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SUMMARY 

 

Signaling through the IL-17 receptor (IL-17R) is required to prevent oropharyngeal candidiasis 

(OPC) in mice and humans.  However, the IL-17-responsive cell type(s) that mediate protection 

are unknown. Using radiation chimeras we were able to rule out a requirement for IL-17RA in 

the hematopoietic compartment. We saw remarkable concordance of IL-17-controlled gene 

expression in C. albicans-infected human oral epithelial cells (OECs) and in tongue tissue from 

mice with OPC. To interrogate the role of the IL-17R in OECs, we generated mice with 

conditional deletion of IL-17RA in superficial oral and esophageal epithelial cells (Il17raΔK13). 

Following oral Candida infection, Il17raΔK13 mice exhibited fungal loads and weight loss 

indistinguishable from Il17ra-/- mice. Susceptibility in Il17raΔK13 mice correlated with expression 

of the antimicrobial peptide β-defensin 3 (BD3, Defb3). Consistently, Defb3-/- mice were 

susceptible to OPC. Thus, OECs dominantly control IL-17R-dependent responses to OPC 

through regulation of BD3expression. 
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INTRODUCTION 

 Fungal infections are an increasing threat (Brown et al., 2012). To date, there are no 

licensed vaccines to any fungal pathogens, and antifungal medications are costly, toxic and 

increasingly ineffective due to drug resistance. Oropharyngeal candidiasis (OPC, thrush) is an 

opportunistic infection caused by the commensal fungus Candida albicans. Susceptibility is 

associated with T cell deficiency, as most HIV/AIDS patients experience recurrent OPC. Thrush 

is also associated with, denture use, salivary gland defects (e.g., Sjögren’s syndrome) and 

immunosuppressive regimens associated with cancer, transplantation or autoimmunity. Oral 

thrush also causes nutritional deficits in infants and a failure to thrive (Fidel, 2011; Glocker and 

Grimbacher, 2010).  

IL-17 (IL-17A) is a vital mediator of antifungal immunity. IL-17 is expressed by 

lymphocytes, most notably CD4+ “Th17” cells, but also CD8+ T cells and various innate immune 

populations such as γδ-T cells, NKT cells, ‘natural’ Th17 cells and innate lymphoid 3 (ILC3) 

cells (Cua and Tato, 2010). Some data suggest that IL-17 may be expressed by myeloid cells, 

though this remains controversial (Huppler et al., 2015; Taylor et al., 2014). Humans with 

defects in the IL-17R signaling pathway show remarkably restricted disease susceptibility, with 

high sensitivity to chronic mucosal candidiasis (CMC) and S. aureus infections, but typically not 

to other infections (Milner and Holland, 2013). Like immunocompetent humans, WT mice are 

resistant to OPC (Kamai et al., 2001). However, Il17ra-/-, Il17rc-/- Il23-/- Act1-/- and Rorc-/- mice 

are all susceptible (Conti et al., 2014; Conti et al., 2009; Ferreira et al., 2014; Ho et al., 2010), 

pointing to a role for the IL-17/Th17 pathway in OPC.  

 The oral mucosa is poorly understood with respect to immune function. A key constituent 

of oral immunity is the oral epithelial cell (OEC), which mediates early recognition of and 
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response to microbes (Moyes et al., 2015). Like other mucosae, the oral epithelium constitutes a 

physical barrier to restrict pathogen entry. OECs interact with C. albicans through multiple 

receptors, including HER2/Neu and EGFR (Zhu et al., 2012). OECs also sense the dimorphic 

transition from the commensal yeast to virulent hyphae by inducing distinct downstream 

signaling pathways (Moyes et al., 2016). In response to C. albicans, OECs express innate 

cytokines and antimicrobial effectors, including IL-1β, CCL20, G-CSF and β-defensins. Within 

one day of infection, IL-17 is highly expressed in lymphocytes (Conti et al., 2014; Hernández-

Santos et al., 2013). In mice, which do not harbor C. albicans as a commensal microbe and thus 

are immunologically naïve to this organism, IL-17 is produced upon first encounter by innate 

lymphocytes, specifically γδ-T cells and CD4+TCRβ+ ‘natural’ Th17 populations (Conti et al., 

2014; Huppler et al., 2015). In recall settings, IL-17 is additionally made by conventional Th17 

cells, which augment the innate Type 17 response to improve C. albicans clearance (Bär et al., 

2012; Hernández-Santos et al., 2013).  

IL-17 signaling induces a panel of antifungal target genes that collectively control 

C. albicans from the oral cavity. Downstream gene products include neutrophil-recruiting factors 

(CXC chemokines, G-CSF), myeloid and lymphoid chemoattractants (CCL20, MCP1), and 

antimicrobial peptides (AMPs: β-defensins, lipocalin-2, S100A8/9) (Conti and Gaffen, 2015). 

While IL-17-dependent signals are essential for effective immunity to OPC, the nature of the 

responding cell type(s) is less clear. OECs do not express IL-17 (Huppler et al., 2015) but do 

express the IL-17R (Gaffen et al., 2014). The oral mucosa is enriched for hematopoietic cells 

during infection, which also express high levels of IL-17RA (Ishigame et al., 2009; Ye et al., 

2001). In this regard, a recent study reported that IL-17RA signaling on NK cells mediates 

immunity to bloodstream C. albicans infections (Bar et al., 2014). Additionally, saliva is an 
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important component of immune control of C. albicans, and salivary gland epithelial cells also 

respond to IL-17 to produce salivary AMPs (Conti et al., 2011).  

The objective of this study was to identify the key IL-17-responding cell(s) in OPC. We 

approached this question with radiation chimeras and by creating CRE-expressing transgenic 

mice with specificity for suprabasal oral/esophageal epithelium. Whereas IL-17RA-mediated 

responses in the hematopoietic compartment were dispensable for immunity to OPC, a 

deficiency of IL-17RA in OECs rendered mice almost as susceptible as a complete Il17ra 

knockout. Gene profiling showed close parallels between human OECs infected in vitro with 

C. albicans and genes induced in murine oral tissue during OPC. In contrast to Il17ra-/- mice, 

regulation of neutrophil-specific genes was largely intact in mice with the conditionally targeted 

Il17ra allele, whereas expression of β-defensin 3 (BD3) was markedly impaired. Mice lacking 

BD3 were just as susceptible to OPC as Il17ra-/- mice. Thus, the oral epithelial cell is the 

dominant IL-17-responsive cell type in controlling immunity to oral mucosal candidiasis. 
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RESULTS 

IL-17RA on hematopoietic cells is dispensable for protection from OPC 

We evaluated the contribution of IL-17RA in hematopoietic cells in OPC using an 

adoptive transfer approach. Femoral bone marrow (BM) cells (103) from Il17ra-/- (CD45.2+) and 

WT (CD45.1+) mice were transferred into lethally irradiated Il17ra-/- or WT recipients. After 8 

weeks, reconstitution was confirmed by flow cytometry of peripheral blood (data not shown). 

Successfully reconstituted mice were subjected to OPC by sublingual incubation with a cotton 

ball soaked in 107 CFU/ml C. albicans yeast (Solis and Filler, 2012). After 5 d, oral fungal loads 

were assessed by CFU enumeration, which has a limit of detection (LOD) of ~30 CFU/g 

(Whibley et al., 2016). WT mice reconstituted with WT or Il17ra-/- BM were resistant to 

infection, with a negligible fungal load (CFU<2), indicating that IL-17RA expression on 

hematopoietic cells is not required for fungal clearance (Fig 1A). As previously shown, Il17ra-/- 

mice were susceptible to OPC (Conti et al., 2009), displaying a mean fungal burden of 1847 

CFU/g. Similarly, Il17ra-/- mice reconstituted with WT or Il17ra-/- bone marrow exhibited fungal 

loads that were indistinguishable from Il17ra-/- mice (3635 and 2153 CFU/g, respectively). 

Consistently, WT recipients returned to starting weight by day 5, regardless of BM source. In 

contrast, Il17ra-/- mice experienced progressive weight loss, even when reconstituted with WT 

BM (Fig 1B).  

Exposure to C. albicans activates a reproducible gene profile in mouse oral tissue, which 

peaks at day 2 when fungal loads are highest. Many of these genes are impaired in Il17ra-/- mice, 

such as Defb3 (encoding β-defensin 3, BD3) (Conti et al., 2009; Hernández-Santos et al., 2013). 

In keeping with their fungal loads, WT mice receiving WT or Il17ra-/- bone marrow induced 

Defb3 efficiently. However, induction was lower in Il17ra-/- recipients reconstituted with WT 
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bone marrow. Thus, IL-17RA is required exclusively in non-hematopoietic cells. 

 

C. albicans induces an antifungal gene response in human OECs 

Signals induced in OECs upon early exposure to C. albicans help distinguish between 

commensal colonization and pathogenic invasive infections (Moyes et al., 2015). In an effort to 

understand how IL-17 signaling impacts the response of human OECs to C. albicans infection, 

OKF6/TERT-2 oral keratinocytes were treated with IL-17A (50 ng/mL) and a suboptimal dose 

of TNFα (0.5 ng/mL) for 24 h. Cells were then infected with 1x107 C. albicans yeast cells for 

5 h and subjected to RNA-Seq. 358 genes exhibited a minimum 2-fold change in expression 

(P<0.05) between the TNF/IL-17A-treated and untreated OKF6/TERT-2 monolayers (Fig 2A, 

Table S1). Many of the genes exhibiting TNF/IL-17-sensitive expression in OECs have mouse 

homologues that are IL-17-dependent in OPC (Conti et al., 2009). These included chemokines, 

cytokines, transcriptional or post-transcriptional immune regulators, AMPs and other factors 

associated with inflammation. 

Insights into pathogenesis can be obtained by inferring signal transduction pathways 

based on downstream gene expression changes, a particularly useful way to compare species 

where not all genes have direct homologues (Liu et al., 2015). Accordingly, we compared the 

human OEC RNA-Seq dataset to an RNA-Seq profile of WT and Il17ra-/- mice 24 h after oral 

infection (Tables S1-S2). Data were analyzed using the Upstream Regulator Analytic from 

Ingenuity Pathway Analysis software, which assesses the overlap between empirical data and a 

curated database of target genes for each of several hundred known regulatory proteins. A 

number of signaling pathways were identified common to both datasets, including TNF and IL-

17 based pathways, TLR pathways, NF-κB activation, EGFR signaling, among others (Fig 2B). 
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Thus, despite the substantial differences between the experimental systems (human vs. mouse, 

culture monolayers vs. tissue, cytokine treatment vs. genetic deletion), data confirm that IL-17 

signaling in human OECs parallels IL-17-dependent gene expression during OPC.  

 

Generation of Cre-expressing transgenic mouse with specificity for oral epithelium 

To date, there are surprisingly few tools available to interrogate activity in oral 

epithelium. The oral mucosa consists of morphologically discrete epithelial layers with 

keratinization patterns distinct from skin (Presland and Dale, 2000). Whereas K14 and K5 are 

expressed in the basal stem cells of oral keratinized and non-keratinized epithelia, K13 is 

expressed superficially in the differentiated suprabasal layers, representing the first line of 

contact to oral microbes. To identify K13 regulatory sequences, we cloned the Krt13 putative 

proximal promoter (-3070 to +50 relative to the transcriptional start site) upstream of Luciferase. 

This construct exhibited potent activity in the murine oral keratinocyte (IMOK) cell line (Fig 

3A) (Parikh et al., 2008). To evaluate the Krt13 promoter in vivo, we created transgenic mice 

expressing LacZ driven by the K13 promoter (K13LacZ). Oral tissues were analyzed for β-

galactosidase activity by Xgal staining, including esophagus, buccal mucosa, and dorsal and 

ventral tongue. K13-driven LacZ activity was restricted to the differentiated suprabasal layers of 

these tissues, with no discernible expression in the basal or sub-basal layers (Fig 3B). There was 

no LacZ activity in gut, fore-stomach or GI tract (data not shown). Therefore, the K13 promoter 

shows specificity for expression in OECs, consistent with its known expression pattern. 

We created transgenic mice expressing the K13 promoter upstream of a Cre recombinase 

cassette (Fig 3C). Four PCR+ founders were identified, and tissues were evaluated for coincident 

Cre and Krt13 mRNA expression in tongue and esophageal tissue (Fig 3D). The line where Cre 
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expression most closely paralleled the known expression pattern of Krt13 (and K13-LacZ mice) 

was selected for all subsequent experiments. Progeny from Cre-expressing lines were then 

crossed to Gt(Rosa)26tm1Sor reporter mice (K13CRERosa26LacZ). LacZ staining of sections from 

the K13CRE-Rosa26LacZ mice showed strong Cre expression and activity in oral tissues such as 

the tongue and buccal mucosa, as well as the upper GI tract including stomach (Fig 3E) and the 

vaginal epithelium (not shown). Little or no LacZ was detected in skin, submandibular salivary 

gland or hematopoietic organs such as spleen and cervical lymph nodes (cLN).  

 

IL-17RA expressed by OECs contributes to protection from oral candidiasis 

To determine the extent to which IL-17RA expression in oral epithelium is required for 

immunity to OPC, K13Cre mice were crossed to recently-developed Il17rafl/fl  mice (Kumar et al., 

2016) (Il17rafl/flK13Cre+, also termed Il17raΔK13). To assess efficiency of receptor deletion, we 

evaluated IL-17RA in the oral cavity by IHC. Tongue from Il17rafl/flK13Cre- littermates (also 

termed WT) but not Il17ra-/- controls stained for IL-17RA throughout the tissue (Fig 4A). In 

Il17raΔK13 mice, IL-17RA was effectively deleted in the suprabasal layers (BL) of the oral 

epithelium but not other areas of the tissue (Fig 4A). To assess the consequence of OEC-specific 

deletion, Il17raΔK13 and controls were subjected to OPC and fungal loads assessed over 14 days. 

All infected animals had high C. albicans fungal burdens for the first 2 d p.i.. Il17ra-/- mice 

maintained high fungal loads through day 14. Il17raΔK13 mice showed a similar susceptibility 

profile as Il17ra-/- mice. Specifically, fungal counts on days 3-4 were statistically 

indistinguishable from Il17ra-/- mice (Fig 4B). Both Il17raΔK13 and Il17ra-/- mice lost weight 

progressively, whereas Il17rafl/flK13Cre- littermates returned to their starting weights (Fig 4B). 

The composition of saliva also influences oral C. albicans colonization. We previously 
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found that saliva from Il17ra-/- mice exhibits a modestly impaired ability to kill C. albicans in 

vitro (Conti et al., 2009). AMPs in saliva such as defensins are derived from salivary glands but 

are also shed from the oral epithelium. To determine whether IL-17RA-dependent factors from 

OECs contributed to salivary candidacidal function, mice were administered carbachol to induce 

salivation, saliva was incubated with 106 C. albicans cells for 1 h, and cultures plated for colony 

enumeration. Saliva from sham-infected mice exhibited similar baseline candidacidal activities 

(Fig 4C). After infection, saliva from Il17raΔK13 mice and Il17rafl/flK13Cre- controls maintained 

similar levels of Candida-killing capacity, while Il17ra-/- saliva showed a trend to reduced killing 

efficiency. Consequently, the increased susceptibility of Il17raΔK13 mice to OPC does not appear 

to be due to defects in salivary function. 

 

OEC-specific IL-17RA regulation of neutrophils 

IL-17RA induces expression of neutrophil-related chemokines and growth factors during 

OPC, such as CXC chemokines and G-CSF (Conti et al., 2009; Huppler et al., 2014). Here, we 

evaluated PMN recruitment to the supra-and sub-basal layers of epithelial tissue. Immediately 

after infection (day 1), there was significantly reduced neutrophil infiltration to the supra-basal 

region in Il17ra-/- mice compared to Il17rafl/flK13Cre- (WT) controls. Surprisingly, however, there 

was no difference in PMN numbers in Il17raΔK13 mice in this area compared to WT (Fig 5A, B). 

At later times (days 3-5), PMN numbers were elevated in both Il17ra-/- and Il17raΔK13 supra-

basal tissue compared to WT, which probably reflects the ongoing C. albicans infection in 

knockout but not WT mice (Fig 5A, B). In sub-basal layers, there was no difference in PMN 

counts in any of the mice (Fig 5A,B). However, although neutrophil levels are elevated, they 

never reach the same frequency as in WT mice. Therefore, OEC-specific deletion of IL-17RA 
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does not cause impaired local recruitment of PMNs to the superficial epithelial layer, though a 

complete Il17RA-deficiency does (Conti et al., 2009). As an additional assessment of pathology, 

we quantified tissue hyperplasia, measured as the distance between the outermost keratinized 

portion of the epithelium and stem cells of the basal layer. In line with the sustained levels of 

PMNs in the Il17raΔK13 mice, the supra-basal epithelium was hyperplastic compared to 

Il17rafl/flK13Cre- controls (Fig 5C-D). This finding indicates that IL-17RA signaling in OECs is 

not required for cellular proliferation. 

We next asked whether the neutrophils migrating to the superficial epithelium functioned 

normal by staining tissue for myeloperoxidase (MPO). Neutrophils from all mice stained positive 

for MPO, indicating that the neutrophils within the tissue appear functional (Fig 5E).  

Collectively, these data confirm and extend our previous findings that IL-17RA regulates PMN 

migration, but indicate surprisingly that the neutrophil defect is less marked in Il17raΔK13 mice 

compared to Il17ra-/- mice. Accordingly, the high susceptibility of Il17raΔK13 mice to OPC is 

likely not due to neutrophil defects.  

 

OPC-induced gene profiles in Il17raΔK13 mice: Role for β  defensin 3 

To gain an unbiased assessment of genes regulated by IL-17RA within OECs, we 

performed RNA-Seq analysis of tongue tissue from Il17rafl/flK13Cre-, Il17raΔK13 and Il17ra-/- 

mice 1 day after oral C. albicans infection (see Fig 2). A panel of genes emerged that were 

expressed in Il17rafl/flK13Cre- littermate controls (WT) upon infection (i.e., that were different 

from sham-infected mice) that were differentially regulated in both Il17raΔK13  and Il17ra-/- mice 

after infection (Fig 6A, Fig S1). Notably, the majority of the gene changes that are absent in the 

Il17ra-/- mice also absent in the Il17raΔK13 mouse. These overlapping genes included known IL-
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17RA targets important in antifungal defense, including AMPs (Defb3, S100A9) and chemokines 

(Cxcl1, Cxcl5) (Tables S1, S2). These data confirmed that the OEC-specific deletion of IL-17RA 

is concordant with the full knockout with respect to early antifungal responses. However, some 

genes are also regulated by other IL-17RA-expressing tissues. 

To understand the kinetics of the OEC-dependent gene expression, we investigated the 

profile of a subset of genes identified by RNASeq over 5 days. We first focused on neutrophil-

associated genes including S100A9, chemokines (Cxcl1, also known as KC; Cxcl2, Cxcl5) and 

G-CSF (Csf3). Although all these genes were reduced in Il17raΔK13 mice on day 1 (Fig 6A, B), 

expression recovered by days 2-3, consistent with the elevated levels of neutrophils observed in 

these mice compared to the Il17ra-/- mice (Fig 5). WT mice also showed reduced expression of 

these genes, presumably because they have cleared the infection and the overall immune 

response has returned to baseline. Lipocalin-2 (Lcn2), while not required for the response to OPC 

(Ferreira et al., 2014), serves as a sensitive measure of IL-17 signaling activity in OPC and other 

settings (Shen et al., 2006). There was impaired expression of Lcn2 in both Il17raΔK13 mice and 

Il17ra-/- mice at day 1, the only time point when this gene was high in WT mice (Fig 6A,B).  

β-Defensins exhibit potent anti-Candida activity. Defb1 was impaired at day 1 in Il17ra-/- 

mice, consistent with its known role in immunity to OPC (Tomalka et al., 2015), and here we 

demonstrate an IL-17-dependent activation of this factor. However, Defb1 was not altered in 

Il17raΔK13 mice. Defb2 and Defb4 were not altered at any time points (not shown). In contrast, 

Defb3 expression correlated well with OPC susceptibility in Il17raΔK13 mice, as its expression 

was markedly impaired at days 1-3 in Il17raΔK13 and Il17ra-/- mice compared to WT (Fig 6A,B). 

To determine whether BD3 protein was reduced in situ, we performed IHC with anti-BD3 Abs 

on Il17rafl/flK13Cre-, Il17raΔK13 and Il17ra-/- tongue sections after OPC (Fig 6C). BD3 was 
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expressed in the superficial tongue and the OECs in Il17rafl/flK13Cre- mice, but was absent in 

both the Il17raΔK13 and Il17ra-/- OECs. We next confirmed that human OECs stimulated with IL-

17 induced secretion of BD2, the human orthologue of murine BD3 (Fig 6D). Since clinical 

blockade of IL-17 is associated with impaired epithelial repair in the gut (Whibley and Gaffen, 

2015), we asked whether IL-17 can protect from cell damage induced by C. albicans. However, 

IL-17 did not alter the cytotoxicity arising from C. albicans infection of cultured OECs, 

measured by secretion of lactate dehydrogenase (Fig 6E). Finally, mice lacking BD3 (Defb3-/-) 

were just as susceptible to OPC as Il17ra-/- mice (Fig 6F).  Thus, OEC-derived BD3 appears to 

account for the high susceptibility of Il17raΔK13 mice to OPC. 
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DISCUSSION 

Our understanding of fungal pathogens has historically lagged behind that of bacteria or 

viruses (Brown et al., 2012), but recent discoveries in studies of C. albicans have dramatically 

advanced the field. These insights include (i) the identification of C-type lectin receptors as key 

pattern recognition receptors for fungi, and (ii) the recognition that IL-17 signaling is central to 

antifungal immunity (Hernández-Santos and Gaffen, 2012). Mice lacking IL-17RA or IL-17RC 

are susceptible to OPC and dermal candidiasis (Conti et al., 2009; Conti et al., 2015; Ho et al., 

2010; Kagami et al., 2010). This finding was upheld in humans with IL-17R mutations (Ling et 

al., 2015; Puel et al., 2011). Our bioinformatics data provide additional evidence that the murine 

response to oral C. albicans is concordant with human OECs (Fig 2). Not only are there 

conspicuous similarities in individual genes or their orthologues (β-defensin 2/3, chemokines, 

lipocalin-2 (Jia et al., 2000)), at a global level the pathways induced by C. albicans show strong 

parallels.  

Nonetheless, it has not been obvious in which tissue(s) or cell types IL-17 signaling is 

required. Mesenchymal and epithelial cell types are generally considered the main responders to 

this cytokine. Their sensitivity is thought to be due to high expression of IL-17RC on these cell 

types, whereas this subunit is expressed at low or undetectable levels in hematopoietic cells 

(Ishigame et al., 2009; Kuestner et al., 2007). IL-17RA is expressed more broadly than IL-17RC, 

with particularly high levels in hematopoietic cells (Ishigame et al., 2009; Yao et al., 1995; Ye et 

al., 2001). Here, we found that the hematopoietic compartment was dispensable for immunity to 

OPC (Fig 1), similar to the tissue-dependence of IL-17RA in a murine arthritis model (Lubberts 

et al., 2005). However, this contrasts with a report that NK cells are the essential IL-17-

responsive cell type in systemic candidiasis (Bar et al., 2014).  
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Although OECs comprise only a fraction of total tongue tissue, they are the first cells to 

encounter C. albicans in the mouth. Until now, genetic tools to study oral tissue have been 

limited. Epithelial tissues are classified by differentiation-specific expression of keratins, 

cytoskeletal proteins that provide structural integrity and function as a protective barrier. In oral 

and buccal epithelia, Keratins (K)-13 and -4 are expressed in superficial and intermediate tissue 

layers (Presland and Dale, 2000). We show that mice expressing Cre under control of the K13 

promoter exhibit efficient and specific conditional deletion within these tissues (Figs 2-3). The 

creation of this K13CRE line will be valuable for many areas of inquiry, such as other 

oral/esophageal/vaginal infections, oral cancer, and wound healing in non-keratinized tissues.  

There is an intriguing concordance between K13 expression and sites of C. albicans 

infections, including oral and esophageal mucosa and vaginal epithelium (data not shown). To 

date, the participation of IL-17 in vaginal candidiasis remains controversial, but this mouse 

system will be useful for probing the role of IL-17 in this tissue (Ibrahim et al., 2013; Pietrella et 

al., 2011; Yano et al., 2012). It is unlikely that K13 acts as a receptor for C. albicans, though this 

possibility cannot be formally excluded. Rather, epithelial cells within non-keratinized layers 

have a rapid turnover (~4 days), compared to ~2 weeks in skin. These sites are also thinner and 

more permeable than skin, and thus may be more amenable to fungal invasion. Recent data 

showed that a C. albicans-derived toxin termed Candidalysin is required to establish pathogenic 

infections of the oral mucosa (Moyes et al., 2016). Conceivably, the cellular receptor for 

Candidalysin is more highly expressed in Krt13+ OECs.  

 Our data with Il17raΔK13 mice suggested that the bulk of IL-17RA-driven immunity in the 

context of OPC is from OECs (Fig 4). While there was not a statistically significant difference in 

fungal burdens between Il17raΔK13 and Il17ra-/- mice, there was a consistent trend to lower fungal 
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counts in the Il17raΔK13 animals, suggesting there may be contributions of IL-17RA in other 

cells. This idea is supported by the global analysis of the gene differences between Il17raΔK13 and 

Il17ra-/- mice during infection. Although expression of many genes was conserved during OPC 

on day 1, there were notable differences (Fig S1, 6B). Genes associated with neutrophils are a 

case in point; many of the factors that regulate neutrophil chemotaxis (Cxcl1), expansion (Csf3) 

or function neutrophils (S100A9) were more severely impaired in the total knockout compared to 

the OEC-specific deletion. These data are consistent with histological analyses, which 

demonstrated reduced recruitment of PMNs to Il17ra-/- suprabasal oral tissue compared to 

comparable sites in Il17raΔK13 mice (Fig 5). In contrast, expression of Defb3 was markedly 

reduced in Il17raΔK13 mice, correlating well with fungal loads (Fig 6). These data collectively 

imply that IL-17RA-driven expression of neutrophil-attractive factors is driven by OECs at early 

time points (day 1) but by other cells at subsequent times (days 3-5).  

The nature of other IL-17RA-responsive cells is an intriguing question. We speculate that 

mesenchymal cells (e.g., muscle or fibroblastic cells) within the oral mucosa may be involved. 

We base this hypothesis on a study in a murine psoriasis model that showed a similar dichotomy 

in IL-17-dependent functions by cell type. In a murine psoriasis model, a deficiency in Act1 (a 

key adaptor downstream of IL-17RA) in dermal keratinocytes impairs neutrophilic abscess 

formation, whereas Act1 deleted only dermal fibroblasts impacts keratinocyte hyperproliferation 

(Ha et al., 2014). Notably, mice or humans lacking Act1 are also susceptible to OPC (Boisson et 

al., 2013; Ferreira et al., 2014). Although we did not see an obvious contribution of saliva in the 

Il17raΔK13 mice (Fig 4), this assay is not very sensitive, so we cannot rule out a role for IL-17RA 

in salivary glands.    

IL-17 regulates expression of β-defensins at mucosal surfaces (Aujla et al., 2007; Kao et 
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al., 2004). IL-17 is implicated in regulation of murine BD3 and its human homologue BD2 (Figs 

1, 5-6, (Conti et al., 2009; Jia et al., 2000; Simpson-Abelson et al., 2015)). The importance of 

BD3 was confirmed by the observation that Defb3-/- mice showed the same susceptibility to OPC 

as Il17ra-/- animals. BD3 exerts direct antifungal activity on C. albicans (Edgerton et al., 2000; 

Joly et al., 2004). Additionally, BD3 binds to CCR6, potentially allowing it to serve as a 

chemoattractant for IL-17-expressing cells that express this receptor (Yamazaki et al., 2008). 

CCL20 is another ligand for CCR6 that is induced during OPC by IL-17RA signaling (Fig 6). 

Intriguingly, CCL20 also exhibits candidacidal activity (Yang et al., 2003). BD1 is implicated in 

OPC (Tomalka et al., 2015), and our data indicate this is also IL-17RA-dependent. Thus, genes 

expressed in OPC have the capacity to function as AMPs and chemoattractants, establishing a 

feed-forward amplification loop that controls fungal infections. 

Most data indicate that IL-17A is the dominant cytokine in OPC, but other Type 17 

cytokines contribute. Patients with autoimmune polyendocrinopathy syndrome (AIRE 

deficiency) produce neutralizing Abs against IL-17A, IL-17F and IL-22, correlating with CMC 

(Kisand et al., 2010; Puel et al., 2010). Il17rc-/- mice (which respond only to IL-17A and 17F) 

phenocopied Il17ra-/- mice (Ho et al., 2010), later confirmed in humans (Ling et al., 2015). Il17a-

/- but not Il17f-/- mice are susceptible to OPC, but dual blockade of IL-17A and IL-17F increases 

susceptibility over anti-IL-17A treatment alone (Gladiator et al., 2013; Whibley et al., 2016). 

Th17 cells also make IL-22, and Il22-/- mice are moderately susceptible to OPC (Conti et al., 

2009). IL-25 (IL-17E) has not been evaluated in OPC, to our knowledge, but there is no change 

in Il17e expression in mice upon oral infection with C. albicans (Whibley et al., 2016). Thus, 

there appears to be cooperative activity of Type 17 cytokines in immunity to oral C. albicans 

infections. 
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In summary, this and the accompanying report by Chen et al. (Chen et al., 2016)	
  provide 

insight into the tissue selective role by which IL-17R-dependent immunity to mucosal pathogens 

is controlled. Drugs that target IL-17 and Th17-related pathways are now approved for moderate-

severe plaque psoriasis (Sanford and McKeage, 2015); inevitably, as their clinical use increases, 

so does the potential for opportunistic mucosal infections. Ultimately, studies like these may 

inform the development of better-targeted therapeutics for human disease. 
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EXPERIMENTAL PROCEDURES 

Cell culture 

OKF6/TERT2 cells (Dickson et al., 2000) were cultured in Serum-Free Fibroblast media, 25 

µg/ml bovine pituitary extract and 2 ug/ml EGF (Life Technologies, Grand Island NY). Cells 

were treated with TNFα (0.5 ng/mL) and IL-17A (50-200 ng/mL) (R&D Systems) for 24 h and 

then infected with 1x107 C. albicans yeast for 5 h. TR146 cells were from ECACC (Salisbury, 

United Kingdom) and cultured in DMEM-F12/15% FBS.  

 

K13 promoter  

The Krt13 promoter (-3090 to +40) was obtained by PCR from BAC clone RP23-10A2 and 

cloned into the pGL3-basic vector (Promega). IMOK cells (Parikh et al., 2008) were transfected 

with the reporter with FuGENE 6, normalized to a pCMV-LacZ control. Function was assessed 

with the Luciferase Assay system (Promega), and β-galactosidase with the Galacton Plus kit 

(Life Technologies).  

 

Mice 

Il17ra-/- mice and anti-IL-17RA Abs were a gift from Amgen (Seattle WA). Il17rafl/fl mice were 

made as described (Kumar et al., 2016). Defb3-/- mice were from the MMMRC (UC Davis, CA). 

K13LacZ transgenic mice were created a K13-LacZ cassette at the Roswell Park Cancer Institute 

(RPCI) Transgenic Core Facility. Oral tissue sections were stained with Xgal to detect β-

galactosidase activity. K13CRE transgenic mice were created with the Krt13-NLS-Cre by the 

Pittsburgh Transgenic and Gene Targeting Core Facility, and founders identified by PCR. 
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C57BL/6 and Gt(Rosa)26tm1Sor mice were from The Jackson Laboratory (Bar Harbor ME). 

Experiments were performed in accordance with IACUC protocols approved by the University 

of Pittsburgh, the State University of New York at Buffalo or RPCI. 

 

Oral Candidiasis  

OPC was performed by sublingual inoculation with a cotton ball saturated in C. albicans (CAF2-

1) for 75 min (Solis and Filler, 2012). Tongue homogenates were dissociated on a GentleMACS 

(Miltenyi Biotec, Cambridge MA) and serial dilutions plated on YPD+Amp. All efforts were 

made to minimize suffering, in accordance with recommendations in the Guide for the Care and 

Use of Laboratory Animals of the NIH. 

 

Salivary assays 

Saliva was collected after carbachol injection (100 ul, 10 µg/ml) and used immediately (Conti et 

al., 2009). 90 ul of saliva was incubated with 104 cells of C. albicans for 1 h at 37°C, plated in 

triplicate and assayed after 2 d for CFU enumeration on YPD-Amp. 

 

Immunohistochemistry, ELISA, LDH assays 

Cryosections were stained with α-IL-17RA mAbs (Amgen), α-MPO mAbs (R&D Systems) or 

anti-rat BD3 Abs (Santa Cruz Biotechnology) using the BioLegend IHC Protocol for Frozen 

Tissue or Immunocruz LSAB Staining System.  Image analysis was performed by 2 independent 

assessors in a blinded fashion. BD2 ELISAs were performed with Abs from Peprotech. LDH 

assays were performed with a CytoTox 96 Assay System (Promega).  
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RNA-Seq and qPCR 

RNA-Seq mouse libraries were prepared with total RNA using a Qubit 2.0 fluorometer (Thermo 

Fisher) and Agilent Bioanalyzer TapeStation 2200 (Agilent Technologies). For OKF6-TERT2 in 

vitro infections, RNA-seq libraries (non-strand specific, paired-end) were prepared with the 

TruSeq RNA kit (Illumina). 100 nucleotides were determined from each end of cDNA fragments 

using the HiSeq platform. Single reads were aligned to the UCSC mouse or human reference 

genomes (mm10, GRCm38.75; Ensembl GRCh38) using TopHat2. Differential gene expression 

was assessed using DESeq (Bioconductor). Pairwise differential expression was quantified with 

Cuffdiff. Cufflinks was used to determine FPKM levels for each gene from the STAR alignment 

and was used as input for Cuffdiff. Read counts were then normalized across all samples and 

differentially expressed genes were determined by adjusted P-value with a threshold of 0.05.  

For real-time PCR, RNA was isolated from tongue with RNeasy Mini Kits (QIAGEN), 

and cDNA generated with Superscript III First Strand Kits (Invitrogen). Real-time qPCR using 

SYBR Green FastMix ROX (Quanta Biosciences) was performed using a 7300 Real time 

instrument (Applied Biosystems) and normalized to GAPDH. Primers were from Superarray 

Biosciences or QuantiTect Primer Assays (QIAGEN).  

 

Data Access  

Upon acceptance, raw sequencing reads will be submitted to the NCBI Sequence Read Archive 

(SRA; http://www.ncbi.nlh/nih.gov/sra) and processed gene expression data will submitted to the 

NCBI Gene Expression Omnibus (GEO). The RNA-seq data for the in vitro infections has been 

deposited under accession code SRP077728. 
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FIGURE LEGENDS 

Figure 1. IL-17RA expressed on hematopoietic cells is dispensable for protection against 

oral candidiasis. Reciprocal adoptive transfers of femoral BM were performed in WT or Il17ra-

/- mice followed by oral infection with C. albicans. A. After 5 d, fungal loads were assessed by 

CFU enumeration of tongue homogenates. Bars show geometric mean. Each point is 1 mouse. 

***P<0.01 by ANOVA and t-test with Mann-Whitney correction. B. Weight was assessed daily, 

and is shown as mean % of starting weight. C. Defb3 was evaluated on d 5 by qPCR. Data 

relative to Gapdh + SEM. ***P<0.01 by ANOVA and post-hoc Tukey’s test. N.S., not 

significant. All experiments were performed at least twice. 

 

Figure 2. C. albicans induces an antifungal gene response in human OECs that parallels the 

IL-17-dependent response to murine OPC. A. OKF6/TERT2 human OECs were treated with 

IL-17+TNFα for 24 h. Cells were exposed to C. albicans yeast for 5 h and subjected to RNA-

Seq. Data show normalized RPKM values of genes whose orthologues were previously shown to 

be induced in an IL-17R-dependent manner in murine OPC (Conti et al., 2009). Yellow = high 

and blue = low relative expression. B. Ingenuity Pathway Analysis of RNA-Seq data, showing 

C. albicans-exposed OKF6/TERT2 cells (untreated relative to IL-17+TNFα-treated) compared 

to murine OPC (C. albicans-infected WT tongue relative to uninfected). Data indicate z-scores 

of predicted regulation by infection. Red = predicted activation. Blue = predicted repression. 

White = no predicted regulation. 

 

Figure 3. The Keratin 13 promoter shows specific activity in oral epithelium. A. The K13 

promoter in the pGL3-Luc vector was transfected into oral epithelial IMOK cells, and Luc 
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activity assessed after 24 h. Data show mean + SEM. ***P<0.01 by student’s t-Test. EV, empty 

vector. B. K13LacZ mice were analyzed for β-galactosidase activity by Xgal staining. C. K13-Cre 

cassette used to create K13CRE mice. D. Indicated tissues from K13CRE founder #176 were 

analyzed for Krt13 and Cre by qPCR. SMG, submandibular salivary gland; cLN, cervical lymph 

node. Arrow = specific PCR product. * = unincorporated PCR primers. E. Tissues from K13CRE-

Rosa26LacZ mice were stained with Xgal to assess β-galactosidase activity. Data are from 2-4 

independent experiments. 

 

Figure 4. IL-17RA in oral epithelial cells is necessary for immunity to OPC. A. Expression 

of IL-17RA was assessed by IHC. BL, suprabasal layer (n=3).  B. Indicated mice were subjected 

to OPC as in Fig 1. Left: Mean fungal loads + SD at the indicated days post infection (left). 

Il17ra-/- (green, n= 3-6), Cre+ (blue, n=3-7), Cre- (black, n= 3-4). Right: Mean % weight change 

relative to day 0 + SD. Data are from 2-4 experiments per time point. C. Saliva was incubated 

with C. albicans cells for 1 h at 37°C and CFU was assessed by plating. Data show mean + 

SEM. Experiment was done twice. 

 

Figure 5. Tissue changes in Il17raK13 compared to Il17ra-/- mice following C. albicans 

infection. A. 20X images from H&E-stained tongue sections from the indicated C. albicans-

infected mice at days 1 or 5. Black arrow indicates division between supra- and sub-basal layers. 

White arrows indicate PMNs. Scale bar is 100 µM. B. Quantification of PMNs in H&E images 

(n=4 mice/group, minimum of 6 sections per mouse). *P<0.05 WT (Cre-) vs. Il17ra-/- ‡ P<0.05 

Il17raK13 vs. WT (Cre-) by ANOVA with Kruskal-Wallis correction. Data indicate means + 

SEM. C. Hyperplasia is indicated as thickening of epithelium between basal cell layer to 
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superficial keratinized layer. Arrows indicate distance measured in microns using ImageJ. 

D. Quantification of hyperplasia by blinded assessors (n=4 mice/group, minimum 4 sections per 

mouse). * P<0.05 compared to WT. ‡P<0.05 compared to Il17raΔ
K13 by ANOVA. Data indicate 

means + SEM. E. MPO staining in infected mice. Arrows indicate areas of high MPO staining. 

Experiments were performed on sections from 3-5 mice per strain. All experiments were done 

twice. 

 

Figure 6. C. albicans-induced gene expression changes require epithelial IL-17RA and 

demonstrate a role for BD3. A. RNA-seq was performed 24 h after infection (n=3). Heatmap 

shows genes that are differentially expressed after infection of WT mice for 24 h and whose 

regulation is altered in infected Il17ra-/- or Il17raK13 mice. Values = log (base 2) fold change. 

Red bar indicates genes whose C. albicans-induced regulation required IL-17RA in oral 

epithelium. B. Tongue RNA from C. albicans-infected mice was assessed by qPCR (n= 6-9). 

Bars indicate mean + SEM. *P<0.05 by ANOVA and student’s t-test. C. Tongue sections were 

stained with α-BD3 Abs or 2° Ab. Arrows indicate suprabasal areas (n=3). D. TR146 cells were 

incubated with IL-17 for 20 h ± IL-17A. BD2 in supernatants was assessed by ELISA. Bars 

indicate mean + SEM. ** P<0.01. E. TR146 cells were infected with C. albicans yeast at an 

MOI of 0.01 ± IL-17A (200 ng/ml) for 24 h. Secreted LDH was assessed in triplicate.  

F.  Indicated mice were subjected to OPC and oral fungal loads assessed after 5 d. Bars indicate 

geometric mean. **P<0.01. **** P<0.0001. All experiments were done at least twice. See also 

Fig S1 and Table S1. 
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