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ABSTRACT  

Tobacco smoking increases the risk of at least 17 classes of cancer. We analyzed somatic mutations 

and DNA methylation in 5,243 cancers of types for which tobacco smoking confers an elevated risk. 

Smoking is associated with increased mutation burdens of multiple distinct mutational signatures, 

which contribute to different extents in different cancers. One of these signatures, mainly found in 

cancers derived from tissues directly exposed to tobacco smoke, is attributable to misreplication of 

DNA damage caused by tobacco carcinogens. Others likely reflect indirect activation of DNA editing 

by APOBEC cytidine deaminases and of an endogenous clock-like mutational process. Smoking is 

associated with limited differences in methylation. The results are consistent with the proposition 

that smoking increases cancer risk by increasing the somatic mutation load, although direct evidence 

for this mechanism is lacking in some smoking-related cancer types.  

 

ONE SENTENCE SUMMARY: Multiple distinct mutational processes associated with tobacco smoking 

in cancer reflect direct and indirect effects of tobacco smoke. 
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MAIN TEXT 

Tobacco smoking has been associated with at least 17 types of human cancer (Table 1) and claims 

the lives of more than six million people every year (1-4). Tobacco smoke is a complex mixture of 

chemicals among which at least 60 are carcinogens (5). Many of these are thought to cause cancer 

by inducing DNA damage which, if misreplicated, leads to an increased burden of somatic mutations 

and hence an elevated chance of acquiring “driver” mutations in cancer genes. Such damage is often 

in the form of covalent bonding of metabolically activated reactive species of the carcinogen to DNA 

bases, termed “DNA adducts” (6). Tissues directly exposed to tobacco smoke (e.g. lung) as well as 

some tissues not directly exposed (e.g. bladder) show elevated levels of DNA adducts in smokers and 

thus evidence of exposure to carcinogenic components of tobacco smoke (7, 8). 

Each biological process causing mutations in somatic cells leaves a mutational signature (9). Many 

cancers have a somatic mutation in the TP53 gene and catalogues of TP53 mutations compiled two 

decades ago enabled early exploration of these signatures (10) showing that lung cancers from 

smokers have more C>A transversions than lung cancers from non-smokers (11-14). To investigate 

mutational signatures using the thousands of mutation catalogues generated by systematic cancer 

genome sequencing, we recently described a framework in which each base substitution signature is 

characterized using a 96 mutation classification that includes the six substitution types together with 

the bases immediately 5’ and 3’ to the mutated base (15). The analysis extracts mutational 

signatures from mutation catalogues and estimates the number of mutations contributed by each 

signature to each cancer genome (15). Using this approach, more than 30 different base substitution 

signatures have been identified (16-18).  

Here, we studied 5,243 cancer genome sequences (4,633 exomes and 610 whole genomes) of cancer 

classes for which smoking increases risk to identify mutational signatures and methylation changes 

associated with tobacco smoking (Table S1). 2,490 samples were reported to be from tobacco 

smokers and 1,063 from never smokers (Table 1) enabling investigation of the mutational 
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consequences of smoking by comparing somatic mutations and methylation in smokers with non-

smokers for lung, larynx, pharynx, oral cavity, esophagus, bladder, liver, cervix, kidney and pancreas 

cancers (Fig. 1 and Table S2). 

We first compared total numbers of base substitutions, small insertions and deletions (indels) and 

genomic rearrangements. Total base substitutions were higher in smokers compared to non-

smokers for all cancer types together (q-value<0.05) and, for individual cancer types, in lung 

adenocarcinoma, larynx, liver and kidney cancers (Table S2). Total numbers of indels were higher in 

smokers compared to non-smokers in lung adenocarcinoma and liver cancer (Table S2). The whole 

genome sequenced cases allowed comparison of genome rearrangements between smokers and 

non-smokers in pancreatic and liver cancer, where no differences were found (Table S2). However, 

sub-chromosomal copy number changes entail genomic rearrangement and can serve as surrogates 

for rearrangements. Lung adenocarcinomas from smokers exhibited more copy number aberrations 

than from non-smokers (Table S2).  

We then extracted mutational signatures, estimated the contributions of each signature to each 

cancer and compared the numbers of mutations attributable to each signature in smokers and non-

smokers. Increases in smokers compared to non-smokers were seen for signatures 2, 4, 5, 13 and 16 

(the mutational signature nomenclature is that used in COSMIC and references (16-18)). There was 

sufficient statistical power to show that these increases were of clonal mutations (mutations present 

in all cells of each cancer) for signatures 4 and 5 (q-value<0.05) as expected if they are due to 

cigarette smoke exposure prior to neoplastic change (Supplementary Text). 

Signature 4 is characterized mainly by C>A mutations with smaller contributions from other base 

substitution classes (Fig. 2B and Fig. S1). It was found only in cancer types in which tobacco smoking 

increases risk and mainly in those derived from epithelia directly exposed to tobacco smoke (Fig. S2 

and S3). Signature 4 is very similar to the mutational signature induced in vitro by exposing cells to 

benzo[a]pyrene (cosine similarity=0.94; Figs. 2B and S3), a tobacco smoke carcinogen (19). The 
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similarity extends to the presence of a transcriptional strand bias indicative of transcription-coupled 

nucleotide excision repair (NER) of bulky DNA adducts on guanine (Fig. S1), the proposed mechanism 

of DNA damage by benzo[a]pyrene. Thus, signature 4 is likely the direct mutational consequence of 

misreplication of DNA damage induced by tobacco carcinogens. 

Most lung and larynx cancers from smokers had many signature 4 mutations. There were more 

signature 4 mutations in cancers from smokers compared to non-smokers in all cancer types 

together (Table S2) and in lung squamous, lung adenocarcinoma and larynx cancers (Table S2) 

accounting, in large part, for differences in total numbers of base substitutions (Table 1). 13.8% of 

lung cancers in non-smokers showed many signature 4 mutations (Fig. 2A;>1 mutation per MB) 

which may be due to passive smoking, misreporting of smoking habits or annotation errors. 

Signature 4 mutations were also found in oral cavity, pharynx and esophagus cancers, albeit in much 

smaller numbers than in lung and larynx cancers perhaps due to less exposure to tobacco smoke or 

more efficient clearance. Differences in mutation burden attributed to signature 4 between smokers 

and non-smokers were not observed in these cancer types (Fig. 1). Signature 4 mutations were 

found at low levels in cancers of the liver, an organ not directly exposed to tobacco smoke, and were 

elevated in smokers compared to non-smokers (Fig. 1). 

Signature 4 was not extracted from bladder, cervix, kidney or pancreas cancers, despite the known 

risks conferred by smoking and the presence of many smokers in these series. It was also not 

extracted from cancers of the stomach, colorectum, ovary and acute myeloid leukemia for which the 

smoking status in the analyzed series was unknown but among which many are likely to have been 

smokers. The tissues from which all these cancer types are derived are not directly exposed to 

tobacco smoke. Simulations indicate that the lack of signature 4 is not due to statistical limitations 

(Supplementary Text and Fig. S4). The absence of signature 4 suggests that misreplication of direct 

DNA damage due to tobacco smoke constituents does not contribute substantially to mutation 
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burden in these cancers even though DNA adducts indicative of tobacco-induced DNA damage are 

present in the tissues from which they arise (7). 

Signatures 2 and 13 are characterized by C>T and C>G mutations respectively at TpC dinucleotides 

and have been attributed to overactive DNA editing by APOBEC deaminases (20). The cause of the 

over-activity in most cancers has not been established although APOBECs are implicated in the 

cellular response to entrance of foreign DNA, retrotransposon movement and local inflammation 

(21). Signatures 2 and 13 showed more mutations in smokers than non-smokers in lung 

adenocarcinoma (Table S2). Since they are found in many other cancer types, where they are 

apparently unrelated to tobacco smoking, it seems unlikely that the signature 2 and 13 mutations 

associated with smoking in lung adenocarcinoma are direct consequences of misreplication of DNA 

damage induced by tobacco smoke. More plausibly, the cellular machinery underlying signatures 2 

and 13 is activated by tobacco smoke, perhaps as a result of inflammation arising from deposition of 

particulate matter or by indirect consequences of DNA damage. 

Signature 5 is characterized by mutations distributed across all 96 subtypes of base substitution, 

with predominance of T>C and C>T mutations (Fig. 2B) and evidence of transcriptional strand bias 

for T>C mutations (18). Signature 5 is found in all cancer types, including those unrelated to tobacco 

smoking, and in most cancer samples. It is “clock-like” in that the number of mutations attributable 

to this signature correlates with age of diagnosis in many cancer types (17). Signature 5, together 

with signature 1, is thought to contribute to mutation accumulation in most normal somatic cells 

and in the germline (17, 22). The mechanisms underlying signature 5 are not well understood, 

although an enrichment of signature 5 mutations was found in bladder cancers harboring 

inactivating mutations in ERCC2 which encodes a component of NER (23). 

Signature 5 (or a similar signature that is difficult to differentiate from it because of their relatively 

flat profiles) was increased between 1.3-fold and 5.1-fold (q-value<0.05; Table S2) in smokers 

compared to non-smokers in all cancer types together and in lung squamous, lung adenocarcinoma, 
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larynx, pharynx, oral cavity, esophageal squamous, bladder, liver and kidney cancers. The association 

of smoking with signature 5 mutations across these nine cancer types therefore includes some for 

which the risks conferred by smoking are modest and for which normal progenitor cells are not 

directly exposed to cigarette smoke (Table 1). Given the clock-like nature of signature 5 (17), its 

presence in the human germline (22), its ubiquity in cancer types unrelated to tobacco smoking (18) 

and its widespread occurrence in non-smokers, it seems unlikely that signature 5 mutations 

associated with tobacco smoking are direct consequences of misreplication of DNA damaged by 

tobacco carcinogens. It is more plausible that smoking affects the machinery generating signature 5 

mutations (23). Presumably as a consequence of the effects of smoking, signature 5 mutations 

correlated with age of diagnosis in non-smokers (p-value:0.001) but not in smokers (p-value:0.59). 

Signature 16 is predominantly characterized by T>C mutations at ApT dinucleotides (Fig. 2B), exhibits 

a strong transcriptional strand bias consistent with almost all damage occurring on adenine (Fig. S5) 

and has only been found thus far in liver cancer. The underlying mutational process is currently 

unknown. Signature 16 exhibited a higher mutation burden in smokers compared to non-smokers in 

liver cancer (Table S2).  

For smokers with lung, larynx, pharynx, oral cavity, esophageal, bladder, liver, cervix, kidney and 

pancreas cancers quantitative data on cumulative exposure to tobacco smoke were available (Table 

S1). Total numbers of base substitution mutations positively correlated with pack years smoked for 

all cancer types together (q-value<0.05) and for lung adenocarcinoma (Table S3). For individual 

mutational signatures, correlations with pack years smoked were found in multiple cancer types for 

signatures 4 and 5 (Table S3). Signature 4 correlated with pack years in lung squamous, lung 

adenocarcinoma, larynx and liver cancers. Signature 5 correlated with pack years in all cancers 

together, in lung adenocarcinoma, pharynx, oral cavity and bladder cancers (Table S3). In lung 

adenocarcinoma, correlations with pack years smoked were also observed for signatures 2 and 13. 

The rates of these correlations allow estimation of the approximate numbers of mutations 
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accumulated in a normal cell of each tissue due to smoking a pack of cigarettes a day for a year: 

lung, 150 mutations; larynx, 97; pharynx, 39; oral cavity 23; bladder, 18; liver, 6 (Table S3).  

Consistent with our results, previous studies have reported the higher numbers in smokers 

compared to non-smokers of total base substitutions in lung adenocarcinoma (mainly due to C>A 

substitutions) (24, 25),  of signatures 4 and 5 in lung adenocarcinoma (18), of signature 4 in liver 

cancer (26) and of signature 5 in bladder cancer (23).  

Differential methylation of the DNA of normal cells of smokers compared to non-smokers has been 

reported (27). Using data from methylation arrays, each containing ~470,000 of the ~28 million CpG 

sites in the human genome, we evaluated whether differences in methylation are found in cancers. 

Overall levels of CpG methylation in DNA from cancers were similar in smokers and non-smokers for 

all cancer types (Fig. S6). Individual CpGs were differentially methylated (>5% difference) only in two 

cancer types: 369 CpGs were hypo- and 65 were hyper-methylated in lung adenocarcinoma, with 5 

hypo- and 3 hyper-methylated in oral cancer (Fig. 3 and S7). CpGs exhibiting differences in 

methylation clustered in certain genes but were neither associated with known cancer genes more 

than expected by chance nor with genes hypo-methylated in normal blood or buccal cells of tobacco 

smokers (Fig. S8; Tables S4 and S5) (27). Therefore, with the exception of lung cancer, CpG 

methylation showed limited differences between the cancers of smokers and non-smokers (Fig. 3). 

The genomes of smoking-associated cancers permit reassessment of our understanding of how 

tobacco smoke causes cancer. Consistent with the proposition that an increased mutation load 

caused by tobacco smoke contributes to increased cancer risk, the total mutation burden is elevated 

in smokers compared to non-smokers in lung adenocarcinoma, larynx, liver and kidney cancers. 

However, differences in total mutation burden were not observed in the other smoking-associated 

cancer types and in some there were no statistically significant smoking-associated differences in 

mutation load, signatures or DNA methylation. Caution should be exercised in the interpretation of 

the latter observations. In addition to limitations of statistical power, multiple rounds of clonal 
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expansion over many years are often required for development of a symptomatic cancer. It is thus 

conceivable that, in the normal tissues from which smoking associated cancer types originate, there 

are more somatic mutations in smokers than in non-smokers (or differences in methylation) but that 

these differences become obscured during the intervening clonal evolution. Moreover, some 

theoretical models predict that relatively small differences in mutation burden caused by smoking in 

pre-neoplastic cells could account for the observed increases in cancer risks (28) and others that 

differences in mutation burden between smokers and non-smokers need not be observed in the 

final cancers (Supplementary Text and Fig. S6). Thus, increased somatic mutation loads in 

precancerous tissues may still explain the smoking-induced risks of most cancers, although other 

mechanisms have been proposed (29, 30).  

The generation of the increased somatic mutation burden by tobacco smoking, however, appears to 

be mechanistically complex. Smoking correlates with increases in base substitutions of multiple 

mutational signatures, together with increases in indels and copy number changes. The extent to 

which these distinct mutational processes operate differs between tissue types, at least in part 

depending on the degree of direct exposure to tobacco smoke, and their mechanisms range from 

misreplication of DNA damage caused by tobacco smoke constituents to activation of more generally 

operative mutational processes. Although we cannot exclude roles for covariate behaviours of 

smokers or differences in the biology of cancers arising in smokers compared to non-smokers, 

smoking itself is most plausibly the cause of these differences. 



 10 

REFERENCES AND NOTES 

1. B. Secretan et al., A review of human carcinogens--Part E: tobacco, areca nut, alcohol, coal 
smoke, and salted fish. Lancet Oncol 10, 1033-1034 (2009). 

2. S. S. Lim et al., A comparative risk assessment of burden of disease and injury attributable to 
67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the 
Global Burden of Disease Study 2010. Lancet 380, 2224-2260 (2012). 

3. B. Pesch et al., Cigarette smoking and lung cancer--relative risk estimates for the major 
histological types from a pooled analysis of case-control studies. International journal of 
cancer 131, 1210-1219 (2012). 

4. A. Agudo et al., Impact of cigarette smoking on cancer risk in the European prospective 
investigation into cancer and nutrition study. Journal of clinical oncology : official journal of 
the American Society of Clinical Oncology 30, 4550-4557 (2012). 

5. S. S. Hecht, Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nature 
reviews. Cancer 3, 733-744 (2003). 

6. D. H. Phillips, The formation of DNA adducts. In The Cancer Handbook, 2nd edition, M. R. 
Allison, Ed. (Wiley, Chichester, 2007), pp. 338-350. 

7. D. H. Phillips, Smoking-related DNA and protein adducts in human tissues. Carcinogenesis 
23, 1979-2004 (2002). 

8. D. H. Phillips, S. Venitt, DNA and protein adducts in human tissues resulting from exposure 
to tobacco smoke. International journal of cancer 131, 2733-2753 (2012). 

9. L. B. Alexandrov, M. R. Stratton, Mutational signatures: the patterns of somatic mutations 
hidden in cancer genomes. Current opinion in genetics & development 24, 52-60 (2014). 

10. P. Hainaut, M. Hollstein, p53 and human cancer: the first ten thousand mutations. Adv. 
Cancer Res. 77, 81-137 (2000). 

11. M. F. Denissenko, A. Pao, M. Tang, G. P. Pfeifer, Preferential formation of benzo[a]pyrene 
adducts at lung cancer mutational hotspots in P53. Science 274, 430-432 (1996). 

12. G. P. Pfeifer, M. F. Denissenko, Formation and repair of DNA lesions in the p53 gene: relation 
to cancer mutations? Environ Mol Mutagen 31, 197-205 (1998). 

13. L. E. Smith et al., Targeting of lung cancer mutational hotspots by polycyclic aromatic 
hydrocarbons. J Natl Cancer Inst 92, 803-811 (2000). 

14. F. Le Calvez et al., TP53 and KRAS mutation load and types in lung cancers in relation to 
tobacco smoke: distinct patterns in never, former, and current smokers. Cancer Res 65, 
5076-5083 (2005). 

15. L. B. Alexandrov, S. Nik-Zainal, D. C. Wedge, P. J. Campbell, M. R. Stratton, Deciphering 
signatures of mutational processes operative in human cancer. Cell reports 3, 246-259 
(2013). 

16. L. B. Alexandrov, Understanding the origins of human cancer. Science 350, 1175 (2015). 
17. L. B. Alexandrov et al., Clock-like mutational processes in human somatic cells. Nature 

genetics 47, 1402-1407 (2015). 
18. L. B. Alexandrov et al., Signatures of mutational processes in human cancer. Nature 500, 

415-421 (2013). 
19. S. Nik-Zainal et al., The genome as a record of environmental exposure. Mutagenesis 30, 

763-770 (2015). 
20. S. Nik-Zainal et al., Mutational processes molding the genomes of 21 breast cancers. Cell 

149, 979-993 (2012). 
21. C. Swanton, N. McGranahan, G. J. Starrett, R. S. Harris, APOBEC Enzymes: Mutagenic Fuel for 

Cancer Evolution and Heterogeneity. Cancer discovery 5, 704-712 (2015). 
22. R. Rahbari et al., Timing, rates and spectra of human germline mutation. Nature genetics 48, 

126-133 (2016). 



 11 

23. J. Kim et al., Somatic ERCC2 mutations are associated with a distinct genomic signature in 
urothelial tumors. Nature genetics advance online publication,  (2016). 

24. R. Govindan et al., Genomic landscape of non-small cell lung cancer in smokers and never-
smokers. Cell 150, 1121-1134 (2012). 

25. M. Imielinski et al., Mapping the hallmarks of lung adenocarcinoma with massively parallel 
sequencing. Cell 150, 1107-1120 (2012). 

26. A. Fujimoto et al., Whole-genome mutational landscape and characterization of noncoding 
and structural mutations in liver cancer. Nature genetics 48, 500-509 (2016). 

27. A. E. Teschendorff et al., Correlation of Smoking-Associated DNA Methylation Changes in 
Buccal Cells With DNA Methylation Changes in Epithelial Cancer. JAMA oncology 1, 476-485 
(2015). 

28. C. Tomasetti, L. Marchionni, M. A. Nowak, G. Parmigiani, B. Vogelstein, Only three driver 
gene mutations are required for the development of lung and colorectal cancers. 
Proceedings of the National Academy of Sciences of the United States of America 112, 118-
123 (2015). 

29. M. Sopori, Effects of cigarette smoke on the immune system. Nature reviews. Immunology 2, 
372-377 (2002). 

30. H. Rubin, Selective clonal expansion and microenvironmental permissiveness in tobacco 
carcinogenesis. Oncogene 21, 7392-7411 (2002). 

 

 



 12 

ACKNOWLEDGEMENTS 

This work was supported by the Wellcome Trust (grant number 098051). S.N.-Z. is a Wellcome-Beit 

Prize Fellow and is supported through a Wellcome Trust Intermediate Fellowship (grant 

WT100183MA). P.J.C. is personally funded through a Wellcome Trust Senior Clinical Research 

Fellowship (grant WT088340MA). L.B.A. is personally supported through a J. Robert Oppenheimer 

Fellowship at Los Alamos National Laboratory. This research used resources provided by the Los 

Alamos National Laboratory Institutional Computing Program, which is supported by the U.S. 

Department of Energy National Nuclear Security Administration under Contract No. DE-AC52-

06NA25396. Research performed at Los Alamos National Laboratory was carried out under the 

auspices of the National Nuclear Security Administration of the United States Department of Energy. 

This work was supported by the Francis Crick Institute which receives its core funding from Cancer 

Research UK, the UK Medical Research Council, and the Wellcome Trust. D.H.P. is funded by Cancer 

Research UK (grant number C313/A14329), the Wellcome Trust (Grants 101126/Z/13/Z and 

101126/B/13/Z), the National Institute for Health Research Health Protection Research Unit (NIHR 

HPRU) in Health Impact of Environmental Hazards at King’s College London in partnership with 

Public Health England (PHE) and by the project EXPOSOMICS, grant agreement 308610-FP7 

(European Commission). P.V. was partially supported by the project EXPOSOMICS, grant agreement 

308610-FP7 (European Commission). Y.T. and T.S. are supported by the Practical Research for 

Innovative Cancer Control from Japan Agency for Medical Research and Development 

(15ck0106094h0002), and National Cancer Center Research and Development Funds (26-A-5). We 

would like to thank The Cancer Genome Atlas (TCGA), the International Cancer Genome Consortium 

(ICGC), and the authors of all studies cited in Tables S1 for providing free access to their somatic 

mutational data.  



 13 

FIGURE LEGENDS 

Fig. 1. Comparison between tobacco smokers and lifelong non-smokers. Bars are used to display 

average values for numbers of somatic substitutions per megabase, numbers of indels per 

megabase, numbers of dinucleotide mutations per megabase, numbers of breakpoints per 

megabase, fraction of the genome that shows copy number changes and numbers of mutations per 

megabase attributed to mutational signatures found in multiple cancer types associated with 

tobacco smoking. Light gray bars are non-smokers, while dark gray bars are smokers. Comparisons 

between smokers and non-smokers for all features, including mutational signatures specific for a 

cancer type and overall DNA methylation are provided in Table S2. Error bars correspond to 95% 

confidence intervals for each feature. Each q-value is based on a two-sample Kolmogorov-Smirnov 

test corrected for multiple hypothesis testing for all features in a cancer type. Cancer types are 

ordered based on their age adjusted odds ratios for smoking as provided in Table 1. Data for 

numbers of breakpoints per megabase and fraction of the genome that shows copy number changes 

were not available for liver cancer and small cell lung cancer. Adeno stands for Adenocarcinoma; 

Esophag. stands for Esophagus. Note that the presented data include only a few cases (<10) of 

nonsmokers for lung small cell, lung squamous and cancer of the larynx. 

 

Fig. 2. Mutational signatures associated with tobacco smoking. (A) Each panel contains 25 

randomly selected cancer genomes (represented by individual bars) from either smokers or non-

smokers in a given cancer type. The y-axes reflect numbers of somatic mutations per megabase. 

Each bar is colored proportionately to the numbers of mutations per megabase attributed to the 

mutational signatures found in that sample. Naming of mutational signatures is consistent with 

previous reports (16-18). (B) Each panel contains the pattern of a mutational signature associated 

with tobacco smoking. Signatures are depicted using a 96 substitution classification defined by the 

substitution type and sequence context immediately 5’ and 3’ to the mutated base. Different colors 
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are used to display different types of substitutions. The percentages of mutations attributed to 

specific substitution types are on the vertical axes, while the horizontal axes display different types 

of substitutions. Mutational signatures are depicted based on the trinucleotide frequency of the 

whole human genome. Signatures 2, 4, 5, 13 and 16 are extracted from cancers associated with 

tobacco smoking. The signature of benzo[a]pyrene is based on in vitro experimental data (19). 

Numerical values for these mutational signatures are provided in Table S6. 

 

Fig. 3. Differentially methylated individual CpGs in tobacco smokers across cancers associated with 

tobacco smoking. Each dot represents an individual CpG. The horizontal axes reflect differences in 

methylation between lifelong non-smokers and smokers, where positive values correspond to hyper-

methylation and negative values to hypo-methylation. The vertical axes depicted levels of statistical 

significance. Results satisfying a Bonferroni threshold of 10-7 (above the red line) are considered 

statistically significant. 
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TABLES 

Cancer Type Odds 
ratios 

Non-
smokers Smokers 

Total number of 
mutational 

signatures found 
in the cancer type 

Signature 4 
found in 
cancer 
type  

Mutational signatures 
with elevated mutation 

burden in smokers 
compared to non-

smokers (q-value<0.05) 
All Cancer Types  1,062 2,490 26 Y 4, 5* 
Small Cell Lung Cancer 111.3 3 145 6 Y  
Lung Squamous 103.5 7 168 8 Y 4*, 5 
Lung Adenocarcinoma 21.9 120 558 7 Y 2*, 4*, 5*, 13* 
Larynx 13.2 6 117 5 Y 4*, 5 
Pharynx 6.6 27 49 5 Y 5* 
Oral Cavity 4.2 98 265 5 Y 5* 
Esophagus Squamous 3.9 99 193 9 Y 5 
Esophagus Adenocarcinoma 3.9 67 175 9 Y 

 
Bladder 3.8 111 288 5 N 5* 
Liver 2.9 157 235 19 Y 4*, 5, 16 
Stomach 2.1 472 13 N N/A 
Acute Myeloid Leukemia 2.0 202 2 N N/A 
Ovary 1.9 458 3 N N/A 
Cervix 1.8 94 74 8 N 

 
Kidney 1.7 154 103 6 N 5 
Pancreas 1.6 119 120 11 N 

 
Colorectal 1.3 559 4 N N/A 

 

Table 1. Mutational signatures and cancer types associated with tobacco smoking. Information 
about the age adjusted odds ratios for current male smokers to develop cancer is taken from refs. 
(2-4). Odds ratios for small cell lung cancer, lung squamous and lung adenocarcinoma are for an 
average daily dose of more than 30 cigarettes. Odds ratios for cervix and ovary are for current 
female smokers. Detailed information about all mutation types, all mutational signatures and DNA 
methylation is provided in Table S2. Nomenclature for signature IDs is consistent with the COSMIC 
website, http://cancer.sanger.ac.uk/cosmic/signatures. The patterns of all mutational signatures 
with elevated mutation burden in smokers are displayed in Fig. 2B. N/A denotes lack of smoking 
annotation for a given cancer type. * denotes that a signature correlates with pack years smoked in 
a cancer type. 
 

http://cancer.sanger.ac.uk/cosmic/signatures
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