescence. Suspension 

cultures can be simply split with a small amount of culture comprising a few 

cells diluted into a larger volume of fresh media. However, in the case of 

adherent culture, cells first need to be detached with trypsin, then a small 

number of detached cells can be used to seed a new culture. 

70% ethanol was used to clean the fume hood, equipment, flasks, pipettes and 

other equipment before starting any process. DPBS (Dulbecco’s Phosphate 

Buffered Saline) and DMEM (Dulbecco’s Modified Eagle Medium) were taken 

out of the fridge ahead of time to become warm and ready to use. Cells 

contained in T-flasks were taken out from the incubator and checked under a 

microscope (dead cells floated and appeared round in shape whereas growing 

cells was attached to the bottom surface of the T-flask in a rod-shaped and 
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clustered fashion). Previous media was aspirated by using a vacuum pump (a 

sharp pointed pipette, 2 mL was used). 5 mL of DPBS was added to wash 

previous media fully and clean the T-flask, which was aspirated again to remove 

the floating dead cells. 1 mL of trypsin-EDTA was added to detach the growing 

cells and the flask was then incubated at 37°C in a 5% CO2 incubator for 2 

minutes. 10 mL of DMEM was added to inactivate the trypsin and the total cell 

suspension was then transferred into a falcon tube for centrifugation (2.5 

minutes, 21 °C, 1.5 rpm). The supernatant medium was aspirated out, leaving 

the cells at the bottom of the falcon tube. Finally, 5 mL of DMEM was added 

and mixed properly and an appropriate amount of cell suspension was 

transferred into a newly labelled T-flask according to the next passage time. 

Furthermore, an appropriate amount of DMEM was added into the same T-flask 

to make a total volume of 15 mL (in general, 15 mL is considered to be an 

optimum volume for survival of cells in T-flask). Lastly, the new T-flask was 

returned to the incubator (37°C, 5% CO2) for the next splitting schedule. Cells 

were passaged every 2 to 3 days. 

 

3.9.5 Cell Count and Plate Preparation (Seeding of Cells) 

 

Seeding is a process of spreading a defined amount (in volume or cell number) 

of a cell suspension onto a plate. 96-well polypropylene plates were used which 

are free of binding affinity for proteins or DNA, allowing complete sample 

recovery. This plate can withstand temperatures of -80 to +121°C. The following 

steps are used to seed the cells on to the plate: 

1. 1 mL of DMEM was added to suspend the cells. 

2. A haemocytometer was used to count cells, where a solution of cells was 

made with trypan blue stain (10 µL cells/ 90µL stain) to visualise the cells under 

an electron microscope. 

3. An appropriate amount of cell suspension was taken to make a dilution of 

cells with DMEM to confirm ~ 106 cells per well. 
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4. A multichannel pipette was used to seed the cells on to the plate, which was 

then returned for incubation at 37°C in 5% CO2 incubator (incubation time was 

varied from 24-72 hours). 

 

3.9.6 Addition of Tested Samples 
 

In this stage, the previous medium was aspirated out from every well by using 

sharp pipette tips and replaced with an equal amount (100 µL) of fresh medium 

and ligand of appropriate concentration, made from 5 mM stock solution by 

using DMSO, which were then added onto the cell seeded plate. Lastly, the 

plate was returned for further incubation at 37°C in a 5% CO2 incubator. The 

incubation time was varied from 24 to 72 hours. 

 

3.9.7 Plate Reading and Spectrometric Analysis 
 

The final step involves the reading of data obtained from processed plates. 

Firstly, the old medium was aspirated out from each well after the 

predetermined incubation period and subsequently each well was washed with 

100 µL of medium (high glucose content but without phenol red). Then all 

medium was aspirated out from each well and 100 µL of previously made 

MTT/medium phenol red-free solution was added into each well. A further 4 

hours of incubation was done at 37°C in a 5% CO2 incubator and the medium 

was then aspirated off from each well and 100µL of DMSO was added to 

dissolve the crystal formed. The plate was then incubated again for 5 minutes at 

37°C in 5% CO2 incubator and subsequently placed in shaker for 5 minutes 

(500 rpm) to remove all air bubbles. 

Absorbance was then taken by an Infinite 200 Pro-plate reader at a wavelength 

of 570 nm and the data was processed with the help of Tecan i-control 

application software. 

It is notable that the MTT solution was prepared in a 1:10 dilution with phenol 

red-free medium. The final solution was filtered through a 0.2 µm filter and 

stored in the dark at 4°C. 
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3.10 Standardisation of FRET Assay by using G-quadruplex 

Ligand TMPyP4 

Cationic porphyrins like TMPyP4 (Figure 2.10) are commonly chosen to use as 

G-quadruplex ligands 134. The ligand TMPyP4 was first reported to interact with 

DNA about 40 years ago; it has since been shown to be a G-quadruplex ligand 

135, 136. Since then the DNA-interacting capacity of this ligand has been widely 

assessed and it has been found to have a high level of affinity toward G-

quadruplex DNA with poor selectivity 137-139. However, sometimes it might be 

peculiar to show an extraordinary responses such as a unfolding of a 

quadruplexes in both d(CGG) repeats 140 or antithrombin aptamer141 and RNA 

sequences (r(CGG) repeats142. Interestingly this ligand showed interactions with 

a wide variety of G-quadruplexes. Thus it is still extensively studied and 

analysed to investigate its interactive modes towards the different forms of DNA 

146. 

 

 

 

Figure 3.5: Structure of TMPyP4. 

The FRET assay has been standardised by evaluating commercially available 

G-quadruplex ligand TMPyP4 in the same conditions as used for benzofused-

polyamides. It is notable that TMPyP4 showed significantly higher interaction 

not only towards the G-quadruplex sequence types used but also with duplex 

DNA. None of the benzofused-polyamides show a minimum interaction with 

duplex DNA, indicating that benzofused-polyamides are specific towards G-

quadruplex sequences. 
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Table 3.1: G-quadruplex and duplex DNA stabilization by TMPyP4 in FRET 

melting experiments at concentrations of 5, 2 and 1 µM respectively 

Compounds 
Quadruplex 

types 

∆Tm(°C)±(s/d) 

5 µM 2 µM 1 µM 

TMPyP4 

F21T 35.3±0.43 35.3±0.11 35.3±0.26 

C-kit-1 40.0±0.22 41.0±0.34 40.5±0.13 

C-kit-2 33.4±0.31 31.7±0.20 32.1±0.15 

BCL-2 34.6±0.21 35.3±0.20 32.7±0.28 

Duplex DNA 38.0±0.42 38.0±0.14 29.0±0.07 
 

FRET result showed that TMPyP4 provided a very high level of interaction with 

the different types of quadruplex sequences and duplex DNA as well. It 

provided stabilisation capacities of 35.3 °C, 40.5 °C, 32.1 °C, 32.7 °C and 28.7 °C 

against F21T, c-kit-1, c-kit-2 and Bcl-2 G-quadruplex sequences respectively, 

and also provided 29.0 °C of stabilisation against duplex DNA at 1 µM 

concentration. This is indicative of the non-specificity it exhibits towards binding 

sites. 

 

3.10.1: Standardisation of FRET Assay by using DNA-Binding Ligand 

Distamycin A 
 

Duplex DNA used here was checked by doing a FRET assay using distamycin, 

a well-known DNA minor groove binder. 

 

 

 

Figure 3.6: Structure of Distamycin A. 
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Table 3.2: Duplex DNA stabilization by distamycin in FRET melting experiments 

at concentrations of 5, 2 and 1 µM, respectively 

Compounds 
Quadruplex 

types 

∆Tm(°C)±(s/d) 

5 µM 2 µM 1 µM 

Distamycin Duplex DNA 12.5±0.05 8.1±0.37 5.0±0.050 
 

Distamycin A showed ∆Tm values of 12.5 °C, 8.1 °C and 5.0 °C at 5 µM, 2 µM 

and 1 µM concentrations, respectively, against duplex DNA. This interacting 

capacity of distamycin A supports the notion that the FRET experiment worked 

well. 
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Chapter 4: Experimental (Chemistry) 

 

4.1 Synthesis of 5-amino-N-(3-(dimethylamino)propyl)benzofuran-2-

carboxamide ( 4.1) 

 

250 mg of 5-nitrobenzofuran-2-carboxylic acid (1.207 mmol, 1.2 eq.) was 

dissolved in 10 mL of DMF in a round bottom flask fitted with a magnetic stirrer. 

Then 105 µl of DIC (2.589 mmol, 1.75 eq.) and 2.0 equivalents of HOBt (326 

mg, 2.405 mmol) were added to the acid (1.0 eq.). This mixture was stirred for 

at least 25 minutes at room temperature to ensure formation of the ester from 

the acid. Then 102.8 mg of N1, N1-dimethylpropane-1,3-diamine (1.0 mmol, 01 

eq.) was added to the mixture and it was then stirred further for 6 hours at which 

point TLC and LCMS analysis showed the completion of reaction. Finally the 

reaction mixture was applied to a conditioned IsoluteTM SCX-2 cartridge and the 

product was purified by ‘Catch and Release’ method (described in the section 

‘Method and Materials’ of chapter 3). A pale yellow solid was collected after 

drying under vacuum. Yield was 200mg, 60%. 

Table 4.1: Characterisation data for compound 4.1 

4.1 

Pale 
yellow 
solid 

1H 

 NMR 

1H NMR (400 MHz, CD3OD) δH in ppm 
8.56(d,J=2.0,1H),8.48(s,1H),8.25(dd,J=9.2,2.4,1H),7.66(d,J=8.4,

1H),7.44(s,1H),3.453.40(m,2H),2.40(t,J=6.4, 2H), 2.239(s, 6H), 
1.74-1.70 (m, 2H). 

EIMS Found 292.00[M+H]+, Calculated for C14H17N3O4 291.12 [M]+ 

 

4.2 Synthesis of 5-amino-N-(3-(dimethylamino) propyl) benzofuran-2-

carboxamide (4.2)        

 

 

200 mg of 4.1 was dissolved in 20 mL of ethanol and 1 mL of ethyl acetate was 

added to a hydrogenation reaction bottle. 20 mg of 10% Pd (palladium on 
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activated carbon) was also added into the same reaction vessel and it was 

mixed well. The reaction bottle was sealed and connected to a hydrogen 

reservoir. Air within the reaction bottle was removed by applying vacuum, and 

flushed with hydrogen. Typically, a hydrogen pressure of approximately 40 psi 

was applied from the reservoir and the bottle was then shaken vigorously to 

initiate hydrogenation. Progress and completion of reaction was monitored by 

TLC and LCMS. The hydrogenation was completed by 5 hours at which point 

TLC and LCMS analysis showed the completion of reaction. The shaker was 

stopped, the bottle was vented. After this the product was recovered by means 

of filtration using Celite and was concentrated by using a rotary evaporator. A 

pale yellow solid was collected after drying under vacuum. Yield was 162 mg, 

90%. 

Table 34.2: Characterisation data for compound 4.2 

4.2 

Pale 
yellow 
solid  

1H 

 NMR 

1H NMR (400 MHz, CD3OD) δH in ppm  
7.31(d,J=8.8,1H),7.28(s,1H),6.97(d,J=2.4,1H),6.91(dd,J=8.8,2.0,1
H),4.95(s,2H),2.34(s,6H),3.43(t,J=6.8,2H),2.54-2.50(m,2H), 
1.84(t,J=6.8,2H). 

EIMS Found 262.00[M+H] +, Calculated for C14H19N3O2 261.14 [M]+ 

 

4.3 Synthesis of N-(3-(dimethylamino) propyl)-5-(5-nitrobenzofuran-2-

carboxamido) benzofuran-2-carboxamide (4.3) 

 

 

Initially, 144 mg of 5-nitrobenzofuran-2-carboxylic acid (0.697 mmol, 1.2 eq.) 

was dissolved in 10mL of DMF in a round bottom flask placed in a magnetic 

stirrer. Then DIC (188 µl, 1.21 mmol, 1.75 eq.) and HOBt (188.19 mg, 1.39 

mmol, 2.0 eq.) were added to the acid solution (1.0 eq.). This mixture was 

allowed to stir at room temperature for 30 minutes to ensure the ester formation 

from the acid. Then amine 4.2 (130 mg, 0.498 mmol, 1 eq.) was added to that 

mixture, and it was allowed to stir for 8 hours at which point TLC and LCMS 

analysis showed the completion of reaction. The product was purified from the 

reaction mixture by ‘Catch and Release’ method using a conditioned 

IsoluteTMSCX-2 cartridge (described in the section ‘Method and Materials’ of 
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chapter 3). Lastly this product was then dried under vacuum and a pale yellow 

coloured solid was obtained. Yield=147mg, 66%. 

Table 4.3: Characterisation data for compound 4.3 

 4.3 

Brown 
Solid 

1H 

 NMR 
 1HNMR(400MHz,(CD3)2SO) δH in ppm  
10.85(s,1H),8.80(t,J=8.4,2H),8.32(d,J=6.4, 1H),8.27(s,1H), 
7.95(t,J=9.2,2H), 7.78(d,J=8.8,1H), 7.73(d,J=8.4,1H), 7.53 
(s,1H), 3.17-3.12(m,2H), 2.28(t,J=6.0,2H), 2.15(s,6H), 
1.67(t,J=6.8,2H). 

EIMS Found 451.0 [M+H] +, Calculated for C23H22N4O6, 450.15 [M]+ 
 

4.4 Synthesis of 5-amino-N-(2-((3-(dimethyl amino) propyl) carbonyl) 

benzofuran5-yl) benzofuran-2-carboxamide (4.4). 

 

 

4.3 (147mg) was dissolved in 20 mL of ethanol and 1 mL of ethyl acetate was 

added to a hydrogenation reaction bottle. 20 mg of 10% Pd (palladium on 

activated carbon) 20 was added into the reaction vessel, and mixed well. The 

reaction bottle was sealed and connected to a hydrogen reservoir. Air from the 

reaction bottle was removed by applying vacuum, and was then by flushed with 

hydrogen. Typically, a hydrogen pressure of approximately 40 psi was applied 

from the reservoir, and the bottle was then shaken vigorously to initiate the 

reaction. Progress of the reaction was monitored by TLC and LCMS. The 

reaction required about 4.5 hours at which point TLC and LCMS analysis 

showed the completion of reaction. The shaker was stopped, the bottle vented, 

and the product was recovered by means of filtration using Celite. Finally, the 

product is concentrated by using a rotary evaporator. A pale yellow solid was 

obtained after drying under vacuum. Yield=80 mg, 51%. 

Table 4.4: Characterisation data for compound 4.4 

 4.4 

Pale 
Yellow 
Solid 

1H 

 NMR 
 (400MHz,(CD3)2SO) δH in ppm   
10.61(s,1H),8.84(t,J=5.6,1H),8.28(d,J=2,1H),7.79(dd,J=8.8,2.0,
1H),7.64(d,J=9.2,1H),7.55(d,J=3.6,2H),7.38(d,J=8.4,1H),6.83(d,
J=2,1H),6.79(d,J=2.4,1H),2.51- 2.49 (m,2H), 2.25(t,J=6.8,2H), 

2.13(s,6H), 1.68-1.62(m,2H).  

EIMS Found 421.0 [M+H]+, Calculated for C23H24N4O4, 420. [M]+. 
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4.5 Synthesis of 5-(benzo[b]thiophene-2-carboxamido)-N-(2-((3-(dimethyl 

amino) propyl) carbonyl) benzofuran-5-yl) benzofuran-2-carboxamide 

(4.5).  

 

 

48 mg of benzo[b]thiophene-2-carboxylic acid (0.266 mmol, 1.2 eq.) was 

dissolved in 10mL of DMF in a round bottom flask. Then DIC (71.96 µl, 0.465 

mmol, 1.75 eq.) and HOBt (71.82 mg, 0.532 mmol, 2.0 eq.) were added to the 

acid (1.0 eq.) and this mixture was allowed to stir at room temperature for 25 

minutes to ensure the formation of ester from the acid. Then amine 4.4 (80 mg, 

0.19 mmol, 1 eq.) was added to the mixture, and that mixture was allowed to stir 

for 5 hours at which point TLC and LCMS analysis showed the completion of 

reaction. Finally the reaction mixture was applied to a conditioned IsoluteTM 

SCX-2 cartridge and the product was purified by ‘Catch and Release’ method 

(described in the section ‘Method and Materials’ of chapter 3). A cream solid 

was obtained after drying under vacuum. Yield=34mg, 31%. 

Table 4.5: Characterisation data for compound 4.5 

4.5 
 
 
Cream 
Solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO) δH in ppm 
  10.69(d,J=7.8, 2H), 8.81(t,J=5.6,1H), 8.40(s,1H), 8.32(d,J=2,1H), 
8.30(d,J=2,1H),8.09(d,J=1.6,1H),8.058.02(m,1H),7.82(t,J=2.8,2H),
7.79(d,J=2.8,1H),7.76(d,J=8.8,1H), 7.67(d,J=8.8,1H), 7.55(s,1H), 
7.51-7.49 (m,2H), 2.51-2.49(m,2H), 2.27(t,J=6.8,2H), 2.15(s,6H), 
1.67(t,J=6.8, 2H).  

13C 
NMR 

100MHz,(CD3)2SO); δC in ppm 
193.0, 191.0, 179.8, 158.2, 151.1, 140.1, 139.0, 137.9, 127.4, 
125.7, 124.2, 123.3, 121.4, 120.4, 116.0, 114.0, 111.5, 109.6, 
108.1, 106.6, 101.1, 94.9, 56.8, 45.1, 40.0, 39.8, 39.6, 39.4, 39.23, 
39.0, 38.8, 35.9.       

EIMS Found 581.8 [M+H]+, Calculated for C32H28N4O5S, 580.17 [M]+ 

HRM
S 

m/z (+EI) Calc. for C32H28N4O5S [M]+, 580.1780, found 

581.1851[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3363, 1658, 1637, 1583, 1540, 1469, 1433, 1346, 1321, 1292, 
1230, 1200, 1139, 1124, 1038, 941, 863, 838, 811, 786, 750, 736, 
724, 625, 604, 577. 
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4.6 Synthesis of N-(2-((2-((3-(dimethylamino) propyl) carbamoyl) 

benzofuran-5-yl) carbamoyl) benzofuran-5-yl)-1H-benzo[d]imidazole-2-

carboxamide (4.6). 

 

 

Initially, 30 mg of 1H-benzo[d]imidazole-2-carboxylic acid hydrate (0.166 mmol, 

1.2 eq.) was dissolved in 5mL of DMF in a round bottom flask fitted with a 

magnetic stirrer. Then DIC (44.91 µl, 0.2905 mmol, 1.75 eq.) and HOBt (44.82 

mg, 0.332 mmol, 2.0 eq.) were added to the acid (1.0 eq.). This mixture was 

allowed to stir at room temperature for 30 minutes to ensure the formation of 

ester from the acid. Then amine 4.4 (50.0 mg, 0.119 mmol, 1 eq.) was added to 

the mixture, and was allowed to stir for 5 hours at which point TLC and LCMS 

analysis showed the completion of reaction. Finally the product was purified by 

‘Catch and Release’ method using conditioned IsoluteTM SCX-2 cartridge 

(described in the section ‘Method and Materials’ of chapter 3). A straw solid 

was obtained after drying in vacuum. Yield=12mg, 18 %. 

Table 4.6: Characterisation data for compound 4.6 

4.6 

Straw 
solid 

1H 

 NMR 

1HNMR (400MHz,(CD3)2SO) δH in ppm 
11.0(s,1H), 10.66(s,1H), 8.80(t,J=5.2,1H), 8.46(s,1H), 8.30(s,1H), 
8.00(d,J=8.8,1H), 7.82(s,2H), 7.75(d,J=8.8,2H), 7.66(d,J=8.8,2H), 
7.54(s,1H), 7.35(s, 2H), 3.31(t,J=6.8,2H), 2.28(t, J=6.8,2H), 

2.15(s,6H), 1.71-1.64(m ,2H). 
13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
157.9, 157.3, 156.6, 151.2, 150.9, 150.0, 149.4, 145.5, 134.4, 
134.2, 127.2, 127.1, 121.1, 120.6, 113.9, 111.9, 111.7, 
110,9,109.4, 56.8, 45.0, 40.0, 39.8, 39.6, 39.4, 39.2, 39.0, 38.8, 
37.2, 26.8. 

EIMS Found 564.23 [M+H]+, Calculated for C31H28N6O5, 563.21 [M]+ 

HRM
S 

M/z (+EI) Calc. for C31H28N6O5, 564.2121 [M]+, found 

565.2187[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
 3265, 2939, 2219, 1705, 1631, 1533, 1475, 1437, 1361, 1331, 
1308, 1221, 1159, 1097, 1039, 945, 886, 807, 770, 741, 715, 619. 
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4.7 Synthesis of N-(3-(dimethylamino) propyl)-5-nitrobenzo[b]thiophene-2-

carboxamide (4.7). 

 

 

500 mg of 5-nitrobenzo[b]thiophene-2-carboxylic acid (2.24 mmol, 1.2 eq.) was 

dissolved in 15 mL of DMF in a round bottom flask. DIC (606 µl, 3.92 mmol, 

1.75 eq.) and HOBt (608.8 mg, 4.48 mmol, 2.0 eq.) were added to the acid (1.0 

eq.) and the mixture was allowed to stir at room temperature for 30 minutes to 

ensure the ester formation. 189.72 mg of N1, N1-dimethylpropane-1, 3-diamine 

(1.86 mmol, 1 eq.) was added into the same reaction mixture. Then this mixture 

was stirred for about 7 hours at which point TLC and LCMS analysis showed 

the completion of reaction. The reaction mixture was then applied to a 

conditioned IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch 

and Release’ method (described in the section ‘Method and Materials’ of 

chapter 3). The product was dried under vacuum and A pale yellow solid was 

collected. Yield=350.0 mg, 51%. 

Table 4.7: Characterisation data for compound 4.7 

4.7 

Cream 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3OD) δH in ppm 
8.53(d,J=3.6,1H), 8.06(dd,J=8.8,2.4,1H), 7.93(d,J=9.2,1H), 7.86(s, 
1H),3.41(t,J=6.8,2H),2.43(t,J=7.6,2H),2.73(s,6H),1.86(m,J=7.2,2H),  

EIMS Found 308.0 [M+H]+, Calculated for C14H17N3O3S, 307.09 [M]+ 

 

 

4.8 Synthesis of 5-amino-N-(3-(dimethylamino) propyl) benzo[b]thiophene-

2-carboxamide (4.8) 

 

 

350 mg 4.7 was dissolved in 20 mL of ethanol and1 mL of ethyl acetate in a 

hydrogenation reaction bottle. 20 mg of 10% Pd (palladium on activated carbon) 

was added into the same bottle and mixed well. The bottle was sealed and 

connected to a hydrogen reservoir. Air within the reaction bottle was removed 
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under vacuum, and flushed with hydrogen. A hydrogen pressure of 

approximately 40 psi was applied from the reservoir, and the bottle was then 

shaken vigorously to initiate the reaction. Progress of the reaction was 

monitored by TLC and LCMS. The hydrogenation process took about 5 hours at 

which point TLC and LCMS analysis showed the completion of reaction. The 

bottle vented after stopping the shaker and the hydrogenated product has been 

recovered through filtration using Celite. Lastly the product was concentrated by 

the rotary evaporation. A cream solid was obtained after drying under vacuum. 

Yield was 310 mg, 98%. 

Table 4.8: Characterisation data for compound 4.8 

4.8 

Deep 
Brown 
solid 

1H 

 NMR 

1HNMR (400MHz,(CD3OD) δH in ppm 
7.69(s,1H),7.58(d,J=8.8,1H),7.14(d,J=2,1H), 6.93(dd,J=8.8, 2.4,1H), 
3.44(t,J=6.8,2H),2.62(t,J=4.4,2H),2.43(s,6H),1.89-1.84(m,J=7.6,2H). 

EIMS Found 278.0 [M+H]+, Calculated for C14H19N3OS, 277.12  [M]+ 

 

 

4.9 Synthesis of N-(3-(dimethylamino)propyl)-5-(5-nitrobenzo[b]thiophene-

2-carboxamido) benzo[b]thiophene-2-carboxamide (4.9). 

 

 

At the beginning, 5-nitrobenzo[b]thiophene-2-carboxylic acid (304 mg, 1.30 

mmol, 1.2 eq.) was dissolved in 20 mL of DMF in a round bottom flask fitted 

with a magnetic stirrer. Then DIC (351 µl, 2.27 mmol, 1.75 eq.) and HOBt (351 

mg, 2.60 mmol, 2.0 eq.) were added to the acid (1.0 eq.) solution and this 

mixture was stirred at room temperature for about 30 minutes to ensure the 

esterification of acid. Then amine (304 mg, 1.09 mmol, 1 eq.) was added to that 

mixture and it was allowed to stir for 7 hours at which point TLC and LCMS 

analysis showed the completion of reaction. Finally the product was purified 

from the reaction mixture by the Catch and Release’ method using conditioned 

IsoluteTM SCX-2 cartridge (described in the section ‘Method and Materials’ of 

chapter 3). The product was concentrated and a pale yellow solid was obtained 

after drying in vacuum. Yield was 205mg, 39%. 
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Table 4.9: Characterisation data for compound 4.9 

4.9 

 
Yellow 
solid 

1H 

 NMR 

1HNMR(400MHz,( CD3)2SO) δH in ppm 
10.95(s,1H), 8.42(s,1H), 8.88(d,J=2.4,1H), 8.83 (d, J=2.4,1H), 
8.55(s,1H),8.41(d,J=2,1H),8.30(d,J=8.8,1H),8.25(s,1H),7.97(t,J=8.8,
1H),7.77(dd,J=9.2,2.4,1H),7.24-7.12(m,1H),3.34(d,J=6,2H),2.61 
(t,J=7.6,2H), 2.39(s,6H), 1.793(t,J=7.2,2H).  

EIMS Found 483.0 [M+H]+, Calculated for  C23H22N4O4S2, 482.10 [M]+ 

 

4.10 Synthesis of 5-amino-N-(2-((3-(dimethylamino) propyl) carbamoyl) 

benzo[b]thiophen-5-yl) benzo[b]thiophene-2-carboxamide (4.10). 

  

205 mg of 4.9 was dissolved in 20 mL of ethanol and 1 mL of ethyl acetate in a 

hydrogenation reaction bottle. 20 mg of 10% Pd (palladium on activated carbon) 

was added into the reaction vessel and mixed well. The bottle was sealed and 

connected to a hydrogen reservoir. Air from the reaction bottle was removed by 

applying vacuum, and was then by flushed with hydrogen. Typically, 

approximately 40 psi of hydrogen pressure was applied from the reservoir, and 

the bottle was then shaken vigorously to initiate the reaction. Progress of the 

reaction was monitored by TLC and LCMS. A complete hydrogenation has 

taken 6 hours at which point TLC and LCMS analysis showed the completion of 

reaction. The shaker was stopped and the bottle was vented. The product was 

recovered by means of filtration using Celite. Finally, the product is 

concentrated by using a rotary evaporator. A yellow solid was obtained after 

drying in vacuum. Yield was 175 mg, 91%. 

Table 4.10: Characterisation data for compound 4.10 

4.10 

Yellow 

solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO) δH in ppm 

10.69(s,1H),8.84(t,J=5.6,1H),8.44(d,J=2,1H),8.17(s,1H),8.05(s,1H),
7.96(d,J=8.8,2H),7.837.80(m,1H),7.64(d,J=8.8,1H),7.07(d,J=2.0,1H
),6.87(dd,J=8.8,2.4,1H),5.21(s,2H),3.33-3.28(m,2H), 
2.25(t,J=6.8,2H),2.12(s,6H),1.71-164(m,2H).  

EIMS Found 453.0 [M+H]+, Calculated for C23H24N4O2S2, 452.13 [M]+ 

 



251 
 

4.11 Synthesis of N-(2-((2-((3-(dimethylamino) propyl) carbamoyl) 

benzo[b]thiophen-5-yl) carbamoyl) benzo[b]thiophen-5-yl) benzofuran-2-

carboxamide (4.11). 

 

 

26 mg of benzofuran-2-carboxylic acid (0.158 mmol, 1.2 eq.) was dissolved in 5 

mL of DMF in a round bottom flask fitted with a magnetic stirrer. Then DIC (43 

µl, 0.276 mmol, 1.75 eq.) and HOBt (43 mg, 0.316 mmol, 2.0 eq.) were added 

to the acid (1.0 eq.) and this mixture was allowed to stir at room temperature for 

30 minutes to ensure the formation of ester from the acid. Then amine 4.10 (60 

mg, 0.132 mmol, 1 eq.) was added to the mixture and this mixture was allowed 

to stir for 5 at which point TLC and LCMS analysis showed the completion of 

reaction. Finally the reaction mixture was applied to a conditioned IsoluteTM 

SCX-2 cartridge and the product was purified by ‘Catch and Release’ method 

(described in the section ‘Method and Materials’ of chapter 3). An orange solid 

was obtained after drying in vacuum. Yield=28mg, 36%. 

Table 4.11: Characterisation data for compound 4.11 

4.11 

Orange 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO) δH in ppm 
10.77(s,1H), 10.71(s,1H), 8.82(t,J=5.2,1H), 8.56(d,J=1.6,1H), 
8.44(s,2H),8.06(d,J=7.6,2H),8.01(d,J=8.8,1H),7.92(dd,J=8.8,1.6,1
H), 7.85(d,J=5.2,2H), 7.82(dd,J=8.8,2.0,1H), 7.75(d,J=8.4,1H), 
7.55-7.51(m,1H), 7.39 (t,J=7.6, 1H), 3.34-3.29(m,2H), 2.40 
(t,J=7.2,2H), 2.24(s,6H), 1.76-1.69(m,2H). 

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
161.3, 160.3, 156.8, 154.4, 148.6,141.1, 140.8, 139.5, 139.4, 
136.1, 135.9, 138.8, 135.6, 127.2, 127.1, 125.9, 124.5, 123.8, 
123.0, 122.9, 120.6, 120.0, 116.1, 115.6, 111.95, 110.8, 56.4, 
44.68, 40.0, 39.8, 39.2,26.6. 

EIMS Found 597.3 [M+H]+, Calculated for C32H28N4O4S2, 596.15 [M]+ 

HRMS m/z (+EI) Calc. for C32H28N4O4S2, 596.1552 [M]+, found 

597.1625[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3282, 2931, 2217, 1632, 1518, 1473, 1443, 1383, 1335, 1302, 
1221, 1155, 1095, 1038, 951, 885, 807, 738, 720. 
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4.12 Synthesis of 5-(benzo[b]thiophene-2-carboxamido)-N-(2-((3-(dimethyl 

amino) propyl) carbamoyl) benzo[b]thiophen-5-yl) benzo[b]thiophene-2-

carboxamide (4.12). 

 

 

Initially, 28 mg of benzo[b]thiophene-2-carboxylic acid (0.158 mmol, 1.2 eq.) 

was dissolved in 10mL of DMF in a round bottom flask fitted with a magnetic 

stirrer. Then DIC (43 µl, 0.276 mmol, 1.75 eq.) and HOBt (43 mg, 0.316 mmol, 

2.0 eq.) were added to the acid (1.0 eq.) and this mixture was allowed to stir at 

room temperature for 30 minutes to ensure the formation of ester from the acid. 

Then amine 4.10 (60 mg, 0.132 mmol, 1 eq.) was added to the same mixture 

and it was allowed to stir for 6 hours at which point TLC and LCMS analysis 

showed the completion of reaction. Finally the product was purified by ‘Catch 

and Release’ method using conditioned IsoluteTM SCX-2 cartridge (described in 

the section ‘Method and Materials’ of chapter 3). A pale yellow solid was 

collected after drying in vacuum. Yield=25 mg, 31%. 

Table 4.12: Characterisation data for compound 4.12 

4.12 
Light 
Yellow 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm 
10.79(s,1H), 10.73(s,1H), 8.81(t,J=5.2,1H), 8.53( d,J=1.6,1H), 
8.47(s,1H), 8.44(s,2H), 8.08-8.04(m,3H), 8.01 (d,J=8.8,2H), 
7.87(dd,J=8.8,2.0,1H), 7.82(dd,J=8.8,2.0,1H),7.53-7.47 (m, 2H), 
3.34-3.27(m,2H), 2.34(t,J=7.2,2H), 2.19(s,6H), 1.74-1.67(m,2H). 

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
161.3, 160.5, 160.3, 141.2, 140.9, 140.4, 139.8, 139.5, 139.4, 139.1, 
136.1, 135.98, 335.92, 135.6, 126.5, 125.9, 125.4, 125.0, 124.4, 
123.0, 122.9, 122.8, 120.4, 120.0, 115.8, 115.7,56.5, 44.8,39.6, 39.2, 
38.8,26.7. 

EIMS Found 613.30 [M+H] +, Calculated for C32H28N4O3S3, 612.13 [M]+ 

HRM
S 

M/z (+EI) Calc. for C32H28N4O3S3 612.1324 [M]+, found 

613.1395[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3302, 1634, 1575, 1526, 1445, 1339, 1300, 1271, 1231, 1154, 966, 
874, 838, 803, 750, 715. 
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4.13 Synthesis of N-(2-((3-(dimethylamino) propyl) carbamoyl) 

benzo[b]thiophen-5-yl)-5-nitro benzofuran-2-carboxamide (4.13). 

 

 

Initially, 5-nitrobenzofuran-2-carboxylic acid (143.48 mg, 0.693 mmol, 1.2 eq.) 

was dissolved in 20 mL of DMF in a round bottom flask which was placed on a 

magnetic stirrer. Then DIC (187.49 µl, 1.21 mmol, 1.75 eq.) and HOBt (187.11 

mg, 1.386 mmol, 2.0 eq.) were added to the acid (1.0 eq.) and this mixture was 

allowed to stir at room temperature for 30 minutes for the esterification of acid. 

Then amine 4.8 (160 mg, 0.577 mmol, 1 eq.) was added to the mixture, and it 

was allowed to stir for 8 hours at which point TLC and LCMS analysis showed 

the completion of reaction. Finally the reaction mixture was applied to a 

conditioned IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch 

and Release’ method (described in the section ‘Method and Materials’ of 

chapter 3). An orange solid was obtained after drying in vacuum. Yield=170mg, 

65%.  

Table 4.13: Characterisation data for compound 4.13 

4.13 

Orange 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3OD); δH in ppm  
10.85(s,1H),8.79(d,J=2.0,2H),8.43(s,1H),8.05(s,1H),7.99(s,1H),7.9
5(t,J=8.0,2H),7.82(d,J=6.8,1H),3.30(t,J=6.0,2H),2.39(S,2H),2.23(s,
6H), 1.72(t,J=6.8,2H).  

EIMS Found 567.10 [M+H]+, Calculated for C23H22N4O5S, 466.13 [M]+ 

 

4.14 Synthesis of 5-amino-N-(2-((3-(dimethylamino) propyl) carbamoyl) 

benzo[b]thiophen-5-yl) benzofuran-2-carboxamide (4.14). 
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170 mg of 4.13 was dissolved in 20 mL of ethanol and 1 mL of ethyl acetate 

was added to a hydrogenation reaction bottle. 20 mg of 10% Pd (palladium on 

activated carbon) 20 was added into the same, and mixed well. The reaction 

bottle was sealed and connected to a hydrogen reservoir. Air from the reaction 

bottle was removed by means of vacuum, and was then by flushed with 

hydrogen. Approximately 40 psi of hydrogen pressure was applied from the 

reservoir, and the bottle was then shaken vigorously to initiate the reaction. 

Progress of the reaction was monitored by TLC and LCMS, and on completion 

of the reaction after 7 hours at which point TLC and LCMS analysis showed the 

completion of reaction.The shaker was stopped, the bottle vented. The product 

was recovered by means of filtration using Celite. Finally, the product is 

concentrated by using a rotary evaporator. A brown solid was obtained after 

drying in vacuum. Yield=145mg, 91%. 

Table 4.14: Characterisation data for compound 4.14 

4.14 

Brown 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm 
10.61(s,1H), 8.82(s,1H), 8.45(s,1H), 8.06(s,1H), 7.97(d,J=8.8,1H), 
7.85(dd,J=8.8,2.0,1H),7.57(s,1H),7.39(d,J=8.8,1H),6.85-
6.80(m,2H), 3.32-3.27(m,2H), 2.51-2.49(m,2H), 2.27(t,J=6.8,2H), 

2.14(s,6H), 1.71-1.64(m,2H).  

EIMS Found 437.0 [M+H]+, Calculated for C23H24N4O3S, 436.15 [M]+ 

 

 

4.15 Synthesis 5-(benzo[b]thiophene-2-carboxamido)-N-(2-((3-(dimethyl 

amino) propyl) carbamoyl) benzo[b]thiophen-5-yl) benzofuran-2-

carboxamide (4.15). 

 

 
Initially, benzo[b]thiophene-2-carboxylic acid (40 mg, 0.224 mmol, 1.2 eq.) was 

dissolved in 10mL of DMF in a round bottom flask fitted with a magnetic stirrer. 

Then DIC (60 µl, 0.392 mmol, 1.75 eq.) and HOBt (60.48 mg, 0.448 mmol, 2.0 

eq.) were added to the acid (1.0 eq.) and this mixture was allowed to stir at 

room temperature for 30 minutes to ensure the formation of ester from the acid. 

Then amine 4.14 (70 mg, 0.16 mmol, 1 eq.) was added to the same mixture and 

the mixture was allowed to stir for 5 hours at which point TLC and LCMS 
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analysis showed the completion of reaction. Finally the reaction mixture was 

applied to a conditioned IsoluteTM SCX-2 cartridge and the product was purified 

by ‘Catch and Release’ method (described in the section ‘Method and 

Materials’ of chapter 3). A pale yellow solid was obtained after drying in 

vacuum. Yield=28mg, 41%. 

 

 

Figure 4.1: 1H and 13C NMR spectroscopic data of compound 4.15 as a 

representative of library 1-A compounds 
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Table 4.15: Characterisation data for compound 4.15 

4.15 

Light 
Yellow 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
10.71(d,J=3.2,2H), 8.79(t,J=5.6,1H), 8.47(s,1H), 8.41(s,1H), 
8.34(s,1H), 8.04(t,J=8.8,2H), 8.01(d,J=9.2,1H), 7.87(d,J=2,1H), 
7.84(s,2H), 7.81(d,J=2.4,1H), 7.76(d,J=8.8,1H), 7.52-7.48 (m, 
2H), 3.34-3.29(m,2H), 2.33 (t,J=7.2,2H), 2.20 (s,6H), 
1.70(t,J=8.8,2H). 

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
161.3, 160.3, 156.7, 151.2, 149.3, 141.1, 140.4, 139.9,139.4, 
139.1,135.7, 135.6,134.6, 127.2, 126.5, 125.7, 125.4, 
125.0,124.4,122.9, 122.8, 121.0, 120.1, 115.9, 113.9, 112.0, 
111.0, 56.5, 44.8, 39.3, 37.6,26.7. 

EIMS Found 597.10 [M+H]+, Calculated for C32H28N4O4S2 596.15 [M]+ 

HRMS m/z (+EI) Calc. for C32H28N4O4S2 596.1552 [M]+, found 

597.1625[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3285, 2936, 2762, 1741, 1660, 1634, 1585, 1539, 1470, 1447, 
1427, 1343, 1297, 1273, 1232, 1207, 1142, 1126, 1040, 945, 893, 
876, 847, 819, 809, 777, 755, 740, 720, 690. 

 

 

4.16 Synthesis of N-(3-(dimethyl amino) propyl)-5-(5-nitro benzo 

[b]thiophene-2-carboxamido) benzofuran-2-carboxamide (4.16). 

 

 

Initially, 118 mg of 5-nitrobenzo[b]thiophene-2-carboxylic acid (0.54 mmol, 1.2 

eq.) was dissolved in 10mL of DMF in a round bottom flask fitted with a 

magnetic stirrer. Then DIC (146 µl, 0.945 mmol, 1.75 eq.) and HOBt (145.8 mg, 

1.08 mmol, 2.0 eq.) were added to the acid (1.0 eq.) and this mixture was 

allowed to stir at room temperature for 30 minutes for the esterification of the 

acid. Then amine 4.2 (100.0 mg, 0.383 mmol, 1 eq.) was added to the mixture 

and the mixture was allowed to stir for 8 hours at which point TLC and LCMS 

analysis showed the completion of reaction. Finally the reaction mixture was 

applied to a conditioned IsoluteTM SCX-2 cartridge and the product was purified 

by ‘Catch and Release’ method (described in the section ‘Method and 

Materials’ of chapter 3). A deep brown solid was obtained after drying in 

vacuum. Yield=52 mg, 58%. 
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Table 4.16: Characterisation data for compound 4.16 

4.16 

Deep 
Brown 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
10.87(s,1H), 8.87(d,J=5.2,2H), 8.38(s,1H), 8.27(dd,J=8.8,4.0,2H), 
7.83(t,J=5.6,1H),7.66(dd,J=8.8,2.8,2H),7.45(s,1H),3.35(d,J=5.2,2
H), 2.51 (s,6H), 2.45(s,2H), 1.86(s,2H).  

EIMS Found 467.10 [M+H] +, Calculated for C23H22N4O5S, 466.13 [M]+ 

 

 

4.17 Synthesis of 5-(5-aminobenzo[b]thiophene-2-carboxamido)-N-(3 

(dimethylamino) propyl) benzofuran-2-carboxamide (4.17).  

 

 

52 mg of 4.16 was dissolved in 20 mL of ethanol and 1 mL of ethyl acetate was 

added to a hydrogenation reaction bottle. 20 mg of 10% Pd (palladium on 

activated carbon) 20 was added into the reaction vessel, and mixed well. The 

reaction bottle was sealed and connected to a hydrogen reservoir. Air within the 

reaction bottle was removed by the application of vacuum, and was then by 

flushed with hydrogen. A hydrogen pressure of approximately 40 psi was 

applied from the reservoir, and the bottle was then shaken vigorously to initiate 

the reaction. Progress of the reaction was monitored by TLC and LCMS, and on 

completion of the reaction after 5 hours at which point TLC and LCMS analysis 

showed the completion of reaction. The shaker was stopped, the bottle vented, 

and the product was recovered by means of filtration using Celite. Finally, the 

product is concentrated by using a rotary evaporator. A light yellow solid was 

obtained after drying in vacuum. Yield=90 mg, 94%. 
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Table 4.17: Characterisation data for compound 4.17 

4.17 

Light 

Yellow 

solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm                                                                                                                                           

10.59(s,1H),8.83(t,J=5.6,1H),8.24(d,J=2,1H),8.14(s,1H),7.807.75(m

,1H),7.65(d,J=8.8,2H),7.54(s,1H),7.06(d,J=1.6,1H),6.86(dd,J=8.8,2.

4,1H), 3.33-3.28(m,2H), 2.51(t,J=1.6,2H), 2.28-2.42 (m,2H), 2.14 

(s,6H), 1.69-1.64(m,2H). 

EIMS Found 536.10[M+H]+, Calculated for C23H24N4O3S, 435.15 [M]+ 

4.18 Synthesis of 5-(5-(benzofuran-2-carboxamido) benzo[b]thiophene-2-

carboxamido)-N-(3-(dimethylamino) propyl) benzofuran-2-carboxamide 

(4.18).  

 

 

At the beginning, 46 mg of benzofuran-2-carboxylic acid (0.288 mmol, 1.2 eq.) 

was dissolved in 10mL of DMF in a round bottom flask fitted with a magnetic 

stirrer. Then DIC (77 µl, 0.504 mmol, 1.75 eq.) and HOBt (77 mg, 0.576 mmol, 

2.0 eq.) were added to the acid (1.0 eq.) and this mixture was allowed to stir at 

room temperature for 30 minutes to ensure the ester formation. Then 90 mg of 

amine 4.17 (0.206 mmol, 1 eq.) was added to the mixture as, and the mixture 

was allowed to stir for 5 hours at which point TLC and LCMS analysis showed 

the completion of reaction. Lastly the reaction mixture was applied to a 

conditioned IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch 

and Release’ method (described in the section ‘Method and Materials’ of 

chapter 3). A cream solid was obtained after drying in vacuum. Yield=42 mg, 

36%. 
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Table 4.18: Characterisation data for compound 4.18 

4.18 

Cream 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
10.77(s,1H),10.63(s,1H),8.83(s,1H),8.57(s,1H),8.39(s,1H), 
8.27(s,1H),8.07(d,J=8.8,1H),7.94(d,J=7.2,1H),7.85(t,J=8,2H), 
7.77(t,J=7.2,2H), 7.68 (d,J=8.8,1H), 7.53(t,J=7.6,2H), 7.39 (t,J=7.2, 
1H), 3.32(t,J=6.8,2H), 2.27(t,J=6.4,2H), 2.21 (s,6H), 1.68(t,J=6.8,2H). 

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
160.2, 158.0, 156.8, 154.4, 150.9, 149.9, 148.5, 140.9, 139.3, 
136.1,135.7, 134.3, 127.2, 127.0, 125.7, 123.9, 123.0, 122.9, 120.6, 
116.1,113.9, 111.9, 111.8, 110.8, 109.4, 56.8, 45.0, 39.8, 39.2, 39.0, 
37.3, 35.7. 

EIMS Found 580.17 [M+H] +, Calculated for C32H28N4O5S, 579.20 [M]+  

HRMS M/z (+EI) found 581.1851[M+H]+.Calc. for C32H28N4O5S, 580.1780 [M]+  

IR (FTIR), Vmax/’cm-1): 
3245, 2936, 1637, 1543, 1523, 1470, 1446, 1380, 1327, 1297, 1233, 
1201, 1094, 1073, 1040, 964, 863, 806, 742, 714, 660. 

 

 

 

4.19 Synthesis of N-(3-(dimethylamino) propyl)-5-nitro-1H-indole-2-

carboxamide (4.19).        

 

 

Initially, 400 mg of 5-nitro-1H-indole-2-carboxylic acid (1.94 mmol, 1.2 eq.) was 

dissolved in 10mL of DMF in a round bottom flask fitted with a magnetic stirrer. 

Then DIC (524 µl, 3.39 mmol, 1.75 eq.) and HOBt (523 mg, 3.88 mmol, 2.0 eq.) 

were added to the acid (1.0 eq.) and this mixture was allowed to stir at room 

temperature for 30 minutes to ensure the formation of ester from the acid. Then 

N1, N1-dimethylpropane-1, 3-diamine (160 µl, 1.56 mmol, 1 eq.) was added to 

the mixture and it was allowed to stir for about 7 hours at which point TLC and 

LCMS analysis showed the completion of reaction. At last the reaction mixture 

was applied to a conditioned IsoluteTM SCX-2 cartridge and the product was 

purified by ‘Catch and Release’ method (described in the section ‘Method and 

Materials’ of chapter 3). A yellow solid was obtained after drying in vacuum. 

Yield=300 mg, 54%. 
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Table 4.19: Characterisation data for compound 4.19 

4.19 

Yellow 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
12.42(s,1H), 8.83(s,1H), 8.70(d,J=2,1H), 8.06(dd,J=8.8,2.0,1H), 
7.56(d,J=9.2,1H), 7.37(s,1H), 3.34-3.30(m,2H), 2.27 (t,J=7.2,2H), 
2.13 (s,4H), 1.67(t,2H). 

EIMS Found  290.13 [M+H] +, Calculated for C14H18N4O3, 289.10 [M]+ 

 

 

4.20 Synthesis 5-amino-N-(3-(dimethylamino) propyl)-1H-indole-2-

carboxamide (4.20).        

 

 

200mg of 4.19 was dissolved in 20 mL of ethanol and 1 mL of ethyl acetate was 

added to a hydrogenation reaction bottle. 20 mg of 10% Pd (palladium on 

activated carbon) 20 was added into the same, and mixed well. The reaction 

bottle was sealed and connected to a hydrogen reservoir. Air from the reaction 

bottle was removed under vacuum, and the reaction mixture was then flushed 

with hydrogen. Typically, a hydrogen pressure of approximately 40 psi was 

applied from the reservoir, and the bottle was then shaken vigorously to initiate 

the reaction. Progress of the reaction was monitored by TLC and LCMS, and 

the shaker was stopped on completion of the reaction after about 6 hours at 

which point TLC and LCMS analysis showed the completion of reaction. The 

product was recovered by means of filtration using Celite. Finally, the product is 

concentrated by using a rotary evaporator. An orange solid was obtained after 

drying in vacuum. Yield=250mg, 93%. 

Table 4.20: Characterisation data for compound 4.20 

4.20 
Orange 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
7.27(s,1H),7.25(s,1H),6.96(d,J=2,1H),6.87(s,1H),6.83(d,J=3.6,1H)
, 6.80(d,J=2.0,1H), 3.40(t,J=6.8,2H), 3.33-3.32(m,2H), 2.44-2.41 
(m,2H), 1.80 (t,J=7.2,4H), 1.11(d,J=6.8,2H). 

EIMS Found 260.18 [M+H] +, Calculated for C14H20N4O, 260.16 [M]+ 
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4.21 Synthesis of N-(3-(dimethylamino) propyl)-5-(5-nitro-1H-indole-2-

carboxamido)-1H-indole-2-carboxamide (4.21). 

 

47 mg of 5-nitro-1H-indole-2-carboxylic acid (0.230 mmol, 1.2 eq.) was 

dissolved in 10mL of DMF in a round bottom flask and stirred. Then DIC (62 µl, 

0.402 mmol, 1.75 eq.) and HOBt (62 mg, 0.460 mmol, 2.0 eq.) were added to 

the acid (1.0 eq.) and this mixture was allowed to stir at room temperature for 

30 minutes to ensure the formation of ester from the acid.  

 

 

Figure 4.2: 1H and 13C NMR spectroscopic data of compound 4.21 as a 

representative of library-5 compounds 
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Then amine 4.20 (50 mg, 0.192 mmol, 1 eq.) was added to the mixture and the 

mixture was allowed to stir for 8 hours at which point TLC and LCMS analysis 

showed the completion of reaction. Lastly the reaction mixture was applied to a 

conditioned IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch 

and Release’ method (described in the section ‘Method and Materials’ of 

chapter 3). An orange solid was obtained after drying in vacuum. Yield=16mg, 

19%.  

Table 4.21: Characterisation data for compound 4.21 

4.21 
Orang
e 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
12.47(s,1H),11.61(s,1H),10.42(s,1H),8.77(d,J=2.0,1H), 
8.53(s,1H),8.11(dd,J=8.8,2.0,2H),7.70(s,1H),7.62(d,J=8.4,1H),7.5
2(dd,J=8.8,2.0,1H),7.10(s,1H),6.12(s,1H),3.34-3.29(m,2H), 2.50 
(t,J=7.2,2H), 2.17 (s,6H), 1.69(t,J=6.8,2H). 

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  

162.2, 160.8, 158.5, 141.2, 139.4, 135.4, 133.5, 132.6, 131.0, 
126.8, 126.3, 119.2, 118.5, 118.3, 112.9, 112.8, 112.2, 105.5, 
102.2, 56.7, 45.0, 38.8, 35.7.  

EIMS Found 449.0 [M+H] +, Calculated for C23H24N6O4, 448.18 [M]+ 

HRMS M/z (+EI) Calc. for C23H24N6O4 [M]+ 448.1859, found 

449.1924[M+H] +. 

IR (FTIR), Vmax/’cm-1): 
3270, 2970, 2301, 1738, 1611, 1536, 1536, 1468, 1439, 1365, 
1342, 1312, 1236, 1209, 1169, 1128, 1094, 1039, 866, 802, 743, 
683. 

4.22 Synthesis of 5-amino-N-(2-((3-(dimethylamino) propyl) carbamoyl)-1H-

indol-5-yl)-1H-indole-2-carboxamide (4.22). 

 

242 mg of 4.21 was dissolved in 20 mL of ethanol and 1mL of ethyl acetate was 

added to a hydrogenation reaction bottle. 20 mg of 10% Pd (palladium on 

activated carbon) 20 was added into the reaction vessel, and mixed well. The 

sealed reaction bottle was connected to a hydrogen reservoir. Air from the 

reaction bottle was removed by applying vacuum, and it was then by flushed 

with hydrogen. Typically, a hydrogen pressure of approximately 40 psi was 

applied from the reservoir, and the bottle was then shaken vigorously to initiate 

the reaction. Progress of the reaction was monitored by TLC and LCMS, and on 
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completion of the reaction after about 6 hours at which point TLC and LCMS 

analysis showed the completion of reaction.The shaker was stopped, the 

bottle vented, and the product was recovered by means of filtration using Celite. 

Finally, the product is concentrated by using a rotary evaporator. A yellow solid 

was obtained after drying in vacuum. Yield=210 mg, 93%. 

Table 4.22: Characterisation data for compound 4.22 

4.22 

Yellow 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
11.55(s,1H), 11.24(s,1H), 9.95(s,1H), 8.50(t,J=5.6,1H), 8.07(s,1H), 
7.47(dd,J=8.8,1.6,1H), 7.37 (d,J=8.8,1H), 7.15(d,J=8.8,1H), 
7.07(d,J=8.8,2H), 6.71(s,1H), 6.62(dd,J=8.8,2.0,1H), 3.31-
3.26(m,2H), 2.25 (t,J=6.8,2H), 2.13(s,4H), 2.12 (s,2H), 1.67-

1.61(m,2H). 

EIMS Found 419.0 [M+H] +, Calculated for C23H26N6O2, 418.21 [M]+ 

4.23 Synthesis of 5-amino-N-(2-((3-(dimethylamino) propyl) carbamoyl)-1H-

indol-5-yl)-1H-indole-2-carboxamide (4.23). 

 

Initially, 50 mg of 5-nitro-1H-indole-2-carboxylic acid (0.186 mmol, 1.2 eq.) was 

dissolved in 10mL of DMF in a round bottom flask fitted with a magnetic stirrer. 

Then DIC (51 µl, 0.325 mmol, 1.75 eq.) and HOBt (50.8 mg, 0.372 mmol, 2.0 

eq.) were added to the acid (1.0 eq.) and this mixture was allowed to stir at 

room temperature for 30 minutes to ensure the formation of ester from the acid. 

Then amine 4.22 (65 mg, 0.155 mmol, 1 eq.) was added and the mixture was 

allowed to stir for 5 hours at which point TLC and LCMS analysis showed the 

completion of reaction. Finally the reaction mixture was added to a conditioned 

IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch and Release’ 

method (described in the section ‘Method and Materials’ of chapter 3). A pale 

yellow solid was obtained after drying in vacuum. Yield=27 mg, 29%. 
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Table 4.23: Characterisation data for compound 4.23 

4.23 

Yello
w 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
12.48(s,1H), 11.75(s,1H), 11.58(s,1H), 10.45(s,1H), 10.14(s,1H), 
8.78(s,1H), 8.53(s,1H), 8.17(s,1H), 8.11(s,2H), 7.71(s,1H), 
7.63(d,J=9.2,1H), 7.57(d,J=8.4,1H), 7.50 (t,J=9.6,2H), 7.43(s,2H), 
7.10(s,1H), 3.34(d,J=7.2,2H), 2.35 (s,2H), 2.22 (s,4H), 
1.71(d,J=6.4,2H). 

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
162.2, 160.9, 159.3, 158.6, 141.2, 139.4, 135.4, 133.9, 133.4, 
132.6, 132.5, 131.3, 131.1, 126.9, 126.3, 119.2, 118.7, 118.5, 
118.3, 1130, 112.8, 112.6, 112.3, 112.1, 105.6, 103.3, 102.2, 56.6, 
44.9, 39.2, 35.7, 30.7.  

EIMS Found 607.10 [M+H]+, Calculated for C32H30N8O5, 606.23 [M]+ 

HRMS m/z (+EI) Calc. for C32H30N8O5, 606.2339 [M]+, found 

607.2405[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3242, 2938, 1660, 1634, 1585, 1545, 1519, 1471, 1445, 1417, 
1382, 1328, 1295, 1250, 1230, 1126, 1096, 1067, 982, 870, 810, 
740, 679, 661. 

4.24 Synthesis of N-(3-(dimethylamino) propyl)-5-(5-(1-methyl-1H-indole-2-

carboxamido)-1H-indole-2-carboxamido)-1H-indole-2-carboxamide (4.24) 

 

 

Initially, 21.87 mg of 1-methyl-1H-indole-2-carboxylic acid (0.125 mmol, 1.2 eq.) 

was dissolved in 10mL of DMF in a round bottom flask fitted with a magnetic 

stirrer. Then DIC (34 µl, 0.218 mmol, 1.75 eq.) and HOBt (34 mg, 0.250 mmol, 

2.0 eq.) were added to the acid (1.0 eq.) and this mixture was allowed to stir at 

room temperature for 30 minutes for the formation of ester from the acid. Then 

amine 4.22 (50 mg, 0.104 mmol, 1 eq.) was added and the mixture was stirred 

for 6 hours at which point TLC and LCMS analysis showed the completion of 

reaction. At last the reaction mixture was applied to a conditioned IsoluteTM 

SCX-2 cartridge and the product was purified by ‘Catch and Release’ method 

(described in the section ‘Method and Materials’ of chapter 3). A yellow 

coloured solid was collected after drying in vacuum. Yield=10mg, 15%. 
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Table 4.24: Characterisation data for compound 4.24 

4.24 

Yellow 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
11.76(s,1H),11.60(s,1H),10.27(s,1H),10.20(s,1H), 8.54(d,J=5.6,1H), 
8.17(s,1H), 8.10(t,J=6.4,1H), 7.70(d,J=8.0,1H), 7.58(d,J=8.4,1H), 
7.56-7.54(m,2H),7.44(t,J=8.8,2H),7.40(d,J=2.8,1H), 
7.32(t,J=6.4,2H), 7.16(t,J=7.6,1H), 7.14(s,1H), 4.05(s,3H). 3.66-
3.61(m, 2H), 3.08 (s, 2H), 2.73 (s, 4H), 2.15(s, 2H).  

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
162.3, 161.2, 160.9, 160.2, 159.3, 156.8, 139.2, 138.5, 133.7, 
133.4, 132.5, 132.4, 131.6, 131.3, 126.8, 125.5, 123.7, 121.6, 
120.2, 118.4, 112.6, 112.2, 112.1, 110.5, 105.0, 56.8, 45.1, 39.4, 
35.7, 31.4, 30.7, 28.9, 27.2.  

EIMS Found 576.10 [M+H] +, Calculated for C33H33N7O3, 575.26 [M]+ 

HRM
S 

m/z (+EI) Calc. for C33H33N7O3 (M)+ 575.2645, found 

576.2714[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3268, 2968, 2343, 2300, 1738, 1616, 1536, 1467, 1438, 1368, 
1341, 1313, 1236, 1211, 1168, 1128, 1087, 1038, 866, 804, 743, 
683. 

 

 

 

4.25 Synthesis of N-(2-((2-((3-(dimethylamino) propyl) carbamoyl) 

benzo[b]thiophen-5-yl) carbamoyl) benzofuran-5-yl)-1-methyl-1H-indole-2-

carboxamide (4.25) 

 

     

29 mg of 1-methyl-1H-indole-2-carboxylic acid (0.156 mmol, 1.2 eq.) was 

dissolved in 5 mL of DMF in a round bottom flask fitted with a magnetic stirrer. 

Then DIC (45 µl, 0.228 mmol, 1.75 eq.) and HOBt (45 mg, 0.330 mmol, 2.0 eq.) 

were added to the acid (1.0 eq.) and this mixture was allowed to stir at room 

temperature for 30 minutes to confirm esterification. Then amine 4.14 (60 mg, 

0.137 mmol, 1 eq.) was added and the mixture was allowed to stir for 12 hours 

at which point TLC and LCMS analysis showed the completion of reaction. 

Finally the reaction mixture was applied to a conditioned IsoluteTM SCX-2 

cartridge and the product was purified by ‘Catch and Release’ method 
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(described in the section ‘Method and Materials’ of chapter 3). A pale yellow 

solid was obtained after drying in vacuum. Yield=18mg, 23%.               

Table 4.25: Characterisation data for compound 4.25                                                                                                                                                                                                                                                                                                                               

4.25 

Light 
Yellow 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
10.70(s,1H), 10.48(s,1H), 8.77(s,1H), 8.47(s,1H), 8.38(s,1H), 
8.06(s,1H), 8.00(d,J=8.8,1H), 7.86(d,J=8.8,1H), 7.82(d,J=8.4,2H), 
7.73(t,J=8.4,2H), 7.57(d,J=8.4,1H), 7.36(s,1H), 7.34(t,J=7.6,1H), 
7.15(t,J=7.6, 1H), 4.05(s,3H), 3.32(t,J=6.8,2H), 2.28(t,J=6.8,2H), 
2.15(s,6H), 1.69(t,J=7.2,2H). 

13C NMR (100MHz,(CD3)2SO); δC in ppm  
161.3, 160.5, 156.7, 151.0, 149.3, 141.1, 139.4, 138.6, 135.7, 
135.6, 135.1, 131.9, 127.2, 125.4, 124.4, 123.9, 122.9, 121.7, 
120.9, 120.3, 115.9, 113.5, 111.9, 111.0, 110.5, 105.5, 56.7, 45.0, 
41.4, 39.6, 38.8,37.7, 31.4. 

EIMS Found 594.2 [M+H] +, Calculated for C33H31N5O4S, 593.2097 [M]+ 

HRMS M/z (+EI) Calc. for C33H31N5O4S, 593.2097[M]+, found 

594.2169[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3266, 2938, 2219, 1705, 1632, 1532, 1475, 1438, 1360, 1331, 
1308, 1221, 1159, 1097, 1039, 945, 885, 807, 770, 741, 715, 619. 

4.26 Synthesis of 5-nitro-N-(2-(piperidin-1-yl) ethyl) benzofuran-2-

carboxamide (4.26) 

 

   

Initially, 200 mg of 5-nitrobenzofuran-2-carboxylic acid (0.966 mmol, 1.2 eq.) 

was dissolved in 10mL of DMF in a round bottom flask and it is stirred to mix 

well. Then DIC (260 µl, 1.69 mmol, 1.75 eq.) and HOBt (260 mg, 1.93 mmol, 2.0 

eq.) were added to the acid (1.0 eq.) and this mixture was stirred at room 

temperature for at least 30 minutes to ensure the formation of ester from the 

acid. Then 2-(piperidin-1-yl) ethan-1-amine (104 mg, 0.805 mmol, 1 eq.) was 

added and the mixture was allowed to stir for 14 hours at which point TLC and 

LCMS analysis showed the completion of reaction. Finally the product was 

purified by ‘Catch and Release’ method using the conditioned IsoluteTM SCX-2 

cartridge (described in the section ‘Method and Materials’ of chapter 3). A pale 

yellow solid was collected after drying in vacuum. Yield=160 mg, 66%. 
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Table 4.26: Characterisation data for compound 4.26 

 4.26 

Pale  
Yellow 
Solid 

1H 

 NMR 

1H NMR(400MHz,CD3OD); δH in ppm  
8.50(d,J=2.4,1H), 8.21(dd,J=6.8,2.4,1H), 7.60 (d,J=9.2,1H), 
7.43(s,1H), 3.60(t,J=6.8,2H), 2.85-2.64(m,2H), 2.48(s,4H), 1.68-
1.63(m,4H), 1.30(d,2H). 

EIMS Found 318.0 [M+H] +, Calculated for C16H19N3O4 317.13 [M]+ 

 

 

4.27 Synthesis of 5-amino-N-(2-(piperidin-1-yl) ethyl) benzofuran-2-

carboxamide (4.27) 

 

 

155 mg of 4.26 was dissolved in 20 mL of ethanol and 1 mL of ethyl acetate 

was added to a hydrogenation reaction bottle. 20 mg of 10% Pd (palladium on 

activated carbon) 20 was added into the same and mixed it well. The sealed 

reaction bottle was connected to a hydrogen reservoir and air from the reaction 

bottle was removed by applying vacuum. The mixture was then flushed with 

hydrogen. A hydrogen pressure of approximately 40 psi was applied from the 

reservoir, and the bottle was then shaken vigorously to initiate the 

reaction. Progress of the reaction was observed by TLC and LCMS. The shaker 

was stopped after about 6 hours at which point TLC and LCMS analysis 

showed the completion of reaction. The bottle was vented and the product was 

recovered by means of filtration using Celite. Finally, the product was 

concentrated by using a rotary evaporator. A pale yellow solid was obtained 

after drying in vacuum. Yield=136 mg, 96 %. 

Table 4.27: Characterisation data for compound 4.27 

 4.27 

Yellow 
Solid 

1H 

 NMR 

1H NMR(400MHz,CD3OD); δH in ppm  
7.26(t,J=6.0,2H),6.95(d,J=2.0,1H),6.90(dd,J=8.8,2.4,1H),3.56(t,
J=6.8,2H),2.64(t,J=6.8,2H), 2.55(s,4H), 1.64-1.58(m,4H), 
1.45(d, 6.0,2H). 

EIMS Found 288.0 [M+H]+, Calculated for C16H21N3O2 287.16 [M]+ 
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4.28 Synthesis of 5-nitro-N-(2-((2-(piperidin-1-yl) ethyl) carbamoyl) 

benzofuran-5-yl) benzofuran-2-carboxamide (4.28) 

 

 

Initially, 60 mg of 5-nitrobenzofuran-2-carboxylic acid (0.208 mmol, 1.2 eq.) has 

been dissolved in 10mL of DMF in a round bottom flask placed into a magnetic 

stirrer. Then DIC (78.69 µl, 0.509 mmol, 1.75 eq.) and HOBt (78.57 mg, 0.582 

mmol, 2.0 eq.) were added to the acid (1.0 eq.) and this mixture was allowed to 

stir at room temperature for 30 minutes to ensure the ester formation from the 

acid. The mixture was allowed to stir for 14 hours after addition of an amine 

4.27 (60 mg, 0.208 mmol, 1 eq.), at which point TLC and LCMS analysis 

showed the completion of reaction. At last the reaction mixture was applied to a 

conditioned IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch 

and Release’ method (described in the section ‘Method and Materials’ of 

chapter 3). A pale yellow colured solid was obtained after drying in vacuum. 

Yield=65mg, 65%. 

Table 4.28: Characterisation data for compound 4.28 

 4.28 

Pale 
Yellow 
Solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm 
10.80(s,1H),8.81(d,J=2.40,1H),8.34(dd,J=9.2,2.4,1H),8.27(d,J=
2,1H),7.97-7.94(m,2H),7.78(dd,J=8.8,2.0,1H), 7.66(d,J=8.8,1H), 
2.8(s, 2H), 2.43(t, J=6.8, 2H), 2.36(s, 4H), 1.51-1.45(m,4H), 
1.37(dJ=4.8,2H). 

EIMS Found 477.0  [M+H]+, Calculated for C25H24N4O6, 476.16 [M]+ 

 

 

4.29 Synthesis of 5-amino-N-(2-((2-(piperidin-1-yl) ethyl) carbamoyl) 

benzofuran-5-yl) benzofuran-2-carboxamide (4.29) 
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65 mg of 4.28 was dissolved in 20 mL of ethanol and 1 mL of ethyl acetate was 

added into a hydrogenation reaction bottle. 20 mg of 10% Pd (palladium on 

activated carbon) 20 was added into the same and mixed it well. The reaction 

bottle was sealed and connected to a hydrogen reservoir. Air of the bottle was 

removed by applying vacuum, and it was then flushed with hydrogen. 

Approximately 40 psi hydrogen pressure was applied from the reservoir, and 

the bottle was then shaken vigorously to initiate the reaction. Progress of the 

reaction was monitored by TLC and LCMS, and the shaker was stopped on 

completion of the reaction after 6 hours at which point TLC and LCMS analysis 

showed the completion of reaction. The bottle was vented and the product was 

recovered by means of filtration using Celite. Finally, the product was 

concentrated by using a rotary evaporator. A brown solid was obtained after 

drying in vacuum. Yield=52 mg, 85%. 

Table 4.29: Characterisation data for compound 4.29 

 4.29 

Brown 
Solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
10.57(s,1H),8.60(t,J=6.0,1H),8.27(d,J=2,1H),7.94(t,J=4.0,1H), 
7.79(dd,J=9.2,2.4,1H),7.63(d,J=9.2,1H),7.54(s,2H),7.37(d,J=8.8,1H)

, 
6.82(d,J=2,1H),6.80(d,J=2.4,1H),3.393.35(m,2H),3.16(s,2H),2.72(s,

2H),2.50-2.48(m,2H), 2.43(m,2H), 2.36(s,4H), 1.49-1.45(m,4H). 

EIMS Found 447.0  [M+H]+, Calculated for C25H26N4O4, 446.19 [M]+ 
 

 

4.30 Synthesis of 5-(benzofuran-2-carboxamido)-N-(2-((2-(piperidin-1-yl) 

ethyl) carbonyl) benzofuran-5-yl) benzofuran-2-carboxamide (4.30) 

 

 

Initially, 23 mg of benzofuran-2-carboxylic acid (0.139 mmol, 1.2 eq.) was 

dissolved in 10mL of DMF in a round bottom flask fitted with a magnetic stirrer. 

Then DIC (38 µl, 0.243 mmol, 1.75 eq.) and HOBt (38 mg, 0.278 mmol, 2.0 eq.) 

were added to the acid (1.0 eq.) and this mixture was stirred at room 

temperature for at least 30 minutes to ensure the ester formation from the acid. 

Then amine 4.29 (52 mg, 0.116 mmol, 1 eq.) was and the mixture was allowed 

to stir for 7 hours at which point TLC and LCMS analysis showed the 
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completion of reaction. Finally the reaction mixture was applied to a conditioned 

IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch and Release’ 

method (described in the section ‘Method and Materials’ of chapter 3). A pale 

yellow coloured solid was obtained after drying under vacuum. Total yield 

was12mg, 18%. 

 

Table 4.30: Characterisation data for compound 4.30 

 4.30 

Pale 
Yellow 
Solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
10.73(s1H),10.69(s,1H),8.74(s,1H),8.35(d,J=2,1H),8.30(d,J=2,
1H),7.87(d,J=2,1H),7.85(d,J=6.8,1H),7.83-7.82(m,2H), 7.81-
7.79(m,1H),7.76(d,J=2.8,1H),7.74(t,J=1.2,1H), 
7.67(d,J=9.2,1H),7.54-7.50(m,1H),7.40-7.35(m,1H), 
3.164(s,2H),2.72(d,J=0.8,4H),1.58(t,J=6.0,4H), 1.43(d,J=4,2H), 
1.00(d,J=6.4,2H). 

13C NMR (100MHz,(CD3)2SO); δC in ppm  
195.9, 194.7, 193.9, 184.0, 181.3, 162.6, 161.2, 155.8, 154.6, 
150.5, 149.4, 138.9, 137.0, 130.8, 127.5, 123.5, 121.1, 
116.1,112.2,110.7, 109.3,106.9, 98.7, 95.3, 75.9,66.7,59.3, 
40.0, 39.87, 39.6, 39.2,39.0,38.8, 37.9. 

EIMS Found 591.3 [M+H]+, Calculated for C34H30N4O6, 590.21 [M]+ 

HRMS m/z (+EI) Calc. for C34H30N4O6, 590.2165 [M]+, found 

591.2244[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3351, 2925, 1658, 1583, 1538, 1473, 1358, 1297,1198, 1128, 
1045, 942, 870, 802, 743, 609. 

 

 

4.31 Synthesis of 5-(benzo[b]thiophene-2-carboxamido)-N-(2-((2-

(piperidin-1-yl) ethyl) carbamoyl) benzofuran-5-yl) benzofuran-2-

carboxamide (4.31) 

 

 

 22 mg of benzo[b]thiophene-2-carboxylic acid (0.125 mmol, 1.2 eq.) was 

dissolved in 10mL of DMF in a round bottom flask placed at magnetic stirrer. 

Then DIC (33 µl, 0.218 mmol, 1.75 eq.) and HOBt (33mg, 0.25 mmol, 2.0 eq.) 

were added to the acid (1.0 eq.) and this mixture was allowed to stir at room 

temperature for 30 minutes to ensure the formation of ester from the acid. Then 

amine 4.29 (40 mg, 0.089 mmol, 1 eq.) was added and the mixture was allowed 
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to stir for 6 hours at which point TLC and LCMS analysis showed the 

completion of reaction. Lastly the product was purified by ‘Catch and Release’ 

method using a conditioned IsoluteTM SCX-2 cartridge (described in the section 

‘Method and Materials’ of chapter 3). A white solid was obtained after drying in 

vacuum. Yield=8 mg, 15%. 

Table 4.31: Characterisation data for compound 4.31 

4.31 

 
White 
Solid 
 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
10.70(d,J=4,2H), 8.78(s,1H), 8.40(s,1H),8.32-8.30(m,2H), 
8.07(d,J=7.6,1H), 8.04-8.02(m,1H), 7.95(s,1H), 7.83(d,J=4,1H) 
,7.80(d,J=2,1H), 7.76(d,J=8.8,1H), 7.67(d,J=9.2,1H), 7.60(s,1H), 

7.52-7.48(m,2H), 2.88(s,2H), 2.72(s,2H),  
2.08(s,2H), 1.59(d,J=6.0,4H), 1.44(s,2H). 

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
179.7, 179.3, 176.3, 176.0, 174.4,174.2, 172.7, 166.7, 166.5, 
166.1, 158.9, 158.6, 149.3, 139.8, 136.18, 134.7, 132.8, 131.2, 
130.5, 125.8, 118.7, 116.0, 112.1, 108.0, 107.5, 106.2, 104.8, 
47.2, 41.9, 40.0, 39.8, 39.6, 39.4, 39.2. 

EIMS Found 607.0 [M+H] +, Calculated for C34H30N4O5S 606.1937 [M]+ 

HRMS m/z (+EI) Calc. for C34H30N4O5S, 606.1937 [M]+, found 607.2010 

[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3281, 2956, 1638, 1574, 1531, 1468, 1393, 1339, 1290, 1233, 
1154, 1086, 1039, 952, 878, 809, 738, 716. 

 

 

4.32 Synthesis of 5-nitro-N-(4-(pyrrolidin-1-yl) butyl) benzofuran-2-

carboxamide (4.32) 

 

 

Initially, 500 mg of 5-nitrobenzofuran-2-carboxylic acid (2.41 mmol, 1.2 eq.) was 

dissolved in 10mL of DMF in a round bottom flask fitted with a magnetic stirrer. 

Then DIC (650.77 µl, 4.21 mmol, 1.75 eq.) and HOBt (650.7 mg, 4.82 mmol, 2.0 

eq.) were added to the acid (1.0 eq.) and this mixture was allowed to stir at 

room temperature for 30 minutes to ensure the ester formation from the acid. 

Then 4-(pyrrolidin-1-yl) butan-1-amine (284 µl, 2.0 mmol, 1 eq.) was added and 

the mixture was stirred for 8 hours at which point TLC and LCMS analysis 

showed the completion of reaction. Finally the reaction mixture was applied to a 
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conditioned IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch 

and Release’ method (described in the section ‘Method and Materials’ of 

chapter 3). A brown solid was obtained after drying in vacuum. Yield=545 mg, 

82%. 

Table 4.32: Characterisation data for compound 4.32 

 

 4.32 

Brown 
Solid 

1H 

 NMR 

1HNMR(400MHz,( CD3OD); δH in ppm   
8.51(d,J=2.4,1H),8.22(dd,J=9.2,2.4,1H),7.60(d,J=12.8,,1H), 

7.44(s,1H), 3.37-3.32(m,2H), 2.51(s,2H), 2.48(s,2H), 
2.45(s,2H), 1.72-1.69(m,4H), 1.67-1.61(m,4H). 

EIMS Found 332.0 [M+H]+, Calculated for C17H21N3O4, 331.15 [M]+ 
 

 

4.33 Synthesis of 5-amino-N-(4-(pyrrolidin-1-yl) butyl) benzofuran-2-

carboxamide (4.33) 

  

545 mg of 4.32 was dissolved in 20 mL of ethanol and 1 mL of ethyl acetate 

was added to a hydrogenation reaction bottle. 20 mg of 10% Pd (palladium on 

activated carbon) 20 was added into the reaction mixture and mixed it well. The 

sealed bottle has been connected to a hydrogen reservoir. Air from the reaction 

bottle was removed by applying vacuum, and it was then flushed with hydrogen. 

Typically, a hydrogen pressure of approximately 40 psi was applied from the 

reservoir and the bottle was then shaken vigorously to initiate the reaction. 

Progress of the reaction was monitored by TLC and LCMS. The reaction 

required about 6 hours at which point TLC and LCMS analysis showed the 

completion of reaction. The shaker was stopped, the bottle was vented, and the 

product was recovered by filtration using Celite. Finally, the product was 

concentrated by using a rotary evaporator. An orange solid was obtained after 

drying in vacuum. Yield=502 mg, 90 %. 
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Table 4.33: Characterisation data for compound 4.33 

4.33 

Oran
ge 
Solid 

1H 

 NMR 

1HNMR(400MHz,( CD3OD); δH in ppm   
8.29(s,1H),7.49(d,J=8.8,1H),7.45(s,1H),7.08(d,1H),7.08(d,J=2.0,1H),7
.02(dd,J=8.4,2.0,1H),3.62-3.57(m,2H), 2.68-
2.65(m,4H),2.62(d,J=7.6,2H),1.95-1.92(m,4H),1.86-
1.80(m,2H),1.76(t,J=7.2,2H). 

EIMS Found 302.1 [M+H]+, Calculated for C17H23N3O2, 301.17 [M]+ 

 

 

4.34 Synthesis of 5-nitro-N-(2-((4-(pyrrolidin-1-yl) butyl) carbamoyl) 

benzofuran-5-yl) benzofuran-2-carboxamide (4.34) 

 

 

At first, 481 mg of 5-nitrobenzofuran-2-carboxylic acid (2.32 mmol, 1.2 eq.) was 

dissolved in 10mL of DMF in a round bottom flask fitted with a magnetic stirrer. 

Then DIC (627.68 µl, 4.06 mmol, 1.75 eq.) and HOBt (626.4 mg, 4.64 mmol, 2.0 

eq.) were added to the acid (1.0 eq.) and this mixture was allowed to stir at 

room temperature for 30 minutes for esterification. Then amine (500 mg, 1.65 

mmol, 1 eq.) was added and the mixture was allowed to stir for 13 hours at 

which point TLC and LCMS analysis showed the completion of reaction. Finally 

the reaction mixture separated by conditioned IsoluteTM SCX-2 cartridge and the 

product was purified by ‘Catch and Release’ method (described in the section 

‘Method and Materials’ of chapter 3). A pale yellow solid was obtained after 

drying in vacuum. Yield=360 mg, 44%. 

Table 34: Characterisation data for compound 4.34 

4.34 
 
Pale 
Yellow 
Solid 

1H 

 NMR 

1HNMR(400MHz,( CD3OD); δH in ppm  
8.72(s,1H), 8.39(d,J=6.4,1H), 8.17(s,1H), 7.84(d,J=9.2,1H), 7.76 
(t,J=1.2,1H), 7.68(t,J=1.2,1H), 7.59(d,J=4.8,1H), 7.46(s,1H), 
7.27(d,J=4, 1H), 3.36( s,2H), 2.59(t, J=8.0,2H), 1.83(s,4H), 
1.67(s,2H), 1.29-1.24(m,4H), 1.11(d ,J=6.4,2H). 

EIMS Found 490.80 [M+H] +, Calculated for C26H26N4O6, 490.18 [M]+ 
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4.35 Synthesis of 5-amino-N-(2-((4-(pyrrolidin-1-yl) butyl) carbamoyl) 

benzofuran-5-yl) benzofuran-2-carboxamide (4.35) 
 

 

200mg of 4.34 was dissolved in 20 mL of ethanol and 1 mL of ethyl acetate was 

added to a hydrogenation reaction bottle. 20 mg of 10% Pd (palladium on 

activated carbon) 20 was added into the reaction mixture and mixed it well. The 

reaction bottle was sealed and connected to a hydrogen reservoir. Air from the 

reaction bottle was removed by applying vacuum, and it was flushed with 

hydrogen. A hydrogen pressure of approximately 40 psi was applied from the 

reservoir, and the bottle was then shaken vigorously to initiate the reaction. 

Progress of the reaction was monitored by TLC and LCMS and the shaker was 

stopped on completion of the reaction after 4 hour at which point TLC and 

LCMS analysis showed the completion of reaction. The bottle was vented, and 

the product was recovered by means of filtration using Celite. Lastly, the 

product is concentrated by using a rotary evaporator. A brown solid was 

obtained after drying in vacuum. Yield=160mg, 86%. 

Table 4.35: Characterisation data for compound 4.35 

 4.35 
Brown 
Solid 

1H 

 NMR 

1HNMR(400MHz,( CD3OD); δH in ppm  
8.14(d,J=6.0,1H), 7.68(dd,J=5.2,1.6,1H), 7.52(d,J=14.4,1H), 
7.41(s,2H), 7.41(s,1H), 6.99(d, J=4.8, 1H), 6.94(dd,J=8.8,2.0, 

1H), 3.42(s,2H), 2.71(s,4H), 2.63(s,2H), 1.67(s,2H), 1.66(s,4H), 
1.19(s,2H). 

EIMS Found 460.21  [M+H] +, Calculated for C26H28N4O4, 459.0 [M]+  

 4.36 Synthesis of 5-(benzofuran-2-carboxamido)-N-(2-((4-(pyrrolidin-1-yl) 

butyl) carbamoyl) benzofuran-5-yl) benzofuran-2-carboxamide (4.36) 

 

 

Initially, 29.58 mg of benzofuran-2-carboxylic acid (0.182 mmol, 1.2 eq.) was 

dissolved in 10mL of DMF in a round bottom flask placed at a magnetic stirrer. 
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Then DIC (50 µl, 0.3185 mmol, 1.75 eq.) and HOBt (50 mg, 0.364 mmol, 2.0 

eq.) were added to the acid (1.0 eq.) and this mixture was allowed to stir at 

room temperature for 30 minutes to form ester. Then amine 4.35 (60 mg, 0.130 

mmol, 1 eq.) was added and the mixture was allowed to stir for 6 hours at which 

point TLC and LCMS analysis showed the completion of reaction. Finally the 

reaction mixture was applied to a conditioned IsoluteTM SCX-2 cartridge and the 

product was purified by ‘Catch and Release’ method (described in the section 

‘Method and Materials’ of chapter 3). A deep yellow solid was obtained after 

drying in vacuum. Yield=14mg, 18%. 

Table 4.36: Characterisation data for compound 4.36 

 

 4.36 

Deep 
Yellow 
Solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
10.71(s,1H), 8.79(s,1H), 8.35(s,1H), 8.28(s,1H), 7.85(d,J=8.0, 
1H),7.81(d,J=6.8,2H),7.79(s,1H),7.74(d,J=8.0,2H),7.71(d,J=14.4,
2H),7.65(d,J=9.2,1H),7.54-7.49(m,1H),7.37(t,J=7.6,1H), 
2.03(s,2H),1.96(s,2H),1.80(s,4H),1.60-1.50(m,2H), 
1.50(d,J=7.2,4H), 1.14-1.09(m,2H).  

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
171.4, 163.7, 157.7, 156.3, 153.1, 151.1,145.3, 139.9, 127.1, 
123.0,120.9,114.2,111.9,111.0,109.3,99.1,92.2,90.8,69.7,55.3,53.
5,46.7,41.9,40.0, 39.8, 39.6, 39.4, 38.8,38.6, 31.8, 31.7, 
30.6,30.1, 25.9, 23.0. 

EIMS Found 605.1 [M+H]+, Calculated for C35H32N4O6, 604.23  [M]+ 

HRMS m/z (+EI) Calc. for C35H32N4O6, 604.2322 [M]+, found 

605.2401[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3405, 2919, 1657, 1585, 1541, 1474, 1376, 1298, 1233, 941, 852, 
801, 741. 

 

4.37 Synthesis of 5-(benzo[b]thiophene-2-carboxamido)-N-(2-((4-

(pyrrolidin-1-yl) butyl) carbamoyl) benzofuran-5-yl) benzofuran-2-

carboxamide (4.37) 

 

 

At first, 33 mg of benzo[b]thiophene-2-carboxylic acid (0.182 mmol, 1.2 eq.) was 

dissolved in 10mL of DMF in a round bottom flask fitted with a magnetic stirrer. 

Then DIC (49 µl, 0.318 mmol, 1.75 eq.) and HOBt (49 mg, 0.364 mmol, 2.0 eq.) 

were added to the acid (1.0 eq.) and this mixture was allowed to stir at room 
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temperature for 30 minutes to ensure the formation of ester. Then amine 

4.35(60 mg, 0.130 mmol, 1 eq.) was added and this mixture was allowed to stir 

for 6 hours at which point TLC and LCMS analysis showed the completion of 

reaction. The product was purified by ‘Catch and Release’ method using 

conditioned IsoluteTM SCX-2 cartridge (described in the section ‘Method and 

Materials’ of chapter 3). A deep yellow solid was obtained after drying in 

vacuum. Yield was 14mg, 18%. 

Table 4.37: Characterisation data for compound 4.37 

 

4.37 

Deep 
Yellow 
Solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
10.77(d,J=7.6,2H),8.86(s,1H),8.47(s,1H),8.38(d,J=10.4,2H), 
8.11(dd,J=10.0,2.8,2H),7.88(d,J=10.0,3H),7.82(d,J=8.0,1H), 
7.72(d,J=8.4,1H),7.62(s,1H),7.56(s,2H),3.35(d,J=4.0,2H),2.
57(S,2H),2.50(s,4H),2.15(s,2H),1.73(s,4H),1.62(d,J=5.6,2H)
,1.55(d,J=5.2,2H) 

13C NMR (100MHz,(CD3)2SO); δC in ppm  
162.2,160.3,157.9, 156.6, 151.2, 150.9, 150.0, 149.4, 
140.4,139.9, 139.1, 134.6, 134.2, 127.2, 126.5, 125.7, 
125.3, 125.0, 122.8, 120.9, 120.6, 113.9, 113.8, 112.0, 
111.7, 110.9, 109.4, 55.1, 53.4, 40.0, 39.2, 30.7, 25.6, 23.9, 
23.0. 

EIMS Found 621.20 [M+H]+, Calculated for C35H32N4O5S, 620.20 
[M]+ 

HRMS m/z (+EI) Calc. for C35H32N4O5S, 620.2093 [M]+, found 

621.2155[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3312, 1656, 1585, 1535, 1471, 1434, 1231, 1198, 941, 870, 
802, 752, 739, 620, 568. 

 

4.38 Synthesis of 5-(5-nitrobenzo[b]thiophene-2-carboxamido)-N-(4-

(pyrrolidin1-yl) butyl) benzofuran-2-carboxamide (4.38). 

 

 

Initially, 153 mg of 5-nitrobenzo[b]thiophene-2-carboxylic acid (0.685 mmol, 1.2 

eq.) was dissolved in 10mL of DMF in a round bottom flask fitted with a 

magnetic stirrer. Then DIC (184 µl, 1.19 mmol, 1.75 eq.) and HOBt (184 mg, 

1.37 mmol, 2.0 eq.) were added to the acid (1.0 eq.) and this mixture was 
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allowed to stir at room temperature for 30 minutes to form ester from the acid. 

Then amine 4.33(172 mg, 0.571 mmol, 1 eq.) was added and the mixture was 

allowed to stir for 7 hours at which point TLC and LCMS analysis showed the 

completion of reaction. Finally the reaction mixture was applied to a conditioned 

IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch and Release’ 

method (described in the section ‘Method and Materials’ of chapter 3). A 

yellow coloured solid was obtained after drying in vacuum. Yield=145mg, 50%. 

Table 4.38: Characterisation data for compound 4.38 

4.38 
Yellow 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
10.85(s,1H),8.95(s,1H),8.75(t,J=5.6,1H),8.55(s,1H),8.35(d,J=8.8,1
H), 8.28(dd,J=8.8,2.4, 1H), 7.76(dd,J=8.8, 2.0,1H), 8.23 
(d,J=2,1H), 7.66(d,J=8,1H), 7.55(s, 1H), 3.31-3.26(m, 4H), 
2.73(s,2H), 2.51-2.49(m,2H), 1.69-1.66(m,4H), 1.61-1.54(m,2H), 
1.53-1.46(m,2H). 

EIMS Found 507.10 [M+H]+, Calculated for C26H26N4O5S,506.58 [M]+ 

 

4.39 Synthesis of 5-(5-aminobenzo[b]thiophene-2-carboxamido)-N-(4-

(pyrrolidin-1-yl) butyl) benzofuran-2-carboxamide (4.39) 

 

 

145 mg of 4.38 was dissolved in 20 mL of ethanol and1 mL of ethyl acetate was 

added to a hydrogenation reaction bottle. 20 mg of 10% Pd (palladium on 

activated carbon) 20 was added into the reaction vessel, and mixed that well. 

The reaction bottle was sealed and connected to a hydrogen reservoir. Air of 

the reaction bottle was removed by applying vacuum and it was flushed with 

hydrogen. Typically, approximately 40 psi of a hydrogen pressure was applied 

from the reservoir and the bottle was then shaken vigorously to initiate the 

reaction. Progress of the reaction was monitored by TLC and LCMS and the 

shaker was stopped after 5 hours at which point TLC and LCMS analysis 

showed the completion of reaction. The bottle was vented and the product was 

recovered by process of filtration using Celite. Finally the product was 

concentrated by using a rotary evaporator. A yellow solid was obtained after 

drying in vacuum. Yield was 96mg, 71%. 
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Table 4.39: Characterisation data for compound 4.39 

4.39 

 
Yellow 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
10.67(s,1H),8.80(t,J=5.6,1H),8.24(d,J=2,1H),8.16(s,1H),7.78(dd,J
=8.8,2.0,1H), 7.65-7.626(m,2H), 7.54(s,1H), 7.06(d,J=2,1H), 
6.86(dd,J=8.8, 2.0,1H), 3.31-3.26(m, 4H), 2.73(s,2H), 2.51(s,2H), 

1.61-1.54(m,2H), 1.22-1.13(m,4H), 1.05-0.99(m,2H).                                                                                                                                                                                                       

EIMS Found 476.30 [M+H]+, Calculated for C26H28N4O3S, 476.18 [M]+ 

 

4.40 Synthesis of 5-(5-(benzo[b]thiophene-2-carboxamido) benzo 

[b]thiophene-2-carboxamido)-N-(4-(pyrrolidin-1-yl) butyl) benzofuran-2-

carboxamide (4.40) 

 

 

30 mg of benzo[b]thiophene-2-carboxylic acid (0.151 mmol, 1.2 eq.) was 

dissolved in 10mL of DMF in a round bottom flask fitted with a magnetic stirrer. 

Then DIC (41 µl, 0.264 mmol, 1.75 eq.) and HOBt (41 mg, 0.302 mmol, 2.0 eq.) 

were added to the acid (1.0 eq.) and this mixture was stirred at room 

temperature for 30 minutes to ensure the formation of ester from the acid. Then 

amine 4.39 (60 mg, 0.126 mmol, 1 eq.) was added and the mixture had been 

stirred for 6 hours at which point TLC and LCMS analysis showed the 

completion of reaction. Finally the reaction mixture was applied to a conditioned 

IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch and Release’ 

method (described in the section ‘Method and Materials’ of chapter 3). A pale 

orange solid was obtained after drying in vacuum. Yield=10 mg, 13%. 



279 
 

 

 

Figure 4.3: 1H and 13C NMR spectroscopic data of compound 4.40 as a 

representative of library 1-B compounds 
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Table 4.40: Characterisation data for compound 4.40 

4.40 

Orange 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
10.72(s,1H), 10.62(s,1H), 8.77(s,1H), 8.50 (d,J=1.6,1H), 
8.42(s,1H), 8.24(d,J=2,1H), 7.37 ( s,1H), 8.08-8.05(m,2H), 
7.95(s,1H), 7.84(dd,J=8.8,2.0,1H), 7.75(dd,J=8.8,2.0,1H), 7.66 
(d,J=8.8,1H), 7.56(s,1H), 7.52-7.48 (m, 2H), 3.34-3.28(m,4H), 

2.89(s,2H), 2.55(s,2H), 2.50 (s,2H), 1.71(s,4H), 1.58-1.53(m,2H). 
13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
160.4, 160.2, 157.9, 150.9, 150.0, 140.9, 140.4, 139.8, 139.4, 
139.1, 136.1, 135.9, 134.4, 127.3, 125.9, 125.7, 125.4, 125.0, 
123.0, 122.8, 120.5, 115.8, 113.8, 111.7, 109.4, 54.9, 53.4, 48.5, 
40.0, 39.6, 39.0, 35.7, 26.9, 25.2, 22.9. 

EIMS Found 636.40 [M+H]+, Calculated for C35H32N4O4S2, 636.18 [M]+ 

HRM
S 

m/z (+EI) Calc. for C35H32N4O4S2, 636.1865 [M]+, found 

637.1934[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3299, 2939, 1635, 1590, 1574, 1528, 1469, 1446, 1432, 1343, 
1298, 1275, 1236, 1198, 1153, 1035, 878, 845, 805, 753, 738, 
715. 

 

4.41 Synthesis of 1-methyl-N-(2-((2-((4-(pyrrolidin-1-yl) butyl) carbamoyl) 

benzofuran-5-yl) carbamoyl) benzofuran-5-yl)-1H-indole-2-carboxamide 

(4.41) 

 

26.52 mg of 1-methyl-1H-indole-2-carboxylic acid (1.2 eq.) was dissolved in 10 

mL of DMF in a round bottom flask fitted with a magnetic stirrer. Then DIC (40 

µl, 0.262 mmol, 1.75 eq.) and HOBt (40 mg, 0.30 mmol, 2.0 eq.) were added to 

the acid (1.0 eq.) and this mixture was stirred at room temperature for 30 

minutes to ensure the formation of ester. Then amine 4.35 (50 mg, 0.108 mmol, 

1 eq.) was added and that mixture was allowed to stir for 8 hours at which point 

TLC and LCMS analysis showed the completion of reaction. Finally the reaction 

mixture was applied to a conditioned IsoluteTM SCX-2 cartridge and the product 

was purified by ‘Catch and Release’ method (described in the section ‘Method 

and Materials’ of chapter 3). A deep yellow solid was obtained after drying in 

vacuum. Yield=20 mg, 23%. 
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Table 4.41: Characterisation data for compound 4.41 

4.41 

 
Deep 
Yello
w 
Solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
10.69(s,1H), 10.50(s,1H), 8.81(t,J=5.6,1H), 8.38(s,1H), 8.30(s,1H), 
7.81(d,J=9.2,3H),7.75(t,2H),7.67(d,J=8.8,1H),7.60(t,2H),7.36(d,J=6
,1H), 7.33(d,J=7.6,1H), 7.17(t,1H), 4.05 (s,2H), 3.29(d,J=6,2H), 
2.50(s,4H), 2.48(s,2H), 1.68(s,4H), 1.52(d,J=6.8,2H). 

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
179.4, 162.3, 160.5, 157.9, 156.6, 151.0, 150.9, 150.0, 149.3, 
138.6, 135.1, 134.2, 132.0, 127.2, 127.2, 125.4, 123.9, 121.7, 
120.9, 120.7, 120.2, 114.0, 113.5, 111.9, 111.7, 110.9, 110.5, 
109.4, 105.5, 55.1, 53.4, 40.0, 39.2, 31.4, 30.6, 29.4.  

EIMS Found 617.60 [M+H] +, Calculated for C36H35N5O5, 617.26 [M]+ 

HRMS m/z (+EI) Calc. for C36H35N5O5,617.2638 [M]+, found 

618.2708[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
2937, 2785, 1709, 1644, 1584, 1530, 1469, 1437, 1390, 1349, 
1316, 1286, 1233, 1198, 1145, 1125, 1025, 1006, 944, 916, 878, 
862, 803, 782, 748, 732, 637. 

 

 

4.42 Synthesis of 3-methyl-N-(2-((2-((4-(pyrrolidin-1-yl) butyl) carbamoyl) 

benzofuran-5-yl) carbamoyl) benzofuran-5-yl) benzofuran-2-carboxamide 

(4.42) 

 
Initially, 24 mg of 3-methylbenzofuran-2-carboxylic acid (0.130 mmol, 1.2 eq.) 

was dissolved in 5 mL of DMF in a round bottom flask fitted with a magnetic 

stirrer. Then DIC (35 µl, 0.2275 mmol, 1.75 eq.) and HOBt (35 mg, 0.260 mmol, 

2.0 eq.) were added to the acid (1.0 eq.) and this mixture was allowed to stir at 

room temperature for 30 minutes to ensure the formation of ester from the acid.  
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Table 4.42: Characterisation data for compound 4.42 

4.42 

Deep 
Yellow 
Solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
10.69(s,1H), 10.59(s,1H), 7.95(s,1H), 7.88(t, 2H), 7.82(s,2H), 
7.80(s,1H), 7.72(t, J=9.2,2H), 7.68(t,J=9.2,2H), 7.54(t,J=7.6, 
2H), 7.41(t,J=7.8,1H), 2.89(s,2H), 2.73(s,2H), 1.73(s,4H), 

1.56(s,4H), 1.24(s,2H), 1.19(s,2H). 
13C NMR (100MHz,(CD3)2SO); δC in ppm  

162.2, 158.0, 157.9, 156.6, 152.7, 151.2, 150.9, 150.0, 149.3, 
142.7, 134.4, 134.2, 130.6, 129.2, 127.4, 127.2, 127.1, 122.3, 
121.2, 121.1, 120.6, 115.1, 114.1, 113.9, 111.8, 111.7, 110.9, 
109.4, 54.8, 53.3, 40.0, 39.2, 35.7, 30.7, 26.8, 22.9. 

EIMS Found 619.20 [M+H]+, Calculated for C36H34N4O6, 618.24 [M]+ 

HRMS m/z (+EI) Calc. for C36H34N4O6, 618.2478 [M]+, found 

619.2544[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3305, 2948, 1639, 1582, 1533, 1470, 1433, 1345, 1296, 1233, 
1198, 1129, 1085, 1041, 942, 874, 801, 738, 717. 

 

Then amine 4.35(50 mg, 0.108 mmol, 1 eq.) was added and the mixture was 

allowed to stir for 9 hours at which point TLC and LCMS analysis showed the 

completion of reaction. Finally the reaction mixture was applied to a conditioned 

IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch and Release’ 

method (described in the section ‘Method and Materials’ of chapter 3). A deep 

yellow solid was obtained after drying in vacuum. Yield=12 mg, 18%. 

 

4.43 Synthesis of 5-chloro-N-(2-((2-((4-(pyrrolidin-1yl) butyl) carbamoyl) 

benzofuran-5-yl) carbamoyl) benzofuran-5-yl) benzofuran-2-carboxamide 

(4.43). 

 

 

At first, the 5-chlorobenzofuran-2-carboxylic acid (36 mg, 0.1826 mmol, 1.2 eq.) 

was dissolved in 5 mL of DMF in a round bottom flask fitted with a magnetic 

stirrer. Then DIC (49.4 µl, 0.319 mmol, 1.75 eq.) and HOBt (49.30 mg, 0.3652 

mmol, 2.0 eq.) were added to the acid (1.0 eq.) and this mixture was allowed to 

stir at room temperature for 30 minutes to ensure the formation of ester from the 

acid. Then amine 4.35(60 mg, 0.13043 mmol, 1 eq.) was added and the mixture 

was allowed to stir for 12 hours at which point TLC and LCMS analysis showed 

the completion of reaction.  
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Table 4.43: Characterisation data for compound 4.43 

 4.43 

Deep 
Yellow 
Solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
10.83(s,1H),10.72(s,1H),8.80(t,J=5.6,1H),8.34(d,J=1.6,1H),8.
29(d,J=1.6,1H),7.94(d,,J=2.0,1H),7.83(s,1H),7.80(d,J=6.4,2H
),7.76(d,J=5.6,1H),7.65(d,J=9.2,1H),7.54(t,J=3.6,2H),7.04(d,J
=8.4,1H),6.79(d,J=8.4,1H),3.69(d,J=4.8,2H),3.27(d,J=4.8,2H)
,2.40(d,J=5.6,4H),1.66(s,4H),1.58-1.53 
(m,2H),1.47(t,J=6.4,2H), 
1.09(d,J=6.4,2H). 

13C NMR (100MHz,(CD3)2SO); δC in ppm  
157.9, 156.6, 156.3, 152.9, 151.3, 150.9, 150.1, 150.0, 149.4, 
134.28, 134.20, 128.7, 128.1, 127.2, 127.1, 122.2, 121.1, 
120.6, 118.9, 114.1, 113.9, 113.6, 112.0, 111.7, 110.9, 110.1, 
109.4, 55.2, 53.5, 40.0, 39.4, 38.8, 27.1, 25.8, 23.0.  

EIMS Found 638.20 [M+H] +, Calculated for C35H31ClN4O6, 638.19 
[M]+ 

HRMS m/z (+EI) Calc. for C35H31ClN4O6, 638.1932 [M]+, found 

629.2006[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3336, 1656, 1582, 1542, 1476, 1435, 1357, 1296, 1231, 
1197, 1170, 1144, 1087, 1064, 941, 890, 871, 801, 750, 739, 
695, 629, 598. 

 

Finally the reaction mixture was applied to a conditioned IsoluteTM SCX-2 

cartridge and the product was purified by ‘Catch and Release’ method 

(described in the section ‘Method and Materials’ of chapter 3). A deep yellow 

solid was obtained after drying in vacuum. Yield=26 mg, 31%. 

4.44 Synthesis of N-(2-((2-((4-(pyrrolidin-1-yl) butyl) carbamoyl) 

benzofuran-5-yl) carbamoyl) benzofuran-5-yl)-1H-benzo[d]imidazole-5-

carboxamide (4.44). 

 

  

Initially, 29.58 mg of 1H-benzo[d]imidazole-5-carboxylic acid (0.182 mmol, 1.2 

eq.) was dissolved in 10mL of DMF in a round bottom flask fitted with a 

magnetic stirrer. Then DIC (49.24 µl, 0.3185 mmol, 1.75 eq.) and HOBt (49.14 

mg, 0.364 mmol, 2.0 eq.) were added to the acid (1.0 eq.) and this mixture was 

allowed to stir at room temperature for 30 minutes to ensure the ester formation. 

Then amine 4.35 (60 mg, 0.13043 mmol, 1 eq.) was added and the mixture was 

allowed to stir for 7 hours at which point TLC and LCMS analysis showed the 
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completion of reaction. Finally the reaction mixture was applied to a conditioned 

IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch and Release’ 

method (described in the section ‘Method and Materials’ of chapter 3). A deep 

yellow solid was obtained after drying in vacuum. Yield=27mg, 34%. 

Table 4.44: Characterisation data for compound 4.44 

 4.44 
Deep 
yellow 
Solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
10.43(s,1H),8.81(S,1H),8.38(s,2H),8.35(s,1H),8.31(s,1H),7.95(s,1H),
7.90(d,J=12,1H),7.81(s,2H),7.77(s,1H),7.72(t,J=5.6,2H),7.66(d,J=8.8
,1H), 7.56(s,1H), 7.05(d,J=8,1H), 6.79(d,J=7.8,1H), 3.29(s,2H), 

2.88(s,2H), 2.39(s,4H), 2.38(s,2H), 1.61(s,4H), 1.55(s,2H).  
13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
166.0, 157.9, 156.6, 150.9, 150.0, 149.3, 144.2, 135.6, 134.2, 129.1, 
128.3, 127.2, 127.1, 121.7, 121.1, 120.6, 113.9, 113.6, 113.5, 111.7, 
110.9, 109.3, 55.3, 53.5, 41.6, 39.0, 38.6, 38.0, 36.8, 35.7, 27.1, 
25.9, 23.3, 23.0.  

EIMS Found 605.20 [M+H]+, Calculated for C34H32N6O5, 604.24 [M]+ 

HRMS m/z (+EI) Calc. for C34H32N6O5, 604.2434 [M]+, found 
605.2511[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3305, 1638, 1586, 1523, 1473, 1433, 1338, 1292, 1238, 1199, 1144, 
940, 871, 802, 738. 

 

4.45 Synthesis of 1-methyl-N-(2-((2-((4-(pyrrolidin-1-yl) butyl) carbamoyl) 

benzofuran-5-yl) carbamoyl) benzo[b]thiophen-5-yl)-1H-indole-2-

carboxamide (4.45) 

 

 

Initially, 23 mg of 1-methyl-1H-indole-2-carboxylic acid (0.126 mmol, 1.2 eq.) 

was dissolved in 10mL of DMF in a round bottom flask fitted with a magnetic 

stirrer. Then DIC (34 µl, 0.2205 mmol, 1.75 eq.) and HOBt (34 mg, 0.252 mmol, 

2.0 eq.) were added to the acid (1.0 eq.) and this mixture was stirred at room 

temperature for at least 30 minutes to ensure the formation of ester from the 

acid. Then amine 4.39 (50 mg, 0.105 mmol,1 eq.) was added and the mixture 

was allowed to stir for 5 hours at which point TLC and LCMS analysis showed 

the completion of reaction. Finally the reaction mixture was applied to a 

conditioned IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch 

and Release’ method (described in the section ‘Method and Materials’ of 
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chapter 3). A pale yellow solid was obtained after drying in vacuum. Yield=8 

mg, 12%. 

Table 4.45: Characterisation data for compound 4.45 

4.45 

Orange 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
10.64(s,1H), 10.53(s,1H), 8.78(t,J=5.6,1H) 8.52(d,J=1.6,1H), 8.38 
(s,1H),8.25(d,J=1.6,1H), 8.04(d,J=8.8,1H), 7.87(dd,J=8.8,2.0,1H), 
7.78(dd,J=9.2,2.4,1H),7.72(d,J=7.6,1H),7.67(d,J=8.8,1H),7.58(t,J
=8.4,2H),7.38(s,1H),7.32(t,J=7.2,1H),7.16(t,J=7.2,1H),3.31(t,J=5.
6,4H), 2.73(s,2H), 2.51(s,2H), 1.76(s,2H), 1.57(t,J=2.8,4H), 

1.23(s,2H).  
13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
162.5, 160.6, 160.3, 159.8, 153.8, 151.7, 151.0, 150.0, 141.2, 
139.4, 138.7, 136.9,136.4, 135.9,134.8, 131.8, 127.3, 124.2, 
122.8, 120.7, 115.6, 113.8, 110.9, 109.5, 107.2, 106.0, 53.3, 40.0, 
39.8,39.4, 39.2, 39.0, 31.4, 30.7, 26.7, 22.8. 

EIMS Found 634.30 [M+H]+, Calculated for C36H35N5O4S, 633.24 [M]+ 

HRM
S 

m/z (+EI) Calc. for C36H35N5O4S, 633.2410 [M]+, found 

634.2473[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3287, 2947, 1638, 1591, 1574, 1530, 1468, 1447, 1432, 1392, 
1340, 1292, 1233, 1201, 1154, 1038, 878, 810, 739, 716. 

4.46 Synthesis of N-(2-((3-(dimethylamino) propyl) carbamoyl) 

benzo[b]thiophen-5-yl)-5-nitro-1H-indole-3-carboxamide (4.46). 

 

 

248 mg of 5-nitro-1H-indole-3-carboxylic acid (1.2096 mmol, 1.2 eq.) was 

dissolved in 10mL of DMF in a round bottom flask fitted with a magnetic stirrer. 

Then DIC (325 µl, 2.114 mmol, 1.75 eq.) and HOBt (325 mg, 2.4192 mmol, 2.0 

eq.) were added to the acid (1.0 eq.) and this mixture was allowed to stir at 

room temperature for 30 minutes to ensure the formation of ester from the acid. 

Then amine 4.8 of 280 mg (1.008 mmol, 1 eq.) was added to the mixture and 

the mixture was allowed to stir for 14 hours at which point TLC and LCMS 

analysis showed the completion of reaction. Finally the reaction mixture was 

separated by conditioned IsoluteTM SCX-2 cartridge and the product was 

purified by ‘Catch and Release’ method (described in the section ‘Method and 

Materials’ of chapter 3). A yellow solid was obtained after drying in vacuum. 

Yield=245mg, 52%. 
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Table 4.46: Characterisation data for compound 4.46 

4.46 

Yellow 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
12.15(s,1H),10.19(s,1H),9.17(d,J=2.4,1H),8.83(t,J=5.2,1H),8.64(s,
1H),8.49(d,J=1.6,1H),8.11(ddJ=9.2,2.4,1H),8.04(s,1H),7.97(t,J=4.
8,2H),7.81(d,J=2,1H),7.79(d,J=2,1H),3.343.29(m,2H),2.342.30(m,
J=6.8,2H), 2.18(s,6H), 1.70(t,J=7.2,2H).  

EIMS Found 465.90 [M+H]+, Calculated for C23H23N5O4S, 465.14 [M]+ 

 

4.47 Synthesis of 5-amino-N-(2-((3-(dimethylamino) propyl) carbamoyl) 

benzo[b]thiophen-5-yl)-1H-indole-3-carboxamide (4.47). 

 

 

245 mg of 4.46 was dissolved in 20 mL of ethanol and 1 mL of ethyl acetate 

was added to a hydrogenation reaction bottle. 20 mg of 10% Pd (palladium on 

activated carbon) 20 was added into the reaction vessel, and mixed it well. The 

reaction bottle was sealed and connected to a hydrogen reservoir. Air from the 

reaction bottle was removed by applying vacuum, and was then by flushed with 

hydrogen. Typically, a hydrogen pressure of approximately 40 psi was applied 

from the reservoir, and the bottle was then shaken vigorously to initiate the 

reaction. Progress of the reaction was monitored by TLC and LCMS. The 

reaction required about 6 hours at which point TLC and LCMS analysis showed 

the completion of reaction. The shaker was stopped, the bottle was vented, and 

the product was recovered by the process of filtration using Celite. Finally, the 

product is concentrated by using a rotary evaporator. A deep brown solid was 

obtained after drying in vacuum. Yield was 196 mg, 86%. 

Table 4.47: Characterisation data for compound 4.47 

4.47 

Deep 
Brown 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm 
11.43(s,1H), 9.78(s,1H), 8.84(t,J=5.2,1H), 8.52 (s,1H), 8.22(s,1H), 
8.07(s,1H),7.96(s,1H),7.83(d,J=8.8,1H), 7.53(s, 1H), 7.21(d,J=8.4, 
1H),6.64(d,J=8.8,1H),3.38-3.33(m,2H),2.29(t,J=7.2,2H), 
2.14(s,6H), 1.75-1.64(m,J=2H). 

EIMS Found 435.50 [M+H]+, Calculated for C23H25N5O2S, 435.00 [M]+ 
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4.48 Synthesis of 5-(benzofuran-2-carboxamido)-N-(2-((3-(dimethylamino) 

propyl) carbamoyl) benzo[b]thiophen-5-yl)-1H-indole-3-carboxamide 

(4.48). 

 

 

43 mg of benzofuran-2-carboxylic acid (0.262 mmol, 1.2 eq.) was dissolved in 

10 mL of DMF in a round bottom flask placed at a magnetic stirrer. Then DIC 

(71 µl, 0.4585 mmol, 1.75 eq.) and HOBt (71 mg, 0.534 mmol, 2.0 eq.) were 

added to the acid (1.0 eq.) and this mixture was allowed to stir at room 

temperature for 30 minutes to ensure the formation of ester from the acid. Then 

amine 4.47 (95 mg, 0.218 mmol, 1 eq.) was added to the mixture and the 

mixture was allowed to stir for 6 hours at which point TLC and LCMS analysis 

showed the completion of reaction. At last the reaction mixture was applied to a 

conditioned IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch 

and Release’ method (described in the section ‘Method and Materials’ of 

chapter 3). A cream solid was obtained after drying in vacuum. Yield=36.5 mg, 

29 %. 

Table 4.48: Characterisation data for compound 4.48 

4.48 

Cream 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
11.85(d,J=2.4,1H), 10.51(s,1H), 9.93(s,1H), 8.87(t,J=5.2,1H), 
8.66(d,J=2,1H), 8.49(d,J=1.6,1H), 8.36(d,J=2.8,1H), 8.31 (s,1H), 
8.04(s,1H),8.97(s,1H),7.85-7.78(m,2H),7.74(d,J=8.4,1H),7.67(dd, 
J=8.8,2.0,1H),7.53-7.48(m,2H),7.37(t,J=7.2,1H),3.35-3.30(m,2H), 
2.59(t,J=7.2,2H), 2.38(s,6H), 1.78(t,J=7.2,2H). 

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
164.5, 163.3, 162.2, 161.5, 156.4, 154.3, 149.2, 140.6, 139.5, 
137.2, 134.3, 133.4, 131.8, 129.4, 127.2, 126.8, 126.3, 123.7, 
122.7, 122.6, 119.8, 117.1, 113.5, 111.8, 111.7, 110.4, 109.9, 
55.7, 43.8, 39.4, 35.7, 30.7. 

EIMS Found 580.0 [M+H] +, Calculated for C32H29N5O4S, 579.19 [M]+ 

HRM
S 

m/z (+EI) Calc. for C32H29N5O4S, 579.1940 [M]+, found 

580.2000[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3259, 2937, 2219, 1705, 1631, 1532, 1474, 1436, 1386, 1361, 
1330, 1308, 1247, 1221, 1160, 1097, 1038, 945, 885, 865, 807, 
769,740, 715, 659, 618. 
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4.49 Synthesis 5-(benzo[b]thiophene-2-carboxamido)-N-(2-((3-(dimethyl 

amino) propyl) carbamoyl) benzo[b]thiophen-5-yl)-1H-indole-3-

carboxamide (4.49). 

 

 

Initially, 44 mg of benzo[b]thiophene-2-carboxylic acid (0.248 mmol, 1.2 eq.) 

was dissolved in 10mL of DMF in a round bottom flask fitted with a magnetic 

stirrer. Then DIC (67 µl, 0.434 mmol, 1.75 eq.) and HOBt (67 mg, 0.496 mmol, 

2.0 eq.) were added to the acid (1.0 eq.) and this mixture was allowed to stir at 

room temperature for 30 minutes to ensure the formation of ester from the acid. 

Then amine 4.47 (90 mg, 0.206 mmol, 1 eq.) was added to the mixture and the 

mixture was allowed to stir for 7 hours at which point TLC and LCMS analysis 

showed the completion of reaction. Finally the reaction mixture was applied to a 

conditioned IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch 

and Release’ method (described in the section ‘Method and Materials’ of 

chapter 3). A cream solid was obtained after drying in vacuum. Yield=38mg, 

31%. 

Table 4.49: Characterisation data for compound 4.49 

4.49 

Cream 
solid 

1H 

 NMR 

1HNMR (400MHz,(CD3)2SO); δH in ppm   
11.82(s,1H),10.56(s,1H),9.92(s,1H),8.80(t,J=5.2,1H),8.62(d,J=1.6,
1H), 8.48(d,J=1.6,1H), 8.43 (s,1H), 8.37(s,1H), 8.07(t,J=6.4,1H), 
8.02-7.98(m,2H),7.95(t,J=2.8,2H),7.81(dd,J=8.8,2.0,1H), 
7.69(dd,J=8.8, 2.0,1H), 7.51-7.46(m,2H), 3.33-3.28(m,2H), 
2.29(t,J=6.8,2H), 2.15(s,6H), 1.72-1.65(m,2H).  

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
163.2, 162.2, 161.3, 159.9, 140.8, 140.6, 140.3, 139.5, 139.2, 
137.2, 134.3, 133.3, 132.1, 126.4, 126.2, 125.2, 124.9, 124.4, 
122.7, 122.6, 119.8, 116.9, 114.7, 113.3, 111.7, 110.4, 56.8,45.1, 
40.0, 39.2, 30.7, 27.0. 

EIMS Found 596.20 [M+H] +, Calculated for C32H29N5O3S2, 595.17  [M]+ 

HRM
S 

m/z (+EI) Calc. for C32H29N5O3S2, 595.1712 [M]+, found 

596.1771[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3258, 2938, 2218, 1634, 1576, 1523, 1475, 1443, 1385, 1361, 
1341, 1307, 1273, 1246, 1223, 1192, 1159, 1096, 1038, 951, 889, 
864, 839, 809, 788, 771, 754, 740, 720, 687, 637. 
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4.50 Synthesis of N-(2-((3-(dimethylamino) propyl) carbamoyl) 

benzofuran-5-yl)-5-nitro-1H-indole-3-carboxamide (4.50).        

 

 

At the beginning 189.42 mg of 5-nitro-1H-indole-3-carboxylic acid (0.919 mmol, 

1.2 eq.) was dissolved in 10mL of DMF in a round bottom flask fitted with a 

magnetic stirrer. Then DIC (248 µl, 1.60 mmol, 1.75 eq.) and HOBt (248 mg, 

1.838 mmol, 2.0 eq.) were added to the acid (1.0 eq.) and this mixture was 

allowed to stir at room temperature for 30 minutes to ensure the formation of 

ester from the acid. Then amine 4.2 (200 mg, 0.766 mmol, 1 eq.) was added to 

the mixture and that mixture was allowed to stir for 11 at which point TLC and 

LCMS analysis showed the completion of reaction. Finally the reaction mixture 

was applied to a conditioned IsoluteTM SCX-2 cartridge and the product was 

purified by ‘Catch and Release’ method (described in the section ‘Method and 

Materials’ of chapter 3). A brown solid was obtained after drying in vacuum. 

Yield=162mg, 47%. 

Table 4.50: Characterisation data for compound 4.50 

4.50 

Brown 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
12.35(s,1H),10.11(s,1H),9.17(d,J=2,1H),8.82(t,J=5.6,1H),8.58(s,1
H), 8.32(d,J=2,1H), 8.11(dd,J=8.8,2.4,1H), 7.74(dd,J=8.8,2.0,1H), 
7.70 (d,J=5.2,1H), 7.65(d,J=8.8,1H), 7.55(s,1H), 3.34-3.29(m,2H), 
2.28 (t,J=7.2,2H), 2.14 (s,6H), 1.70-1.65(m,2H). 

EIMS Found 449.10 [M+H]+, Calculated for C23H23N5O5, 449.16 [M]+ 
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4.51 Synthesis of 5-amino-N-(2-((3-(dimethylamino) propyl) carbamoyl) 

benzofuran-5-yl)-1H-indole-3-carboxamide (4.51).        

 

 

160 mg of 4.50 was dissolved in 20 mL of ethanol and 1 mL of ethyl acetate 

was added to a hydrogenation reaction bottle. 20 mg of 10% Pd (palladium on 

activated carbon) 20 was added into the reaction vessel, and mixed it well. The 

reaction bottle was sealed and connected to a hydrogen reservoir. Air from the 

reaction bottle was removed by applying vacuum, and was then by flushed with 

hydrogen. Typically, a hydrogen pressure of approximately 40 psi was applied 

from the reservoir, and the bottle was then shaken vigorously to initiate the 

reaction. Progress of the reaction was monitored by TLC and LCMS. Reaction 

required about 5 at which point TLC and LCMS analysis showed the completion 

of reaction. The shaker was stopped, the bottle was vented, and the product 

was recovered by means of filtration using Celite. Finally, the product is 

concentrated by using a rotary evaporator. A pale yellow solid was obtained 

after drying in vacuum. Yield=142 mg, 95%. 

Table 4.51: Characterisation data for compound 4.51 

4.51 

Yellow 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
11.39(s,1H), 9.72(s,1H), 8.85(t,J=5.6,1H), 8.27(d,J=2,1H), 
8.13(s,1H), 7.75(d,J=3.6,1H), 7.73(d,J=2,1H), 7.53(s,1H), 7.45 
(d,J=2,1H), 7.19(d,J=4.4,1H), 6.62-6.60 (m, 1H), 3.65(s,1H), 3.35-
3.30(m,2H), 2.28 (t,J=6.8,2H), 2.14 (s,6H), 1.69(t,J=6.8,2H). 

EIMS Found 419.20 [M+H]+, Calculated for C23H25N5O3, 419.19 [M]+ 
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4.52 Synthesis 5-(benzofuran-2-carboxamido)-N-(2-((3-(dimethylamino) 

propyl) carbamoyl) benzofuran-5-yl)-1H-indole-3-carboxamide (4.52).        

 

Initially, 43.30 mg of benzofuran-2-carboxylic acid (0.267 mmol, 1.2 eq.) was 

dissolved in 10mL of DMF in a round bottom flask fitted with a magnetic stirrer. 

Then DIC (72 µl, 0.467 mmol, 1.75 eq.) and HOBt (72.09 mg, 0.534 mmol, 2.0 

eq.) were added to the acid (1.0 eq.) and this mixture was stirred at room 

temperature for at least 25 minutes to ensure the esterification. Then amine 

4.51(80 mg, 0.190 mmol, 1 eq.) was added and the mixture was allowed to stir 

for 6 hours at which point TLC and LCMS analysis showed the completion of 

reaction. Finally the reaction mixture was applied to a conditioned IsoluteTM 

SCX-2 cartridge and the product was purified by ‘Catch and Release’ method 

(described in the section ‘Method and Materials’ of chapter 3). A cream solid 

was obtained after drying in vacuum. Yield=37 mg, 35%. 

 

Table 4.52: Characterisation data for compound 4.52 

4.52 

Cream 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
11.93(s,1H),10.52(s,1H),9.94(d,J=8.8,1H),8.85(s,1H),8.68(dd,J=
6.0,1.6,1H), 8.36(s,1H), 8.32(d,J=2,1H), 7.83(t,J=8,2H), 7.78-
7.74(m,1H), 7.72(s,1H), 7.66-7.61(m,2H), 7.53 (d,J=9.6,1H), 
7.52-7.47(m,2H), 7.37 (t, J=7.6,1H), 3.87-3.80(m,2H), 3.39-3.32 
(m,2H), 2.52 (s,6H), 1.76(t,J=7.2,2H). 

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
164.7, 163.3,158.5, 157.0, 156.6, 154.3, 150.4, 149.2, 149.0, 
135.7, 133.4, 131.5, 127.1, 126.9, 126.3, 123.7, 122.7, 120.4, 
113.0, 111.9, 111.5, 110.4, 110.0, 63.5, 52.2, 42.5, 39.5, 39.1, 
38.9, 35.8, 23.1, 22,7.  

EIMS Found 563.21 [M+H]+, Calculated for C32H29N5O5, 562.30 [M]+ 

HRMS m/z(+EI) Calc.for C32H29N5O5, 563.2169 [M]+, found 564.2230 

[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3284, 2972, 1738, 1616, 1547, 1469, 1442, 1417, 1381, 1325, 
1231, 1168, 1129, 1084, 1045, 875, 803, 736, 671. 
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4.53 Synthesis of N-(3-((2-((3-(dimethylamino) propyl) carbamoyl) 

benzo[b]thiophen-5-yl) carbamoyl)-1H-indol-5-yl)-1-methyl-1H-indole-2-

carboxamide (4.53) 

 

 

29 mg of 1-methyl-1H-indole-2-carboxylic acid (0.165 mmol, 1.2 eq.) was 

dissolved in 10mL of DMF in a round bottom flask fitted with a magnetic stirrer. 

Then DIC (45 µl, 0.2887 mmol, 1.75 eq.) and HOBt (45 mg, 0.330 mmol, 2.0 

eq.) were added to the acid (1.0 eq.) and this mixture was allowed to stir at 

room temperature for 30 minutes to ensure the formation of ester from the acid. 

Then amine 4.47 (60 mg, 0.1379 mmol, 1 eq.) was added and the mixture was 

allowed to stir for 6 hours at which point TLC and LCMS analysis showed the 

completion of reaction. Finally the reaction mixture was applied to a conditioned 

IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch and Release’ 

method (described in the section ‘Method and Materials’ of chapter 3). An 

orange solid was obtained after drying in vacuum. Yield=35mg, 43%. 

Table 4.53: Characterisation data for compound 4.53 

4.53 

Orange 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
11.84(s,1H), 10.30(s,1H), 9.92(s,1H), 8.81(s,1H), 8.67(s,1H), 8.46 
(s,1H), 8.36(d,J=16,1H), 8.00(s,1H), 7.93(s,1H), 7.78(d,J=7.6,1H), 
7.68(d,J=8,1H), 7.61-7.55(m,2H), 7.45(d,J=8.8,1H), 7.34 (s,1H), 
7.30(t,J=7.6,1H), 7.12 (t,J=7.6,1H), 4.04(s,3H), 3.29(d,J=6.0,2H), 
2.31 (t,J=6.8,2H), 2.17 (s,6H), 1.68(t,J=6.82H). 

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
163.3, 162.2, 161.5, 160.2, 156.7, 140.7, 139.6, 138.5, 137.2, 
134.3, 133.1, 132.4, 126.4, 125.5, 124.4, 123.6, 122.8, 121.6, 
120.1, 119.6, 117.1, 114.7, 113.1, 111.7, 110.5, 110.3, 105.0, 
56.6, 44.9, 38.8, 35.7, 31.4, 30.7. 

EIMS Found 592.22   [M+H]+, Calculated for C33H32N6O3S, 591.40 [M]+  

HRM
S 

m/z (+EI) Calc. for C33H32N6O3S 592.2257 [M]+, found 593.2314 

[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3257, 2932, 1647, 1575, 1548, 1521, 1476, 1435, 1386, 1359, 
1338, 1308, 1246, 1224, 1169, 1149, 1096, 1037, 945, 915, 874, 
806, 747, 717, 660. 
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4.54 Synthesis N-(3-((2-((3-(dimethylamino) propyl) carbamoyl) 

benzo[b]thiophen-5-yl) carbamoyl)-1H-indol-5-yl)-1H-benzo[d]imidazole-2-

carboxamide (4.54). 

Initially, 30 mg of 1H-benzo[d]imidazole-2-carboxylic acid hydrate (0.165 mmol, 

1.2 eq.) was dissolved in 10mL of DMF in a round bottom flask fitted with a 

magnetic stirrer.  

 

 

Figure 4.4: 1H and 13C NMR spectroscopic data of compound 4.54 as a 

representative of library-2 compounds 
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Then DIC (45 µl, 0.228 mmol, 1.75 eq.) and HOBt (45 mg, 0.330 mmol, 2.0 eq.) 

were added to the acid (1.0 eq.) and this mixture was allowed to stir at room 

temperature for 30 minutes to ensure the esterification of the acid. Then amine 

4.47 (60 mg, 0.137 mmol, 1 eq.) was added and the mixture was allowed to stir 

for 6 hours at which point TLC and LCMS analysis showed the completion of 

reaction. Finally the reaction mixture was applied to a conditioned IsoluteTM 

SCX-2 cartridge and the product was purified by ‘Catch and Release’ method 

(described in the section ‘Method and Materials’ of chapter 3). A deep brown 

solid was obtained after drying in vacuum. Yield was 30 mg, 38%. 

Table 4.54: Characterisation data for compound 4.54 

4.54 

Deep 
Brown 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
13.37(s,1H), 11.82(d,J=2.4,1H), 10.77(s,1H), 9.92(s,1H), 8.83-
8.80(m,2H), 8.48(d,J=2,1H), 8.35(d,J=7.2,1H), 8.03(s,1H), 
7.97(s,1H),7.79(dd,J=8.8,2.0,2H),7.65(dd,J=8.8,2.0,2H),7.49(d,J=
8.8,1H), 7.35-7.33(m,2H), 3.34-3.29(m,2H), 2.34 (t,J=7.2,2H), 
2.20 (s,4H), 1.71(t,J=7.2,2H). 

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
163.2, 162.2, 161.3, 156.9, 146.0, 140.8, 139.5, 137.2, 134.3, 
133.4, 131.6, 129.4,126.2, 124.4, 122.6, 119.8, 117.2, 114.7, 
113.5, 111.8, 110.5, 56.6, 44.9, 40.0, 39.6, 39.4, 38.8, 37.7, 35.7, 
30.7, 26.8.  

EIMS Found 580.20 [M+H] +, Calculated forC31H29N7O3S, 579.20 [M]+ 

HRM
S 

m/z (+EI) Calc. for C31H29N7O3S, 579.2053 [M]+, found 
580.2113[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3231, 2929, 1738, 1648, 1555, 1522, 1468, 1431, 1385, 1366, 
1339, 1311, 1224, 1192, 1144, 1097, 1065, 1015, 869, 799, 736, 
714, 660. 

 

 

4.55 Synthesis of 5-(benzo[b]thiophene-2-carboxamido)-N-(2-((3-

(dimethylamino) propyl) carbamoyl) benzofuran-5-yl)-1H-indole-3-

carboxamide (4.55). 

 

Initially, 27 mg of benzo[b]thiophene-2-carboxylic acid (0.148 mmol, 1.2 eq.) 

was dissolved in 5 mL of DMF in a round bottom flask fitted with a magnetic 

stirrer. Then DIC (40 µl, 0.259 mmol, 1.75 eq.) and HOBt (40 mg, 0.296 mmol, 
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2.0 eq.) were added to the acid (1.0 eq.) and this mixture was allowed to stir at 

room temperature for 30 minutes to ensure the formation of ester from the acid. 

Then amine 4.51(52 mg, 0.124 mmol, 1 eq.) was added and the mixture was 

allowed to stir for 5 hours at which point TLC and LCMS analysis showed the 

completion of reaction. Finally the reaction mixture was applied to a conditioned 

IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch and Release’ 

method (described in the section ‘Method and Materials’ of chapter 3). A light 

yellow solid was obtained after drying in vacuum. Yield=14 mg, 20%. 

Table 4.55: Characterisation data for compound 4.55 

4.55 

Light 
Yellow 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
11.76(s,1H), 10.53(s,1H), 9.86(s,1H), 8.79(s,1H), 8.59(s,1H), 
8.40(s,1H),8.30(d,J=9.6,2H),8.04(dd,J=6.8,2.0,1H),7.98(t,J=6.8,1
H),7.72(d,J=2.0,1H),7.63-7.60(m,2H),7.51(s,1H),7.47(t,J=3.6,3H), 
3.37(s,2H). 2.25 (t,J=6.8,2H), 2.13 (s,6H), 1.65(t,J=6.8,2H). 

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
163.1, 157.9, 150.3, 149.7, 140.6, 140.3, 139.2, 135.8, 133.3, 
132.1, 127.2, 126.4, 126.2, 125.2, 124.9, 122.8, 120.0, 113.2, 
112.7, 111.5, 110.4, 109.4, 56.8, 45.1, 40.0, 39.8, 39.6, 39.4, 
39.0, 38.8, 37.3, 26.9.  

EIMS Found580.20 [M+H] +, Calculated for C32H29N5O4S, 579.19 [M]+ 

HRM
S 

m/z (+EI) Calc. for C32H29N5O4S, 579.1940 [M]+, found 
580.2003[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3275, 2971, 2344, 2298, 1738, 1649, 1628, 1604, 1534, 1468, 
1437, 1366, 1343, 1310, 1270, 1237, 1207, 1178, 1148, 1081, 
1041, 938, 879, 792, 743, 722, 682, 662. 

 

 

4.56 Synthesis of N-(3-((2-((3-(dimethylamino) propyl) carbamoyl) 

benzofuran-5-yl) carbamoyl)-1H-indol-5-yl)-1H-benzo[d]imidazole-2-

carboxamide (4.56)       

 

Initially, 30 mg of 1H-benzo[d]imidazole-2-carboxylic acid hydrate (0.186 mmol, 

1.2 eq.) was dissolved in 10mL of DMF in a round bottom flask fitted with a 

magnetic stirrer. Then DIC (50 µl, 0.3255 mmol, 1.75 eq.) and HOBt (50 mg, 

0.372 mmol, 2.0 eq.) were added to the acid (1.0 eq.) and this mixture was 
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allowed to stir at room temperature for 30 minutes to ensure the formation of 

ester from the acid. Then amine 4.51(65 mg, 0.155 mmol, 1 eq.) was added and 

the mixture was allowed to stir for 5 hours at which point TLC and LCMS 

analysis showed the completion of reaction. At last the reaction mixture was 

taken to a conditioned IsoluteTM SCX-2 cartridge for purification and the product 

was purified by ‘Catch and Release’ method (described in the section ‘Method 

and Materials’ of chapter 3). A yellow solid was obtained after drying in 

vacuum. Yield=51 mg, 58%. 

Table 4.56: Characterisation data for compound 4.56 

4.56 

Yellow 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
13.45(s,1H), 11.82(s,1H), 10.74(s,1H), 9.87(s,1H), 8.82(s,2H), 
8.33(s,2H), 7.73(t,J=9.3,2H), 7.63-7.58(m,2H), 7.54(d,J=4.0,1H), 
7.48(dd,J=8.4,3.6,1H),7.33(s,2H),7.19-7.14(m,1H), 
3.30(d,J=5.6,2H), 2.33(d,J=6.4,2H), 2.19(s,6H), 1.69(t,J=6.4,2H).  

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
163.2, 162.3, 158.0, 157.0, 150.3, 149.7, 146.0, 141.9, 135.8, 
133.4, 131.6, 129.3, 127.2, 126.3, 123.4, 120.1, 119.6, 117.1, 
113.5, 112.8, 111.8, 111.5, 110.6, 109.4, 56.7, 44.9, 40.1, 39.4, 
38.8, 37.2, 26.7.  

EIMS Found 563.30[M+H] +, Calculated for C31H29N7O4, 563.22 [M]+ 

HRM
S 

m/z (+EI) Calc. for C31H29N7O4, 563.2281 [M]+, found 564.2340 
[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3215, 2971, 1738, 1624, 1592, 1531, 1470, 1434, 1330, 1210, 
1159, 1079, 945, 867, 766, 736. 

 

4.57 Synthesis of N-(3-((2-((3-(dimethylamino) propyl) carbamoyl) 

benzofuran-5-yl) carbamoyl)-1H-indol-5-yl)-1-methyl-1H-indole-2-

carboxamide (4.57) 

 

40 mg of 1-methyl-1H-indole-2-carboxylic acid (0.229 mmol, 1.2 eq.) was 

dissolved in 10mL of DMF in a round bottom flask fitted with a magnetic stirrer. 

Then DIC (62 µl, 0.400 mmol, 1.75 eq.) and HOBt (62 mg, 0.458 mmol, 2.0 eq.) 

were added to the acid (1.0 eq.) and this mixture was allowed to stir at room 

temperature for 30 minutes to ensure the formation of ester from the acid. Then 

amine 4.51 (80 mg, 0.190 mmol, 1 eq.) was added and the mixture was allowed 
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to stir for 7 hours at which point TLC and LCMS analysis showed the 

completion of reaction. Finally the reaction mixture was applied to a conditioned 

IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch and Release’ 

method (described in the section ‘Method and Materials’ of chapter 3). An 

orange solid was obtained after drying in vacuum. Yield=82 mg, 75%. 

Table 4.57: Characterisation data for compound 4.57 

4.57 

Orange 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
11.80(s,1H),10.31(s,1H),9.88(s,1H),8.81(d,J=3.2,1H),8.72(d,J=2.0
,1H),8.34(s,2H),7.77-7.74(m,1H),7.69(dd,J=8.0,2.8,1H), 
7.62(d,J=8.8,2H), 7.55(t,J=6.0,2H), 7.48(dd,J=8.4,3.2,1H), 7.37 
(d,J=2.8,1H), 7.31-7.29(m,1H), 7.17-7.11(m,1H), 3.50(s,3H), 
3.30(t,J=6.0,2H), 2.28-2.24 (m,2H), 2.14(s,6H), 1.69-1.65(m,2H). 

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
163.2, 162.3, 160.2, 158.0, 150.3, 149.8, 138.5, 135.8, 133.2, 
132.5, 129.1, 127.3, 126.4, 125.6, 123.6, 121.6, 120.1, 120.0, 
117.0, 113.2, 112.7, 111.6, 111.5, 110.5, 109.4, 105.1, 56.9, 45.1, 
40.0, 39.2, 37.3, 35.7, 31.4. 

EIMS Found 576.30 [M+H] +, Calculated for C33H32N6O4, 576.24 [M]+ 

HRM
S 

m/z (+EI) Calc. for C33H32N6O4, 576.2485 [M]+, found 577.2544 
[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3197, 1705, 1626, 1535, 1469, 1435, 1359, 1333, 1215, 1181, 
1148, 1077, 1048, 1024, 1005, 871, 809, 789, 769, 747, 622. 

 

 

4.58 Synthesis of N-(3-(dimethylamino) propyl)-5-(5-nitro-1H-indole-3-

carboxamido)-1H-indole-2-carboxamide (4.58).        

 

 

Initially, 171 mg of 5-nitro-1H-indole-3-carboxylic acid (0.830 mmol, 1.2 eq.) was 

dissolved in 10mL of DMF in a round bottom flask fitted with a magnetic stirrer. 

Then DIC (224 µl, 1.45 mmol, 1.75 eq.) and HOBt (224 mg, 1.66 mmol, 2.0 eq.) 

were added to the acid (1.0 eq.) and this mixture was allowed to stir at room 

temperature for 30 minutes to ensure the formation of ester from the acid. Then 

amine 4.20 (180 mg, 0.692 mmol, 1 eq.) was added and the mixture was 
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allowed to stir for about 7 hours at which point TLC and LCMS analysis showed 

the completion of reaction. Finally the reaction mixture was applied to a 

conditioned IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch 

and Release’ method (described in the section ‘Method and Materials’ of 

chapter 3). A yellow solid was obtained after drying in vacuum. Yield=122mg, 

40 %. 

Table 4.58: Characterisation data for compound 4.58 

4.58 

Yellow 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
11.55(s,1H), 9.89(s,1H), 9.18(d,J=2.4,1H), 8.55(d,J=7.8,2H), 
8.15(t,J=4.0,1H),8.09(dd,J=9.2,2.4,1H),7.95(s,1H),7.68(d,J=8.8,1
H), 7.48-7.40 (m,1H), 7.41(d,J=8.8,1H), 7.07(s,1H), 3.34-
3.30(m,2H), 2.29 (t,J=7.2,2H), 2.16(s,6H), 1.69(t,J=6.8,2H).  

EIMS Found 449.10[M+H] +, Calculated for C23H24N6O4 448.18 [M]+ 

 

 

4.59 Synthesis of 5-(5-amino-1H-indole-3-carboxamido)-N-(3-(dimethyl 

amino) propyl)-1H-indole-2-carboxamide (4.59)        

 

 

120 mg of 4.58 was dissolved in 20 mL of ethanol and 1 mL of ethyl acetate 

was added to a hydrogenation reaction bottle. 20 mg of 10% Pd (palladium on 

activated carbon) 20 was added into the reaction vessel, and mixed it well. The 

reaction bottle was sealed and connected to a hydrogen reservoir. Air from the 

reaction bottle was removed by applying vacuum, and was then by flushed with 

hydrogen. Typically, a hydrogen pressure of approximately 40 psi was applied 

from the reservoir, and the bottle was then shaken vigorously to initiate the 

reaction. Progress of the reaction was monitored by TLC and LCMS. The 

complete hydrogenation took about 6 hours at which point TLC and LCMS 

analysis showed the completion of reaction. The shaker was stopped, the bottle 

was vented, and the product was recovered by means of filtration using Celite. 
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Finally, the product is concentrated by using a rotary evaporator. A yellow solid 

was obtained after drying in vacuum. Yield=85mg, 77%. 

Table 4.59: Characterisation data for compound 4.59 

4.59 

Yellow 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
11.53(s,1H),11.32(s,1H), 9.46(s,1H), 8.55(t,J=5.2,1H), 8.11(s,2H), 
7.48(t,J=8.4,2H), 7.39(d,J=8.8,1H), 7.16 (d,J=8.4,1H), 7.07(s,1H), 
6.59-6.57(m,1H), 3.35-3.30(m,2H), 2.28 (t,J=7.2,2H), 2.15(s,6H), 
1.72-1.65(m ,2H). 

EIMS Found 419.20 [M+H]+,Calculated for C23H26N6O2, 418.21 [M]+ 

 

 

4.60 Synthesis of N-(3-(dimethyl amino) propyl)-5-(5-(5-nitro-1H-indole-2-

carboxamido)-1H-indole-3-carboxamido)-1H-indole-2-carboxamide (4.60). 

 

 

Initially, 41.23 mg of 5-nitro-1H-indole-2-carboxylic acid (0.20 mmol, 1.2 eq.) 

was dissolved in 5 mL of DMF in a round bottom flask fitted with a magnetic 

stirrer. Then DIC (54 µl, 0.35 mmol, 1.75 eq.) and HOBt (54 mg, 0.40 mmol, 2.0 

eq.) were added to the acid (1.0 eq.) and this mixture was stirred at room 

temperature for 30 minutes to ensure the formation of ester from the acid. Then 

amine 4.59(60 mg, 0.143 mmol, 1 eq.) was added and the mixture was allowed 

to stir for 7 hours at which point TLC and LCMS analysis showed the 

completion of reaction. Lastly the reaction mixture was purified by conditioned 

IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch and Release’ 

method (described in the section ‘Method and Materials’ of chapter 3). A 

yellow solid was obtained after drying in vacuum. Yield=29 mg, 34%. 
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Table 4.60: Characterisation data for compound 4.60 

4.60 

Yellow 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
12.46(s,1H), 11.72(s,1H), 11.49(s,1H), 10.49(s,1H), 9.65(s,1H), 
8.77 (d,J=1.6,1H), 8.60(s,1H), 8.51(s,1H), 8.31(d,J=2.0,1H), 
8.10(t,J=8.8,2H), 7.75(s,1H), 7.69(t,J=7.2,1H), 7.64(d,J=9.2,1H), 
7.47 (t,J=8.8,2H), 7.38(d,J=8.8,1H), 7.06(s,1H), 3.33(m,2H), 2.30 
(t,J=6.8,2H), 2.15(s,6H), 1.70(t,J=6.8,2H). 

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
163.0, 162.2, 160.9, 158.5, 141.2, 139.4, 135.5, 133.3, 133.0, 
132.2, 131.9, 126.9, 126.47, 126.42,119.2, 118.2, 113.4, 112.8, 
111.9, 111.6, 110.8, 105.6, 102.0, 56.8, 45.1, 39.6, 39.2, 38.7, 
37.2, 35.7, 30.7, 27.2. 

EIMS Found 606.40 [M+H]+, Calculated for C32H30N8O,606.23 [M]+ 

HRM
S 

m/z (+EI) Calc. for C32H30N8O5, 606.2339 [M]+, found 607.2400 

[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3236, 1631, 1544, 1469, 1418, 1384, 1317, 1259, 1099, 1067, 
806, 768, 743, 663. 

 

4.61 Synthesis of 5-(5-(benzofuran-2-carboxamido)-1H-indole-3-

carboxamido)-N-(3-(dimethylamino) propyl)-1H-indole-2-carboxamide 

(4.61).        

 

Initially, 33 mg of benzofuran-2-carboxylic acid (0.20 mmol, 1.2 eq.) was 

dissolved in 10mL of DMF in a round bottom flask fitted with a magnetic stirrer. 

Then DIC (54 µl, 0.35 mmol, 1.75 eq.) and HOBt (54 mg, 0.40 mmol, 2.0 eq.) 

were added to the acid (1.0 eq.) and this mixture was allowed to stir at room 

temperature for 30 minutes to ensure the formation of ester from the acid. Then 

amine 4.59(85 mg, 0.143 mmol, 1 eq.) was added and the mixture was allowed 

to stir for 4 hours at which point TLC and LCMS analysis showed the 

completion of reaction. Finally the reaction mixture was applied to a conditioned 

IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch and Release’ 

method (described in the section ‘Method and Materials’ of chapter 3). An 

orange solid was obtained after drying in vacuum. Yield=65 mg, 57%. 
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Table 4.61: Characterisation data for compound 4.61 

4.61 

Orange 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
11.53(s,1H),10.52(s,1H),9.67(s,1H),8.68(d,J=2.0,1H),8.55(t,J=5.6,
1H),8.34(s,1H),8.16(s,1H),7.96(s,1H),7.83(t,J=8.0,2H),7.74(d,J=8.
4,1H), 7.66(dd,J=8.8,2.0,1H), 7.50 (t,J=7.2,3H), 7.42-7.35(m,2H), 
7.09(s,1H), 3.35-3.30(m,2H), 2.28 (t,J=6.8,2H), 2.15(s,6H), 1.71-

1.65(m,2H). 
13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
163.0, 162.2, 160.9, 156.8, 156.4, 154.3, 149.2, 133.4, 133.0, 
132.3, 131.6, 128.8, 127.2, 126.9, 126.8, 126.4, 123.7, 122.7, 
118.2, 116.9, 113.6, 111.9, 111.8, 111.6, 110.8, 109.8, 102.1, 
56.8, 45.1, 39.2, 35.7, 27.2. 

EIMS Found 563.20 [M+H]+, Calculated for C32H30N6O4, 562.23 [M]+ 

HRM
S 

m/z (+EI) Calc. for C32H30N6O4, 562.2329 [M]+, found 
563.2387[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3261, 2973, 2255, 1635, 1590, 1540, 1470, 1447, 1355, 1309, 
1258, 1231, 1176, 1047, 1023, 999, 866, 814, 744, 677, 614. 

 

4.62 Synthesis of N-(3-(dimethylamino) propyl)-5-nitro-1H-indole-3-

carboxamide (4.62).        

 

Initially, 300 mg of 5-nitro-1H-indole-3-carboxylic acid (1.45 mmol, 1.2 eq.) was 

dissolved in 10mL of DMF in a round bottom flask fitted with a magnetic stirrer. 

Then DIC (278 µl, 1.80 mmol, 1.75 eq.) and HOBt (278 mg, 2.06 mmol, 2.0 eq.) 

were added to the acid (1.0 eq.) and this mixture was allowed to stir at room 

temperature for 30 minutes to ensure the formation of ester from the acid. Then 

N1, N1-dimethylpropane-1, 3-diamine (106 mg, 1.04 mmol, 1 eq.) was added 

and the mixture was continued to stir for 9 hours at which point TLC and LCMS 

analysis showed the completion of reaction. Finally the reaction mixture was 

purified through conditioned IsoluteTM SCX-2 cartridge and the product was 

purified by ‘Catch and Release’ method (described in the section ‘Method and 

Materials’ of chapter 3). A pale yellow solid was obtained after drying in 

vacuum. Yield=210 mg, 50%. 
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Table 4.62: Characterisation data for compound 4.62 

4.62 

Orange 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
12.54(s,1H),9.11(d,J=2.4,1H),8.278.25(m,2H),8.06(dd,J=9.2,2.4,1
H), 7.64 (d, J=9.2,1H), 3.34-3.29(m,2H), 2.33 (t,J=7.2,2H), 2.19 
(s,6H), 1.70(t,J=6.8,2H). 

EIMS Found 290.10 [M+H] +, Calculated for C14H18N4O3, 290.13 [M]+ 

4.63 Synthesis of 5-amino-N-(3-(dimethyl amino) propyl)-1H-indole-3-

carboxamide (4.63).        

 

 

205 mg of 4.62 was dissolved in 20 mL of ethanol and added to a 

hydrogenation reaction bottle. 20 mg of 10% Pd (palladium on activated carbon) 

was added into the reaction vessel, and mixed well. The reaction bottle was 

sealed and connected to a hydrogen reservoir. Air within the bottle was 

removed by applying vacuum, and it ws flushed with hydrogen. A hydrogen 

pressure of approximately 40 psi was applied from the reservoir and the bottle 

was then shaken vigorously to initiate the reaction. Progress of the reaction was 

monitored by TLC and LCMS. The shaker was stopped upon the completion of 

the reaction after 5 hours at which point TLC and LCMS analysis showed the 

completion of reaction. The bottle was vented and the product was recovered 

by means of filtration using Celite. Finally, the product is concentrated by using 

a rotary evaporator. A deep brown solid was obtained after drying in vacuum. 

Yield=180 mg, 97%. 

Table 4.63: Characterisation data for compound 4.63 

4.63 
Deep 
Brown 
Solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
11.24(d,J=2,1H),7.83-7.79(m,2H),7.38(d,J=2,1H), 
7.11(d,J=8.8,1H), 6.56-6.54 (m,1H), 4.56(s,2H), 3.29-
3.24(m,2H), 2.31 (t,J=7.2,2H), 2.17 (s,6H), 1.66(t,J=7.2,2H).  

EIMS Found 260.90 [M+H] +, Calculated forC14H20N4O, [M]+ 
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4.64 Synthesis of 5-amino-N-(3-(dimethylamino) propyl)-1H-indole-3-

carboxamide (4.64).        

 

Initially, 95 mg of 5-nitro-1H-indole-2-carboxylic acid (0.461 mmol, 1.2 eq.) was 

dissolved in 10mL of DMF in a round bottom flask fitted with a magnetic stirrer. 

Then DIC (124 µl, 0.806 mmol, 1.75 eq.) and HOBt (124 mg, 0.922 mmol, 2.0 

eq.) were added to the acid (1.0 eq.) and this mixture was allowed to stir at 

room temperature for 30 minutes to ensure the formation of ester from the acid. 

Then amine 4.63(100 mg, 0.38 mmol, 1 eq.) was added and the mixture was 

allowed to stir for 7 hours at which point TLC and LCMS analysis showed the 

completion of reaction. Finally the reaction mixture was applied to a conditioned 

IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch and Release’ 

method (described in the section ‘Method and Materials’ of chapter 3). A 

yellow solid was obtained after drying in vacuum. Yield=61mg, 36%. 

Table 4.64: Characterisation data for compound 4.64 

4.64 

Yellow 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
12.38(s,1H),11.50(s,1H),10.42(s,1H),8.74(d,J=2.0,1H),8.47(d,J=1.
6,1H), 8.10(dd,J=9.2,2.4,1H), 7.98(d,J=2.4,1H), 7.89(t,J=7.2,1H), 
7.71 (s,1H), 7.66-7.62(m,2H), 7.42(d,J=8.4,1H), 2.49(t,J=2.0,2H), 
2.29(t,J=7.2,2H), 2.14(s,6H), 1.69-1.63(m,2H).  

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
164.4, 158.5, 141.2, 139.4, 135.5, 133.3, 131.6, 126.4, 126.1, 
118.4, 111.4, 110.8, 57.0, 45.1, 39.9, 39.7, 39.5, 39.3, 39.0, 38.8, 
36.9, 35.7, 27.5.  

EIMS Found 449.10[M+H]+, Calculated for C23H25N6O, 448.18 [M]+ 

HRM
S 

m/z (+EI) Calc. for C23H25N6O4, 448.1859 [M]+, found 449.1925 

[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3250, 2933, 1541, 1513, 1540, 1470, 1442, 1416, 1386, 1325, 
1281, 1236, 1210, 1164, 1097, 1066, 1039, 990, 890, 867, 830, 
812, 794, 763, 747, 727, 678, 661. 
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4.65 Synthesis of 5-amino-N-(3-((3-(dimethylamino) propyl) carbamoyl)-

1H-indol-5-yl)-1H-indole-2-carboxamide (4.65).        

 

 

120 mg of 4.64 was dissolved in 20 mL of ethanol and 1 mL of ethyl acetate 

was added to a hydrogenation reaction bottle. 20 mg of 10% Pd (palladium on 

activated carbon) was added into the reaction vessel, and mixed this well. The 

reaction bottle was sealed and connected to a hydrogen reservoir. Air from the 

reaction bottle was removed by applying vacuum, and was then by flushed with 

hydrogen. Typically, a hydrogen pressure of approximately 40 psi was applied 

from the reservoir, and the bottle was then shaken vigorously to initiate the 

reaction. Progress of the reaction was monitored by TLC and LCMS analysis. 

The completion of the reaction required about 6 hours at which point TLC and 

LCMS analysis showed the completion of reaction. The shaker was stopped, 

the bottle was vented, and the product was recovered by the process of filtration 

using Celite. Finally, the product is concentrated by using a rotary evaporator. A 

yellow solid was obtained after drying in vacuum. Yield=82 mg, 74 %. 

Table 4.65: Characterisation data for compound 4.65 

4.65 

Yellow 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
11.47(s,1H),11.09(s,1H),9.93(s,1H),8.32(d,J=1.2,,1H),7.83(d,J=7.
6,2H), 7.71(s,1H), 7.42(dd,J=8.4,1.2,1H), 7.34(d,J=8.8,1H), 7.05 
(d,J=8.4,1H), 6.98(s,1H), 6.49(dd,J=8.8,1H), 3.13-3.09(m,2H), 
2.50(s,2H), 2.16(t,J=7.2,2H), 1.98(s,6H),1.53-1.46(m,2H). 

EIMS Found 418.30 [M+H] +, Calculated for C23H26N6O2, 418.21 [M]+ 
 

4.66 Synthesis of N-(3-((3-(dimethylamino) propyl) carbamoyl)-1H-indol-5-

yl)-5-(5-nitro-1H-indole-2-carboxamido)-1H-indole-2-carboxamide (4.66).        
 

 

Initially, 57 mg of 5-nitro-1H-indole-2-carboxylic acid (0.278 mmol, 1.2 eq.) was 

dissolved in 10mL of DMF in a round bottom flask fitted with a magnetic stirrer. 
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Then DIC (75 µl, 0.488 mmol, 1.75 eq.) and HOBt (75 mg, 0.549 mmol, 2.0 eq.) 

were added to the acid (1.0 eq.) and this mixture was allowed to stir at room 

temperature for 30 minutes to ensure the formation of ester from the acid. Then 

amine 4.65(82 mg, 0.196 mmol, 1 eq.) was added and the mixture was allowed 

to stir for 6 hours at which point TLC and LCMS analysis showed the 

completion of reaction. Finally the reaction mixture was applied to a conditioned 

IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch and Release’ 

method (described in the section ‘Method and Materials’ of chapter 3). A 

yellow solid was obtained after drying in vacuum. Yield=64 mg, 54%. 

Table 4.66: Characterisation data for compound 4.66 

4.66 

Yellow 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
12.48(s,1H),11.71(s,1H),11.51(d,J=2.0,1H),10.43(s,1H),10.19(s,1
H),8.78(d,J=2.4,1H),8.49(d,J=1.6,1H),8.18(s,1H),8.12(dd,J=9.2,2.
0,1H),8.00(d,J=2.8,1H),7.95-7.90(m,1H),7.72(s,1H), 
7.68(dd,J=8.8,1.6,1H), 7.64(d,J=9.2,1H), 7.58 (dd,J=8.8,1.6,1H), 
7.51(s,1H), 6.78 (d,J=6.8,1H), 6.59 (d,J=6.8,1H), 3.32-
3.27(m,2H), 2.28(t,J=7.2,2H), 2.15(s,6H), 1.67(t,J=6.8,2H). 

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
164.5, 159.2, 158.6, 141.2, 139.5, 135.4, 133.9, 133.1, 132.7, 
131.9, 131.1, 127.9, 126.9, 126.4, 126.1, 119.2, 118.7, 118.5, 
116.8, 113.2, 113.0, 112.8, 112.3, 111.4, 110.8, 105.6, 103.4, 
57.0, 45.1, 39.0, 36.9, 27.5.  

EIMS Found 606.40 [M+H]+, Calculated for C32H30N8O5, 606.23 [M]+ 

HRM
S 

m/z (+EI) Calc. for C32H30N8O5, 606.2339 [M]+, found 607.2398 

[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3252, 2921, 1646, 1616, 1587, 1554, 1519, 1471, 1417, 1372, 
1324, 1286, 1248, 1216, 1166, 1135, 1099, 1069, 963, 943, 862, 
802, 766, 743, 730, 681, 627. 

4.67 Synthesis of N-(3-(dimethylamino) propyl)-5-(5-(5-nitro-1H-indole-3-

carboxamido)-1H-indole-2-carboxamido)-1H-indole-2-carboxamide (4.67). 

 

 

Initially, 53 mg of 5-nitro-1H-indole-3-carboxylic acid (0.258 mmol, 1.2 eq.) was 

dissolved in 5 mL of DMF in a round bottom flask fitted with a magnetic stirrer. 

Then DIC (70 µl, 0.451 mmol, 1.75 eq.) and HOBt (70 mg, 0.516 mmol, 2.0 eq.) 

were added to the acid (1.0 eq.) and this mixture was allowed to stir at room 
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temperature for 30 minutes to ensure the formation of ester from the acid. Then 

amine 4.22 (90 mg, 0.215 mmol, 1 eq.) was added and that mixture was 

allowed to stir for 4 hours at which point TLC and LCMS analysis showed the 

completion of reaction. Lastly the reaction mixture was applied to a conditioned 

IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch and Release’ 

method (described in the section ‘Method and Materials’ of chapter 3). A deep 

brown solid was obtained after drying in vacuum. Yield=38 mg, 29%. 

Table 4.67: Characterisation data for compound 4.67 

4.67 
Deep 
Brown 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
12.45(s,1H), 11.68(s,1H), 11.57(s,1H), 10.15(s,1H), 9.93(s,1H), 
9.18(d,J=1.8,1H), 8.57(s,1H), 8.52(s,1H), 8.19(s,1H), 8.11(s,1H), 
8.09(d,J=2.4,1H), 7.69(d,J=9.2,1H), 7.54-7.50(m,2H), 7.47(s,1H), 
7.44(d,J=5.6,1H), 7.41(d,J=3.2,1H), 7.10(d,J=1.2,1H), 3.34-
3.29(m,2H), 2.30(t,J=7.2,2H), 2.16(s,6H), 1.69(t,J=6.8,2H). 

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
162.2, 162.1, 160.9, 159.4, 141.8, 139.3, 133.5, 133.4, 132.5, 
132.4, 131.9, 131.6, 131.3, 127.0, 126.9, 125.9, 118.6, 118.4, 
117.9, 117.4, 112.7, 112.4, 112.1, 103.2, 102.2, 56.8, 45.0, 38.8, 
37.2, 35.7, 30.7, 27.1.  

EIMS Found 607.20 [M+H]+, Calculated for C32H30N8O5, 606.23 [M]+ 

HRM
S 

m/z (+EI) Calc. for C32H30N8O5, 606.2339 [M]+, found 607.2399 

[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3242, 2934, 1638, 1543, 1522, 1471, 1419, 1380, 1323, 1298, 
1251, 1228, 1201, 1130, 1094, 1072, 1040, 962, 869, 809, 790, 
778, 744, 715, 691, 660. 

 

 

4.68 Synthesis of N-(3-(dimethylamino) propyl)-5-(5-nitro-1H-indole-3-

carboxamido)-1H-indole-3-carboxamide (4.68).        

 

 

 Initially, 200 mg of 5-nitro-1H-indole-3-carboxylic acid (0.968 mmol, 1.2 eq.) 

was dissolved in 5 mL of DMF in a round bottom flask fitted with a magnetic 

stirrer. Then DIC (261 µl, 1.69 mmol, 1.75 eq.) and HOBt (260 mg, 1.93 mmol, 

2.0 eq.) were added to the acid (1.0 eq.) and this mixture was allowed to stir at 

room temperature for 30 minutes for esterification of acid. Then amine 4.63 
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(180 mg, 0.692 mmol, 1 eq.) was added to the mixture and the mixture was 

allowed to stir for 15 hours at which point TLC and LCMS analysis showed the 

completion of reaction. Finally the reaction mixture purified by the help of 

conditioned IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch 

and Release’ method (described in the section ‘Method and Materials’ of 

chapter 3). A deep brown solid was obtained after drying in vacuum. Yield=170 

mg, 58%. 

Table 4.68: Characterisation data for compound 4.68 

4.68 
Cream 
Solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
11.48(s,1H),9.95(s,1H),9.18(d,J=2.4,1H),8.59(s,1H),8.45(d,J=2.
4,1H),8.10(dd,J=8.8,2.4,1H),7.96(d,J=10,2H),7.92(t,J=5.6,1H),7.
697.67(m,2H),7.40(d,J=8.8,1H),3.313.26(m,2H),2.29(t,J=7.2,2H)
, 2.15 (s,6H), 1.67 (t,J=6.8,2H). 

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
164.5, 162.0, 141.8, 139.2, 132.9, 132.3, 131.6, 127.7, 126.1, 
125.9, 118.0, 117.3, 116.7, 112.8, 112.7, 112.6, 111.2, 110.7, 
57.0, 45.1, 38.8, 36.8, 27.5.  

EIMS Found 449.10 [M+H]+, Calculated forC23H24N6O4, 448.18  [M]+ 

HRMS m/z (+EI) Calc. for C23H24N6O4, 448.1859 [M]+, found 

449.1926[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3265, 2971, 2344, 2297, 1738, 1604, 1533, 1468, 1437, 1367, 
1342, 1311, 1270, 1208, 1178, 1148, 1072, 1038, 938, 882, 792, 
744, 683, 662. 

 

 

4.69 Synthesis of 5-amino-N-(3-((3-(dimethylamino) propyl) carbamoyl)-1H-

indol-5-yl)-1H-indole-3-carboxamide (4.69).        

 

 

 170 mg of 4.68 was dissolved in 20 mL of ethanol and 1 mL of ethyl acetate 

was added to a hydrogenation reaction bottle. 20 mg of 10% Pd (palladium on 

activated carbon) 20 was added into the reaction vessel, and mixed it well. The 

sealed reaction bottle was connected to a hydrogen reservoir. Air from the 

reaction bottle was removed by applying vacuum and it was flushed with 

hydrogen. Typically, a hydrogen pressure of approximately 40 psi was applied 
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from the reservoir, and the bottle was then shaken vigorously to initiate the 

reaction. Progress of the reaction was monitored by TLC and LCMS. The 

shaker was stopped after 4.5 hours at which point TLC and LCMS analysis 

showed the completion of reaction. The bottle was vented and the product was 

recovered by means of filtration using Celite. Finally, the product is 

concentrated by using a rotary evaporator. A deep brown solid was obtained 

after drying in vacuum. Yield=140 mg, 89%. 

Table 4.69: Characterisation data for compound 4.69 

4.69 
Deep 
Brown 
Solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
11.46(s,1H), 11.26(d,J=2.0,1H), 9.49(s,1H), 8.43(d,J=2.0,1H), 
8.13(d,J=2.8,1H), 7.95(s,1H), 7.89(t,J=5.2,1H), 7.62(dd, 
J=8.8,2.0,1H), 7.47(d,J=2.0,1H), 7.35(d, J=8.4,1H), 7.14(d,J=8.4, 
1H), 6.56(dd, J=8.4, 2.0,1H), 3.31-3.26(m,2H), 2.73( s,2H), 2.28(t, 
J=7.2, 2H), 2.15(s,6H), 1.69 (m,2H). 

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
164.6, 163.4, 162.2, 142.6, 133.1, 132.6, 129.6, 127.7, 127.6, 
127.5, 126.1, 116.7, 112.5, 112.3, 111.7, 111.0, 110.6, 109.4, 
104.4, 57.0, 45.2, 36.9, 35.7.  

EIMS Found 418.10 [M+H]+, Calculated for C23H26N6O2, 418.21 [M]+ 

HRM
S 

m/z (+EI) Calc. for C23H26N6O2, 418.2117 [M]+, found 

419.2182[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3240, 2941, 2827, 1652, 1614, 1534, 1469, 1433, 1386, 1360, 
1315, 1278, 1248, 1212, 1160, 1100, 1028, 933, 802, 768, 660, 
612. 

 

4.70 Synthesis of 5-(benzofuran-2-carboxamido)-N-(3-((3-(dimethylamino) 

propyl) carbamoyl)-1H-indol-5-yl)-1H-indole-3-carboxamide (4.70).        

 

Initially, 33 mg of benzofuran-2-carboxylic acid (0.2002 mmol, 1.2 eq.) was 

dissolved in 5 mL of DMF in a round bottom flask fitted with a magnetic stirrer. 

Then DIC (54 µl, 0.35 mmol, 1.75 eq.) and HOBt (54 mg, 0.40 mmol, 2.0 eq.) 

were added to the acid (1.0 eq.) and this mixture was allowed to stir at room 

temperature for 30 minutes to ensure the formation of ester from the acid. Then 

amine 4.69(60 mg, 0.143 mmol, 1 eq.) was added and the mixture was allowed 

to stir for 5 hours at which point TLC and LCMS analysis showed the 
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completion of reaction. Finally the reaction mixture was applied to a conditioned 

IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch and Release’ 

method (described in the section ‘Method and Materials’ of chapter 3). A 

cream solid was obtained after drying in vacuum. Yield=12.5 mg, 16%. 

Table 4.70: Characterisation data for compound 4.70 

4.70 

Cream 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
8.45(s,1H),8.34(d,J=1.6,1H),8.14(d,J=1.6,1H),8.02(s,1H),7.76(s,1H),
7.64(d,J=7.6,1H),7.56(d,J=8,2H),7.51(s,2H),7.42(dd,J=8.8,2.0,1H), 
7.37(s,1H), 7.36 (d,J=4,1H), 7.33(d,J=7.6,2H), 7.23 (t,J=7.2,2H), 
3.33(t,J=6.8,2H), 2.38 (t,J=7.6,2H), 2.18 (s,6H), 1.76-1.70(m,2H). 

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm 

170.3, 168.4, 166.8, 159.5, 156.5, 150.3, 135.9, 135.4, 133.4,132.3, 
130.3, 129.8, 128.9, 128.2, 127.7, 126.9, 124.9, 123.7, 119.5, 119.3, 
115.7, 114.9, 112.9, 112.8, 112.4, 112.1, 111.8, 58.3, 49.6, 49.0, 
45.4, 38.7.  

EIMS Found 563.30 [M+H]+, Calculated for C32H30N6O4, 562.23 [M]+ 

HRM
S 

m/z (+EI) Calc. for C32H30N6O4, 562.2329 [M]+, found 
563.2388[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3214, 2970, 1740, 1623, 1592, 1538, 1474, 1437, 1359, 1313, 1258, 
1216, 1177, 1156, 1092, 1047, 1023, 1001, 944, 805, 747, 627. 

 

4.71 Synthesis of 5-(benzo[b]thiophene-2-carboxamido)-N-(3-((3-

(dimethylamino) propyl) carbamoyl)-1H-indol-5-yl)-1H-indole-3-

carboxamide (4.71).        

 

 

42 mg of benzo[b]thiophene-2-carboxylic acid (0.234 mmol, 1.2 eq.) was 

dissolved in 5 mL of DMF in a round bottom flask fitted with a magnetic stirrer. 

Then DIC (63.57 µl, 0.411 mmol, 1.75 eq.) and HOBt (63.45 mg, 0.46 mmol, 2.0 

eq.) were added to the acid (1.0 eq.) and this mixture was allowed to stir at 

room temperature for at least 30 minutes for the esterification of acid. Then 

amine 4.67 (70 mg, 0.167 mmol, 1 eq.) was added and the mixture was allowed 

to stir for 4 hours at which point TLC and LCMS analysis showed the 

completion of reaction. Lastly the reaction mixture was applied to a conditioned 
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IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch and Release’ 

method (described in the section ‘Method and Materials’ of chapter 3). A 

yellow solid was obtained after drying in vacuum. Yield=44 mg, 45%. 

Table 4.71: Characterisation data for compound 4.71 

4.71 
Yellow 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
11.70(s,1H),11.45(s,1H),10.53(s,1H),9.71(s,1H),8.61(d,J=1.6,1H), 
8.47(d,J=1.6,1H),8.43(s,1H),8.35(d,J=6.4,1H),8.06(dd,J=6.8,2.4,1
H), 8.00(dd,J=6.4,2.4,1H), 7.96(s,1H), 7.90(t,J=5.6,1H), 7.72-
7.66(m,2H), 7.49-7.46(m,3H), 7.39(d,J=8.8,1H), 3.31-3.26(m,2H), 
2.28(t,J=7.2,2H), 2.14(s,6H), 1.67(t,J=6.8,2H).  

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
164.5, 162.9, 162.2, 159.9, 140.7, 140.3, 139.3, 133.3, 132.9, 
132.6, 131.9, 128.8, 127.6, 126.6, 126.25, 126.20, 125.2, 124.9, 
122.7, 116.6, 113.4, 112.6, 111.5, 111.1, 110.8, 110.6, 57.0, 45.2, 
38.8, 36.9, 35.74, 30.7. 

EIMS Found 579.10 [M+H]+, Calculated for C32H30N6O3S, 578.21 [M]+ 

HRM
S 

m/z (+EI) Calc. for C32H30N6O3S, 578.2100 [M]+, found 

579.1430[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3252, 2937, 1633, 1529, 1471, 1434, 1382, 1334, 1242, 1204, 
1153, 1095, 1071, 868, 801, 765, 737, 715. 

4.72 Synthesis of N-(3-((3-((3-(dimethylamino)propyl)carbamoyl)-1H-indol-

5-yl)carbamoyl)-1H-indol-5-yl)-1-methyl-1H-indole-2-carboxamide (4.72).        

 

 

Initially, 38 mg of 1-methyl-1H-indole-2-carboxylic acid (0.217 mmol, 1.2 eq.) 

was dissolved in 5 mL of DMF in a round bottom flask fitted with a magnetic 

stirrer. Then DIC (58.59 µl, 0.379 mmol, 1.75 eq.) and HOBt (59 mg, 0.434 

mmol, 2.0 eq.) were added to the acid (1.0 eq.) and this mixture was allowed to 

stir at room temperature for 30 minutes to ensure the formation of ester from the 

acid. Then 65 mg of amine 4.69 (0.155 mmol, 1 eq.) was added to the mixture 

and this mixture was stirred for 8 hours at which point TLC and LCMS analysis 

showed the completion of reaction. Finally the product of the reaction mixture 

was separated by using a conditioned IsoluteTM SCX-2 cartridge and the 

product was purified by ‘Catch and Release’ method (described in the section 
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‘Method and Materials’ of chapter 3). An orange solid was obtained after 

drying in vacuum. Yield=27 mg, 30 %. 

Table 4.72: Characterisation data for compound 4.72 

4.72 

Orange 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
11.70(s,1H),11.49(s,1H),10.29(s,1H),9.70(s,1H),8.69(d,J=1.6,1H
),8.49(d,J=1.6,1H),8.348.29(m,2H),7.97(d,J=2.4,2H),7.69(d,J=8.
0,1H), 7.65-7.62(m,2H), 7.44(d,J=8.8,1H), 7.37 (d,J=4.4,2H), 
7.29 (t,J=7.2,1H), 7.13 (t,J=7.6,1H), 4.05-4.00(m,3H), 3.32-
3.27(m,2H), 2.54 (t,J=7.2,2H), 2.34 (s,6H), 1.78-1.71(m, 2H).  

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
164.7, 162.9, 162.2, 160.1, 138.5, 133.1, 132.9, 132.6, 132.5, 
132.2, 127.7, 126.5, 126.1, 125.5, 123.6, 121.6, 120.1, 116.6, 
113.3, 112.5, 111.4, 111.1, 110.8, 110.5, 110.4, 105.0, 56.1, 
44.0, 40.0, 39.2, 36.4, 35.7, 31.4.  

EIMS Found 575.40 [M+H]+, Calculated for C33H33N7O3, 575.26 [M]+ 

HRMS m/z (+EI) Calc. for C33H33N7O3, 575.2645 [M]+, found 576.2703 

[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3257, 2972, 2342, 1739, 1649, 1601, 1537, 1471, 1435, 1363, 
1309, 1251, 1214, 1152, 1085, 1044, 878, 803, 745, 682, 660. 

 

4.73 Synthesis of N-(3-((3-((3-(dimethylamino) propyl) carbamoyl)-1H-

indol-5-yl) carbamoyl)-1H-indol-5-yl)-1H-benzo[d]imidazole-2-carboxamide 

(4.73).        

 

 

Initially, 34 mg of 1H-benzo[d]imidazole-2-carboxylic acid hydrate (0.186 mmol, 

1.2 eq.) was dissolved in 10 mL of DMF in a round bottom flask fitted with a 

magnetic stirrer. Then DIC (51 µl, 0.3255 mmol, 1.75 eq.) and HOBt (51 mg, 

0.372 mmol, 2.0 eq.) were added to the acid (1.0 eq.) and this mixture was 

allowed to stir at room temperature for 30 minutes to ensure the formation of 

ester from the acid. Then 65 mg of amine 4.69 (0.155 mmol, 1 eq.) was added 

and the mixture was allowed to stir for 6 hours at which point TLC and LCMS 

analysis showed the completion of reaction. Finally the reaction mixture was 

applied to a conditioned IsoluteTM SCX-2 cartridge and the product was purified 

by ‘Catch and Release’ method (described in the section ‘Method and 
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Materials’ of chapter 3). A light yellow solid was obtained after drying in 

vacuum. Yield=18 mg, 21%. 

Table 4.73: Characterisation data for compound 4.73 

4.73 

Light  
Yellow 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
11.72(d,J=2.4,1H), 11.49(d,J=2.4,1H), 10.73(s,1H), 9.71(s,1H), 
8.81(d,J=2.0,1H), 8.50(d,J=1.6,1H), 8.32(d,J=2.8,1H), 8.02-
7.95(m,2H), 7.64(d,J=2.0,1H), 7.62(t,J=2.4,1H), 7.60(d,J=2.0,1H), 
7.46 (d,J=8.8,1H), 7.36(d,J=9.2,1H), 7.35-7.32(m,2H), 3.32-

3.27(m,2H), 2.50-2.47 (m,2H), 2.30(s,6H), 1.77-1.70(m,2H). 
13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
164.6, 162.9, 156.9, 146.0, 133.4, 132.9, 132.7, 131.3, 128.8, 
127.7, 126.4, 126.1, 117.0, 116.8, 113.7, 112.6, 111.6, 111.2, 
110.9, 110.5, 56.4, 44.4, 40.0, 39.8, 39.6, 39.4, 39.2, 39.0, 38.7, 
36.5, 26.9.  

EIMS Found 563.30 [M+H]+, Calculated for C31H30N8O3, 562.24 [M]+ 

HRM
S 

m/z (+EI) Calc. for C31H30N8O3, 562.2441 [M]+, found 563.2502 

[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3023, 2970, 1740, 1620, 1538, 1473, 1434, 1363, 1313, 1277, 
1219, 1144, 1023, 1001, 894, 805, 769, 746, 622. 

 

4.74 Synthesis of 5-(benzofuran-3-carboxamido)-N-(2-((3-(dimethylamino) 

propyl) carbamoyl) benzofuran-5-yl)-1H-indole-3-carboxamide (4.74).       

Initially, 37.91 mg of benzofuran-3-carboxylic acid (0.233 mmol, 1.2 eq.) was 

dissolved in 10 mL of DMF in a round bottom flask. Then DIC (63.03 µl, 0.407 

mmol, 1.75 eq.) and HOBt (62.91 mg, 0.466 mmol, 2.0 eq.) were added to the 

acid (1.0 eq.) and this mixture was allowed to stir at room temperature for 30 

minutes to ensure the formation of ester from the acid. Then amine 4.51(70 mg, 

0.166 mmol, 1 eq.) was added and the mixture was allowed to stir for 6 hours at 

which point TLC and LCMS analysis showed the completion of reaction. Finally 

the reaction mixture was applied to a conditioned IsoluteTM SCX-2 cartridge and 

the product was purified by ‘Catch and Release’ method (described in the 

chapter 3). An orange solid was obtained after drying. Yield=38 mg, 40%. 
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Table 4.74: Characterisation data for compound 4.74 

4.74 

Orange 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
8.52(d,J=6.8,2H), 8.44(d,J=1.6,1H), 8.13(s,1H), 8.08(t,J=2.8,1H), 
7.97(s,1H), 7.70(dd,J=9.2,2.4,1H), 7.58(s,1H), 7.58-7.53(m,2H), 
7.47(s,1H), 7.45(s,1H), 7.41 (dd,J=7.2,1.6,1H), 
7.37(dd,J=4.0,1.6,1H), 7.34 (dd,J=7.2,1.2,1H), 3.50(t,J=6.4,2H), 

3.19-3.15 (m,2H), 2.99 (s,6H), 2.06-1.98(m,2H).  
13C 
NMR 

(100MHz,(CD3)2SO);  δC in ppm 
166.6, 163.9, 161.1, 156.8, 153.1, 150.7, 148.5, 136.4, 135.6, 
133.1, 130.3, 128.9, 127.7, 126.6, 126.3, 124.9, 123.1, 122.8, 
119.3, 118.9, 115.6, 115.3, 112.9, 112.7, 112.4, 112.1, 111.2, 58.2, 
49.6, 49.0, 45.4, 38.7. 

EIMS Found 563.50 [M+H]+, Calculated for C32H29N5O5, 563.21 [M]+ 

HRM
S 

m/z (+EI) Calc. for C32H29N5O5, 563.2169 [M]+, found 

564.2228[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3230, 2977, 2325, 1737, 1637, 1592, 1536, 1471, 1439, 1366, 
1338, 1210, 1103, 1079, 1042, 858, 752. 

 
 

 

 

4.75 Synthesis of 5-(benzo[b]thiophene-3-carboxamido)-N-(2-((3-(dimethyl 

amino) propyl) carbamoyl) benzofuran-5-yl)-1H-indole-3-carboxamide (4.75).        
 

 

Initially, 41.28 mg of benzo[b]thiophene-3-carboxylic acid (0.266 mmol, 1.2 eq.) 

was dissolved in 10mL of DMF in a round bottom flask. DIC (71.88 µl, 0.465 

mmol, 1.75 eq.) and HOBt (71.82 mg, 0.532 mmol, 2.0 eq.) were added to the 

acid (1.0 eq.) and this mixture was allowed to stir at room temperature for 30 

minutes to ensure the formation of ester from the acid. Then amine 4.51 (80 

mg, 0.190 mmol, 1 eq.) was added and the mixture was allowed to stir for 5 

hours at which point TLC and LCMS analysis showed the completion of 

reaction. Finally the reaction mixture was applied to a conditioned IsoluteTM 

SCX-2 cartridge and the product was purified by ‘Catch and Release’ method 

(described in the chapter 3). A yellow solid was obtained after drying. Yield=22 

mg, 20%. 
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Figure 4.5: 1H and 13C NMR spectroscopic data of compound 4.75 as a 

representative of library-3A compounds 
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Table 4.75: Characterisation data for compound 4.75 

4.75 

Yellow 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
11.75(s,1H),10.30(d,J=3.2,1H),9.85(d,J=3.2,1H),8.78(t,J=3.6,1
H),8.65(s,1H),8.59(d,J=3.6,1H),8.508.47(m,1H),8.31(t,J=2.8,2
H),8.07(t,J=5.2,1H),7.73(dd,J=8.8,2.4,1H),7.647.60(m,2H),7.52
(d,J=3.2,1H),7.49-7.45(m,3H),3.30(t,J=5.6,2H),2.29-2.26 

(m,2H), 2.15(s,6H), 1.68-1.63(m,2H). 
13C NMR (100MHz,(CD3)2SO); δC in ppm 

163.2, 161.5, 158.0, 150.3, 149.7, 139.4, 137.3, 133.1, 132.6, 
131.4, 131.1, 127.2, 126.4, 124.9, 124.4, 122.8, 120.0, 112.7, 
111.5, 110.4, 109.4, 56.8, 45.1, 40.1, 39.9, 39.7, 39.4, 39.2, 
39.0, 38.8, 37.3, 26.9.  

EIMS Found 580.10 [M+H]+, Calculated for C32H29N5O4S, 579.19 [M]+ 

HRMS m/z (+EI) Calc. for C32H29N5O4S, 579.1940 [M]+, found 

580.2000 [M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3300, 2255, 1637, 1577, 1525, 1479, 1439, 1338, 1313, 1225, 
1173, 1048, 1023, 999, 888, 859, 821, 759, 632. 

 

 

4.76 Synthesis of N-(3-((2-((3-(dimethylamino) propyl) carbamoyl) 

benzofuran-5-yl) carbamoyl)-1H-indol-5-yl)-1H-indazole-3-carboxamide 

(4.76).        

 

 

Initially, 47 mg of 1H-indazole-3-carboxylic acid (0.290 mmol, 1.2 eq.) was 

dissolved in 10 mL of DMF in a round bottom flask fitted with a magnetic stirrer. 

Then DIC (78 µl, 0.507 mmol, 1.75 eq.) and HOBt (78.3 mg, 0.58 mmol, 2.0 eq.) 

were added to the acid (1.0 eq.) and this mixture was allowed to stir at room 

temperature for 30 minutes to ensure the formation of ester from the acid. Then 

87 mg of amine 4.51 (0.207 mmol, 1 eq.) was added and the mixture was 

allowed to stir for 6 hours at which point TLC and LCMS analysis showed the 

completion of reaction. Finally the reaction mixture was applied to a conditioned 

IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch and Release’ 

method (described in the section ‘Method and Materials’ of chapter 3). A 

brown solid was obtained after drying in vacuum. Yield=13 mg, 13 %. 
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Table 4.76: Characterisation data for compound 4.76 

4.76 

Brown 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
11.89(s,1H),10.16(s,1H), 9.85(d,J=9.2,1H),8.79(t,J=6.4,2H), 8.36-
8.23(m,3H),7.74(t,J=6.4,1H),7.69-7.60(m,4H), 
7.52(d,J=6.0,1H),7.45-7.39(m,2H),7.27-7.21(m,1H),3.66-
3.58(m,2H), 2.25 (t,J=5.6,2H), 2.15(s,6H), 1.66(t,J=6.0,2H). 

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
163.2, 160.7, 158.0, 156.8, 150.3, 149.7, 141.8, 138.4, 135.7, 
133.0, 132.3, 127.2, 126.3, 126.2, 123.1, 121.9, 121.8, 118.1, 
112.8, 111.6, 111.5, 111.0, 110.4, 109.3, 56.8, 45.1, 40.65, 38.7, 
37.3, 26.9, 24.8. 

EIMS Found 564.0 [M+H]+, Calculated for C31H29N7O4, 563.2281 [M]+ 

HRM
S 

m/z (+EI) Calc. for C31H29N7O4, 563.2281 [M]+, found 564.2344 

[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3301, 2950, 1636, 1590, 1529, 1470, 1433, 1343, 1299, 1276, 
1236, 1202, 1153, 1037, 879, 806, 753, 738, 716, 623. 

 

4.77 Synthesis of N-(3-((3-((3-(dimethylamino) propyl) carbamoyl)-1H-

indol-5-yl) carbamoyl)-1H-indol-5-yl)-5-nitro-1H-indole-2-carboxamide 

(4.77).        

 

Initially, 43mg of 5-nitro-1H-indole-2-carboxylic acid (0.206 mmol, 1.2 eq.) was 

dissolved in 10 mL of DMF in a round bottom flask fitted with a magnetic stirrer. 

Then DIC (56 µl, 0.3605 mmol, 1.75 eq.) and HOBt (56 mg, 0.412 mmol, 2.0 

eq.) were added to the acid (1.0 eq.) and this mixture was allowed to stir at 

room temperature for 30 minutes to ensure the formation of ester from the acid. 

Then 72 mg of amine 4.69 (0.172 mmol, 1 eq.) was added and the mixture was 

allowed to stir for 7 hours at which point TLC and LCMS analysis showed the 

completion of reaction. Finally the reaction mixture was applied to a conditioned 

IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch and Release’ 

method (described in the section ‘Method and Materials’ of chapter 3). A 
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yellow solid was obtained after drying in vacuum. Yield=36 mg, 35%.

 

 

 

Figure 4.6: 1H and 13C NMR spectroscopic data of compound 4.77 as a 

representative of library-3B compounds 
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Table 4.77: Characterisation data for compound 4.77 

4.77 

Yellow 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
12.52(s,1H), 11.74(d,J=2.4,1H), 11.48(d,J=2.4,1H), 10.52(s,1H), 
9.72(s,1H),8.77(d,J=2.4,1H), 8.64 (d,J=1.6,1H), 8.49(d,J=2.0,1H), 
8.36(d,J=2.8,1H),8.11(dd,J=8.8,2.0,1H),7.97(d,J=2.8,1H),7.92(t,J
=6,1H), 7.76(s,1H), 7.73(dd,J=8.8,2.0,1H), 7.66-7.63 (m,2H), 
7.48(d,J=8.8,1H), 7.38(d,J=8.8,1H), 3.31-3.26(m,2H), 2.29 
(t,J=7.2,2H), 2.15(s,6H), 1.67(t,J=7.2,2H). 

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
164.6, 163.0, 158.5, 141.2, 139.4, 135.5, 133.3, 132.8, 132.7, 
131.8, 128.8, 127.7, 126.5, 126.4, 126.1, 119.2, 118.5, 116.7, 
113.5, 112.8, 112.7, 111.6, 111.2, 110.8, 110.8, 105.6, 56.9, 45.0, 
39.3, 36.9, 27.4, 23.2. 

EIMS Found 607.20 [M+H] +, Calculated for C32H30N8O5, 606.23 [M]+ 

HRM
S 

m/z (+EI) Calc. for C32H30N8O5, 606.2339 [M]+, found 607.2396 
[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3266, 2941, 2219, 1705, 1630, 1534, 1475, 1440, 1361, 1331, 
1308, 1221, 1160, 1098, 1039, 945, 886, 807, 770, 741, 715, 619. 

 

4.78 Synthesis of N-(3-(dimethylamino) propyl)-5-(5-(5-

nitrobenzo[b]thiophene-2-carboxamido)-1H-indole-3-carboxamido)-1H-

indole-3-carboxamide (4.78).      

   

Initially, 67 mg of 5-nitrobenzo[b]thiophene-2-carboxylic acid (0.301 mmol, 1.4 

eq.) was dissolved in 10mL of DMF in a round bottom flask fitted with a 

magnetic stirrer. Then DIC (81 µl, 0.526 mmol, 1.75 eq.) and HOBt (81 mg, 

0.602 mmol, 2.0 eq.) were added to the acid (1.0 eq.) and this mixture was 

allowed to stir at room temperature for 30 minutes to ensure the formation of 

ester from the acid. Then amine 4.69(90 mg, 0.215 mmol, 1 eq.) was added and 

the mixture was allowed to stir for 6 hours at which point TLC and LCMS 

analysis showed the completion of reaction. Finally the reaction mixture was 

applied to a conditioned IsoluteTM SCX-2 cartridge and the product was purified 

by ‘Catch and Release’ method (described in the section ‘Method and 

Materials’ of chapter 3). A deep yellow solid was obtained after drying in 

vacuum. Yield=20 mg, 15%. 
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Table 4.78: Characterisation data for compound 4.78 

4.78 

Deep 
Yellow 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
11.72(d,J=2.4,1H), 11.45(d,J=2.4,1H), 10.75(s,1H), 9.71(s,1H), 
8.94(t,J=2.0,1H), 8.64-8.60(m,2H), 8.47(d,J=1.6,1H), 8.37-
8.33(m,2H), 8.29-8.27(m,1H), 7.96(s,1H), 7.90(t,J=5.6,1H), 7.70-
7.64 (m,2H), 7.48(d,J=8.8,1H), 7.37(d,J=8.4,1H), 3.31-
3.26(m,2H), 2.33 (t,J=6.8,2H), 2.18(s,6H), 1.72-1.65(m,2H). 

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
164.6, 162.9, 162.3, 159.2, 146.1, 145.3, 144.5, 139.1, 133.4, 
132.9, 132.7, 131.6, 126.6, 126.1, 125.8, 124.1, 120.9, 119.9, 
116.6, 113.6, 112.6, 110.8, 110.6, 56.9, 45.0, 40.0, 39.4, 39.2, 
39.0, 38.8, 27.4, 23.2. 

EIMS Found 623.20 [M+H]+, Calculated for C32H29N7O5S, 623.19 [M]+ 

HRM
S 

m/z (+EI) Calc. for C32H29N7O5S, 623.1951 [M]+, found 

624.2017[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3219, 1706, 1625, 1532, 1509, 1472, 1435, 1340, 1312, 1269, 
1212, 1151, 1023, 1003, 945, 863, 803, 769, 736. 

 

4.79 Synthesis of N-(3-(dimethylamino) propyl)-5-(5-(5-nitrobenzofuran-2-

carboxamido)-1H-indole-3-carboxamido)-1H-indole-3-carboxamide (4.79).      
 

    

Initially, 52 mg of 5-nitrobenzofuran-2-carboxylic acid (0.251 mmol, 1.4 eq.) was 

dissolved in 10mL of DMF in a round bottom flask fitted with a magnetic stirrer. 

Then DIC (68 µl, 0.439 mmol, 1.75 eq.) and HOBt (68 mg, 0.502 mmol, 2.0 eq.) 

were added to the acid (1.0 eq.) and this mixture was allowed to stir at room 

temperature for 30 minutes to ensure the formation of ester from the acid. Then 

75 mg of amine 4.69 (0.179 mmol, 1 eq.) was added to the mixture and that 

mixture was allowed to stir for 5 hours at which point TLC and LCMS analysis 

showed the completion of reaction. Lastly, the reaction mixture was applied to a 

conditioned IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch 

and Release’ method (described in the section ‘Method and Materials’ of 

chapter 3). An orange solid was obtained after drying. Yield=29 mg, 27%. 
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Table 4.79: Characterisation data for compound 4.79 

4.79 

Orang
e 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
11.73(s,1H),11.48(s,1H),10.67(s,1H),9.71(s,1H),8.84(d,J=2.4,1
H), 8.65(d,J=1.2,1H), 8.48(s,1H), 8.36(dd,J=8.8,2.0,2H), 
8.02(s,1H), 
7.97(d,J=9.2,3H),7.697.63(m,2H),7.47(d,J=8.8,1H),7.38(d,J=8.4

,1H), 3.69-3.59 (m,2H), 3.31(s,2H), 2.31(s,6H), 
1.75(d,J=9.6,2H). 

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm 

 164.7, 162.9, 157.0, 155.6, 152.0, 144.1, 133.4, 132.9, 132.7, 
131.3, 127.8, 126.5, 126.1, 122.1, 119.5, 116.8, 112.9, 111.6, 
111.1, 110.9, 110.5, 56.4, 44.4, 40.6, 39.8, 39.4, 39.2, 39.0, 
38.4, 36.5, 26.8, 23.2.  

EIMS Found 608.30 [M+H]+, Calculated for C32H29N7O6, 607.21 [M]+ 

HRM
S 

m/z (+EI) Calc. for C32H29N7O6, 607.2179 [M]+, found 

608.2244[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3276, 2972, 1739, 1649, 1606, 1530, 1464, 1435, 1367, 1311, 
1211, 1148, 1067, 953, 884, 865, 792, 771, 744, 682. 

4.80 Synthesis of N-(3-((3-((3-(dimethylamino) propyl) carbamoyl)-1H-

indol-5-yl) carbamoyl)-1H-indol-5-yl)-5-nitro-1H-benzo[d]imidazole-2-

carboxamide (4.80).        

 

 

Initially, 59 mg of 5-nitro-1H-benzo[d]imidazole-2-carboxylic acid (0.284 mmol, 

1.4 eq.) was dissolved in 10mL of DMF in a round bottom flask fitted with a 

magnetic stirrer. Then DIC (77 µl, 0.497 mmol, 1.75 eq.) and HOBt (77 mg, 

0.568 mmol, 2.0 eq.) were added to the acid (1.0 eq.) and this mixture was 

stirred at room temperature for 30 minutes for complete esterification. Then 

amine 4.69 (85 mg, 0.203 mmol, 1 eq.) was added to the mixture and this 

mixture was allowed to stir for 4 hours at which point TLC and LCMS analysis 

showed the completion of reaction. Finally the reaction mixture was separated 

by using a conditioned IsoluteTM SCX-2 cartridge and the product was purified 

by ‘Catch and Release’ method (described in the section of chapter 3). An 

orange solid was obtained after drying in vacuum. Yield was 7 mg, 6%. 
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Table 4.80: Characterisation data for compound 4.80 

4.80 

Orange 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
11.68(d,J=2.4,1H), 11.43(d,J=2.4,1H), 10.89(s,1H), 9.67(s,1H), 
8.79(d,J=1.6,1H),8.56(d,J=2.0,1H),8.43(d,J=2.0,1H),8.32(d,J=2.8,
1H), 8.20(dd,J=8.8,2.4,1H), 7.94(s,2H), 7.89(t,J=6.4,1H), 7.85-
7.81(m,1H),7.64-7.59 (m,2H), 7.45(d,J=8.4,1H), 7.36(d,J=8.8,1H), 
3.30-3.25(m,2H),2.36(t,J=7.2,2H), 2.20(s,6H), 1.72-1.65(m,2H).  

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm 
164.8, 162.9, 162.3, 156.9, 151.1, 146.2, 145.2, 143.2, 136.1, 
133.8, 132.7, 132.5, 131.2, 126.4, 126.0, 123.8, 117.3, 117.1, 
116.0, 113.7, 111.9, 111.2, 110.9, 110.6, 48.5, 44.7, 38.9, 38.7, 
35.7, 30.7, 27.0.  

EIMS Found 608.30 [M+H]+, Calculated for C31H29N9O5, 607.22 [M]+ 

HRM
S 

m/z (+EI) Calc. for C31H29N9O5, 607.2292 [M]+, found 

608.2362[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
2970, 1740, 1638, 1537, 1479, 1366, 1228, 1217, 1154, 1024, 
1004, 944, 887, 802, 778, 733. 

 

 

4.81 Synthesis N-(3-(dimethylamino) propyl)-5-nitro-1H-indazole-3-

carboxamide (4.81).   

 

Initially, 250 mg of 5-nitro-1H-indazole-3-carboxylic acid (1.207 mmol, 1.2 eq.) 

was dissolved in 10mL of DMF in a round bottom flask fitted with a magnetic 

stirrer. Then DIC (326 µl, 2.11 mmol, 1.75 eq.) and HOBt (326 mg, 2.414 mmol, 

2.0 eq.) were added to the acid (1.0 eq.) and this mixture was allowed to stir at 

room temperature for 30 minutes to ensure the formation of ester from the acid. 

Then 3-amino-N-methyl-N-methylenepropan-1-aminium (85 µl, 0.828 mmol, 1 

eq.) was added and the mixture was allowed to stir for 7 hours at which point 

TLC and LCMS analysis showed the completion of reaction. Finally the reaction 

mixture was applied to a conditioned IsoluteTM SCX-2 cartridge and the product 

was purified by ‘Catch and Release’ method (described in the section ‘Method 

and Materials’ of chapter 3). A yellow solid was obtained after drying in 

vacuum. Yield=196 mg, 56%. 
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Table 4.81: Characterisation data for compound 4.81 

4.81 

 
Yellow 
solid 

1H 

 NMR 

 1HNMR(400MHz,(CD3)2SO); δH in ppm  
9.04(d,J=2.4,1H),8.73(t,J=6.0,1H),8.22(dd,J=9.2,2.0,1H),7.81(d,J

=9.2,1H),3.37-
3.32(m,2H),2.32(t,J=6.4,2H),2.17(S,6H),1.71(t,J=7.2,2H). 

EIMS Found 291.13  [M+H]+, C13H17N5O3, 290.20 [M]+ 

4.82 Synthesis 5-amino-N-(3-(dimethylamino) propyl)-1H-indazole-3-

carboxamide (4.82).   

 

 

180 mg of 4.81 was dissolved in 20 mL of ethanol and 1 mL of ethyl acetate 

was added to a hydrogenation reaction bottle. 20 mg of 10% Pd (palladium on 

activated carbon) was added into the reaction vessel and it was mixed well. The 

reaction bottle was sealed and connected to a hydrogen reservoir. Air from the 

reaction bottle was removed by applying vacuum and it was then flushed with 

hydrogen. Typically, a hydrogen pressure of approximately 40 psi was applied 

from the reservoir and the bottle was then shaken vigorously to initiate the 

reaction. Progress of the reaction was monitored by TLC and LCMS. The 

shaker was stopped and the bottle was vented after 6 hours at which point TLC 

and LCMS analysis showed the completion of reaction. The product was 

recovered by means of filtration using Celite. Finally, the product is 

concentrated by using a rotary evaporator. A pale yellow solid was obtained 

after drying in vacuum. Yield=145 mg, 90 %. 

Table 4.82: Characterisation data for compound 4.82 

4.82 
Pale  
Yellow 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
 
8.21(t,J=6.0,1H),7.95(S,1H),7.337.29(m,2H),6.83(dd,J=8.8,2.4,1
H),3.34-3.29(m,2H),2.26(t,J=6.8,2H),2.13(S,6H),2.10-

2.06(m,2H),1.691.63(m,2H). 

EIMS Found 262.0 [M+H]+, Calculated for C13H19N5O, 261.15 [M]  
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4.83 Synthesis of N-(3-(dimethylamino) propyl)-5-(5-nitro-1H-indazole-3-

carboxamido)-1H-indazole-3-carboxamide (4.83).   

 

  

Initially, 155 mg of 5-nitro-1H-indazole-3-carboxylic acid (0.75 mmol, 1.4 eq.) 

was dissolved in 10mL of DMF in a round bottom flask fitted with a magnetic 

stirrer. Then 202 µl of DIC (1.313 mmol, 1.75 eq.) and HOBt (202 mg, 1.50 

mmol, 2.0 eq.) were added to the acid (1.0 eq.) and this mixture was allowed to 

stir at room temperature for 30 minutes to ensure the formation of ester from the 

acid. Then 140 mg of 4.82 (0.536 mmol, 1 eq.) was added to the mixture and 

the mixture was allowed to stir for 7 hours at which point TLC and LCMS 

analysis showed the completion of reaction. Finally the reaction mixture was 

applied to a conditioned IsoluteTM SCX-2 cartridge and the product was purified 

by ‘Catch and Release’ method (described in the section ‘Method and 

Materials’ of chapter 3). A light yellow solid was obtained after drying in 

vacuum. Yield=109 mg, 45%. 

Table 4.83: Characterisation data for compound 4.83 

4.83 

 
Light 
Yellow 

1H 

 NMR 

 1HNMR(400MHz,(CD3)2SO); δH in ppm  
13.56(s,1H), 10.66(s,1H), 9.12(d,J=2.0,1H), 8.81(dJ=1.6,1H), 
8.43(t,J=5.6,1H), 8.26(dd,J=9.2,2.4,1H), 7.88-7.82(m,2H), 
7.59(d,J=8.8,1H), 3.34(t,J=6.4,2H), 2.33(t,J=6.8,2H), 2.18(s,6H), 
1.71(t,J=6.8,2H). 

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm 
162.1, 160.1, 143.7, 142.6, 140.9, 138.5, 138.2, 132.9, 121.9, 
121.5, 121.0, 118.9, 112.4, 110.5, 57.0, 45.0, 39.2, 39.0, 38.8, 
36.9, 27.1.  

EIMS Found 451.0 [M+H] +, Calculated for C21H22N8O4, 450.17 [M]+ 

HRMS M/z (+EI) Calc. for C21H22N8O4, 450.1764 [M]+, found 451.1826 

[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3376, 3201, 2923, 2818, 1655, 1638, 1597, 1531, 1481, 1335, 
1318, 1252, 1152, 1100, 993, 891, 856, 842, 793, 767, 740, 727. 
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4.84 Synthesis of 5-amino-N-(3-((3-(dimethylamino) propyl) carbamoyl)-1H-

indazol-5-yl)-1H-indazole-3-carboxamide (4.84).   

 

 

200 mg of 4.83 was dissolved in 20 mL of ethanol and 1 mL of ethyl acetate 

was added to a hydrogenation reaction bottle. 20 mg of 10% Pd (palladium on 

activated carbon) was added into the reaction vessel and it was mixed well. The 

reaction bottle was sealed and connected to a hydrogen reservoir. Air from the 

reaction bottle was removed by applying vacuum and it was flushed with 

hydrogen. Typically, a hydrogen pressure of approximately 40 psi was applied 

from the reservoir, and the bottle was then shaken vigorously to initiate the 

reaction. Progress of the reaction was monitored by TLC and LCMS. The 

shaker was stopped and the bottle was vented after 5 hours at which point TLC 

and LCMS analysis showed the completion of reaction. The product was 

recovered by means of filtration using Celite. Finally, the product was 

concentrated by using a rotary evaporator. A deep brown solid was obtained 

after drying in vacuum. Yield=140 mg, 75 %. 

Table 4.84: Characterisation data for compound 4.84 

4.84 
 
Deep 
Brown 

1H 

 NMR 

 1HNMR(400MHz,(CD3)2SO); δH in ppm   
13.67(s,2H), 10.15(s,1H), 8.77(d,J=1.2,1H), 8.39(t,J=6.0,1H), 
7.78(dd,J=9.2,2.0,1H), 7.56(d,J=9.2,1H), 7.36(d,J=8.8,1H), 
7.32(d,J=2.0,1H), 6.86(dd,J=8.8,2.0,1H), 3.35-3.30(m, 2H), 
2.49(t,J=7.2,2H), 2.14(s,6H), 2.08(d,J=1.2,2H), 1.68(t,J=7.2,2H). 

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm 

162.2, 161.4, 152.5, 144.2, 138.3, 138.1, 136.9, 136.2, 135.9, 
133.4, 123.4, 121.9, 121.2, 111.7, 110.9, 102.9, 57.1, 45.2, 38.5, 
27.8, 22.5.  

EIMS Found 421.10 [M+H]+, calculated for C21H24N8O2, 420.20 [M]+ 

HRM
S 

m/z (+EI) Calc. for C21H24N8O2, 420.2022 [M]+, found 421.2095 

[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3200, 2927, 1638, 1596, 1535, 1482, 1335, 1317, 1224, 1152, 
1099, 1024, 994, 944, 891, 856, 841, 793, 739, 728, 637. 
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4.85 Synthesis N-(3-(dimethylamino) propyl)-5-(5-(5-nitro-1H-indazole-3-

carboxamido)-1H-indazole-3-carboxamido)-1H-indazole-3-carboxamide 

(4.85).   

 

Initially, 49.5 mg of 5-nitro-1H-indazole-3-carboxylic acid (0.239 mmol, 1.4 eq.) 

was dissolved in 10 mL of DMF in a round bottom flask fitted with a magnetic 

stirrer. Then DIC (65 µl, 0.418 mmol, 1.75 eq.) and HOBt (65 mg, 0.478 mmol, 

2.0 eq.) were added to the acid (1.0 eq.) and this mixture was stirred at room 

temperature for at least 30 minutes to ensure the formation of ester from the 

acid. Then 72 mg of amine 4.84 (0.171 mmol, 1 eq.) was added to the mixture 

and the mixture was allowed to stir for 5 hours at which point TLC and LCMS 

analysis showed the completion of reaction. Finally the reaction mixture was 

applied to a conditioned IsoluteTM SCX-2 cartridge and the product was purified 

by ‘Catch and Release’ method (described in the section ‘Method and 

Materials’ of chapter 3). A deep grey solid was obtained after drying in vacuum. 

Yield=14.4 mg, 15%. 

Table 4.85: Characterisation data for compound 4.85 

4.85 

 
Deep 
Grey 

1H 

 NMR 

 1HNMR(400MHz,(CD3)2SO); δH in ppm   
13.76(s,1H), 13.52(s,2H), 10.73(s,1H), 10.41(s,1H), 
9.16(d,J=2.0,1H), 8.93(d,J=1.2,1H), 8.83(d,J=1.6,1H), 8.44(s,1H), 
8.29(dd,J=9.2,2.4,1H), 7.91-7.87(m,2H), 7.85(dd,J=8.8,2.0,1H), 
7.66(d,J=9.2,1H), 7.58(d,J=8.8,1H), 3.38-3.33(m,2H), 
2.40(t,J=7.2,2H), 2.24(s,6H), 1.73(t,J=7.2, 2H). 

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm 

171.5, 162.2, 160.9, 160.0, 143.3, 142.8, 142.8, 140.9, 138.4, 
138.3, 138.1, 136.9, 133.3, 131.4, 130.6, 127.5, 122.1, 121.9, 
121.5, 121.0, 119.0, 112.2, 110.9, 56.7, 44.7, 39.2, 38.8, 36.7, 
26.9.  

EIMS Found 610.10 [M+H]+, calculated for C29H27N11O5, 609.21 [M]+ 

HRMS m/z (+EI) Calc. for C29H27N11O5, 609.2197 [M]+, found 610.2264 

[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3200, 3013, 2970, 2945, 1740, 1651, 1594, 1540, 1478, 1366, 
1343, 1317, 1228, 1217, 1150, 1090, 1023, 1000, 942, 897, 853, 
792, 742, 625. 
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4.86 Synthesis of N-(3-(dimethylamino) propyl)-5-(5-(5-nitro-1H-

benzo[d]imidazole-2-carboxamido)-1H-indazole-3-carboxamido)-1H-

indazole-3-carboxamide (4.86).   

 

Initially, 52 mg of 5-nitro-1H-benzo[d]imidazole-2-carboxylic acid (0.253 mmol, 

1.2 eq.) was dissolved in 10 mL of DMF in a round bottom flask fitted with a 

magnetic stirrer. Then 68 µl of DIC (0.442 mmol, 1.75 eq.) and HOBt (68 mg, 

0.506 mmol, 2.0 eq.) were added to the acid (1.0 eq.) and this mixture was 

allowed to stir at room temperature for 30 minutes to ensure the esterification of 

acid. Then 76 mg of amine 4.85(0.180 mmol, 1 eq.) was added to the mixture 

and the mixture was allowed to stir for 7 hours at which point TLC and LCMS 

analysis showed the completion of reaction. At last the reaction mixture was 

applied to a conditioned IsoluteTM SCX-2 cartridge and the product was purified 

by ‘Catch and Release’ method (described in the section ‘Method and 

Materials’ of chapter 3). A brown solid was obtained after drying in vacuum. 

Yield=14 mg, 13%. 

Table 4.86: Characterisation data for compound 4.86 

4.86 

 
Brown 

1H 

 NMR 

 1HNMR(400MHz,(CD3)2SO); δH in ppm   
13.82(s,1H),13.51(s,1H), 11.13(s,1H), 10.42(s,1H), 
8.94(d,J=1.6,1H), 8.79(d,J=1.2,1H), 8.57(d,J=2.0,1H), 
8.43(t,J=5.6,1H), 8.19(dd,J=8.8,2.0,1H), 7.95(s,1H), 
7.90(dd,J=8.8,2.0,1H), 7.84(dd,J=8.8,2.4,2H), 7.69(d,J=8.8,1H), 
7.58(d,J=8.8,1H), 3.38-3.33(m,2H), 2.35(t,J=7.2,2H), 2.20(s,6H), 
1.72(t,J=6.8,2H). 

 
13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
162.29, 162.23, 160.8, 157.3, 154.9, 149.6, 143.0, 142.7, 138.6, 
138.4, 138.28, 138.20, 133.2, 132.9, 128.0, 121.9, 121.8, 121.5, 
118.3, 113.8, 112.5, 112.2, 56.9, 44.9, 39.0, 36.8, 35.7, 30.7, 
27.0.  

EIMS Found 610.20 [M+H]+, calculated for C29H27N11O5, 609.21 [M]+ 

HRM
S 

m/z (+EI) Calc. for C29H27N11O5, 609.2197 [M]+, found 

610.2258[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3280, 2944, 1638, 1591, 1574, 1531, 1468, 1392,1 290, 1232, 
1154, 1034, 953, 879, 809, 737, 716, 618. 
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4.87 Synthesis of 5-cyano-N-(3-((3-((3-(dimethylamino) propyl) carbamoyl)-

1H-indol-5-yl) carbamoyl)-1H-indol-5-yl)-1H-indole-2-carboxamide (4.87). 

 

Initially 56 mg of 5-cyano-1H-indole-2-carboxylic acid (0.298 mmol, 1.2 eq.) was 

dissolved in 10 mL of DMF in a round bottom flask placed into a stirrer. 

 

 

Figure 4.7: 1H and 13C NMR spectroscopic data of compound 4.87 as a 

representative of library-4C compounds 
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Then 80 µl of DIC (0.5215 mmol, 1.75 eq.) and HOBt (80 mg, 0.596 mmol, 2. 

0eq.) were added to the acid (1.0 eq.) and mix it well and the mixture was 

allowed to stir at room temperature for 30 minutes to ensure the formation of 

ester from the acid. Then 104 mg of amine 4.69(0.2488 mmol, 1 eq.) was added 

and the mixture was allowed to stir for 5 hours at which point TLC and LCMS 

analysis showed the completion of reaction. The reaction mixture was applied to 

a conditioned IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch 

and Release’ method (described in the section ‘Method and Materials’ of 

chapter 3). An orange solid was obtained after drying in vacuum. Yield=75 mg, 

51%. 

Table 4.87: Characterisation data for compound 4.87 

4.87 

 
Orange 

1H 

 NMR 

 1HNMR(400MHz,(CD3)2SO); δH in ppm   
12.31(s,1H),11.70(s,1H),11.45(s,1H),10.42(s,1H),9.71(s,1H),8.62(
s,1H),8.48(s,1H),8.35(d,J=4.8,1H),8.32(s,2H),7.96(s,1H),7.91(t,J=
5.2,1H),7.72(d,J=8.8,1H),7.63(t,J=8.4,2H),7.55(d,J=8.8,1H),7.47(
d,J=8.8,1H),7.37(d,J=8.8,1H),3.313.26(m,2H),2.32(t,J=6.8,2H),2.
16(s,6H),1.69(t,J=6.8,2H). 

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
164.5,162.9,162.2,158.6,138.0,134.4,133.2,132.9,132.6,131.9,12
7.8,127.6,126.9,126.5,126.2,125.7,120.9,116.6,113.5,113.4,112.6
,111.5,111.1,110.8,110.6,103.9,101.9,56.9,45.1, 
38.8,36.8,30.7,27.5. 

EIMS Found 587.10 [M+H]+, calculated for C33H30N8O3, 586.2441 [M] 

HRM
S 

m/z (+EI) Calc. for C33H30N8O3, 586.2441 [M]+, found 587.2508 

[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3238, 2933, 2218, 1651, 1616, 1539, 1473, 1434, 1386, 1362, 
1330, 1310, 1248, 1213, 1159, 1098, 1023, 1003, 944, 885, 805, 
768, 737, 660, 618. 

 

 

4.88 Synthesis of N-(3-(dimethylamino) propyl)-5-(5-(5-nitro-1H-indole-2-

carboxamido)-1H-indazole-3-carboxamido)-1H-indazole-3-carboxamide 

(4.88) 
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Initially, 36 mg of 5-nitro-1H-indole-2-carboxylic acid (0.171 mmol, 1.2 eq.) was 

dissolved in 10 mL of DMF in a round bottom flask fitted with a magnetic stirrer. 

 

 

Figure 4.8: 1H and 13C NMR spectroscopic data of compound 4.88 as a 

representative of library-4D compounds 

Then 46 µl of DIC (0.299 mmol, 1.75 eq.) and HOBt (46 mg, 0.342 mmol, 2.0 

eq.) were added to the acid (1.0 eq.) and this mixture was allowed to stir at 
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room temperature for 30 minutes to ensure the formation of ester from the acid. 

Then 60 mg of amine 4.84(0.142 mmol, 1 eq.) was added and the mixture was 

allowed to stir for 4 hours at which point TLC and LCMS analysis showed the 

completion of reaction. Finally the reaction mixture was applied to a conditioned 

IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch and Release’ 

method (described in the section ‘Method and Materials’ of chapter 3). An 

orange solid was obtained after drying in vacuum. Yield=10 mg, 12%. 

Table 4.88: Characterisation data for compound 4.88 

4.88 
 
orange 

1H 

 NMR 

 1HNMR(400MHz,(CD3)2SO); δH in ppm   
13.76(s,1H),13.50(s,1H),12.48(s,1H),10.65(s,1H),10.43(s,1H),8.80
(dd,J=5.6,1.6,2H),8.74(d,J=1.2,1H),8.42(t,J=6.0,1H),8.12(dd,J=9.2,
2.0,1H),7.94(dd,J=9.2,2.0,1H),7.84(dd,J=8.8,2.0,1H),7.76(d,J=4.0,
1H),7.71(d,J=8.8,1H),7.64(d,J=9.2,1H),7.59(d,J=9.2,1H),2.51-
2.50(m,2H),2.31(t,J=7.2,1H),2.16(s,6H),1.22(s,2H). 

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
162.2,160.9,158.8,141.3,139.5,138.4,138.3,138.1,135.1,133.4,133.
2,126.3,121.9,121.5,118.6,112.9,112.2,110.4,57.0,45.1,40.0,39.8,3
9.6,39.4,39.2,39.0,38.8,36.9,35.7,27.2. 

EIMS Found 608.20 [M+H] +, calculated for C30H28N10O5, 608.2244 [M]+  

HRM
S 

m/z (+EI) Calc. for C30H28N10O5, 608.2244 [M]+, found 

609.2317[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3198, 2928, 1646, 1591, 1539, 1487, 1377, 1337, 1315, 1288, 
1228, 1134, 1023, 998, 955, 883, 800, 779, 759, 732. 

 

 

4.89 Synthesis of 5-(benzo[b]thiophene-3-carboxamido)-N-(3-((3-

(dimethylamino) propyl) carbamoyl)-1H-indol-5-yl)-1H-indole-3-

carboxamide (4.89).        

 

Initially, 30 mg of benzo[b]thiophene-3-carboxylic acid (0.167 mmol, 1.2 eq.) 

was dissolved in 5 mL of DMF in a round bottom flask fitted with a magnetic 

stirrer. Then 45 µl of DIC (0.29 mmol, 1.75 eq.) and HOBt (45 mg, 0.334 mmol, 

2.0 eq.) were added to the acid (1.0 eq.) and this mixture was allowed to stir at 

room temperature for 30 minutes to ensure the formation of ester from the acid. 

Then 50 mg of amine 4.69 (0.119 mmol, 1 eq.) was added and the mixture was 

allowed to stir for 10 hours at which point TLC and LCMS analysis showed the 
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completion of reaction. Finally the reaction mixture was applied to a conditioned 

IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch and Release’ 

method (described in the section ‘Method and Materials’ of chapter 3). A pale 

yellow solid was obtained after drying in vacuum. Yield=12 mg, 18 %. 

Table 4.89: Characterisation data for compound 

4.89 

Pale  
yellow 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm 
11.72(dd,J=10.0,2.4,1H),11.48 (d,J=2.4,1H),) 10.30(s,1H), 
9.71(s,1H), 8.64(d,J=8.8,1.6,1H), 8.60(d,J=2,1H), 
8.49(dd,J=5.2,1.6,1H), 8.34(t,J=3.2,2H), 8.08(dd,J=5.6,1.2,1H), 

7.98-7.93(m,2H), 7.67-7.63(m,1H), 7.58-7.54 (m,1H), 7.49-
7.43(m,2H), 7.40-7.33 (m,2H), 3.34-3.26(m,2H), 2.41-2.21 
(m,2H), 2.22 (s,6H),  1.70(t,J=7.2,2H). 

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
164.7, 164.6, 162.9, 161.5, 156.8, 139.9, 137.3, 133.1, 132.9, 
132.6, 132.3, 131.3, 131.0, 128.6, 126.1, 124.8, 124.4, 122.7, 
116.7, 116.6, 111.1, 110.8, 110.6, 56.6, 52.1, 44.6, 39.6, 39.0, 
38.7, 36.6, 27.0, 23.2.  

EIMS Found 578.50 [M+H] +, calculated for C32H30N6O3S, 578.21 [M]+

  

HRM
S 

m/z (+EI) Calc. for C32H30N6O3S, 578.2100 [M]+, found 579.2161 

[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3226, 2970, 1740, 1640, 1588, 1535, 1467, 1437, 1362, 1309, 
1230, 1208, 1151, 1048, 1023, 1004, 946, 810, 766, 736, 626. 

 

 

4.90 Synthesis of 5-(benzofuran-3-carboxamido)-N-(3-((3-(dimethylamino) 

propyl) carbamoyl)-1H-indol-5-yl)-1H-indole-3-carboxamide (4.90).     

    

Initially, 33 mg of benzofuran-3-carboxylic acid (0.20 mmol, 1.2 eq.) was 

dissolved in 10 mL of DMF in a round bottom flask fitted with a magnetic stirrer. 

Then 55 µl of DIC (0.35 mmol, 1.75 eq.) and HOBt (55 mg, 0.40 mmol, 2.0 eq.) 

were added to the acid (1.0 eq.) and this mixture was allowed to stir at room 

temperature for 30 minutes to ensure the formation of ester from the acid. Then 

60 mg of amine 4.69 (0.143 mmol, 1 eq.) was added and the mixture was 

allowed to stir for 7 hours at which point TLC and LCMS analysis showed the 

completion of reaction. Finally the reaction mixture was applied to a conditioned 
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IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch and Release’ 

method (described in the section ‘Method and Materials’ of chapter 3). An 

orange solid was obtained after drying in vacuum. Yield=25 mg, 32%. 

Table 4.90: Characterisation data for compound 4.90 

4.90 
Orange 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
11.88(s,1H), 11.70(s,1H), 10.23(s,1H), 9.74(s,1H), 8.86 (s,1H), 
8.64(s,1H), 8.59(s,1H), 8.50(d,J=8.0,1H), 8.36(s,1H), 8.19-
8.16(m,2H), 8.01(s,1H), 7.69(d,J=7.2,1H), 7.62 (dd,J=8.8,2.0,2H), 
7.43(d,J=10.0,1H), 7.38-7.36 (m,2H), 3.69-3.59(m,2H), 3.37-3.31 

(m,2H), 2.51 (s,6H), 1.97(s,2H). 
13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
168.3, 156.8, 156.1, 148.5, 135.7, 135.4, 133.4, 133.0, 130.2, 
129.8, 127.7, 127.0, 126.7, 126.3, 124.9, 123.1, 119.6, 115.4, 
115.0, 112.8, 112.4, 112.3, 112.1, 58.4, 53.9, 49.6, 49.4, 48.8, 
42.7, 38.7, 28.5, 23.9. 

EIMS Found 562.50 [M+H]+, calculated for C32H30N6O4, 562.23 [M]+ 

HRM
S 

m/z (+EI) Calc. for C32H30N6O4, 562.2329 [M]+, found 563.2388 

[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3245, 2969, 1617, 1542, 1473, 1377, 1328, 1221, 1170, 1127, 
1077, 1040, 866, 805, 768, 741, 659. 

 

4.91 Synthesis of N-(3-(dimethylamino) propyl)-5-(5-(1-methyl-1H-indole-3-

carboxamido)-1H-indole-3-carboxamido)-1H-indole-3-carboxamide (4.91).   

 

Initially, 31 mg of 1-methyl-1H-indole-3-carboxylic acid (0.177 mmol, 1.2 eq.) 

was dissolved in 10 mL of DMF in a round bottom flask fitted with a magnetic 

stirrer. Then 48 µl of DIC (0.311 mmol, 1.75 eq.) and HOBt (48 mg, 0.355 mmol, 

2.0 eq.) were added to the acid (1.0 eq.) and this mixture was allowed to stir at 

room temperature for 30 minutes to ensure the formation of ester from the acid. 

Then 62 mg of amine 4.69 (0.148 mmol, 1 eq.) was added to the mixture and 

the mixture was allowed to stir for 6 hours at which point TLC and LCMS 

analysis showed the completion of reaction. At last the reaction mixture was 

applied to a conditioned IsoluteTM SCX-2 cartridge and the product was purified 

by ‘Catch and Release’ method (described in the section ‘Method and 
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Materials’ of chapter 3). An orange solid was obtained after drying in vacuum. 

Yield=18 mg, 21%. 

Table 4.91: Characterisation data for compound 4.91 

4.91 

Orange 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
11.60(s,J=2.4,1H), 11.44(s,1H), 9.72(s,1H), 9.67(s,1H), 
8.55(d,J=1.6,1H), 8.47(d,J=1.6,1H), 8.40(dd,J=15.6,1.6,1H), 
8.31(t,J=6.8,2H), 8.29-8.25(m,1H), 7.91(t,J=5.6,1H), 7.72 
(dd,J=8.8,2.0,1H), 7.65(dd,J=8.8,2.0,1H), 7.53(d,J=8.0,1H), 
7.41(d,J=8.8,1H), 7.36(dd,J=8.8,3.2,1H), 7.25(t,J=7.2,1H), 
7.18(t,J=7.2,1H), 3.88(s,2H), 3.30-3.26(m,2H), 2.31 (t,J=7.2,2H), 
2.16 (s,6H), 1.69-1.64(m, 2H). 

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
173.6, 164.5, 163.0, 162.6, 162.2, 143.1, 138.2, 133.2, 132.7, 
132.6, 132.4, 132.1, 127.6, 126.9, 126.6, 126.4, 126.1, 120.9, 
120.7, 116.6, 111.1, 110.6, 110.2,109.8, 56.9,  
45.0, 40.0, 39.2, 36.8, 35.7, 33.0, 30.7, 27.4. 

EIMS Found [M+H]+ 576.40, Calculated for C33H33N7O3, 575.26 [M]+ 

HRMS m/z (+EI) Calc. for C33H33N7O3, 
 575.2645 [M]+, found 576.2703 

[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3294, 1631, 1526, 1446, 1339, 1300, 1235, 1155, 873, 838, 802, 
750, 714. 

  

      

4.92 Synthesis of N-(3-((3-((3-(dimethylamino) propyl) carbamoyl)-1H-

indol-5-yl) carbamoyl)-1H-indol-5-yl)-1H-indazole-3-carboxamide (4.92).        

 

Initially, 48.80 mg of 1H-indazole-3-carboxylic acid (0.301 mmol, 1.4 eq.) was 

dissolved in 10 mL of DMF in a round bottom flask fitted with a magnetic stirrer. 

Then 58 µl of DIC (0.376 mmol, 1.75 eq.) and HOBt (58 mg, 0.43 mmol, 2.0 eq.) 

were added to the acid (1.0 eq.) and this mixture was allowed to stir at room 

temperature for 30 minutes to ensure the formation of ester from the acid. Then 

90 mg of amine 4.69 (0.215 mmol, 1 eq.) was added and the mixture was 

allowed to stir for 7 hours at which point TLC and LCMS analysis showed the 

completion of reaction. Lastly the reaction mixture was applied to a conditioned 

IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch and Release’ 
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method (described in the section ‘Method and Materials’ of chapter 3). A light 

yellow solid was obtained after drying in vacuum. Yield=32 mg, 27%. 

 

 

Figure 4.9: 1H and 13C NMR spectroscopic data of compound 4.92 as a 

representative of library-4A compounds 
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Table 4.92: Characterisation data for compound 4.92 

4.92 

Light  
Yellow 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
13.89(s,1H), 11.82(s,1H), 11.49(s,1H), 10.18(s,1H), 9.69(s,1H), 
8.80 (d,J=1.6,1H), 8.46(d,J=1.6,1H), 8.33(s,1H), 
8.29(d,J=8.0,1H), 7.96(d,J=6.8,1H), 7.91(t,J=5.2,1H), 7.69-
7.66(m,2H), 7.62(dd,J=8.8,2.0,1H), 7.45 (t,J=8.4,2H), 
7.38(d,J=8.8,1H), 7.29(t,J=7.6,1H), 3.32-3.27(m,2H), 2.29 
(t,J=6.8,2H), 2.14(s,6H), 1.69-166(m ,2H). 

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm   
164.5, 162.9, 160.6, 141.2, 138.6, 133.1, 132.9, 132.7, 132.0, 
128.6, 127.6, 126.57, 126.52, 126.1, 122.1 121.7, 121.6, 116.9, 
116.7, 113.3, 112.6, 111.4, 111.1, 110.8, 110.7, 110.6, 57.0, 45.1, 
39.4, 27.5, 23.2. 

EIMS Found 563.20 [M+H]+,calculated for C31H30N8O3, 562.2441 [M] 

HRM
S 

m/z (+EI) Calc. for C31H30N8O3, 562.2441 [M]+, found 563.2498 

[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3216, 2970, 2815, 1656, 1622, 1551, 1536, 1470, 1448, 1436, 
1343, 1305, 1253, 1234, 1209, 1159, 1122, 1111, 1049, 1023, 
1000, 907, 880, 818. 

 

4.93 Synthesis of N-(3-(dimethylamino)propyl)-5-(5-(5-nitro-1H-indole-3-

carboxamido)-1H-indole-3-carboxamido)-1H-indole-3-carboxamide (4.93).        

 

 

Initially, 30 mg of 5-nitro-1H-indole-3-carboxylic acid (0.143 mmol, 1.2 eq.) was 

dissolved in 10 mL of DMF in a round bottom flask fitted with a magnetic stirrer. 

Then 39 µl of DIC (0.250 mmol, 1.75 eq.) and HOBt (39 mg, 0.286 mmol, 2.0 

eq.) were added to the acid (1.0 eq.) and this mixture was allowed to stir at 

room temperature for 30 minutes to ensure the formation of ester from the acid. 

Then 50 mg of amine 4.69 (0.119 mmol, 1 eq.) was added to the mixture and 

this mixture was allowed to stir for 6 hours at which point TLC and LCMS 

analysis showed the completion of reaction. Finally the reaction mixture was 

applied to a conditioned IsoluteTM SCX-2 cartridge and the product was purified 

by ‘Catch and Release’ method (described in the section ‘Method and 

Materials’ of chapter 3). A yellow solid was obtained after drying in vacuum. 

Yield=14mg, 20%. 
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Table 4.93: Characterisation data for compound 4.93 

4.93 

Yellow 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
12.47(s,1H), 11.66(s,1H), 11.48(s,1H), 9.98(s,1H), 9.69(s,1H), 
9.20 (s,1H), 8.59(d,J=14.4,2H), 8.50(s,1H), 8.33(t,J=3.6,2H), 
8.09(dd,J=8.8,2.0,1H), 7.96(d,J=5.6,1H), 7.74(dd,J=8.8,1.6,1H), 
7.69-7.63(m,2H), 7.44(d,J=8.8,1H), 7.37 (d,J=8.8,1H), 
3.29(d,J=6,2H), 2.89(s,2H), 2.31 (s,6H), 1.74(d,J=6.0, 2H). 
 

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
164.8, 163.0, 162.3, 162.0, 158.4, 141.8, 140.4, 139.2, 138.8, 
132.9, 132.6, 131.6, 127.8, 126.6, 126.1, 125.9, 120.0, 118.0, 
116.7, 112.7, 112.65, 112.60, 110.7, 110.5, 561, 43.9, 39.1, 38.9, 
38.7, 35.7, 30.7, 26.4. 

EIMS Found [M+H] + 607.0, Calculated for C32H30N8O5, 606.23 [M]+ 

HRM
S 

m/z (+EI) Calc. for C32H30N8O5, 606.2339 [M]+, found 607.2402 

[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3266, 2939, 2219, 1705, 1631, 1533, 1475, 1437, 1361, 1331, 
1308, 1220, 1159, 1097, 1039, 945, 886, 807, 770, 741, 715, 619. 

 

 

4.94 Synthesis of 5-nitro-N-(3-(piperidin-1-yl) propyl)-1H-indole-3-

carboxamide (4.94).        

 

Initially, 200 mg of 5-nitro-1H-indole-3-carboxylic acid (0.970 mmol, 1.2 eq.) was 

dissolved in 10 mL of DMF in a round bottom flask fitted with a magnetic stirrer. 

Then 262.43 µl of DIC (1.69 mmol, 1.75 eq.) and HOBt (262 mg, 1.94 mmol, 2.0 

eq.) were added to the acid (1.0 eq.) and this mixture was allowed to stir at 

room temperature for 30 minutes to ensure the formation of ester from the acid. 

Then 115.55 mg of 3-(piperidin-1-yl)propan-1-amine (0.809 mmol, 1 eq.) was 

added and the mixture was allowed to stir for 16 hours at which point TLC and 

LCMS analysis showed the completion of reaction. Finally the reaction mixture 

was applied to a conditioned IsoluteTM SCX-2 cartridge and the product was 

purified by ‘Catch and Release’ method. A yellow solid was obtained after 

drying in vacuum. Yield=165 mg, 52%. 
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Table 4.94: Characterisation data for compound 4.94 

4.94 

Yellow 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
9.09 (s,1H), 8.38(s,1H), 8.22(t,J=5.6,1H), 8.05(dd,J=9.2,2.4,1H), 
7.63(d,J=9.2,1H),3.32-3.27(m,2H),2.52-
2.50(m,2H),2.37(t,J=6.4,4H),1.71(t,J=7.2,2H),1.53-1.48 
(m,4H),1.38(d,J=4.4, 2H). 

EIMS Found 331.10 [M+H]+, calculated for C17H22N4O3, 330.16 [M]+ 

4.95 Synthesis of 5-amino-N-(3-(piperidin-1-yl) propyl)-1H-indole-3-

carboxamide (4.95).        

 

 

164 mg of 4.94 was dissolved in 20 mL of ethanol and added to a 

hydrogenation reaction bottle. 20 mg of 10% Pd (palladium on activated carbon) 

was added into the reaction vessel and it was mixed well. The reaction bottle 

was sealed and connected to a hydrogen reservoir. Air from the reaction bottle 

was removed by applying vacuum and it was then flushed with hydrogen. 

Typically, a hydrogen pressure of approximately 40 psi was applied from the 

reservoir, and the bottle was then shaken vigorously to initiate the 

reaction. Progress of the reaction was monitored by TLC and LCMS. The 

shaker was stopped and the bottle was vented after 5 hours at which point TLC 

and LCMS analysis showed the completion of reaction. The product was 

recovered by means of filtration using Celite. Lastly the product is concentrated 

by using a rotary evaporator. A yellow solid was obtained after drying in 

vacuum. Yield=145 mg, 97%. 

Table 4.95: Characterisation data for compound 4.95 

4.95 

Yellow 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
7.96(s,1H), 7.77(s,1H), 7.50(t,J=1.6,1H), 7.22(dd,J=5.6,0.8,1H), 
6.75(dd,J=6.4,2.0,1H), 3.41-3.32(m,2H), 2.95(s,2H), 2.42-
2.38(m,4H), 1.83-1.80 (m,2H), 1.611.55 (m,4H), 1.44(d,J=4.4, 

2H). 

EIMS Found 291.13   [M+H] +, C13H17N5O3, 290.20  [M]+  
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4.96 Synthesis of N-(3-(dimethylamino) propyl)-5-(5-nitro-1H-indole-3-

carboxamido)-1H-indole-3-carboxamide (4.96).        

 

 

Initially, 117 mg of 5-nitro-1H-indole-3-carboxylic acid (0.568 mmol, 1.2 eq.) was 

dissolved in 10 mL of DMF in a round bottom flask fitted with a magnetic stirrer. 

Then 153 µl of DIC (0.994 mmol, 1.75 eq.) and HOBt (153 mg, 1.136 mmol, 2.0 

eq.) were added to the acid (1.0 eq.) and this mixture was stirred at room 

temperature for 30 minutes to ensure the formation of ester from the acid. Then 

142 mg of amine 4.95 (0.473 mmol, 1 eq.) was added and the mixture was 

allowed to stir for 8 hours at which point TLC and LCMS analysis showed the 

completion of reaction. Finally the reaction mixture was applied to a conditioned 

IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch and Release’ 

method (described in the section ‘Method and Materials’ of chapter 3). A 

cream solid was obtained after drying in vacuum. Yield=136 mg, 59%. 

Table 4.96: Characterisation data for compound 4.96 

4.96 

Cream 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
12.35(s,1H), 11.48(s,1H), 9.95(s,1H), 9.18(d,J=3.6,1H), 8.58 
(s,1H), 8.13-8.10(m,1H), 8.08(t,J=4.8,1H), 7.91-7.90(m,1H), 7.78-
7.64 (m,2H), 7.24(d,J=8.4,1H), 3.37(s,2H), 3.30-3.25(m,2H), 2.51-
2.49(m,4H), 1.72-1.65 (m,2H), 1.511.46 (m,4H), 1.37(d,J=4.8, 

2H). 

EIMS Found 301.20 [M+H]+, C17H24N4O, 300.19 [M]+ 

 

4.97 Synthesis of 5-amino-N-(3-((3-(dimethylamino) propyl) carbamoyl)-1H-

indol-5-yl)-1H-indole-3-carboxamide (4.97).        

 

145 mg of 4.96 was dissolved in 20 mL of ethanol and1 mL of ethyl acetate was 

added to a hydrogenation reaction bottle. 20 mg of 10% Pd (palladium on 

activated carbon) was added into the reaction vessel, and mixed well. The 

reaction bottle was sealed and connected to a hydrogen reservoir. Air from the 
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reaction bottle was removed by applying vacuum, and was then by flushed with 

hydrogen. Typically, a hydrogen pressure of approximately 40 psi was applied 

from the reservoir, and the bottle was then shaken vigorously to initiate the 

reaction. Progress of the reaction was monitored by TLC and LCMS. The 

shaker was stopped and the bottle was vented after 5 hours at which point TLC 

and LCMS analysis showed the completion of reaction. The product was 

recovered by means of filtration using Celite. Finally, the product is 

concentrated by using a rotary evaporator. A deep brown solid was obtained 

after drying in vacuum. Yield=125 mg, 92%. 

Table 4.97: Characterisation data for compound 4.97 

4.97 

Deep 
Brown 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
8.59(s,1H), 8.27(d,J=1.6,1H), 8.01(s,1H), 7.97 (s,2H), 7.88(s,1H), 
7.62(d,J=1.6,1H), 7.49(dd,J=7.2,2.0,1H), 7.42 (d,J=8.4,1H), 
7.25(d,J=8.8,1H), 6.78(dd,J=8.4,2.0,1H), 3.67-3.41(m,2H), 3.33-
3.32(m,2H), 2.57-2.53(m,4H), 1.87(t,J=7.6,2H), 1.63-1.58 (m,4H), 
1.44-1.39 (m,2H), 1.30(t, J=4.8,2H). 

 EIMS Found 459.20 [M+H]+, calculated for C26H30N6O2, 458.24 [M]+ 
 

4.98 Synthesis of 5-nitro-N-(3-((3-((3-(piperidin-1-yl) propyl) carbamoyl)-

1H-indol-5-yl) carbamoyl)-1H-indol-5-yl)-1H-indole-3-carboxamide (4.98). 
 

       

Initially, 36 mg of 5-nitro-1H-indole-3-carboxylic acid (0.175 mmol, 1.2 eq.) was 

dissolved in 10 mL of DMF in a round bottom flask fitted with a magnetic stirrer. 

Then 48 µl of DIC (0.307 mmol, 1.75 eq.) and HOBt (48 mg, 0.351 mmol, 2.0 

eq.) were added to the acid (1.0 eq.) and this mixture was allowed to stir at 

room temperature for 30 minutes to ensure the formation of ester from the acid. 

Then 67 mg of amine 4.97(0.146 mmol, 1 eq.) was added and the mixture was 

allowed to stir for 6 hours at which point TLC and LCMS analysis showed the 

completion of reaction. Finally the reaction mixture was separated by using a 

conditioned IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch 

and Release’ method (described in the section ‘Method and Materials’ of 

chapter 3). A yellow solid was obtained after drying in vacuum. Yield=16.5 mg, 

17%. 
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Table 4.98: Characterisation data for compound 4.98 

4.98 

Yellow 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
12.42(s,1H),11.65(d,J=2.4,1H),11.47(d,J=2.0,1H),9.97(s,1H),9.69
(s,1H), 9.19 (d,J=2.4,1H), 8.59(t,J=6.8,2H), 8.51(d,J=2.0,1H), 
8.32(d,J=3.2,2H),8.09(dd,J=8.8,2.4,1H),7.96(d,J=2.8,1H),7.71(dd,
J=8.8,2.0,1H),7.69(s,1H),7.63(dd,J=8.8,2.0,1H),7.43(d,J=8.8,1H), 
7.37(d,J=8.8,1H),3.313.26(m,2H),2.54(d,J=6.8,4H),1.75(t,J=7.2,2
H), 1.55 (t,J=5.2,4H), 1.39(s, 2H). 

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
164.7, 164.2, 162.9, 162.2, 162.0, 145.7, 141.8, 139.9, 139.3, 
134.1,133.0, 132.9, 132.7, 132.6, 132.1, 131.6, 128.9, 126.8, 
126.6, 126.1, 125.9, 125.8, 118.0, 117.3, 112.7, 111.1, 110.7, 
110.5, 107.2, 55.7, 53.4, 39.2, 35.7,30.7, 24.6.  

EIMS Found 647.40 [M+H]+, calculated for C35H34N8O5, 646.26 [M]+ 

HRMS m/z(+EI)Calc.forC35H34N8O5, 646.2652 [M]+,found 647.2709 
[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3200, 2976, 1739, 1595, 1530, 1470, 1434, 1379, 1330, 1210, 
1157, 1078, 945, 867, 790, 796, 733. 

4.99 Synthesis of 1-methyl-N-(3-((3-((3-(piperidin-1-yl) propyl) carbamoyl)-

1H-indol-5-yl) carbamoyl)-1H-indol-5-yl)-1H-indole-3-carboxamide (4.99).        

 

 

Initially, 29 mg of 1-methyl-1H-indole-3-carboxylic acid (0.135 mmol, 1.2 eq.) 

was dissolved in 10 mL of DMF in a round bottom flask fitted with a magnetic 

stirrer. Then 44 µl of DIC (0.2835 mmol, 1.75 eq.) and HOBt (44 mg, 0.324 

mmol, 2.0 eq.) were added to the acid (1.0 eq.) and this mixture was allowed to 

stir at room temperature for 30 minutes to ensure the formation of ester from the 

acid. Then 62 mg of amine 4.97 (0.135 mmol, 1 eq.) was added and the mixture 

was allowed to stir for 6 hours at which point TLC and LCMS analysis showed 

the completion of reaction. Finally the reaction mixture was applied to a 

conditioned IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch 

and Release’ method (described in the section ‘Method and Materials’ of 

chapter 3). A deep brown solid was obtained after drying in vacuum. Yield=15 

mg, 18 %. 
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Table 4.99: Characterisation data for compound 4.99 

4.99 

Deep 
Brown 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
11.61(s,1H),11.46(s,1H),9.72(s,1H),9.67(s,1H),8.56(d,J=1.6,1H), 
8.48(d,J=1.6,1H),8.33-8.29(m,2H), 8.26(d,J=8.0,1H), 7.96(s,2H), 
7.91(d,J-5.6,1H),7.70(dd,J=8.8,2.0,1H), 
7.64(dd,J=8.8,2.0,1H),7.53(d,J=8.0,1H),7.41(d,J=8.8,2H),7.37(d,J
=5.6,1H),7.25(t,J=6.8,1H),7.21(d,J=10.0,1),3.88(s,2H),3.31-
3.26(m,2H),2.42(t,J=6.8,2H), 2.42(s,4H), 1.75-1.68 (m,2H), 1.53-

1.38 (m,4H), 1.38(s, 2H). 
13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
164.8, 164.6, 163.0, 162.6, 162.2, 147.2, 142.2, 136.7, 133.2, 
133.0, 132.7, 132.6, 132.1, 126.9, 126.6, 126.1, 122.0, 121.3, 
120.7, 116.5, 112.5, 110.66, 110.62, 109.8, 56.1, 53.7, 40.0, 39.4, 
39.0, 38.8, 35.7, 33.0, 30.7, 26.4, 25.1, 23.7. 

EIMS Found 616.40 [M+H]+, Calc. for C36H37N7O3, 615.29 [M]+ 

HRMS m/z(+EI)Calc.forC36H37N7O3, 615.2958 [M]+,found 616.3023 

[M+H]+ 

IR (FTIR), Vmax/’cm-1): 
3244, 2971, 1738, 1618, 1534, 1466, 1433, 1368, 1306, 1265, 
1234, 1200, 1128, 1102, 1037, 946, 869, 800, 770, 746, 719, 660. 

 

 

4.100 Synthesis of 5-nitro-N-(3-(pyrrolidin-1-yl) propyl)-1H-indole-3-

carboxamide (4.100).      

   

 

Initially, 150 mg of 5-nitro-1H-indole-3-carboxylic acid (0.728 mmol, 1.2 eq.) was 

dissolved in 10 mL of DMF in a round bottom flask fitted with a magnetic stirrer. 

Then 196 µl of DIC (1.27 mmol, 1.75 eq.) and HOBt (196 mg, 1.4 mmol, 2.0 eq.) 

were added to the acid (1.0 eq.) and this mixture was allowed to stir at room 

temperature for 30 minutes to ensure the formation of ester from the acid. Then 

3-(pyrrolidin-1-yl) propan-1-amine (77 mg, 0.604 mmol, 1 eq.) was added and 

the mixture was allowed to stir for 8 hours at which point TLC and LCMS 

analysis showed the completion of reaction. Finally the reaction mixture was 

applied to a conditioned IsoluteTM SCX-2 cartridge and the product was purified 

by ‘Catch and Release’ method (described in the section ‘Method and 

Materials’ of chapter 3). A cream solid was obtained after drying in vacuum. 

Yield=160mg, 69%. 
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Table 4.100: Characterisation data for compound 4.100 

4.100 

Cream 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
12.24(s,1H),9.09(d,J=3.6,1H), 8.23 (t,J=5.6,2H), 
8.05(dd,J=9.2,2.4,1H), 7.63(d,J=8.8,1H), 3.34-3.29(m,2H), 
2.56(s,2H), 2.45 (s,4H), 1.73 (t,J=7.2,2H), 1.65(s, 4H). 

EIMS Found 317.10 [M+H]+, Calc. for C16H20N4O3, 316.15 [M]+  

 

4.101 Synthesis of 5-amino-N-(3-(pyrrolidin-1-yl) propyl)-1H-indole-3-

carboxamide (4.101).        

 

 

148 mg of 4.100 was dissolved in 20 mL of ethanol and added to a 

hydrogenation reaction bottle. 20 mg of 10% Pd (palladium on activated carbon) 

was added into the reaction vessel and it was mixed well. The reaction bottle 

was sealed and connected to a hydrogen reservoir. Air within the reaction bottle 

was removed under high vacuum and it was then flushed with hydrogen. 

Typically, a hydrogen pressure of approximately 40 psi was applied from the 

reservoir and the bottle was then shaken vigorously to initiate the reaction. 

Progress of the reaction was monitored by TLC and LCMS. The shaker was 

stopped and the bottle was vented on completion of the reaction after 4 hours at 

which point TLC and LCMS analysis showed the completion of reaction. Finally 

the product was recovered by means of filtration using Celite. Finally, the 

product is concentrated by using a rotary evaporator. A yellow solid was 

obtained after drying in vacuum. Yield=127 mg, 95%. 

Table 4.101: Characterisation data for compound 4.101 

4.101 

Yellow 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
11.30(s,1H), 7.87-7.82(m,2H), 7.37 (s,1H), 7.12(d,J=3.6,1H), 
6.60(t,J=6.4,1H), 3.31-3.27(m,2H), 2.87(s,2H),2.73(s,2H), 2.57-
2.52(m,4H), 1.76-1.71 (m,4H).  

EIMS Found 287.00[M+H] +, Calc. for C16H22N4O, 286.17 [M]+ 
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4.102 Synthesis N-(3-(dimethylamino) propyl)-5-(5-nitro-1H-indole-3-

carboxamido)-1H-indole-3-carboxamide (4.102).        

 

 

Initially, 109 mg of 5-nitro-1H-indole-3-carboxylic acid (0.528 mmol, 1.2 eq.) was 

dissolved in 10 mL of DMF in a round bottom flask fitted with a magnetic stirrer. 

Then 142 µl of DIC (0.24 mmol, 1.75 eq.) and HOBt (142 mg, 1.05 mmol, 2.0 

eq.) were added to the acid (1.0 eq.) and this mixture was allowed to stir at 

room temperature for 30 minutes to ensure the formation of ester from the acid. 

Then 126 mg of amine 4.101(0.440 mmol, 1 eq.) was added and the mixture 

was allowed to stir for 9 hours at which point TLC and LCMS analysis showed 

the completion of reaction. Finally the reaction mixture was separated by using 

a conditioned IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch 

and Release’ method (described in the section ‘Method and Materials’ of 

chapter 3). A yellow solid was obtained after drying in vacuum. Yield=165 mg, 

79%.  

Table 4.102: Characterisation data for compound 4.102 

4.102 

Yellow 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
11.56(s,1H), 9.98(s,1H), 9.21(s,1H), 8.62(s,1H), 8.50(s,1H), 
8.17(s,1H), 8.00(d,J=3.6,1H), 7.96 (s,2H), 7.69(d,J=9.2,2H), 
7.43(s,1H), 3.31(m,2H), 2.53-2.51(m,2H), 2.51 (s,4H), 1.71 
(m,2H), 1.69(s, 4H).  

EIMS Found 475.20 [M+H]+, Calc. for C25H26N6O4, 474.20 [M]+ 

 

4.103 Synthesis of 5-amino-N-(3-((3-(dimethylamino) propyl) carbamoyl)-

1H-indol-5-yl)-1H-indole-3-carboxamide (4.103).        

 

 

131 mg of 4.102 was dissolved in 20 mL of ethanol and 1 mL of ethyl acetate 

was added to a hydrogenation reaction bottle. 20 mg of 10% Pd (palladium on 
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activated carbon) was added into the reaction vessel and it was mixed well. The 

reaction bottle was sealed and connected to a hydrogen reservoir. Air from the 

reaction bottle was removed by applying vacuum and it was then flushed with 

hydrogen. Typically, a hydrogen pressure of approximately 40 psi was applied 

from the reservoir and the bottle was then shaken vigorously to initiate the 

reaction. Progress of the reaction was monitored by TLC and LCMS. The 

shaker was stopped and the bottle vented upon completion of the reaction after 

6 hours at which point TLC and LCMS analysis showed the completion of 

reaction. The hydrogenated product was recovered by means of filtration using 

Celite. Finally, this product is concentrated by using a rotary evaporator. A deep 

brown solid was obtained after drying in vacuum. Yield=117mg, 95%. 

Table 4.103: Characterisation data for compound 4.103 

4.103 
Deep 
Brown 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
11.60(s,1H), 11.37(d,J=2.4,1H), 9.55(s,1H), 8.48(d,J=2.0,1H), 
8.21-8.18(m,2H),8.07(d,J=2.8,1H),7.59(dd,J=8.8,2.0,1H), 
7.48(d,J=2,1H),7.36(d,J=8.8,1H),7.16d,J=8.4,1H),6.59(d,J=2.4,1H)
, 3.65(s,2H), 3.16(t,J=7.2,2H), 2.88(s, ,4H), 2.73 (s,4H), 2.51 
(t,J=1.6,2H), 1.01(d, J=6.4,2H). 

EIMS Found 445.30 [M+H]+, Calc. for C25H28N6O2, 444.22 [M]+ 

 

 

4.104 Synthesis of 5-nitro-N-(3-((3-((3-(pyrrolidin-1-yl) propyl) carbamoyl)-

1H-indol-5-yl) carbamoyl)-1H-indol-5-yl)-1H-indole-3-carboxamide (4.104).    

 

     

Initially, 34 mg of 5-nitro-1H-indole-3-carboxylic acid (0.162 mmol, 1.2 eq.) was 

dissolved in 10mL of DMF in a round bottom flask fitted with a magnetic stirrer. 

Then 44 µl of DIC (0.283 mmol, 1.75 eq.) and HOBt (44 mg, 0.324 mmol, 2.0 

eq.) were added to the acid (1.0 eq.) and this mixture was stirred at room 

temperature for at least 30 minutes to ensure the formation of ester from the 

acid. Then 60 mg of amine 4.103 (0.136 mmol, 1 eq.) was added to the mixture 

and this mixture was allowed to stir for 8 hours at which point TLC and LCMS 

analysis showed the completion of reaction. Finally the reaction mixture was 
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separated by using a conditioned IsoluteTM SCX-2 cartridge and the product 

was purified by ‘Catch and Release’ method (described in the section ‘Method 

and Materials’ of chapter 3). A deep grey solid was obtained after drying in 

vacuum. Yield=18 mg, 21%. 

Table 4.104: Characterisation data for compound 4.104 

4.104 

Deep 
Grey 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
11.95(s,1H),11.67(s,1H),11.48(s,1H), 9.98(s,1H), 9.70(s,1H), 
9.20(s,1H), 8.61(s,1H), 8.58(d,J=1.6,1H), 8.50(d,J=3.6,1H), 
8.33(d,J=3.6,1H),8.09(dd,J=9.2,2.4,1H),7.95(s,3H),7.74(dd,J=8.8,
2.0,1H), 7.69-7.66(m,2H), 7.44(d,J=8.4,1H), 7.37(d,J=8.8,1H), 
3.35(d,J=6.8,2H), 2.73(s, ,4H), 2.61 (s,2H), 1.72 (s,4H), 1.16(d, 
J=6,2H). 

13C 
NMR 

(100MHz,(CD3)2SO);δC in ppm  
164.7, 163.0, 162.3, 162.05, 162.0, 161.6, 156.1, 147.1, 141.8, 
136.9, 132.98, 132.94, 132.68, 132.65, 128.5, 127.7, 126.6, 
126.1, 125.9, 118.0, 117.3, 112.7, 111.2, 110.7, 110.6, 72.2, 53.3, 
53.2, 39.2, 38.7, 35.7, 30.7, 28.1, 22.9. 

EIMS Found 633.50 [M+H]+, Calc. for C34H32N8O5, 632.24 [M]+ 

HRM
S 

m/z (+EI) Calc. for C34H32N8O5, 632.2496 [M]+, found 633.2557 

[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3259, 2972, 2317, 1738, 1605, 1537, 1471, 1438, 1340, 1213, 
1065, 865, 792, 771, 744, 682. 

 

4.105 Synthesis of N-(3-morpholinopropyl)-5-nitro-1H-indole-3-

carboxamide (4.105).        

 

Initially, 150 mg of 5-nitro-1H-indole-3-carboxylic acid (0.728 mmol, 1.2 eq.) was 

dissolved in 10 mL of DMF in a round bottom flask placed in a magnetic stirrer. 

Then 196 µl of DIC (1.27 mmol, 1.75 eq.) and HOBt (196 mg, 1.4 mmol, 2.0 eq.) 

were added to the acid (1.0 eq.) and this mixture was allowed to stir at room 

temperature for 30 minutes to ensure the formation of ester from the acid. Then 

87.36 mg of 3-morpholinopropan-1-amine (0.606 mmol, 1 eq.) was added and 

the mixture was allowed to stir for 7 hours at which point TLC and LCMS 

analysis showed the completion of reaction. Finally the reaction mixture was 

applied to a conditioned IsoluteTM SCX-2 cartridge and the product was purified 

by ‘Catch and Release’ method (described in the section ‘Method and 
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Materials’ of chapter 3). A yellow solid was obtained after drying in vacuum. 

Yield=169 mg, 70%. 

Table 4.105: Characterisation data for compound 4.105 

4.105 

Yellow 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
12.26(s,1H), 9.09(d,J=2.0,1H), 8.25(s,1H), 8.20 (t,J=5.6,1H), 
8.05(dd,J=8.8,2.0,1H), 7.63(d,J=8.8,1H), 3.57(t,J=4.4,4H), 3.33-
3.26(m,2H), 2.52-2.50(m,2H), 2.35 (t,J=6.8,4H), 1.73-1.66(m, 2H). 

EIMS Found 333.20 [M+H]+, Calc. for C16H20N4O4, 332.14 [M]+ 

 

 

4.106 Synthesis of 5-amino-N-(3-morpholinopropyl)-1H-indole-3-

carboxamide (4.106).        
 

 

128 mg of 4.105 was dissolved in 20 mL of ethanol and added to a 

hydrogenation reaction bottle. 20 mg of 10% Pd (palladium on activated carbon) 

was added into the reaction vessel and it was mixed well. The reaction bottle 

was sealed and connected to a hydrogen reservoir. Air from the reaction bottle 

was removed by applying vacuum and it was then flushed with hydrogen. 

Typically, a hydrogen pressure of approximately 40 psi was applied from the 

reservoir and the bottle was then shaken vigorously to initiate the reaction. 

Progress of the reaction was monitored by TLC and LCMS. The shaker was 

stopped and vented on completion of the reaction after 7 hours at which point 

TLC and LCMS analysis showed the completion of reaction. The product was 

recovered by means of filtration using Celite. Finally, the product is 

concentrated by using a rotary evaporator. An orange solid was obtained after 

drying in vacuum. Yield=110 mg, 96%. 

Table 4.106: Characterisation data for compound 4.106 

4.106 

Orange 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
11.17(s,1H), 7.81(s,1H), 7.74(s,1H), 7.35 (s,1H), 
7.10(d,J=8.4,1H), 6.55-6.53(m,1H), 3.79-3.70(m,2H), 3.56(s,4H), 
3.293.19(m,2H), 2.50 (s,4H), 2.31 (t,J=6.8,2H), 1.70-1.63(m, 2H). 

EIMS Found 303.20 [M+H]+, Calc. for C16H22N4O2, 302.17 [M]+ 
 



347 
 

4.107 Synthesis of N-(3-(dimethylamino) propyl)-5-(5-nitro-1H-indole-3-

carboxamido)-1H-indole-3-carboxamide (4.107).        

 

 

Initially, 82 mg of 5-nitro-1H-indole-3-carboxylic acid (0.397 mmol, 1.2 eq.) was 

dissolved in 10 mL of DMF in a round bottom flask fitted with a magnetic stirrer. 

Then 107 µl of DIC (0.694 mmol, 1.75 eq.) and HOBt (107 mg, 0.794 mmol, 2.0 

eq.) were added to the acid (1.0 eq.) and this mixture was allowed to stir at 

room temperature for 30 minutes to ensure the formation of ester from the acid. 

Then 100 mg of amine 4.106(0.331 mmol, 1 eq.) was added and the mixture 

was allowed to stir for 7 hours at which point TLC and LCMS analysis showed 

the completion of reaction. Finally the reaction mixture was applied to a 

conditioned IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch 

and Release’ method (described in the section ‘Method and Materials’ of 

chapter 3). A yellow solid was obtained after drying in vacuum. Yield=94 mg, 

58%. 

Table 4.107: Characterisation data for compound 4.107 

4.107 

Yellow 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
12.45(s,1H), 11.52(s,1H), 9.98(s,1H), 9.20(s,1H), 8.61(s,1H), 
8.49(s,1H), 8.11(dd,J=9.2,2.4,1H), 8.01(s,1H), 7.96 (s,1H), 7.70-
7.68(m,2H), 7.37(d,J=1.6,1H), 3.57(s,4H), 3.32(d,J=6.0,2H), 3.31 
(d,J=6.0,2H), 2.38 (s,4H), 1.73(t, J=6.8,2H). 

EIMS Found 491.20 [M+H]+, Calc. for C25H26N6O5, 490.19 [M]+ 

 

 

4.108 Synthesis of 5-amino-N-(3-((3-(dimethylamino) propyl) carbamoyl)-

1H-indol-5-yl)-1H-indole-3-carboxamide (4.108).        
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92 mg of 4.107 was dissolved in 20 mL of ethanol and 1 mL of ethyl acetate 

was added to a hydrogenation reaction bottle. 20 mg of 10% Pd (palladium on 

activated carbon) was added into the reaction vessel and mixed it well. The 

reaction bottle was sealed and connected to a hydrogen reservoir. Air from the 

reaction bottle was removed by applying vacuum and it was then flushed with 

hydrogen. Typically, a hydrogen pressure of approximately 40 psi was applied 

from the reservoir, and the bottle was then shaken vigorously to initiate the 

reaction. Progress of the reaction was monitored by TLC and LCMS. The 

shaker was stopped after 4.5 hours at which point TLC and LCMS analysis 

showed the completion of reaction.The bottle was vented and the product was 

recovered by means of filtration using Celite. Finally, the product is 

concentrated by using a rotary evaporator. A deep brown solid was obtained 

after drying in vacuum. Yield=81 mg, 94%. 

Table 4.108: Characterisation data for compound 4.108 

4.108 

Deep 
Brown 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm, 
11.47(s,1H), 11.27(s,1H), 8.44(s,1H), 8.13(d,J=2.8,1H), 8.00-
7.95(m,2H),7.88(t,J=5.2,1H),7.60(dd,J=8.4,2.0,1H),7.46(d,J=2,1H
), 7.33(d,J=8.4,1H), 7.12(d,J=8.4,1H), 6.55(dd,J=8.8,2.0,1H), 
3.73(s,2H), 3.27(d,J=5.6,2H), 2.69(s,4H), 2.32(s ,2H), 1.69-1.64 

(m,4H), 1.15-1.11 (m,2H).  

EIMS Found 461.10 [M+H]+, Calc. for C25H28N6O3, 460.22 [M]+  

 

 

4.109 Synthesis N-(3-morpholinopropyl)-5-(5-(5-nitro-1H-indole-3-

carboxamido)-1H-indole-3-carboxamido)-1H-indole-3-carboxamide (4.109).  

 

Initially, 31 mg of 5-nitro-1H-indole-3-carboxylic acid (0.148 mmol, 1.2 eq.) was 

dissolved in 10mL of DMF in a round bottom flask fitted with a magnetic stirrer. 

Then 40 µl of DIC (0.259 mmol, 1.75 eq.) and HOBt (40 mg, 0.297 mmol, 2.0 

eq.) were added to the acid (1.0 eq.) and this mixture was allowed to stir at 

room temperature for 30 minutes to ensure the formation of ester from the acid. 

Then 57 mg of amine 4.108(0.123 mmol, 1 eq.) was added to the same mixture 
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and it was stirred for 6 hours at which point TLC and LCMS analysis showed 

the completion of reaction. Finally the reaction mixture was separated by using 

a conditioned IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch 

and Release’ method (described in the section ‘Method and Materials’ of 

chapter 3). An orange coloured solid was obtained after drying in vacuum. 

Yield=14 mg, 18%. 

 

Figure 4.10: 1H and 13C NMR spectroscopic data of compound 4.109 as a 

representative of library-4B compounds 
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Table 4.109: Characterisation data for compound 4.109 

4.109 

Orange 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
12.48(s,1H), 11.66(d,J=1.6,1H), 11.46(d,J=1.6,1H), 9.97(s,1H), 
9.69(s,1H), 9.20(d,J=2.0,1H), 8.61(s,1H), 8.57(d,J=1.6,1H), 
8.49(d,J=1.6,1H), 8.33(d,J=3.6,1H), 8.11(dd,J=8.8,2.4,1H), 
7.96(s,1H), 7.88(d,J=6.0,1H), 7.76(dd,J=8.8,2.0,1H), 7.69-
7.65(m,2H), 7.49(d,J=8.4,1H), 7.35(d,J=8.4,1H), 3.29(t,J=6.0,2H), 
2.50(t, J=1.6,4H), 2.36 (t,J=6.8,4H), 1.70 (t,J=7.2,2H), 1.01(d, 
J=6.4,2H).  

13C 
NMR 

100MHz,(CD3)2SO); δC in ppm  
164.6, 162.9, 162.2, 162.0, 141.8, 139.3, 133.0, 132.9, 132.7, 
132.6, 131.6, 127.6, 126.6, 126.1, 125.9, 118.0, 117.3, 112.8, 
112.7, 112.6, 112.5, 111.1, 110.7, 110.6, 66.1, 56.1, 53.3, 40.6, 
39.4, 36.8, 35.7, 30.7, 26.4, 23.3.  

EIMS Found 649.20 [M+H]+, Calculated for C34H32N8O6, 648.2445 [M]+ 

HRM
S 

m/z (+EI) Calc. for C34H32N8O6, 648.2445 [M]+, found 649.2513 
[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3338, 2966, 1615, 1534, 1465, 1330, 1248, 1211, 1169, 1111, 
1079, 1034, 863, 769, 747, 623, 585, 568, 557. 

 

 

4.110 Synthesis of 5-amino-N-(3-((3-((3-(dimethylamino) propyl) 

carbamoyl)-1H-indol-5-yl) carbamoyl)-1H-indol-5-yl)-1H-indole-3-

carboxamide (4.110).        

 

25 mg of 4.93 was dissolved in 20 mL of ethanol and 1 mL of ethyl acetate was 

added to a hydrogenation reaction bottle. 20 mg of 10% Pd (palladium on 

activated carbon) 20 was added into the reaction vessel. It was mixed well. The 

reaction bottle was sealed and connected to a hydrogen reservoir. Air from the 

reaction bottle was removed by applying vacuum, and was then by flushed with 

hydrogen. Typically, a hydrogen pressure of approximately 40 psi was applied 

from the reservoir. The bottle was then shaken vigorously to initiate the 

reaction. Progress of the reaction was monitored by TLC and LCMS. The 

shaker was stopped after 5.5 hours at which point TLC and LCMS analysis 

showed the completion of reaction. The bottle was then vented and the 

hydrogenated product was recovered by means of filtration using Celite. Finally, 
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the product is concentrated by using a rotary evaporator. A deep brown solid 

was obtained after drying in vacuum. Yield=14 mg, 61%. 

Table 4.110: Characterisation data for compound 4.110 

4.110 

Deep 
Brown 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
11.60(s,1H), 11.46(s,1H), 11.31(d,J=9.2,1H), 9.63(d,J=3.6,1H), 
9.48(d,J=8.0,1H), 8.54(d,J=3.6,1H), 8.45(dd,J=6.41.6,,1H), 
8.27(s,1H), 8.13(dd,J=7.2,2.4,1H), 7.92(s,1H), 7.87(t,J=5.2,1H), 
7.67-7.63(m,2H), 7.45 (dd,J=2,1H), 7.35(t,J=8.8,2H), 7.15-

7.09(m,1H), 6.57-6.50(m,1H), 3.63-3.52(m, ,2H), 2.25 
(t,J=7.2,2H), 2.12 (s,4H), 1.64(t, J=6.8,2H). 

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
164.4, 162.9, 159.7, 156.8, 156.3, 155.9, 154.7, 145.7, 144.6, 
133.4, 132.9, 130.7, 129.6, 126.5, 126.1, 124.5, 119.6, 118.6, 
115.2, 111.5, 111.1, 110.6, 107.8, 94.6, 66.2, 56.9, 45.1, 39.3, 
39.1, 38.9, 38.7, 23.2,  

EIMS Found 577.20 [M+H]+, Calculated for C32H32N8O3, 576.2597 [M]+ 

HRM
S 

m/z (+EI) Calc. for C32H32N8O3, 576.2597 [M]+, found 

577.2668[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3240, 2926, 1612, 1538, 1470, 1438, 1364, 1312, 1280, 1213, 
1178, 1065, 1038, 991, 889, 792, 762, 745, 724, 677. 

 

 

4.111 Synthesis of N-(3-(4-methylpiperazin-1-yl) propyl)-5-nitro-1H-indole-

3-carboxamide (4.111).        

 

 

Initially, 250 mg of 5-nitro-1H-indole-3-carboxylic acid (1.207 mmol, 1.2 eq.) was 

dissolved in 10 mL of DMF in a round bottom flask fitted with a magnetic stirrer. 

Then DIC (324 µl, 2.10 mmol, 1.75 eq.) and HOBt (324 mg, 2.40 mmol, 2.0 eq.) 

were added to the acid (1.0 eq.) and this mixture was allowed to stir at room 

temperature for at least 20 minutes to ensure the formation of ester from the 

acid. Then 130 mg of 3-(4-methylpiperazin-1-yl) propan-1-amine (0.833 mmol, 1 

eq.) was added and the mixture was allowed to stir for 8 hours at which point 

TLC and LCMS analysis showed the completion of reaction. Lastly the reaction 

mixture was separated by a conditioned IsoluteTM SCX-2 cartridge and the 
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product was purified by ‘Catch and Release’ method (described in the section 

‘Method and Materials’ of chapter 3). A yellow solid was obtained after drying 

in vacuum. Yield=201 mg, 38%. 

Table 4.111: Characterisation data for compound 4.111 

4.111 
Yellow 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
12.26(s,1H), 9.07(d,J=2.4,1H), 8.23(s,1H), 8.17 (t,J=5.2,1H), 
8.06-8.03(m,1H), 7.62(d,J=8.8,1H), 3.37(s,1H), 3.31-3.26(m,3H), 
2.55 (s,2H), 2.33(t,J=6.8,8H), 1.71-1.64(m ,2H). 

EIMS Found 346.10 [M+H]+, Calculated for C17H23N5O3, 345.18 [M]+ 

 

 

4.112 Synthesis of 5-amino-N-(3-(4-methylpiperazin-1-yl) propyl)-1H-

indole-3-carboxamide (4.112).        

 

 

 

201 mg of 4.111 was dissolved in 20 mL of ethanol and added to a 

hydrogenation reaction bottle. 20 mg of 10% Pd (palladium on activated carbon) 

was added into the reaction vessel and it was mixed well. The sealed reaction 

bottle was connected to a hydrogen reservoir. Air within the reaction bottle was 

removed under vacuum and it was flushed with hydrogen. Approximately 40 psi 

of hydrogen pressure was applied from the reservoir and the bottle was then 

shaken vigorously to initiate the reaction. Progress of the reaction was 

monitored by TLC and LCMS and the shaker was stopped on completion of the 

reaction after 4 hours at which point TLC and LCMS analysis showed the 

completion of reaction. The bottle was vented and the product was recovered 

by using filtration using Celite. Finally the product is concentrated by using a 

rotary evaporator. An orange solid was obtained after drying in vacuum. 

Yield=176 mg, 95%. 
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Table 4.112: Characterisation data for compound 4.112 

4.112 

Orange 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
11.22(s,1H), 7.58(s,1H), 7.38 (s,1H), 7.11 (d,J=8.4,1H), 
6.54(d,J=8.8,1H), 3.94(s,2H), 3.26(d,J=6.0,2H), 2.50(s,1H), 2.13 
(s,8H), 1.87(s,3H), 1.66(t,J=6.8,2H).  

EIMS Found 316.10 [M+H]+, Calculated for C17H25N5O, 315.20 [M]+ 

 

 

4.113 Synthesis of N-(3-(dimethylamino) propyl)-5-(5-nitro-1H-indole-3-

carboxamido)-1H-indole-3-carboxamide (4.113).        

 

 

Initially, 144.9 mg of 5-nitro-1H-indole-3-carboxylic acid (0.70 mmol, 1.4 eq.) 

was dissolved in 15 mL of DMF in a round bottom flask fitted with a magnetic 

stirrer. Then 188.6 µl of DIC (1.22 mmol, 1.75 eq.) and HOBt (189 mg, 1.40 

mmol, 2.0 eq.) were added to the acid (1.0 eq.). This mixture was allowed to stir 

at room temperature for 30 minutes to ensure the ester formation. Then 160 mg 

of amine 4.112 (0.50 mmol, 1 eq.) was added to the mixture and the mixture 

was allowed to stir for 6 hours at which point TLC and LCMS analysis showed 

the completion of reaction. Finally the reaction mixture was applied to a 

conditioned IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch 

and Release’ method (described in the section ‘Method and Materials’ of 

chapter 3). A deep brown solid was obtained after drying in vacuum. Yield=135 

mg, 58%. 

Table 4.113: Characterisation data for compound 4.113 

4.113 
Deep 
Brown 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
11.52(s,1H),9.97(s,1H),9.19(d,J=6.0,1H), 8.59(s,1H), 
8.46(d,J=2.0,1H), 8.09(dd,J=9.2,2.4,1H), 7.98(s,1H), 7.94(s,1H), 
9.92 (s,1H), 7.68-7.65(m,2H), 7.40(d,J=8.8,1H), 3.28(t,J=6.0,2H), 
2.50(s,1H), 2.35-2.29 (m,8H), 2.11(s,3H), 1.68(t,J=7.2,2H). 

EIMS Found 504.20 [M+H] +, Calculated for C26H29N7O4, 503.22 [M]+ 
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4.114 Synthesis of 5-amino-N-(3-((3-(dimethylamino) propyl) carbamoyl)-

1H-indol-5-yl)-1H-indole-3-carboxamide (4.114).        

 

 

135 mg of 4.113 was dissolved in 20 mL of ethanol and 1 mL of ethyl acetate 

was added to a hydrogenation reaction bottle. 20 mg of 10% Pd (palladium on 

activated carbon) was added into the reaction vessel. This mixture was mixed 

well. The reaction bottle was sealed and connected to a hydrogen reservoir. Air 

from the reaction bottle was removed by applying vacuum and flushed with 

hydrogen. A hydrogen pressure of approximately 40 psi was applied from the 

reservoir and the bottle was then shaken vigorously to initiate the reaction. 

Progress of the reaction was monitored by TLC and LCMS analysis. The shaker 

was stopped after 6 hours at which point TLC and LCMS analysis showed the 

completion of reaction.The product was recovered by means of filtration using 

Celite. Finally, the product is concentrated by using a rotary evaporator. A deep 

brown solid was obtained after drying. Yield=107 mg, 84%. 

Table 4.114: Characterisation data for compound 4.114 

4.114 

Deep 
Brown 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
11.59(s,1H), 11.37(s,1H), 9.54(s,1H), 8.47(s,1H), 8.16(s,1H), 
7.98(s,1H),7.93(t,J=5.6,1H),7.62(dd,J=8.8,1.6,1H),7.50(d,J=1.6,1H)
, 7.37(d,J=8.8,1H), 7.16(d,J=8.8,1H), 6.60(dd,J=8.4,2.0,1H), 
3.80(s,1H), 3.70-3.63(m,2H), 3.32-3.28(m,2H), 2.34 (t,J=6.8,8H), 

2.12(s,3H), 1.72-1.65(m,2H). 

EIMS Found 474.20 [M+H] +, Calculated for C26H31N7O2, 473.25 [M]+ 

4.115 Synthesis of N-(3-(4-methylpiperazin-1-yl)propyl)-5-(5-(5-nitro-1H-

indole-3-carboxamido)-1H-indole-3-carboxamido)-1H-indole-3-

carboxamide (4.115).        

 

Initially, 45.5 mg of 5-nitro-1H-indole-3-carboxylic acid (0.221 mmol, 1.2 eq.) 

was dissolved in 10 mL of DMF in a round bottom flask placed at a magnetic 

stirrer. Then DIC (60 µl, 0.386 mmol, 1.75 eq.) and HOBt (60 mg, 0.442 mmol, 
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2.0 eq.) were added to the acid (1.0 eq.) and this mixture was allowed to stir at 

room temperature for 30 minutes to ensure the formation of ester from the acid. 

Then amine 4.114 (75 mg, 0.158m mol, 1 eq.) was added to the mixture and it 

was allowed to stir for 4 hours at which point TLC and LCMS analysis showed 

the completion of reaction. Lastly the reaction mixture was separated by using 

the conditioned IsoluteTM SCX-2 cartridge and the product was purified by 

‘Catch and Release’ method (described in the section ‘Method and Materials’ 

of chapter 3). A yellow solid was obtained after drying in vacuum. Yield=12mg, 

12%.  

Table 4.115: Characterisation data for compound 4.115 

4.115 

Yellow 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
12.36(s,1H),11.63(s,1H), 11.43(s,1H), 9.95(s,1H), 9.67(s,1H), 
9.18(d,J=2.0,1H), 8.57(d,J=9.8,2H), 8.47(s,1H), 8.32(s,1H), 
8.09(dd,J=8.8,2.0,1H), 7.94(s,1H), 
7.85(t,J=5.2,1H),7.75(d,J=8.8,1H),7.68-7.64(m,2H), 
7.42(d,J=8.8,1H), 7.35(d,J=8.8,1H), 3.35(s,1H), 3.28(t,J=6.4,2H), 
2.33 (t,J=6.4,8H), 2.11(s,3H), 1.69-1.64(m,2H). 

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm 

 164.3, 163.0, 162.3, 162.0, 141.8, 139.2, 132.9, 132.6, 128.5, 
127.5, 126.6, 126.1, 125.9, 118.0, 117.4, 116.7, 116.6, 113.3, 
112.8, 112.7, 112.6, 112.4, 111.1, 110.7, 105.1, 55.7, 54.7, 52.6, 
45.6, 39.3, 38.7, 35.7, 30.7, 26.7, 23.2.  

EIMS Found 661.20 [M+H]+, Calculated for C35H35N9O5, 661.27 [M]+ 

HRM
S 

m/z (+EI) Calc. for C35H35N9O5, 661.2761 [M]+, found 

662.2820[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3160, 1621, 1583, 1538, 1470, 1434, 1361, 1331, 1310, 1269, 
1241, 1213, 1180, 1147, 1120, 1076, 1047, 1022, 997, 943, 899, 
870, 789, 767, 745, 692, 621. 

4.116 Synthesis of N-(3-(dimethylamino) propyl)-5-(5-(5-methoxy-1H-

indole-3-carboxamido)-1H-indole-3-carboxamido)-1H-indole-3-

carboxamide (4.116).        

 

 

Initially, 40 mg of 5-methoxy-1H-indole-3-carboxylic acid (0.207 mmol, 1.2 eq.) 

was dissolved in 10 mL of DMF in a round bottom flask fitted with a magnetic 

stirrer. Then 56 µl of DIC (0.362 mmol, 1.75 eq.) and HOBt (56 mg, 0.415 mmol, 
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2.0 eq.) were added to the acid (1.0 eq.) and this mixture was stirred at room 

temperature for 30 minutes to ensure the ester formation. Then 62 mg of amine 

4.69 (0.148 mmol, 1 eq.) was added and the mixture was allowed to stir for 5 

hours at which point TLC and LCMS analysis showed the completion of 

reaction. Finally the reaction mixture was applied to a conditioned IsoluteTM 

SCX-2 cartridge and the product was purified by ‘Catch and Release’ method 

(described in the section ‘Method and Materials’ of chapter 3). A yellow solid 

was obtained after drying under vacuum. Yield=11mg, 13%. 

Table 4.116: Characterisation data for compound 4.116 

4.116 

Yellow 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
11.56(dd,J=11.6,2.8,1H), 11.42(d,J=2.4,1H), 9.65(d,J=4.0,2H), 
8.58(d,J=2.0,1H),8.46(d,J=2.0,1H),8.31(t,J=3.2,2H),7.95(d,J=2.8,
1H), 7.89(t,J=5.6,1H), 7.79(d,J=2.4,1H), 7.70 (m,2H), 7.51(s,1H), 
7.41-7.34(m,3H), 6.81(dd,J=8.8,2.4,1H), 3.27(t,J=6.8,2H), 2.51-
2.49(m,3H), 2.30(t,J=6.8,2H), 2.16(s,6H), 1.69-1.64(m,2H). 

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
264.5, 163.1, 163.0, 154.3, 133.2, 133.0, 132.6, 131.0, 128.4, 
127.6, 127.2, 126.6, 126.2, 126.1, 116.6, 112.5, 112.2, 111.1, 
110.8, 110.6, 110.4, 102.5, 57.0, 55.1, 45.1, 39.8, 39.6, 39.4, 
39.2, 39.0, 38.8, 36.8, 27.5. 

EIMS Found 592.20 [M+H]+, Calculated for C33H33N7O4, 591.25 [M+H]+. 

HRM
S 

m/z (+EI) Calc. for C33H33N7O4, 591.2594 [M]+, found 

592.2662[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3199, 2932, 1640, 1590, 1538, 1485, 1315, 1288, 1223, 1135, 
1023, 1000, 956, 883, 801, 779, 759, 734. 

4.117 Synthesis of 5-chloro-N-(3-((3-((3-(dimethylamino) propyl) 

carbamoyl)-1H-indol-5-yl) carbamoyl)-1H-indol-5-yl)-1H-indole-3-

carboxamide (4.117).        

 

Initially, 58 mg of 5-chloro-1H-indole-3-carboxylic acid (0.298 mmol, 1.2 eq.) 

was dissolved in 10 mL of DMF in a round bottom flask fitted with a magnetic 

stirrer. Then 81 µl of DIC (0.521 mmol, 1.75 eq.) and HOBt (81 mg, 0.597 mmol, 

2.0 eq.) were added to the acid (1.0 eq.) and this mixture was allowed to stir at 

room temperature for 30 minutes to ensure the esterification. Then 104 mg of 

amine 4.69(0.248 mmol, 1 eq.) was added to the mixture and the mixture was 

allowed to stir for 4 hours at which point TLC and LCMS analysis showed the 
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completion of reaction. At last the reaction mixture was applied to a conditioned 

IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch and Release’ 

method (described in the section ‘Method and Materials’ of chapter 3). An 

orange solid was obtained after drying in vacuum. Yield=22mg, 15%. 

Table 4.117: Characterisation data for compound 4.117 

4.117 

Orange 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
 11.94(s,1H), 11.63(s,1H), 11.45(s,1H), 9.77(s,1H), 9.66(s,1H), 
8.54(d,J=2.0,1H), 8.47(d,J=2.0,1H), 8.43(s,1H), 8.31(s,1H), 
8.25(d,J=2.0,1H), 7.94(s,1H), 
7.87(t,J=5.6,1H),7.71(dd,J=8.8,2.0,1H), 
7.65(dd,J=8.8,2.0,1H),7.49(d,J=8.8,1H), 7.41(d,J=8.8,1H), 
7.36(d,J=8.8,1H), 7.19(dd,J=8.4,2.0,1H), 3.30-3.25(m,2H), 
2.27(t,J=7.2,2H), 2.14(s,6H), 1.70-1.63(m,2H). 

13C 
NMR 

(100MHz,(CD3)2SO);δC in ppm  
164.6, 162.7, 162.1, 155.7, 147.5, 134.8, 133.1, 132.8, 132.7, 
129.6, 127.7, 127.4, 126.5, 125.2, 123.2, 121.9, 120.4, 119.7, 
116.7, 111.1, 110.8, 110.4, 106.0, 45.2, 39.8, 39.6, 39.4, 39.2, 
38.8, 35.7, 30.7, 27.5.  

EIMS Found 596.10 [M+H]+, Calculated for C32H30ClN7O3, 595.20  [M]+ 

HRM
S 

m/z (+EI) Calc. for C32H30ClN7O3, 595.2092 [M]+, found 596.2165 
[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3284, 2972, 2302, 1737, 1639, 1594, 1570, 1527, 1469, 1333, 
1233, 1208, 1161, 1088, 1046, 866, 794, 761, 731. 

 

4.118 Synthesis of N-(3-((3-((3-(dimethylamino) propyl) carbamoyl)-1H-

indol-5-yl) carbamoyl)-1H-indol-5-yl)-5-nitro-1H-indazole-3-carboxamide 

(4.118).    

 

 

Initially, 118 mg of 5-nitro-1H-indazole-3-carboxylic acid (0.568 mmol, 1.2 eq.) 

was dissolved in 10 mL of DMF in a round bottom flask fitted with a magnetic 

stirrer. Then 153 µl of DIC (0.994 mmol, 1.75 eq.) and HOBt (153 mg, 1.136 

mmol, 2.0 eq.) were added to the acid (1.0 eq.). This mixture was allowed to stir 

at room temperature for 30 minutes to ensure the formation of ester from the 

acid. Then 170 mg of amine 4.69(0.406 mmol, 1 eq.) was added to the mixture 

and it was then allowed to stir for 6 hours at which point TLC and LCMS 

analysis showed the completion of reaction. Finally the reaction mixture was 
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applied to a conditioned IsoluteTM SCX-2 cartridge and the product was purified 

by ‘Catch and Release’ method (described in the section ‘Method and 

Materials’ of chapter 3). An orange solid was obtained after drying in vacuum. 

Yield=76mg, 31%. 

Table 4.118: Characterisation data for compound 4.118 

4.118 

Orange 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm  
11.69(d,J=2.0,1H), 11.45(d,J=2.0,1H), 10.45(s,1H), 9.7(s,1H), 
9.16(d,J=3.6,1H), 8.81(d,J=1.6,1H), 8.48(d,J=1.6,1H), 
8.35(d,J=2.8,1H), 8.27(dd,J=9.2,2.4,1H), 7.97(d,J=2.8,2H), 
7.92(t,J=5.6,1H), 7.86(d,J=9.2,1H), 7.70-7.67(m,2H), 
7.46(d,J=8.4,1H), 7.39(d,J=8.8,1H), 3.32-3.27 (m,2H), 
2.36(t,J=7.2, 2H), 2.22(s,6H), 1.71-1.66(m,2H). 

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
164.6, 162.9, 162.2, 159.7, 143.4, 142.7, 141.2, 133.2, 132.9, 
132.7, 131.7, 128.7, 127.7, 126.5, 126.1, 121.2, 121.0, 119.1, 
117.0, 116.7, 113.7, 112.6, 112.1, 111.5, 111.1, 110.9, 110.6, 
56.8, 44.9, 39.0, 36.8.  

EIMS Found 608.20 [M+H] +, Calculated for C31H29N9O5, 607.22 [M]++. 

HRMS m/z (+EI) Calc. for C31H29N9O5, 607.2292 [M]+, found 608.2354 
[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3376, 3181, 2961, 2289, 1737, 1666, 1639, 1596, 1570, 1526, 
1473, 1435, 1365, 1328, 1306, 1207, 1160, 1138, 1087, 938, 
889, 855, 791, 763, 729. 

 4.119 Synthesis of N-(3-(dimethylamino) propyl)-5-(5-(5-nitro-1H-indole-3-

carboxamido)-1H-indazole-3-carboxamido)-1H-indazole-3-carboxamide 

(4.119).     

 

Initially, 36 mg of 5-nitro-1H-indole-3-carboxylic acid (0.171 mmol, 1.2 eq.) was 

dissolved in 10 mL of DMF in a round bottom flask fitted with a magnetic stirrer. 

Then 46 µl of DIC (0.299 mmol, 1.75 eq.) and HOBt (46 mg, 0.342 mmol, 2.0 

eq.) were added to the acid (1.0 eq.) and this mixture was stirred at room 

temperature for at least 30 minutes to ensure the ester formation. Then amine 

4.84(60 mg, 0.142 mmol, 1 eq.) was added and the mixture was allowed to stir 

for 4 hours at which point TLC and LCMS analysis showed the completion of 

reaction. Finally the reaction mixture was separated by using conditioned 

IsoluteTM SCX-2 cartridge and the final product was purified by ‘Catch and 
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Release’ method (described in the section ‘Method and Materials’ of chapter 

3). An orange solid was obtained after drying in vacuum. Yield=16 mg, 19%. 

Table 4.119: Characterisation data for compound 4.119 

4.119 

Orange 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
13.73(s,1H),13.50(s,1H),12.43(s,1H),10.40(s,1H),10.13(s,1H),9.1
8(d,J=2.4,1H),8.83(d,J=2.0,1H),8.69(d,J=1.6,1H),8.61(s,1H),8.42(
t,J=5.2,1H),8.10(dd,J=7.2,2.0,1H),7.95(d,J=2.0,1H),7.94(S,1H),7.
85(dd,J=8..8,2.0,1H),7.707.67(m,2H),7.58(d,J=8.8,1H),2.72(s,2H)
,2.37(t,J=7.2,2H),2.21(s,1H),1.72(t,J=7.2,2h). 

13C 
NMR 

(100MHz,(CD3)2SO);δC in ppm   
162.28,162.23,160.9,141.9,139.3,138.2,138.2,138.1,134.2,133.3,
128.4,125.9,122.0,121.8,121.6,121.5,119.3,117.9,117.5,117.2,11
2.4,112.0,110.4,104.0,56.8,44.9,,36.8,35.7,30.7,27.0. 

EIMS Found 609.10 [M+H]+, Calculated for C30H28N10O5, 608.2244 [M]+ 

HRM
S 

m/z (+EI) Calc. for C30H28N10O5,
 608.2244 [M]+, found 

609.2318[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3266, 2940, 2219, 1705, 1630, 1533, 1475, 1439, 1360, 1331, 
1308, 1220, 1159, 1098, 1039, 945, 886, 807, 770, 741, 714, 619. 

4.120 Synthesis of N-(3-(dimethylamino) propyl)-5-(1H-indole-3-

carboxamido)-1H-indole-3-carboxamide (4.120).        

 

 

 

46 mg of 1H-indole-3-carboxylic acid (0.286 mmol, 1.2 eq.) was dissolved in 10 

mL of DMF in a round bottom flask fitted with a magnetic stirrer. Then 77 µl of 

DIC (0.498 mmol, 1.75 eq.) and HOBt (77 mg, 0.572 mmol, 2.0 eq.) were added 

to the acid (1.0 eq.) and this mixture was allowed to stir at room temperature for 

30 minutes to ensure the formation of ester from the acid. Then 62 mg of amine 

4.63 (0.238 mmol, 1 eq.) was added to the mixture and the mixture was allowed 

to stir for 6 hours at which point TLC and LCMS analysis showed the 

completion of reaction. Finally the reaction mixture was applied to a conditioned 

IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch and Release’ 

method (described in the section ‘Method and Materials’ of chapter 3). An 

orange solid was obtained after drying in vacuum. Yield=20 mg, 21%. 
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Table 4.120: Characterisation data for compound 4.120 

4.120 

Oran
ge 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
11.64(s,1H), 11.43(s,1H), 9.68(s,1H), 8.44(d,J=2.0,1H), 8.33(s,1H), 
8.25(dd,J=6.8,1.2,1H), 7.96(s,1H), 7.89(d,J=5.6,1H), 7.64 
(d,J=2.0,1H), 7.47(d,J=6.4,1H), 7.37(d,J=8.4,1H), 7.18-7.14(m,2H), 
3.31-3.26(m,2H), 2.28(t,J=6.8,2H), 2.14(s,6H), 1.67(t,J=7.2,2H).  

13C 
NMR 

(100MHz,(CD3)2SO);δC in ppm   
164.5, 163.0, 136.1, 132.8, 132.7, 128.1, 127.6, 126.5, 126.1, 121.9, 
121.1, 120.4, 116.8, 112.7, 111.8, 111.1, 110.8, 110.7, 57.0, 45.2, 
38.8, 36.9, 27.5. 

EIMS Found 404.10[M+H] +, Calculated for C23H25N5O2, 403.20 [M]+ 

HRM
S 

m/z (+EI) Calc. for C23H25N5O2, 403.2008 [M]+, found 404.2072 
[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
2970, 2251, 2125, 1740, 1631, 1537, 1474, 1439, 1365, 1319, 1213, 
1050, 1023, 1004, 819, 755, 619. 

 

 

4.121 Synthesis of N-(3-(dimethylamino) propyl)-5-(1H-indazole-3-

carboxamido)-1H-indazole-3-carboxamide (4.121). 

 

 

Initially, 49 mg of 1H-indazole-3-carboxylic acid (0.2988 mmol, 1.2 eq.) was 

dissolved in 10 mL of DMF in a round bottom flask placed in a magnetic stirrer. 

Then 81 µl of DIC (0.5229 mmol, 1.75 eq.) and HOBt (81 mg, 0.5976 mmol, 2.0 

eq.) were added to the acid (1.0 eq.) and this mixture was allowed to stir at 

room temperature for at least 25 minutes for the esterification of the acid. Then 

amine 4.82 (65 mg, 0.249 mmol, 1 eq.) was added and the mixture was allowed 

to stir for 7 hours at which point TLC and LCMS analysis showed the 

completion of reaction. Finally the reaction mixture was separated by 

conditioned IsoluteTM SCX-2 cartridge and the product was purified by ‘Catch 

and Release’ method (described in the section ‘Method and Materials’ of 

chapter 3). An orange solid was collected after drying in vacuum. Yield=55mg, 

54%. 
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Table 4.121: Characterisation data for compound 4.121 

4.121 

Orange 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
13.61(s,2H),10.43(s,1H),8.84(s,1H),8.42(t,J=5.6,1H),8.27(d,J=8.0,
1H),7.82(d,J=8.8,1H),7.67(d,J=8.4,1H),7.58(d,J=9.2,1H),7.45(t,J=
7.2,1H),7.30(t,J=8.0,1H),3.37-
3.32(m,2H),2.27(t,J=7.8,2H),2.13(s,6H),1.73(s,2H). 

13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm  
162.2,160.9,141.2,138.4,138.3,138.2,133.2,126.6,122.2,121.9,12
1.7,121.5,112.1,110.8,110.4,57.1,45.1,40.0,38.8,37.0,27.2. 

EIMS Found 405.10 [M+H] +, Calculated for C21H23N7O2, 405.19 [M]+ 

HRM
S 

m/z (+EI) Calc. for C21H23N7O2, 405.1913 [M]+, found 406.1980 

[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3263, 2972, 2302, 1739, 1635, 1606, 1532, 1470, 1437, 1368, 
1345, 1313, 1211, 1150, 1118, 1073, 1039, 963, 868, 810, 798, 
770, 749, 734. 

 

 

4.122 Synthesis of N-methyl-N-methylene-3-(5-(5-nitro-1H-

benzo[d]imidazole-2-carboxamido)-1H-indazole-3-carboxamido) propan-1-

aminium (4.122). 

 

 

Initially, 50 mg of 5-nitro-1H-benzo[d]imidazole-2-carboxylic acid (0.24 mmol, 

1.2 eq.) was dissolved in 10 mL of DMF in a round bottom flask fitted with a 

magnetic stirrer. Then 65 µl of DIC (0.42 mmol, 1.75 eq.) and HOBt (65 mg, 

0.48 mmol, 2.0 eq.) were added to the acid (1.0 eq.) and this mixture was 

allowed to stir at room temperature for 30 minutes to ensure the formation of 

ester from the acid. Then 52 mg of amine 4.82 (0.20 mmol, 1 eq.) was added to 

the mixture and the mixture was allowed to stir for 4 hours at which point TLC 

and LCMS analysis showed the completion of reaction. Finally the reaction 

mixture was applied to a conditioned IsoluteTM SCX-2 cartridge and the product 

was purified by ‘Catch and Release’ method (described in the section ‘Method 

and Materials’ of chapter 3). An orange solid was obtained after drying under 

vacuum. Yield=7.25mg, 8%.  
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Table 4.122: Characterisation data for compound 4.122 

4.122 

Orange 
solid 

1H 

 NMR 

1HNMR(400MHz,(CD3)2SO); δH in ppm   
13.56(s,1H),11.12(s,1H),8.85(d,J=1.6,1H),8.56(d,J=2.0,1H),8.46
(t,J=5.6,1H),8.22(dd,J=8.8,2.4,1H),7.867.82(m,2H),7.62(d,J=9.2,
1H),3.37-3.32(m,2H),2.39(t,J=7.2,2H),2.23(s,7H),1.74-

1.70(m,2H). 
13C 
NMR 

(100MHz,(CD3)2SO); δC in ppm   
163.2,162.1,156.8,150.8,143.2,138.4,138.3,132.4,121.9,121.4,1
18.6,116.0,112.7,110.7,105.4,56.8,44.8,40.0,38.8,36.8,26.9. 

EIMS Found 450.0[M+H]+, Calculated for C21H22N8O4, 450.1764 [M]+ 

HRMS m/z (+EI) Calc. for C21H22N8O4, 450.1764 [M]+, found 

451.1835[M+H]+. 

IR (FTIR), Vmax/’cm-1): 
3376, 3199, 2923, 1656, 1637, 1597, 1530, 1480, 1334, 1317, 
1294, 1250, 1223, 1152, 1099, 1087, 1042, 993, 923, 891, 856, 
841, 814, 792, 765, 739. 
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